
Logical Methods in Computer Science
Vol. 7 (2:7) 2011, pp. 1–53
www.lmcs-online.org

Submitted Oct. 10, 2010
Published May 16, 2011

SYMBOLIC AND ASYNCHRONOUS SEMANTICS

VIA NORMALIZED COALGEBRAS ∗

FILIPPO BONCHI a AND UGO MONTANARI b

a ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)
e-mail address: filippo.bonchi@ens-lyon.fr

b Department of Informatics, University of Pisa
e-mail address: ugo@di.unipi.it

Abstract. The operational semantics of interactive systems is usually described by la-
beled transition systems. Abstract semantics (that is defined in terms of bisimilarity) is
characterized by the final morphism in some category of coalgebras. Since the behaviour
of interactive systems is for many reasons infinite, symbolic semantics were introduced
as a mean to define smaller, possibly finite, transition systems, by employing symbolic
actions and avoiding some sources of infiniteness. Unfortunately, symbolic bisimilarity has
a different shape with respect to ordinary bisimilarity, and thus the standard coalgebraic
characterization does not work. In this paper, we introduce its coalgebraic models.

We will use as motivating examples two asynchronous formalisms: open Petri nets and
asynchronous pi-calculus. Indeed, as we have shown in a previous paper, asynchronous
bisimilarity can be seen as an instance of symbolic bisimilarity.

Introduction

A compositional interactive system is usually defined as a labelled transition system (lts)
where states are equipped with an algebraic structure. Abstract semantics is often defined
as bisimilarity. Then a key property is that “bisimilarity is a congruence”, i.e., that abstract
semantics respects the algebraic operations.

Universal Coalgebra [40] provides a categorical framework where the behaviour of dy-
namical systems can be characterized as final semantics. More precisely, if CoalgB (i.e.,
the category of B-coalgebras and B-cohomomorphisms for a certain endofunctor B) has a
final object, then the behavior of a B-coalgebra is defined as a final morphism. Intuitively,
a final object is a universe of abstract behaviors and a final morphism is a function mapping
each system in its abstract behavior. Ordinary ltss can be represented as coalgebras for
a suitable functor. Then, two states are bisimilar if and only if they are identified by a

1998 ACM Subject Classification: F.3.2.
Key words and phrases: Symbolic Semantics, Coalgebras, Process Calculi, Petri nets.

∗ This paper is an extended version of [9].
a This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme.
b Research supported in part by IST-FP7-FET open-IP project ASCENS .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:7) 2011
c© F. Bonchi and U. Montanari
CC© Creative Commons

http://creativecommons.org/about/licenses

2 F. BONCHI AND U. MONTANARI

final morphism. The image of a certain lts through a final morphism is its minimal rep-
resentative (with respect to bisimilarity), which in the finite case can be computed via the
partition refinement algorithm [26]. Existence and construction of the minimal transition
system is a key property of the coalgebraic approach. It allows to model check efficiently
for several properties by eliminating redundant states once and for all. In fact most model
checking logics are adequate, namely either a formula holds in both the given system and
in its minimal representative or it does not hold in both of them.

When bisimilarity is not a congruence, the abstract semantics is defined either as the
largest congruence contained in bisimilarity [31] or as the largest bisimulation that is also
a congruence [36]. In this paper we focus on the latter and we call it saturated bisimilarity
(∼S). Indeed it coincides with ordinary bisimilarity on the saturated transition system that

is obtained from the original lts by adding the transition p
c,a
−→ q, for every context c,

whenever c(p)
a
−→ q.

Many interesting abstract semantics are defined in this way. For example, since late
and early bisimilarity of the π-calculus [33] are not preserved under substitution (and thus
under input prefixes), in [41] Sangiorgi introduces open bisimilarity as the largest bisimula-
tion on π-calculus agents which is closed under substitutions. Other noteworthy examples
are asynchronous π-calculus [1, 25], mobile ambients calculus [12, 30] and (explicit [43])
fusion calculus [37]. The definition of saturated bisimilarity as ordinary bisimilarity on the
saturated lts often makes infinite the portion of lts reachable by any nontrivial agent and,
in any case, is very inefficient, since it introduces a large number of additional states and
transitions. Inspired by Hennessy and Lin [24], who introduced a symbolic semantics of
value passing calculi, Sangiorgi defines in [41] a symbolic transition system and symbolic
bisimilarity that efficiently characterizes open bisimilarity. After this, many formalisms
have been equipped with a symbolic semantics.

In [8], we have introduced a general model that describes at an abstract level both

saturated and symbolic semantics. In this abstract setting, a symbolic transition p
c,α
−→β p′

means that c(p)
α
−→ p′ and c is a smallest context that allows p to performs such a transition.

Moreover, a certain derivation relation ⊢ amongst the transitions of a system is defined:

p
c1,α1
−−→ p1 ⊢ p

c2,α2
−−→ p2 means that the latter transition is a logical consequence of the former.

In this way, if all and only the saturated transitions are logical consequences of symbolic
transitions, then saturated bisimilarity can be retrieved via the symbolic lts.

Unfortunately, the ordinary bisimilarity over the symbolic transition system differs from
saturated bisimilarity. Symbolic bisimilarity is thus defined with an asymmetric shape: in
the bisimulation game, when a player proposes a transition, the opponent can answer with

a move with a different label. For example in the open π-calculus, a transition p
[a=b],τ
−−−→ p′

can be matched by q
τ
−→ q′. Moreover, the bisimulation game does not restart from p′ and

q′, but from p′ and q′{b/a}.

For this reason, ordinary coalgebras fail to characterize symbolic bisimilarity. Here, we
provide coalgebraic models for it by relying on the framework of [8].

Consider the example of open bisimilarity discussed above. The fact that open bisimu-
lation does not relate the arriving states p′ and q′, but p′ and q′{b/a}, forces us to look for
models equipped with an algebraic structure. In [42], bialgebras are introduced as a both

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 3

algebraic and coalgebraic model, while an alternative approach based on structured coalge-
bras, i.e., on coalgebras in categories of algebras, is presented in [13]. In this paper we adopt
the latter and we introduce CoalgH (Section 6), a category of structured coalgebras where
the saturated transition system can be naively modeled in such a way that ∼S coincides
with the kernel of a final morphism. Then, we focus only on those H-coalgebras whose
sets of transitions are closed w.r.t. the derivation relation ⊢. These form the category of
saturated coalgebras CoalgST

(Section 7.1) that is (isomorphic to) a covariety of CoalgH.
Thus, it has a final object and bisimilarity coincides with the one in CoalgH.

In order to characterize symbolic bisimilarity, we introduce the notions of redundant

transition and semantically redundant transition. Intuitively, a transition p
c2,α2
−−→ q is

redundant if there exists another transition p
c1,α1
−−→ p1 that logically implies it, that is

p
c1,α1
−−→ p1 ⊢ p

c2,α2
−−→ q; it is semantically redundant, if it is “redundant up to bisimilarity”,

i.e., p
c1,α1
−−→ p1 ⊢ p

c2,α2
−−→ p2 and q is bisimilar to p2. Now, in order to retrieve saturated

bisimilarity by disregarding redundant transitions, we have to remove from the saturated
transition system not only all the redundant transitions, but also the semantically redun-
dant ones. This is done in the category of normalized coalgebras CoalgNT

(Section 7.2).
These are defined as coalgebras without redundant transitions. Thus, by definition, a final
coalgebra in CoalgNT

has no semantically redundant transitions.
We prove that CoalgST

and CoalgNT
are isomorphic (Section 7.3). This means that

a final morphism in the latter category still characterizes ∼S, but with two important
differences w.r.t. CoalgST

. First of all, in a final NT-coalgebra, there are no semantically
redundant transitions. Intuitively, a final NT-coalgebra is a universe of abstract symbolic
behaviours and a final morphism maps each system in its abstract symbolic behaviour.
Secondly, minimization in CoalgNT

is feasible, while in CoalgST
is not, because saturated

coalgebras have all the redundant transitions. Minimizing in CoalgNT
coincides with a

symbolic minimization algorithm that we have introduced in [10] (Section 8). The algorithm
shows another peculiarity of normalized coalgebras: minimization relies on the algebraic
structure. Since in bialgebras bisimilarity abstracts away from this, we can conclude that our
normalized coalgebras are not bialgebras. This is the reason why we work with structured
coalgebras.

