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Abstract. We extend the higher-order termination method of dynamic dependency pairs
to Algebraic Functional Systems (AFSs). In this setting, simply typed lambda-terms with
algebraic reduction and separate β-steps are considered. For left-linear AFSs, the method
is shown to be complete. For so-called local AFSs we define a variation of usable rules and
an extension of argument filterings. All these techniques have been implemented in the
higher-order termination tool WANDA.

1. Introduction

An important method to (automatically) prove termination of first-order term rewrite
systems is the dependency pair approach by Arts and Giesl [2]. This approach transforms a
term rewrite system into groups of ordering constraints, such that rewriting is terminating
if and only if the groups of constraints are (separately) solvable. These constraints can
be simplified using for instance argument filterings and usable rules [2, 11, 15]. Various
optimisations of the method have been studied, see for example [14, 10].

This paper contributes to the study of dependency pairs for higher-order rewriting. It is
not easy to adapt the approach to a higher-order setting, primarily due to the presence of
β-reduction. A first, very natural extension to Nipkow’s HRSs (higher-order rewrite systems)
is given in [35], but it relies on the subterm property. Due to this property it is impossible
to define optimisations like argument filterings. Moreover, unlike the first-order case, the
method is not complete: a terminating system may well have an infinite dependency chain.

Since then, the focus of higher-order dependency pairs has been on the so-called static
style. This style imposes limitations on the rewrite rules which allow the subterm property
to be dropped. For static dependency pairs, too, there are no completeness results available.

Here we return to the original, dynamic style of dependency pairs, and show how the
subterm property can be weakened. We introduce variations of usable rules and argument
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filterings, and use weakly monotonic algebras and recursive path orderings to orient the
resulting constraints. While special interest is reserved for the class of so-called local systems,
the core technique is defined without restrictions, and is complete for left-linear systems.

Unlike previous approaches, we do not consider rewriting modulo β/η (Nipkow’s HRSs
[30]), but with β-reduction as a separate step (Jouannaud and Okada’s AFSs [18]). Although
higher-order path orderings are commonly studied in the setting of AFSs [19, 4], and it is
the only style of higher-order rewriting which currently appears in the annual termination
competition [38], there is so far little work on dependency pairs for this formalism.

This paper is an extended version of [24], with complete proofs and some new features.

Paper Setup We briefly discuss the ideas from studies of dependency pairs for HRSs and
also for applicative systems in Section 2. In Section 3 we recapitulate the AFS formalism, and
in Section 4 we give a brief overview of the dependency pair framework for first-order term
rewriting. Basic (unrestricted) definitions of higher-order dependency pairs, dependency
chains, the dependency graph and reduction orderings are discussed in Section 5.

In order to obtain stronger results, we then introduce a restriction “local”, which many
common AFSs satisfy, and define formative rules (a variation of usable rules) for local AFSs.
We show how the results from Section 5 can be strenghtened for local systems.

To find reduction orderings for dependency pair constraints, Section 7 discusses two
approaches: first, we will see how dependency pairs interact with weakly monotonic algebras,
and then we define argument functions, a generalisation of argument filterings.

In Section 8 we discuss some improvements when dealing with non-collapsing dependency
pairs; for example, in this setting we can use the subterm criterion and usable rules. Section 9
summarises all results, both for local and non-local systems, in a ready-to-use algorithm.

In Section 10 we discuss how the theory in this paper can be used for polymorphic and
otherwise infinite systems, and how the static and dynamic dependency pair approaches can
be combined. Experimental results with our tool WANDA are presented in Section 11.

2. Background and Related Work

In this section, we discuss the existing work on higher-order dependency pairs.
The existing work on higher-order dependency pairs can roughly be split along two axes.

On the one axis, the higher-order formalism; we distinguish between applicative rewriting,
rewriting modulo β (HRSs), and with β as a separate step (AFSs). On the other the style of
dependency pairs, with common styles being dynamic and static. Figure 1 gives an overview.

Applicative HRS AFS
Dynamic [25] [1] [35] [23] [24] this paper

Static [27] [28] [3] [34] [26] [36] [3]
Other [16] – –

Figure 1: Papers on Higher Order Dependency Pairs

The dynamic and static approach differ in the treatment of leading variables in the right-hand
sides of rules (subterms x · s1 · · · sn with n > 0 and x a free variable). In the dynamic
approach, such subterms lead to a dependency pair; in the static approach they do not.
First-order techniques like argument filterings, the subterm criterion and usable rules are
easier to extend to a static approach, while equivalence results tend to be limited to the
dynamic style. Static dependency pairs rely on certain restrictions on the rules.
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Dependency pairs for applicative term rewriting In applicative systems, terms are
built from variables, constants and a binary application operator. Functional variables may
be present, as in x · a, but there is no abstraction, as in λx. x. There are various styles of
applicative rewriting, both untyped, simply typed, and with alternative forms of typing.

A dynamic approach was defined both for untyped and simply-typed applicative systems
in [25], along with a definition of argument filterings. A first static approach appears in [27]
and is improved in [28]; the method is restricted to ‘plain function passing’ systems where,
intuitively, leading variables are harmless. Due to the lack of binders, it is also possible to
eliminate leading variables by instantiating them, as is done for simply-typed systems in [1];
in [16], an uncurrying transformation from untyped applicative systems to normal first-order
systems is used. These techniques have no parallel in rewriting with binders.

Unfortunately, strong though the results for applicative systems may be, they are not
directly useful in the setting of AFSs, since termination may be lost by adding λ-abstraction
and β-reduction. For example, the simply-typed applicative system app · (abs ·F ) ·x→ F ·x,
with F : ι⇒ ι a functional variable, x : ι a variable, and app : ι⇒ ι⇒ ι, abs : (ι⇒ ι)⇒ ι
constants, is terminating because in every step the size of a term decreases. However, adding
λ-abstraction and β-reduction destroys this property: with ω = abs · (λx. app · x · x) we have
app · ω · ω = app · (abs · (λx. app · x · x)) · ω → (λx. app · x · x) · ω → app · ω · ω.

Let us move on to rewriting with binders; most results here are on Nipkow’s HRSs.

Dynamic Dependency Pairs for HRSs A first definition of dependency pairs for HRSs
is given in [35]. Here termination is not equivalent to the absence of infinite dependency
chains, and a term is required to be greater than its subterms (the subterm property), which
makes many optimisations impossible. In [23] (extended abstract) we have discussed how
the subterm property may be weakened by posing restrictions on the rules, and in [24], the
short version of this paper, we have explored an extension of the dynamic approach to AFSs.

Static Dependency Pairs for HRSs The static approach in [27] is moved to the setting
of HRSs in [26], and extended with argument filterings and usable rules in [36]. The static

approach omits dependency pairs f ](~l) ; x · ~r with x a variable, which avoids the need for
a subterm property, but it allows bound variables to become free in the right-hand side of a
dependency pair. The technique is restricted to plain function passing HRSs. A system with
for instance the (terminating) rule h(g(λx. F (x))) → F (a) cannot be handled. Moreover,
the approach is not complete: a terminating AFS may have a static dependency chain.

The definitions for HRSs [35, 26] do not immediately carry over to AFSs, since AFSs may
have rules of functional type, and β-reduction is a separate rewrite step. A short paper by
Blanqui [3] introduces static dependency pairs on a form of rewriting which includes AFSs,
but it poses some restrictions, such as base-type rules. The present work considers dynamic
dependency pairs for AFSs and is most related to [35], but is adapted for the different
formalism. Our method conservatively extends the one for first-order rewriting and provides
a characterisation of termination for left-linear AFSs. We have chosen for a dynamic rather
than a static approach because, although the static approach is stronger when applicable,
the dynamic definitions can be given without restrictions. The restrictions we do provide, to
weaken the subterm property and enable for instance argument filterings, are optional. We
will say some words about integrating the static and dynamic approaches in Section 10.
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3. Preliminaries

In this section, we present the formalism of Algebraic Functional Systems (AFSs).
We consider higher-order rewriting as defined originally by Jouannaud and Okada [18],

also called Algebraic Functional Systems (AFSs). Terms are built from simply-typed
variables, abstraction and application (as in the simply-typed λ-calculus), and also from
function symbols which take a fixed number of arguments. Terms and matching are modulo
α, and every AFS contains the β-reduction rule. Several variations of the definition of AFSs
exist; here we roughly follow [37, Chapter 11.2.3], which coincides with the format currently
used in the higher-order category of the annual termination competition [38].

Types and Terms Assuming a set B of base types, the set of simple types (or just types) is
generated using the binary type constructor⇒, according to the following grammar:

T ::= B | T⇒T
The arrow operator is right-associative. Types are denoted by σ, τ, . . . and base types
by ι, κ . . .. A type with at least one occurrence of ⇒ is called a functional type. A type
declaration is an expression of the form [σ1 × . . .× σn]⇒τ with τ and all σi types; we write
just τ if n = 0. Type declarations are not types, but are used for typing purposes.

We assume a set V, consisting of for each type infinitely many typed variables, written
as x, y, z, . . .. We further assume a set F , disjoint from V, consisting of function symbols,
equipped with a type declaration, and written as f, g, . . . or using more suggestive notation.
To stress the type (declaration) of a symbol a we may write a : σ. The set of terms over F
consists of expressions s for which we can infer s : σ for some type σ using the clauses:

(var) x : σ if x : σ ∈ V
(app) s · t : τ if s : σ⇒τ and t : σ
(abs) λx. s : σ⇒τ if x : σ ∈ V and s : τ
(fun) f(s1, . . . , sn) : τ if f : [σ1 × . . .× σn]⇒τ ∈ F and s1 : σ1, . . . , sn : σn

Terms built using these clauses are called respectively a variable, an application, an ab-
straction, and a functional term. Note that a function symbol f : [σ1 × . . .× σn]⇒τ takes
exactly n arguments, and τ may be a functional type. The λ binds occurrences of variables
as in the λ-calculus, and term equality is modulo α-conversion (bound variables may be
renamed). A variable in s which is not bound by some λ is free, and the set of free variables
of s is denoted by FV (s). Application is left-associative. Let head( ) denote the head of an
application, so head(s · t) = head(s) and head(s) = s for non-applications.

A substitution [~x := ~s], with ~x and ~s non-empty finite vectors of equal length, is the
homomorphic extension of the type-preserving mapping ~x 7→ ~s from variables to terms.
Substitutions are denoted γ, δ, and the result of applying γ to a term s is denoted sγ. The
domain dom(γ) of γ = [~x := ~s] is {~x}. Substituting does not capture free variables.

Let 2σ : σ be a fresh symbol for every type σ. A context C[] is a term with a single
occurrence of some 2σ. The result of the replacement of 2σ in C[] by a term s : σ is denoted
by C[s]. Such replacements may capture free variables. For example, (λx. y)[y := x] = λz. x,
but for C[] = λx.2σ we have C[x] = λx. x.

We say t is a subterm of s, notation s� t, if s = C[t] for some context C. If in addition
C 6= 2σ, then t is a strict subterm of s, notation s� t.

Rules and Rewriting A rewrite rule over a set of function symbols F is a pair of terms
l→ r over F such that l and r have the same type, and all free variables of r also occur in
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l. In [21] some termination-preserving transformations on the general format of AFS-rules
are presented. Using these results, we can additionally assume that a left-hand side l is of
the form f(l1, . . . , ln) · ln+1 · · · lm (with m ≥ n ≥ 0), and does not contain subterms of the
form (λx. s) · t. (Many AFSs are defined in this way already.) Note that we do not assume
η-normal or η-exanded forms, and that we may have rules of functional type.

Given a set of rewrite rules R, the rewrite relation →R on terms is given by:
(rule) C[lγ] →R C[rγ] with l→ r ∈ R, C a context, γ a substitution
(beta) C[(λx. s) · t] →R C[s[x := t]]

We sometimes use the notation s→β t for a rewrite step using (beta). A headmost step is
a reduction s→R t using either clause, where C has the form 2σ · s1 · · · sn with n ≥ 0.

An algebraic functional system (AFS) is a pair (F ,R) consisting of a set of function
symbols F and a set R of rewrite rules over F ; it is often specified by giving only R.

A function symbol f is a defined symbol of an AFS if there is a rule with left-hand side
f(l1, . . . , ln) · ln+1 · · · lm, and a constructor symbol if not. The sets of defined and constructor
symbols are denoted by D and C respectively. A rewrite rule l → r is left-linear if every
variable occurs at most once free in l; an AFS is left-linear if all its rewrite rules are. A rule
l→ r is collapsing if head(r) is a variable. A term s is called terminating if every reduction
sequence starting in s is finite; an AFS is terminating if all its terms are.

We assume that an AFS has only finitely many rules. In Section 10.2 we shortly discuss
how to use dependency pairs to prove termination of AFSs with infinitely many rules.

Example 3.1. The following AFS twice is the running example of this paper. It has the
following four function symbols: o : nat, s : [nat]⇒ nat, I : [nat]⇒ nat, and twice : [nat⇒
nat]⇒nat⇒nat. There are three rewrite rules:

I(o) → o
I(s(n)) → s(twice(λx. I(x)) · n)

twice(F ) → λy. F · (F · y)

Recall that we also have β-reduction steps. The symbol I represents the identity function on
natural numbers. This system is terminating, but this is not trivial to prove; neither recursive
path orderings like HORPO [19] and CPO [4], nor a static dependency pair approach, can
handle the second I-rule, due to the subterm I(x). The static approach gives a constraint
I](s(n)) � I](x), which is impossible to satisfy because � must be closed under substitution,
and s(n) might be substituted for the free variable x. CPO gives a similar problem.

4. The First-Order Dependency Pair Approach

In this section, we recall the dependency pair approach for first-order rewriting. We emphasise
those parts which are relevant for our higher-order approach.

We assume that first-order term rewrite systems (TRSs) are already known; they can
also be thought of as AFSs where all function symbols have a type declaration [o× . . .×o]⇒o
and where terms are formed without clauses (abs) and (app). In this section we recall
those definitions and results from the theory of dependency pairs for TRSs that we will
generalize or adapt to the higher-order setting in this paper. The definitions here are close to
those in [13]; our set-up is in between the one for the dependency pairs approach [2] and the
dependency pairs framework [10]. This section is also meant to give additional background
for those not familiar with dependency pairs.
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4.1. Motivation. Two important properties of the termination method using dependency
pairs are that it is suitable for automation, and that it can be used to prove termination of
TRSs which are not simply terminating. A (well-known) example of such a TRS is:

minus(x, o) → x quot(o, s(y)) → o
minus(s(x), s(y)) → minus(x, y) quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

A TRS is simply terminating if it can be proved terminating using a reduction ordering � (a
well-founded ordering on terms which is both monotonic and closed under substitution) that
satisfies the subterm property, which means that f(s1, . . . , sn) � si for every i ∈ {1, . . . , n}.

4.2. Dependency Pairs. An intuition behind the dependency pair approach is to identify
those parts of the right-hand sides of rewrite rules which may give rise to an infinite reduction.
Suppose we have a minimal non-termating term t, so a non-terminating term where all proper
subterms are terminating. An infinite reduction from t has the form t→∗ lγ → rγ → . . .
with l→ r a rewrite rule. Then, a minimal non-terminating subterm of rγ has as root-symbol
a defined symbol from the pattern of r. Thus, we are interested in subterms of right-hand
sides of rewrite rules with a defined symbol at the root. Such subterms are called candidate
terms of r.

We obtain F ] by adding to each symbol f in the signature F of a first-order TRS a
symbol f ] with the same arity. The dependency pairs of a rewrite rule f(l1, . . . , ln)→ r are
all pairs f ](l1, . . . , ln) ; g](p1, . . . , pm) with r � g(p1, . . . , pm), and g a defined symbol, and
g(p1, . . . , pm) not a subterm of some li. The set of all dependency pairs of a TRS (F ,R) is
denoted by DP(R).

The quot-example has the following dependency pairs:

minus](s(x), s(y)) ; minus](x, y)
quot](s(x), s(y)) ; quot](minus(x, y), s(y))
quot](s(x), s(y)) ; minus](x, y)

The first and third rewrite rule do not give dependency pairs, because their right-hand sides
do not contain defined symbols. The fourth rule gives two different dependency pairs.

A dependency chain is a sequence [(li ; pi, si, ti) | i ∈ N], such that for all i:

(1) li ; pi ∈ DP(R);
(2) si = liγi and ti = piγi for some substitution γi;
(3) ti →∗R si+1.

Since ti has the form f ](~u) and the marked symbol f ] is not used in any rule, the reduction
ti →∗R si+1 does not use headmost steps. The chain is minimal if all ti are terminating
under →R. Termination of a TRS can be characterized using dependency chains:

Theorem 4.1 ([2]). A TRS is terminating if and only if it does not admit a minimal
dependency chain.

A higher-order generalization of this result is provided in Theorems 5.7 and 5.9.

Example 4.2. The TRS nats(n)→ cons(n, nats(s(n))) has an infinite dependency chain

( nats](n) ; nats](s(n)) , nats](o) , nats](s(o)) ),
( nats](n) ; nats](s(n)) , nats](s(o)) , nats](s(s(o))) ),
. . .

corresponding to the infinite reduction nats(o)→ nats(s(o))→ nats(s(s(o)))→ . . .
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4.3. Using a Reduction Pair. A TRS without infinite dependency chain is terminating.
Absence of infinite dependency chains can be demonstrated with a reduction pair. This is a
pair (�,�) of a quasi-order and a well-founded order, such that:

• � and � are compatible: either � · � is included in �, or � · � is;
• � and � are both stable (preserved under substitution);
• � is monotonic (if s � t, then C[s] � C[t]).

Theorem 4.3 ([2]). A TRS is terminating, if there exists a reduction pair (�,�) such that
l � p for all dependency pairs l ; p, and l � r for all rules l→ r.

Example 4.4. The quot example is terminating if there is a reduction pair satisfying:

minus(x, o) � x minus](s(x), s(y)) � minus](x, y)
minus(s(x), s(y)) � minus(x, y) quot](s(x), s(y)) � quot](minus(x, y), s(y))

quot(o, s(y)) � o quot](s(x), s(y)) � minus](x, y)
quot(s(x), s(y)) � s(quot(minus(x, y), s(y)))

These constraints are oriented with a polynomial interpretation with Jminus(x, y)K =
Jminus](x, y)K = JxK, Jquot(x, y)K = Jquot](x, y)K = JxK + JyK, Js(x)K = JxK + 1, JoK = 0:

x ≥ x x+ 1 > x
x+ 1 ≥ x x+ y + 2 > x+ y + 1
y + 1 ≥ 0 x+ y + 2 > x

x+ y + 2 ≥ x+ y + 2

Note that we needed dependency pairs to use an interpretation like this: the resulting
ordering � is not monotonic, since Jminus(s, t)K = Jminus(s, u)K even if t � u.

Rather than orienting all dependency pairs at once, we can use a step by step approach.
Let a set of dependency pairs P be called chain-free if there is no minimal dependency chain
using only pairs in P1. Note that ∅ is chain-free. The following result has Theorem 5.16 as
a higher-order counterpart.

Theorem 4.5. A set P = P1 ] P2 is chain-free if P2 is chain-free, and there is a reduction
pair (�,�) such that l � p for l ; p ∈ P1, l � p for l ; p ∈ P2 and l � r for l→ r ∈ R.

4.4. Argument Filterings. In order to obtain a reduction pair, there are two ways we
could go: either we use approaches like the polynomial interpretations given in Example 4.4,
which directly give us a pair (�,�) (where � may be non-monotonic), or we use an existing
reduction ordering or pair and adapt it with argument filterings. An argument filtering
is a function π which maps terms of the form f(x1, . . . , xn) with f ∈ F ] either to a term
fπ(xi1 , . . . , xim) or to one of the xi. An argument filtering is applied to a term as follows:

π(f(s1, . . . , sn)) = fπ(π(si1), . . . , π(sim))) if π(f(~x)) = fπ(xi1 , . . . , xim)
π(f(s1, . . . , sn)) = π(si) if π(f(~x)) = xi

π(x) = x if x a variable

Phrased differently, π(f(s1, . . . , sn)) = π(f(x1, . . . , xn))[x1 := π(s1), . . . , xn := π(sn)]. Note
that an argument filtering works both on unmarked and on marked symbols.

Using argument filterings, we can eliminate troublesome subterms of the dependency
pair constraints. To this end, we use the following result, which corresponds to Theorem 7.8:

1In the language of [10], this corresponds to finiteness of the DP problem (P, ∅,R, minimal).
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Theorem 4.6. Given a reduction pair (≥, >) and an argument filtering π, define: s � t iff
π(s) ≥ π(t) and s � t iff π(s) > π(t). Then (�,�) is a reduction pair.

