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Abstract. We prove a limitation on a variant of the KPT theorem proposed for propo-
sitional proof systems by Pich and Santhanam [7], for all proof systems that prove the
disjointness of two NP sets that are hard to distinguish.

For a coNP property ψ(x), given n ≥ 1, we can construct a size nO(1) propositional

formula ||ψ||n(x, y) with n atoms x = (x1, . . . , xn) and nO(1) atoms y such that for any
a ∈ {0, 1}n, ψ(a) is true iff ||ψ||n(a, y) ∈ TAUT. This is just a restatement of the NP-
completeness of SAT. In addition, if ψ(x) is defined in a suitable language of arithmetic
and has a suitable logical form, the translation can be defined purely syntactically without
a reference to machines or computations. This then allows to transform also a possible
first-order proof of ∀xψ(x) into a sequence of short propositional proofs of tautologies ||ψ||n,
n = 1, 2, . . . ; if the original proof uses axioms of theory T (essentially any sound r.e. theory)
then the propositional proofs will be in a proof system PT associated to T . Many standard
proof systems are of the form PT for some T , and this is often the most efficient way how to
construct short PT -proofs of uniform sequences of tautologies. Although the unprovability
of ∀xψ(x) in T does not imply lower bounds for PT -proofs of the tautologies, a method used
in establishing the unprovability sometimes yields an insight how the lower bound could be
proved. All this is a well-established part of proof complexity and the reader can find it
in [4, Chpt.12] (or in references given there).

The translation is, however, not entirely faithful for formulas of a certain logical form,
and this is an obstacle for transforming the conditional unprovability result for strong
universal theories in [3] into conditional lower bounds for strong proof systems. To explain
the problem in some detail assume ψ(x) has the form

∃i < |x|∀y(|y| = |x|) ϕ(x, i, y) (1)

where ϕ is a p-time property and |x| is the bit length of x. The provability of ∀xψ(x) in a
universal T can be analyzed using the KPT theorem which provides an efficient interactive
algorithm for finding i given x (cf. [6] or [4, Sec.12.2]). The same method does not, however,
work in the propositional setting. To illustrate this assume that ||ψ||n has a proof in proof
system PT attached to T and from that we can deduce in T that

∨

i<n

||ψ||n(x, i, yi) (2)
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is a tautology (in addition the translation assures that all yi are disjoint tuples of atoms).
This implies in T that for all assignments a and b = (b0, . . . , bn−1) for all x and all y
variables there is i < n such that ||ψ||n(a, b) is true. But to get (1) (and then use the KPT
analysis from [3]) we would need to show that for all a there is one i < n such that for all bi
the formula is true. Unfortunately, to derive this one needs to use the bounded collection
scheme (allowing to move the quantifier bounding i before the quantifier bounding bi) and
this scheme is not available in universal theories under consideration, cf. [1]. The reader
can find more about this issue in [3, Sec.5] or at the end of [4, Sec.12.8]; knowing this
background offers my motivation for this research (which differs perhaps from that of [7])
but it is not needed to understand the argument below.

Pich and Santhanam [7] proposed a direct way how to bypass this obstacle: simply
ignore it and prove a version of the KPT theorem for (some, at least) strong propositional
proof systems. For such proof systems a conditional lower bound can be indeed proved,
cf. [7] or [3].

Definition 1 [7]. Let P be a propositional proof system. The system has KPT interpo-

lation if there are a constant k ≥ 1 and k p-time functions

f1(x, z), f2(x, z, w1), . . . , fk(x, z, w1, . . . , wk−1)

such that whenever π is a P-proof of a disjunction of the form

A0(x, y1) ∨ · · · ∨Am−1(x, ym)

where x is a n-tuple of atoms and y1, . . . , ym are disjoint tuples of atoms, then for all
a ∈ {0, 1}n the following is valid for all b1, . . . , bm of the appropriate lengths:

• either Ai1(a, yi1) ∈ TAUT for i1 = f1(a, π) or, if Ai1(a, bi1) is false,
• Ai2(a, yi2) ∈ TAUT for i2 = f2(a, π, bi1) or, if Ai2(a, bi2) is false,
• . . . , or
• Aik(a, yik) ∈ TAUT for ik = fk(a, π, bi1 , . . . , bik−1

).

