
Logical Methods in Computer Science
Vol. 8 (1:31) 2012, pp. 1–29
www.lmcs-online.org

Submitted Oct. 28, 2011
Published Mar. 28, 2012

A REDUCTION-PRESERVING COMPLETION FOR PROVING

CONFLUENCE OF NON-TERMINATING TERM REWRITING

SYSTEMS ∗

TAKAHITO AOTO AND YOSHIHITO TOYAMA

RIEC, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
e-mail address: {aoto,toyama}@nue.riec.tohoku.ac.jp

Abstract. We give a method to prove confluence of term rewriting systems that contain
non-terminating rewrite rules such as commutativity and associativity. Usually, confluence
of term rewriting systems containing such rules is proved by treating them as equational
term rewriting systems and considering E-critical pairs and/or termination modulo E. In
contrast, our method is based solely on usual critical pairs and it also (partially) works even
if the system is not terminating modulo E. We first present confluence criteria for term
rewriting systems whose rewrite rules can be partitioned into a terminating part and a
possibly non-terminating part. We then give a reduction-preserving completion procedure
so that the applicability of the criteria is enhanced. In contrast to the well-known Knuth-
Bendix completion procedure which preserves the equivalence relation of the system, our
completion procedure preserves the reduction relation of the system, by which confluence
of the original system is inferred from that of the completed system.

1. Introduction

Confluence is one of the most important properties of term rewriting systems (TRSs for
short) and hence many efforts have been spent on developing techniques to prove this prop-
erty [4, 21]. One of the classes of TRSs for which many known confluence proving methods
are not effective is the class of TRSs containing associativity and commutativity rules (AC-
rules). Such TRSs are non-terminating by the existence of AC-rules (more precisely, the
commutativity rule is self-looping and associativity rules are looping under the presence of
the commutativity rule) and hence the Knuth-Bendix criterion (i.e. terminating TRSs are
confluent iff all critical pairs are joinable) does not apply. Furthermore, confluence criteria
regardless of termination based on critical pairs often do not apply either.

1998 ACM Subject Classification: D.3.1, F.3.1, F.4.2, I.2.2.
Key words and phrases: Confluence, Completion, Equational Term Rewriting Systems, Confluence Mod-

ulo Equations.
∗ This is a revised and extended version of the paper: Takahito Aoto and Yoshihito Toyama, A Reduction-

Preserving Completion for Proving Confluence of Non-Terminating Term Rewriting Systems, in Proceedings
of the 22nd International Conference on Rewriting Techniques and Applications, LIPIcs, Vol.10, Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, pp.91-106, 2011.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:31) 2012
c© A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

A well-known approach to deal with TRSs containing AC-rules is to deal with them as
equational term rewriting systems [8, 9, 19]. In this approach, non-terminating rules such
as AC-rules are treated exceptionally as an equational subsystem E . Then the confluence of
equational term rewriting system 〈R, E〉 is obtained if R is terminating modulo E [8, 9, 19]
and either the E-critical pairs of R satisfy certain conditions [9, 19] or R is left-linear and
the E/R-critical pairs satisfy a certain condition [8]. This approach, however, only works
if R is terminating modulo E . Furthermore, the computation of E-critical pairs requires a
finite and complete E-unification algorithm which depends on E .

In this paper, we give a method to prove confluence of TRSs that contain non-terminating
rewrite rules such as AC-rules. In contrast to the traditional approach described above, our
method is based solely on usual critical pairs and it also (partially) works even if the system
is not terminating modulo E . Thus the implementation of the method requires few special
ingredients and the method is easily integrated into confluence provers and combined with
other confluence proving methods.

Let us explain the idea of our approach via concrete examples.

Example 1.1. LetR1 be the TRS consisting of the commutativity rule and an associativity
rule.

R1 =

{
(C) +(x, y) → +(y, x)
(A) +(+(x, y), z) → +(x,+(y, z))

}
.

This TRS is non-terminating and many known critical pair conditions for left-linear TRSs

do not apply. However, R1 is confluent, i.e. s
∗→R1 t0 and s

∗→R1 t1 imply t0
∗→R1 u and

t1
∗→R1 u for some u. Here s

∗→R1 t denotes that s rewrites to t in arbitrary many rewrite

steps. One way to prove this is by observing that R1 is reversible, i.e. s
∗→R1 t iff t

∗→R1 s.

This holds because for any rewrite rule l→ r ∈ R1 we have r
∗→R1 l: for the (C)-rule, this

holds obviously, and for the (A)-rule, this holds because +(x,+(y, z))
∗→R1 +(+(x, y), z)

viz.
+(x,+(y, z)) →C +(+(y, z), x)

→A +(y,+(z, x))
→C +(+(z, x), y)
→A +(z,+(x, y))
→C +(+(x, y), z).

Thus for any s1 →R1 s2 →R1 · · · →R1 sn, we have sn
∗→R1 sn−1

∗→R1 · · ·
∗→R1 s1. Hence

s
∗→R1 t0 and s

∗→R1 t1 imply t0
∗→R1 s and t1

∗→R1 s.

Example 1.2. Next we consider the TRS R2, which extends R1 slightly.

R2 =

(add1) +(0, y) → y
(add2) +(s(x), y) → s(+(x, y))

(C) +(x, y) → +(y, x)
(A) +(+(x, y), z) → +(x,+(y, z))

 .

R2 is a TRS consisting of rules for addition of natural numbers denoted by 0, s(0), s(s(0)), . . .
and AC-rules for plus. The TRS R2 is again non-terminating and many known critical pair
conditions for left-linear TRSs also do not apply. However, R2 is confluent. This can be
explained like this. Since +(y, 0) →R2 +(0, y) →R2 y and +(y, s(x)) →R2 +(s(x), y) →R2

s(+(x, y)), together with (add1), (add2)-rules, all occurrences of the symbol 0 in a term can
be eliminated and all occurrences of the symbol s can be moved to the top of the term.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 3

Hence, for any term t, we have t
∗→R2 sk(+(· · ·x · · ·)) where k is the number of occurrences

of the symbol s in the term t and the part “+(· · ·x · · ·)” denotes the addition of all variables

contained in the term t. Thus for any u1, u2 such that t
∗→R2 u1 and t

∗→R2 u2, we have

u1
∗→R2 sk(+(· · ·x · · ·)) and u2

∗→R2 sk(+(· · ·x · · ·)). It remains to use the reversibility of

AC-rules (i.e. R1) to join two terms of the form sk(+(· · ·x · · ·)) because they are equivalent
modulo associativity and commutativity.

A key point of this method is that, in addition to rewrite rules of R2, we considered
auxiliary rewrite rules add3 : +(y, 0)→ y and add4 : +(y, s(x))→ s(+(x, y)). In our method,
such rewrite rules are added via a reduction-preserving completion procedure. In contrast
to the well-known Knuth-Bendix completion procedure which preserves the equivalence
relation of the system, our completion procedure preserves the reduction relation of the
system, by which confluence of the original system is inferred from that of the completed
system. We note that the Knuth-Bendix completion procedure for equational term rewriting
systems was initiated by [11, 12, 13, 19] and is generalized in [5, 9]. Since the Knuth-Bendix
completion procedure needs to preserve equivalence relation but not necessarily reduction
relation, much flexibilities are allowed for the Knuth-Bendix completion procedure compared
to our reduction-preserving completion procedure.

The contribution of this paper is summarized as follows:

(1) new abstract criterion for the property Church-Rosser modulo (Theorem 2.2),
(2) new confluence criteria (Theorems 3.8 and 3.28),
(3) reduction-preserving completion for proving confluence and
(4) implementation and experiments for these techniques.

This paper is a revised and extended version of [2]. Compared to [2], Theorems 2.2, 3.8 and
3.28 are new—these extend the results in [2] which are adapted as Corollaries12.3, 3.10 and
3.29 respectively in the present paper.

The rest of the paper is organized as follows. We first present a criterion for Church-
Rosser modulo in an abstract setting (Section 2). Then based on this abstract criterion,
we present confluence criteria for TRSs whose rewrite rules can be partitioned into a ter-
minating part and a possibly non-terminating part (Section 3). We then give a reduction-
preserving completion procedure so that the applicability of the criteria is enhanced (Section
4). Finally we report on our implementation and results of experiments (Section 5).

2. Abstract criterion for Church-Rosser modulo

In this section, after providing some preliminaries (subsection 1), we present a criterion for
Church-Rosser modulo an equivalence relation and present some corollaries of the criterion
that have been appeared in the literature (subsection 2). Then we compare our criterion
and other abstract criteria for Church-Rosser modulo an equivalence relation (subsection
3).

1Corollaries 2.3 and 3.10 are incorrectly claimed to be original in [2].

4 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

2.1. Preliminaries. In this subsection, we fix some notions and notations on relations that
will be used throughout the paper.

Let → be a relation on a set A. The inverse of → is denoted by ←. The reflexive
closure (the symmetric closure, the transitive closure, the reflexive and transitive closure,

the equivalence closure) of→ is denoted by
=→ (↔,

+→,
∗→ ∗↔, respectively). We will also use

→0,→1, . . . ,⇒,;,I, . . . for binary relations, à, ./, . . . for symmetric relations and ∼, . . .
for equivalence relations. Closures for such relations are written in the similar way.

The union of two relations→ and⇒ is written as→ ∪ ⇒. For any two relations→ and
⇒, we write → ⊆ ⇒ if a → b implies a ⇒ b for any a, b. The composition of relations →
and ⇒ is written as → ◦ ⇒. For a (possibly infinite) number of indexed relations (→α)α∈I
where I is a set of indexes,

⋃
α∈I →α is written as →I . We will identify element and

singleton set in this notation, i.e. →{α} = →α. Closures for such relations are written in
the similar way.

A relation→ is well-founded if there exists no infinite descending chain a0 → a1 → · · · .
The relation → is said to be confluent if

∗← ◦ ∗→ ⊆ ∗→ ◦ ∗← holds. The relation → is said

to be Church-Rosser modulo an equivalence relation ∼ (CRM in short) if
∗
./ ⊆ ∗→ ◦ ∼ ◦ ∗←

holds, where ./ =↔ ∪ ∼.

2.2. Abstract criterion for Church-Rosser modulo. In this subsection, we give a new
criterion for Church-Rosser modulo an equivalence relation.

In what follows, we consider a (strict) partial order � on the set I of indexes. Let I be
the set of indexes. For a set J ⊆ I of indexes, the set {β ∈ I | ∃α ∈ J. β ≺ α} is written
as gJ . If J = {α}, we write gα instead of g{α}. We assume that g associates stronger
than ∪ i.e. gI1 ∪gI2 = (gI1) ∪ (gI2). The next lemma, which is the basis of our abstract
criterion for Church-Rosser modulo, is obtained by induction on the set of indexes w.r.t.
the well-founded order �.

Lemma 2.1. Let I be a set of indexes equipped with a well-founded order �. Let àα,→α

be relations on a set A such that àα is symmetric for each α ∈ I. Let ⇒α = àα ∪ →α for

each α ∈ I. Suppose (i) ←α ◦ →β ⊆ ∗⇔gα∪gβ and (ii) àα ◦ →β ⊆ ∗⇔gα∪gβ. Then →I is
Church-Rosser modulo à∗ I .
Proof. For each sequence a0 ⇔α0 a1 ⇔α1 · · · ⇔αn−1 an, let its weight be the multiset
consisting of the indexes of the each steps i.e. {α0, α1, . . . , αn−1}. Let � be the multiset
extension of the well-founded order �. We show by well-founded induction on the weight of

the sequence w.r.t. � that for any sequence a0
∗⇔I an there exists a sequence a0

∗→I ◦ à∗ I
◦ ∗←I an.

(1) Suppose there exists k such that ak−1 ←α ak →β ak+1. Then by assumption (i), there

exists a sequence ak−1
∗⇔gα∪gβ ak+1. Thus we have a sequence a0

∗⇔I ak−1
∗⇔gα∪gβ

ak+1
∗⇔I an. Since this new sequence has a weight less than the original sequence

a0
∗⇔I an, it follows that there exists a sequence a0

∗→I ◦ à∗ I ◦ ∗←I an by the induction
hypothesis.

(2) Suppose that there exists k such that ak−1 àα ak →β ak+1. Then by assumption (ii),

there exists a sequence ak−1
∗⇔gα∪gβ ak+1. Thus, it follows that there exists a sequence

a0
∗→I ◦ à∗ I ◦ ∗←I an by the induction hypothesis as in the previous case.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 5

(3) Suppose that there exists k such that ak−1 ←α ak àβ ak+1. Then one can show that

there exists a sequence a0
∗→I ◦ à∗ I ◦ ∗←I an in the same way as the case (2).

(4) It remains to treat the case that (α) there exists no k such that ak−1 ←I ak →I ak+1,
(β) there exists no k such that ak−1 àI ak →I ak+1 and (γ) there exists no k such

that ak−1 ←I ak àI ak+1. We show by induction on the length of a0
∗⇔ an that this

sequence has the form a0
∗→I ◦ à∗ I ◦ ∗←I an. The case n = 0 is trivial. Suppose

a0 ⇔I a1
∗⇔I an. By induction hypothesis we have a1

∗→I al à∗ I am ∗←I an for some
1 ≤ l,m ≤ n. We distinguish three cases:

(a) a0 àI a1. By (β), it follows that we have a0 àI a1 = al à∗ I am ∗←I an. Hence the
conclusion follows.

(b) a0 →I a1. Since we have a0 →I a1
∗→I al à∗ I am ∗←I an, the conclusion follows.

(c) a0 ←I a1. Then by (α), it follows that we have a0 ←I a1 = al à∗ I am ∗←I an.

Furthermore, by (γ), it follows that a0 ←I a1 = al = am
∗←I an. Hence the

conclusion follows.

The following abstract criterion for Church-Rosser modulo will be used as the basis of all
of our confluence criteria presented in this paper.

Theorem 2.2 (abstract criteria for CRM). Let à,→,; be relations on a set A such

that à is symmetric, ; ⊆ à, and → ◦ ∗; is well-founded. Let ⇒ = ; ∪ →. Suppose

(i) ← ◦ → ⊆ ∗⇒ ◦ à= ◦ ∗⇐ and (ii) à ◦ → ⊆ (à= ◦ ∗⇐) ∪ (→ ◦ ∗⇒ ◦ à= ◦ ∗⇐). Then → is
Church-Rosser modulo à∗ .