As motivating examples we will show open Petri nets [27, 3] (Section 2) and asynchro-
nous π-calculus [25, 1] (Section 1). In [8], we have shown that asynchronous bisimilarity
[1] is an instance of symbolic bisimilarity. Indeed, in the definition of asynchronous bisim-

ulation, the input transition p
a(b)
−→ p′ can be matched either by q

a(b)
−→ q′ or by q

τ
−→ q′. In

the latter case, the bisimulation game does not restart from p′ and q′ but from p′ and q′|ab.
Thus our framework will provide, as lateral result, also a coalgebraic model for asynchronous
bisimilarity that, as far as we know, has never been proposed so far.

In Section 4 and 5 we report the framework of [8] and we recall the basic notions on
(structured) coalgebras. In Section 3 we introduce a further example aimed at clarifying the
whole framework (by avoiding all the technical details of open Petri nets and asynchronous
π). All proofs are in Appendix.

Previous works. Our work relies on the framework introduced in [8] and on the mini-
mization algorithm in [10]. In this work we focus on the coalgebraic characterization of
them that appeared in [9]. The present paper extends [9] by (1) introducing the example of
asynchronous π-calculus, (2) by adding all the proofs, (3) by explaining in full details the

4 F. BONCHI AND U. MONTANARI

relationship with the minimization algorithm in [10]. Normalized coalgebras have been pre-
viously introduced in [7] for giving a coalgebraic characterization of the theory of reactive
systems by Leifer and Milner [29].

1. Asynchronous π-calculus

Asynchronous π-calculus has been introduced in [25] for modeling distributed systems in-
teracting via asynchronous message passing. Differently from the synchronous case, where
messages are sent and received at the same time, in the asynchronous communication, mes-
sages are sent and travel through some media until they reach the destination. Therefore
sending messages is non blocking (i.e., a process can send messages even if the receiver is
not ready to receive), while receiving is blocking (processes must wait until the message has
arrived). This asymmetry is reflected on the observations: since sending is non blocking,
receiving is unobservable.

In this section, we introduce asynchronous π-calculus and two definitions of bisimilarity
(∼1 and ∼a) that, as proved in [1], coincide. In Section 4, we will show that the first is an
instance of our general definition of saturated bisimilarity (Definition 4.2) while the second
of symbolic bisimilarity (Definition 4.11).

Let N be a set of names (ranged over by a, b, c . . .) with τ /∈ N . The set of π-processes
is defined by the following grammar:

p ::= ab, p1|p2, νa.p, !g, m m ::= 0, α.p, m1 +m2 α ::= a(b), τ

The main difference with the ordinary π-calculus [33] is that here output prefixes are missing.
The occurrence of an unguarded āb can be thought of as message b that is available on some
communication media named a. This message is received whenever it disappears, i.e., it is
consumed by some process performing an input. Thus the action of sending happens when
āb becomes unguarded.

Considering a(b).p and νb.p, the occurrences of b in p are bound. An occurrence of a
name in a process is free, if it is not bound. The set of free names of p (denoted by fn(p)) is
the set of names that have a free occurrence in the process p. The process p is α-equivalent
to q (written p ≡α q), if they are equivalent up to α-renaming of bound occurrences of
names. The operational semantics of π-calculus is a transition system labeled on actions
Act = {a(b), ab, a(b), τ | a, b ∈ N} (ranged over by µ) where b is a bound name (written
b ∈ bn(µ)) in a(b) and a(b). In all the other cases a and b are free in µ (a, b ∈ fn(µ)). By
nm(µ) we denote the set of both free and bound names of µ.

The labeled transition system (lts) is inductively defined by the rules in Table 1, where
we have omitted the symmetric version of the rules sum, par, com and cls and where we
consider processes up to α-equivalence, i.e., we have implicitly assumed the rule

p
µ
−→ q p ≡α p′

p′
µ
−→ q

.

The main difference with the synchronous case is in the notion of observation. Since
sending messages is non-blocking, then an external observer can just send messages to a
system without knowing if they will be received or not. For this reason the receiving action
is not observable and the abstract semantics is defined disregarding input transitions.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 5

(tau) τ.p
τ
−→ p (in) a(b).p

a(c)
−→ p{c/b} (out) ab

ab
−→ 0

(com)
p

ab
−→ p′ q

a(b)
−→ q′

p|q
τ
−→ p′|q′

(sum)
p

µ
−→ p′

p+ q
µ
−→ p′

(par)
p

µ
−→ p′

p|q
µ
−→ p′|q

bn(µ) ∩ fn(q) = ∅

(opn)
p

ab
−→ p′

νb.p
a(b)
−→ p′

b 6= a (rep)
m|!m

µ
−→ q

!m
µ
−→ q

(cls)
p

a(b)
−→ p′ q

a(b)
−→ q′

p|q
τ
−→ νb.p′|q′

b /∈ fn(q)

(res)
p

µ
−→ p′

νb.p
µ
−→ νb.p′

b /∈ nm(µ)

Table 1: Operational semantics of asynchronous π-calculus.

As in the case of the standard π-calculus, in the bisimulation game we have to take

care of the bound names in output actions. Indeed, when a process p
a(b)
−→ p′, the name b is

initially bound in p and becomes free in p′. Thus, in order to avoid name-clashes, in the
bisimulation game when comparing p and q, we require b to be fresh, namely, different from
all the free names of p and q. In the following definitions, by “bn(µ) is fresh” we mean that
if µ has a bound name, then it is fresh.

Definition 1.1 (oτ -Bisimilarity). A symmetric relation R is an oτ -bisimulation iff, when-
ever pRq:

• if p
µ
−→ p′ where µ is not an input action and bn(µ) is fresh, then ∃q′ such that q

µ
−→ q′

and p′Rq′.

We say that p and q are oτ -bisimilar (written p ∼oτ q) if and only if there exists an oτ -
bisimulation relating them.

Note that a(x).yx ∼oτ a(x).dx, even if the two processes are really different when they
are put in parallel with a process ab. In order to obtain an abstract semantics preserved
under parallel composition, we proceed analogously to saturated bisimilarity (that we will
show in Definition 4.2), i.e., at any step of the bisimulation we put the process in parallel
with all possible outputs.

Definition 1.2 (1-Bisimilarity). A symmetric relation R is an 1-bisimulation iff, ∀ab, when-
ever pRq,

• if ab|p
µ
−→ p′ where µ is not an input action and bn(µ) is fresh, then ∃q′ such that ab|q

µ
−→ q′

and p′Rq′.

We say that p and q are 1-bisimilar (written p ∼1 q) if and only if there exists an 1-
bisimulation relating them.

The above definition is not very efficient since it considers a quantification over all
possible output in parallel. Instead of considering all possible output contexts, we could
also consider the input actions. This leads to the following notion of syntactic bisimulation.

Definition 1.3 (Syntactic Bisimilarity). A symmetric relation R is a syntactic bisimulation
iff, whenever pRq:

• if p
µ
−→ p′ where bn(µ) is fresh, then ∃q′ such that q

µ
−→ q′ and p′Rq′.

We say that p and q are syntactic bisimilar (written p ∼SY N q) if and only if there exists a
syntactic bisimulation relating them.

