
Logical Methods in Computer Science
Volume 16, Issue 3, 2020, pp. 7:1–7:17
https://lmcs.episciences.org/

Submitted Oct. 05, 2018
Published Jul. 23, 2020

FIXED POINT COMBINATORS AS FIXED POINTS OF

HIGHER-ORDER FIXED POINT GENERATORS

ANDREW POLONSKY

Appalachian State University, Boone NC 28608-2133, USA
e-mail address: andrew.polonsky@gmail.com

Abstract. Corrado Böhm once observed that if Y is any fixed point combinator (fpc),
then Y (λyx.x(yx)) is again fpc. He thus discovered the first “fpc generating scheme” – a
generic way to build new fpcs from old. Continuing this idea, define an fpc generator to be
any sequence of terms G1, . . . ,Gn such that

Y is fpc Ô⇒ Y G1⋯Gn is fpc.

In this contribution, we take first steps in studying the structure of (weak) fpc generators.
We isolate several robust classes of such generators, by examining their elementary properties
like injectivity and (weak) constancy. We provide sufficient conditions for existence of fixed
points of a given generator (G1,⋯,Gn): an fpc Y such that Y = Y G1⋯Gn. We conjecture
that weak constancy is a necessary condition for existence of such (higher-order) fixed
points. This statement generalizes Statman’s conjecture on non-existence of “double fpcs”:
fixed points of the generator (G) = (λyx.x(yx)) discovered by Böhm.

Finally, we define and make a few observations about the monoid of (weak) fpc generators.
This enables us to formulate new conjectures about their structure.

Dedicated to Corrado Böhm, a pioneer of the Lambda Calculus

1. Introduction

Fixed point combinators (fpcs) are a fascinating class of lambda terms. Arising in the proof
of the Fixed Point Theorem, their dynamical character affects the global structure of the
Lambda Calculus in a fundamental way. Being a mechanism of unrestricted recursion, they
are directly responsible for the Turing-completeness of the lambda calculus as a programming
language.1 And when lambda terms are used as the computational basis of a logical system
— whether based on the Curry–Howard isomorphism or illative combinatory logic — fixed
point combinators appear unexpectedly as the untyped skeletons of paradoxes, heralding
inconsistency of the logic lying over the computational calculus. [2] [9] [4] [8] [5] [13]

It is an elementary fact that a term Y is a fixed point combinator if and only if Y is
itself a fixed point of the combinator δ = λyx.x(yx). [1, 6.5.3] This can even be taken as
the definition of fpcs: Y ∈ Λ is fpc iff Y = δY . Corrado Böhm noticed that also Y δ is fpc

Key words and phrases: Fixed point combinator, Lambda Calculus, Bohm tree, FPC generator.
1 In fact, the very notion of Turing-completeness traces back to Church’s bold suggestion that lambda

calculus can encode arbitrary computational processes. Yet the idea was only accepted after Kleene and
Turing, using fixed point constructions, showed equivalence between Church’s formalism and their own ones.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(3:7)2020
© Andrew Polonsky
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses


7:2 Andrew Polonsky Vol. 16:3

whenever Y is. [1, 6.5.4] For example, if Y = Y is Curry’s fpc, then Y δ = Θ is Turing’s fpc.
A major open problem in the Lambda Calculus asks whether there exists a “double fpc” Y
satisfying δY = Y = Y δ. Statman [15] conjectures that no such Y exists. An early attack on
this problem was undertaken by Intrigila [10]. Unfortunately, Endrullis discovered a gap in
the argument which seems difficult to overcome. As of this writing, the conjecture remains
open. For recent developments, see [6], [12]. We will also discuss the conjecture in Section 4.

Böhm’s observations revealed that fpcs themselves have a compositional structure,
where one constructs new fpcs from old by applying them to δ. Since then, other “fpc
generating schemes” have been discovered and investigated by several authors. [14] [6] These
contributions have confirmed that fpcs have a rich mathematical structure indeed.

In this paper, we will explore such fpc generators “in the abstract”, studying their
general properties and providing a basic taxonomy. We formulate several new problems,
including a significant strengthening of Statman’s conjecture.

2. Notations and definitions

Notation 2.1. We assume the reader is familiar with the basic notions of lambda calculus:
λ-terms, free variables, substitution, and beta-conversion. We refer to [1] for background on
these matters. Here we shall employ the following symbols and notions.

● Λ is the set of λ-terms. Λ0 = {M ∈ Λ ∣ FV(M) = ∅} is the set of closed λ-terms.
● FV(M) is the set of free variables of M ∈ Λ.
● M[x ∶= N] is the result of capture-avoiding substitution of N for x in M .

● If N⃗ = (N1, . . . ,Nk) is a sequence of λ-terms, then MN⃗ =MN1⋯Nk.
● F k(z) ∶= F (F (⋯F (z)⋯)), with k F s.
● I = λx.x, K = λxy.x, ck = λxy.xk(y), δ = λyx.x(yx).
● M = N denotes beta conversion between M and N .
● M ↠ N denotes beta reduction from M to N .
● M is solvable, if MN⃗ = I for some N⃗ . Otherwise, M is unsolvable.
● M =∞ N if M and N have the same Böhm tree.

We note without proof that this relation can be defined using one axiom and one inference
rule, the latter to be understood coinductively (see [11],[7], and especially [3, Def. 5.6]):

M,N unsolvable

M =∞ N

M = λx⃗.yM⃗ N = λx⃗.yN⃗ M1 =∞ N1 ⋯ Mk =∞ Nk

M =∞ N

● z#M means z ∉ FV(M). For S ⊆ Λ, z#S means z#M for each M ∈ S.
● z ∉M if there exists N =M such that z#N . z ∈M if z ∈ FV(N) for all N =M .
● z ∉∞ M if there exists N =∞ M such that z#N . Otherwise, z ∈∞ M .

Definition 2.2. Y ∈ Λ is a fixed point combinator (fpc) if Y x = x(Y x) for x#Y .

Definition 2.3. Y ∈ Λ is a weak fixed point combinator (wfpc) if Y x =∞ x(Y x) for x#Y .

Notice that every fpc is a wfpc. See Examples 3.1 for both types of terms.
All (w)fpcs have the same Böhm tree, so Y ∈ Λ is wfpc iff Y =∞ Y0 for some fpc Y0.
A wfpc Y can equivalently be given by a sequence of terms (Yn) with Y = Y0 and

Ynx = x(Yn+1x), with x#{Yn, Yn+1}. [12, Prop. 3.9] If Y is fpc, then Yn = Y0 for all n.