Example 4.7. Recall the constraints given in Example 4.4. We use the argument filtering
with π(minus(x, y)) = x, π(quot(x, y)) = quotπ(x) and π(f(~x)) = fπ(~x) for all other
symbols. By Theorem 4.6 it suffices to find a reduction ordering satisfying:

x ≥ x minus
]
π(sπ(x), sπ(y)) > minus

]
π(x, y)

sπ(x) ≥ x quot]π(sπ(x), sπ(y)) > quot]π(x, sπ(y))

quotπ(oπ) ≥ oπ quot]π(sπ(x), sπ(y)) > minus
]
π(x, y)

quotπ(sπ(x)) ≥ sπ(quotπ(x))

These altered constraints can easily be satisfied with a lexicographic path ordering.

4.5. The Subterm Criterion. An alternative to reduction pairs, which often suffices to
eliminate some dependency pairs and is typically easy to check, is the subterm criterion.

A function ν that assigns to every n-ary dependency pair symbol f ] one of its argument
positions is said to be a projection function. We extend ν to a function on terms by defining:

ν(f ](s1, . . . , sn)) = si if ν(f ]) = i

Theorem 4.8. A set of dependency pairs P = P1 ] P2 is chain-free if P2 is chain-free,
and moreover there is a projection function ν such that ν(l) � ν(p) for all dependency pairs
l ; p ∈ P1 and ν(l) = ν(p) for all l ; p ∈ P2.

This holds because for all si and ti in a dependency chain, ν(si) and ν(ti) are strict
subterms, and therefore terminating under →R ∪ �; see also Theorem 8.2.

The subterm criterion is not sufficient to show termination of the quot example, but at
least we can use it to eliminate some dependency pairs; choosing ν(minus]) = ν(quot]) = 2:

ν(minus](s(x), s(y))) = s(y) � y = ν(minus](x, y))
ν(quot](s(x), s(y))) = s(y) = s(y) = ν(quot](minus(x, y), s(y)))
ν(quot](s(x), s(y))) = s(y) � y = ν(minus](x, y))

This shows that the TRS quot is non-terminating if and only if there is no dependency chain
where every step uses the dependency pair quot](s(x), s(y)) ; quot](minus(x, y), s(y)).

4.6. The Dependency Graph. To determine whether a system has a dependency chain,
it makes sense to ask what form such a chain would have. This question is studied with a

minus](s(x), s(y)) ; minus](x, y)

quot](s(x), s(y)) ; minus](x, y)

quot](s(x), s(y)) ; quot](minus(x, y), s(y))

dependency graph, a graph with as nodes
the dependency pairs of R and an edge
from l ; p to u ; v if pγ →∗R uδ for
some substitutions γ, δ. See for example
the dependency graph of the quot-TRS.

If there is a dependency chain
[(ρi, si, ti) | i ∈ N], then there is an edge
in the graph from each ρi to ρi+1. Since
the graph is finite, a dependency chain
corresponds to a cycle in the graph.

By definition, if a set of dependency pairs is chain-free, then the same holds for any
subset. Since a dependency graph might have exponentially many cycles, modern approaches
typically consider only maximal cycles, also called strongly connected components (SCCs).
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Theorem 4.9. R is terminating iff every SCC of its dependency graph is chain-free.

This result is extended to AFSs in Lemma 5.12. The dependency graph is not in general
computable, which is why approximations are often used. An approximation of a dependency
graph G is a graph with the same nodes as G, but which may have additional edges.

The dependency graph of our running example quot has two cycles. In order to
prove termination, it is sufficient to find a reduction pair such that minus](s(x), s(y)) �
minus](x, y) and l � r for all rules, and a(nother) reduction pair with quot](s(x), s(y)) �
quot](minus(x, y), s(y)) and l � r for all rules. The fact that we can deal with groups of
dependency pairs separately can make it significantly simpler to find reduction pairs.

Extending Theorem 4.9, we can iterate over a dependency graph approximation, and
obtain the following algorithm (whose higher-order counterpart is presented in Section 9):

Theorem 4.10 ([14]). A TRS is terminating if and only if this can be demonstrated with
the following algorithm:

(1) calculate dependency pairs, find an approximation G for the dependency graph;
(2) if G has no cycles, the TRS is terminating; otherwise, choose an SCC P
(3) try finding a projection function ν such that ν(l) � ν(p) for at least some l ; p ∈ P and

ν(l) � ν(p) for the rest; if this succeeds, remove the strictly oriented pairs from G and
continue with 2.

(4) find a reduction pair (�,�) such that l � r for all rules l→ r, and for all dependency
pairs l ; p ∈ P either l � p or l � p; at least one pair must be oriented with � (**);

(5) remove the dependency pairs which were oriented with � from G; continue with 2.

(**) To find (�,�) we may for instance use argument filterings.

4.7. Usable Rules. We discuss one more optimisation. In the algorithm of Theorem 4.10,
we consider in every iteration for a strongly connected component P all rewrite rules. Instead,
we can restrict attention to the rules that may be relevant for constructing a dependency
chain using dependency pairs from P. To this end the concept of usable rules is defined.

First we need some definitions. We denote by f wus g that there is a rewrite rule
f(l1, . . . , ln)→ C[g(r1, . . . , rm)]. The reflexive-transitive closure of wus is denoted by w∗us .
Overloading notation, we write s w∗us g if there is a symbol f in the term s such that f w∗us g.
So if not s w∗us g, then s cannot reduce to a term containing the symbol g.

Definition 4.11. The set of usable rules of a term s, notation UR(s), consists of rules

g(~l)→ r ∈ R, where s w∗us g. For a set of dependency pairs P , let UR(P) =
⋃
l;p∈P UR(p).

Using a reasoning originally due to Gramlich [12], it is shown in [13] that if P is not
chain-free, then there is a dependency chain over P where the reduction ti →∗ si+1 uses only
the rules in UR(P) ∪ {p(x, y)→ x, p(x, y)→ y} for some fresh symbol p (these two rules
are usually considered harmless). Thus, in each iteration of the algorithm of Theorem 4.10
we only have to prove l � r for the usable rules of P, rather than for all rules.

5. The Basic Higher-Order Dependency Pair Approach

In this section we define a basic dependency pair approach for AFSs. We show that an AFS
is terminating if it does not have a minimal dependency chain, and that for left-linear AFSs,
the absence of (minimal) dependency chains characterises termination. As in the first-order
case, we organise the dependency pairs in a graph, and explain how to use reduction pairs.
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When extending the first-order dependency pair approach to AFSs, new issues arise:

• collapsing rules: non-termination might also be caused by a higher-order variable being
instantiated. For example, the right-hand side of the non-terminating rule f(g(F ), x)→ F ·x
doesn’t even have defined symbols;
• dangling variables : given a rule f(o)→ g(λx. f(x)), the bound variable x should probably

not become free in the corresponding dependency pair;
• rules of functional type may lead to non-termination only because of their interaction with

the (applicative) context they appear in;
• typing issues: to be able to use the usual term orderings, both sides of a dependency

pair (or the constraints generated from it) should have, usually, the same type modulo
renamings of base types.

Typing issues will be addressed in Section 5.5; for the other problems we have to take
precautions already in the definition of dependency pairs.

5.1. Dependency Pairs. In order to define dependency pairs, we first pre-process the
rewrite rules and define candidate terms. The complete definition of dependency pairs may
at first seem somewhat baroque; this is partly because we have to work around the issues
of functional rules and dangling variables, and partly because of several optimisations we
include to obtain an easier result system.

Pre-processing Pre-processing the rewrite rules is done by completion:

Definition 5.1 (Pre-processing Rules). An AFS is completed by adding for each rule
of the form l → λx1 . . . xn. r, with r not an abstraction, the following n rewrite rules:
l · x1 → λx2 . . . xn. r, . . . , l · x1 · · ·xn → r.

Note that completing an AFS has no effect on termination, since the added rules can be
simulated by at most n+ 1 steps using only the original rules.

Example 5.2. The system twice from Example 3.1 is completed by adding the rewrite rule
twice(F ) · n→ F · (F · n).

In the remainder of the paper, we assume that all AFSs are completed.

To understand why completion is necessary, consider the AFS with a single rule f(o) →
λx. f(x) · x. The term f(o) in this AFS is terminating, but there is an infinite reduction
f(o) · o→ (λx. f(x) · x) · o→β f(o) · o→ . . .. Rules like this might complicate the analysis
of dependency chains, because the important step does not happen at the top. The pre-
processing makes sure that it could also be done with a topmost step: f(o) · o self-reduces
with a single step using the new rule f(o) · x→ f(x) · x which was added by completion.

It is worth noting that we did not add new rules for all functional rules, only for those
where the right-hand side is an abstraction. A rule f(o) → f(A) of functional type is left
alone. This is an optimisation: it would be natural to add a rule f(o) · x→ f(A) · x, but this
might give a dependency pair f(o) · x; A] which won’t be needed. Instead of completing
this rule, we will later add a special dependency pair for it.

Candidate terms In the first-order definition of dependency pairs, we identify subterms
that may give rise to an infinite reduction. Taking subterms in a system with binders is
well-known to be problematic because bound variables may become free. One solution is to



DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 11

substitute fresh constants in the place of a bound variable which would otherwise become
free. In this way, F · c is a “subterm” of λx. F · (F · x). This is the approach we take here.

We assume for every type σ a fresh symbol cσ : σ. Sometimes the sub-script indicating
the type is omitted. The set of all those symbols is denoted by C. The symbols cσ are used
to replace bound variables which become free by taking a subterm.

Definition 5.3 (Candidate Terms). Let r be a term in an AFS. A subterm t of r is a
candidate term of r if either t = f(t1, . . . , tm) · tm+1 · · · tn with f a defined symbol and
n ≥ m ≥ 0, or t = x · t1 · · · tn with x free in r and n > 0.

If t is a candidate term of r, and {x1 : σ1, . . . , xn : σn} is the set of variables which
occur bound in r but free in t, then t[x1 := cσ1 , . . . , xn := cσn ] is a closed candidate term of
r. We denote the set of closed candidate terms of r by Cand(r).

In the AFS twice we have Cand(F ·(F ·m)) = {F ·(F ·m), F ·m} and Cand(s(twice(λx. I(x))·
n)) = {twice(λx. I(x)) ·n, twice(λx. I(x)), I(cnat)}. If f is a defined symbol, then the candidate
terms of f(a) · b · c · d are f(a), f(a) · b, f(a) · b · c and f(a) · b · c · d. Note that for example
x · y is not a candidate term of g(λx. x · y) because x occurs only bound.

Dependency Pairs As in the first-order case, the definition of dependency pair uses
marked function symbols. Let F ] = F ∪ {f ] : σ | f : σ ∈ D}, so F extended with for every

defined symbol f a marked version f ] with the same type declaration. We denote by F ]c
the union of F ] and C. The marked counterpart of a term s, notation s], is f ](s1, . . . , sn) if
s = f(s1, . . . , sn) with f in D, and just s otherwise. For example, (twice(F ))] = twice](F )
and (twice(F ) ·m)] = twice(F ) ·m. Applications are not marked.

Definition 5.4 (Dependency Pair). The set of dependency pairs of a rewrite rule l → r,
notation DP(l→ r), consists of:

• all pairs l] ; p] with p ∈ Cand(r) such that p is no strict subterm of l;
• if l has a functional type σ1⇒ . . .⇒σn⇒ ι (n ≥ 1) and head(r) is either a variable or a

term f(~s) with f ∈ D: all pairs l · y1 · · · yk ; r · y1 · · · yk with k ∈ {1, . . . , n} and all yi
are fresh variables.

We use DP(R) (or just DP if R is clear from context) for the set of all dependency pairs of
rewrite rules of an AFS R.

Example 5.5. The set of dependency pairs of the AFS twice consists of:

I](s(n)) ; twice(λx. I(x)) · n twice](F ) ; F · (F · cnat)
I](s(n)) ; twice](λx. I(x)) twice](F ) ; F · cnat
I](s(n)) ; I](cnat) twice(F ) ·m ; F · (F ·m)

twice(F ) ·m ; F ·m
The last two dependency pairs originate from the rule added by completion.

The second form of dependency pair deals with functional rules whose right-hand side
is not an abstraction. To illustrate why they are necessary, consider the system with
function symbols A : [o]⇒ o⇒ o and B : [o⇒ o]⇒ o, and one rewrite rule: A(B(F )) → F .
This system has no dependency pairs of the first kind, but does admit a two-step loop:
s := A(B(λx.A(x) · x)) ·B(λx.A(x) · x)→ (λx.A(x) · x) ·B(λx.A(x) · x)→β s. The rule does
have a dependency pair of the second form, A(B(F )) · x; F · x.



12 C. KOP AND F. VAN RAAMSDONK

Comparing our approach to static dependency pairs as defined in [26], the two main
differences are that we avoid bound variables becoming free, and that we include collapsing
dependency pairs, where the right-hand side is headed by a variable.

5.2. Dependency Chains. We can now investigate termination using dependency chains:

Definition 5.6. A dependency chain is an infinite sequence [(ρi, si, ti) | i ∈ N] such that
for all i:

(1) ρi ∈ DP ∪ {beta};
(2) if ρi = li ; pi ∈ DP then there exists a substitution γ such that si = liγ and ti = piγ;
(3) if ρi = beta then si = (λx. u) · v · w1 · · ·wk and either

(a) k > 0 and ti = u[x := v] · w1 · · ·wk, or
(b) k = 0 and there exists a term w such that u�w and x ∈ FV (w) and ti = w][x := v],

but w 6= x;
(4) ti →∗in si+1.

A step →in is obtained by rewriting some ui inside a term of the form f(u1, . . . , un) ·
un+1 · · ·um. If ti = si+1, then also ti →∗in si+1, regardless of whether ti has this form. A
dependency chain is minimal if the strict subterms of each ti are terminating under →R.

This definition corresponds to the first-order definition, except that a case for β-reduction
is used, and that we explicitly require that ti →∗in si+1: this is necessary because ti may be
an application rather than a functional term, and consequently may not be marked.

Theorem 5.7. If R is non-terminating, there is a minimal dependency chain over DP(R).

Proof. Given any non-terminating term, let q−1 be a minimal-sized subterm that is still
non-terminating (q−1 is MNT, or Minimal Non-Terminating). We make the observations:

(i) If an MNT term is reduced at a non-top position, the result is either also MNT, or
terminating. This holds because, if q = C[s] →R C[t] because s →R t, and t is
non-terminating, then so is s, contradicting minimality of q unless C = 2σ.

(ii) If u→∗in v, then u] →∗in v]. This holds by the nature of an internal step.

For any i ∈ N ∪ {−1}, let qi be a MNT term, and ti = q]i . Then qi is not an abstraction,
as abstractions can only be reduced by reducing their immediate subterm, contradicting
minimality. For the same reason qi cannot have the form x · u1 · · ·un with x a variable, or
f(u1, . . . , un) · un+1 · · ·um with f a constructor symbol. What remains are the forms:

(A) qi = (λx. u) · v · w1 · · ·wn;
(B) qi = f(v1, . . . , vn) · vn+1 · · · vm with f ∈ D.

We consider an infinite reduction starting in qi. By minimality of qi eventually a headmost
step must be taken. In case (A) this must be a β-step because the left-hand sides of rules

have the form f(~l1) · ~l2; therefore, the reduction has the form qi →∗R (λx. u′) ·v′ ·w′1 · · ·w′n →β

u′[x := v′] · w′1 · · ·w′n →R . . . Since also u[x := v] · w1 · · ·wn →∗R u′[x := v′] · w′1 · · ·w′n the
immediate beta-reduct of qi is non-terminating as well. There are two sub-cases:

• If n > 0, this reduct is MNT by (i); in this case choose qi+1 := u[x := v] · w1 · · ·wn and

let ρi+1, si+1, ti+1 := beta, ui, ui+1. Note that s]i+1 = si+1 and t]i+1 = ti+1, and that case
3a of the definition of a dependency chain is satisfied.



DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 13

• If n = 0, let w be a minimal-sized subterm of u where w[x := v] is still non-terminating.
By minimality of qi both w and v are terminating, so FV (w) contains x, but not w = x.
Since w is not a variable, (w[x := v])] = w][x := v]. By minimality of w, also w[x := v] is
MNT (its direct subterms have the form w′[x := v] for a subterm w′ of w). Case 3b is

satisfied with ui+1 := w[x := v] and ρi+1, si+1, ti+1 := beta, ui, u
]
i+1.

Note that in both sub-cases, case 4 is also satisfied, since ti = si+1.
In case (B), qi = f(v1, . . . , vn) · vn+1 · · · vm, we can always find a rule l → r and term

q′i = lγ · v′j+1 · · · v′m such that qi →∗in q′i, and rγ · v′j+1 · · · v′m is still non-terminating. Choose

si+1 := q′]i ; requirement 4 from Definition 5.6 is satisfied by (ii). Since the rules were
completed, we can assume that either m = j or r is not an abstraction: if r = λx. r′ and
m > j then rγ · v′j+1 · · · v′m is a β-redex, and (like above) may be reduced immediately

without losing termination; the same result would have been obtained with the rule l ·x→ r′.
If m > j, then by (i) rγ · v′j+1 · · · v′m is MNT. Consequently, head(rγ) cannot be a

variable or a functional term g(~w) with g a constructor symbol: either rγ is headed by
an abstraction, or by a functional term with root symbol in D. Since r itself is not an
abstraction, its head must be a variable or a functional term with defined root symbol. Either
way, ρi+1 := l ·xj+1 · · ·xm ; r ·xj+1 · · ·xm is a dependency pair. Let qi+1 := rγ ·v′j+1 · · · v′m,

and ti+1 := qi+1 (which equals q]i+1 as this is an application). Requirement 2 is satisfied.
Finally, if m = j, then q′i = lγ and rγ is non-terminating. Let p be the smallest subterm

of r such that p[~x := ~c]γ is non-terminating, where {~x} = FV (p) \ FV (r). Then p is not
a variable, for each γ(x) is a subterm of lγ, and therefore terminating (and the cσ do not
reduce). Thus, the immediate subterms of p[~x := ~c]γ all have the form p′[~x := ~c]γ with p�p′,
and are therefore terminating by minimality of p: p[~x := ~c]γ is MNT. As observed before,
this can only be the case if this term is headed by an abstraction or by a functional term with
a defined root symbol. And that can only be the case if p is either headed by a functional
term with defined root symbol, or is an application headed by a variable which is free in r (as
r has no subterms (λx. u) · v). Thus, p[~x := ~c] is a closed candidate term of r. As p[~x := ~c]γ
is non-terminating, it is not a strict subterm of the MNT term lγ, so ρi+1 := l] ; p[~x := ~c]]

is a dependency pair. Choose qi+1 := p[~x := ~c]γ and ti+1 := q]i+1 = p[~x := ~c]]γ (since
p[~x := ~c] is not a variable). We see that in this case, too, requirement 2 is satisfied.

Example 5.8. As we will see, twice does not admit a dependency chain. As an example of
a system which does admit one, consider the AFS with the following three rules:

f(o)→ g(λx. f(x), a) g(F, b)→ F · o a→ b

This system has four dependency pairs:

f](o) ; g](λx. f(x), a) f](o) ; f](cnat) f](o) ; a] g](F, b) ; F · o
The rules admit an infinite reduction: f(o)→ g(λx. f(x), a)→ g(λx. f(x), b)→ (λx. f(x)) ·
o →β f(o) → . . .; following the steps in the proof of Theorem 5.7 (starting with f(o)) we
obtain the following dependency chain:

( f](o) ; g](λx. f(x), a) , f](o) , g](λx. f(x), a) ),
( g](F, b) ; F · o , g](λx. f(x), b) , (λx. f(x), a) · o ),
( beta , (λx. f(x), a) · o , f](o) ),
( f](o) ; g](λx. f(x), a) , f](o) , g](λx. f(x), a) ),
. . .
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Note that between the first and second step, a →in step is done to reduce a to b. Also note
that in the third triple we use case 3b from Definition 5.6, with w = f(x).

The converse of Theorem 5.7 does not hold. Consider for instance the AFS with symbols
A : [nat×nat]⇒nat and B : [nat⇒nat⇒nat]⇒nat, and a single rule: A(x, x)→ B(λyz. A(y, z)).
This (terminating!) AFS has a dependency pair A](x, x) ; A](cnat, cnat), which gives a
dependency chain A](cnat, cnat) ; A](cnat, cnat) ; . . .