6 F. BONCHI AND U. MONTANARI

. . .

ab
ab

��
τ.νy.ya+ a(b).ab a(a) //

τ **UUUUUUU

a(b)hhhh

33hh
a(c)

ooooooo

77oo

τ **UUUUUUU
aa

aa // 0 τ.0
τoo

νy.ya νy.ya|aa
aaoo

(A)

. . .

ab2
−,ab // 02

τ.νy.ya+ a(b).ab1

−|ab,τ //

... //

−|aa,τ //

−,τ **VVVVVVV
aa1

−,aa // 01 τ.01
−,τoo

νy.ya1 νy.ya|aa1
−,aaoo

νy.ya2 νy.ya|ab2
−,aboo

(B)

.

ac3

...

OO

...vv

;;vvvvv

ad4

...

OO

...tt

99tttttt...HH

ccHHHHH

. . .

τ.01
−,τ

��

−|ab,τ

""D
DD

DD
DD

−|ab|ac,τ
��

... //
−|ac,τ

OO
−|ad,τ
yy

<<yy
...kkkkkkk

55kkkkkkkk

. . .

01
...

��

...GG

##G
GGGG

ab2
...ww

{{wwww
w ...

��

...JJ

$$JJ
JJ

JJ

ab|ac3
...

��

...tt

zzttt
tt

t

.
(C)

Figure 1: (A) Part of the infinite lts of τ.νy.ya + a(b).ab and the lts of τ.0. (B) The
symbolic transition system α of τ.νy.ya + a(b).ab1 and τ.01. (C) Part of the
infinite saturated transition system of τ.01.

Note that syntactic bisimilarity is strictly included into 1-bisimilarity. Indeed,

τ + a(b).ab ∼1 τ , but τ + a(b).ab 6∼SY N τ .

The former equivalence can be understood by observing that both processes can perform
a τ transition in any possible context and, when inserted into the context −|ax, both
can perform a τ transition going into ax. More generally, it holds that for all processes
p ∼1 q ∼1 r:

τ.p+ a(b).(ab|q) ∼1 τ.r

For instance, by taking q = r = 0 and p = νy.ya (that is 1-bisimilar to 0, since both cannot
move), we have that τ.νy.ya+ a(b).ab ∼1 τ.0. Their ltss are shown in Figure 1(A).

In order to efficiently characterize ∼1, without considering all possible contexts, we
have to properly tackle the input transitions.

Definition 1.4 (Asynchronous Bisimilarity). A symmetric relation R is an asynchronous
bisimulation iff whenever pRq,

• if p
µ
−→ p′ where µ is not an input action and bn(µ) is fresh, then ∃q′ such that q

µ
−→ q′

and p′Rq′,

• if p
a(b)
−→ p′, then ∃q′ such that either q

a(b)
−→ q′ and p′Rq′, or q

τ
−→ q′ and p′R(q′|ab).

We say that p and q are asynchronous bisimilar (written p ∼a q) if and only if there is an
asynchronous bisimulation relating them.

For instance, the symmetric closure of the following relation is an asynchronous bisim-
ulation.

R = {(τ.νy.ya+ a(b).ab, τ.0), (νy.ya,0)} ∪ {(ax, νy.ya|ax) | x ∈ N}

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 7

(A) a
+x //

+y
��

ax
+x //

+y
��

α
%%KK

K axx
+x //

+y ��

α
&&MMM

. . .

c
+x //

+y
��

. . .

.
. . .

(B) b
x,α // c

y,β // z cy
∅,βoo

a
xy,α

//

x,α
wwww

;;wwww

d

∅,β
uuuu

::uuuu

y,β
// zy

Figure 2: S1 and S2 are two open Petri nets. (A) Part of the infinite transition system of
〈S2, a〉. (B) The symbolic transition system of 〈S2, a〉, 〈S2, b〉 and 〈S2, cy〉.

In [1], it is proved that ∼1=∼a. In Section 4 we will show that this result is an instance of
a more general theorem (Theorem 4.12), since ∼1 is an instance of saturated bisimilarity
and ∼a is an instance of symbolic bisimilarity. The main contribute of this paper is to
give coalgebraic characterization to saturated and symbolic semantics and thus we will
characterize both ∼1 and ∼a via coalgebras.

2. Open Petri nets

Differently from process calculi, Petri nets do not have a widely known interactive behavior.
Indeed they model concurrent systems that are closed, in the sense that they do not interact
with the environment. Open nets [27, 3] are P/T Petri nets [39] that can interact by
exchanging tokens on input and output places.

Given a set X, we write X⊕ for the free commutative monoid over X. A multiset
m ∈ X⊕ is a finite function from X to ω (the set of natural numbers) that associates a
multiplicity to every element of X. Given two multisets m1 and m2, m1 ⊕m2 is defined as
∀x ∈ X, m1 ⊕m2(x) = m1(x) +m2(x). We write ∅ to denote respectively both the empty
set and the empty multiset. In order to make lighter the notation we will use aab to denote
the multiset {a, a, b}. Sometimes we will use anbm to denote the multisets containing n
copies of a and m copies of b.

Definition 2.1 (Open Net). An open net is a tuple N = (S, T, pre, post, l, I, O) where S
is the set of places, T is the set of transitions (with S ∩ T = ∅), pre, post : T → S⊕ are
functions mapping each transition to its pre- and post-set, l : T → Λ is a labeling function
(Λ is a set of labels) and I,O ⊆ S are the sets of input and output places. A marked open
net (shortly, marked net) is pair 〈N,m〉 where N is an open net and m ∈ S⊕ is a marking.

It is worth noting that standard P/T Petri nets can be thought of as open nets whose
sets I and O are empty. Figure 2 shows two open nets where, as usual, circles represents
places and rectangles transitions (labeled with α, β, χ). Arrows from places to transitions
represent pre, while arrows from transitions to places represent post. Input places are
denoted by ingoing edges, while output places are denoted by outgoing edges. Thus in S1,
x and y are output places, while z is the only input place. In S2, it is the converse. The

8 F. BONCHI AND U. MONTANARI

(tr)
t ∈ T λ(t) = l m = •t⊕ c

N,m
l
−→ N, t• ⊕ c

(in) i ∈ IN

N,m
+i
−→ N,m⊕ i

(out) o ∈ ON o ∈ m

N,m
−o
−→ N,m⊖ o

Table 2: Operational Semantics of marked open nets.

a
+$ //

α
��

a$
+$ //

α
��

a$2
+$ //

α

��

. . .

b
+$ // b$

+$ //

β
``

. . .

(A)
a

∅,α
��

$,α
AA

A

 A
A $2,α
QQQQQQ

((QQQQQ
$3,α

**UUUUUUUUUUUUUUUUUUUU

b
$,β

11

$2,β

;;

$3,β

66
$4,β

22b$∅,βoo b$2∅,βoo . . .

(B)

a
∅,α // b

$,β

��
c

$5,α // d

∅,β

��
e

$3,α // f
∅,β // g

∅,β // h
∅,β // i

$,β

��

l
$3,α //

∅,α %%KK
KK

KK m
∅,β // n

∅,β // o
∅,β // p

$,β

mm

q
$,β��

r
$5,α

**

∅,α %%LLLLL s

∅,β

mm

t

$,β��
(C)

Figure 3: The open nets N1, N2, N3, N4 and N5. (A) Part of the infinite transition system
of 〈N1, a〉. (B) Part of the infinite saturated transition system of 〈N1, a〉. (C)
The symbolic transition systems of 〈N1, a〉,〈N2, c〉,〈N3, e〉,〈N4, l〉 and 〈N5, r〉.

parallel composition of two nets is defined by attaching them on their input and output
places. As an example, we can compose S1 and S2 by attaching them through x, y and z.

The operational semantics of marked open nets is expressed by the rules on Table 2,
where we use •t and t• to denote pre(t) and post(t) and we avoid putting bracket around
the marked net 〈N,m〉, in order to make lighter the notation. The rule (tr) is the standard
rule of P/T nets (seen as multisets rewriting), while the other two are specific of open nets.
The rule (in) states that in any moment a token can be inserted inside an input place and,
for this reason, the lts has always an infinite number of states. The rule (out) states
that when a token is in an output place, it can be removed. Figure 2(A) shows part of the
infinite transition system of 〈S2, a〉.