Notation 2.4. We write FPC (WFPC) for the set of fpcs (weak fpcs).



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:3

Notation 2.5. Henceforth, we shall often write (W)FPC in a sentence that is meant to
apply to both FPC and WFPC. Such a statement should always be read as a conjunction
of two statements: one, in which parentheses are ignored together with their contents, and
another, where parentheses are removed but their contents remain.

Definition 2.6. A (weak) fpc generating vector, or (w)fgv, is a sequence of terms G⃗ satisfying

Y ∈ (W)FPC Ô⇒ Y G⃗ ∈ (W)FPC.

Proposition 2.7. TFAE:
(i) G⃗ is wfgv.

(ii) Y ∈ FPC Ô⇒ Y G⃗ ∈WFPC.

(iii) Y G⃗ ∈WFPC for some Y ∈ FPC.

Proof. (i) ⇒ (ii). Let G⃗ be wfgv, Y be fpc. Then Y is wfpc, and Y G⃗ is wfpc.
(ii) ⇒ (iii). Trivial.

(iii) ⇒ (i). Let Z be wfpc. Then Z =∞ Y . Also ZG⃗ =∞ Y G⃗ is wfpc.

Corollary 2.8. Every fpc generator is wfpc generator.

Proof. Let G⃗ be fpc generator. Pick Y ∈ FPC. Then Y G⃗ is fpc, hence G⃗ is wfgv.

Proposition 2.9. Consider the following conditions on G⃗.

(i) Y fpc Ô⇒ Y G⃗ fpc

(ii) Y wfpc Ô⇒ Y G⃗ wfpc

(iii) Y fpc Ô⇒ Y G⃗ wfpc

(iv) Y wfpc Ô⇒ Y G⃗ fpc

The following relations are valid:

(iv) Ô⇒ (i) Ô⇒ (ii) ⇐⇒ (iii)

Proof. These relations simply summarize the facts noted above.

3. Examples and first observations

Examples 3.1.

● Turing’s fpc. Let Θx = V V x, where V = λvx.x(vvx). Then Θ ∈ FPC.
● Parametrized Turing’s fpc. For M ∈ Λ, let ΘMx = V VMx, where V = λvmx.x(vvmx).

Then ΘM ∈ FPC. (This example can be generalized to have multiple parameters.)
● Let z be a variable. Put Ψz = WzWzI, where Wz = λwpx.x(ww(zp)x). Then Ψz ∈
WFPC ∖ FPC.

● A slight variant of the above will play a central role in the proof of our main result. Let c
be a variable. Put Υ = λx.VxIVx, where Vx = λpv.x(v(cp)v). Then Υ ∈WFPC ∖ FPC.

A nice feature of this wfpc is that it has a very simple reduction graph.

Proposition 3.2. ΘM = ΘN Ô⇒ M = N .

Proof. This is manifest upon inspecting the reduction graph of Θz — the set of reducts of
Θz. For a precise proof, see [12, Lemma 4.1].



7:4 Andrew Polonsky Vol. 16:3

Examples 3.3.

● Let G⃗ = (), the empty vector. Obviously, Y ∈ (W)FPC Ô⇒ Y G⃗ = Y ∈ (W)FPC.
We call this generator trivial. In subsequent sections, we will tacitly assume all generators
to be non-trivial.

● Fix a (w)fpc Y , and let G⃗ = (KY ). Then (KY ) yields the same (w)fpc on every input:

Z = (Z0, Z1, . . . ) ∈WFPC Ô⇒ Z0(KY ) = KY (Z1(KY )) = Y ∈ (W)FPC.
We call such generators constant. Their only interesting feature is the fixed point Y = Y G⃗.

● Recall that δyx = x(yx). It is easy to verify the following:
– δk(z)x = xk(zx).
– If Y is fpc, then Y = δY = δk(Y ).
– If Y = (Yn) is wfpc, then Y0 = δk(Yk).
Let G⃗ = (δ). Then Y ∈ FPC Ô⇒ Y δx = δ(Y δ)x = x(Y δx) Ô⇒ Y δ ∈ FPC.
As noted in the introduction, it is open whether there exists Y ∈ (W)FPC such that Y =Y δ.

● Let G⃗ = (λy.Θy). Then

Y ∈ FPC Ô⇒ Y G⃗ = Y (λy.Θy) = (λy.Θy)(Y (λy.Θy)) = ΘY G⃗ ∈ FPC.

Furthermore, there exists fpc Y such that Y = Y G⃗.
Indeed, take Y = Θ(λx.Θx(λy.Θy)

) = ΘY (λy.Θy)
. Then Y ∈ FPC, and

Y (λy.Θy) = (λy.Θy)(Y (λy.Θy)) = ΘY (λy.Θy)
= Y.

● Yet another single-term fgv is given by G⃗ = (λyx.x(y(K[y, x])I)), where [P,Q] = λz.zPQ:

Y ∈ FPC Ô⇒ Y G0x = G0(Y G0)x = x(Y G0(K[Y G0, x])I)
= x(G0(Y G0)(K[Y G0, x])I)
= x(K[Y G0, x](⋯)I)
= x([Y G0, x]I) = x(I(Y G0)x) = x(Y G0x)

● The set of (w)fgvs is closed under composition: if G⃗ and G⃗′ are fgvs, then

Y ∈ FPC Ô⇒ Y G⃗ ∈ FPC Ô⇒ Y G⃗G⃗′ ∈ FPC.
Thus, (δ, λy.Θy) and (λy.Θy, δ) are both fgvs.

● Many other examples of fpcs and fgvs can be found in [6] and [12].

Definition 3.4. A (w)fgv G⃗ is injective if for all (w)fpcs Y,Y ′, Y G⃗ = Y ′G⃗ implies Y = Y ′.

Proposition 3.5. No non-trivial (w)fgv is injective.

Proof. Suppose G⃗ = (G0, . . . ,Gn), for n ≥ 0, is injective. Since ΘG⃗ = G0(ΘG0)G1⋯Gn is

(w)fpc, G0 must be solvable. That is, G0P⃗ = I for some closed P⃗ . Put Y = ΘxP⃗ , Y ′ = ΘxP⃗I.
By Proposition 3.2, Y ≠ Y ′. Yet

Y G⃗ = ΘG0P⃗
G⃗ = ΘIG⃗ = ΘG0P⃗I

G⃗ = Y ′G⃗.