We could try solving this problem by slightly altering the definition of closed candidate
terms: instead of substituting a variable x : σ by a symbol cσ, we could have replaced it
with a symbol cx, substituting all bound variables with different symbols. This choice was
made in for example the first definition of dependency pairs for HRSs [35]. But even with
this change, Theorem 5.7 does not give an equivalence. Consider for instance the AFS with
the following rules:

f(x, y, s(z)) → g(h(x, y), λu. f(u, x, z))
h(x, x) → f(x, s(x), s(s(x)))

This system has three dependency pairs:

f](x, y, s(z)) ; h](x, y)
f](x, y, s(z)) ; f](cu, x, z)

h](x, x) ; f](x, s(x), s(s(x)))

We get the following dependency chain: f](cu, s(cu), s(s(cu))) ; f](cu, cu, s(cu)) ; h](cu, cu)
; f](cu, s(cu), s(s(cu))) ; . . . However, the AFS is terminating, intuitively because the
bound variable destroys matching possibilities with the non-left-linear rule.

For this reason, we have chosen to use the more elegant method with symbols cσ instead
of the slightly more powerful, but also a fair bit more cumbersome, cx. The latter style is
less pleasant because of α-conversion: for example, Cand(f(λx. g(x))) should contain g(cy)
for all variables y. Thus, to preserve correctness of definitions and proofs, we would have to
jump through a few hoops. However, all results in this paper also go through with such a
definition; this was for instance explored in the shorter version of this paper [24].

The crucial point of both examples above is the combination of bound variables and non-
left-linear rules. However, for left-linear AFSs, no such counterexample exists. Intuitively,
this holds because replacing variables by a symbol cσ that does not occur in any left-hand
side does not affect applicability of any rule. Thus, a dependency chain effectively produces
an infinite reduction |si| →R ·� |ti| →∗R |si+1| (where |u| replaces any f ] in a term u by its
unmarked counterpart), and this implies the existence of an infinite →R reduction.

Theorem 5.9. A left-linear AFS R is terminating if and only if it does not admit a
(minimal) dependency chain.

Proof. Theorem 5.7 gives one direction. For the other direction, assume a left-linear AFS
R and suppose we have an infinite dependency chain (minimal or not). We construct an
infinite →R ·� sequence, following roughly the intuition above. We note:

(1) If l is a linear term not containing any symbols cσ, and γ is a substitution whose domain
contains only variables in l, and if lγ = s[~x := ~c] for some term s and set of variables
{~x}, then there is a substitution δ such that lδ = s and γ = δ[~x := ~c].

(2) If s[~x := ~c]→R t, then there exists some t′ such that s→R t′ and t′[~x := ~c] = t.
(3) If s[~x := ~c] = C[t], then there are C ′ and t′ such that s = C ′[t′] and t′[~x := ~c] = t.
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(1) states that, if a linear term l (typically the left-hand side of a rule) matches a term s
with some c-symbols in it, it also matches s with those symbols replaced by variables.

This holds by induction on l, assuming linearity over dom(γ): the cases where l is a
variable are straightforward (if l ∈ dom(γ) take δ = [l := s], otherwise let δ := ∅), if l is an
abstraction λx. l′ the induction hypothesis suffices (x cannot occur in domain or range of δ,
for then it would also hold for γ), and if l is an application or functional term we use the
linearity. For example the functional case, if l = f(l1, . . . , ln), then let γi be the restriction of
γ to FV (li) for 1 ≤ i ≤ n; by the induction hypothesis we find suitable δi, and by linearity
of l each of those li has different variables, so δ := δ1 ∪ . . . ∪ δn is well-defined.

(2) states that, if a term with some variables replaced by c-symbols reduces, then the
original term reduces in a similar way. This holds by induction on the size of s. When the
reduction is done in a subterm, the statement follows easily with the induction hypothesis
(immediate subterms of s[~x := ~c] have the form s′[~x := ~c] with s � s′, so the induction
hypothesis is applicable). In the base case, a β-step is easy, and if, for some rule l→ r and
substitution γ, the term s[~x := ~c] = lγ, then by left-linearity of R we may use (1): there is a
substitution δ such that s = lδ →R rδ =: t′; certainly rδ[~x := ~c] = rγ = t as required.

(3) follows by induction on the size of C: if C is the empty context take t′ := s,
otherwise use the induction hypothesis; for instance if C[] = f(u1, . . . , Di[], . . . , un), then
s = f(s1, . . . , si, . . . , sn) (with each sj [~x := ~c] = uj), and by the induction hypothesis on sj
there are D′i, t

′ such that C ′ := f(s1, . . . , D
′
i, . . . , sn) and t′ satisfy the requirement.

Now suppose there is a dependency chain [(ρi, si, ti) | i ∈ N], and define s′0 := |s0| (that is,
s0 with all marks removed). For all i ∈ N, suppose s′i[ ~x0 := ~c, . . . , ~xi−1 := ~c] = |si|. Whether
ρi is beta or a dependency pair, |si| →R Ci[ui] for some term ui and context Ci, such that
|ti| = ui[~xi := ~c] for some variables ~xi. By (2), (3) also s′i →R C ′i[u′i] and u′i[ ~x0 := ~c, . . . , ~xi :=
~c] = |ti|. By (2) we can find s′i+1 such that u′i →∗R s′i+1 and s′i+1[ ~x0 := ~c, . . . , ~xi := ~c] = |si+1|.
Thus, s′0 is non-terminating: s′0 →+

R C
′
0[s
′
1]→+

R C
′
0[C
′
1[s
′
2]]→+

R . . .

5.3. The Dependency Graph. As in the first-order case, we use a dependency graph to
organise the dependency pairs. The notions are very similar to the first-order definitions.

The dependency graph of an AFS R is a graph with the dependency pairs of R as nodes,
and an edge from node l ; p to node l′ ; p′ if either head(p) is a variable, or there are
substitutions γ and δ such that pγ →∗R,in l′δ.
Example 5.10. The dependency graph of the AFS twice:

I](s(n)) ; twice(λx. I(x)) · n I](s(n)) ; twice](λx. I(x))

I](s(n)) ; I](cnat)

twice(F ) ·m; F · (F ·m)

twice(F ) ·m; F ·m

twice](F ) ; F · (F · cnat)

twice](F ) ; F · cnat

A cycle is a set C of dependency pairs such that between every two pairs ρ, π ∈ C there
is a non-empty path in the graph using only nodes in C. A cycle that is not contained in
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any other cycle is called a strongly connected component (SCC). To prove termination we
must show that cycles in a dependency graph are “chain-free” (see Theorem 5.16). The
requirement to add an edge from any node of the form l ; x · r1 · · · rn (with x a variable) to
all other nodes is necessary by clause 3b in Definition 5.6: a dependency chain could have a
dependency pair of the form l ; x ·~r followed by beta, and then any other dependency pair.
Hence a rule with leading free variables in the right-hand side gives rise to many cycles.

A set of dependency pairs P is called chain-free if there is no minimal dependency chain
using only dependency pairs in P ∪ {beta}.
Lemma 5.11. ∅ is chain-free.

Proof. Given a dependency chain with all ρi = beta, each si →β Ci[si+1] for some context
Ci, contradicting termination of the simply-typed λ-calculus.

Because the dependency graph cannot be computed in general, it is common to use
approximations of the dependency graph, which have the same nodes but possibly more edges.
A brute method to find an approximation is to have an edge between l ; p and l′ ; p′ if
either the head of p is a variable, or if p and l′ both have the form f(s1, . . . , sn) · sn+1 · · · sm
for the same function symbol f . It is interesting to study more sophisticated methods to
find approximations, but this is left for future work.

As stated in Section 3, we assume a finite set of rules, which leads to a finite set of
dependency pairs. In Section 10.2 we will say a few words on extending the technique to
systems with infinitely many rules (without having to deal with an infinite graph).

Lemma 5.12. Let G be an approximation of the dependency graph of an AFS R. Suppose
that every SCC in G is chain-free. Then R is terminating.

Proof. Since DP is finite, any (minimal) dependency chain [(ρi, si, ti) | i ∈ N] has at least
one dependency pair ρi which occurs infinitely often. Note that if n < m then there is a
path in G from ρn to ρm (if ρn, ρm 6= beta). Therefore, there is a path in G from ρi to itself,
and hence ρi is on a cycle. Let C be the SCC containing ρi. Then all ρj with j > i and
ρj 6= beta are in C: from each such ρj there is a path to ρi and back. But then, {ρj | j ≥ i}
is a minimal dependency chain in C, so C is not chain-free, contradicting the assumption!
Thus, there is no dependency chain, and therefore by Theorem 5.7, R is terminating.

Example 5.13. The dependency graph (approximation) of twice from Example 5.10 has
only one SCC: I](s(n)) ; twice(λx. I(x)) · n twice](F ) ; F · (F · cnat)

I](s(n)) ; twice](λx. I(x)) twice](F ) ; F · cnat
twice(F ) ·m ; F · (F ·m) twice(F ) ·m ; F ·m


Therefore twice is terminating if this set, which we shall call Ctwice, is chain-free.

5.4. Reduction Triples. The challenge, then, is to prove that given sets of dependency
pairs are chain-free. We use the following definition:

Definition 5.14. A reduction triple consists of a quasi-ordering �, a sub-relation �1 of �,

and a well-founded ordering �, all defined on terms built over F ]c , such that:

(1) � and � are compatible: either � · � ⊆ � or � · � ⊆ �;
(2) �, �1 and � are all stable (closed under substitution);
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(3) �1 is monotonic: (if s �1 t and s, t share a type, then C[s] �1 C[t] for all C[]);
(4) �1 contains beta (always (λx. s) · t �1 s[x := t]).

A reduction pair is a pair (�,�) such that (�,�,�) is a reduction triple; this corresponds
to the first-order notion of a reduction pair. The reduction triple is a generalisation of this
notion, where � itself is not required to be monotonic; we will need a non-monotonic �
in Section 5.5 to compare terms with different types. This notion of a reduction triple is
similar to the one which appears in [15].

To deal with subterm reduction in dependency chains, an additional definition is needed.

Definition 5.15 (Limited Subterm Property). � has the limited subterm property if the
following requirement is satisfied: for all variables x and terms s, t, u such that s� u� x,
there is a substitution γ such that (λx. s) · t � u][x := t]γ.

Intuitively, the substitution γ can be used to replace free variables in u which are bound
in s by the corresponding constants cσ. However, we will also use a more liberal replacement
of those variables, hence the general γ.

The following theorem shows how reduction triples are used with dependency pairs.

Theorem 5.16. A set P = P1 ] P2 of dependency pairs is chain-free if P2 is chain-free,
and there is a reduction triple (�,�1,�) such that:

• l � p for all l ; p ∈ P1,
• l � p for all l ; p ∈ P2,
• l �1 r for all l→ r ∈ R,
• either P is non-collapsing or � has the limited subterm property.

Here, a set P of dependency pairs is called non-collapsing if all elements of P are non-
collapsing. Symmetrically, P is collapsing if it contains at least one collapsing pair l] → x · ~p.

Proof. Towards a contradiction, suppose there is such a reduction triple (�,�1,�), but P
admits a minimal dependency chain; since P2 is chain-free, infinitely many ρi are in P1.

If P is non-collapsing, then the chain may start with some beta steps, but once some
ρi ∈ DP, all ρj with j > i must also be in DP, because the head of each ti is a functional
term, rather than an abstraction. Thus, for each j either sj � tj � sj+1, or (if ρj ∈ P1) even
sj � tj � sj+1, contradicting well-foundedness of � (the latter happens infinitely often).

Alternatively, suppose P is collapsing, and � has the limited subterm property. Let
[(ρi, si, ti) | i ≥ j] be a dependency chain over P; if ρj ∈ P1 then sj � tj � sj+1, if ρj ∈ P2
then sj � tj � sj+1 and if ρj = beta then (by the limited subterm property) there is a
substitution δ such that sj � tjδ � sj+1δ. Since [(ρi, siδ, tiδ) | i ≥ j+1] is also a dependency
chain we can continue this reasoning recursively. We obtain a decreasing � sequence with
infinitely many � steps, which contradicts well-foundedness of �.

Theorem 5.16 can be used to prove that every SCC in the dependency graph approxim-
ation of an AFS is chain-free; termination follows with Lemma 5.12. In Section 9 we will
give an algorithm similar to the algorithm in Theorem 4.10.

Example 5.17. Termination of twice is proved if there is a reduction triple (�,�1,�) with
the limited subterm property, such that l �1 r for all rules, and l � p for every dependency
pair in Ctwice from Example 5.13 (choosing P2 = ∅, which is chain-free).

For left-linear AFSs, where the existence of a minimal dependency chain characterises
termination by Theorem 5.7, a terminating AFS always has a suitable reduction pair.



18 C. KOP AND F. VAN RAAMSDONK

Theorem 5.18. A left-linear AFS is terminating if and only if there is a reduction triple
(�,�1,�) such that l � p for every l ; p ∈ DP, and l �1 r for every l→ r ∈ R, and � has
the limited subterm property.

Proof. By Lemma 5.12 and Theorem 5.16, termination of R follows if such a reduction triple
exists. For the other direction, let s � t if |s| →∗R |t|, and let s � t if |s| (→R ·� )+ |t|,
where � is the (reflexive) subterm relation where bound variables which become free are
replaced with symbols cσ, and |u| removes marks from u. It is evident that (�,�,�) is
a reduction triple, that l � p for all dependency pairs l ; p and l � r for all rules l → r.
Moreover, � has the limited subterm property with γ the substitution [~y := ~c].

5.5. Type Changing. The situation so far is not completely satisfactory, because both �
and � may have to compare terms of different types. Consider for example the dependency
pair twice](F ) ; F · cnat, where the left-hand side has a functional type and the right-hand
side does not. Moreover, the comparison in the definition of limited subterm property may
concern terms of different types. This is problematic because term orderings do not usually
relate terms of arbitrary different types; neither any version of the higher-order path ordering
[19, 4] nor monotonic algebras [32] are equipped to do this.

A solution is to manipulate the ordering requirements. Let (�,�) be a reduction pair
(so a pair such that (�,�,�) is a reduction triple). Define ≥, ≥1 and > as follows:

• s > t if there are fresh variables x1, . . . , xn and terms u1, . . . , um such that s · x1 · · ·xn �
t · u1 · · ·um and both sides have some base type;
• s ≥ t if there are fresh variables x1, . . . , xn and terms u1, . . . , um such that s ·x1 · · ·xn R t ·
u1 · · ·um and both sides have some base type; here R is the union of �, � · � and � · �;
• s ≥1 t if s � t and s and t have the same type.

Lemma 5.19. (≥,≥1, >) as generated from a reduction pair (�,�) is a reduction triple.

Proof. We make the following observations:

(1) if s ≥1 t then by monotonicity s~x � t~x;
(2) if s > t then for any ~u there are ~v such that s · ~u � t · ~v (by stability of �);
(3) if s ≥ t then for any ~u there are ~v such that either s · ~u � t · ~v or s · ~u � · � t · ~v or

s · ~u � · � t · ~v (by stability of both � and �).

Each of the required properties on ≥, ≥1, and > now follows easily from the properties on
� and �. For example transitivity of >: if s > t > u, then there are terms ~v such that
s ·~x � t ·~v, and by (2) there are terms ~w such that t ·~v � u · ~w; by transitivity of �, therefore,
s ·~x � u · ~w, so s > u. Well-foundedness of > follows from (2) and well-foundedness of �. For
stability, note that if s > t and γ is a substitution, then for fresh variables ~x (which do not
occur in domain or range of γ) also s · ~x � t · ~v, so (sγ) · ~x = (s · ~x)γ � (t · ~v)γ = (tγ) · (~vγ);
stability of ≥ is similar. ≥1 is included in ≥ by (1), and contains beta because � does. For
compatibility, and for transitivity of ≥, we use a case distinction on which form of ≥ is used,
and transitivity of both � and �, as well as compatibility between the two.
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The relations ≥ and > are not necessarily computable, but they do not need to be: we
will only use specific instances. To prove some set of dependency pairs P chain-free, we
can choose for every pair l ; p ∈ P a corresponding base-type pair l ; p, and prove either
l � p or l � p. For example, we could assign l := l · x1 · · ·xn and p := p · cσ1 · · · cσm . This is
the choice we will use in examples in this paper. Other choices for p are also possible.

We assume a systematic way of choosing l ; p given l ; p.

To make sure that ≥ has the limited subterm property, we consider a base-type version
of subterm reduction, which has a strong relation with β-reduction.

Definition 5.20. �! is the relation on base-type terms (and �! its reflexive closure) generated
by the following clauses:

• (λx. s) · t0 · · · tn �! u if s[x := t0] · t1 · · · tn �! u;
• f(s1, . . . , sm) · t1 · · · tn �! u if si ·~c�! u for some i;
• s · t1 · · · tn �! u if ti ·~c�! u for some i (s may have any form).

Here, s ·~c is a term s applied to constants cσ of the right types. We say (�,�) respects �! if
�! is contained in (� ∪ �)∗. Note that, since � contains beta, the first clause is not likely
to give problems. �! is interesting because if s� t and s has base type, then there are terms
u1, . . . , un and a substitution γ on domain FV (t) \ FV (s) such that s�! tγ · u1 · · ·un (this
is easy to see with induction on the size of s). Consequently, ≥ has the limited subterm
property if (�,�) respects �! and f(~x) � f ](~x) for all f ∈ D (the marking property).

Using Theorem 5.16 and the reduction triple generated from a reduction pair, we obtain:

Theorem 5.21. A set of dependency pairs P = P1 ]P2 is chain-free if P2 is chain-free and
there is a reduction pair (�,�) such that:

(1) l � p for all l ; p ∈ P1;
(2) l � p for all l ; p ∈ P2;
(3) l � r for all l→ r ∈ R;
(4) if P is collapsing, then (�,�) respects �!, and f(~x) � f ](~x) for all f ∈ D.

Note that the theorem does not use the generated (and possibly not computable) triple
directly; we prove l � p or l � p for a specific choice of l and p. The generated triple is
merely used in the reasoning that justifies Theorem 5.21.

Example 5.22. To prove that Ctwice is chain-free it suffices to find a reduction pair (�,�)
such that l � r for all rules, (�,�) respects �! and satisfies the marking property, and:

I](s(n)) � twice(λx. I(x)) · n twice](F ) · x � F · (F · cnat)
I](s(n)) � twice](λx. I(x)) · cnat twice](F ) · x � F · cnat

twice(F ) ·m � F · (F ·m) twice(F ) ·m � F ·m

This completes the basis of dynamic dependency pairs for AFSs.
At this point, we might ask: what have we gained? Is it easier to use Theorem 5.21

than to use a conventional approach like CPO [4]? Can we even find a reduction pair which
respects �!? And if so, couldn’t we use the same reduction pair without dependency pairs?

The answer to these questions will be explored in the coming sections. First (Section 6),
we will consider an extension limited to fully extended, left-linear AFSs. With this restriction,
we can weaken the limited subterm property, and obtain a variation of usable rules. Next, in
Section 7, we will study two ways to find a suitable reduction pair: using interpretations in
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a weakly monotonic algebra, and argument functions, a generalisation of argument filterings.
Finally, in Section 8 we will see additional ways to prove chain-freeness of a set P if P is
non-collapsing. All results are combined in the algorithm of Section 9.

6. Dependency Pairs for Local AFSs

In this section we consider local AFSs, and define formative rules for local AFSs. We add
tags to symbols below a λ, and prove that we only need the limited subterm property for
tagged symbols. We use this to weaken the requirements on a reduction pair.

The limited subterm property is weaker than the requirements used in Theorem 5.21:
subterm reduction only has to be done following β-reduction. That is, we only need it for
terms which occur below a λ-abstraction, when a bound variable is substituted.

To exploit this property, we will pay special attention to local AFSs. In a local AFS we
can (mostly) avoid reducing terms below an abstraction. Knowing this, the limited subterm
property only requires that f(s1, . . . , sn) · sn+1 · · · sm � si ·~c for symbols f which cannot, at
that time, be reduced anyway. This makes it possible to use for instance argument filterings,
as we will see in this section and Section 7.2. As a bonus, locality also allows us to define
formative rules, a variation of usable rules. These are discussed in Section 6.4.