Proof. Let −. = à ∪ →. Suppose that the index of a step a−. b be given by the multiset
lab(a −. b) defined like this: lab(a à b) = {a, b} (i.e. lab(a ; b) = {a, b}), lab(a → b) =
{a}. Let � be the multiset extension of the transitive closure of the well-founded relation

→ ◦ ∗;. Then by our assumption it readily follows that (i) ←α ◦ →β ⊆ /
∗
−.gα∪gβ and (ii)

àα ◦ →β ⊆ /
∗
−.gα∪gβ are satisfied. Thus, from Lemma 2.1, → is Church-Rosser modulo

à∗ .

Several corollaries of the theorem follow.

Corollary 2.3 (Corollary of Propositions 1 and 3 of [10]). Let à,→ be relations on a set

A such that à is symmetric and → is well-founded. Suppose (i) ←◦→ ⊆ ∗→◦ à= ◦ ∗← and

(ii) à ◦ → ⊆ ∗→◦ à= ◦ ∗←. Then → is Church-Rosser modulo à∗ .

Proof. Take ; := ∅ in Theorem 2.2.

Corollary 2.4. Let à,→,; be relations on a set A such that à is symmetric, ; ⊆ à,

and → ◦ ∗; is well-founded. Let ⇒ = → ∪;. Suppose (i) ← ◦→ ⊆ ∗⇒ ◦ à= ◦ ∗⇐ and (ii)

à ◦ → ⊆ → ◦ ∗⇒◦ à= ◦ ∗⇐. Then → is Church-Rosser modulo à∗ .

Proof. Take the case à ◦ → ⊆ → ◦ ∗⇒◦ à= ◦ ∗⇐ for the condition (ii) in Theorem 2.2.

In case ; := à, necessary and sufficient conditions for CRM are obtained.

Corollary 2.5. Let à,→ be relations on a set A such that à is symmetric and → ◦ à∗
is well-founded. Let ⇒ = → ∪ à. Then → is Church-Rosser modulo à∗ if and only if (i)

←◦→ ⊆ ∗⇒◦ ∗⇐ and (ii) à ◦ → ⊆ → ◦ ∗⇒◦ ∗⇐.

6 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

Proof. (⇒) (i) is trivial. To show (ii), suppose a à ◦ → b. Then a
∗→ ◦ à∗ ◦ ∗← b by our

assumption. Since
+→ ◦ à∗ ◦ ∗← ⊆ → ◦ ∗⇒ ◦ ∗⇐, it remains to exclude the case a à∗ ◦ ∗← b.

If a à∗ ◦ ∗← b then a à ◦ → b
∗→ ◦ à∗ a. This contradicts our assumption that → ◦ à∗ is

well-founded. (⇐) follows from Corollary 2.4.

The conditions (i), (ii) can be replaced with particular forms.

Corollary 2.6. Let à,→ be relations on a set A such that à is symmetric and → ◦ à∗ is

well-founded. Then → is Church-Rosser modulo à∗ if and only if (i) ←◦→ ⊆ ∗→◦ à∗ ◦ ∗←
and (ii) à ◦ → ⊆ +→◦ à∗ ◦ ∗←.

Proof. (⇒) (i) is trivial. To show (ii), suppose a à ◦ → b. Then a
∗→ ◦ à∗ ◦ ∗← b by

our assumption. Thus it remains to exclude the case a à∗ ◦ ∗← b. If a à∗ ◦ ∗← b then

a à ◦ → b
∗→ ◦ à∗ a. This contradicts our assumption that → ◦ à∗ is well-founded. (⇐)

Let⇒ =→ ∪ à. Then←◦→ ⊆ ∗→◦ à∗ ◦ ∗← ⊆ ∗⇒◦ ∗⇐ and à◦→ ⊆ +→◦ à∗ ◦ ∗← ⊆→◦ ∗⇒◦ ∗⇐.
Hence the claim follows from Corollary 2.5.

Remark 2.7. Note that since Corollaries 2.5 and 2.6 give the necessary and sufficient
conditions for CRM, the conditions (i), (ii) of Corollary 2.5 imply the conditions (i), (ii) of
Corollary 2.6.

The condition (ii) à ◦ → ⊆ +→ ◦ à∗ ◦ ∗← in this corollary can be replaced with (ii)

à ◦ → ⊆ ∗→◦ à∗ ◦ ∗← as shown in the next corollary.

Corollary 2.8 (Lemma 2.8 of [8]). Let à,→ be relations on a set A such that à is
symmetric and → ◦ à∗ is well-founded. Then → is Church-Rosser modulo à∗ if and only if

(i) ←◦→ ⊆ ∗→◦ à∗ ◦ ∗← and (ii) à ◦ → ⊆ ∗→◦ à∗ ◦ ∗←.

Proof. (⇒) is trivial. (⇐) We show our conditions imply à ◦ → ⊆ +→ ◦ à∗ ◦ ∗←. Then
the claim follows from Corollary 2.6. Suppose contrarily that we have a à ◦ → b but not

a
+→ ◦ à∗ ◦ ∗← b. From a à ◦ → b, we have a

∗→ ◦ à∗ ◦ ∗← b by our assumption. Hence

a à∗ ◦ ∗← b holds. Thus a à ◦ → b
∗→ ◦ à∗ a. This contradicts our assumption that → ◦ à∗

is well-founded.

Remark 2.9. The proof of Corollary 2.8 given in [8] is based on a combinatorial argument;
another proof of Corollary 2.8 based on an argument similar to the proof of Lemma 2.1 has
been given in [14].

We now give a proof of Theorem 5 of [9] based on Lemma 2.1.

Lemma 2.10. Let à,→ be relations on a set A such that à is symmetric and → ◦ à∗
is well-founded. Let I be a relation on A satisfying → ⊆ I ⊆ à∗ ◦ → ◦ à∗ . Then I is

Church-Rosser modulo à∗ if and only if (i)←◦I ⊆ ∗
I ◦ à∗ ◦

∗
J and (ii) à ◦I ⊆

+
I ◦ à∗ ◦

∗
J.

Proof. (⇒) (i) is trivial. (ii) Suppose a à ◦ I b. Then a
∗
I ◦ à∗ ◦

∗
J b by our assumption.

Thus it remains to exclude the case a à∗ ◦
∗
J b. If a à∗ ◦

∗
J b then a à ◦ I b

∗
I ◦ à∗ a.

Hence a (à∗ ◦ → ◦ à∗)+ a. This contradicts our assumption that → ◦ à∗ is well-founded.
(⇐) By assumption, à∗ ◦ → ◦ à∗ is well-founded. Let � = (à∗ ◦ → ◦ à∗)+. Clearly, � is

well-founded. Note that a à∗ ◦
+
I ◦ à∗ b implies a � b. Let ⇒ = I ∪ à. For each step

a ⇔ b, let its index be given by the multiset lab(a à b) = {a, b}, lab(a I b) = {a} and

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 7

lab(a J b) = {b}. Let � be the multiset extension of �. Then, � is a well-founded relation

on the set of indexes. By Lemma 2.1, it suffices to show (i′) Jα ◦ Iβ ⊆ ∗⇔gα∪gβ and (ii′)

àα ◦Iβ ⊆ ∗⇔gα∪gβ.
To prove (i′), we claim that for any b J a = a0 à a1 à · · · à am → c′ à∗ c, we have

b
∗⇔g{a} c. As α = β = {a}, (i′) immediately follows from this claim. Our proof proceeds

by induction on m.

• Suppose m = 0. Then we have b J a→ c′ à∗ c. Then, by our condition (i), b
∗
I ◦ à∗ ◦

∗
J

c′ à∗ c. Since b J a and a I c′, we have b
∗⇔g{a} c.

• Suppose m > 0. Then, since we have b J a à a1, by our condition (ii), b
∗
I ◦ à∗ ◦

∗
J

a′1 J a1 for some a′1. Then we have a′1 J a1 à · · · à am → c′ à∗ c, and hence, by

induction hypothesis, a′1
∗⇔g{a1} c. Since a à a1, a1 � d implies a � d for any d. Hence

a′1
∗⇔g{a} c. Thus we have b

∗
I ◦ à∗ ◦

∗
J a′1

∗⇔g{a} c. Hence, by a I b and a à ◦ I a′1, we

have b
∗⇔g{a} c.

To prove (ii′), we claim that for any b à a I c, we have b
∗⇔g{a,b} c. From the condition

(ii) we have b I b′
∗
I ◦ à∗ ◦

∗
J c. By a à b I b′ and a I c we have b′

∗⇔g{a} c, and by b I b′

we have b
∗⇔g{a,b} b

′. Hence, we obtain b
∗⇔g{a,b} c.

Thus, from Lemma 2.1, we conclude I is Church-Rosser modulo à∗ .

Let I be a relation on a set A satisfying → ⊆ I ⊆ à∗ ◦ → ◦ à∗ . Then → is said to be

I-Church-Rosser modulo à∗ if
∗
./ ⊆ ∗

I ◦ à∗ ◦
∗
J, where ./ =↔ ∪ à.

Corollary 2.11 (Theorem 5 of [9]). Let à,→ be relations on a set A such that à is
symmetric and → ◦ à∗ is well-founded. Let I be a relation on A satisfying → ⊆ I ⊆
à∗ ◦→ ◦ à∗ . Then → is I-Church-Rosser modulo à∗ if and only if (i) ←◦I ⊆ ∗

I ◦ à∗ ◦
∗
J

and (ii) à ◦I ⊆
+
I ◦ à∗ ◦

∗
J.

Proof. Let ./ = ↔ ∪ à and ⇒ = I ∪ à. From → ⊆ I ⊆ à∗ ◦ → ◦ à∗ , it follows that

./ ⊆ ⇔ ⊆ ∗
./. Hence, we have

∗
./ =

∗⇔. Thus, from Lemma 2.10, the claim follows.

Remark 2.12. As I ◦ à∗ is well-founded, the condition (ii) à ◦ I ⊆
+
I ◦ à∗ ◦

∗
J in this

corollary can be replaced with (ii) à ◦I ⊆
∗
I ◦ à∗ ◦

∗
J, similar to Corollaries 2.6 and 2.8.

Remark 2.13. A I-normal form of an element a is an element b such that a
∗
I b and b I c

for no c. The condition “(i) and (ii)” can be replaced with the condition that, for any a, b

and their respective I-normal forms â, b̂, (i′) a ← ◦ I b implies â à∗ b̂ and (ii′) a à ◦ I b

implies â à∗ b̂, which is explained as follows. Clearly, (i′) and (ii′) imply (i) and (ii). To

show the reverse direction, suppose (i) and (ii). Let â, b̂ be I-normal forms a, b, respectively.

If a ← ◦ I b (a à ◦ I b) then â
∗
J a ← ◦ I b

∗
I b̂ (â

∗
J a à ◦ I b

∗
I b̂, respectively) and

thus â
∗
./ b̂, where ./ =↔ ∪ à. Thus â

∗
I ◦ à∗ ◦

∗
J b̂, as → is I-Church-Rosser modulo à∗ .

Since â, b̂ are I-normal forms, we conclude â à∗ b̂.

8 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

2.3. Related works. Several other abstract criteria for CRM have been obtained in [8]
and [15]. In this subsection, we compare our criterion with these.

The following necessary and sufficient criterion for CRM is obtained in [8].

Proposition 2.14 (Corollary of Lemmas 2.6 and 2.7 of [8]). Let à,→ be relations on a
set A such that à is symmetric and → is well-founded. Then → is Church-Rosser modulo

à∗ if and only if (i ′) ←◦→ ⊆ ∗→◦ à∗ ◦ ∗← and (ii ′) à∗ ◦→ ⊆ ∗→◦ à∗ ◦ ∗←.

In this proposition, → is supposed to be well-founded, similarly to Corollary 2.3. This
proposition and Corollary 2.3, however, differ in the following points.

(1) Proposition 2.14 gives necessary and sufficient conditions for CRM, while Corollary 2.3
gives only sufficient conditions.

(2) The condition part of (ii′) of Proposition 2.14 is not localized (i.e. à∗ ◦→ is assumed),
while that of (ii) of Corollary 2.3 is localized (i.e. à ◦ → is assumed).

(3) In the conclusion parts of (i′) and (ii′) of Proposition 2.14 an arbitrary number of à-
steps are allowed, while in those of (i) and (ii) of Corollary 2.3 the number of à-steps
needs to be at most one.

The decreasing diagram technique [24] is a powerful technique to obtain many confluence
criteria. In [15], the technique is extended to obtain a criterion for CRM.

Proposition 2.15 (Theorem 14 of [15]). Let I be a set of indexes equipped with a well-
founded order �. Let →α be a relation on a set A for each α ∈ I and à a symmetric

relation on A. Suppose (i) ←α ◦→β ⊆ ∗→gα ◦ =→β ◦ ∗→gα∪gβ ◦ à∗ ◦ ∗←gα∪gβ ◦ =←α ◦ ∗←gβ and

(ii) à ◦ →β ⊆ =→β ◦ ∗→gβ ◦ à∗ ◦ ∗←gβ. Then →I is Church-Rosser modulo à∗ .

This proposition is given in terms of indexed relations as in Lemma 2.1. This proposition
and Lemma 2.1 differ in the following points.

(1) In Lemma 2.1 à -steps are indexed, while in Proposition 2.15 à -steps are not indexed.
(2) In the case � = ∅, Lemma 2.1 is meaningless, while Proposition 2.15 still remains as a

simple criterion for CRM.

Remark 2.16. The labelings like lab(a → b) = {a} and lab(a → b) = {a, b} used in the
proof of Theorem 2.2 are called source and step labelings in [26], which are used to obtain
abstract confluence criteria from the decreasing diagram criterion.