The abstract semantics is defined in [2] as the standard bisimilarity (denoted by ∼N)
and it is a congruence under the parallel composition outlined above. This is due to the rules
(in) and (out), since they put a marked net in all the possible contexts. If we consider
just the rule (tr), then bisimilarity fails to be a congruence. Thus also for open nets,
the canonical definition of bisimulation consists in inserting the system in all the possible
contexts and observing what happens.

In the remainder of the paper we will use as running example the open nets in Figure 3.
Since all the places have different names (with the exception of $), in order to make lighter

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 9

the notation, we write only the marking to mean the corresponding marked net, e.g. b2$
means the marked net 〈N1, b

2$〉.
The marked net a (i.e., 〈N1, a〉) represents a system that provides a service β. After

the activation α, it provides β whenever the client pay one $ (i.e., the environment insert
a token into $). The marked net c instead requires five $ during the activation, but then
provides the service β for free. The marked net e, requires three $ during the activation.
For three times, the service β is performed for free and then it costs one $. It is easy to see
that all these marked nets are not bisimilar. Indeed, a client that has only one $ can have
the service β only with a, while a client with five $ can have the service β for six times only
with c. The marked net r represents a system that offers the behaviour of both a and c, i.e.,
either the activation α is for free and then the service β costs one, or the activation costs
five and then the service is for free. Also this marked net is different from all the others.

Now consider the marked net l. It offers the behaviour of both a and e, but it is
equivalent to a, i.e., l ∼N a. Roughly, the behaviour of e is absorbed by the behaviour of
a. This is analogous to what happens in the asynchronous π-calculus where it holds that
a(x).(ax | p) + τ.p ∼1 τ.p.

The definition of ∼N involves an infinite transition system and thus it is often hard to
check. As in the case of ∼1 for the asynchronous π-calculus, we would like to efficiently
characterize it. In the following we show an efficient characterization of ∼N , that we have
introduced in [8]. Here and in the rest of the paper, to make simpler the presentation we
restrict to open nets with only input places. The general case, is completely analogous and
can be found in [8, 4].

First of all, we have to define a symbolic transition system that, analogously to the
operational semantics of the asynchronous π, performs input-transitions only when needed.
We call it η.

Intuitively, the symbolic transition N,m
i,λ
−→η N,m′ is possible if and only if N,m ⊕

i
λ
−→ N,m′ and i is the smallest multiset (on input places) allowing such transition. This

transition system is formally defined by the following rule.

t ∈ T l(t) = λ m = (m ∩ •t)⊕ n i ⊆ I⊕ •t = (m ∩ •t)⊕ i

N,m
i,λ
−→η N, t• ⊕ n

The marking m∩ •t contains all the tokens of m that are needed to perform the transition
t. The marking n contains all the tokens of m that are not useful for performing t, while
the marking i contains all the tokens that m needs to reach •t. Note that i is exactly the
smallest multiset that is needed to perform the transition t. Indeed if we take i1 strictly
included into i, m⊕i1 cannot match •t. As an example consider the net N2 in Figure 3 with
marking cd$2 and let t be the only transition labeled with α. We have that cd$2∩ •t = c$2,

n = d and i = $3. Thus N2, cd$
2 $3,α
−→η N2, dd, meaning that cd$2 needs $3 to perform α and

going into dd. Figure 3(C) shows some symbolic transition systems.
Note that analogously to ∼SY N for the asynchronous π-calculus, the ordinary definition

of bisimilarity on the symbolic transition systems for nets, does not coincide with ∼N .
Indeed the symbolic transition systems of a and l in Figure 3(C) are not bisimilar, but as
discussed above, a ∼N l. In order to efficiently characterize ∼N , we have to introduce the
following definition.

10 F. BONCHI AND U. MONTANARI

Definition 2.2 (Net-symbolic Bisimilarity). A symmetric relation R is a net-symbolic
bisimulation iff, whenever 〈N1,m1〉 R 〈N2,m2〉:

• if 〈N1,m1〉
i,λ
−→η 〈N1,m

′
1〉, then exists a marking m′

2 and ∃j, k ∈ I⊕ such that:
(a) i = j ⊕ k,

(b) 〈N2,m2〉
j,λ
−→η 〈N2,m

′
2〉 and

(c) 〈N1,m
′
1〉 R 〈N2,m

′
2 ⊕ k〉.

Two marked nets are net-symbolic bisimilar (written ∼NS) whenever there is a symbolic
bisimulation relating them.

For instance, the symmetric closure of the following relation is a net-symbolic bisimu-
lation.

R = {(l, a), (q, b), (m, b$3), (n, b$2), (o, b$), (p, b)}

In [8], we have shown that ∼N=∼NS. In Section 4, we will show that the former is an
instance of saturated bisimilarity, while the latter is an instance of symbolic bisimilarity.
In Section 7.1 and 7.2, we will give a coalgebraic characterization of both ∼N and ∼NS by
mean of saturated and normalized coalgebras.

3. A Simple Words Calculus

In the next section we will show a theoretical framework encompassing both asynchronous
π-calculus and open Petri nets. In this section, we introduce a simple words calculus (swc)
as a further instance of the framework presented in the next section. The aim of this “toy
calculus” is to provide a more gentle example of the concepts that will be introduced after-
ward, by avoiding all the technicalities that arise with “real formalisms” like asynchronous
π-calculus and open Petri nets.

Let A be an alphabet of symbols (ranged over by a, b, c . . .) and A∗ be the set of finite
words over A (ranged over by u, v, w . . .). We use ε to denote the empty word and uv
to denote the concatenation of the words u and v. The set of processes is defined by the
following grammar (where u ∈ A∗).

p ::= 0, u.p, p1 + p2

A configuration is a pair u⊲ p where u is a word (in A∗) representing some resources and p
a process (generated by the above grammar). The set of all configurations (ranged over by
γ1, γ2, . . .) is denoted by Conf . The algebra W has as carrier-set Conf and as operators
the words v ∈ A∗. The function vW : Conf → Conf maps each configuration u ⊲ p into
uv ⊲ p. Intuitively, vW represents a context where configurations can be inserted: the
effect of this insertion is that of adding v (via word-concatenation) to the resources of the
configuration. This is analogous to asynchronous π-calculus and open nets. There, resources
are respectively outputs (in parallel) and tokens (in input places). Moreover, in those
formalisms the environment can arbitrarily add new resources (via context composition).

Differently from asynchronous π and open nets, in swc all the transitions are labeled
with the same observation •. Therefore, we fix the set of observations of swc to beOW = {•}
(the subscript W will be useful later to distinguish the observations of swc from those of
asynchronous π and open nets). The operational semantics of swc is given by the transition

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 11

relation trW ⊆ Conf × OW × Conf defined by the following rules (together with the
symmetric one for +).

uv ⊲ u.p
•
−→ uv ⊲ p

u⊲ p
•
−→ u⊲ p′

u⊲ p+ q
•
−→ u⊲ p′

Intuitively, the process u.p needs the resources u in order to evolve. If u is present in the
configuration (as a suffix) then, u.p becomes p. Note that, differently from asynchronous π
and open nets, the resources u are not consumed, but only “read” (we have chosen to give
this read-behavior to swc, just for simplifying the following examples).

Definition 3.1 (Saturated Bisimilarity for swc). Let R ⊆ Conf × Conf be a symmetric
relation. R is a saturated bisimulation iff, ∀v ∈ A∗, whenever γ1 R γ2:

• vW(γ1)R vW(γ2),

• if γ1
•
−→ γ′1, then ∃γ

′
2 such that γ2

•
−→ γ′2 and γ′1 R γ′2.

We write γ1 ∼
S γ2 iff there is a saturated bisimulation R such that γ1 R γ2.