6.1. Intuition. The idea to tag symbols and rules in order to weaken the limited subterm
property originates in the notion of weak reductions, defined in [6] (following a definition
from Howard in 1968). A weak reduction in the λ-calculus does not use steps between a
λ-abstraction and its binder. This notion generalises to AFSs in the obvious way.

Consider AFSs where the left-hand sides of all rules are linear (so no free variables occur
more than once), and free of abstractions (so the λ symbol does not occur in them). This
limitation is not as strong as it might seem at first; the β-reduction “rule” is not included in
this. As it turns out, we can prove the following statement:

Claim: in a left-linear, and left-abstraction-free AFS, if there is a minimal dependency
chain, then there is one where the reduction ti →∗R si+1 always uses only weak steps.

To see why this matters, let us consider a colouring of the function symbols. In a given
term s, make all symbol occurrences either red or green: red if the symbol occurs between
an abstraction and its binder, green otherwise. So if s = C[f(t1, . . . , tn)], make the f red if
some ti contains freely a variable which is bound in s, green if not. We say s is well-coloured
if it uses this colouring. Colour the rules in the same way; by the restrictions, the left-hand
sides are entirely green, while the right-hand sides may contain red symbols.

Now consider a weak reduction step on a well-coloured term. If the term is reduced by
a coloured rule, then the result is also well-coloured. If the term is reduced with a β-step,
then the result may have some red symbols outside an abstraction; however, it can become
well-coloured again by painting these red symbols green. We never have to paint green
symbols red. Inventing notation, we can summarise this as follows:

Claim: if s→R,weak t, then colour(s)→Rcolour
· →∗make green colour(t).

Combining the two claims, we can colour dependency chains. In the beta-with-subterm
step (3b), which led to the need for the limited subterm property, we take a term which
was originally below an abstraction, reduce it to a subterm which still contains the bound
variable, and substitute it. Importantly, the subterm clause u� v can be derived with steps
λx. s� s, s1 · s2 � si and f(s1, . . . , sn) � si, where the f is always a red symbol.
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Considering the red and green symbols as different symbols altogether (related only by
the make green rules) we thus see that it will not give problems to use an argument filtering,
provided we use it only for the green symbols!

This summarises the ideas which we shall use to simplify the limited subterm property. Since
colours do not work well in papers, we will use tags: a red symbol f corresponds with a
symbol f−, and a green symbol remains unchanged. Moreover, if we focus on the colours,
and forget about the weak reductions, it turns out that we do not need to require that the
left-hand sides of rules contain no λ-abstractions at all: it suffices if the rules are local.

6.2. Local AFSs. Both to weaken the limited subterm property, and for formative rules,
we shall restrict attention to so-called local AFSs where, intuitively, matching is purely local.
This means that to apply a rule we do not have to check whether two subterms are equal, or
whether a symbol occurs in a subterm. Locality combines the restrictions that the system is
left-linear and fully extended. A left-linear, left-abstraction-free AFS is always local.

The locality restriction appears in the literature both for HRSs [31, 5], where a pattern
is called local if it is fully extended and linear, and for combinatory reduction systems
(CRSs) in [29]; the latter definition is slightly different but has a similar underlying intuition.
The definition for AFSs here follows [31, 5], although the definition of full-extendedness is
technically (but not conceptually) different from the one for HRSs. We will use locality to
be able to (mostly) postpone reductions below an abstraction. In the explanations below,
we will argue that left-linearity and full-extendedness are both necessary to do this.

Left-linearity When a system is not left-linear, a reduction deep inside a term may be
needed to create a topmost redex. For instance, consider the non-left-linear AFS with rules
{f(x, x)→ b, a→ b}. In the reduction f(λx. a, λx. b)→ f(λx. b, λx. b)→ b a reduction below
an abstraction is necessary to create the syntactic equality required for the f-rule. Thus,
this step cannot be postponed.

Full-Extendedness We say a term l is fully extended if free variables in l do not occur
below an abstraction; a rule l→ r is called fully extended if l is.

For the intuition of this restriction, consider a rule f(λx. y) → y. This rule does not
match a term f(λx. s(x)), since y cannot be instantiated with s(x), as x is bound. Nor does
f(λx. F · x) match this term, since s(x) does not instantiate the application F · x. Whenever
the left-hand side of a rule contains a free variable below an abstraction, this variable matches
only subterms which do not contain the abstraction-variable. Therefore, such a rule could
require a reduction deep inside a term to create a topmost redex. For example, in an AFS
with rules {f(λx. y)→ y, g(x, y)→ a}, we cannot postpone the first step in the reduction
f(λx. h(λy. g(x, y)))→ f(λx. h(λy. a))→ h(λy. a), as it is needed to create the second redex.

This notion of fully extended mostly corresponds with the definition for HRSs; there,
however, a rule f(λx. F · x)→ r does match f(λx. s(x)), so such rules are also accepted.

Definition 6.1. An AFS (F ,R) is local if all l→ r ∈ R are left-linear and fully extended.

Example 6.2. Our running example, Rtwice, is local, since all left-hand sides of rules are
linear and fully extended (in fact, they contain no abstractions at all).

To demonstrate the prominence of local AFSs, in the 2011 version of the Termination
Problem Data Base, used in the annual termination competition [38], 138 out of 156
benchmarks in the higher-order category are local (in fact, these are all left-abstraction-free).
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6.3. Tagging Unreducable Symbols. Obviously, when there are rules where the left-
hand side contains an abstraction, such as f(λx. g(x), F )→ r, it may be impossible to avoid
reducing inside an abstraction in order to create a redex. However, the colouring intuition
still goes through; we merely need to “paint symbols green” a few times more.

Following the colouring intuition, we will mark all function symbols which occur between
a λ-abstraction and its binder with a special tag (“colouring red”). The symbol can only be
reduced by removing the tag first (“painting green”).

Definition 6.3. Let F− be the set {f− : σ | f : σ ∈ F}, so a set containing a “tagged”
symbol f− for all function symbols f ∈ F . For a set of variables Z, define tagZ as follows:

tagZ(x) = x
tagZ(cσ) = cσ

tagZ(s · t) = tagZ(s) · tagZ(t)
tagZ(λx. s) = λx. tagZ∪{x}(s)

tagZ(f(s1, . . . , sn)) =

{
f(tagZ(s1), . . . , tagZ(sn)) if FV (f(~s)) ∩ Z = ∅
f−(tagZ(s1), . . . , tagZ(sn)) if FV (f(~s)) ∩ Z 6= ∅

We denote tag(s) := tag∅(s). Define Rtag := {l→ tag∅(r) | l→ r ∈ R} ∪ {f−(x1, . . . , xn)→
f(x1, . . . , xn) | f− ∈ F−}.

Note that, apart from the untagging rules, Rtag isn’t all that different from R: tag(r) is
almost exactly r, only the symbols below an abstraction may be marked with a − sign.

Example 6.4. tag(f(λx. g(x, g(o)))) = f(λx. g−(x, g(o))).

Example 6.5. Consider our running example Rtwice (with completed rules):

I(o) → o twice(F ) → λy. F · (F · y)
I(s(n)) → s(twice(λx. I(x)) · n twice(F ) ·m → F · (F ·m)

We have seen that Rtwice is local. Rtag consists of the following rules:

I(o) → o twice(F ) → λy. F · (F · y)
I(s(n)) → s(twice(λx. I−(x)) · n) twice(F ) · n → F · (F · n)

o− → o s−(n) → s(n)
I−(n) → I(n) twice−(F ) → twice(F )

That is, the rules from R, with a tag added to the I symbol which occurs below an abstraction,
and furthermore the untagging rules. In termination proofs we can typically ignore the rules
f−(~x)→ f(~x) where f− does not occur in the right-hand side of any rule (in this example:
o− → o, s−(n)→ s(n) and twice−(F, n)→ twice(F, n)), as they have little function.

In the proofs later on in this section, we will use the following properties of Rtag:

Lemma 6.6. tagX∪Y (s)→∗Rtag tagX(s) for any set of rules R; if the variables in Y don’t
occur in s even tagX∪Y (s) = tagX(s).

Proof. Easy induction on the size of s; we only use the untagging rules f−(~x)→ f(~x).
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Lemma 6.7. tag(s)γtag = tag(sγ) where γtag = [x := tag(γ(x)) | x ∈ dom(γ)].

Proof. We prove by induction on the size of s: for any set of variables Z, whose members
do not occur in either domain or range of γ, we have tagZ(s)γtag = tagZ(sγ).

If s is a variable not in dom(γ), both sides are just s.
If s is a variable in dom(γ), we must see that tag(γ(s)) = tagZ(γ(s)), which holds by

the second part of Lemma 6.6.
If s is an application t · u, then tagZ(s)γtag = (tagZ(t)γtag) · (tagZ(u)γtag), which by the

induction hypothesis equals tag(tγ) · tag(uγ) = tag((tγ) · (uγ)) = tag(sγ).
If s = f(s1, . . . , sn) the induction hypothesis on each of the si also suffices because

Z ∩ FV (s) = Z ∩ FV (sγ), which is easy to see by the requirements on Z.
Finally, if s = λy. s′, then tagZ(s)γtag = (λy. tagZ∪{y}(s

′))γtag = λy. (tagZ∪{y}(s
′)γtag),

which by the induction hypothesis equals λy. tagZ∪{y}(s
′γ) = tagZ(sγ) as required.

Lemma 6.8. If Z is a set of variables, s, t terms and x a variable not in Z or FV (t), then
tagZ∪{x}(s)[x := tagZ(t)]→∗Rtag tagZ(s[x := t]) for any set of rules R.

Proof. By induction on the size of s.
If s = x, then both sides are equal to tagZ(t).
If s is another variable y, then both sides are just y.
If s = u·v we use the induction hypothesis: tagZ∪{x}(s)[x := tagZ(t)] = tagZ∪{x}(u)[x :=

tagZ(t)] · tagZ∪{x}(v)[x := tagZ(t)] →∗Rtag tagZ(u[x := t]) · tagZ(v[x := t]) = tagZ(u[x :=

t] · v[x := t]) = tagZ(s[x := t]).
If s = λy. u, we use the second part of Lemma 6.6: tagZ∪{x}(s)[x := tagZ(t)] =

λy. tagZ∪{x,y}(u)[x := tagZ(t)], which by Lemma 6.6 equals λy. tagZ∪{x,y}(u)[x := tagZ∪{y}(t)]

→∗Rtag λy. tagZ∪{y}(u[x := t]) = tagZ(s[x := t]) by the induction hypothesis.

Finally, if s = f(u1, . . . , un), then there is little to do if x does not occur in s: by the
second part of Lemma 6.6, tagZ∪{x}(s)[x := tagZ(t)] = tagZ(s)[x := tagZ(t)] and since x does

not occur in either s or tagZ(s), this is exactly tagZ(s[x := t]). So assume that x ∈ FV (s);
then tagZ∪{x}(s)[x := tagZ(t)] = f−(tagZ∪{x}(u1), . . . , tagZ∪{x}(un))[x := tagZ(t)], which by

the induction hypothesis reduces to f−(tagZ(u1[x := t]), . . . , tagZ(un[x := t])). If variables
of Z occur in s[x := t] this is exactly tagZ(s[x := t]), otherwise it reduces in one step to
f(tagZ(u1[x := t]), . . . , tagZ(un[x := t])) = tagZ(s).

The following lemma expresses that a reduction to a term of a certain form l can be
done by only reducing subterms headed by untagged (“green”) symbols. Later on, we will
use this to see that the reduction ti →∗R si+1 in a dependency chain can be assumed to
reduce only untagged symbols.

Lemma 6.9. Let R be a local AFS, l a linear, fully extended term and γ a substitution on
domain FV (l). If s is terminating and s →∗R lγ, then there is a substitution δ such that
tag(s)→∗Rtag lδtag, where δtag = [x := tag(δ(x)) | x ∈ dom(δ)], and δ(x)→∗R γ(x) for all x.

Proof. Towards an induction hypothesis, we will prove the lemma for a term l which is linear
and fully extended in the variables in dom(γ), and such that dom(γ) ⊆ FV (l); l may have
more variables which do not occur in this domain, and which it is not necessarily linear and
fully extended in. We use induction first on s, using →R ∪� (this is well-founded because s
is terminating by assumption), second on the length of the reduction s→∗R lγ.
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First suppose l is a variable in dom(γ), so γ = [l := γ(l)]. Choose δ(l) = s. Then
certainly δ(l)→∗R γ(l), and tag(s)→∗Rtag tag(s) = lδtag. If l is a variable not in dom(γ), and
s→∗R lγ = l without headmost steps, then γ is empty and s = l; indeed tag(s) = l→∗Rtag l.

Next, let l be an abstraction λx. l′ and suppose s = λx. s′ and s′ →∗R l′γ. Since l is fully
extended in the variables of dom(γ), this l′ contains no variables in dom(γ); that is, γ is
empty, and we must see that tag(s)→∗R l. By the induction hypothesis tag(s′)→∗R l′, and
therefore indeed tag(s) = λx. tag{x}(s

′)→∗Rtag λx. tag(s′) by Lemma 6.6, →∗Rtag λx. l′ = l.

If l = f(l1, . . . , ln) and s = f(s1, . . . , sn) and each si →∗R liγ, then by linearity of l each li
has different variables (at least, insofar as dom(γ) is concerned). We can write γ = γ1∪. . .∪γn
with each γi the restriction of γ to dom(li); all γi have disjunct domains. Then also si →∗R liγi,
so by the induction hypothesis there are δ1, . . . , δn such that each tag(si)→∗Rtag liδ

tag
i , and

always δi(x)→∗R γi(x). The induction step holds with δ := δ1 ∪ . . . ∪ δn.
If l = l1 · l2 and s = s1 · s2 and each si →∗R liγ, we use linearity in the same way.
If none of these cases hold, the reduction s →∗R lγ must use a headmost step, so

s→∗R u→R v →∗R lγ, and either:

• u = (λx.w) · q0 · · · qn and v = w[x := q0] · q1 · · · qn (n ≥ 0), or
• u = l′γ′ · q1 · · · qn and v = r′γ′ · q1 · · · qn for some l′ → r′, γ, q1, . . . , qn (n ≥ 0)

We can safely assume that the reduction s→∗R u does not use any headmost steps.
In the first case, s must have the form (λx.w′) · q′0 · · · q′n with w′ →∗R w and each

q′i →∗R qi. But then also w′[x := q′0] · q′1 · · · q′n →∗R v →∗R lγ; by the first induction hypothesis
we find a suitable δ such that s→β w

′[x := q′0] · q′1 · · · q′n →∗Rtag lδtag.
In the second case, let l′′ := l · x1 · · ·xn for fresh variables x1, . . . , xn, and let γ′′ :=

γ′ ∪ [x1 := q1, . . . , xn := qn]. Since l′ → r′ is a rule, l′′ is both linear and fully extended, and
the reduction to l′′γ′′ = u is shorter than the original reduction; by the second induction
hypothesis we find χ such that tag(s)→∗Rtag l′′χtag = l′χtag · (x1χtag) · · · (xnχtag), where each
χ(y) reduces to γ′(y) for y ∈ dom(γ′), and χ(xi)→∗R qi.

Now, l′′χtag →Rtag tag(r′)χtag · (~xχtag), which by Lemma 6.7 = tag(r′χ) · (~xχtag) =
tag((r′ · ~x)χ). By simply removing all tags, every →Rtag step can be translated to a →=

R step
on untagged terms, and therefore we also see that s→∗R l′′χ→R (r · ~x)χ, and by the choice
of χ we know: (r · ~x)χ →∗R (r′γ′) · ~q →∗R lγ. Therefore we can apply the first induction
hypothesis, and see that tag(s)→+

Rtag tag((r · ~x)χ)→∗Rtag lδtag, for a suitable δ.

In Section 6.5, Lemma 6.9 will play an essential role in the construction of a “tagged
dependency chain”. But first, let us consider formative rules, another gain from locality.

6.4. Formative Rules. Recall that in the first-order setting it is not required to prove
l � r for all rewrite rules: to prove that a set of dependency pairs P is chain-free it suffices
to consider only its usable rules. The definition of usable rules cannot easily be extended to
our setting, because we normally have to deal with collapsing dependency pairs. Therefore
we take a different approach with the same goal of restricting attention to rules which are in
some way relevant to a set of dependency pairs. Where usable rules are defined from the
right-hand sides of dependency pairs, our formative rules are based on the left-hand sides.

The intuition behind formative rules is that (due to left-linearity and full-extendedness),
only the formative rules of some rule l→ r can contribute to the creation of its pattern.

We consider a fixed set of rules R, which has already been completed. The formative
rules are a subset of R+, which is the set R∪ {l · x1 · · ·xn → r · x1 · · ·xn | l→ r ∈ R, all xi
fresh variables, r not an abstraction and l · x1 · · ·xn well-typed}.
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Definition 6.10 (Formative Rules). Let X be a set of variables, and s a β-normal term
(that is, s has no subterms (λx. t) · u) such that for any subterm x · t of s with x ∈ V , either
x is not free in s, or x ∈ X. Let SymbX(s) be recursively defined as follows:

SymbX(λy. s : σ) = {〈ABS , σ〉} ∪ SymbX∪{y}(s)

SymbX(f(s1, . . . , sn) · sn+1 · · · sm : σ) = {〈f, σ〉} ∪ SymbX(s1) ∪ . . . ∪ SymbX(sm)
SymbX(y · s1 · · · sn : σ) = {〈VAR, σ〉 ∪ SymbX(s1) ∪ . . . ∪ SymbX(sm)

(y ∈ X, n ≥ 0)
SymbX(y) = ∅ (y ∈ V \X)

Note that in a local AFS, all left-hand sides of the rules satisfy these constraints for X = ∅.
For a ∈ F ∪ {ABS ,VAR}, we say a term s : σ has form 〈a, σ〉 if either a = ABS and s

is an abstraction, or a ∈ F and s can be written a(~t) · ~u, or s = x · ~t for some variable x
(and a may be anything). A pair 〈a, σ〉 with a ∈ F ∪ {ABS ,VAR} is called a typed symbol.

For two typed symbols A,B, write A vfo B if there is a rule l → r ∈ R+ such that r
has form A, and B ∈ Symb∅(l). Let v∗fo denote the reflexive-transitive closure of vfo .

The formative symbols of a term s are those typed symbols B such that A v∗fo B for

some A ∈ Symb∅(s) (if defined).
The formative rules of a term s, notation FR(s), are those rules l→ r ∈ R+ such that

r has form B for some formative symbol B of s.
The set of formative rules of a dependency pair, FR(f(l1, . . . , ln) · ln+1 · · · lm ; p), is

defined as
⋃

1≤i≤m FR(li). For a set P of dependency pairs, FR(P) =
⋃
l;p∈P FR(l ; p).

Note that in a finite system it is easy to calculate the formative symbols of a term, and
consequently the formative rules can be found automatically.

Example 6.11. Recall the rules for the (completed) system twice:

(A) I(o) → o (C) twice(F ) → λy. F · (F · y)
(B) I(s(n)) → s(twice(λx. I(x)) · n) (D) twice(F ) ·m → F · (F ·m)

Here R+ = R. In this context, let l = s(n). Then Symb∅(l) = {〈s, nat〉}, and:

• (B) and (D) both have form 〈s, nat〉, so 〈s, nat〉 vfo 〈s, nat〉, 〈I, nat〉, 〈twice, nat〉
• (D) also has forms 〈I, nat〉 and 〈twice, nat〉, but no other rules do

Thus, the formative symbols of l are exactly 〈s, nat〉, 〈I, nat〉 and 〈twice, nat〉. (B) and (D),
but not (A) and (C), are formative rules of l. Observing that a dependency pair with left-
hand side twice(F ) ·n or twice](F ) has no formative rules (since Symb∅(F ) = Symb∅(n) = ∅),
the formative rules of the SCC Ctwice from Example 5.13 are (B) and (D).