3. Confluence criteria

In this section, we develop several confluence criteria for TRSs that can be partitioned
into terminating TRS S and reversible TRS P. After the preliminaries (subsection 1), we
present our first criterion that works for the case that S is linear (subsection 2). Next we
claim another criterion effective for left-linear S—for this, we first give a criterion using
the usual notion of the critical pairs (subsection 3) and then extend the criterion using the
notion of parallel critical pairs (subsection 4). Finally, we give some examples and describe
relations among the given criteria (subsection 5).

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 9

3.1. Preliminaries. In this subsection, we fix some notions and notations on term rewrit-
ing systems and after that we present some lemmas that will be used in later subsections.

Let F be a set of fixed arity function symbols and V be a set of variables. The set
T(F ,V) of terms over F and V is defined like this: (1) V ⊆ T(F ,V); (2) if f ∈ F has arity
n and t1, . . . , tn ∈ T(F ,V) then f(t1, . . . , tn) ∈ T(F ,V). The sets of function symbols and
variables occurring in a term t are denoted by F(t) and V(t), respectively. A linear term is
a term in which any variable occurs at most once. Positions are finite sequences of positive
integers. The empty sequence is denoted by ε. The set of positions in a term t is denoted by
Pos(t). The concatenation of positions p, q is denoted by p.q. We use ≤ for prefix ordering
on positions, i.e. p ≤ q iff ∃o. p.o = q. We write p < q iff p ≤ q and p 6= q. For positions p, q
such that p ≤ q, the position o satisfying p.o = q is denoted by q/p. Positions p1, . . . , pn are
parallel if pi 6≤ pj for any i 6= j. We write p ‖ q if two positions p, q are parallel. For sets
U, V of positions, we write U ‖ V if p ‖ q holds for any p ∈ U and q ∈ V . If p is a position
in a term t, then the symbol in t at the position p is written as t(p), the subterm of t at the
position p is written as t/p, and the term obtained by replacing the subterm t/p by a term
s is written as t[s]p. For any P ⊆ Pos(t), we define VP (t) =

⋃
p∈P V(t/p). For X ⊆ F ∪ V,

we put PosX(t) = {p ∈ Pos(t) | t(p) ∈ X}. For parallel positions p1, . . . , pn in a term t, the
term obtained by replacing each subterm t/pi by a term si is written as t[s1, . . . , sn]p1,...,pn .
A context is an expression t[, . . . ,]p1,...,pn in which such subterms are dropped.

A map σ from V to T(F ,V) is a substitution if the domain dom(σ) of σ is finite where
dom(σ) = {x ∈ V | σ(x) 6= x}. As usual, we identify each substitution with its homomorphic
extension. For a substitution σ and a term t, σ(t) is also written as tσ. A relation R on
T(F ,V) is stable if for any terms s, t ∈ T(F ,V), s R t implies sθ R tθ for any substitution
θ; it is monotone if sR t implies f(. . . , s, . . .)Rf(. . . , t, . . .) for any f ∈ F . A relation R on
T(F ,V) is a rewrite relation if it is stable and monotone.

For a set E of equations, we write E−1 = {r ≈ l | l ≈ r ∈ E}. Equations are identified
modulo renaming (of variables), for example, +(x, y) = +(y, x) equals to +(y, z) = +(z, y).
A set E = {s1 ≈ t1, . . . , sn ≈ tn} of equations is unifiable if there exists a substitution σ
such that siσ = tiσ for all i; the substitution σ is a unifier of E . The most general unifier
is abbreviated as mgu. If there exists an equation l ≈ r ∈ E or r ≈ l ∈ E and a position p
in a term s and substitution θ such that s/p = lθ and t = s[rθ]p, then we write s↔E t.

An equation l ≈ r is a rewrite rule if it satisfies the conditions (1) l /∈ V and (2)
V(r) ⊆ V(l). A rewrite rule l ≈ r is written as l → r. A rewrite rule l → r is linear
(left-linear) if l and r are linear (l is linear, respectively); it is bidirectional if r ≈ l is a
rewrite rule. A term rewriting system (TRS for short) is a finite set of rewrite rules. A TRS
is left-linear (linear, bidirectional) if so are all its rewrite rules. If a TRS R is bidirectional
then R−1 = {r → l | l→ r ∈ R} is a TRS and R∪R−1 is a bidirectional TRS. Let R be a
TRS. If there exists a rewrite rule l→ r ∈ R and a position p in a term s and substitution
θ such that s/p = lθ and t = s[rθ]p, we write s →p,R t. If p (p and R) is clear from the
context, s →p,R t is written as s →R t (s → t, respectively). We call s →p,R t a rewrite
step; the subterm s/p is the redex of this rewrite step. We say t is obtained by contracting
the redex s/p. The relation →R on T(F ,V) is a rewrite relation and called the rewrite
relation of R. A term s is normal if s →R t for no term t. The set of normal terms is
denoted by NF(R). A normal form (or R-normal form) of a term s is a term t ∈ NF(R)

such that s
∗→R t. Two terms s and t are said to be joinable if s

∗→R ◦ ∗←R t. A TRS
R is terminating if →R is well-founded; R is confluent if →R is confluent. A TRS R is

10 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

terminating relative to a TRS P if →R ◦ ∗→P is well-founded; A TRS R is terminating

modulo a set E of equations if →R ◦ ∗↔E is well-founded.
Let s, t be terms whose variables are disjoint. The term s overlaps on t (at a position

p) when there exists a non-variable subterm u = t/p of t such that u and s are unifiable.
Let l1 → r1 and l2 → r2 be rewrite rules. W.l.o.g. let their variables be disjoint. Suppose
that l1 overlaps on l2 at a position p and σ is the mgu of l1 and l2/p. Then the term l2[l1]pσ
yields a critical pair 〈l2[r1]pσ, r2σ〉 obtained by the overlap of l1 → r1 on l2 → r2 at the
position p. In the case of self-overlap (i.e. when l1 → r1 and l2 → r2 are identical modulo
renaming), we do not consider the case p = ε. We call the critical pair outer if p = ε and
inner if p > ε. The set of outer (inner) critical pairs obtained by the overlaps of a rewrite
rule from R on a rewrite rule from Q is denoted by CPout(R,Q) (CPin(R,Q), respectively).
We put CP(R,Q) = CPout(R,Q) ∪ CPin(R,Q). For a set C of pairs of terms, we write
C−1 = {〈v, u〉 | 〈u, v〉 ∈ C}. We note that CPout(R,Q) = CPout(Q,R)−1.

Example 3.1. Let R2 = {(add1), (add2), (C), (A)} be the TRS for addition of natural
numbers and AC-rules for plus given in Example 1.2. Let S = {(add1), (add2)} and P =
{(C), (A)}. Then we have CPin(P,S) = ∅,

CPout(S,P) = CPout(P,S)−1 =

{
〈y,+(y, 0)〉
〈s(+(x, y)),+(y, s(x))〉

}
and

CPin(S,P) =

{
〈+(y, z),+(0,+(y, z))〉
〈+(s(+(x, y)), z),+(s(x),+(y, z))〉

}
.

The parallel extension →++R of the rewrite relation →R of a TRS R is defined like this:
s →++ {p1,...,pn},R t if p1, . . . , pn are parallel positions in the term s and there exist rewrite
rules l1 → r1, . . . , ln → rn ∈ R and substitution θ1, . . . , θn such that s/pi = liθi for each
i and t = s[r1θ1, . . . , rnθn]p1,...,pn . If the missing information is clear from the context,
s→++ {p1,...,pn},R t is written as s→++R t or s→++ t. We call s→++R t a parallel rewrite step. For
substitutions ρ, ρ′, we write ρ →++R ρ′ if ρ(x) →++R ρ(x) for any x ∈ V. We note that →++R
includes the identity relation, i.e. t→++R t for any term t.

In the rest of this subsection, we present several lemmas that will be used several times
in later subsections. The first lemma is used to connect our abstract criterion for Church-
Rosser modulo with concrete criteria for confluence. For this, we introduce the notion of
reversibility.

Definition 3.2 (reversible relation). A relation → is said to be reversible if → ⊆ ∗←. A
TRS R is reversible if →R is reversible.

Lemma 3.3 (confluence by CRM and reversibility). Let P,S be TRSs such that P is

reversible. If →S is Church-Rosser modulo
∗↔P then S ∪ P is confluent.

Proof. Suppose s
∗→S∪P t0 and s

∗→S∪P t1. Then t0
∗↔S∪P t1. Since →S is Church-Rosser

modulo
∗↔P , we have t0

∗→S u ∗↔P v
∗←S t1. By the reversibility of P, we have u

∗→P v.

Hence t0
∗→S∪P v ∗←S∪P t1.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 11

It is well-known that S is locally confluent, i.e. ←S ◦ →S ⊆ ∗→S ◦ ∗←S , if CP(S,S) ⊆
∗→S ◦ ∗←S . The next lemma parametrized this fact by a rewrite relation I.

Lemma 3.4. Let S be a TRS and I be a rewrite relation. Suppose that CP(S,S) ⊆ I∩J
and

∗→S ◦ ∗←S ⊆ I. Then ←S ◦→S ⊆ I.

Proof. Suppose t0 ←p,S s →q,S t1. We distinguish the cases by relative positions of p and
q. If p ‖ q then s = s[lσ, l′ρ]p,q and t0 = s[rσ, l′ρ]p,q ←p s →q s[lσ, r

′ρ]p,q = t1 for some
rewrite rules l → r, l′ → r′ ∈ S and substitutions σ, ρ. Then we have t0 = s[rσ, l′ρ]p,q →q

s[rσ, r′ρ]p,q ←p s[lσ, r
′ρ]p,q = t1. Thus t0 I t1 follows from our assumption

∗→S ◦ ∗←S ⊆ I.
Suppose q ≤ p. Let s/q = lσ and l → r ∈ S. Then either (1) p/q ∈ PosF (l) or (2) there
exists qx ∈ PosV(l) such that l/qx = x ∈ V and q.qx ≤ p.
(1) Then t0 = s[uρ]q and t1 = s[vρ]q for some 〈u, v〉 ∈ CP(S,S) and substitution ρ. Thus by

assumption u I v. Then, since I is a rewrite relation, we have t0 = s[uρ]q I s[vρ]q = t1.

(2) Then t1 = s[rσ]q and s = s[lσ]q →p,S t0
∗→S s[lσ′]q for some substitution σ′ such

that σ(x) →p/(q.qx),S σ
′(x) and σ′(y) = σ(y) for any y 6= x. Thus t0

∗→S s[lσ′]q →S
s[rσ′]q

∗←S s[rσ]q = t1. The claim follows from our assumption
∗→S ◦ ∗←S ⊆ I.

The case of p < q follows similarly to the case of q ≤ p using the condition CP(S,S) ⊆ J.

Lemma 3.5. Let Q,R be TRSs such that Q is bidirectional, and let I be a rewrite relation.

Suppose that CP(Q,R) ⊆ I, CP(R,Q) ⊆ J. (1) If R is linear and
+→R ◦ =←Q ◦ ∗←R ⊆ I

then ←Q ◦→R ⊆ I. (2) If R is left-linear and
+→R ◦←++Q ◦ ∗←R ⊆ I then ←Q ◦→R ⊆ I.

Proof. Below we present a proof for (1). Any difference to the proof of (2) will be mentioned
in the proof. Suppose t0 ←p,Q s →q,R t1. We distinguish the cases by relative positions of
p and q.

(i) p ‖ q. Then s = s[lσ, l′ρ]p,q and t0 = s[rσ, l′ρ] ←p,Q s →q,R C[lσ, r′ρ]p,q = t1 for
some l → r ∈ Q, l′ → r′ ∈ R. Then we have t0 = s[rσ, l′ρ]p,q →q,R s[rσ, r′ρ]p,q ←p,Q

s[lσ, r′ρ]p,q = t1. Since
+→R ◦ =←Q ◦ ∗←R ⊆ I (

+→R ◦←++Q ◦ ∗←R ⊆ I in the proof of (2))
by our assumption, t0 I t1.

(ii) p ≤ q. Let s/p = lσ and l→ r ∈ Q. Then either (a) p/q ∈ PosF (l) or (b) there exists
px ∈ PosV(l) such that l/px = x ∈ V and p.px ≤ q.
(a) Then t0 = s[vρ]p and t1 = s[uρ]p for some 〈u, v〉 ∈ CP(R,Q) and substitution ρ.

Thus by assumption v I u. Since I is a rewrite relation, we have t0 = s[vρ]p I
s[uρ]p = t1.

(b) Then t0 = s[rσ]p and we have t1
∗→R s[lσ′]p for some substitution σ′ such that

σ(x) →q/(p.px),R σ′(x) and σ(y) = σ′(y) for any y 6= x. Since Q is bidirectional,

we have V(l) = V(r). Thus t0 = s[rσ]p
+→R s[rσ′]p ←Q s[lσ′]p

∗←R t1. Since
+→R ◦ =←Q ◦ ∗←R ⊆ I (

+→R ◦←++Q ◦ ∗←R ⊆ I in the proof of (2)) by our assumption,
t0 I t1.

(iii) p > q. Let s/q = l′ρ and l′ → r′ ∈ R. Then either (a) p/q ∈ PosF (l′) or (b) there
exists qx ∈ PosV(l′) such that l′/qx = x ∈ V and q.qx ≤ p.
(a) Then t0 = s[uσ]q and t1 = s[vσ]q for some 〈u, v〉 ∈ CP(Q,R) and substitution σ.

By assumption u I v. Since I is a rewrite relation, t0 = s[uσ]q I s[vσ]q = t1.
(b) Then t1 = s[r′ρ]q, and by the left-linearity of R, t0 = s[l′ρ′]q for some substitution

ρ′ such that ρ(x) →p/(q.qx),Q ρ′(x) and ρ(y) = ρ′(y) for any y 6= x. Furthermore,

12 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

by the right-linearity of R, s[r′ρ]q
=→Q s[r′ρ′]q. (In the proof of (2), we have

s[r′ρ]q →++Q s[r′ρ′]q.) Thus, t0 = s[l′ρ′]q →q,R s[r′ρ′]q
=←Q s[r′ρ]q = t1 (t0 =

s[l′ρ′]q →q,R s[r
′ρ′]q ←++Q s[r′ρ]q = t1 in the proof of (2)). Since

+→R◦ =←Q◦ ∗←R ⊆ I

(
+→R ◦←++Q ◦ ∗←R ⊆ I in the proof of (2)) by our assumption, t0 I t1.