For instance, the configurations ab⊲ ab.0 and ab⊲ ε.0 are saturated bisimilar, because
for any word v both abv⊲ab.0 and abv⊲ε.0 can only perform one transition and then stop.
A more interesting example is the following. For all words u, v ∈ A∗ such that v = uw (i.e.,
u is a prefix of v), it holds that

ε⊲ u.p+ v.p ∼S ε⊲ u.p

because for any word v′ ∈ A∗, v′⊲u.p+v.p and v′⊲u.p have the same behaviour. For those
v′ having u as prefix (i.e., v′ = uw′), both the configurations can only perform transitions
going into v′ ⊲ p; for those v′ where u is not a prefix, both the configurations stop. As it
happens for the asynchronous π-calculus and open nets, the behaviour of v.p is somehow
“absorbed” by the behaviour of u.p. By joining the two previous examples, we have that:

ε⊲ a.ab.0 + ab.ε.0 ∼S ε⊲ a.ab.0

Indeed, for all the words v′ ∈ A∗ having ab as a prefix (i.e., v′ = abw′) the configuration
abw′

⊲ a.ab.0+ ab.ε.0 can go either in abw′
⊲ ab.0 or in abw′

⊲ ε.0, while the configuration
abw′

⊲ a.ab.0 can only go in abw′
⊲ ab.0 that, as shown in our first example, is bisimilar to

abw′
⊲ ε.0. For all the other words, the two configuration behave exactly in the same way.

For simplifying the explanation, it is useful to introduce the saturated transition system:

u⊲p
v,•
−→S u′⊲p′ iff uv⊲p

•
−→ u′⊲p′. It is easy to see that the standard notion of bisimilarity

on this transition system coincides with ∼S . The saturated transition systems of ε⊲u.p+v.p
and ε⊲u.p are shown in Figure 4(A). For making lighter the notation, in that figure and in
the following ones we have omitted the observation •. Note that ε⊲ u.p + v.p and ε⊲ u.p
perform the same saturated transitions (and thus they are saturated bisimilar, as discussed
above).

In order to give a more efficient characterization of ∼S (that avoids the quantification
over all words v ∈ A∗), we define a symbolic transition system that, like the saturated
transition system, is labeled with pairs v, • (for v ∈ A∗). The main difference is that a

symbolic transition u⊲ p
v,•
−→ω u′ ⊲ p′ is performed only when v is the “minimal word” such

that uv ⊲ p
•
−→ u′ ⊲ p′. The symbolic transition system ω ⊆ Conf × A∗ × OW × Conf is

12 F. BONCHI AND U. MONTANARI

(A) . . .

uaa⊲ p

ua⊲ p

ε⊲ u.p+ v.p u //
uaiii

44iiii
uaarrrrrr

99rrrrrrr

...

>>}}}}}}}}}}}}}}}}}}}}
u⊲ p ε⊲ u.puoo

uaSSS
iiSSS

uaaHHHHHH

ccHHHHHH
...

]]<<<<<<<<<<<<<<<<<<

(B) v ⊲ p

ε⊲ u.p+ v.p u //

v
55jjjjjjjjj

u⊲ p ε⊲ u.puoo

(C) γ1

a

��

ab

yysssssssssss
γ2

a

}}zz
zz

zz
zz

z

ab⊲ ε.0
ε

%%KKKKKKKKKKK a⊲ ab.0

b

��
ab⊲ ab.0

ε // ab⊲ 0

Figure 4: (A) The saturated transition systems of ε⊲u.p+v.p and ε⊲u.p. (B) The symbolic
transition systems of ε⊲u.p+v.p and ε⊲u.p. (C) The symbolic transition systems
of γ1 = ε⊲ a.ab.0+ ab.ε.0 and γ2 = ε⊲ a.ab.0.

defined by the following rules (together with the symmetric rule for +).

uv ⊲ u.p
ε,•
−→ω uv ⊲ p u⊲ uv.p

v,•
−→ω uv ⊲ p

u⊲ p
v,•
−→ω u′ ⊲ p′

u⊲ p+ q
v,•
−→ω u′ ⊲ p′

In the central rule, the process uv.p needs the resources uv to evolve. In the configuration,
there are only u resources and thus the process “takes from the environment” the word v.
In the leftmost rule, all the needed resources (u) are already present in the configuration (as
a prefix) and thus the process can evolve without taking resources from the environment
(i.e., by taking ε). The symbolic transition systems of ε⊲u.p+ v.p and ε⊲u.p are depicted
in Figure 4(B). Note that the former process can perform one symbolic transition more than
the latter, even if they perform the same saturated transitions. The symbolic transition
systems of γ1 = ε⊲ a.ab.0+ ab.ε.0 and γ2 = ε⊲ a.ab.0 are shown in Figure 4(C).

Note that the standard notion of bisimilarity defined over
v,•
−→ω (hereafter called syntactic

bisimilarity and denoted by ∼W) is strictly included into ∼S . For example, ε ⊲ u.p and

ε⊲ u.p+ v.p (with u prefix of v) are in ∼S but not in ∼W because ε⊲ u.p+ v.p
v,•
−→ω v ⊲ p,

while ε ⊲ u.p only performs a symbolic transition labeled with u. The same holds for
ε⊲ a.ab.0+ ab.ε.0 and ε⊲ a.ab.0.

In order to capture ∼S by exploiting the symbolic transition system we need a more
elaborated notion of bisimulation that relies on an inference system. For better explaining
it, observe that the following “monotonicity property” holds:

∀v ∈ A∗ and ∀u⊲ p, u′ ⊲ p′ ∈ Conf , if u⊲ p
•
−→ u′ ⊲ p′, then uv ⊲ p

•
−→ u′v ⊲ p′.

This property states that when adding the resources v to the original configuration (or,
equivalently, when inserting the configuration into the context vW(−)), all the transitions
of the original configuration are preserved. This is analogous to what happens in the asyn-
chronous π-calculus (where putting outputs in parallel does not inhibit any transition) and
in open Petri nets (where inserting tokens in input places does not inhibit any transition).

An inference system is a set of rules stating properties like those just described. For
the case of swc, the inference system TW is defined by the following rule (parametric w.r.t.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 13

v ∈ A∗).

γ
•
−→ γ′

vW(γ)
•
−→ vW(γ′)

This rule just states the above monotonicity property. Moreover, it induces a derivation
relation ⊢TW

⊆ (Conf ×A∗ ×OW × Conf)× (Conf ×A∗ ×OW × Conf) as follows:

γ
v,•
−→ γ′ ⊢TW

γ
vw,•
−→ wW(γ′)

Consider the saturated transitions of ε⊲u.p+v.p in Figure 4(A) and fix γ = ε⊲u.p+v.p.

We have that (γ
u,•
−→S u ⊲ p) ⊢TW

(γ
ua,•
−→S ua ⊲ p) ⊢TW

(γ
uaa,•
−−→S uaa ⊲ p) ⊢TW

. . . More
generally, ∀w ∈ A∗,

γ
u,•
−→S u⊲ p ⊢TW

γ
uw,•
−→S uw ⊲ p

and in the case of γ = ε⊲ u.p+ v.p in Figure 4(B), this means that

γ
u,•
−→ω u⊲ p ⊢TW

γ
v,•
−→ω v ⊲ p.

This is somehow useful to understand the causes of the mismatch between ∼S and ∼W

(syntactic bisimilarity). First, observe that symbolic transitions can derive through TW all
and only the saturated transitions (this will be formally shown in the next section). Then,
recall that the configurations ε⊲ u.p + v.p and ε⊲ u.p are in ∼S because can perform the
same saturated transitions, but they are not in ∼W because the former can perform the

symbolic transition
v,•
−→ω. This symbolic transition is redundant since it can be derived from

u,•
−→ω through the inference system TW . More explicitly, all the saturated transitions that

can be derived from
v,•
−→ω can also be derived from

u,•
−→ω and thus

v,•
−→ω does not add any

meaningful information about the saturated behaviour of the configuration. We can avoid
this problem by employing the following notion of bisimulation.