Example 6.12. For an example that uses multiple types, and more rules of functional type,
consider the system with symbols

cons : [(nat⇒nat)× funlist]⇒funlist nil : funlist

head : [funlist]⇒nat⇒nat tail : [funlist]⇒funlist

true : bool false : bool

test : [nat⇒nat]⇒bool s : [nat]⇒nat
if : [bool× (nat⇒string)× (nat⇒string)]⇒nat⇒string

And rules:

(A) if(true, F1, F2) → F1 (D) head(cons(F, t)) → F
(B) if(false, F1, F2) → F2 (E) tail(cons(F, t)) → t
(C) test(λx. s(x)) → true
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For R+, we add the rules:

(F ) if(true, F1, F2) · x → F1 · x
(G) if(false, F1, F2) · x → F2 · x
(H) head(cons(F, t)) · x → F · x

This is a contrived example, to demonstrate all aspects of formative rules in one system. We
consider the formative rules of the dependency pair if(true, F1, F2) · x; F1 · x. That is,
FR(true), since the free variables F1, F2, x do not have formative rules. We observe:

• Symb∅(true) = 〈true, bool〉
• rule (C) is the only rule with form 〈true, bool〉, so 〈true, bool〉 vfo 〈test, bool〉,
〈ABS , nat⇒nat〉, 〈s, nat〉, 〈VAR, nat〉, that is, the elements of Symb∅(test(λx. s(x)));
• 〈ABS , nat⇒nat〉 vfo 〈head, nat⇒nat〉, 〈cons, funlist〉 by rule (D), and rule (H) has both

form 〈s, nat〉 and 〈VAR, nat〉, so these two vfo 〈head, nat〉, 〈cons, funlist〉; no other rule
has a form 〈test, bool〉, 〈ABS , nat⇒nat〉, 〈s, nat〉 or 〈VAR, nat〉
• (D) also has form 〈head, nat⇒nat〉 (but we already know that all symbols in the left-hand

side are formative symbols of true), and only (E) has form 〈cons, funlist〉, so the latter
vfo 〈tail, funlist〉, 〈cons, funlist〉
• Hence, the formative symbols of the given dependency pair are:
〈true, bool〉, 〈test, bool〉, 〈s, nat〉, 〈VAR, nat〉, 〈head, nat〉, 〈cons, funlist〉, 〈tail,
funlist〉, 〈ABS , nat⇒nat〉, 〈head, nat⇒nat〉.

The formative rules are therefore (C), (D), (E) and (H).

For formative rules we have a result very similar to Lemma 6.9, both in nature and in proof.

Lemma 6.13. Suppose R is local, and let l be a β-normal, linear, fully extended term,
which does not have leading free variables. Let γ be a substitution with domain FV (l), and
s a term which is terminating over →R, and suppose s→∗R lγ. Then there is a substitution
δ on FV (l) such that s→∗FR(l) lδ, and moreover each δ(x)→∗R γ(x).

Proof. We will prove something slightly stronger, which implies the lemma. Let X be a set
of variables, and l a β-normal term, linear in FV (l) \X, and such that if a free variable x
occurs inside an abstraction, or at the head of an application in l, then x ∈ X. Let γ be a
substitution with domain FV (l) \X, and s a terminating term such that s→∗R lγ.

Let FSX(l) denote the set of typed symbols B such that A v∗fo B for some A ∈ SymbX(l),

and FRX(l) is the set of rules l′ → r′ in R+ such that r′ has form B for some B ∈ FSX(l).
We will find a substitution δ on FV (l) \X such that s→∗FR(l) lδ, and always δ(x)→∗R γ(x).

It is clear that, for X = ∅, the definitions of FRX(l) and FR(l) coincide. Thus, the case
X = ∅ implies the lemma – but for the induction step we will need a larger X.

Before proving this claim, let us make the following observations:

(1) if SymbX(s) ⊆ SymbY (t), then FSX(s) ⊆ FSY (t), so FRX(s) ⊆ FRY (t)
(2) if the variables of Y do not occur in s, then SymbX∪Y (s) = SymbX(s)
(3) if s� t and Y = FV (t) \ FV (s), then SymbX∪Y (t) ⊆ SymbX(s)
(4) if u→ v ∈ FRX(s), then FS ∅(u) ⊆ FSX(s)

All of these are obvious by considering the respective definitions.
Now we have all the preparations to prove the required result, using induction on s with

→R ∪�. Because the rules have been completed and l is β-normal, we can first transform
the reduction s →∗R lγ into a reduction which never takes a headmost step with a rule
l′ → λx. r′ which is not also a topmost step (we can replace these steps one by one, and by
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induction on s with →R we eventually obtain a reduction without such steps). Having done
this, we use a second induction, on the length of the reduction s→∗R lγ. Now, we can prove
the claim. Consider the form of l.

If l is a variable in dom(γ), then γ = [l := γ(l)]; choosing δ := [l := s] we are done.
If l = x · l1 · · · ln with x ∈ X, and s = x · s1 · · · sn and each si →∗R liγ, then by linearity

of l over dom(γ) we can write γ = γ1 ∪ . . .∪ γn where γi is the restriction of γ to FV (li). By
the induction hypothesis we can find δ1, . . . , δn such that each si →∗FRX(li)

liδi and δi →∗R γi.
Choose δ := δ1 ∪ . . . ∪ δn; this is well-defined because all δi have disjunct domains. By (3)
and (1) each FRX(li) ⊆ FRX(l), so indeed s→∗FRX(l) lδ, and also each δ(x)→∗R γ(x).

If l = f(l1, . . . , lm) · lm+1 · · · ln, and s = f(s1, . . . , sm) · sm+1 · · · sn and each si →∗R liγ,
we use linearity in almost exactly the same way.

If l = λx. l′ and s = λx. s′ and s′ →∗R l′γ, then by assumption the term l′ contains only
variables in X, so dom(γ) = ∅; we must show that s′ →∗FRX(l) l

′. By (3), (2) and (1), it

suffices if s′ →∗FRX∪{x}(l′) l
′, and this is exactly what the induction hypothesis gives us!

By the restrictions on l, it must have one of the forms above; if we are not yet done,
therefore, the reduction s→∗R lγ uses a headmost step.

If s has the form (λx. t) · u · ~v, then the first headmost step must be a β-step: s →∗R
(λx. t′) · u′ · ~v →β t

′[x := u′] · ~v′ →∗R lγ; we might as well β-reduce immediately, and have

s→β t[x := u] · ~v →∗R t′[x := u′] · ~u′ →∗R lγ; the first induction hypothesis gives a suitable δ.
If s does not have this form, there is at least one headmost step which is not a β-reduction.

The reduction has a form s→∗R t→R u→∗R lγ, where t = l′γ′ · v1 · · · vn →R r′γ′ · v1 · · · vn
for some rule l′ → r′, substitution γ′ and terms v1, . . . , vn (n ≥ 0); we can choose t, u in
such a way that the reduction u →∗R lγ does not contain any headmost steps other than
perhaps β-steps. Let l′′ := l′ · x1 · · ·xn and r′′ := r′ · x1 · · ·xn for suitably typed fresh
variables x1, . . . , xn; then l′′ → r′′ is in R+, because we have made sure that either r′ is
not an abstraction, or n = 0. Let γ′′ := γ′ ∪ [x1 := v1, . . . , xn := vn]. Then t = l′′γ′′

and u = r′′γ′′. Applying the second induction hypothesis on the reduction s→∗R l′′γ′′, we
find some substitution χ such that s →∗FR∅(l′′) l

′′χ →R r′′χ →∗R r′′γ′′ →∗R lγ. Note that

FR∅(l
′′) ⊆ R+, and that →R+ defines the same relation as →R. Thus, s→∗R l′′χ→R r′′χ;

we can apply the first induction hypothesis to find a suitable δ such that r′′χ→∗FRX(l) lδ.

Suppose l′′ → r′′ ∈ FRX(l). Then by (4) and (1), also FR∅(l
′′) ⊆ FRX(l), so we have a

reduction s→∗FRX(l) l
′′χ→FRX(l) r

′′χ→∗FRX(l) lδ, and we are done. To see that this is indeed

the case, first suppose that head(r′) is a variable. Whatever the form of l is (since l /∈ dom(γ)),
SymbX(l) contains a pair 〈f, σ〉, where σ is the type of l (and also the type of s, l′′ and r′′),
and f ∈ F ∪ {ABS ,VAR}. We immediately see that l′′ → r′′ ∈ FRX(l). Alternatively, if
head(r′) is a function symbol, then u is not a β-redex; as the reduction u→∗R lγ does not
use other headmost steps, we have u→∗R,in lγ, and l = f(l1, . . . , lk) · lk+1 · · · lm, where f is

also the head-symbol of r′. But then 〈f, σ〉 ∈ SymbX(l), so also l′′ → r′′ ∈ FRX(l).

Of course, Lemma 6.13 and Lemma 6.9 can be combined: the latter doesn’t care
which rules it is given, so if s →∗R lγ, then there are δ, χ such that s →∗FR(l) lδ, and

tag(s)→∗FR(l)tag lχ
tag and each χ(x)→∗FR(l) δ(x)→∗R γ(x). In the following, we will use this

combination of lemmas to see that, for local AFSs, a dependency chain can be assumed to
use tagged steps and formative rules in the reduction ti →∗R,in si+1.
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Comment: The formative rules technique is also applicable to first-order rewriting, in
particular for many-sorted TRSs (or for innermost rewriting where types may be added
by [7]). However, we have not yet investigated whether the technique leads to an improvement
in current state-of-the-art termination provers.

6.5. Revised Dependency Pair Results for Local AFSs. We may now revise the
results from Section 5 to take locality into account. As before, we assume that the rules
in R are all completed, and let DP be the dependency pairs of R. Because of Lemmas 6.9
and 6.13 we can consider an alternative definition of dependency chain.

Definition 6.14. A tagged dependency chain is a sequence [(ρi, si, ti) | i ∈ N] with for all i:

(1) ρi ∈ DP ∪ {beta}
(2) if ρi = li ; pi ∈ DP then si = liγ

tag and ti = tag(pi)γ
tag for some substitution γ

(3) if ρi = beta then si = tag((λx. u) · v · w1 · · ·wk) and either
(a) k > 0 and ti = tag(u[x := v] · w1 · · ·wk), or
(b) k = 0 and there exists a term w such that u�w and x ∈ FV (w) and ti = tag(w][x :=

v]), but w 6= x
(4) ti →∗FR(li+1)tag,in

si+1

A tagged dependency chain is minimal if untag(u) is terminating under →R for all strict
subterms u of each ti (where untag( ) removes the − tags).

This definition is similar to the original definition of a dependency chain, but uses tags
for si and ti and limits the rules in the →∗in reduction to the formative rules of the pattern
which is created. We obtain the following variation of Theorem 5.9:

Theorem 6.15. A local AFS R is non-terminating if and only if it admits a minimal tagged
dependency chain.

Proof. If we remove the tags from a tagged dependency chain, we obtain a normal dependency
chain. Since local AFSs are left-linear, Theorem 5.9 provides one direction.

For the other direction, we follow the proof of Theorem 5.7; in each step i we have a

minimal non-terminating, untagged term qi, and ti = tag(q]i ). If head(qi) is an abstraction we
follow the proof of Theorem 5.7 to find qi+1; the requirements of Definition 6.14 are satisfied

for si+1 := tag(qi) and ti+1 := tag(q]i+1). Otherwise, let qi = f(v1, . . . , vm) · vm+1 · · · vn.
Since qi is MNT, an infinite→∗R-reduction starting in qi must eventually take a headmost

step, say qi →∗R,in lγ · v′k+1 · · · v′n (with k ≥ m), where l→ r ∈ R and rγ · v′k+1 · · · v′m is still

non-terminating. Write l = f(l̃1, . . . , l̃m) · l̃m+1 · · · l̃k; by left-linearity all l̃j have disjunct free

variables. Applying Lemmas 6.9 and 6.13 on each of the vj and l̃j (with the suitable part γj
of γ), such a redex can be reached with tagged steps and formative rules: tag(vj)→∗FR(l̃j)tag

l̃jδ
tag
j , and δj →∗R γj . Choosing δ := δ1∪. . .∪δn we have that rδ·vk+1 · · · vn →∗R rγ·v′k+1 · · · v′n

is still non-terminating. Let q′i := lδ · vk+1 · · · vm and si+1 := lδtag · tag(vk+1) · · · tag(vm)

and continue the proof as before; in the resulting dependency pair li+1 ; pi+1 all l̃j are

immediate subterms of li+1, so FR(l̃j) ⊆ FR(li+1 ; pi+1). We have qi+1 = |pi+1|χ for some
substitution χ, so ti+1 := tag(qi+1) = tag(pi+1)χ

tag as required, by Lemma 6.7.
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Example 6.16. Consider once more the non-terminating system from Example 5.8

f(o) → g(λx. f(x), a) g(F, b) → F · o a → b

Noting that Rtag consists of the rules

f(o) → g(λx. f−(x), a) g(F, b) → F · o
a → b f−(x) → f(x)

as well as some other rules h−(~x)→ h(~x), we have the following tagged dependency chain:

( f](o) ; g](λx. f−(x), a), f](o), g](λx. f−(x), a) )
( g](F, b) ; F · o, g(λx. f−(x), b), (λx. f−(x)) · o )
( beta, (λx. f−(x)) · o, f](o) )
( f](o) ; g](λx. f−(x), a), f](o), g](λx. f−(x), a) )
. . .

Here, the beta step uses case 3b with w = f(x).

As in Section 5 we consider the dependency graph of R. A set P ⊆ DP is tagged-chain-free if
there is no minimal tagged dependency chain using only dependency pairs from P , and beta.
As before, ∅ is tagged-chain-free, and R is terminating if and only if every SCC in a graph
approximation is tagged-chain-free. Thus, we can use reduction triples which orient the
parts of a tagged dependency chain. Importantly, this affects the limited subterm property.

Definition 6.17 (Tagged Subterm Property). � has the tagged subterm property if the
following requirement is satisfied: for all variables x and terms s, t, u such that s� u� x,
there is a substitution γ such that tag((λx. s) · t) � tag(u][x := t]γ).

As we will see shortly, the tagged subterm property is an improvement over the limited
subterm property because we do not have to take the subterms of untagged functional terms
f(~s). It is easy to adapt the proof of Theorem 5.16 to obtain the following result:

Theorem 6.18. A set P = P1 ] P2 of dependency pairs is tagged-chain-free if P2 is
tagged-chain-free and there is a reduction triple (�,�1,�) such that:

• l � tag(p) for all l ; p ∈ P1;
• l � tag(p) for all l ; p ∈ P2;
• l �1 tag(r) for all l→ r ∈ FR(P);
• f−(~x) �1 f(~x) for all f− ∈ F−;
• either P is non-collapsing or � has the tagged subterm property.

Proof. If the properties above are satisfied, then every minimal tagged dependency chain over
P leads to an infinite decreasing �-chain, contradicting well-foundedness of �. The elements
of this proof are straightforward, following the proof of Theorem 5.16, except perhaps for
the proof that there is a substitution δ such that si � tiδ when si = tag((λx. u) · v · ~w) and
either ti = tag(q][x := v]) (if |~w| = 0 and u� q � x), or ti = tag(u[x := v] · ~w).

The first case of this holds by the tagged subterm property: tag(si) = tag((λx. u) · v) �
tag(q][x := v]γ) for some γ, and this equals tag(q][x := v])γtag by Lemma 6.7; let δ := γtag.

For the second case, tag(si) = (λx. tag{x}(u)) · tag(v) · tag(~w) � tag{x}(u)[x := tag(v)] ·
tag(~w) (since �1 includes beta), � tag(u[x := v]) · tag(~w) = tag(ti) by Lemma 6.8 and
because always f−(~x) �1 f(~x).
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Theorem 5.18 also has a counterpart: if a local AFS is non-terminating, then there
is a reduction triple which satisfies the constraints of Theorem 6.18 for P = P1 = DP: if
(�,�1,�) is the reduction triple from Theorem 5.18, let s R′ t if untag(s) R untag(t). Then
(�′,�′1,�′) satisfies the required properties.

Theorem 6.18 is comparable to Theorem 5.16, and as before, the result is likely not immedi-
ately usable due to typing problems. Moreover, it is not obvious that the tagged subterm
property is really weaker than the limited subterm property. So to complete the work, we
re-examine the results of Section 5.5. To start, let us reconsider the definition of �!.

Definition 6.19 (Refinement of �!). Let S be a special set of function symbols. �S is the
relation on base-type terms (and �S its reflexive closure) generated by the following clauses:

• (λx. s) · t0 · · · tn �S u if s[x := t0] · t1 · · · tn �S u
• f(s1, . . . , sm) · t1 · · · tn �S u if si ·~c�S u and f ∈ S ←− here we differ from �!

• s · t1 · · · tn �S u if ti ·~c�S u (s may have any form)

Note that our original definition of �! is just a special case of this definition; �! can be

described as �F . For local AFSs, we can limit ourselves to �F
−

, shortly denoted �−.
In correspondence with Theorem 5.21, we derive the following result:

Theorem 6.20. A set of dependency pairs P = P1 ] P2 is tagged-chain-free if P2 is
tagged-chain-free and there is a reduction pair (�,�) such that:

(1) l � tag(p) for all l ; p ∈ P1;

(2) l � tag(p) for all l ; p ∈ P2;
(3) l � tag(r) for all l→ r ∈ FR(P);
(4) f−(x1, . . . , xn) � f(x1, . . . , xn) for all f− ∈ F−;
(5) if P is collapsing, then (�,�) respects �−, and f−(~x) � f ](~x) for all f ∈ D.

Proof of Theorem 6.20. Let (�,�) be a reduction pair satisfying the requirements in the
Theorem, and let (≥,≥1, >) be the reduction triple generated by (�,�) as defined in
Section 5.5. This triple clearly satisfies the first four requirements of Theorem 6.18. For the
last one, let P be collapsing; we must see that ≥ has the tagged subterm property.

So let x, s, t, u be given such that s�u�x. We must see that (λx. tag{x}(s)) ·tag(t) ·~y (�
∪ �)∗ tag(u][x := t]γ) · ~v for some substitution γ with x /∈ dom(γ) and some terms ~v. Since
� contains beta and tag{x}(s · ~y) = tag{x}(s) · ~y it suffices if we can prove that for all

base-type terms q with q�u�x we have: tag{x}(q)[x := tag(t)] (� ∪ �)∗ tag(u][x := t]γ) ·~v
for some γ,~v. This gives what we need by choosing q = s · ~y. We prove this statement by
induction on q, ordered with �− (it is easy to see that this relation is well-founded).

Note (**): tag{x}(w) � tag(w) by Lemma 6.6 and because always g−(~z) � g(~z).

For the base case, let q = u · v1 · · · vn for some terms ~v. Then tag{x}(q)[x := tag(t)] =

tag{x}(u)[x := tag(t)] · v′1 · · · v′n, where each v′i = tag{x}(vi)[x := tag(t)]. Since u�x we know

that tag{x}(u) � tag(u]): either u does not have the form f(u1, . . . , um) with f ∈ D, in

which case tag{x}(u) � tag(u) = tag(u]) by (**), or u does have this form and tag{x}(u) =

f−(tag{x}(u1), . . . , tag{x}(um)) � f−(tag(u1), . . . , tag(um)) � f ](tag(u1), . . . , tag(um)) =

tag(u]) by assumption (P is collapsing, so both properties from (5) hold). Thus, tag{x}(q)[x :=

tag(t)] � tag(u])[x := tag(t)] · ~v′ = tag(u][x := t]) · ~v′.
Now to consider each of the induction cases:

(1) q = (λy. s) · w · v1 · · · vn and s� u;
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(2) q = f(w1, . . . , wm) · v1 · · · vn and some wi � u.
(3) q = q′ · v1 · · · vn and one of the vi � u;

These are the only forms q can have. In very general terms, each of these cases is easy
because � ∪ � includes �− (in case 2 we use that FV (f(~w)) contains x, so the tagging
function replaces f by f−). Precise derivations are given below.

In case 1, tag{x}(q)[x := tag(t)] � (tag{x,y}(s)[y := tag{x}(w)] · tag{x}(~v))[x := tag(t)]

(since � contains beta), � (tag{x}(s[y := w]) · tag{x}(~v))[x := tag(t)] by Lemma 6.8, and

this is exactly tag{x}(s[y := w] · ~v)[x := tag(t)]. Since s[y := w] � u[y := w] we can use the

induction hypothesis to find γ′, ~v′ such that this term (� ∪ �)∗ tag(u[y := w][x := t]γ′]) · ~v′ =
tag(u[x := t][y := w[x := t]]γ′]) · ~v′, which proves the statement for γ := [y := w[x := t]]γ′.

In case 2, tag{x}(q) = f−(tag{x}(~w)) · tag{x}(~v) because f(~w) � x, and this (� ∪ �
)∗ tag{x}(wi) ·~c = tag{x}(wi ·~c) because (�,�) respects �−. We complete by induction.

Finally, case 3. tag{x}(q) = tag{x}(q
′) · tag{x}(v1) · · · tag{x}(vn) (� ∪ �)∗ tag{x}(vi) ·~c =

tag{x}(vi ·~c), which by the induction hypothesis (� ∪ �)∗ tag(u]γ[x := t]) · ~v as required.