It follows that G⃗ is not injective.

(Notice that in the above proof both Y and Y ′ are closed, so even restricting injectivity
hypothesis to closed terms, no non-trivial wfpc generator is injective.)

Corollary 3.6. Suppose wfgv G⃗ fixes every fpc: Y G⃗ = Y for all fpc Y . Then G⃗ is trivial.



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:5

An interesting consequence of these observations is that there is no uniform way to
“Böhm out” an inner level of a wfpc.

Proposition 3.7. For m > 0, it is not possible to find terms (M0, . . . ,Mn) such that

Z = (Zn) wfpc Ô⇒ Z0M⃗ = Zm. (3.1)

Proof. Suppose such M⃗ = (M0, . . . ,Mn) exists. Then M⃗ is a wfgv. For every fpc Y , we have

Y M⃗ = Y , so every fpc is fixed by M⃗ . (In particular, M⃗ is a fgv.) By Corollary 3.6, M⃗ is

trivial: M⃗ = (). But then M⃗ fixes every wfpc as well, and thus cannot satisfy the hypothesis
in (3.1).

4. The four main classes of generators

Let us consider again Statman’s conjecture on the non-existence of fixed points of the
generator G⃗ = (δ). This conjecture is intuitively compelling, because applying any fpc Y to
δ leads to a slowdown of head reductions that seems impossible to remove:

Y x↠w x(Y ′) =β x(Y x)
Y δx↠w δ(Y ′[x ∶= δ])x↠w x(Y ′[x ∶= δ]x) =β x(Y δx)

Upon closer inspection, the central property of the generator (δ) that this reasoning depends
on is that δ(Y δ)x adds to the reduction length needed for the Böhm tree to develop, while still
using the given fpc Y in constructing this Böhm tree infinitely often. Since any conversion
between the two will synchronize their Böhm reductions, no such conversion can be possible.

If this reasoning proves to be correct for δ, it should remain valid for any generator
possessing the same property. This leads us to the following definition and conjecture.

Recall, for any wfpc (Yn), Y0 = λx.xk(Ykx) = δk(Yk) = δk(z)[z ∶= Yk].

Definition 4.1. A generator G⃗ is accretive if, for each k, z ∈∞ δk(z)G⃗.

That is, G⃗ is accretive if it actually uses every level of the input fpc in constructing the
output fpc, so that replacing Y with any approximant will also cut the Böhm tree of Y G⃗.

Conjecture 4.2. If G⃗ is accretive, then there exists no Y ∈WFPC such that Y = Y G⃗.

Remark 4.3. Conjecture 4.2 generalizes Statman’s conjecture. Indeed,

δk(z)δ = (λx.xk(zx))δ = δk(zδ) = λx.xk(zδx)
Thus, z ∈∞ δk(z)δ for all k, and the fgv G⃗ = (δ) is accretive.

Conjecture 4.2 is as sharp as possible: later in this section, we will show that every G⃗
which is not accretive possesses a fixed point among the wfpcs.

The non-accretive generators can be naturally divided into several classes given below.
(We eschew the (W)FPC notation in the next definition to emphasize that there are actually
four properties of generators that are being defined.)

From the earlier equality Y0 = δk(Yk), note that for each (w)fpc Y , k ≥ 0, we can write

Y G⃗ = δk(Y ′)G⃗ = Gk0(Y ′G0)G1⋯Gn.



7:6 Andrew Polonsky Vol. 16:3

Definition 4.4. Let G⃗ be a wfgv. Fix z#G⃗.

● G⃗ is constant if there is a k such that z ∉ Gk0(z)G1⋯Gn.

● G⃗ is weakly constant if there is a k s.t. z ∉∞ Gk0(z)G1⋯Gn.

● G⃗ is compact if there is a k such that Gk0(z)G1⋯Gn ∈ FPC.

● G⃗ is weakly compact if there is a k s.t. Gk0(z)G1⋯Gn ∈WFPC.

The least k satisfying one of these conditions is then called the modulus of constancy, or
modulus of compactness, accordingly. Note that G⃗ is accretive iff G⃗ is not weakly compact.

From now on, let G⃗ be a possibly weak fgv. We will omit freshness conditions x#Y ,
z#G⃗ etc., as they will always be obvious from the context.

Proposition 4.5. Let G⃗ be a constant (w)fgv. There is a term Z such that

Y G⃗ = Z
for all wfpc Y . Hence Z is (w)fpc.

Proof. Let G⃗ be constant, and let k be such that z ∉ Gk0(z)G1⋯Gn.
That is, z ∉ FV(Z) for some Z ∈ Λ convertible to Gk0(z)G1⋯Gn.
Then for any wfpc Y = (Y0, Y1, . . . ), we have

Y G⃗ = Y0G⃗ = Y0G0⋯Gn
= G0(Y1G0)G1⋯Gn
= ⋮

= Gk0(YkG0)G1⋯Gn
= Gk0(z)G1⋯Gn[z ∶= YkG0]
= Z[z ∶= YkG0]
= Z

Proposition 4.6. The following observations are immediate.

(1) Every constant fgv is compact.
(2) Every constant (w)fgv is weakly constant.
(3) Every compact (w)fgv is weakly compact.

Proposition 4.7. G⃗ is weakly constant iff G⃗ is weakly compact.

Proof. Let G⃗ be a wfgv. Then

z ∉∞ Gk0(z)G1⋯Gn Ô⇒ Gk0(z)G1⋯Gn =∞ Gk0(ΘG0)G1⋯Gn = ΘG⃗ ∈WFPC,

Gk0(z)G1⋯Gn ∈WFPC Ô⇒ Gk0(z)G1⋯Gn =∞ Θ Ô⇒ z ∉∞ Gk0(z)G1⋯Gn.

Proposition 4.8. Every (weakly) compact generator has a fixed point:

(1) If G⃗ is compact fgv, there exists fpc Y with Y G⃗ = Y .

(2) If G⃗ is weakly compact wfgv, there exists wfpc Y with Y G⃗ = Y .

Proof. The construction is the same for both claims. We will first treat the weak case, and
then specialize the proof to the first claim as well.