3.2. Confluence criterion for linear TRSs. In this subsection, we give a confluence
criterion for TRSs that can be partitioned into linear terminating TRS S and reversible
TRS P. We then discuss the possibility of relaxing linearity condition to left-linearity.

The next two lemmas are corollaries of Lemmas 3.4 and 3.5, respectively.

Lemma 3.6. Let P,S,P ′ be TRSs such that P is bidirectional. Suppose CP(S,S) ⊆
∗→S∪P ′ ◦ =←P∪P−1 ◦ ∗←S∪P ′. Then ←S ◦→S ⊆ ∗→S∪P ′ ◦ =←P∪P−1 ◦ ∗←S∪P ′.

Proof. Take I :=
∗→S∪P ′ ◦ =←P∪P−1 ◦ ∗←S∪P ′ . Then CP(S,S) ⊆ I ∩ J as I ∩ J = I.

Furthermore, we have
∗→S ◦ ∗←S ⊆ I. Hence the claim follows from Lemma 3.4.

Lemma 3.7. Let P,S,P ′ be TRSs such that P is bidirectional and S is linear. Let I =

(
=←P∪P−1 ◦ ∗←S∪P ′) ∪ (→S ◦ ∗→S∪P ′ ◦ =←P∪P−1 ◦ ∗←S∪P ′). Suppose CP(P ∪P−1,S) ⊆ I and

CP(S,P ∪ P−1) ⊆ J. Then ←P∪P−1 ◦→S ⊆ I.

Proof. TakeQ := P∪P−1, which is a bidirectional TRS by bidirectionality of P, andR := S
in Lemma 3.5. Then by the condition, CP(P ∪ P−1,S) ⊆ I and CP(S,P ∪ P−1) ⊆ J.

Furthermore,
+→R ◦ =←Q ◦ ∗←R =

+→S ◦ =←P∪P−1 ◦ ∗←S ⊆ I. Hence the claim follows from
Lemma 3.5 (1).

We arrive at our first criterion for confluence.

Theorem 3.8 (confluence criterion for linear S). Let P,S,P ′ be TRSs such that S is linear,
P is reversible, P ′ ⊆ P ∪ P−1 and S is terminating relative to P ′. Suppose (i) CP(S,S) ⊆
∗→S∪P ′◦ =←P∪P−1◦ ∗←S∪P ′, (ii) CP(P∪P−1,S) ⊆ (

=←P∪P−1◦ ∗←S∪P ′)∪(→S◦ ∗→S∪P ′◦ =←P∪P−1◦
∗←S∪P ′) and (iii) CP(S,P ∪P−1) ⊆ (

∗→S∪P ′ ◦ =→P∪P−1)∪ (
∗→S∪P ′ ◦ =→P∪P−1 ◦ ∗←S∪P ′ ◦←S).

Then S ∪ P is confluent.

Proof. From Lemma 3.6 and our assumption (i), we have (a)←S ◦→S ⊆ ∗→S∪P ′ ◦ =←P∪P−1 ◦
∗←S∪P ′ , From Lemma 3.7 and our assumptions (ii), (iii), we have (b) ←P∪P−1 ◦ →S ⊆

(
=←P∪P−1 ◦ ∗←S∪P ′) ∪ (→S ◦ ∗→S∪P ′ ◦ =←P∪P−1 ◦ ∗←S∪P ′). Note that, by the definition of

rewrite rules, reversible TRSs are bidirectional. Take à :=↔P =←P∪P−1 , ; :=→P ′ and

→ := →S . Then since S is terminating relative to P ′, the relation →◦ ∗; is well-founded.

Thus one can apply Theorem 2.2 so as to prove →S is Church-Rosser modulo
∗↔P . Since

P is reversible, →S∪P is confluent by Lemma 3.3.

Remark 3.9. Conditions like (i)–(iii) are referred to as critical pair conditions in the sequel.

By taking P ′ = ∅ in Theorem 3.8, we obtain the next corollary.

Corollary 3.10 (Theorem 1 of [10]). Let P,S be TRSs such that S is linear, P is reversible

and S is terminating. Suppose (i) CP(S,S) ⊆ ∗→S ◦ =←P∪P−1 ◦ ∗←S , (ii) CP(P ∪ P−1,S) ⊆
∗→S ◦ =←P∪P−1 ◦ ∗←S and (iii) CP(S,P∪P−1) ⊆ ∗→S ◦ =→P∪P−1 ◦ ∗←S . Then S∪P is confluent.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 13

To generalize Theorem 3.8 for (possibly not right-linear) left-linear S, we have to use

Lemma 3.5 (2) instead of Lemma 3.5 (1). For this, we needs condition
+→R ◦ ←++Q ◦ ∗←R ⊆

I. However, this fact reduces the application of Theorem 2.2 to just an application of
Corollary 2.5 (and hence that of Corollary 2.6), because the à= -step in the condition does
not contribute and hence we have to take ; := à. In the rest of this subsection, we sketch
how a proof analogous to the linear case can be applied to obtain a confluence criterion
based on the Corollary 2.6.

Lemma 3.11. Let P,S be TRSs such that P is bidirectional. Suppose CP(S,S) ⊆ ∗→S ◦
∗←P∪P−1 ◦ ∗←S . Then ←S ◦→S ⊆ ∗→S ◦ ∗←P∪P−1 ◦ ∗←S .

Proof. Take I :=
∗→S ◦ ∗←P∪P−1 ◦ ∗←S in Lemma 3.4.

Lemma 3.12. Let P,S be TRSs such that P is bidirectional and S is left-linear. Suppose

(i) CP(P ∪P−1,S) ⊆ +→S ◦ ∗←P∪P−1 ◦ ∗←S and (ii) CP(S,P ∪P−1) ⊆ ∗→S ◦ ∗→P∪P−1 ◦ +←S .

Then ←P∪P−1 ◦→S ⊆ +→S ◦ ∗←P∪P−1 ◦ ∗←S .

Proof. Take I :=
+→S ◦ ∗←P∪P−1 ◦ ∗←S in Lemma 3.5 (2).

Proposition 3.13 (Theorem 3.3 of [8]). Let P,S be TRSs such that S is left-linear, P is

reversible and S is terminating relative to P. Suppose (i) CP(S,S) ⊆ ∗→S ◦ ∗←P∪P−1 ◦ ∗←S
(ii) CP(P ∪P−1,S) ⊆ +→S ◦ ∗←P∪P−1 ◦ ∗←S and (iii) CP(S,P ∪P−1) ⊆ ∗→S ◦ ∗→P∪P−1 ◦ +←S .
Then S ∪ P is confluent.

Proof. Since P is reversible, S is terminating modulo P ∪ P−1. By Lemmas 3.11 and

3.12 and Corollary 2.6, →S is Church-Rosser modulo
∗↔P . Since P is reversible, →S∪P is

confluent by Lemma 3.3.

Remark 3.14. It is straightforward to modify Lemmas 3.11 and 3.12 and use either
Corollary 2.5 (or Corollary 2.8) to replace conditions (i)–(iii) of Proposition 3.13 with (i)

CP(S,S) ⊆ ∗→S∪P∪P−1◦ ∗←S∪P∪P−1 (ii) CP(P∪P−1,S) ⊆ →S ◦ ∗→S∪P∪P−1◦ ∗←S∪P∪P−1 , and

(iii) CP(S,P ∪ P−1) ⊆ ∗→S∪P∪P−1 ◦ ∗←S∪P∪P−1 ◦←S , respectively (or with (i) CP(S,S) ⊆
∗→S ◦ ∗←P∪P−1 ◦ ∗←S , (ii) CP(P ∪P−1,S) ⊆ ∗→S ◦ ∗←P∪P−1 ◦ ∗←S , and (iii) CP(S,P ∪P−1) ⊆
∗→S ◦ ∗→P∪P−1 ◦ ∗←S , respectively). Similar to the abstract case, such replacements do not

strengthen or weaken the applicability of the proposition (c.f. Remark 2.7).

3.3. Confluence criterion based on parallel rewrite steps. As discussed in the pre-
vious subsection, if we put à := ↔P = ←P∪P−1 , the application of our abstract crite-
rion (Theorem 2.2) to the left-linear case reduces to the application of Corollary 2.6. In
this subsection, we relax the linear condition of the S-part to left-linear by considering

à := ←++ P∪P−1 instead of à := ←P∪P−1 . This allows us to partially recover the applica-
bility of Theorem 2.2.

The next lemma is analogous to Lemma 3.6, which is obtained from Lemma 3.4 again.

Lemma 3.15. Let P,S,P ′ be TRSs such that P is bidirectional. Suppose that CP(S,S) ⊆
∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′. Then ←S ◦→S ⊆ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′.

Proof. Take I :=
∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′ . Then CP(S,S) ⊆ I ∩J and

∗→S ◦ ∗←S ⊆ I.
Hence the claim follows from Lemma 3.4.

14 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

To present an analogy of Lemma 3.7, we first present the parametrized version of the
lemma in the same spirit as Lemma 3.5.

Lemma 3.16. Let Q,R be TRSs such that Q is bidirectional and R is left-linear. Let I
be a rewrite relation such that si I ti and sj ←Q tj for any j ∈ {1, . . . , n} \ {i} implies
C[s1, . . . , sn] I C[t1, . . . , tn]. Suppose (i) CPin(Q,R) = ∅ and (ii) CP(R,Q) ⊆ J. If
+→R ◦←++Q ◦ ∗←R ⊆ I then ←++Q ◦→R ⊆ I.

Proof. Suppose t0 ←++ U,Q s →q,R t1. Let U = {p1, . . . , pn} where p1, . . . , pn are positions
from left to right, s/pi = liσi for li → ri ∈ Q and substitutions σi (1 ≤ i ≤ n) and
s/q = l′ρ for l′ → r′ ∈ R and a substitution ρ. We distinguish two cases: (1) the case that
∃p ∈ U. p ≤ q and (2) the case that ∀p ∈ U. p 6≤ q.
(1) Suppose pi ∈ U and pi ≤ q. Then either (a) q/pi ∈ PosF (li) or (b) there exists

px ∈ PosV(li) such that li/px = x ∈ V and pi.px ≤ q.
(a) Then t0/pi = vρ and t1/pi = uρ for some 〈u, v〉 ∈ CP(R,Q) and substitution

ρ. Then, from our assumption (ii), we have v I u. Since I is a rewrite rela-
tion, t0/pi = vρ I uρ = t1/pi. By the assumption on I, since for any j 6= i,
s/pj = rjσj ←Q ljσj = t1/pj , we have t0 = s[r1σ1, . . . , t0/pi, . . . , rnσn]p1,...,pi,...,pn I
s[l1σ1, . . . , t1/pi, . . . , lnσn]p1,...,pi,...,pn = t1.

(b) Then we have t0/pi = riσi and t1/pi
∗→R liσ

′
i for some substitution σ′i such that

σi(x) →q/(pi.px),R σ′i(x) and σ′i(y) = σi(y) for any y 6= x. Since Q is bidirectional,
we have V(li) = V(ri). Thus we have

t0 = C[r1σ1, . . . , riσi, . . . , rnσn]p1,...,pi,...,pn
+→R C[r1σ1, . . . , riσ

′
i, . . . , rnσn]p1,...,pi,...,pn

←++Q C[l1σ1, . . . , liσ
′
i, . . . , lnσn]p1,...,pi,...,pn

∗←R C[l1σ1, . . . , t1/pi, . . . , lnσn]p1,...,pi,...,pn = t1.

From our assumption that
+→R ◦←++Q ◦ ∗←R ⊆ I it follows t0 I t1.

(2) Suppose ∀p ∈ U. p 6≤ q. Let U ′ = {pi ∈ U | q < pi} = {pl, . . . , pk}, qi = pi/q for
l ≤ i ≤ k, and thus l′ρ = l′ρ[llσl, . . . , lkσk]ql,...,qk . By our assumption (i), for each
pi ∈ U ′ there exists qx ∈ PosV(l′) such that l′/qx = x ∈ V and q.qx ≤ pi. Thus,
s/q = l′ρ = l′ρ[llσl, . . . , lkσk]ql,...,qk →R r′ρ = r′ρ[lj1σj1 , . . . , ljmσjm]o1,...,om = t1/q for
some positions o1, · · · , om and j1, . . . , jm ∈ {l, . . . , k}. Furthermore, by the left-linearity
of R, we have l′ρ[rlσl, . . . , rkσk]ql,...,qk →R r′ρ[rj1σj1 , . . . , rjmσjm]o1,...,om . Thus,

t0 = s[r1σ1, . . . , l
′ρ[rlσl, . . . , rkσk]ql,...,qk , . . . , rnσn]p1,...,q,...,pn

→R s[r1σ1, . . . , r
′ρ[rj1σj1 , . . . , rjmσjm]o1,...,om , . . . , rnσn]p1,...,q,...,pn

←++Q s[l1σ1, . . . , r
′ρ[lj1σj1 , . . . , ljmσjm]o1,...,om , . . . , lnσn]p1,...,q,...,pn = t1.

From our assumption that
+→R ◦←++Q ◦ ∗←R ⊆ I follows t0 I t1.

The next lemma is an analogy of Lemma 3.7 based on parallel steps.

Lemma 3.17. Let P,S,P ′ be TRSs such that P is bidirectional and S is left-linear. Let

I = (←++ P∪P−1 ◦ ∗←S∪P ′)∪ (→S ◦ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′). Suppose CPin(P ∪P−1,S) = ∅
and CP(S,P ∪ P−1) ⊆ J. Then ←++ P∪P−1 ◦→S ⊆ I.

Proof. TakeQ := P∪P−1, which is a bidirectional TRS by bidirectionality of P, andR := S
in Lemma 3.16. Then by the condition, CPin(Q,R) = ∅ and CP(R,Q) ⊆ J. Furthermore,

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 15

+→R ◦ ←++Q ◦ ∗←R ⊆ →S ◦ ∗→S∪P ′ ◦ ←++ P∪P−1 ◦ ∗←S∪P ′ ⊆ I and si I ti and sj ←Q tj for
any j ∈ {1, . . . , n} \ {i} implies C[s1, . . . , sn] I C[t1, . . . , tn]. Hence the claim follows from
Lemma 3.16.