Definition 3.2 (Symbolic Bisimilarity for swc). Let R ⊆ Conf × Conf be a symmetric
relation. R is a symbolic bisimulation iff whenever γ1 R γ2:

• if γ1
v,•
−→ω γ′1, then ∃γ

′
2, γ

′′
2 ∈ Conf, u ∈ A∗ s.t. γ2

u,•
−→ω γ′2, γ2

u,•
−→ω γ′2 ⊢TW

γ2
v,•
−→ γ′′2 and

γ′1 R γ′′2 .

We write γ1 ∼
SYM γ2 iff there is a symbolic bisimulation R such that γ1 R γ2.

For example ε ⊲ u.p + v.p ∼SYM ε ⊲ u.p (when v = uw), because if ε ⊲ u.p + v.p
v,•
−→ω

v ⊲ p, then ε ⊲ u.p
u,•
−→ω u ⊲ p and this transition derives ε ⊲ u.p

uw,•
−→ω wW(u ⊲ p) that is

ε⊲ u.p
v,•
−→ω v ⊲ p.

For an example of symbolic bisimulation, take γ1 = ε⊲a.ab.0+ab.ε.0 and γ2 = ε⊲a.ab.0
in Figure 4(C) and consider the symmetric closure of the following relation.

R = {(γ1, γ2), (a⊲ ab.0, a⊲ ab.0), (ab⊲ ε.0, ab ⊲ ab.0), (ab⊲ 0, ab⊲ 0)}

For the last three pairs, it is easy to check that the configurations satisfy the above require-

ments. For (γ1, γ2), this is more interesting: the transition γ1
ab,•
−→ω ab⊲ ε.0 can be matched

by γ2
a,•
−→ω a⊲ ab.0 because, by definition of ⊢TW

, γ2
a,•
−→ω a⊲ ab.0 ⊢TW

γ2
ab,•
−→ ab⊲ ab.0 and

(ab⊲ ε.0, ab⊲ ab.0) ∈ R.

In the next section we will show that ∼S=∼SYM . Before concluding this section, it
is worth to make a final remark. The reader would have thought that in order to retrieve

14 F. BONCHI AND U. MONTANARI

∼S from the symbolic transition system, one could just remove all the “redundant transi-

tions”, i.e., all those symbolic transitions γ
v,•
−→ω γ′′ such that there exists another symbolic

transition γ
u,•
−→ω γ′ deriving it (in Section 7 this removal will be called normalization). It

is important to show that this is not enough to retrieve ∼S: consider the symbolic tran-
sition systems of γ1 = ε ⊲ a.ab.0 + ab.ε.0 and γ2 = ε ⊲ a.ab.0 shown in Figure 4(C).
They have no redundant transitions, but still γ1 ∼

S γ2 and γ1 6∼
W γ2. The transition

γ1
ab,•
−→ω ab ⊲ ε.0 is not redundant, because γ1

a,•
−→ω a ⊲ ab.0 6⊢TW

γ1
ab,•
−→ω ab ⊲ ε.0, since

bW(a ⊲ ab.0) = ab ⊲ ab.0 6= ab ⊲ ε.0. However, it is semantically redundant, because

γ1
a,•
−→ω a⊲ab.0 ⊢TW

γ1
ab,•
−→ω ab⊲ab.0 and the states ab⊲ab.0 and ab⊲ ε.0 are semantically

equivalent (i.e., ab⊲ ab.0 ∼S ab⊲ ε.0).
In order to characterize ∼S through ω, we should eliminate all the semantically re-

dundant transitions, but this is impossible without knowing a priori ∼S . This is the main
motivation for the introduction of normalized coalgebras in Section 7.

4. Saturated and Symbolic Semantics

In Section 1 and Section 2, we have introduced asynchronous π-calculus and open Petri nets.
In both cases, their abstract semantics is defined in two different ways: either by inserting
the systems into all possible contexts (like ∼1 and ∼N) or by inserting the system only in
those contexts that are really needed (like ∼a and ∼NS). Moreover, the latter coincides
with the former and thus can be thought as an efficient characterization of the former.

This sort of “double definition” of the abstract semantics recurs in many formalisms
modeling interactive systems, such as mobile ambients [12], open π-calculus [41] and explicit
fusion calculus [43]. In [8], we have introduced a theoretical framework that generalizes this
“double definition” and encompasses all the above mentioned formalisms. In this section
we recall this framework by employing as running examples the simple words calculus, the
asynchronous π-calculus and open Petri nets.

4.1. Saturated Semantics. Given a small category C, a Γ(C)-algebra is an algebra for
the algebraic specification in Figure 5 where |C| denotes the set of objects of C, ||C|| the
set of arrows of C and, for all i, j ∈ |C|, C[i, j] denotes the set of arrows from i to j. Thus,
a Γ(C)-algebra X consists of a |C|-sorted family X = {Xi | i ∈ |C|} of sets and a function
cX : Xi → Xj for all c ∈ C[i, j]. Moreover, these functions must satisfy the equations in
Figure 5: idiX is the identity function on Xi and if d; e = c in C, (d; e)X is equal to cX.

1

Hereafter, we will use
∫
X to denote the set of the elements of a Γ(C)-algebra X, namely,

the disjoint union
∑

i∈|C|Xi.

The main definition of the framework presented in [8] is that of context interactive
systems. In our theory, an interactive system is a state-machine that can interact with the
environment (contexts) through an evolving interface.

Definition 4.1 (Context Interactive System). A context interactive system I is a quadruple
〈C,X, O, tr〉 where:

• C is a small category,

1Note that Γ(C)-algebras coincide with functors from C to Set and Γ(C)-homomorphisms coincide with
natural transformations amongst functors. Thus, AlgΓ(C) is isomorphic to SetC(the category of covariant

presheaves over C).

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 15

specification Γ(C) =
sorts

i ∀i ∈ |C|
operations

c : i→ j ∀c ∈ C[i, j]
equations

idi(x) = x
e(d(x)) = c(x) ∀d; e = c

Figure 5: Algebraic specification Γ(C).

• X is a Γ(C)-algebra,
• O is a set of observations,

• tr ⊆
∫
X ×O ×

∫
X is a labeled transition relation (p

o
−→ p′ means (p, o, p′) ∈ tr).

Intuitively, objects of C are interfaces of the system, while arrows are contexts. Every
element p of Xi represents a state with interface i and it can be inserted into the context
c ∈ C[i, j], obtaining a new state cX(p) that has interface j. Every state can evolve into a
new state (possibly with different interface) producing an observation o ∈ O.

The abstract semantics of interactive systems is usually defined through behavioural
equivalences. In [8] we proposed a general notion of bisimilarity that generalizes the abstract
semantics of a large variety of formalisms [12, 1, 41, 37, 44, 11]. The idea is that two states
of a system are equivalent if they are indistinguishable from an external observer that, in
any moment of their execution, can insert them into some environment and then observe
some transitions.

Definition 4.2 (Saturated Bisimilarity). Let I = 〈C,X, O, tr〉 be a context interactive
system. Let R = {Ri ⊆ Xi ×Xi | i ∈ |C|} be a |C|-sorted family of symmetric relations. R
is a saturated bisimulation iff, ∀i, j ∈ |C|, ∀c ∈ C[i, j], whenever pRiq:

• cX(p)Rj cX(q),

• if p
o
−→ p′ with p′ ∈ Xk for some k ∈ |C|, then ∃q′ ∈ Xk such that q

o
−→ q′ and p′Rkq

′.

We write p ∼S
i q iff there is a saturated bisimulation R such that pRiq.

An alternative but equivalent definition can be given by defining the saturated transition

system (satts) as follows: p
c,o
−→S q if and only if cX(p)

o
−→ q. Trivially the ordinary

bisimilarity over satts coincides with ∼S .