Example 6.21. The dependency graph of twice has only one SCC, as given in Example 5.13,
and whose formative rules we calculated in Example 6.11. Therefore, by Theorems 6.18
and 6.20, twice is terminating if there is a reduction pair (�,�) which respects �−, and
orients the following constraints:

I](s(n)) � twice(λx. I−(x)) · n twice](F ) · x � F · (F · cnat)
I](s(n)) � twice](λx. I−(x)) · cnat twice](F ) · x � F · cnat

twice(F ) ·m � F · (F ·m) twice(F ) ·m � F ·m
I(s(n)) � s(twice(λx. I−(x)) · n) twice(F ) ·m � F · (F ·m)
f−(~x) � f(~x) (∀f ∈ F) f−(n) � f ](n) (∀f ∈ D)

The top six are requirements for orienting dependency pairs, the next two are the formative
rules of this SCC, and the final two are required to deal with the marked symbols.

Theorem 6.20 is a real improvement over Theorem 5.21 because (A) we only need to
orient the formative rules of a set of dependency pairs, (B) the requirement that �− is
included in � ∪ � is significantly weaker than the requirement for �! to be included, and
(C) the requirement that f(~x) � f ](~x) was replaced by the requirement that f−(~x) � f ](~x),
which removes the direct relationship between a defined symbol and its marked version. In
the next sections we will see how we can use this increased strength.

7. Finding a Reduction Pair

In this section, we will see two different ways of finding a reduction pair to solve the
constraints generated by either the basic or local dependency pair approach. First, we
consider how interpretations in a so-called weakly monotonic algebra can be used in the
dependency pair setting. Second, we show how to use argument functions to alter an existing
reduction pair such as the higher-order recursive path ordering.

Whether we use Theorem 5.21 or Theorem 6.20, we have:

• a set Σ of function symbols: in the basic case, Σ = F ]c , in the local case Σ = F ]c ∪ {f− :
σ | f : σ ∈ F}
• a set S of “protected” funtion symbols: in the basic case, S = F , in the local case
S = {f− : σ | f : σ ∈ F}
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• a set A of constraints of the form l �? p and a set B of constraints l � r: in the basic case
these are given by the dependency pairs and the rules, in the local case the right-hand
side is adapted with tag and B contains only the formative rules.

In both cases, we must find a reduction pair (�,�) such that l � p for at least one of
the constraints in A, l � p for the remainder of them, and l � r for the constraints in B.
Moreover, the reduction pair may have to respect �S , which is definitely the case if:

• s · t1 · · · tn � ti ·~c if both sides have base type;
• f(s1, . . . , sm) · ~t � si ·~c if f ∈ S and both sides have base type

We will consider two ways of finding a reduction pair which uses the possibilities created by
the dependency pair approach. First, we shall consider weakly monotonic algebras, where
we natively have a quasi-ordering � which is not just the reflexive closure of �, and which
is not a simplification ordering. Second, we show how an existing reduction pair can be
modified with argument functions, a generalisation of the notion of argument filterings.

7.1. Weakly Monotonic Algebras. A semantic method to prove termination of first-
order term rewriting is to interpret terms in a well-founded algebra, such that whenever
s→ t, their interpretations in the algebra decrease: JsK > JtK. Such an algebra is called a
termination model if JlK > JrK for every rewrite rule l→ r, and some additional properties
guarantee that this implies JC[lγ]K > JC[rγ]K for all contexts C and substitutions γ. A
first-order TRS is terminating if and only if it has a termination model [17, 39]. In his PhD
thesis [32], van de Pol (extending on a joint paper with Schwichtenberg [33]), generalises
this approach to HRSs, with higher-order rewriting modulo αβη, and shows that a HRS is
terminating if it has a termination model; the converse does not hold.

Here we consider interpretations of AFS terms in a weakly monotonic algebra, and use
these to solve dependency pair constraints. Since > does not have to be monotonic when
using dependency pairs, the theory of [32] can be significantly simplified.

Type Interpretation In first-order algebra interpretations, all terms are mapped to an
element of some well-founded set A. In the higher-order setting it turns out to be impractical
to map all terms to the same set. Rather, terms of a type σ⇒τ are mapped to functions.

As a basis, let A = (A,∨, 0, >)2, where A is a set, ∨ a binary operator on A, 0 an
element of A and > a well-founded partial order on A (with reflexive closure ≥), such that:

• 0 is a minimum element, so a ≥ 0 for all a ∈ A;
• x ∨ y ≥ x and x ∨ y ≥ y for all x, y ∈ A
• x ∨ 0 = x for all x, y ∈ A
To each type σ we associate a set WMσ of weakly monotonic functionals and two relations
=σ
wm and wσwm, defined inductively as follows.

For a base type ι:

• WMι = A,
• =ι

wm = >, and wιwm = ≥
For a functional type σ ⇒ τ :

• WMσ⇒τ consists of the functions from WMσ to WMτ , such that wwm is preserved (that
is, if x wσwm y then f(x) wτwm f(y)),

2A might be a well-ordered monoid or a join-semilattice, but both of these have requirements on ∨ which
we will not need; with our definitions, ∨ may be a supremum operator, but also for instance addition.
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• f =σ⇒τ
wm g iff f(x) =wm g(x) for all x ∈WMσ,

• f wσ⇒τwm g iff f(x) wwm g(x) for all x ∈WMσ.

Thus, WMσ⇒τ is a subset of the function space WMσ →WMτ , consisting of functions which
preserve wwm. =σ

wm and wσwm are an order and quasi-order respectively for all types σ, and
they are compatible. We usually omit the type σ in the notation, and write just =wm and
wwm. If either x =wm y or x = y then x wwm y, but the converse implication does not hold.

This definition differs from the one in [32] in that we use only one set A rather than
different sets Aι for all base types ι; this is done because we must occasionally compare
terms of different types. The original definition also does not use an operator ∨ (but does
use a ⊕, which satisfies the requirements); this we added because we work with AFSs rather
than HRS, and it is convenient to have a “maximum” function to interpret application.

Term Interpretation For some valuable background, let us first consider the most relevant
definitions and results from [32]. In the HRS formalism considered there, function symbols
do not have an arity; they come equipped with a type, rather than a type declaration. An
interpretation function J on the signature is used to associate to each closed term a weakly
monotonic functional. Let s be a λ-term, Jf an element of WMσ for all f : σ ∈ F , and α a
valuation which assigns to all variables x : σ ∈ FV (s) an element of WMσ. Then [s]J ,α is
defined by the following clauses:

[f ]J ,α = Jf if f : σ ∈ F
[x]J ,α = α(x) if x ∈ V
[s · t]J ,α = [s]J ,α([t]J ,α)
[λx. s]J ,α = λλn.[s]J ,α∪{x 7→n} if x /∈ dom(α) (always applicable with α-conversion)

Here, λλ denotes function construction: λλx1 . . . xn.P (x1, . . . , xn) is the function which takes
n arguments x1, . . . , xn and returns P (x1, . . . , xn).

Lemma 7.1. Some facts on these interpretations:

(1) (Substitution Lemma) Given a substitution γ = [x1 := s1, . . . , xn := sn] and a valuation
α whose domain does not include the xi: [sγ]J ,α = [s]J ,α◦γ. Here, α ◦ γ is the valuation
α ∪ {x1 7→ [s1]J ,α, . . . , xn 7→ [sn]J ,α}.

(2) If s : σ is a term, then [s]J ,α ∈WMσ for all valuations α.

Lemma 7.1(2) provides a convenient way to find weakly monotonic functionals. For
example, For n ∈ A and σ = τ1⇒ . . .⇒ τk⇒ ι the constant function nσ = λλx1 . . . xk.n ∈
WMσ (as nσ = [λx1 . . . xn. y]{y 7→n}). Similarly, writing f(~0) for f(0τ1 , . . . , 0τn), the function

λλf.f(~0) is in WMσ⇒ι. A weakly monotonic functional not given in [32], but which will be
needed to deal with term application, is maxσ, defined as follows:

maxι(x, y) = x ∨ y (for x, y ∈ A)
maxσ⇒τ (f, y) = λλx.maxτ (f(x), y) (for f ∈WMσ⇒τ , y ∈ A)

Using induction on the type of the first argument (and once more Lemma 7.1(2)), it is easy
to see that maxσ ∈WMσ⇒ι⇒σ.

In HRSs, terms are αβη-equivalence classes, so [(λx. s) · t]J ,α = [s]J ,α if x /∈ FV (s),
which is not very convenient in the present setting of AFSs, where terms are considered
modulo α only. To adapt the results, we can think of application as a function symbol.

Definition 7.2. A signature interpretation associates a weakly monotonic functional Jf ∈
WMσ1⇒...⇒σn⇒τ to every function symbol f : [σ1 × . . .× σn]⇒τ of the signature. The pair
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(A,J ) is a weakly montonic algebra. A valuation is a function α with a finite domain of
variables, such that α(x) ∈WMσ for every variable x : σ in its domain.

Fixing J and α, the interpretation of a term s, denoted JsKJ ,α, is a weakly monotonic
functional defined by induction on the definition of terms as follows:

JxKJ ,α = α(x) if x ∈ V
Jf(s1, . . . , sn)KJ ,α = Jf (Js1KJ ,α, . . . , JsnKJ ,α)
Jλx. sKJ ,α = λλn.JsKJ ,α∪{x 7→n} if x /∈ dom(α)

Js · tKJ ,α = max(JsKJ ,α(JtKJ ,α), JtKJ ,α(~0))

We assume α is defined on all free variables of s. This definition corresponds with the one
for HRSs, if we replace application by a function symbol which is interpreted with max.

Example 7.3. In our running example twice, consider an interpretation in the natural
numbers. Say JI = λλn.n and Js = λλn.n+ 1. Then JI(s(x))KJ ,α = α(x) + 1.

Reduction Pair. Since =wm is in general not closed under taking contexts, it cannot
be used directly like in first-order rewriting: JlKJ ,α =wm JrKJ ,α does not in general imply
JC[lγ]KJ ,α =wm JC[rγ]KJ ,α. This issue (which Van De Pol handles by imposing the restriction
that Jf must be strict) disappears entirely in the context of dependency pairs.

Theorem 7.4. Let J be an interpretion of the signature Σ3 such that:

• J maps each cσ to 0σ;
• for all f : [σ1 × . . . × σm]⇒ τ1⇒ . . .⇒ τk⇒ ι ∈ S, all 1 ≤ i ≤ m and all n ∈ WMσi:

Jf (0σ1 , . . . , n, . . . , 0σm , 0τ1 , . . . , 0τk) wwm n(~0).

Define s � t if JsKJ ,α wwm JtKJ ,α for all valuations α, and s � t if JsKJ ,α =wm JtKJ ,α for

all valuations α. Then (�,�) is a reduction pair which respects �S.

Proof. It is easy to see that � is an ordering and � a quasi-ordering; � is well-founded
because if f =wm g then also f(~0) =wm f(~0) (and =wm is well-founded in A). � is monotonic
as we see with a simple case distinction; if JsKJ ,α wwm JtKJ ,α for all α, then:

• Jλx. sKJ ,α = λλn.JsKJ ,α∪{x 7→n} wwm λλn.JtKJ ,α∪{x 7→n} = Jλx. tKJ ,α
• Js · uKJ ,α wwm Jt · uKJ ,α by weak monotonicity of λλf.λλn.max(f(n), n(~0))

• Ju · sKJ ,α wwm Ju · tKJ ,α by weak monotonicity of λλf.λλn.max(f(n), n(~0))
• Jf(. . . , s, . . .)KJ ,α wwm Jf(. . . , t, . . .)KJ ,α by weak monotonicity of Jf
In addition, � contains beta because J(λx. s) · tKJ ,α = max(JsKJ ,α◦[x 7→JtKJ ,α], JtKJ ,α(~0)) wwm
JsKJ ,α◦[x 7→JtKJ ,α], which is exactly Js[x := t]KJ ,α by the substitution Lemma. Compatibility

is inherited from compatibility of =wm and wwm on A (where wwm is the reflexive closure
of =wm): if s � t � u, then JsKJ ,α = λλn1 . . . nk.f(~n) =wm JtKJ ,α = λλ~n.g(~n) wwm JuKJ ,α =
λλ~n.h(~n), and we are done because also f(~n) =wm h(~n).

Finally, stability follows by the substitution Lemma: always JuγKJ ,α = JuKJ ,α◦γ , so if
JsKJ ,α =wm JtKJ ,α for all valuations α, this also holds for the valuation α′ = α ◦ γ.

As observed at the start of Section 7, (�,�) respects �S if:

• Js·~tKJ ,α wwm Jti·~cKJ ,α; this holds because, by the use of max for applications, Js·~tKJ ,α wwm
JtiKJ ,α(~0) = max(. . .max(JtiKJ ,α(~0), 0σ1), . . . , 0σn) = Jti ·~cKJ ,α;

3Σ is the signature introduced at the start of Section 7, either F]
c or F]

c ∪ {f− : σ | f : σ ∈ F}.
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• Jf(~s) · ~tKJ ,α wwm Jsi ·~cKJ ,α if f ∈ S; this holds because Jf(~s) · ~tKJ ,α wwm Jf (Js1KJ ,α,
. . . , JsnKJ ,α, Jt1KJ ,α, . . . , JtmKJ ,α), which by weak monotonicity and assumption wwm
Jf (0σ1 , . . . , JsiKJ ,α, . . . , 0σn , 0τ1 , . . . , 0τm) wwm JsiKJ ,α(~0) = Jsi ·~cKJ ,α.

Although it is not in general possible to (automatically) determine whether a suitable
interpretation exists, one could for instance try polynomial interpretations over the natural
numbers. Since addition and multiplication are both weakly monotonic, such an interpreta-
tion is sound, and like in first-order rewriting there are some easily automatable techniques
for finding suitable polynomials. The automation of individual reduction pairs is beyond the
scope of this paper, however; we refer to [9] for a more detailed discussion.

Example 7.5. To prove that Ctwice is tagged-chain-free, write Ctwice = P1 ] P2, where P1
consists of the two I] dependency pairs, and P2 of the remainder. By Theorem 6.18 it
suffices to prove that P2 is tagged-chain-free, if we can find a reduction pair which respects
�− and orients the following requirements:

I](s(n)) � twice(λx. I−(x)) · n twice](F ) · x � F · (F · cnat)
I](s(n)) � twice](λx. I−(x)) · cnat twice](F ) · x � F · cnat

twice(F ) ·m � F · (F ·m) twice(F ) ·m � F ·m
I(s(n)) � s(twice(λx. I−(x)) · n) twice(F ) ·m � F · (F ·m)
f−(~x) � f(~x) (∀f ∈ F) f−(n) � f ](n) (∀f ∈ D)

Let:

• JI = JI] = JI− = λλn.n
• Jo = Jo− = 0
• Js = Js− = λλn.n
• Jtwice = Jtwice] = Jtwice− = λλfn.f(f(n))

Then it is clear that the bottom two constraints are satisfied. With some calculation we
can see that the others hold as well, using the following case distinction for the twice cases:
if m ≥ F (m), then also m ≥ F (F (m)) by weak monotonicity; if F (m) ≥ m, then also
F (F (m)) ≥ m. Therefore max(F (F (m)),m) ≥ max(F (max(F (m),m)),max(F (m),m)).

To complete the termination proof of twice, it suffices to find a reduction pair such that:

twice(F ) · n � F · (F · n) twice](F ) · n � F · (F · cnat)
twice(F ) · n � F · n twice](F ) · n � F · cnat

This is satisfied with an interpretation with Jtwice] = Jtwice = λλfn.max(f(f(n)), n) + 1.

Example 7.6. A well-known example of higher-order rewriting is map:

map(F, nil) → nil
map(F, cons(h, t)) → cons(F · h,map(F, t))

Applying Theorem 6.18 to prove termination, it suffices to find a reduction pair (�,�) with:

map](F, cons(h, t)) � F · h
map](F, cons(h, t)) � map](F, t)
map(F, cons(h, t)) � cons(F · h,map(F, t))

Note that the elements of S do not occur in the rules, so we can pretty much ignore them (see
also Section 9). Using an interpretation in the natural numbers with the usual greater than,
0 and max-operator, consider the following constant interpretation: Jmap] = λλf.λλx.f(x) +
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x, Jmap = λλf.λλx.x · f(x) + x, Jcons = λλx.λλy.x+ y+ 1. Taking α = [F := f, h := n, t := m],
the requirements above become:

f(n+m+ 1) + n+m+ 1 > max(f(n), n)
f(n+m+ 1) + n+m+ 1 > f(m) +m

(n+m+ 1) · f(n+m+ 1) + n+m+ 1 ≥ max(f(n), n) +m · f(m) +m+ 1

Taking into account that f must be a weakly monotonic functional, we of course have
f(n+m+ 1) ≥ f(n), f(m). Thus, it is not hard to see that all requirements are true.

7.2. Argument Functions. In Section 4.4 we saw that, in the first-order dependency
pair approach, (simplification) orderings may be combined with argument filterings. Such
filterings either eliminate some direct arguments si from a term f(s1, . . . , sn), or replace the
term by one of the si. We consider an extension of this technique, called argument functions.

Let Σ and S be sets of function symbols, as introduced at the start of Section 7.

Definition 7.7 (Argument Function). Let Σex be a set of function symbols, and π a
type-respecting function mapping terms f(x1, . . . , xn) with f ∈ Σ to some term over Σex ;
we require that FV (π(f(~x))) ⊆ {~x}. We extend π to a function π( ), called an argument
function, on all terms as follows:

π(s · t) = π(s) · π(t)
π(λx. s) = λx. π(s)
π(x) = x (x ∈ V)
π(f(s1, . . . , sn)) = π(f(x1, . . . , xn))[x1 := π(s1), . . . , xn := π(sn)]

An argument filtering is an argument function where each π(f(x1, . . . , xn)) has the form
f ′(xi1 , . . . , xik), or xi. However, we can choose π entirely different as well. For example, if
π(twice(x)) = λy. x · y, then the term twice(λn. I(n)) · o is mapped to (λy. (λn. I(n)) · y) · o.

An argument function π has the S-subterm property if FV (π(f(~x))) = {~x} for all f ∈ S.

Theorem 7.8. Let (�,�) be a reduction pair on terms over Σex . Define ≥, > on terms
over Σ as follows: s ≥ t iff π(s) � π(t) and s > t iff π(s) � π(t).

Then (≥, >) is a reduction pair. If π has the S-subterm property and (�,�) respects �!

and s � cσ for all terms s of type σ, then (≥, >) respects �S.

Proof. We first make the following observation (**): π(sγ) = π(s)γπ, where γπ(x) = π(γ(x)).
This holds by induction on the form of s. The only non-obvious case is when s = f(s1, . . . , sn)
and π(f(x1, . . . , xn)) = p; then π(sγ) = p[x1 := π(s1γ), . . . , xn := π(snγ)] = p[x1 :=
π(s1)γ

π, . . . , xn := π(sn)γπ] by the induction hypothesis, = π(s)γπ because FV (p) ⊆ {~x}.
Having this, it is easy to see that ≥ and > are both stable, and compatibility, well-

foundedness, transitivity and (anti-)reflexivity are inherited from the corresponding properties
of � and �. As for monotonicity of ≥, the only non-trivial question is whether f(s1, . . . , sn) ≥
f(s′1, . . . , s

′
n) when each si ≥ s′i, but this is clear by monotonicity of �: if each π(si) � π(s′i),

then π(f(~s)) = π(f(~x))[~x := π(~s)] � π(f(~x))[~x := π(~s′)] = π(f(~s′)). Also ≥ contains beta

by (**): π((λx. s) · t) = (λx. π(s)) · π(t) � π(s)[x := π(t)] (as � contains beta), and this
equals π(s[x := t]) as required. Thus, (≥, >) is a reduction pair.

As observed at the start of Section 7, to see that (≥, >) respects �S it suffices if
s · t1 · · · tn ≥ ti · ~c and f(s1, . . . , sm) · t1 · · · tn ≥ si · ~c if both sides have base type, and
f ∈ S. Suppose (�,�) respects �! and π has the S-subterm property. Then obviously
π(s · t1 · · · tn) = π(s) · π(t1) · · ·π(tn) � π(ti) ·~c = π(ti ·~c).
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For the second part, let f ∈ S and q = f(~s)·~t; we must see that π(q) = π(f(x1, . . . , xm)[x1
:= π(s1), . . . , xm := π(sm)] ·π(t1) · · ·π(tn) � π(si ·~c). Since π has the S-subterm property, xi
occurs in π(f(~x)). Therefore, π(si) is a subterm of π(q) and it contains no free variables which
are bound in π(q). But then we must have π(f(~s) ·~t) �! π(si) · ~u for some terms ~u; since the
cσ are minimal elements by assumption, this term � π(si) ·~c = π(ui ·~c) as required.