Let G⃗ be a weakly compact wfgv. Let k be the modulus of weak compactness, so that
Gk0(z)G1⋯Gn ∈WFPC. Put F0[z] ∶= Gk0(z)G1⋯Gn. Since F0[z] is wfpc, write

F0[z]x = x(F1[z]x) = x2(F2[z]x) = ⋯ = xk(Fk[z]x) = ⋯ (4.1)



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:7

Define Y ∶= Θ(λy.Fk[yG0]) = Fk[Y G0], and X ∶= F0[Y G0]. Now compute

XG⃗ =XG0⋯Gn
= F0[Y G0]G0⋯Gn by definition of X

= Gk0(Fk[Y G0]G0)G1⋯Gn by (4.1) with [x ∶= G0, z ∶= Y G0]

= Gk0(Y G0)G1⋯Gn by definition of Y

= F0[Y G0] by definition of F0

=X by definition of X

Since F0[z] is wfpc, so is X = F0[Y G0], proving the second claim.

Now suppose that G⃗ was actually compact fgv. Then F0[z] would be fpc, while all
of the steps above would remain valid, with F0[z] = Fk[z] for each k. Then X = F0[Y G0]
would be fpc as well, proving the first claim.

Remark 4.9. The reader will recognize the converse to Proposition 4.8(2) as the contra-
positive of Conjecture 4.2. The converse to Proposition 4.8(1) seems plausible, but we do
not have sufficient evidence to assert it as a formal conjecture.

5. Rectifying generators

Definition 5.1. A vector G⃗ is rectifying if it satisfies condition (iv) of Proposition 2.9:

Y ∈WFPC Ô⇒ Y G⃗ ∈ FPC

Example 5.2. G⃗ = (λy.Θy) is rectifying:

(Yn) ∈WFPC Ô⇒ Y0(λy.Θy) = (λy.Θy)(Y1(λy.Θy)) = ΘY1(λy.Θy)
∈ FPC

In Example 3.3, we saw that (λy.Θy) has a fpc fixed point. We shall presently see that
so does every rectifying fgv.

Our original proof of this fact first showed that if G⃗ is rectifying, then G⃗ is weakly
constant, and thus has a wfpc fixed point Y . But then Y = Y G⃗ ∈ FPC because G⃗ is rectifying,
hence Y is fpc.

Considering that compactness provides another sufficient condition for existence of fpc
fixed points, it was natural to wonder whether rectifying and compact fgvs are related. This
led us to the following result.

Theorem 5.3. A fgv G⃗ is compact iff it is rectifying.

Proof. (⇒): Suppose Gk0(z)G1⋯Gn ∈ FPC. Then

Y = (Y0, Y1, . . . ) ∈WFPC

Ô⇒ Y G⃗ = Y0G0⋯Gn = Gk0(YkG0)G1⋯Gn = Gk0(z)G1⋯Gn[z ∶= YkG0] ∈ FPC.
(⇐): The intuition for this direction is that, although the Böhm tree of a wfpc Y is infinite,

only a finite part of it can be used in any conversion ρ ∶ Y G⃗x = x(Y G⃗x). Thus, writing
Y x = xk(Ykx) = δk(Yk)x for large enough k will ensure that Yk is not touched by any
redex contractions. Then the whole conversion ρ could be lifted to ρ = σ[z ∶= Yk], where

σ ∶ δk(z)G⃗x = x(δk(z)G⃗x).



7:8 Andrew Polonsky Vol. 16:3

To formalize this intuition, suppose G⃗ is rectifying. Fix c#G⃗. Recall the wfpc Υ from
Examples 3.3:

Wx,p = λv.x(v(cp)v)
Vx = λp.Wx,p

Υ = λx.VxIVx
That is, Vx = λpv.x(v(cp)v). Note that Wx,p and Vx are normal forms. Let Υk

x =
Vxc

k(I)Vx. The term Υx reduces as follows:

Υx→ Υ0
x ≡ VxIVx →Wx,IVx → x(Vx(cI)Vx) ≡ x(Υ1

x)
→ x(Wx,cIVx) → x(x(Vxc2(I)Vx)) ≡ x2(Υ2

x)
→ ⋯

→ xk(Υk
x)

→ ⋯
Since each term appearing in the above reduction sequence has a unique redex, the
reduction is completely deterministic. That is — the above sequence actually comprises
the entire reduction graph of Υ0

x. The sequence also shows that Υ is a wfpc. It is not a

fpc however, since Υ0
x obviously has no reducts in common with Υ1

x. But G⃗ is rectifying,

so ΥG⃗ is fpc. By the Church–Rosser theorem, let X be a common reduct

ΥG⃗x↠X ↞ x(ΥG⃗x). (5.1)

We will use these reductions to show that δk(z)G⃗ ∈ FPC for large enough k.
The main idea behind the construction is as follows. Any finite reduction ΥM ↠X

can be continued until all the descendants of Υ project the same number of steps from
Υ0
M in the sequence above. Afterwards, all descendants of M can be further synchronized

by confluence.
For example, if M = λy.[yK, y], then

Υ(IM) ↠ (IM)(Υ1
IM) ↠ (λy.[yK, y])(VIMc1(I)VIM)

↠ [VIMc1(I)VIMK, VIMc
1(I)VIM ]

↠ [WIM,c1(I)VIMK,IM(VIMc2(I)VM)]
and this reduction can be further continued to

[WIM,c1(I)VIMK,IM(VIMc2(I)VM)] ↠ [M(VMc2(I)VM)K, M(VMc2(I)VM)]
≡ [M(Υ2

M),M(Υ2
M)].

We proceed with the following sequence of claims, which are hopefully sufficiently clear
not to warrant additional elaboration.
(1) If ΥM ↠ X, then X ↠ X ′ ≡ C[VM1c

k1(I)VM ′

1
,⋯, VMk

ckm(I)VM ′
m
], with M ↠Mi,

M ↠M ′

i , and every occurrence of c in X ′ being displayed in the subterm cki(I) in
one of the holes in C[].

(2) If ΥM ↠X, then X ↠X ′ ≡ C[Υk1
M1
, . . . ,Υkm

Mm
], with M ↠Mi and every occurrence

of c being uniquely determined by its occurrence in some Υki
Mi

. This is obtained from

above by finding a common reduct for each Mi,M
′

i .