We arrive at our second criterion for confluence.

Theorem 3.18 (confluence criterion based on parallel rewrite steps). Let P,S,P ′ be TRSs
such that S is left-linear, P is reversible, P ′ ⊆ P ∪ P−1, and S is terminating relative to

P ′. Suppose (i) CP(S,S) ⊆ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′, (ii) CPin(P ∪P−1,S) = ∅ and (iii)

CP(S,P ∪ P−1) ⊆ (
∗→S∪P ′ ◦→++ P∪P−1) ∪ (

∗→S∪P ′ ◦→++ P∪P−1 ◦ ∗←S∪P ′ ◦←S). Then S ∪ P is
confluent.

Proof. By our assumption (i) and Lemma 3.15, we have (a) ←S ◦→S ⊆ ∗→S∪P ′ ◦←++ P∪P−1 ◦
∗←S∪P ′ . From our assumptions (ii) and (iii), it follows that (b)←++ P∪P−1 ◦→S ⊆ (←++ P∪P−1 ◦
∗←S∪P ′)∪(→S ◦ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′) by Lemma 3.17. Take à :=←++ P∪P−1 ,→ :=→S

and ; :=→P ′ . Then, by the termination of S relative to P ′, →◦ ∗; is well-founded. Thus

one can apply Theorem 2.2 so as to prove →S is Church-Rosser modulo
∗
←++ P∪P−1 . Since

∗
←++ P∪P−1 =

∗↔P , it follows that →S is Church-Rosser modulo
∗↔P . Hence, since →P is

reversible, →S∪P is confluent by Lemma 3.3.

Comparing to our first criterion for confluence (Theorem 3.8), we impose the condition
CPin(P ∪ P−1,S) = ∅ while relaxing the linearity condition of S to left-linearity. Hence
Theorems 3.8 and 3.18 are incomparable.

By taking P ′ = ∅ in Theorem 3.18, we obtain the next corollary.

Corollary 3.19. Let P,S be TRSs such that S is left-linear, P is reversible, and S is

terminating. Suppose (i) CP(S,S) ⊆ ∗→S ◦ ←++ P∪P−1 ◦ ∗←S , (ii) CPin(P ∪ P−1,S) = ∅ and

(iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦→++ P∪P−1 ◦ ∗←S . Then S ∪ P is confluent.

3.4. Confluence criterion based on parallel critical pairs. In this subsection, we relax
the condition (ii) CPin(P ∪P−1,S) = ∅ of the previous theorem using the notion of parallel
critical pairs [7, 20].

Definition 3.20 (parallel critical pairs [7, 20]). Let s1, . . . , sn, t (n ≥ 1) be terms whose
variables are disjoint. The terms s1, . . . , sn parallel-overlap on t (at parallel positions
p1, . . . , pn) if t/pi /∈ V for any 1 ≤ i ≤ n and {s1 ≈ t/p1, . . . , sn ≈ t/pn} is unifiable. Let
l1 → r1, . . . , ln → rn and l′ → r′ be rewrite rules. W.l.o.g. let their variables be mutually dis-
joint. Suppose that l1, . . . , ln parallel-overlap on l′ at parallel positions p1, . . . , pn and σ is the
mgu of {l1 ≈ l′/p1, . . . , ln ≈ l′/pn}. Then the term l′[l1, . . . , ln]p1,...,pnσ yields a parallel crit-
ical pair 〈l′[r1, . . . , rn]p1,...,pnσ, r

′σ〉 obtained by the parallel-overlap of l1 → r1, . . . , ln → rn
on l′ → r′ at positions p1, . . . , pn. In the case of self-overlap (i.e. when n = 1 and l1 → r1
and l′ → r′ are identical modulo renaming), we do not consider the case p1 = ε. We
write 〈l′[r1, . . . , rn]p1,...,pnσ, r

′σ〉X if X = V{p1,...,pn}(l′σ). We call the parallel critical pair
outer if n = 1 and p1 = ε, and inner if pi > ε for all i. The set of outer (inner) parallel
critical pairs obtained by the parallel-overlaps of rewrite rules from R on a rewrite rule
from Q is denoted by PCPout(R,Q) (PCPin(R,Q), respectively). (Note, however, that
PCPout(R,Q) = CPout(R,Q).) We put PCP(R,Q) = PCPout(R,Q) ∪ PCPin(R,Q).

16 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

Example 3.21 (parallel critical pairs). Let R = {f(g(x), g(y)) → h(g(x))} and Q =
{g(x) → h(x)}. Then we have PCP(R,Q) = PCPout(Q,R) = ∅ and PCPin(Q,R) =
{〈f(h(x), h(y)), h(g(x))〉{x,y}, 〈f(g(x), h(y)), h(g(x))〉{y}, 〈f(h(x), g(y)), h(g(x))〉{x}}.

We first present a property of parallel rewrite steps that will be used to prove a key
lemma below.

Lemma 3.22. Let s, t terms such that s→++ V t and ρ, ρ′ substitutions such that ρ→++ ρ′. If
dom(ρ) ∩ VV (t) = ∅ then sρ→++ tρ′.

Proof. We have sρ →++ V tρ →++W tρ′ for some W such that for any q ∈ W there exists
q′ ∈ Posdom(ρ)(t) such that q′ ≤ q. Since dom(ρ) ∩ VV (t) = ∅, p ‖ q′ holds for any p ∈ V
and q′ ∈ Posdom(ρ)(t). Thus p ‖ q for any p ∈ V and q ∈W . Hence sρ→++ tρ′.

The following lemma is a key lemma which shows the preservation of parallel rewrite
steps via substitutions. For this lemma, a variable condition on parallel critical pairs and
parallel rewrite steps is essential.

Lemma 3.23. Let S,P be TRSs, 〈u, v〉X ∈ PCPin(P,S) and ρ, ρ′ substitutions such that

ρ→++ P ρ′ and dom(ρ)∩X = ∅. If u
∗→ u′ ←++ V,P v

′ ∗← v and VV (u′) ⊆ X then uρ′
∗→ u′ρ′ ←++ P

v′ρ
∗← vρ, where uρ′

∗→ u′ρ′ and v′ρ
∗← vρ are the obvious instances of u

∗→ u′ and v′
∗← v,

respectively.

Proof. It is clear from our assumption that uρ′
∗→ u′ρ′ ←++ P u′ρ ←++ V,P v′ρ

∗← vρ. Thus it
remains to show u′ρ′ ←++ P v′ρ. Since VV (u′) ⊆ X and dom(ρ)∩X = ∅, dom(ρ)∩VV (u′) = ∅.
Thus, since u′ ←++ V,P v

′, it follows that u′ρ′ ←++ P v′ρ by Lemma 3.22.

Example 3.24. Suppose we have TRSs S = {+(0, y) → y,+(s(x), y) → s(+(x, y))} and
P = {s(s(x)) → s(x)}. Then we have 〈+(s(x), y), s(+(s(x), y)〉{x} ∈ PCPin(P,S). This
critical pair is joinable as +(s(x), y) →S s(+(x, y)) = u′ ←++ {ε},P v′ = s(s(+(x, y))) ←S
s(+(s(x), y)). However, since VV (u′) = V{ε}(s(+(x, y))) = {x, y} * X = {x}, the variable
condition of Lemma 3.23 is not satisfied. Take ρ, ρ′ such that dom(ρ) = dom(ρ′) = {y},
ρ(y) = s(s(z)) and ρ′(y) = s(z). Then we have ρ →++ P ρ′. Now, we can construct a

rewrite sequence +(s(x), y)ρ′ = +(s(x), s(z)) →S s(+(x, s(z)))
∗←P s(s(+(x, s(s(z))))) ←S

s(+(s(x), s(s(z)))) = s(+(s(x), y))ρ. However, s(+(x, s(z)) ←++ P s(s(+(x, s(s(z))))) does not
hold, as the two redex occurrences are not parallel.

Remark 3.25. The variable condition VV (u′) ⊆ X in Lemma 3.23 is not equivalent to
VV (v′) ⊆ X if there exists l → r ∈ P such that V(r) (V(l). In the sequel, however,
V(r) = V(l) for all l→ r ∈ P holds whenever we apply the lemma.

We extend Lemma 3.16 as follows.

Lemma 3.26. Let Q,R be TRSs such that Q is bidirectional and R is left-linear. Let I
be rewrite relations such that si I ti and sj ←Q tj for any j ∈ {1, . . . , n} \ {i} implies
C[s1, . . . , sn] I C[t1, . . . , tn]. Suppose (i) for any 〈u, v〉X ∈ PCPin(Q,R) and substitutions
ρ, ρ′ such that ρ→++Q ρ′ and dom(ρ) ∩X = ∅, we have uρ′ I vρ and (ii) CP(R,Q) ⊆ J. If
+→R ◦←++Q ◦ ∗←R ⊆ I then ←++Q ◦→R ⊆ I.

Proof. Suppose t0 ←++ U,Q s →q,R t1. Let U = {p1, . . . , pn} where p1, . . . , pn are positions
from left to right, s/pi = liσi for li → ri ∈ Q and substitutions σi (1 ≤ i ≤ n) and s/q = l′ρ
for l′ → r′ ∈ R and substitution ρ. The same proof as in Lemma 3.16 applies other than

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 17

the case of ∀p ∈ U. p 6≤ q. Let {pk, . . . , pm} = {pi ∈ U | q ≤ pi}. For each pi (k ≤ i ≤ m)
either pi/q ∈ PosF (l′) or there exists qx ∈ PosV(l′) such that q.qx ≤ pi. W.l.o.g. let
{pk, . . . , pl} = {pi | pi/q ∈ PosF (l′)} and {pl+1, . . . , pm} = {pi | ∃qx ∈ PosV(l′). q.qx ≤ pi}.
Then there exists a parallel critical pair 〈u, v〉X obtained from overlaps of lk → rk, . . . , ll → rl
on l′ → r′ at pk/q, . . . , pl/q. Since l′ is linear (and V(l′),V(l1), . . . ,V(lm) are mutually dis-
joint), t0/q = uρ′ and t1/q = vρ for some substitutions ρ, ρ′ such that ρ →++Q ρ′ and
dom(ρ) ∩ X = ∅. Hence by our assumption uρ′ I vρ. Thus by our assumption on
I, it follows that t0 = s[r1σ1, . . . , rk−1σk−1, uρ

′, rm+1σm+1, . . . , rnσn]p1,...,pk−1,q,pl+1,...,pn I
s[l1σ1, . . . , lk−1σk−1, vρ, lm+1σm+1, . . . , lnσn]p1,...,pk−1,q,pl+1,...,pn = t1.

The following lemma is analogous to Lemmas 3.7, 3.17.

Lemma 3.27. Let P,S,P ′ be TRSs such that P is bidirectional and S is left-linear. Let

I = (←++ P∪P−1 ◦ ∗←S∪P ′) ∪ (→S ◦ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′). Suppose (i) for all 〈u, v〉X ∈
PCPin(P ∪ P−1,S), either u = u′ ←++ V,P∪P−1 ◦ ∗←S∪P ′ v or u →S ◦ ∗→S∪P ′ u′ ←++ V,P∪P−1

◦ ∗←S∪P ′ v for some u′ and V satisfying VV (u′) ⊆ X and (ii) CP(S,P ∪ P−1) ⊆ J. Then
←++ P∪P−1 ◦→S ⊆ I.

Proof. Take Q := P ∪ P−1, which is a bidirectional TRS by bidirectionality of P, and
R := S in Lemma 3.26. Then by the condition (ii) we have CP(R,Q) ⊆ J. Furthermore,
by the condition (i) and Lemma 3.23, for any 〈u, v〉X ∈ PCPin(Q,R) and substitutions

ρ, ρ′ such that ρ →++Q ρ′ and dom(ρ) ∩X = ∅, we have either uρ′ = u′ρ′ ←++ P∪P−1 ◦ ∗←S∪P ′
vρ or uρ′ →S ◦ ∗→S∪P ′ u′ρ′ ←++ P∪P−1 ◦ ∗←S∪P ′ vρ and hence uρ′ I vρ. We also have
+→R ◦←++Q ◦ ∗←R ⊆ →S ◦ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′ ⊆ I. By the definition of I, si I ti and
sj ←P∪P−1 tj for any j ∈ {1, . . . , n} \ {i} implies C[s1, . . . , sn] I C[t1, . . . , tn]. Hence the
claim follows from Lemma 3.26.

The next theorem strengthens Theorem 3.18.

Theorem 3.28. Let P,S,P ′ be TRSs such that S is left-linear, P is reversible, P ′ ⊆
P ∪ P−1 and S is terminating relative to P ′. Suppose (i) CP(S,S) ⊆ ∗→S∪P ′ ◦ ←++ P∪P−1 ◦
∗←S∪P ′, (ii) for all 〈u, v〉X ∈ PCPin(P ∪ P−1,S), either u = u′ ←++ V,P∪P−1 ◦ ∗←S∪P ′ v or

u→S ◦ ∗→S∪P ′ u′ ←++ V,P∪P−1 ◦ ∗←S∪P ′ v for some u′ and V satisfying VV (u′) ⊆ X and (iii)

CP(S,P ∪ P−1) ⊆ (
∗→S∪P ′ ◦→++ P∪P−1) ∪ (

∗→S∪P ′ ◦→++ P∪P−1 ◦ ∗←S∪P ′ ◦←S). Then S ∪ P is
confluent.

Proof. By our assumption (i) and Lemma 3.23, we have (a) ←S ◦→S ⊆ ∗→S∪P ′ ◦←++ P∪P−1 ◦
∗←S∪P ′ . From our assumptions (ii) and (iii), it follows that (b)←++ P∪P−1 ◦→S ⊆ (←++ P∪P−1 ◦
∗←S∪P ′)∪(→S ◦ ∗→S∪P ′ ◦←++ P∪P−1 ◦ ∗←S∪P ′) by Lemma 3.27. Take à :=←++ P∪P−1 ,→ :=→S

and ; :=→P ′ . Then, by the termination of S relative to P ′, →◦ ∗; is well-founded. Thus

one can apply Theorem 2.2 so as to prove →S is Church-Rosser modulo
∗
←++ P∪P−1 . Since

∗
←++ P∪P−1 =

∗↔P , it follows that →S is Church-Rosser modulo
∗↔P . Hence, since →P is

reversible, →S∪P is confluent by Lemma 3.3.