Theorem 7.8 allows us to modify terms before applying an ordering. Even argument
functions which respect the F -subterm property can be useful; for example, if there is a rule
f(x1, . . . , xn)→ r, then an argument function with π(f(~x)) = r is probably a good idea.

Using Argument Functions With CPO Unfortunately, Theorem 7.8 cannot directly be
used with the higher-order recursive path ordering or the more powerful computability path
ordering: these relations are not transitive, do not respect �!, and do not have minimal
elements. But we can alter either relation a bit, and obtain a usable reduction pair.

Let >CPO be the relation given by CPO [4], with some fixed status function, type
ordering, and precedence ≥F on the symbols in Σ \ C. Introducing new symbols @σ,τ ,Λσ,τ

and cσ for all types, extend the precedence with f >F @σ,τ ,Λσ,τ , cσ if f ∈ Σ \ C, for all

types @σ,τ >F Λσ
′,τ ′ >F cρ and moreover @σ,τ >F @ρ,α if ρ⇒α is a strict subtype of σ⇒τ .

Define (�CPO,�CPO) as follows: s �CPO t if for all closed substitutions γ: µ(sγ) >∗CPO µ(tγ),

and s �CPO t if for all closed substitutions γ: µ(sγ) >+
CPO µ(tγ). Here, µ is given by:

µ(x) = x if x ∈ V
µ(λx. s) = Λσ,τ (λx. µ(s)) if λx. s : σ⇒τ
µ(s · t) = @σ,τ (µ(s), µ(t)) if s : σ⇒τ

µ(f(s1, . . . , sn)) = f(µ(s1), . . . , µ(sn))

Since µ(s)[x := µ(t)] = µ(s[x := t]) (as demonstrated by an easy induction), it is not hard
to see that (�CPO,�CPO) is indeed a reduction pair, that the cσ are minimal elements, and
that we can ignore the γ: since >CPO is stable, s �CPO t holds if µ(s) >+

CPO µ(t).

Moreover, always s · t1 · · · tn �CPO ti ·~c and f(s1, . . . , sn) · ~t �CPO si ·~c:
• In CPO, g(u, v) >CPO w if u >CPO w, regardless of type differences. Since the @σ,τ are

function symbols, we thus have: µ(u · v) >CPO w if µ(u) >CPO w.
Let ti : σ = σ1 ⇒ . . .⇒ σn ⇒ ι. Then µ(s · ~t) >CPO µ(ti · ~c) if (selecting the first

argument n− i times) µ(s · t1 · · · ti) = @σ,τ (@(. . .@(µ(s), µ(t1)), . . . µ(ti−1)), µ(ti)) >CPO

µ(ti · ~c). Since σ is a strict subtype of σ ⇒ τ , so @σ,τ >F @σj ,σj+1⇒...σn⇒ι for all j,
and because certainly @σ,τ (. . .) >CPO cσj for all j, this indeed holds, as µ(ti · ~c) =
@σn,ι(. . .@σ1,σ2⇒...σn⇒ι(µ(ti), cσ1), . . . , cσn).
• Similarly, µ(f(~s)·~t) >CPO µ(si ·~c) if f(µ(s1), . . . , µ(sn)) >CPO µ(si ·~c), which holds because
f >F @σj ,σj+1⇒σn⇒ι for all j, and also f >F cσj .

Rather than altering existing definitions of HORPO and CPO with a transformation like
the one above, we might consider definitions which natively have minimal elements – this is
an addition which should not be hard to include in the well-foundedness proof.
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Example 7.9. Consider the following AFS:

F =



o : nat if : [bool× list× list]⇒list

s : [nat]⇒nat lteq : [nat× nat]⇒bool

true : bool from : [nat× list]⇒list

false : bool chain : [nat⇒nat× list]⇒list

nil : list incch : [list]⇒list

cons : [nat× list]⇒list



R =



lteq(s(x), o) → false if(true, x, y) → x
lteq(o, x) → true if(false, x, y) → y

lteq(s(x), s(y)) → lteq(x, y) from(x, nil) → nil
incch(x) → chain(λy. s(y), x) chain(F, nil) → nil

from(x, cons(y, z)) → if(lteq(x, y), cons(y, z), from(x, z))
chain(F, cons(y, z)) → cons(F · y, chain(F, from(F · y, z)))


This AFS, which appears in the termination problem database (see [38]), has eight dependency
pairs, and the following dependency graph:

6

1 4

5

3

2

87

(1) lteq](s(x), s(y)) ; lteq](x, y)

(2) incch](x) ; chain](λy. s(y), x)

(3) from](x, cons(y, z)) ; if](lteq(x, y), cons(y, z), from(x, z))

(4) from](x, cons(y, z)) ; lteq](x, y)

(5) from](x, cons(y, z)) ; from](x, z)

(6) chain](F, cons(y, z)) ; F · y
(7) chain](F, cons(y, z)) ; chain](F, from(F · y, z))
(8) chain](F, cons(y, z)) ; from](F · y, z)
We consider the SCC consisting of pairs 2, 6 and 7. As this is a local AFS, we may
use almost unrestricted argument functions. Let π(s(x)) = π(s−(x)) = x, π(incch](x)) =

chain](λy. y, x), π(incch(x)) = chain(λy. y, x), π(lteq(x, y)) = lteq′ and π(from)(x, y) =
from′(y); for other symbols, π is the identity. Then the three dependency pairs of interest
are oriented with (�CPO,�CPO) if cons >F from′:

(2) π(incch](x)) = chain](λy. y, x) �CPO chain](λy. y, x) = π(chain](λy. s−(y), x))

(6) chain](F, cons(y, z)) �CPO F · y
(7) chain](F, cons(y, z)) �CPO chain](F, from′(z))

All rules, even the non-formative ones, are oriented as well, with for instance the precedence
chain, chain] >F cons >F from′ >F if, lteq′ >F false, true

lteq′ �CPO false if(true, x, y) �CPO x
lteq′ �CPO true if(false, x, y) �CPO y
lteq′ �CPO lteq′ from′(nil) �CPO nil

chain(λy. y, x) �CPO chain(λy. y, x) chain(F, nil) �CPO nil
from′(cons(y, z)) �CPO if(lteq′, cons(y, z), from′(z))

chain(F, cons(y, z)) �CPO cons(F · y, chain(F, from′(z)))

The remaining dependency pair (2) is clearly tagged-chain-free, so this AFS is terminating if
the two SCCs {(1)} and {(5)} are tagged-chain-free.
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8. Non-collapsing Dependency Pairs

Many powerful aspects of the first-order dependency pair framework, such as the subterm
criterion and usable rules, break in the presence of collapsing dependency pairs. But for parts
of a termination proof, we may have non-collapsing dependency pairs. Consider for example
the system from Example 7.9: the dependeny graph has three SCCs, and two of them (the
SCCs {(1)} and {(5)}) are non-collapsing. Their chain-freeness can be demonstrated with a
reduction triple which does not have the limited subterm property.

In this section, we will briefly discuss the subterm criterion and usable rules, limited to
non-collapsing sets P . To avoid double work between the basic and tagged dependency pair
approach, we note that tags add very little advantage in this setting: tagging mainly plays a
role in the limited or tagged subterm property. The primary advantage of Theorem 6.20 over
Theorem 5.21, therefore, is the addition of formative rules. So let us revise the definition
of chain-free: a set P of dependency pairs is chain-free if there is no minimal dependency
chain [(ρi, si, ti) | i ∈ N] with all ρi ∈ P ∪ {beta} such that ti →∗FR(P) si+1 for all i. Here,

FR(P) = R if the AFS under consideration is not local.

Lemma 8.1. A set P of dependency pairs is tagged-chain-free if it is chain-free.

Proof. Obvious consequence of Theorem 6.15, by removing the tags.

We will consider only how to prove chain-freeness for the sets under consideration.

8.1. The Subterm Criterion. Let P be non-collapsing, and let H be the set of function
symbols f such that a left- or right-hand side of a dependency pair has the form f(~s) · ~t. A
projection function for H is a function ν which assigns to each f ∈ H a number i such that
for all l ; p ∈ P, the following function ν is well-defined for both l and p:

ν(f(s1, . . . , sm) · sm+1 · · · sn) = sν(f)

This differs from the first-order definition only in that we cater for dependency pairs which
do not have the form f ](l1, . . . , ln) ; g](p1, . . . , pm).

Theorem 8.2. Let P = P1 ]P2 be a set of non-collapsing dependency pairs, and suppose a
projection function ν exists such that ν(l) � ν(p) for all l ; p ∈ P1 and ν(l) = ν(p) for all
l ; p ∈ P2. Then P is chain-free if and only if P2 is.

Proof. If P is chain-free then obviously P2 is chain-free. For the other direction, suppose P2
is chain-free and that we have a minimal dependency chain [(ρi, si, ti) | i ∈ N] over P and
suitable projection function ν. As before, we can assume this chain does not use beta, so
always ρi = li ; pi. As the subterm relation is stable, ν(li)� ν(pi) implies that ν(si)� ν(ti).

Since each ti →∗R si+1, we have a reduction ν(s1)�ν(t1)→∗R ν(s2)�ν(t2)→∗R . . . Since
P2 is chain-free, ρi ∈ Pi for infinitely many i, so ν(si) � ν(ti) infinitely often. Thus we have
an infinite →R ∪� reduction starting in a terminating term ν(s1), contradiction.

Example 8.3. Both of the remaining SCCs of Example 7.9 are chain-free, as is evident
with a projection ν(lteq]) = 1 for the SCC {(1)} and ν(from]) = 2 for the SCC {(5)}.
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8.2. Usable Rules. Formative rules provide a nice counterpart of usable rules, but it would
be even nicer if we had both! Usable rules can be defined, but with severe restrictions; we
follow the ideas in [36], where usable rules are defined for static dependency pairs.

Definition 8.4 (Usable Rules). A term s is considered risky if it has a subterm x · t with
x ∈ FV (s). Let f wus g if there is a rewrite rule f(l1, . . . , ln)→ r where either r contains
the symbol g, or r is risky, or r is an abstraction or variable of functional type. The
reflexive-transitive closure of wus is denoted by w∗us . Overloading notation, let s w∗us g
denote that either s contains a symbol f with f w∗us g, or s is risky.

The set of usable rules of a term s, notation UR(s,R), consists of those rules f(l1, . . . , ln)·
ln+1 · · · lm → r ∈ R such that s w∗us f . The set of usable rules of a non-collapsing dependency
pair l ; f(p1, . . . , pn) · pn+1 · · · pm is the union UR(p1,R) ∪ . . . ∪ UR(pm,R). The set of
usable rules of a set of dependency pairs, UR(P,R), is the union

⋃
ρ∈P UR(ρ,R) if P is

non-collapsing and just R otherwise.

Example 8.5. Consider an AFS for list manipulation which has four rules:

map(F, nil) → nil
map(F, cons(h, t)) → cons(F · h,map(F, t))

append(nil, l) → l
append(cons(h, t), l) → cons(append(h, t), l)

The dependency graph of this system has two SCCs: the set {map](F, cons(h, t)) ; F ·
h, map](F, cons(h, t)) ; map](F, t))} and the set {append](cons(h, t), l) ; append](h, t)}.
The former contains a dependency pair with F · h in the right-hand side, so its usable rules
are just R. But the latter set has only the append rules as usable rules.

Very similar to the first-order case, we can prove the following result:

Theorem 8.6. Let P = P1 ] P2 be a set of non-collapsing dependency pairs, and suppose
there is a reduction pair (�,�) such that:

• l � p for all l ; p ∈ P1
• l � p for all l ; p ∈ P2
• l � r if l→ r ∈ UR(P,FR(P))
• pσ(x, y) � x, y for fresh symbols pσ : [σ × σ]⇒σ.

Then P is chain-free if and only if P2 is chain-free.

Here, the pair l, p is determined from l, p in a systematic way like in Section 5.5. The
pσ(x, y) � x, y constraints are trivially oriented both with algebra interpretations and CPO.

The proof of Theorem 8.6 takes some work, but has no novelties compared to the proof
for the static method in [4]. We shall be relatively brief about it.

Proof Sketch of Theorem 8.6. Let pσ : [σ × σ]⇒σ and ⊥σ : σ be new symbols for all types
σ, and let Cε be the set of all rules pσ(x, y) → x, pσ(x, y) → y. We will see that any
minimal dependency chain [(ρi, si, ti) | i ∈ N] with all ρi ∈ P can be transformed into a (not
necessarily minimal) dependency chain [(ρi, s

′
i, t
′
i) | i ∈ N] which uses the same dependency

pairs, but where t′i →∗UR(P,FR(P))∪Cε s
′
i+1 for all i. Following the proof of Theorems 5.16

and 5.21, if a reduction pair as described in the theorem exists, then this transformed chain
must use dependency pairs in P2 infinitely often, so the same holds for the original. Thus, if
P is not chain-free, then neither is P2. Of course, if P is chain-free then so is its subset P2.

To transform the minimal dependency chain [(ρi, si, ti) | i ∈ N], we note that:
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(I) every term has only finitely many direct reducts.
This is obvious because R is finite. Let R1 := FR(P) and say a symbol f is a usable symbol
if p w∗us f for some dependency pair l ; p ∈ P (where w∗us is based on R1 rather than R),
or f is a constructor symbol. We assume:

(II) UR(P,R1) 6= R1.
This is a safe assumption, because if UR(P,R1) = R1 the theorem is automatically satisfied.
Now, because of (I) we can define the function ϕ on terminating terms, given by the clauses:

• ϕ(λx. u) = λx. ϕ(u)
• ϕ(x · u1 · · ·un) = x · ϕ(u1) · · ·ϕ(un)
• ϕ(f(u1, . . . , un) · un+1 · · ·um) = f(ϕ(u1), . . . , ϕ(un)) · ϕ(un+1) · · ·ϕ(um) if f is a usable

symbol
• ϕ(s) = pσ(f(ϕ(u1), . . . , ϕ(un)) · ϕ(un+1) · · ·ϕ(um), Dσ({t | s →R1 t})) if s : σ and s =
f(u1, . . . , un) · un+1 · · ·um with f not a usable symbol
• ϕ(s) = Dσ({t | s→R1 t}) if s : σ and s does not have any of these forms

Here, Dσ(∅) = ⊥σ and Dσ(X) = pσ(ϕ(u), Dσ(X \ {u})) if X is non-empty and u is
lexicographically its smallest element (this is only defined for finite sets X).

Writing γϕ for a substitution [x := ϕ(γ(x)) | x ∈ dom(γ)], it is not hard to see that:

(III) if s has no subterms (λx. t) · u or x · u with x ∈ dom(γ), then ϕ(sγ) →∗Cε sγϕ. If all
symbols occurring in s are usable symbols, then even ϕ(sγ) = sγϕ.
The proof holds by induction on the form of s, noting that the last case of the definition of
ϕ is never applicable. With induction on the size of X it follows easily that Dσ(X)→∗Cε ϕ(s)
for any s ∈ X. Combining this with (III) we can derive:

(IV) if s→R1 t with s terminating, then ϕ(s)→∗UR(P,R1)∪Cε ϕ(t).

This holds with induction on the form of s; all the induction cases are trivial either with
the induction hypothesis or with the observation that Dσ(X)→∗Cε ϕ(u) if u ∈ X. By the
same observation, the base case (a headmost step) is easy if s = f(~u) · ~v with f not a
usable symbol, or if s reduces with a headmost β-step. What remains is the case when
s = f(~u) · ~v with f a usable symbol, and the reduction is headmost: s = lγ · vk+1 · · · vm
and t = rγ · vk+1 · · · vm. But since f is a usable symbol, l → r is a usable rule, so since
rules are β-normal: ϕ(s) = ϕ(lγ) · ϕ(vk+1) · · ·ϕ(vm)→∗Cε lγϕ · ϕ(vk+1) · · ·ϕ(vm)→UR(P,R1)

rγϕ ·ϕ(vk+1) · · ·ϕ(vm) = ϕ(rγ) ·ϕ(vk+1) · · ·ϕ(vm) by (III), which equals ϕ(t) because either
r has the form g(~w) · ~q, or m = k (since otherwise UR(P,R1) = R1, contradicting (II)).

Now we are almost there. Let [(ρi, si, ti) | i ∈ N] be a minimal dependency chain with
all ρi ∈ P, so for each i we can write ρi = li ; pi and si = liγi, ti = piγi. Let s′i = liγ

ϕ
i

and t′i = piγ
ϕ
i (this is well-defined because the strict subterms of si and ti are terminating).

Then by (III) and (IV) piγ
ϕ
i →∗UR(P,FR(P))∪Cε,in li+1γ

ϕ
i+1 as required.

The notion of usable rules is in particular useful for systems with a first-order subset, as
the usable rules of first-order dependency pairs will typically be first-order. As discussed
in [8], we can use this to apply first-order termination proving techniques (and termination
tools!) to a part of a higher-order dependency pair problem.
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9. Algorithm

In this section, we combine all the results so far in a ready-to-use algorithm.
All the results in this paper can be readily combined in one algorithm, to prove

termination of an AFS (local or not):

(1) • determine whether the system is local (Definition 6.1),
• complete the system (Definition 5.1),
• determine its dependency pairs (Definition 5.4)
• calculate an approximation G for the dependency graph (Section 5.3);

(2) remove all nodes and edges from G which are not part of a cycle (Section 5.3);
(3) if G is empty return terminating; otherwise choose an SCC P (Section 5.3);
(4) if P is non-collapsing, find a projection function ν such that ν(l)�ν(p) for all l ; p ∈ P ,

and ν(l) � ν(p) at least once (Section 8.1); if this succeeds, remove all strictly oriented
pairs from G and continue with 2, otherwise continue with 5;

(5) a. if P is non-collapsing:

• let S := ∅ and Σ := F ]c ;
• let ψ(s) be defined as just s;
• let A :=UR(P,FR(P)) if R is local, A :=UR(P,R) otherwise (Definition 6.10,8.4);
b. if P is collapsing and R is not local:

• let S := F and Σ := F ]c ;
• let ψ(s) be defined as just s;
• let A := R∪ {f(~x)→ f ](~x) | f ∈ D};
c. if P is collapsing and R is local:
• let S be the set of function symbols f− : σ where f : σ ∈ F and f occurs below an

abstraction in a right-hand side of FR(P) ∪ P, and let Σ := F ]c ∪ S;
• let ψ(s) be defined as tag(s) (Definition 6.3);
• let A := FR(P)tag ∪ {f−(~x)→ f(~x), g−(~x)→ g](~x) | f−, g− ∈ S, g ∈ D};

(6) determine a partitioning P = P1 ] P2 and a reduction pair (Section 5.4) (�,�) with:
(a) l · x1 · · ·xn � ψ(p) · cσ1 · · · cσm for l ; p ∈ P1 (both sides base type, fresh ~x);
(b) l · x1 · · ·xn � ψ(p) · cσ1 · · · cσm for l ; p ∈ P2 (both sides base type, fresh ~x);
(c) l � r for l→ r ∈ A;
(d) either P is non-collapsing, or (�,�) respects �S (Definition 6.19);
(e) if R is local and P collapsing:

for all f ∈ F− \ S: f−(~x) � f(~x), f ](~x) and f−(~x) · ~y � xi ·~c (**).
if this step fails, return fail;
suitable reduction pairs can be found with e.g. weakly monotonic algebras (Section 7.1),
or argument functions and CPO (Section 7.2)

(7) remove all pairs in P1 from the graph, and continue with (2).

(**) Since the symbols f ∈ F− \ S do not occur in any of the other constraints, all the
common reduction pairs (CPO, weakly monotonic algebras and most existing first-order
techniques) can easily be extended to satisfy these requirements; for example, given a path
ordering which satisfies the rest of the requirements, just add “f− >F f” to the function
symbol precedence. That is why we split off these requirements rather than including the
symbols in S, and why we generally ignore this restriction on (�,�) in examples.

This algorithm iterates over the graph approximation, removing nodes and edges until
none remain; this technique originates in [14]. It is justified by the following observation:
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Lemma 9.1. Let G be an approximation of the dependency graph of an AFS R, and let P
be a set of dependency pairs. Suppose that every SCC in the subgraph of G which contains
only nodes in P is chain-free. Then also P is chain-free.