Proposition 4.3. ∼S is the coarsest bisimulation congruence.

A Context Interactive Systems for swc. In Section 3, we have introduced a simple
words calculus. Here we show its context interactive system W = 〈Wor,W, OW , trW〉.
Recall that ε is the empty word and that uv denote the concatenation of the words u and
v. The category Wor is defined as follows:

• |Wor| = {◦};
• Wor[◦, ◦] = A∗;
• id◦ = ε;
• ∀u, v ∈ A∗, u; v = uv.

16 F. BONCHI AND U. MONTANARI

The algebra W, the set of observations OW and the transition relation trW have been
already introduced in Section 3. In swc, all the configurations have the same interface (sort)
and thus, in the category Wor there is only one object. It is easy to see that saturated
bisimilarity for swc (Definition 3.1) is an instance of Definition 4.2.

A Context Interactive Systems for open Petri nets. In the following we formally
define N = 〈Tok,N,Λ, trN 〉 that is the context interactive system of all open nets (labeled
over the set of labels Λ). Let Pl be an infinite set. We assume that the input places of all
open nets are taken from Pl. Formally, we assume that if I is the set of input places of an
open net N , then I ∈ P(Pl) (where P(Pl) denotes the powerset of Pl).

The category Tok is formally defined as follows:

• |Tok| = {I | I ∈ P(Pl)};
• ∀I, J ∈ |Tok|, if I = J then Tok[I, J] = I⊕ while, if I 6= J then Tok[I, J] = ∅;
• ∀I ∈ |Tok|, idI = ∅;
• ∀i1, i2 ∈ I⊕, i1; i2 = i1 ⊕ i2.

Intuitively objects are sets of places I. Arrows i : I → I are multisets of tokens on I,
while there exists no arrow i : I → J for I 6= J . Composition of arrows is just the sum of
multisets and, obviously, the identity arrow is the empty multiset.

We say that a marked open net 〈N,m〉 has interface I if the set of input places of N is
I. For example the marked open net 〈N1, a〉 has interface {$}. Let us define the Γ(Tok)-
algebra N. For any sort I, the carrier set NI contains all the marked open nets with interface
I. For any operator i ∈ Tok[I, I], the function iN maps 〈N,m〉 into 〈N,m⊕ i〉.

The transition structure trN (denoted by −→N) associates to a state 〈N,m〉 the transi-
tions obtained by using the rule (tr) of Table 2. The saturated transition system of 〈N1, a〉
is shown in Figure 3(B).

Proposition 4.4. Let 〈N1,m1〉 and 〈N2,m2〉 be two marked nets both with interface I.
Thus 〈N1,m1〉 ∼

N 〈N2,m2〉 iff 〈N1,m1〉 ∼
S
I 〈N2,m2〉.

A Context Interactive System for asynchronous π. We now introduce the context
interactive system A = 〈Out,A, OA, trA〉 for the asynchronous π-calculus. First, we assume
the set of names N to be in one to one correspondence with ω0 (the set of natural numbers
ω without the number 0). In A, we use numbers in ω0 in place of names in N , but for the
sake of readability, in all the concrete examples of processes we use names a, b, c, · · · ∈ N
thought of as the natural numbers 1, 2, 3, · · · ∈ ω0. We need such correspondence, because
we use the well order 1 < 2 < 3 Given an n ∈ ω, it denotes both the number and the set
of numbers in ω0 smaller or equal than n. For instance, 2 denotes both the number 2 and
the set {1, 2} that correspond, respectively, to the name b and to the set of names {a, b};
while 0 denotes both the number 0 and the empty set: the former does not correspond to
any name and the latter corresponds to the empty set of names ∅. In the following, we will
use the name in N and numbers in ω0 interchangeably. Also, when fixed some sets n,m . . .
we will use i, j to range over the elements of these sets.

The category of interfaces and contexts is Out, formally defined as follows:

• |Out| = ω;
• if m ≥ n, then Out[n,m] is the set of contexts generated by c ::= −, c|ij, with i, j ∈ m;
if m < n, then Out[n,m] = ∅;
• ∀n ∈ ω, idn is − ∈ Out[n, n];

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 17

• arrows composition is the syntactic composition of contexts.

Note that a context could correspond to several arrows with different sources and tar-
gets. For instance, the context −|12 (corresponding to −|ab) is, e.g., both an an arrow
0 → 2 and an arrow 1 → 6. The composition of the arrow −|12 : 0 → 2 with −|34 : 2 → 5
is −|12|34 : 0→ 5.

Let us define the Γ(Out)-algebra A. For every object n, An is the set of asynchronous
π-processes p such that n ≥ max fn(p). Intuitively in asynchronous π, interfaces are sets
of names. A process with interface n uses only names in n (not all, just some). Given
a process p and a natural number n ≥ max fn(p), we denote with pn the process p with
interface n. For instance, there exists several processes corresponding to τ.0: τ.00, τ.01, . . .
Each of these is considered different from the others because has a different interface. This
may seem a bit strange, but is quite standard in categorical semantics of process calculi
[17, 18, 21] as well as in their graphical encodings [32, 19, 5, 20].

Extensively, 0 is the empty interface and A0 is the set of all π-processes without free
names. The set A1 contains all the processes with free names in {1} (corresponding to {a})
and A2 contains all the processes with free names in {1, 2} (corresponding to {a, b}) and so
on . . .

In order to fully define A, we still have to specify its operations cA for all c ∈ Out[n,m].
Given a process p ∈ An, cA(p) is the process with interface m obtained by syntactically
inserting p into c. For instance, a(x).xa1 can be inserted into −|bc : 1 → 3 obtaining the
process a(x).xa|bc3.

Note that, differently from what happens in open nets, an asynchronous π-process can
dynamically enlarge its interface by receiving names in input or extruding some restricted
name. Name extrusion is an essential feature of the π-calculus that can be easily explained
by looking at the rule (opn) in Table 1: the name b is local (i.e., bound) in νb.p, but it
becomes global (i.e., free) whenever p send it to the environment. In A, we are going to
assume that processes pn with interface n always extrude the name n+1: this ensures that
the extruded name is fresh (i.e., n+ 1 /∈ fn(pn)).

The set of observations is OA = {ij, i(), τ |i, j ∈ ω0}. Note that the input action is not
an observation, since in the asynchronous case it is not observable. Moreover note that in
the bound output, the sent name does not appear. This is because, any process with sort
n will send as bound output the name n+ 1.

The transition structure trA (denoted by −→A) is defined by the following rules, where
i, j ∈ ω0 represent in the premises the corresponding names in N , while in the conclusion
the numbers in ω0. Moreover the transition relation in the premise is the one in Table 1.

p
τ
−→ p′

pn
τ
−→A p′n

p
ij
−→ p′

pn
ij
−→A p′n

p
i(n+1)
−−−→ p′

pn
i()
−→A p′n+1

Note that for τ and not-bound output, fn(p′) ⊆ fn(p) ⊆ n, and thus p′ ∈ An. For the case
of bound ouput instead, the extruded name n+1 could occur free in p′. Thus fn(p′) ⊆ n+1
and p′ ∈ An+1.

In our context interactive system A, processes only perform τ and output transitions.
The contexts are all the possible outputs. Therefore is almost trivial to see that saturated
bisimilarity coincides with ∼1. Figure 1(C) shows the saturated transition system of τ.01.

18 F. BONCHI AND U. MONTANARI

Proposition 4.5. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then
p ∼1 q iff pn ∼

S
n qn.

4.2. Symbolic Semantics. Saturated bisimulation is a good notion of equivalence but it is
hard to check, since it involves a quantification over all contexts. In [8], we have introduced
a general notion of symbolic bisimilarity that coincides with saturated bisimilarity, but it
avoids to consider all contexts. The idea is to define a symbolic transition system where
transitions are labeled both with the usual observation and also with the minimal context
that allows the transition. First we need to introduce context transition systems.