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:9

(3) If C[ΥM] ↠X, then X ↠ C ′[Υk1
M1
,⋯,Υkm

Mm
], with the same conditions on Mi and

occurrences of c as before. This is obtained from the previous point by factoring the
reduction into a part that does not depend on ΥM , C[x] ↠D[xP⃗1, . . . , xP⃗k], followed
by reductions inside D[⋯] which are treated separately via 2. (See “Barendregt’s
Lemma” in [1, Exercise 15.4.8])

(4) If C[ΥM] ↠X, then X ↠ C ′[Υk
N ,⋯,Υk

N ], where M ↠ N and each occurrence of c

being uniquely determined by its occurrence in some Υk
N . This is obtained from the

previous claim by “bumping all Υkis along” to stage k ≥ max{ki}, and letting N be
a common reduct of all the Mis.

(5) If the reduction ρ ∶ C[ΥM] ↠ C ′[Υk
N ,⋯,Υk

N ] is obtained by the algorithm given in

the previous steps, then ρ lifts to the instance ρ = σ[ux ∶= Υk
x], where

σ ∶ C[δk(u)M] ↠ C ′[uN,⋯, uN].
And now we are done! The common reductions in (5.1) can be both continued to

ΥG⃗x↠ C ′[Υk
N ,⋯,Υk

N ] ↞ x(ΥG⃗x)
so that all of the descendants of Υ (under both reductions) are displayed in the context.
(This follows from the fact that every occurrence of c is witnessed in some Υk

N , and c
was chosen to be fresh. The variable c acts as a “label” for the unfolding depth of Υ.)

The conclusion of the last step therefore holds for both of these reductions, and so

C[δk(u)M] ∶= [δk(u)G0]G1⋯Gn↠ C ′[uN, . . . , uN] ↞ x(δk(u)G0⋯Gn).
That is, Gk0(uG0)G1⋯Gn ∈ FPC. Applying the substitution [u ∶= Ku], we find that
Gk0(u)G1⋯Gn ∈ FPC as well.

Corollary 5.4. Every rectifying fgv has a fixed point in FPC.

Remark 5.5. The proof of the nontrivial direction of Theorem 5.3 suggests a deeper
connection between uniform properties (finite conversions) and terms obeying a coinductive
pattern (such as wfpcs). In the next section, we will see a different application of the same
type of argument. There seems to be a more general “continuity principle” at work here
that could be worthwhile to isolate.

We finish this section with an example of a weakly constant fgv which is not rectifying. It
follows that, even restricting to fgvs, compactness is indeed stronger than weak compactness.

This gives the full picture of the relationships between various classes of wfgvs we defined
here. These relationships are summarized in Figure 1.

Proposition 5.6. There exist weakly constant fpc generators which are not rectifying.

Proof. Consider the following combinators:

Pxy = yx
Qyz = z(yQz)

Wwpz = z(ww(zp)z)
Ryz =WW (yQz)z

First we observe that (P,Q) is an fgv: for Y fpc, we have

Y PQx = P (Y P )Qx = Q(Y P )x = x(Y PQx). (5.2)



7:10 Andrew Polonsky Vol. 16:3

We claim that (P,Q) is not rectifying. If it was, then by the previous theorem, it would
be compact, hence weakly compact. To the contrary, (5.2) shows that (P,Q) is accretive.
So it cannot be rectifying.

Next, we verify that (P,R) is again fgv:

Y PRx = P (Y P )Rx = R(Y P )x =WW (Y P Qx)x
= x(WW (x(Y P Qx))x)
=(5.2) x(WW (Y P Qx)x) = x(Y PR x)

At the same time, we claim (P,R) is weakly constant with modulus 1:

P 1(z)Rx = PzRx = Rzx =WW (zQx)x
= x(WW (⋯)x)
= x2(WW (⋯)x)
= ⋯
= xn(⋯)

The variable z is being pushed to infinity, and does not appear in the Böhm tree of PzRx—
nor in the Böhm tree of PzR = λx.PzRx. That is, z ∉∞ P 1(z)R. Indeed, G⃗ = (P,R) is
weakly constant. We claim it is not rectifying.

For a wfpc Z, the term ZPR reduces as follows:

ZPRx↠ P (ZP )Rx→2 R(ZP )x→2 WW (ZPQx)x
→3 x(WW (x(ZPQx))x)
→3 x2(WW (x2(ZPQx))x)
→ ⋮

ZPRx ↠z0+2+2+3n xn(WW (xn(ZPQx))x)
From this analysis, it is manifest that any common reduction

ZPRx ↠ ⋅ ↞ x(ZPRx)
must contain a common reduction between

xn(ZPQx) ↠ ⋅ ↞ xn+1(ZPQx).
As we observed earlier, (P,Q) is not rectifying, so there exist wfpcs Z for which such
conversion is not possible. Thus (P,R) is not rectifying either. This completes the proof.

(Note that the modulus of constancy can be adjusted to any k > 0 by passing the
argument of the generator into the head position k times before pushing it to infinity.)

6. The monoid of wfgvs

The wfpc and fpc generators have an obvious monoid structure:

(G0, . . . ,Gn) ⊙ (G′

0, . . . ,G
′

m) ∶= (G0, . . . ,Gn,G
′

0, . . . ,G
′

m)
The identity is the trivial generator (). The concatenation operation is associative, and
satisfies the identity laws. We thus have a monoid (G,⊙, ()) of wfgvs, containing a submonoid
(F ,⊙, ()) of fgvs.



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:11

Figure 1: The hierarchy of (weak) fpc generators

Neither of these monoids is finitely generated, as there are infinitely many constant fgvs
of the form KΘM that cannot be obtained by composition of more elementary ones.

Extensional equality. Since the primary interest in (w)fgvs is in their ability to generate
new (w)fpcs from old, it is natural to identify generators having the same functional behavior.

Definition 6.1. We say a fgv or wfgv G⃗ is extensionally equal to G⃗′, written G ≃ G′, if for
every fpc Y , Y G⃗ = Y G⃗′. (Note that this is an equivalence relation on G, preserved by ⊙.)

Examples 6.2. ● If G⃗ is a constant generator, say, Y G⃗ = Z for all Y , then G⃗ ≃ (KZ):
Y (KZ) = KZ(Y ′(KZ)) = Z = Y G⃗

● Recall the combinator C = λfxy.fyx. Note that CK = KI, and C(CK) = C(KI) = K. Let
Gyz = z(y(Cz))(δ(y(Cz))). Then (G,K), and (G,CK) are fgvs, and (G,K) ≃ (G,CK):

Y ∈ FPC Ô⇒ Y GK = G(Y G)K = K(Y G(CK))(δ(Y G(CK))) = Y G(CK)
= G(Y G)(CK) = (CK)(Y G(C(CK)))(δ(Y G(C(CK))))

= (KI)(Y GK)(δ(Y GK)) = δ(Y GK) ∈ FPC

The reason that in the definition of ≃ the quantifier ranges over fpcs both in the case
of fgvs as well as wfgvs is that, when the quantifier is taken over all wfpcs, it makes the
resulting notion of equality much more restrictive, as we shall now demonstrate.