Proof. A trivial adaptation of the proof of Lemma 5.12.

The algorithm seeks to prove that DP(R) is either tagged-chain-free (if R is local) or
chain-free (if not), which suffices by Theorems 6.15 and 5.7 respectively.

(1) To prove that DP(R) is (tagged-)chain-free, it suffices to prove that all SCCs of G are
either tagged-chain-free (if R is local and P is non-collapsing) or chain-free (if R is not
local or P is collapsing); this is valid by Lemmas 5.12 and 8.1.

(2) Thus, until G is empty, we choose an SCC P and show that P is tagged-chain-free or
chain-free as required if some strict subset P ′ is (tagged-)chain-free (using the subterm
criterion or a reduction pair, which is justified by Theorems 5.21, 6.20 and 8.2). By
Lemma 9.1 this is the case if all sub-SCCs P1, . . . ,Pn of P ′ are (tagged-)chain-free. To
see that all remaining SCCs of G and P1, . . . ,Pn are (tagged-)chain-free, we remove all
strictly oriented pairs from G, and remove all nodes not on a cycle, so the SCCs of the
result are exactly the sets that must be proved (tagged-)chain-free.

Example 9.2. We apply the algorithm on the AFS eval, with the following symbols:

o : M dom : [M×M×M]⇒M eval : [M×M]⇒M
s : [M]⇒M fun : [M⇒M×M×M]⇒M

and the following rewrite rules:

dom(s(x), s(y), s(z)) → s(dom(x, y, z)) dom(x, y, o) → x
dom(o, s(y), s(y)) → s(dom(o, y, z)) dom(o, o, z) → o

eval(fun(F, x, y), z) → F · (dom(x, y, z))

The fun symbol represents a function over the natural numbers with an interval it is defined
on; eval calculates its value in a point, provided the point is in the domain of the function.
We prove termination of eval by following the algorithm.

(1): complete the rules, calculate the dependency pairs and approximate the dependency
graph. The AFS eval is local. Because eval has no rules of the form l→ λx. r, the completed
system is the same as the original system. We have the following four dependency pairs:

eval](fun(F, x, y), z) ; F · dom(x, y, z) dom](s(x), s(y), s(z)) ; dom](x, y, z)

eval](fun(F, x, y), z) ; dom](x, y, z) dom](o, s(y), s(z)) ; dom](o, y, z)

We will use the following (approximation of the) dependency graph:

eval](fun(F, x, y), z) ; F · dom(x, y, z) eval](fun(F, x, y), z) ; dom](x, y, z)

dom](s(x), s(y), s(z)) ; dom](x, y, z) dom](o, s(y), s(z)) ; dom](o, y, z)
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Step 2: remove nodes and edges not part of a cycle. This removes the second eval]

dependency pair, and leaves the following graph:

eval](fun(F, x, y), z) ; F · dom(x, y, z)

dom](s(x), s(y), s(z)) ; dom](x, y, z) dom](o, s(y), s(z)) ; dom](o, y, z)

Step 3: return terminating if G is empty, otherwise choose an SCC P. Since the graph
is not empty, we choose P = {dom](o, s(y), s(z)) ; dom](o, y, z)}.

Step 4: apply the subterm criterion if possible. The chosen set is indeed non-collapsing;
we choose a projection function ν(dom]) = 2, and have ν(dom](o, s(y), s(z))) = s(y) � u =

ν(dom](o, y, z)), and can remove this dependency pair from G.

eval](fun(F, x, y), z) ; F · dom(x, y, z) dom](s(x), s(y), s(z)) ; dom](x, y, z)

Step 2: remove nodes and edges not part of a cycle. Everything is on a cycle.
Step 3,4: choose the next SCC and apply the subterm criterion. We choose the set

P = {dom](s(x), s(y), s(z)) ; dom](x, y, z)}, which is non-collapsing, and apply the subterm
criterion with ν = 2. Since s(y) � y, this leaves the graph with a single node:

eval](fun(F, x, y), z) ; F · dom(x, y, z)

Step 2: remove nodes and edges not part of a cycle. Everything is on a cycle.
Step 3: return terminating if G is empty, otherwise choose an SCC P. Since the graph

is not empty, we choose P = {eval](fun(F, x, y), z) ; F · dom(x, y, z)}.
Step 4: apply the subterm criterion if possible. This is not possible, as P is collapsing.
Step 5: determine Σ, S, A and ψ. Noting that the system is local, but has ab-

stractions in neither left- nor right-hand sides, we let Σ := {o, s, dom, fun, eval, dom], eval]}
and S := ∅, while ψ is the tagging function. Since S = ∅, we calculate A = FR(P) =

FR(eval](fun(F, x, y), z) ; F · dom(x, y, z)) = FR(fun(F, x, y)) ∪ FR(z) = FR(fun(F, x, y)),
which consists of the rules eval(fun(F, x, y), z) → F · dom(x, y, z), dom(x, y, o) → x and
dom(o, o, z)→ o (since not fun v∗fo s).

Step 6: determine a suitable partitioning and reduction pair. As P consists of only one
dependency pair, we must choose P1 = P. We have the following ordering constraints:

eval](fun(F, x, y), z) � F · dom(x, y, z) dom(x, y, o) � x
eval(fun(F, x, y), z) � F · dom(x, y, z) dom(o, o, z) � o

The first constraint is for the dependency pair, the others for the formative rules. Using
an argument function π which maps dom(x, y, z) to dom′(x, y) and otherwise maps f(~x) to
itself (π is an argument filtering), this leaves the following constraints:

eval](fun(F, x, y), z) � F · dom′(x, y) dom′(x, y) � x
eval(fun(F, x, y), z) � F · dom′(x, y) dom′(o, o) � o

This is satisfied with (�CPO,�CPO) from Section 7.2, using a precedence fun >F dom′ >F s, o.
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Steps 7,2,3: remove all pairs in P1 and everything that’s not on a cycle anymore. We
remove the last node; the graph is empty. We conclude: this AFS is terminating.

10. Extensions

In this section we discuss two improvements to the method in this paper: a combination
with the static dependency pair approach, and a way to deal with AFSs with infinitely many
rules, in particular those generated from a polymorphic AFS.

10.1. Merging the Static and Dynamic Approach. The dynamic style of dependency
pairs presented in this paper is not the only way to do dependency pairs; as discussed in
Section 2 there are several strong results in static dependency pairs. Most importantly, in a
static dependency pair approach we do not have to consider collapsing dependency pairs,
and hence the dependency graph is usually simpler. Usable rules and the subterm criterion
are more often applicable, and argument filterings can be used without restrictions.

Since the dynamic approach is applicable to a larger class of AFSs, but the static
approach gives easier constraints, it seems sensible for a termination tool to implement both.
Static dependency pairs are defined for HRSs, but extending the proof to AFSs takes next
to no effort, and using Lemma 6.13 we can add formative rules to it as well. Below, we give
a short overview without proofs; for the full work on static dependency pairs, see [26, 36].

Definition 10.1 (AFS with Base Output Types). An AFS (F ,R) has base output types if
for all f : [σ1 × . . .× σn]⇒τ ∈ F , the output type τ is a base type.

The AFS for eval from Example 9.2 has base output types, but the AFS twice does not,
because of the symbol twice : [nat⇒ nat]⇒ nat⇒ nat. It is always possible to transform
an AFS into an AFS with base output types by η-expanding the rules [21], without losing
non-termination; however, termination may be lost by this transformation.

Definition 10.2 (Plain Function Passing AFS). An AFS is plain function passing (PFP) if
for all rules f(l1, . . . , ln)→ r: if r contains a functional variable F , then F is one of the li.

The notion is slightly simplified from the original definition, for the sake of easy explanation.
The set of static dependency pairs of a PFP AFS with base output types consists of the

pairs l] ; g](~s) with l→ r a rewrite rule, r � g(~s), and g a defined symbol. Note that the
right-hand side of a static dependency pair may contain variables which do not occur in
its left-hand side. For example, the rewrite rule I(s(n))→ twice(λx. I(x), n) has two static
dependency pairs: I](s(n)) ; twice](λx. I(x), n) and I](s(n)) ; I](x).

A static dependency chain is a sequence [(ρi, si, ti) | i ∈ N] where:

• each ρi is a static dependency pair l ; p;
• there is some substitution γ such that si = lγ and ti = rγ;
• each ti →∗FR(ρi+1)

si+1 (where FR(ρi+1) = R in a non-local AFS);

• the immediate subterms of all ti are “computable” (which implies termination).

Claim 10.3. A plain function passing AFS with base output types is terminating if it does
not have a static dependency chain.
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Claim 10.3 can be verified by mimicking the proof in [26] for the different setting, and
additionally using Lemma 6.13; this proof contains no novelties.

Observing that all static dependency pairs are non-collapsing, it is worth noting that a static
dependency chain is also a dynamic minimal dependency chain as defined in Definition 5.6;
just for a different set of dependency pairs. In the results of this paper, we did not use the
property that the right-hand side of dependency pairs contains no new variables; thus, we
can also use the algorithm from Section 9 to prove absence of static dependency chains.
With static dependency pairs, we can always use case 5a, so we have unrestricted argument
filterings, the subterm criterion and usable rules, as we had in the HRS setting by [36].

Now an automatic tool could, for example, try dynamic dependency pairs, and if that
fails but the AFS is PFP, η-expand the rules and use the same module to attempt a static
approach. But in some cases we can do better. For instance, the dynamic dependency pairs
for map from Example 7.6 are:

(A) map](F, cons(h, t)) ; F · h
(B) map](F, cons(h, t)) ; map](F, t)

In the static approach, we only have pair (B). Thus, if there is a dependency chain on the
static dependency pairs, there is also one on the dynamic ones. In cases like this, there is no
point using the dynamic approach instead of the static one.

Definition 10.4. We say an AFS (F ,R) is strongly plain function passing (SPFP) if it is
plain function passing, has base output types, and the right-hand sides of R do not have
subterms of the form λx.C[f(s1, . . . , sn)] where f is a defined symbol and x ∈ FV (f(~s)).

Theorem 10.5. A SPFP AFS admits a minimal dynamic dependency chain if it admits
a minimal static dependency chain. A SPFP and left-linear AFS admits a minimal static
dependency chain if and only if it is non-terminating.

Proof. Given a SPFP AFS, all its static dependency pairs are also dynamic dependency
pairs, so any minimal static dependency chain is a minimal dynamic dependency chain.

If the SPFP AFS is moreover left-linear, then termination implies that there is no
minimal dynamic dependency chain (by Theorem 5.18), let alone a static one.

This theorem gives a strengthening of the dynamic approach, by allowing us to remove
collapsing dependency pairs in an AFS if it is strongly plain function passing. It also provides
a completeness result for the static approach, for the class of SPFP systems.

In summary, we can combine the static and dynamic approaches as follows:
if R is strongly plain function passing: return DPframework(STATIC)

if DPframework(DYNAMIC) = TERMINATING: return TERMINATING

if F does not have base output types: η-expand (F ,R)
return DPframework(STATIC)

Here, DPframework is the algorithm of Section 9, and the argument (STATIC or DYNAMIC)
determines how the dependency pairs are calculated. Alternatively, the two frameworks may
be run in parallel, or we might consider optimisations to avoid double work. At present,
however, we have not done this, because testing on the current termination problem database
shows no improvement in strength obtained from using the static approach after the dynamic
approach has failed (although using the static approach for SPFP AFSs does significantly
improve the power). Experimental results and statistics are given in Section 11.
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10.2. Polymorphism. In this paper we consider monomorphic AFSs. In other definitions
of the AFS formalism, a kind of polymorphism à la ML is admitted. In a polymorphic AFS,
we can have for instance a function symbol if : [bool× α× α]⇒α with α a type variable,
and rewrite rules if(true, x, y)→ x and if(false, x, y)→ y.

Here α can be instantiated by base types, but also by functional types such as nat⇒nat.
A polymorphic AFS can be transformed into a monomorphic AFS with infinitely many
rewrite rules by considering all possible instantiations for the type variables in the rewrite
rules. In the example above, we get for instance if[bool×nat×nat]⇒nat(true, x, y) → x and
if[bool×(nat⇒nat)×(nat⇒nat)]⇒nat⇒nat(false, x, y)→ y. Such a transformation is discussed in [21].

In this paper we considered monomorphic AFSs with finitely many rules, so we can
neither deal with polymorphic AFSs directly nor with their transformations to monomorphic
AFSs. However, a further inspection of the proofs shows that finiteness of the set of rewrite
rules is primarily used in dealing with the dependency graph. So suppose we did not pose
this restriction, and went on as before. This leads to a dependency graph with infinitely
many nodes. Now consider the following definition of a dependency graph approximation:

Definition 10.6 (Infinite Dependency Graph Approximation). An (infinite) dependency
graph A is approximated by the finite graph G if there is a mapping f from the nodes in A
to the nodes in G, such that: if A contains an edge from node a to node b, then G contains
an edge from node f(a) to node f(b).

The original notion of a dependency graph approximation is an instance of this definition,
where f is the identity. With this definition, all proofs go through essentially unmodified,
only when considering a set P of nodes, we are interested not in the elements of P but in
the corresponding dependency pairs. For instance in Theorem 5.16, we must see that l � p
for all l ; p ∈ DP with f(l ; p) ∈ P1 and l � p for all l ; p ∈ DP with f(l ; p) ∈ P2.
Example 10.7. Consider the polymorphic AFS with if as defined before, and append :
[list(α)× list(α)]⇒list(α).

if(true, x, y) → x
if(false, x, y) → y
append(nil, x) → x

append(cons(h, t), x) → cons(h, append(t, x))

The corresponding monomorphic AFS has infinitely many rules, and infinitely many depend-
ency pairs. All the rules generated from the append rules (such as append for list(nat) or for
list(nat⇒bool)) have only one dependency pair append]σ(cons(h, t), x) ; append]σ(t, x).
The if rules of basic types (such as when α is instantiated with nat) have no dependency
pairs, but if we for instance consider σ := [bool× nat⇒nat× nat⇒nat]⇒nat⇒nat then
the rule ifσ(true, x, y)→ x does give a dependency pair ifσ(true, x, y) · z ; x · z.

The dependency graph is infinite, and part of it could be sketched like this:

append]σ1(cons(h, t), x)
; append]σ1(t, x)

append]σ2(cons(h, t), x)
; append]σ2(t, x)

append]σ3(cons(h, t), x)
; append]σ3(t, x)

ifσ1(true, x, y) · z ; x · z ifσ2(true, x, y) · z ; x · z . . .
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For a dependency graph approximation, it makes sense to combine all the “similar”
dependency pairs in one node. We choose the following finite graph approximation:

append](cons(h, t), x)
; append]σ1(t, x)

if(true, x, y)→ x

if(false, x, y)→ y

Here, all dependency pairs append]σ(cons(h, t), x) ; append]σ(t, x) are mapped to the append
node, and the ifσ(true, x, y) · z1 · · · zn ; x · z1 · · · zn are mapped to if(true, x, y) → x.
Note the different arrows: the append node uses a ; arrow, to indicate that it catches
dependency pairs of the first kind (see Definition 5.4) which have the given form, whereas
the if nodes use a → arrow and catch dependency pairs of the second kind.

Example 10.7 gives a good suggestion for how to split the dependency pairs into a finite
number of groups. For a polymorphic rule, we generate the set of dependency pairs of the
first kind as before, DP1(R) = {l] ; p] | l→ r ∈ R | p ∈ Cand(r)}; for all instances of the
rule, the dependency pairs of the first kind will be type instantiations of a pair in DP1(R).
For the nodes of the graph approximation we choose DP1(R), and in addition those rules
l→ r whose type is not a base type and where head(r) is either a variable or a term f(~r)
with f ∈ D. Now each dependency pair in the instantiated system is either mapped to the
corresponding pair in DP1(R), or, for a pair of the second kind, to the rule that generated it.

With this choice for the graph approximation we can avoid any infinite reasoning, if
we can find a reduction pair that is equipped to prove statements of the form “l � p for all
type instantiations” given l and p. Finding such reduction pairs is the object of separate
study, however. As for formative rules, it is not hard to devise an algorithm which, given a
symbol s, finds a set of polymorphic rules PFR such that the rewrite relation generated by
PFR is included in →FR(s) (the difficulty is in determining how good the result of such an
algorithm is, as it may well include more rules than strictly necessary). Usable rules require
only that every term has only finitely many reducts (item I in the proof of Theorem 8.6);
this is the case for systems generated from a finite set of polymorphic rules as well.

11. Experimental Results

In this section, we present the performance of the higher-order termination tool WANDA in
different settings: using only dynamic dependency pairs, using only static dependency pairs,
using both dynamic and static dependency pairs, and using only rule removal.

The dependency pair framework described in this paper, and in particular the algorithm
of Section 9, forms the core of the higher-order termination tool WANDA [20]. If the input
system is strongly plain function passing as described in Section 10.1, then collapsing
dependency pairs are dropped. If it is not strongly plain function passing, then a static
approach is attempted only when the dynamic approach fails. The tool WANDA uses a simple
form of argument functions immediately (if there is any constraint f(x1, . . . , xn) � r or
f(x1, . . . , xn)

(
�

)
r then the argument function π(f(~x)) = r is used), a proof-of-concept

implementation of polynomial interpretations in the natural numbers, and our own version
of a recursive path ordering (based on [22]) with argument filterings.
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The current termination problem database (8.0.1) contains 156 higher-order benchmarks;
out of these, 138 are local, and 133 are plain function passing. The following table sums up
how the various restrictions relate.

local not local not left-linear not fully extended
PFP 123 10 9 1
Strong PFP 88 9 8 1
Not PFP 15 8 4 6

We executed WANDA 1.64 with and without dependency pairs, and also once with the locality im-
provement disabled, on a dual Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz computer with
4G RAM and a 60 second timeout; the results are summarised in the table below. An evalu-
ation page with more details is available at http://www.few.vu.nl/~femke/lmcs2012/.

full WANDA dynamic DP static DP rule removal non-local
YES 122 119 114 75 100
NO 9 9 9 9 9
MAYBE 23 26 31 69 44
TIMEOUT 2 2 2 3 3
average runtime 1.33 1.97 1.40 0.89 1.82

In rule removal a reduction pair (�,�) is used where � is monotonic, and for all rules
either l � r or l � r; strictly oriented rules can be removed. The timeouts are mainly due
to WANDA’s strategy of trying more advanced polynomial interpretations if simple forms fail.
It is noticeable that the static style is a fair bit faster than the dynamic one; this is to
be expected, since it gives both fewer and easier constraints, and the subterm criterion in
particular often supplies a quick solution. The results for local AFSs of Section 6 give a
significant improvement over the basic dynamic dependency pair approach, but even the
basic result is a real improvement over rule removal.

This table demonstrates that using a dependency pair approach, either static or dynamic,
significantly improves the strength of an automatic termination tool for higher-order rewriting.
Moreover, the combination of static and dynamic dependency pairs is stronger than either
technique on its own; the two styles are truly incomparable.

12. Conclusion

We have presented a method to prove termination of AFSs using dynamic dependency pairs.
A first improvement of the method is obtained, for the subclass of local AFSs, by using
formative rules, which are a variation of the usable rules from the first-order case. Further
improvements are obtained by the use of argument functions, which are an extension of the
argument filterings from the first-order case, and the subterm criterion and usable rules for
non-collapsing dependency pairs. The ordering constraints generated by the dependency
pair approach can be solved not only using reduction pairs such as higher-order recursive
path orderings, but also using weakly monotonic algebras.

4This is not the version which was used in the last termination competition; there, polynomial interpreta-
tions had not yet been implemented.

http://www.few.vu.nl/~femke/lmcs2012/
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The dependency pair approach as presented here is implemented in the higher-order
termination tool WANDA [20] by the first author. It can be used on its own, or together with
a static approach in an automatic termination tool. Experiments with the termination
problem database have shown that the styles are incomparable, but have similar strength.

With this work we aim to contribute to the understanding of termination of higher-order
rewriting, and more in particular, to the understanding of dependency pairs, and to the
developments of tools to automatically prove termination of higher-order rewriting.

For future work, it would be interesting to generalise the dependency pair framework [10]
to the higher-order setting. This poses challenges like the question whether tags and formative
rules should be flags, or can be phrased as dependency pair processors. In a different direction,
we might study (and implement) the new method of formative rules in the first-order setting.
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