By the definition of parallel critical pairs, CPin(P ∪ P−1,S) = ∅ implies PCPin(P ∪
P−1,S) = ∅. Thus the condition (ii) of Theorem 3.18 is a particular case of condition (ii)
of Theorem 3.28. Hence Theorem 3.18 is subsumed by Theorem 3.28.

By taking P ′ = ∅ in Theorem 3.28, we obtain the next corollary.

18 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

Corollary 3.29. Let P,S be TRSs such that S is left-linear, P is reversible and S is

terminating. Suppose (i) CP(S,S) ⊆ ∗→S ◦←++ P∪P−1 ◦ ∗←S , (ii) for all 〈u, v〉X ∈ PCPin(P ∪
P−1,S), u

∗→S u′ ←++ V,P∪P−1 ◦ ∗←S v for some u′ and V satisfying VV (u′) ⊆ X and (iii)

CP(S,P ∪ P−1) ⊆ ∗→S ◦→++ P∪P−1 ◦ ∗←S . Then S ∪ P is confluent.

Considering a particular case of the condition (ii), we obtain the following corollary.

Corollary 3.30 (Theorem 2 of [10]). Let P,S be TRSs such that S is left-linear, P is

reversible and S is terminating. Suppose (i) CP(S,S) ⊆ ∗→S◦←++ P∪P−1◦ ∗←S , (ii) PCPin(P∪
P−1,S) ⊆ ∗→S◦ ∗←S and (iii) CP(S,P∪P−1) ⊆ ∗→S◦→++ P∪P−1◦ ∗←S . Then S∪P is confluent.

3.5. Examples and comparison. In this subsection, some examples to illustrate appli-
cability of our confluence criteria in previous subsections are presented. Relations among
our confluence criteria and locations of given examples are summarized in Figure 1.

Example 3.31. Let R3 = {(add1), (add2), (C), (A)} ∪{
(add3) +(x, 0) → x
(add4) +(x, s(y)) → s(+(x, y))

}
where (add1), (add2), (C), (A) are rewrite rules given in Example 1.2. We now prove
confluence of R3 using Theorem 3.18. For this, put S = {(add1), (add2), (add3), (add4)} and
P = {(C), (A)}. Then S is linear and terminating. As demonstrated in Example 1.2, P is
reversible. We have CP(S,S) =
〈0, 0〉 ∈ ∗←S 〈s(y), s(+(0, y))〉 ∈ ←S
〈s(+(x, 0)), s(x)〉 ∈ →S 〈s(x), s(+(x, 0))〉 ∈ ←S
〈s(+(0, y)), s(y)〉 ∈ →S 〈s(+(x, s(y))), s(+(s(x), y))〉 ∈ →S ◦←S
〈s(+(s(x), y)), s(+(x, s(y)))〉 ∈ →S ◦←S

 ,

CPin(P ∪ P−1,S) = ∅ and CP(S,P ∪ P−1) =

〈y,+(y, 0)〉 ∈ ←S 〈+(y, z),+(0,+(y, z))〉 ∈ ←S
〈+(y, z),+(+(0, y), z)〉 ∈ ←S 〈+(x, z),+(+(x, 0), z)〉 ∈ ←S
〈s(+(x, y)),+(y, s(x))〉 ∈ ↔P ◦←S
〈+(s(+(x, y)), z),+(s(x),+(y, z))〉 ∈ →S ◦↔P ◦←S
〈s(+(x,+(y, z))),+(+(s(x), y), z)〉 ∈ ↔P ◦ ∗←S
〈+(x, s(+(y, z))),+(+(x, s(y)), z)〉 ∈ →S ◦↔P ◦ ∗←S
〈x,+(0, x)〉 ∈ ←S 〈+(x, y),+(x,+(y, 0))〉 ∈ ←S
〈+(y, z),+(y,+(0, z))〉 ∈ ←S 〈+(x, y),+(+(x, y), 0)〉 ∈ ←S
〈s(+(x, y)),+(s(y), x)〉 ∈ ↔P ◦←S
〈s(+(+(x, y), z)),+(x,+(y, s(z)))〉 ∈ ↔P ◦ ∗←S
〈+(s(+(x, y)), z),+(x,+(s(y), z))〉 ∈ →S ◦↔P ◦ ∗←S
〈+(x, s(+(y, z))),+(+(x, y), s(z))〉 ∈ →S ◦↔P ◦←S

.

Thus one can apply Theorem 3.18 to obtain the confluence of R3 = S ∪P. To this example,
one can apply Theorem 3.8, Corollaries 3.10, 3.19 and Proposition 3.13 as well.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 19

• R3• R4

• R6 • R8

• R7

• R5

• R2

Cor. 3.29

Thm. 3.28

Cor. 3.10

Thm. 3.8

Prop. 3.13

Figure 1: Relations among confluence criteria

Example 3.32. Let us consider R2 of Example 1.2. For this, we consider a partition S =
{(add1), (add2)} and P = {(C), (A)}. Then S is linear and terminating and P is reversible.
But there exists a critical pair 〈y,+(y, 0)〉 ∈ CP(S,P ∪ P−1) obtained by the overlap of

(add1) on (C) which is not included in (
∗→S∪P ′ ◦ =→P∪P−1)∪(

∗→S∪P ′ ◦ =→P∪P−1 ◦ ∗←S∪P ′ ◦ ∗←S)
for any P ′ ⊆ P ∪ P−1. Thus the critical pair conditions of Theorem 3.8 are not satisfied.
Since 〈y,+(y, 0)〉 is obtained by the overlap of (add1) on (C), another possible partition
S = {(add1), (add2), (A)} and P = {(C)} is not effective either. Similarly, Theorem 3.28
and Proposition 3.13 are also not applicable. We will revisit this example in the next section.

Example 3.33. Let

R4 = R3 ∪
{

(dbl) dbl(x) → +(x, x)
}
.

One can easily confirm that the confluence of R1 is shown in the same way as R3 using
Theorem 3.18 by putting S = {(add1), (add2), (add3), (add4), (dbl)} and P = {(C), (A)}. On
the other hand, since S is not linear, Theorem 3.8 does not apply. To this example, one
can apply Corollary 3.19 and Proposition 3.13 as well.

Example 3.34. Consider a TRS

R5 = R3 ∪
{

(ss1) s(x) → s(s(x))
(ss2) s(s(x)) → s(x)

}
.

By putting S = {(add1), (add2), (add3), (add4)} and P = {(C), (A), (ss1), (ss2)}, one can
show the confluence of R5 using Corollary 3.10. On the other hand, the condition of
Corollary 3.29 is not satisfied because CPin(P∪P−1,S) 6= ∅. Proposition 3.13 does not apply
either, since S is not terminating relative to P as e.g. +(s(s(x)), y) →S s(+(s(x), y)) →P
s(+(s(s(x)), y)) →S · · · . Take P ′ = {(ss2)}. Then the conditions of Theorem 3.28 are
satisfied—for example, for 〈+(s(s(x)), y), s(+(x, y))〉{x} ∈ PCPin(P ∪ P−1,S), we have a

rewrite sequence +(s(s(x)), y)
∗→S∪P ′ s(+(x, y))←++ ∅,P∪P−1

∗←S s(+(x, y)). Hence confluence
of R5 is shown by Theorem 3.28.

Example 3.35. Let

R6 = {(add1), (add2), (add3), (C), (A), (dbl)} ∪
{

(add5) +(x, s(y)) → +(s(x), y)
}
.

20 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

Let S = {(add1), (add2), (add3), (add5), (dbl)} and P = {(C), (A)}. Then S is not termi-
nating relative to P, because of +(x, s(x)) →S +(s(x), x) →P +(x, s(x)) →S · · · . Thus
Proposition 3.13 is not applicable. Since S is not linear, Theorem 3.8 does not apply either.
On the other hand, one easily checks the confluence of R6 using Theorems 3.18 or 3.28. To
this example, Corollaries 3.19 and 3.29 also apply.

Example 3.36. Let

R7 = R4 ∪R5 = {(add1), (add2), (add3), (add4), (C), (A), (dbl), (ss1), (ss2)}.
By the same reason as for R6, Proposition 3.13 and Theorem 3.8 do not apply. By the
same reason as for R5, Corollary 3.29 does not apply. Confluence of R7 can be shown as in
Example 3.34 by taking S = (add1), (add2), (add3), (add4), (dbl)}, P = {(C), (A), (ss1), (ss2)}
and P ′ = {(ss2)}.
Example 3.37. Let

R8 =

(a) f(g(x), g(y)) → f(g(x), h(y)) (b) f(h(x), g(y)) → f(g(x), g(y))
(c) f(g(x), h(y)) → f(x, y) (d) f(h(x), h(y)) → f(y, x)
(e) f(x, y) → f(y, x) (f) g(x) → h(x)
(g) h(x) → g(x)

 .

Let S = {(a), (b), (c), (d)} and P = {(e), (f), (g)}. We have CP(S,S) = ∅, CPin(P ∪
P−1,S) =

〈f(h(x), g(y)), f(g(y), h(x))〉 ∈↔P 〈f(g(x), h(y)), f(g(x), h(y))〉 ∈ id
〈f(g(x), g(y)), f(g(x), g(y))〉 ∈ id

〈f(h(x), h(y)), f(g(x), g(y))〉 ∈→S ◦ ↔P ◦ ∗←S
〈f(h(x), h(y)), f(x, y)〉 ∈→S ◦ ↔P 〈f(g(x), g(y)), f(x, y)〉 ∈ ∗→S
〈f(g(x), h(y)), f(y, x)〉 ∈→S ◦ ↔P 〈f(h(x), g(y)), f(y, x)〉 ∈ ∗→S ◦ ↔P

and CP(S,P ∪ P−1) ={ 〈f(g(x), g(y)), f(g(y), h(x))〉 ∈↔P 〈f(g(x), h(y)), f(g(y), g(x))〉 ∈↔P

〈f(x, y), f(h(y), g(x))〉 ∈ ∗←S 〈f(x, y), f(h(x), h(y))〉 ∈↔P ◦ ←S

}
.

Thus R8 is confluent by Corollary 3.10. Proposition 3.13 does not apply, since S is not
terminating relative to P. Furthermore, the conditions of Theorem 3.28 are not satisfied.
For 〈f(h(x), h(y)), f(x, y)〉{x} ∈ PCPin(P ∪ P−1,S), the critical pair conditions can not

be satisfied. For, any rewrite sequence f(h(x), h(y))
∗→S∪P ′ ◦ ←++ V,P∪P−1 ◦ ∗←S∪P ′ f(x, y)

satisfying the critical pair conditions, we have f(x, y) → f(y, x) ∈ P ′. (Note that if we

take P ′ := ∅ then the rewrite sequence f(h(x), h(y))
∗→S f(y, x) ←++ {ε},P∪P−1 f(x, y) does

not satisfy the critical pair conditions because of the variable condition as V{ε}(f(y, x)) =
{x, y} 6⊆ {x}.) But then S is not terminating relative to P ′.
Theorem 3.38.

(1) Corollary 3.10 and Theorem 3.28 are incomparable.
(2) Corollary 3.29 and Theorem 3.8 are incomparable.
(3) Theorems 3.8 and 3.28 are incomparable.
(4) Corollaries 3.10 and 3.29 are incomparable.

Proof. Each claim is witnessed by the preceding examples. See Figure 1.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 21

Partition 〈S,P〉
〈S ′,P ′〉 S ∪ P = S ′ ∪ P ′, P ′: reversible

Replacement 〈S ∪ {l→ r},P〉
〈S ∪ {l→ r′},P〉 r

∗↔P r′

Addition 〈S,P〉
〈S ∪ {l→ r},P〉 l

∗↔P ◦ ∗→S r

Figure 2: Inference rules of reduction-preserving completion

4. Reduction-preserving completion

In this section, we give a reduction-preserving completion procedure so that the applicability
of the criteria presented in the previous section is enhanced. We first present an abstract
procedure formulated in terms of inference rules (subsection 1) and then give a concrete
one which forms a basis of our implementation (subsection 2).

4.1. Abstract completion procedure. As witnessed in Example 3.32, there are cases
where our confluence criteria are not applicable directly. Our idea is to construct a TRS
suitable for applying our criteria by exchanging or adding rewrite rules without changing
the reduction relation so that the confluence of the transformed TRS implies that of the
original TRS. Using the reversibility of P allows several flexibilities on such transformations.

The notion of reduction equivalence and the following properties of reduction equiva-
lence are well-known in literature and the latter are easily proved.

Definition 4.1 (reduction equivalence). Two relations→0 and→1 are said to be reduction

equivalent if
∗→0 =

∗→1. Two TRSs R and Q are reduction equivalent if so are →R and
→Q.

Proposition 4.2 (properties of reduction equivalence). (i) If →R ⊆ ∗→Q and →Q ⊆ ∗→R
then R and Q are reduction equivalent. (ii) If R and Q are reduction equivalent then the
confluence of R and Q coincide.

We now demonstrate how the confluence criteria in the previous section can be applied
indirectly using the notion of reduction equivalence.

Example 4.3 (confluence by reduction equivalence). We show the confluence of R2 =
{(add1), (add2), (C), (A)} of Example 1.2. Theorems 3.28 and 3.8 can not be applied di-
rectly to prove this as illustrated in Example 3.32. Consider R3 = R2 ∪ {(add3), (add4)}
of Example 3.31. Then since we have +(x, 0) →R2 +(0, x) →R2 x and +(x, s(y)) →R2

+(s(y), x)→R2 s(+(y, x))→R2 s(+(x, y)), the inclusions →R2 ⊆ →R3 ⊆
∗→R2 hold. Hence

R3 and R2 are reduction equivalent by Proposition 4.2 (i). As we have shown in Exam-
ple 3.31, R3 is confluent. Thus by Proposition 4.2 (ii), R2 is confluent too.