Because we obviously want equal fgvs to remain equal as wfgvs, the definition of
extensional equality is expressed in terms of behavior on fpcs in both contexts.

Proposition 6.3. If Y G⃗ = Y G⃗′ for every wfpc Y , then for some k, δk(z)G⃗ = δk(z)G⃗′.



7:12 Andrew Polonsky Vol. 16:3

Proof. This statement follows by the same reasoning as used in Theorem 5.3. Take z#G⃗, G⃗′,
and let Υ = Υz be the canonical wfpc defined there with a deterministic reduction graph
that uses the variable z to track its unfolding history. The argument subsequently showed
how every conversion C[ΥM] ↠ X ↞ C ′[ΥM] can be extended through X ↠ X ′, such
that X ′ =D[Υk

N ,⋯,Υk
N ], with M ↠ N and every occurrence of z in X ′ to be found among

the displayed Υk
N . We could then conclude that the common reduction may be lifted to a

finite truncation of Υ. In the present case, our starting conversion has the form

C[ΥG0] ∶= [ΥG0]G1⋯Gn = [ΥG′

0]G′

1⋯G′

n′ =∶ C ′[ΥG′

0] (6.1)

To justify application of the same argument, we should thus argue why G0 = G′

0. Let
X be a reduct of C[ΥG0]. By recalling the reduction graph of Υ, it is evident that every
innermost occurrence of z in X is applied to a reduct of G0. If X is also a reduct of C ′[ΥG′

0],
then the same conclusion will hold, with G′

0 in place of G0. Thus, the very fact of occurrence
of z in X forces G0 and G′

0 to be convertible. Of course, if z does not occur in X at all,
that only means that all descendants of Υ have already been erased, in which case there is
nothing left to prove. So G0 = G′

0. We can thus adjust conversion in (6.1) to

C[ΥG0] ≡ [ΥG0]G1⋯Gn = [ΥG0]G′

1⋯G′

n′ ≡ C ′[ΥG0] = C ′[ΥG′

0]
where the conversion on the right takes place inside the subterm that Υ is applied to.

Now we extend the other conversion to a common reduct

[ΥG0]G1⋯Gn↠D[Υk
N ,⋯,Υk

N ] ↞ [ΥG0]G′

1⋯G′

n′

and proceed, as in the proof of Theorem 5.3, to lift these reductions to

[δk(u)G0]G1⋯Gn↠D[uN, . . . , uN] ↞ [δk(u)G0]G′

1⋯G′

n′ .

Converting G0 in the right term to G′

0, we obtain the desired result.

From now on, we will consider the monoid G up to extensional equality. We will also
write concatenation of vectors by juxtaposition: F⃗ G⃗ = F⃗ ⊙ G⃗.

Ideals.

Definition 6.4. A two-sided ideal in a monoid (M, ⋅) is a set I ⊆M such that

i ∈ I, m ∈M Ô⇒ i ⋅m, m ⋅ i ∈ I.

Proposition 6.5.

(1) The constant generators form the minimal ideal in both monoids.
(2) The weakly constant/weakly compact wfgvs form a two-sided ideal in G.
(3) The compact fgvs form a two-sided ideal in F (and a right ideal in G).

Proof. (1) Let G⃗ be constant, so that Y G⃗ = Z for all (w)fpc Y . Let G⃗′ be arbitrary. Then

Y G⃗G⃗′ = ZG⃗′ for all Y , and Y G⃗′G⃗ = Z for all Y . Thus G⃗G⃗′ and G⃗′G⃗ are constant.
Moreover, since any ideal includes the constant generators by composition on the right,
these generators together constitute the minimal ideal.

(2) Let G⃗ ∈ G be weakly constant, so that z ∉∞ Gk0(z)G1⋯Gn. Let G⃗′ ∈ G be arbitrary.

Clearly, z ∉∞ Gk0(z)G1⋯GnG′

0⋯G′

m. That is, G⃗G⃗′ is weakly constant. On the other

hand, we know that G⃗′ maps wfpcs to themselves:

(λy.yG⃗′) ∶WFPC→WFPC



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:13

All wfpcs have the same Böhm tree, and in the tree topology, its neighborhood basis
consists of the set {λx.xn(Ω) ∣ n ≥ 0}. By Continuity Theorem [1, 14.3.22], there exists
l ≥ 0 such that

(λx.xl(z))G⃗′ = (λy.yG⃗′)(λx.xl(z)) = λx.xk(X)
for some X, possibly containing z. And yet,

z ∉∞ Gk0(X)G1⋯Gn = (λx.xk(X))G⃗ = (λx.xl(z))G⃗′G⃗ = (G′

0)l(z)G′

1⋯G′

mG⃗.

Indeed, G⃗′G⃗ is weakly constant.
(3) It is immediate that the rectifying fgvs form a two-sided ideal in F . By Theorem 5.3, so

do the compact ones. Also, for G⃗, G⃗′ ∈ G, G⃗′ rectifying clealry implies G⃗G⃗′ rectifying.

Green’s relations. The structure of many monoids can be characterized in terms of Green’s
relations. Here we record several observations about these relations in G, which could be
useful for future study of this monoid.

Definition 6.6. For G⃗, G⃗′ ∈ G, put

L(G⃗) = {H⃗G⃗ ∣ H⃗ ∈ G}

R (G⃗) = {G⃗H⃗ ∣ H⃗ ∈ G}

G⃗ ≼L G⃗
′ ⇐⇒ L(G⃗) ⊆ L(G⃗′) ⇐⇒ G⃗ ∈ L(G⃗′)

G⃗ ≼R G⃗′ ⇐⇒ R (G⃗) ⊆ R (G⃗′) ⇐⇒ G⃗ ∈ R (G⃗′)

G⃗ ∼L G⃗
′ ⇐⇒ L(G⃗) = L(G⃗′)

G⃗ ∼R G⃗′ ⇐⇒ R (G⃗) = R (G⃗′).