An illuminating interpretation of the definition can be made using the interactive commu-
nication model of [5] involving Student and Teacher. Student is a p-time machine while
Teacher has unlimited powers. At the beginning Student gets a ∈ {0, 1}n and the proof
π and computes from it his first candidate solution: index i1 such that Ai1(a, yi1) is —
he thinks — a tautology. Teacher either approves or she provides Student with a counter-
example: an assignment bi1 for yi1 which falsifies the formula. In the next round Student can
use this counter-example to propose his next candidate solution, etc. Functions f1, . . . fk
in the definition form a strategy for Student so that he solves the task for all a and π in k
steps in the worst case. Note that if we fixed m = 2 as in ordinary interpolation then k = 2
would suffice; the concept makes sense for variable m only.

Unfortunately, we show in this note that this property fails for strong proof systems
(above a low depth Frege system) for essentially the same reasons why ordinary feasible
interpolation fails for them (cf. [4, Sec.18.7]). For a set U ⊆ {0, 1}∗ and n ≥ 1 put Un :=
U ∩ {0, 1}n. LK3/2 is the Σ-depth 1 subsystem of sequent calculus (cf. [4, Sec.3.4]).

Theorem 2. Let P be a proof system containing LK3/2. Assume that U, V are disjoint NP
sets such that:

(1) Propositional formulas expressing that Un ∩ Vn = ∅ have p-size P-proofs.
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(2) For any constant c ≥ 1, for all large enough n there is a distribution Dn on {0, 1}n

with support Un ∪ Vn such that there is no size nc circuit Cn for which

Probx[(x ∈ Un ∧ Cn(x) = 1) ∨ (x ∈ Vn ∧ Cn(x) = 0)] ≥ 1/2 + n−c

where samples x in the probability are chosen according to Dn.

Then P does not admit KPT interpolation.

Remarks.

(1) An example of a pair of two NP sets U, V that are conjectured to satisfy the second con-
dition can be defined using one-way permutation (more generally an injective one-way
function with output length determined by input length) and its hard bit: U (resp. V )
are the strings in the range of the permutation whose hard bit is 1 (resp. 0). Distribu-
tion Dn is in this case generated by the permutation from the uniform distribution on
the seed strings, i.e. it is uniform itself.

(2) It is known that the hypothesis of the theorem can be fulfilled for systems such as EF,
F, TC0-F and, under stronger hypotheses about non-separability of U and V , also for
AC0-F above certain small depth; see the comprehensive discussion in [4, Sec.18.7].

(3) The phrase that P contains LK3/2 means for simplicity just that: P can operate with
sequents consisting of Σ-depth 1 formulas and all LK3/2-proofs are also P-proofs. How-
ever, this is used only in Claim 1 and, in fact, it would suffice that P represents formulas
U(x, y) and V (x, z) (defined below) in some other formalism and efficiently simulates
modus ponens.

Proof of the theorem occupies the rest of this note.

Write U(x, y) for a p-time relation that y witnesses x ∈ U and similarly V (x, z) for V ,
with the length of both y and z p-bounded in the length of x. Let n,m ≥ 1 and form strings
x1, . . . xm of length n each consider the following 2m propositional formulas translating the
predicates U(x, y) and V (x, z) (which we shall denote also U and V in order to ease on
notation):

• U(xi, yi): xi is an n-tuple of atoms for bits of xi and yi is an n
O(1)-tuple of atoms for bits

of a witness associated with xi together with bits needed to encode U as propositional
formula suitable for P (e.g. as 3CNF),

• V (xi, zi): analogously for V ,
• where all xi, yi, zi are disjoint.

Consider the induction statement:

x1 ∈ U ∧ (∀i < m, xi ∈ U → xi+1 ∈ U) → xm ∈ U (3)

and write it as a disjunction with m+ 1 disjuncts:

x1 /∈ U ∨
∨

i

(xi ∈ U ∧ xi+1 /∈ U) ∨ xm ∈ U . (4)

Now replace xi ∈ U by xi /∈ V and xm ∈ U by xm /∈ V and write it propositionally:

¬U(x1, y1) ∨
∨

i

[¬V (xi, zi) ∧ ¬U(xi+1, yi+1)] ∨ ¬V (xm, zm). (5)

Note that except the x-variables the m+ 1 disjuncts are disjoint.

Claim 1. (5) has a p-size proof in P.
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To see this note that induction (3) can be proved by simulating modus ponens (here we
use that P contains LK3/2). Disjunction (5) follows from it because we assume that the
disjointness of Un, Vn has short P-proofs, i.e. U(x, y) → ¬V (x, z) has a short proof.