In this example, two additional rewrite rules (add2) and (add3) are given by hand.
But in automated confluence proving procedures, one needs to find such new rewrite rules
automatically. We next present a completion-like procedure to automate such additions (or

22 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

more generally transformations) of rewrite rules. We first present an abstract version of the
procedure in the form of inference rules and prove its soundness w.r.t. the confluence proof.

Definition 4.4 (abstract reduction-preserving completion procedure). Inference rules of
an abstract reduction-preserving completion procedure are listed in Figure 2. The inference
rules act on a pair of TRSs S and P where P is reversible. One step derivation using any
of inference rules (from upper to lower) is denoted by ;. We also write ;p (;r,;a) for
an inference step by the rule Partition (Replacement, Addition, respectively).

Theorem 4.5 (soundness of the abstract reduction-preserving completion procedure). Let

〈R, ∅〉 = 〈S0,P0〉 ∗; 〈Sn,Pn〉 be a derivation of abstract reduction-preserving completion
procedure. If Sn ∪ Pn is confluent then R is confluent.

Proof. We show, for any inference step 〈Si,Pi〉; 〈Si+1,Pi+1〉, that Si∪Pi and Si+1∪Pi+1

are reduction equivalent and that Pi+1 is reversible whenever so is Pi.
• 〈Si,Pi〉 ; 〈Si+1,Pi+1〉 by Partition. Then since Si ∪ Pi = Si+1 ∪ Pi+1 and Pi+1 is

reversible by the side condition, the claim follows immediately.

• 〈Si,Pi〉 ; 〈Si+1,Pi+1〉 by Replacement. Then Si = S ′i ∪ {l → r}, r ∗↔Pi r
′ and Si+1 =

S ′i ∪ {l → r′} for some S ′i, l, r, r′ and Pi+1 = Pi. By the reversibility of Pi, we have

l →Si r
∗→Pi r

′ hence →Si+1∪Pi+1 ⊆
∗→Si∪Pi . By the reversibility of Pi, we also have

l →Si+1 r
′ ∗→Pi r, hence →Si∪Pi ⊆

∗→Si+1∪Pi+1 . Thus by Proposition 4.2 (i), Si ∪ Pi and
Si+1 ∪ Pi+1 are reduction equivalent. Hence, by Pi+1 = Pi, the claim follows.

• 〈Si,Pi〉; 〈Si+1,Pi+1〉 by Addition. Then l
∗↔Pi ◦

∗→Si r and Si+1 = Si∪{l→ r} for some

l, r and and Pi+1 = Pi. Since Si∪Pi ⊆ Si+1∪Pi+1, we have→Si∪Pi ⊆
∗→Si+1∪Pi+1 . By the

reversibility of Pi, l ∗→Pi ◦
∗→Si r′. Hence→Si+1∪Pi+1 ⊆

∗→Si∪Pi . Thus by Proposition 4.2
(i), Si ∪ Pi and Si+1 ∪ Pi+1 are reduction equivalent. Hence, by Pi+1 = Pi, the claim
follows.

Thus by induction on n, it follows that R and Sn ∪ Pn are reduction equivalent. Hence if
Sn ∪ Pn is confluent, R is confluent by Proposition 4.2 (ii).

Example 4.6 (derivations in abstract reduction-preserving completion procedure). The
confluence proof of Example 4.3 is derived by the abstract reduction-preserving completion
procedure. Give R2 = {(add1), (add2), (C), (A)} as the input to the procedure. Let us
consider the following derivation.

〈{(add1), (add2), (C), (A)}, ∅〉 ;p 〈{(add1), (add2)}, {(C), (A)}〉
;a 〈{(add1), (add2), (add3)}, {(C), (A)}〉
;a 〈{(add1), (add2), (add3), (add′4)}, {(C), (A)}〉
;r 〈{(add1), (add2), (add3), (add4)}, {(C), (A)}〉

where (add′4) : +(x, s(y))→ s(+(y, x)). As we have already demonstrated in Example 3.31,
{(add1), (add2), (add3), (add4), (A), (C)} = R3 is confluent. Thus, by Theorem 4.5, R2 is
confluent.

4.2. Concrete completion procedure. In this subsection, we present a concrete reduction-
preserving completion procedure that can be used as the basis of an automated completion
procedure. The procedure presented below is designed so as to apply Theorem 3.18, but
it is straightforward to modify the procedure suitable for Theorems 3.8, 3.28 or Corollaries
3.10, 3.19, 3.29 or any combinations of them.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 23

Definition 4.7 (concrete reduction-preserving completion procedure).
Input: a TRS R

Output: Success or Failure (or may diverge)

Step 1 Put Q0 := R and i := 0. Proceed to Step 2.
Step 2 Take a partition Si ∪ Pi = Qi such that Si is left-linear and terminating, Pi is

reversible and CPin(Pi ∪ Pi−1,Si) = ∅. Proceed to Step 3. If there is no such a
partition then return Failure.

Step 3 Set U1 := ∅.
For each 〈u, v〉 ∈ CP(Si,Pi ∪ Pi−1), do:
• Take Si-normal forms û, v̂ of u, v, respectively.
• Check whether û →++ Pi∪Pi

−1 v̂. If not then put U1 := U1 ∪ {〈b, v ≈ û〉}, where
b := true or := false according to whether v is Si-normal or not.

Step 4 Set U2 := ∅.
For each 〈u, v〉 ∈ CP(Si,Si), do:
• Take Si-normal forms û, v̂ of u, v, respectively.
• Check whether û←++ Pi∪Pi

−1 v̂. If not then put U2 := U2 ∪ {〈false, û ≈ v̂〉}.
If U1 = U2 = ∅ then return Success.

Step 5 Let P ′ := ∅.
For each 〈b, u ≈ v〉 ∈ U1 ∪ U2, do:

• Check whether there exist u′, v′ such that u = u′ ←++ Pi∪Pi
−1 v′

∗←Si∪Pi∪Pi
−1 v if

b = true, and u→Si ◦
∗→Si∪Pi∪Pi

−1 u′ ←++ Pi∪Pi
−1 v′

∗←Si∪Pi∪Pi
−1 v if b = false.

• Put P ′ := P ′ ∪ {l → r ∈ Pi ∪ Pi−1 | l → r is used in the rewrite sequences

u
∗→Si∪Pi∪Pi

−1 u′ or v
∗→Si∪Pi∪Pi

−1 v′}.
Finally, check whether Si is terminating relative to P ′. If it is, then return Success.
Otherwise take some set U ′ ⊆ {v → û | 〈b, v ≈ û〉 ∈ U1} ∪ {l→ r, r → l | 〈b, l ≈ r〉 ∈
U2, l ∗↔Pi r} of rewrite rules and put Qi+1 := Qi ∪ U ′, i := i+ 1 and go to Step 2.

During the step 2, one may perform the following additional steps.

Step 2a. If there exist l→ r ∈ Si and r′ such that r ↔Pi r
′ and CPin(Pi∪Pi−1, {l→ r}) 6= ∅,

then put Qi+1 := (Qi \ {l→ r}) ∪ {l→ r′}, i := i+ 1.
Step 2b. Let 〈u, v〉 ∈ CPin(Pi ∪ Pi−1,Si) and let v̂ be an Si-normal form of v. Then put

Qi+1 := Qi ∪ {u→ v̂} and i := i+ 1.

Before moving from step 4 to step 2, one may perform the following additional step.

Step 4a. Set Si := Si−1,Pi := Pi−1. If there exist l→ r ∈ Si and r′ such that r ↔Pi r
′ and

there exists 〈u, v〉 ∈ CP({l → r},Pi ∪ Pi−1) ∪ CP({l → r},Si) ∪ CP(Si, {l → r})
such that the critical pair conditions are not satisfied, then put Qi+1 := (Qi \{l→
r}) ∪ {l→ r′}, i := i+ 1.

Remark 4.8. Steps 2–5 try to show the condition of Theorem 3.18 directly, and if the
relative termination check of Si relative to P ′ fails in Step 5, some of critical pairs which
lead to the equations in U1 ∪ U2 are problematic. Thus, taking some non-empty U ′ is
indispensable for the success of the completion procedure. On the other hand, it is not at
all guaranteed whether extra steps 2a, 2b, 4a are helpful for the success of the completion
procedure—they just add some flexibilities to modify equations. Adding such flexibilities
may be helpful but there is a trade-off between adding such extra steps and efficiency of

24 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

the completion procedure. We here present these extra steps because they perform well for
some examples, including Example 4.11 below.

Corollary 4.9 (soundness of the concrete reduction-preserving completion procedure). If
the procedure of Definition 4.7 succeeds for the input R, then R is confluent.

Proof. It suffices to show if the procedure succeeds then there exists a successful derivation
of the abstract reduction-preserving completion procedure ending with Sn,Pn satisfying the
conditions of Theorem 3.18. Step 1 corresponds to the empty derivation. Step 2 corresponds
to an inference step by Partition. If the procedure succeeds at Step 4, then Si,Pi satisfy
the conditions of Corollary 3.19 and hence that of Theorem 3.18. If the procedure succeeds
at Step 5, then Si,Pi satisfy the conditions of Theorem 3.18. Suppose that the procedure
does not return Success at Steps 4 or 5. Then it is readily checked that for l → r ∈ U ′,
l ←Si ◦ →Pi∪P−1

i
r or l

∗↔Pi r holds. Thus, in this case, Step 5 is simulated by multiple

inference steps by Addition. Similarly, Step 2b is simulated by multiple inference steps by
Addition and Steps 2a and 4a are simulated by inference steps by Replace.

Example 4.10. Give R2 = {(add1), (add2), (C), (A)} as the input.

(1) (Step 1) We put Q0 := R2.
(2) (Step 2) We take S0 = {(add1), (add2)} and P0 = {(C), (A)}. Then S0 is left-linear

and terminating, P0 is reversible and CPin(P0 ∪ P0−1,S0) = ∅.
(3) (Step 3) We have CP(S0,P0 ∪ P0−1) =

(1) 〈+(y, z),+(0,+(y, z))〉 (5) 〈s(+(x,+(y, z))),+(+(s(x), y), z)〉
(2) 〈+(y, z),+(+(0, y), z)〉 (6) 〈+(s(+(x, y)), z),+(s(x),+(y, z))〉
(3) 〈+(x, z),+(+(x, 0), z)〉 (7) 〈+(x, s(+(y, z))),+(+(x, s(y)), z)〉
(4) 〈y,+(y, 0)〉 (8) 〈s(+(x, y)),+(y, s(x))〉

 .

Then for 〈u, v〉 ∈ {(3), (4), (7), (8)}, u ∗→S0 ◦ ←++ P0∪P−1
0
◦ ∗←S0 v does not hold and v is

S0-normal. Thus we put

U1 :=

〈true,+(+(x, 0), z) ≈ +(x, z)〉
〈true,+(y, 0) ≈ y〉
〈true,+(+(x, s(y)), z) ≈ +(x, s(+(y, z)))〉
〈true,+(y, s(x)) ≈ s(+(x, y))〉

and proceed to Step 4.

(4) (Step 4) We have CP(S0,S0) = ∅ and thus U2 = ∅. Since b = true for any 〈b, u ≈
v〉 ∈ U1, we check u ←++ P0∪P0

−1 ◦ ∗←S0∪P0∪P0
−1 v. But this fails since, for example,

+(y, 0)←++ P0∪P0
−1 ◦ ∗←S0∪P0∪P0

−1 y does not hold. Now we put

U ′ :=
{

(add3) +(y, 0)→ y (add′4) +(y, s(x))→ s(+(x, y))
}
.

and go to the step 2.
(5) (Step 2) We take S1 = {(add1), (add2), (add3), (add′4)} and P1 = {(C), (A)}. Then S1

is left-linear and terminating, P1 is reversible, and CPin(P1 ∪ P1−1,S1) = ∅.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 25

(6) (Step 3) There are four elements in CP−1(S1,P1 ∪ P1−1) which are not joinable as

u
∗→S1 ◦ ←++ P1∪P−1

1
◦ ∗←S1 v, namely

(9) 〈+(x, s(+(y, z)),+(+(x, s(y)), z)〉
(10) 〈s(+(x,+(y, z)),+(y,+(z, s(x)))〉
(11) 〈+(s(+(x, y)), z),+(y,+(s(x), z))〉
(12) 〈+(x, s(+(y, z))),+(+(x, z), s(y))〉

 .

We put

U1 :=

〈false,+(+(x, s(y)), z) ≈ s(+(x,+(y, z)))〉
〈false,+(y,+(z, s(x))) ≈ s(+(x,+(y, z))〉
〈false,+(y,+(s(x), z)) ≈ s(+(+(x, y), z)〉
〈false,+(+(x, z), s(y)) ≈ s(+(x,+(y, z)))〉

and proceed to Step 4.

(7) (Step 4) We have CP(S1,S1) = ∅ and thus U2 = ∅. Since b = false for any 〈b, u ≈
v〉 ∈ U1, we check u →S1 ◦

∗→S1∪P1∪P1
−1 u′ ←++ P1∪P1

−1 v′
∗←S1∪P1∪P1

−1 v. Then we

have u →S1 ◦
∗→S1∪P ′ u′ ←++ P1∪P1

−1 v′
∗←S1∪P ′ v for all 〈b, u ≈ v〉 ∈ U1 by taking

P ′ = {+(+(x, y), z) → +(x,+(y, z))}. Then S1 is terminating relative to P ′ and
Success is returned.

Example 4.11. Suppose that the relative termination check of S1 relative to P ′ fails in
the last step of Example 4.10. Then the procedure continues as follows.

(8) Here, we put U ′ := ∅, Q2 := Q1, i := 2 and proceed to Step 4a.
(9) (Step 4a) Put S2 := S1 and P2 := P1. Since (11) ∈ CP({(add′4)},P2 ∪ P2−1) and

s(+(x, y))→P2 s(+(y, x)), one can put Q3 := (Q2 \ {(add′4)})∪ (add4)} and i := 3 and
go to Step 2.

(10) (Step 2) We take S3 = {(add1), (add2), (add3), (add4)} and P3 = {(C), (A)}. Then
S3 is left-linear and terminating, P3 is reversible and CPin(P3 ∪ P3−1,S3) = ∅. Thus
proceed to Step 3.