(1) If G⃗ ≃ (KZ) is a constant generator, then L(G⃗) = {KZ}, so all constant generators are

each in their own left class. That is, G⃗ ∈ L(KZ) implies G⃗ ≃ (KZ).
(2) On the other hand, (KZ,KZ ′) ≃ (KZ ′), thus KZ ′ ∈ R (KZ). Since the choice of Z,Z ′ was

arbitrary, KZ ∼R KZ ′ for all Z and Z ′. That is, constant generators are all in the same

right class. Since constant generators form an ideal, G⃗∼R (KZ) or G⃗ ≼R (KZ) imply

G⃗ ≃ (KZ ′) for some Z ′. So R (KZ) = {(KZ ′) ∣ Z ′ ∈WFPC} is the ideal of all constant
generators.

(3) Similarly, if G⃗ is weakly constant, then so is every element of L(G⃗) and R (G⃗). That is,

the only (w)fgvs that can be congruent to G⃗ modulo ∼L or ∼R are again weakly constant.

(4) If G⃗ is compact, then so is every element of L(G⃗). When restricted to F , both L(G⃗)
and R (G⃗) consist of compact generators.

(5) Suppose G⃗ ∼R G⃗′. Then we can find F⃗ , F⃗ ′ ∈ G such that G⃗ ≃ G⃗′F⃗ , and G⃗′ ≃ G⃗F⃗ ′. But

then G⃗ ≃ G⃗F⃗ ′F⃗ , and G⃗′ ≃ G⃗′F⃗ F⃗ ′. If G⃗ ≃ G⃗F⃗ ′F⃗ , then for every Y , Y G⃗ = Y G⃗F⃗ ′F⃗ is a
fixed point of F⃗ ′F⃗ . By Conjecture 4.2, F⃗ ′F⃗ is weakly constant. By Proposition 6.5, so
is G⃗F⃗ ′F⃗ . But G⃗F⃗ ′F⃗ ≃ G⃗. So G⃗ is weakly constant. Of course, everything we just said
applies to G⃗′ as well. We conclude that, modulo Conjecture 4.2, nontrivial ∼R -relations
can only exist between weakly constant wfgvs.

In fact, we believe that for accretive G⃗, G⃗′, either G⃗ ∼R G⃗′ or G⃗ ∼L G⃗′ implies G⃗ ≃ G⃗′.
Indeed, this is a consequence of the “freeness” conjecture we formulate next.



7:14 Andrew Polonsky Vol. 16:3

Unique factorization of accretive generators.

Definition 6.7. An accretive generator G⃗ is prime if G⃗ = G⃗1G⃗2 implies {G⃗1, G⃗2} = {G⃗, ()}.

The following “unique factorization conjecture” states that the accretive generators are
freely generated by the prime ones.

Conjecture 6.8. If G⃗ ∈ G is accretive, then G⃗ = G⃗1⋯G⃗k, where each G⃗i is prime.
Furthermore, this decomposition is unique up to extensional equality. That is, for all

prime G⃗′

1, . . . , G⃗
′

k′ , if G⃗ = G⃗′

1⋯G⃗′

k′ , then k = k′ and G⃗i ≃ G⃗′

i for all i ∈ {1, . . . , k}.

The conjecture implies that any relations in the monoid of wfpc generators under
composition can only arise between non-accretive i.e., weakly compact generators. In
particular, the equations

F⃗ G⃗ = F⃗ (6.2)

F⃗ G⃗ = G⃗ (6.3)

admit no (non-trivial) solutions among the accretive generators. As a result, the left and
right classes of accretive generators would indeed all be distinct if Conjecture 6.8 was to be
validated.

And what about the solutions to (6.2) or (6.3) among the rest of G? The following
examples show that there indeed exist solutions to these equations under certain conditions.
In all cases, (weak) compactness plays an essential role.

Proposition 6.9. For G⃗ weakly constant, there exists non-constant F⃗ with F⃗ G⃗ ≃ F⃗ . (In

particular, F⃗ ≼L G⃗.)

Proof. The idea is to make F⃗ generate the fixed points of G⃗ according to the scheme
in Proposition 4.8. Let k, F0, Fk be chosen as in the proof of that proposition. Put
A = λyb.b(yδ), B = λy.F0[y(λu.Fk[uG0])G0], and F⃗ = (A,B). Observe that

Y ∈ FPC Ô⇒ YAδ = A(YA)δ = δ(YAδ)
YAB = A(YA)B = B(YAδ) = F0[(YAδ)(λu.Fk[uG0])G0].

Since YAδ is thereby forced to be fpc, it follows that YAB = F0[UG0], where U = Fk[UG0].
This allows us to calculate as in the proof of Proposition 4.8 that YAB is a fixed point of G⃗:

Y F⃗ G⃗ = YABG⃗ = YAB
Note however, that F⃗ will not be constant in general, because it uses its fpc argument to
define U .

Proposition 6.10. Let F⃗ = (F0,⋯, Fn) be wfgv with n ≥ 1. There exists a compact fgv G⃗

such that F⃗ G⃗ ≃ G⃗. (In particular, G⃗ ≼R F⃗ .)

Proof. First, recall that F0 = λv0..vl.vmP⃗ is solvable. Since Y F⃗ = F0(Y ′F0)F1⋯Fn, we also
know that the head variable vm cannot be v0, for otherwise the result would be unsolvable,
while it must be a wfpc.



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:15

We let G⃗ = (F0,G1,⋯,Gn+1). We will only need to specify a couple of Gis. Set

Gm = λp⃗.λgl+1, ..., gn+1.Θgn+1(F0v0F1⋯Fn)
, Gn+1y = Θ(λgy.g(yF⃗ )) = Gn+1(yF⃗ ).

Y G⃗ = G0(Y ′G0)G1⋯Gn+1

= F0(Y ′F0)G1⋯Gn+1

= GmP⃗ [v0 ∶= Y ′F0][vi ∶= Gi]1≤i≤lGl+1⋯Gn+1

= ΘGn+1(F0(Y ′F0)F1⋯Fn)

= ΘGn+1(Y F0⋯Fn)

= ΘGn+1(Y F⃗ )
(⋆)

= ΘGn+1(Y F⃗ F⃗ )

= ΘGn+1((Y F⃗ )F⃗ )

= (Y F⃗ )G⃗ by (⋆), with Y ∶= Y F⃗

Our final observation is a corollary to one of the first ones.

Proposition 6.11. The monoid G is zerosum-free: If F⃗ G⃗ ≃ (), then F⃗ ≃ () ≃ G⃗.