Now apply the supposed KPT interpolation to (5). W.l.o.g. we shall assume (and
arrange that in the construction below) that x1 ∈ U and xm ∈ V (with witnesses y1 and
zm, respectively). Hence Student in the KPT computation is supposed to find i < m for
which the i-th disjunct

Ai := [¬V (xi, zi) ∧ ¬U(xi+1, yi+1)] , i = 1, . . . ,m− 1

is valid (i.e. where the induction step going from i to i + 1 fails). We shall show that the
existence of such a KPT p-time Student allows to separate Un from Vn with a non-negligible
advantage violating the hypotheses of the theorem.

Take any m such that 3 · 2k−1 ≤ m ≤ nO(1) (the upper bound implies that the proof in

Claim 1 is of size nO(1)). For 1 ≤ i < m define:

Wi[m] := U i × V m−i and W [m] :=
⋃

i

Wi[m] .

Note that any string w = (w1, . . . , wm) ∈W [m] satisfies w1 ∈ U and wm ∈ V .
Let k ≥ 1 and f1, . . . , fk be the constant and the p-time functions provided the assumed

KPT interpolation for P. Assume that 1 ≤ i1 < m is the most frequent value f1 computes
on inputs from W [m] (thinking of a P-proof π as fixed). This maximal frequency γ is at
least 1/m. (Here the frequency means with respect to the product of distributions Dn on
{0, 1}n for which it is assumed that Un, Vn are hard to separate.)

Claim 2. The frequency on Wi1 [m] is at least γ − nω(1), i.e. it is at least 1/m modulo a
negligible error.

Note that for any i < j the frequency for Wi[m],Wj [m] can differ only negligibly because
otherwise we could use the usual triangle inequality argument to find a non-negligible dis-
crepancy between frequencies on Wt[m] and Wt+1[m] for some i ≤ t < j, and use it to
separate Un from Vn (on position t + 1, after fixing the rest of coordinates by averaging).
Because all Wi[m] are disjoint, the frequency must be γ up to a negligible difference.

Now we describe a process that transforms the assumed successful strategy for Student
into a p-time algorithmwithp-size advice, separating Un, Vn with a non-negligible advantage.

Assume first i1 < m/2. By averaging there are u1, . . . um/2 ∈ Un s.t. f1(w) = i1 with
frequency at least 1/(2m) (the factor 2 in the denominator allows us to forget about the
“up to the negligible error” phrase) for all w of the form:

{u1} × · · · × {um/2} ×W [m/2] .

Fix such u1, . . . , um/2 and also witnesses a1, . . . , am/2 for their membership in U . These will
be used as advice for the eventual algorithm.

If i1 ≥ m/2 then fill analogously the last m/2 positions by elements of Vn and include
the relevant witnesses in the advice. W.l.o.g. we assume that the first case i1 < m/2
occurred.

We interpret this situation as reducing the Student-Teacher computation to k−1 rounds
on smaller universe W [m/2]. Namely, given w = (w1, . . . , wm/2) ∈W [m/2] define:

w̃ := (u1, . . . , um/2, w1, . . . , wm/2) ∈ W [m] (6)
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and run f1 on w̃. If f1(w̃) 6= i1, declare failure. Otherwise use the advice witnesses to
produce a falsifying assignment for Ai1 : U(ui1+1, ai1+1) holds.

After this first step use functions f2, f3, . . . (and Claim 2 for the smaller universes) and
as long as they give values j < m/2 always answer for Teacher using the advice strings aj.
Eventually Student proposes value j ≥ m/2: choose the most frequent such value i2 ≥ m/2
and proceed as in case of i1, further restricting domain (6) as in binary search. Repeating
this at most (k − 1)-times the situation will be as follows:

(1) The universe will shrink at most to W [m/(2k−1)] which is at least W [3]. In fact, we
shall arrange in the last step that exactly W [3] remains (by filling in more positions by
elements of Un or Vn, respectively, if needed) and hence the inputs before applying the
last KPT function fk are of the form (w1, w2, w3) with w1 ∈ U and w3 ∈ V .

Note that Student gets to use fk because if he succeeded earlier it would violate
Claim 2.

(2) The last function fk has to find a gap in the induction, and this itself will violate Claim 2.
In particular, the gap is either between w1 and w2 and then w2 ∈ V , or between w2 and
w3 and then w2 ∈ U .

(3) This process has the probability ≥ 1/(2m), i.e. non-negligible, of not failing in any of
the k − 1 rounds and hence it will not fail and will compute correctly the membership
of (any) w2 in U or V with a non-negligible probability. In all cases when the process
fails output random bit 0 or 1 with equal probability.

This proves the theorem.

We conclude by pointing out that the KPT theorem enters propositional proof complexity
also via notions of pseudo-surjective and iterable maps in the theory of proof complexity
generators, cf. [2] or [4, Sec.19.4] for detailed expositions of this subject.
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