(11) (Step 3) For any 〈u, v〉 ∈ CP(S3,P3 ∪ P3−1), we have u
∗→S3 ◦ ←++ P3∪P−1

3
◦ ∗←S3 v

(Example 3.31). Thus U1 := ∅ and proceed to Step 4.

(12) (Step 4) For any 〈u, v〉 ∈ CP(S3,S3), we have u
∗→S3 ◦ ←++ P3∪P−1

3
◦ ∗←S3 v (Exam-

ple 3.31). Thus U2 := ∅. Since U1 = U2 = ∅, Success is returned.

5. Implementation and experiments

All the results of this paper have been implemented. The program is written in SML/NJ2

and is built upon our confluence prover ACP3 [1, 3, 27].
In Figure 3, we present pseudo-code of main functions of our implementation of reduction-

preserving completion procedure enough for describing some heuristics employed in the im-
plementation. Short descriptions of functions involved in our pseudo-code and heuristics
employed follow.

• (checkConfluence R) is the main function of the procedure. It simulates multiple runs
in the breadth-first strategy.

2http://www.smlnj.org/
3http://www.nue.riec.tohoku.ac.jp/tools/acp/

26 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

fun check (S,P,i) = if i = 0 then (apply Theorem 3.28)
else if i = 1 then (apply Theorem 3.8)
else (apply Proposition 3.13)

fun checkConfluence R =
let fun step [] = Failure

| step ((S,P,i)::rest) = case check (S,P,i) of

NONE⇒ step rest

| SOME []⇒ Success

| SOME nj⇒ step (rest @

(mapAppend decompose (trans (S,P) nj)))

in step (decompose R) end

Figure 3: Pseudo-code of main functions

• (decompose R) decomposes R into S ∪ P and duplicates S ∪ P. Hence a list of triples
(S,P, i) where S ∪ P = R and i ∈ {0, 1, 2} are returned. Here, however, instead of
returning all partitions, we select partitions based on a heuristic, namely that P is a set
of the rules l→ r satisfying either (1) r → l ∈ R or (2) F(l) = F(r) and l(ε) = r(ε).
• (check (S,P, i)) checks whether conditions of Theorem 3.8 when i = 0 (or Theorem 3.28

when i = 1, Proposition 3.13 when i = 2) are satisfied based on the algorithm given in
our concrete completion procedure (Definition 4.7). Reversibility is tested by checking

r
≤k→ l (i.e. there is a rewrite sequence from r to l of length less than or equal to k steps)

for some constant k. In our implementation, we set k = 10.
• (trans (S,P) nj) returns a collection of transformed TRSs obtained by addition and

replacement of rewrite rules constructed from non-joinable critical pairs (Steps 5 and 2b
of the Definition 4.7) and rewrite rules generating such critical pairs (Steps 2a and 4a
of of the Definition 4.7). Here, the addition of rewrite rules is restricted based on some
heuristic.

Table 1 shows the summary of our experiments. We have tested various combinations of
our results: Rows (1)–(8) are proofs by confluence criteria of Theorems 3.8, 3.18, 3.28
(Corollaries 3.10, 3.19, 3.29) and by the combination of those of Theorem 3.28 (Corol-
lary 3.29) and Theorem 3.8 (Corollary 3.10, respectively). Those marked with “w/o RT”
are the ones without (proper) relative termination checking (i.e. Corollaries 3.10, 3.19
and 3.29 where only termination checking is involved). Rows (9)–(14) are proofs by the
reduction-preserving completion without the Replacement rule, i.e. the Steps 2a, 4a of the
concrete reduction-preserving completion (Definition 4.7). Rows (15)–(20) are proofs by
the reduction-preserving completion with the Replacement rule. Row (21) are proofs by the
reduction-preserving completion with the Replacement rule and Huet’s criterion (Proposi-
tion 3.13).

For the experiments, we used a collection of 85 TRSs involving non-terminating rules
such as commutativity and associativity rules which have been developed in the course of
experiments4. All experiments have been performed on a Linux platform of a PC equipped

4Four TRSs have been added to the collection of our proceedings version [2] of the paper to capture
Examples 3.35 and 3.37.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 27

with 1.2GHz CPU and 1GB memory. The maximal number of steps of the completion
procedure is limited to 20 steps; the columns below the title “diverge” show the numbers of
examples which exceeded this limit, where these numbers are included in those of “failure.”
We set the timeout 60 sec. The columns below the title “timeout” show the numbers of
examples which exceeded this timeout. Total time (real time) is measured in seconds.

When relative termination checking is disabled and only termination checking is used,
the applicability of incomparable confluent criteria (Corollary 3.29 and Corollary 3.10) does
not show much differences in the number of success. When relative termination checking
is activated, Theorem 3.28 has a clear advantage over Theorem 3.8 and at the same time
total computation time rises much—this is because of relative termination checking invoked
multiple times for solving each problem. The applicability of Theorem 3.18 (Corollary 3.19)
which is subsumed by Theorem 3.28 (Corollary 3.29, respectively) is limited compared to
these two criteria. Comparing to Huet’s criterion (Proposition 3.13) which succeeds at
37 examples, the direct application of the combination of Theorems 3.8 and 3.28 without
reduction-preserving completion succeeded at 41 examples.

In each criterion, there is a clear increase of the number of success by adding the com-
pletion procedure. The increase of total time by the introduction of completion procedure is
not much but this depends on largely our heuristics of choosing partitions and the limitation
on the number of completion steps. The number of successful examples, however, does not
change even when we increase that limit to 150 steps. Activation of relative termination
checking is also effective even in the presence of completion procedure. The introduction of
the Replacement inference rule only makes a difference when relative termination checking
is not involved.

We have also tested the confluence prover ACP on our collection. ACP is an automated
confluence prover in which divide–and–conquer approach based on the persistent, layer-
preserving, commutative decompositions is employed and involving many confluence criteria
[6, 8, 16, 17, 20, 22, 23, 18, 25] as well as the decreasing diagram techniques [24, 26]. As
shown in the table, most of our examples are not coped with by the confluence prover ACP.

The collection of examples and all details of the experiments are available on the web-
page http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/12lmcs/all.html.

6. Conclusion

We have presented a new method for proving confluence of TRSs. The scope of our method
is a class of TRSs that can be partitioned into a terminating part and a reversible part.
Our method is applicable for TRSs containing non-terminating rules such as commutativity
and associativity which have been difficult to deal with most of the standard methods.

We have given a new abstract criterion for Church-Rosser modulo (Theorem 2.2) which
extends those that appeared in [8] and [9]. Based on this abstract criterion, we have
given two new criteria for confluence of TRSs formulated in terms of its terminating part
S and its reversible part P (Theorems 3.8 and 3.28). These criteria are effective even if
S is not terminating relative to P; in case S is terminating relative to a part of P then
the applicability of criteria is strengthened. We have also given a reduction-preserving
completion by which applicability of our criteria is enhanced. We have implemented the
proposed techniques and reported experimental results.

28 A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE

Table 1: Summary of experiments
success failure diverge timeout time(sec.)

(1) linear (w/o RT) (Cor. 3.10) 28 57 0 0 7.28
(2) linear (Thm. 3.8) 32 53 0 0 7.41
(3) parallel (w/o RT) (Cor. 3.19) 19 66 0 0 7.93
(4) parallel (Thm. 3.18) 24 61 0 0 8.20
(5) PCP (w/o RT) (Cor. 3.29) 28 57 0 0 7.97
(6) PCP (Thm. 3.28) 39 46 0 0 21.44
(7) linear&PCP (w/o RT) (Cor. 3.10&3.29) 30 55 0 0 8.82
(8) linear&PCP (Thm. 3.8&3.28) 41 44 0 0 21.28
(9) completion (linear,w/o RT) 47 38 0 0 8.17

(10) completion (linear) 61 24 0 0 9.00
(11) completion (PCP,w/o RT) 50 35 0 0 9.85
(12) completion (PCP) 74 11 0 0 30.18
(13) completion (linear&PCP,w/o RT) 52 33 0 0 10.84
(14) completion (linear&PCP) 77 8 0 0 28.26
(15) completion+repl (linear,w/o RT) 61 24 0 0 9.51
(16) completion+repl (linear) 61 24 0 0 9.09
(17) completion+repl (PCP,w/o RT) 66 19 (3) 0 14.90
(18) completion+repl (PCP) 75 10 0 0 29.49
(19) completion+repl (linear&PCP,w/o RT) 69 16 (2) 0 14.61
(20) completion+repl (linear&PCP) 77 8 0 0 29.05
(21) (20) + Huet (Prop. 3.13) 77 8 0 0 40.95
Huet (Prop. 3.13) 37 48 0 0 31.22
ACP [1, 3, 27] 13 72 — (2) 196.40

Acknowledgment

Thanks are due to Junichi Mitimata for discussions and experiments on preliminary results
of this paper. The authors are grateful for Harald Zankl, Aart Middeldorp, Dominik Klein
for pointers to related works and/or helpful comments. Thanks are due to anonymous
referees for detailed comments. This work was partially supported by grants from JSPS
Nos. 20500002 and 22500002.

References

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In C. Lynch,
editor, Proc. of RTA 2010, volume 6 of LIPIcs, pages 7–16. Schloss Dagstuhl, 2010.

[2] T. Aoto and Y. Toyama. A reduction-preserving completion for proving confluence of non-terminating
term rewriting systems. In M. Schmidt-Schauß, editor, Proc. of RTA 2011, volume 10 of LIPIcs, pages
91–106. Schloss Dagstuhl, 2011.

[3] T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically. In
R. Treinen, editor, Proc. of RTA 2009, volume 5595 of LNCS, pages 93–102. Springer-Verlag, 2009.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[5] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. Theoretical Computer

Science, 67(2–3):173–201, 1981.
[6] H. Gomi, M. Oyamaguchi, and Y. Ohta. On the Church-Rosser property of root-E-overlapping and

strongly depth-preserving term rewriting systems. Transactions of IPSJ, 39(4):992–1005, 1998.

A REDUCTION-PRESERVING COMPLETION FOR PROVING CONFLUENCE 29

[7] B. Gramlich. Confluence without termination via parallel critical pairs. In H. Kirchner, editor, Proc. of
CAAP’96, volume 1996 of LNCS, pages 211–225. Springer-Verlag, 2006.

[8] G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems. Journal
of the ACM, 27(4):797–821, 1980.

[9] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal
of Computing, 15(4):1155–1194, 1986.

[10] J.-P. Jouannaud, H. Kirchner, and J. L. Remy. Church-Rosser properties of weakly terminating equa-
tional term rewriting systems. In A. Bundy, editor, Proc. of 8th IJCAI, pages 909–915, 1983.

[11] D. S. Lankford and A. M. Ballantyne. Decision procedures for simple equational theories with
commutative-associative axioms: complete sets of commutative-associative reductions. Technical Re-
port ATP-39, Department of Computer Sciences, University of Texas at Austin, 1977.

[12] D. S. Lankford and A. M. Ballantyne. Decision procedures for simple equational theories with com-
mutative axioms: complete sets of commutative reductions. Technical Report ATP-35, Department of
Computer Sciences, University of Texas at Austin, 1977.

[13] D. S. Lankford and A. M. Ballantyne. Decision procedures for simple equational theories with per-
mutative axioms: complete sets of permutative reductions. Technical Report ATP-37, Department of
Computer Sciences, University of Texas at Austin, 1977.

[14] A. Middeldorp and M. Starčević. A rewrite approach to polynomial ideal theory. Report CS-R9160,
CWI, Amsterdam, 1991.

[15] E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an equivalence relation. In T. Nip-
kow, editor, Proc. of RTA-98, volume 1379 of LNCS, pages 17–31. Springer-Verlag, 1998.

[16] S. Okui. Simultaneous critical pairs and Church-Rosser property. In T. Nipkow, editor, Proc. of RTA-98,
volume 1379 of LNCS, pages 2–16. Springer-Verlag, 1998.

[17] M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser of left-linear TRS’s.
In H. Comon, editor, Proc. of RTA-97, volume 1232 of LNCS, pages 187–201. Springer-Verlag, 1997.

[18] M. Oyamaguchi and Y. Ohta. On the open problems concerning Church-Rosser of left-linear term
rewriting systems. IEICE Trans. Information and Systems, E87-D(2):290–298, 2004.

[19] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. Journal of
the ACM, 28(2):233–264, 1981.

[20] Y. Toyama. On the Church-Rosser property of term rewriting systems. Technical Report 17672, NTT
ECL, 1981.

[21] Y. Toyama. Confluent term rewriting systems (invited talk). In J. Giesl, editor, Proc. of RTA 2005,
volume 3467 of LNCS, page 1. Springer-Verlag, 2005. Slides are available from http://www.nue.riec.

tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf.
[22] Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique normal form property of non-

duplicting term rewriting systems. In N. Dershowitz and N. Lindenstrauss, editors, Proc. of CTRS-94,
volume 968 of LNCS, pages 316–331. Springer-Verlag, 1994.

[23] Y. Toyama and M. Oyamaguchi. Conditional linearization of non-duplicating term rewriting systems.
IEICE Trans. Information and Systems, E84-D(5):439–447, 2001.

[24] V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science, 126(2):259–280,
1994.

[25] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181, 1997.
[26] V. van Oostrom. Confluence by decreasing diagrams: converted. In A. Voronkov, editor, Proc. of RTA

2008, volume 5117 of LNCS, pages 306–320. Springer-Verlag, 2008.
[27] J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewriting systems. Computer

Software, 26(2):76–92, 2009. In Japanese.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Abstract criterion for Church-Rosser modulo
	2.1. Preliminaries
	2.2. Abstract criterion for Church-Rosser modulo
	2.3. Related works

	3. Confluence criteria
	3.1. Preliminaries
	3.2. Confluence criterion for linear TRSs
	3.3. Confluence criterion based on parallel rewrite steps
	3.4. Confluence criterion based on parallel critical pairs
	3.5. Examples and comparison

	4. Reduction-preserving completion
	4.1. Abstract completion procedure
	4.2. Concrete completion procedure

	5. Implementation and experiments
	6. Conclusion
	Acknowledgment
	References