Proof. Suppose F⃗ G⃗ ≃ (). Then, considered as endofunctions on WFPC/=β, G⃗ acts as a left

inverse of F⃗ , making F⃗ a split mono (modulo beta). But we have seen in Proposition 3.5
that no wfgv is injective, so no wfgv can be monic. Specifically, take Y ≠ Y ′ such that
Y F⃗ = Y ′F⃗ . Since () ≃ F⃗ G⃗, we have Y = Y F⃗ G⃗ = Y ′F⃗ G⃗ = Y ′, a contradiction.

7. Concluding remarks

In this paper,we have broached the topic of abstract fpc generators. Our first investigations
revealed that these operators naturally fall into a few robust classes. We established
elementary relationships between these classes.

What becomes clear from our investigations is that there is yet much to be uncovered
about the structure of fixed point combinators. Some of the possible future research directions
include the following.

(1) The most pressing issue is the status of Conjecture 4.2. All the evidence available
points to this conjecture being true, yet current techniques in untyped lambda calculus
decidedly come up short in settling the question. However it will be decided, the insights
to be gathered from the new approaches will greatly deepen our understanding of lambda
terms.

(2) Of course, one could take the next step and ask whether the converse to the first claim
in Proposition 4.8 is also valid. Considering how difficult the former question is, this
one will likely remain out of reach for the foreseeable future.

(3) What else can be said about the structure of the monoid G? Is the submonoid of
accretive generators freely generated by the prime generators, as Conjecture 6.8 asserts?
What about the (weakly) compact generators? How can their compositional structure
be characterized?

(4) Since the monoid of (w)fgvs naturally acts on the set of (w)fpcs, how much of the structure
of fpcs is captured by this monoidal action? Does every fpc have a representation in
terms of the prime elements of the monoid — again, modulo extensional equality, and
the ideal of compact generators?



7:16 Andrew Polonsky Vol. 16:3

(5) Finally, while not directly relevant to the earier discussion, an answer to the following
question could also shed light on recursion-theoretic properties of FPCs:

Let Y be Curry’s simplest fpc. Is {#M ∣M = Y} a decidable subset of FPC? Specifically,
does there exist a term ∆Y satisfying, for all closed Y ∈ FPC, the following:

∆Y⌜Y ⌝xy =
⎧⎪⎪⎨⎪⎪⎩

x Y =β Y
y Y ≠β Y

Notice that Scott’s theorem does not apply here because FPC is not all of Λ, but is only
a computably enumerable subset of it. ∆Y is allowed to diverge outside of this set.

The recent paper [12] proposes another approach to Statman’s conjecture based on simple
types. We note that the generalization of the conjecture stated there is consistent with ours,
since every simply-typed generator is accretive thanks to strong normalization of (Y-free)
typed terms.

I would like to thank Jan Willem Klop, Joerg Endrullis, Dimitri Hendriks, Giulio
Manzonetto, and Stefano Guerrini for wonderful discussions about fpc generators.

I would also like to extend my gratitude to the anonymous referees whose many
suggestions have significantly improved this paper.



Vol. 16:3 FIXED POINT COMBINATORS AS FIXED POINTS OF FPC GENERATORS 7:17

References

[1] H. P. Barendregt. The lambda calculus, its syntax and semantics. Number 103 in Studies in Logic and
the Foundations of Mathematics. North-Holland, second edition, 1984.

[2] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gabbay, and S. E. Maibaum,
editors, Handbook of Logic in Computer Science (Vol. 2), pages 117–309. Oxford University Press, Inc.,
New York, NY, USA, 1992.

[3] L. Czajka. A new coinductive confluence proof for infinitary lambda calculus. Logical Methods in
Computer Science, 16(1), 2020.

[4] Thierry Coquand and Hugo Herbelin. A-translation and looping combinators in pure type systems.
Journal of Functional Programming, 4(1):77–88, 1994.

[5] Haskell B. Curry. The inconsistency of certain formal logics. Journal of Symbolic Logic, 7(3):115–117,
1942.

[6] Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky. Discriminating lambda-terms
using clocked Böhm trees. Logical Methods in Computer Science, 10(2), 2014.

[7] Jörg Endrullis and Andrew Polonsky. Infinitary rewriting coinductively. In Nils Anders Danielsson and
Bengt Nordström, editors, 18th International Workshop on Types for Proofs and Programs, TYPES
2011, September 8-11, 2011, Bergen, Norway, volume 19 of LIPIcs, pages 16–27. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

[8] Herman Geuvers and Joep Verkoelen. On fixed point and looping combinators in type theory. http:
//www.cs.ru.nl/~herman/PUBS/TLCApaper.pdf.

[9] Douglas J. Howe. The computational behaviour of Girard’s paradox. In Proceedings of the Symposium
on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22-25, 1987, pages 205–214.
IEEE Computer Society, 1987.

[10] Benedetto Intrigila. Non-existent Statman’s double fixedpoint combinator does not exist, indeed. Inf.
Comput., 137(1):35–40, 1997.

[11] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda calculus.
Theor. Comput. Sci., 175(1):93–125, 1997.

[12] Giulio Manzonetto, Andrew Polonsky, Alexis Saurin, and Jakob Grue Simonsen. The Fixed Point
Property and a Technique to Harness Double Fixed Point Combinators. Journal of Language and
Computation, 29(5):831–880, 2019.

[13] Albert R. Meyer and Mark B. Reinhold. ”type” is not a type. In Conference Record of the Thirteenth
Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA,
January 1986, pages 287–295. ACM Press, 1986.

[14] Dana S. Scott. Some philosophical issues concerning theories of combinators. In Corrado Böhm, editor,
Lambda-Calculus and Computer Science Theory, Proceedings of the Symposium Held in Rome, Italy,
March 25-27, 1975, volume 37 of Lecture Notes in Computer Science, pages 346–366. Springer, 1975.

[15] Richard Statman. Some examples of non-existent combinators. Theoretical Computer Science,
121(1&2):441–448, 1993.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

http://www.cs.ru.nl/~herman/PUBS/TLCApaper.pdf
http://www.cs.ru.nl/~herman/PUBS/TLCApaper.pdf

	1. Introduction
	2. Notations and definitions
	3. Examples and first observations
	4. The four main classes of generators
	5. Rectifying generators
	6. The monoid of wfgvs
	Extensional equality
	Ideals
	Green's relations
	Unique factorization of accretive generators

	7. Concluding remarks
	References