Definition 4.6 (Context Transition System). Given a category C, a Γ(C)-algebra X and a
set of observations O, a context transition system β ⊆

∫
X × ||C|| ×O×

∫
X is a transition

relation labeled with ||C|| ×O (p
c,o
−→β p′ means that (p, c, o, p′) ∈ β).

An example of context transition system is η defined in Section 2: each transition is
labeled with both a multiset of tokens i and an observation λ. Also the saturated transition
system is a context transition systems. Hereafter, given a context transition system β,

we will write
c,o
−→β to denote the transitions of β,

c,o
−→S to denote the saturated transitions

and
c,o
−→ (without subscript) to denote the transitions of the total context transition system

t =
∫
X × ||C|| ×O ×

∫
X.

Definition 4.7 (Inference System). Given a category C, a Γ(C)-algebra X and a set of
observations O, an inference system T is a set of rules of the following format, where
i, j ∈ |C|, o, o′ ∈ O, c ∈ C[i, i′] and d ∈ C[j, j′].

pi
o
−→ qj

c(pi)
o′
−→ d(qj)

In this rule, i, j, o, o′, c and d are constants, while pi and qj are variables ranging over Xi

and Xj, respectively. Therefore, the above rule states that all processes with interface i that
perform a transition with observation o going into a state qj with interface j, when inserted
into the context c can perform a transition with the observation o′ going into d(qj). In other
words, this rule is in a (multisorted) SOS format, where the operators (here, contexts) are
unary and there is only one transition in the premise of the rules. Note that, however,
this kind of rules is not intended to be used for expressing the operational semantics of a
formalism (as in the case of SOS), but instead for describing “useful properties” about how
contexts modify the behaviour of systems.

In the following, we write c
o

o′
// d to mean a rule like the above. The rules c

o

o′
// c′

and d
o′

o′′
// d′ derive the rule c; d

o

o′′
// c′; d′ if c; d and c′; d′ are defined. Given an infer-

ence system T , Φ(T) is the set of all the rules derivable from T together with the identities

rules (∀o ∈ O and ∀i, j ∈ |C|, idi
o
o

// idj).

Definition 4.8 (Derivations). Let C be a category, X be a Γ(C)-algebra, O be a set of
observations. An inference system T defines a derivation relation ⊢T⊆ t × t amongst the
transitions of the total context transition system.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 19

We say that p
c1,o1
−−→ p1 derives p

c2,o2
−−→ p2 (written p

c1,o1
−−→ p1 ⊢T p

c2,o2
−−→ p2) if there exist

d, e ∈ ||C|| such that d
o1
o2

// e ∈ Φ(T), c1; d = c2 and eX(p1) = p2.

Note that the above definition can be extended to the transitions of any pairs of context

transition systems β1, β2: p
c1,o1
−−→β1 p1 ⊢T p

c2,o2
−−→β2 p2 iff p

c1,o1
−−→ p1 ⊢T p

c2,o2
−−→ p2.

Until now, context transition systems and inference systems are not related with the
transitions relations tr of context interactive systems. The following definition makes a link
between them.

Definition 4.9 (Soundness and Completeness). Let I = 〈C,X, O, tr〉 be a context inter-
active system, β a context transition system and T an inference system.

We say that β and T are sound w.r.t. I iff

if p
c′,o′
−→β q′ and p

c′,o′
−→β q′ ⊢T p

c,o
−→ q, then p

c,o
−→S q.

We say that β and T are complete w.r.t. I iff

if p
c,o
−→S q, then there exists p

c′,o′
−→β q′ such that p

c′,o′
−→β q′ ⊢T p

c,o
−→ q.

Definition 4.10. Let I = 〈C,X, O, tr〉 be a context interactive system, β a context tran-
sition system and T an inference system. If β and T are sound and complete w.r.t. I we
say that β is a symbolic transition system (scts for short) for I.

For instance, the saturated transition system η (defined in Section 2 for open nets) is
a symbolic transition system (this will be formally stated in Proposition 4.16). Also the
saturated transition system is a symbolic transition system (take as T the empty inference
system), while the total context transition system is usually not sound.

A symbolic transition system could be considerably smaller than the saturated transi-
tion system, but still containing all the information needed to recover ∼S . Note that the
ordinary bisimilarity over scts (hereafter called syntactic bisimilarity and denoted by ∼W)
is usually strictly included in ∼S . As an example consider the marked open nets a and l.

These are not syntactically bisimilar, since l
$3,α
−→η m while a cannot (Figure 3(C)). However,

they are saturated bisimilar, since ∼S=∼N . Analogously, the ordinary bisimilarity over the
lts of the asynchronous π does not coincide with ∼1: a(b).ab+ τ and τ are 1-bisimilar, but
not syntactically bisimilar (at the end of this section, we will show that also the transition
system of asynchronous π in Table 1 is somehow a scts).

In literature, several scts are defined in [41, 37, 44]. In these works, transitions are
labeled with both “fusions” of names and the ordinary labels. Other noteworthy examples
are the IPOs and the borrowed contexts of [29] and [16]: here all the transitions are labeled
only with the minimal contexts and the observations can be though as τs. Also in all these
cases, syntactic bisimilarity is too fine grained. In order to recover ∼S through the symbolic
transition system we need a more elaborated definition of bisimulation.

Definition 4.11 (Symbolic Bisimilarity). Let I = 〈C,X, O, tr〉 be an interactive system,
T be a set of rules and β be a context transition system. Let R = {Ri ⊆ Xi ×Xi | i ∈ |C|}
be a |C|-sorted family of symmetric relations. R is a symbolic bisimulation iff ∀i ∈ |C|,
whenever pRiq:

• if p
c,o
−→β p′, then ∃c1, o1, q

′
1, q

′ such that q
c1,o1
−−→β q′1 and q

c1,o1
−−→β q′1 ⊢T q

c,o
−→ q′ and p′Rkq

′.

We write p ∼SYM
i q iff there exists a symbolic bisimulation R such that pRiq.

20 F. BONCHI AND U. MONTANARI

Theorem 4.12. Let I be a context interactive system, β a context transition system and
T an inference system. If β and T are sound and complete w.r.t. I, then ∼SYM=∼S.

Symbolic Semantics for swc. The symbolic transition system ω and the inference system
TW for swc have already been defined in Section 3. It is also easy to see that symbolic
bisimilarity for swc (Definition 3.2) is an instance of Definition 4.11. Therefore, in order to
apply Theorem 4.12, we only need to prove that ω and TW are sound and complete.

Proposition 4.13. ω and TW are sound and complete w.r.t. W.

Corollary 4.14 (From Theorem 4.12). In swc, ∼S=∼SYM .

Symbolic Semantics for open Petri nets. The symbolic transition system for open
Petri nets is η defined in Section 2. The inference system TN is defined by the following
rule parametric w.r.t. λ ∈ Λ, I ∈ P(Pl) and i ∈ I⊕.

N,m
λ
−→ N,m′

N,m⊕ i
λ
−→ N,m′ ⊕ i

Its intuitive meaning is that for all possible observations λ and multiset i on input places,
if a marked net performs a transition with observation λ, then the addition of i preserves
this transition.

Now, consider derivations between transitions of open nets. It is easy to see that

N,m
i1,λ1
−−→ N,m1 ⊢TN

N,m
i2,λ2
−−→ N,m2 if and only if λ2 = λ1 and there exists a multiset x

on the input places of N such that i2 = i1 ⊕ x and m2 = m1 ⊕ x. For all the nets Nk of
Figure 3, this just means that for all observations λ and for all multisets m,n, we have that

〈Nk,m〉
$i,λ
−→η 〈Nk, n〉 ⊢TN

〈Nk,m〉
$i+j ,λ
−−→ 〈Nk, n$

j〉. From this observation, it is easy to see
that the definition of net-symbolic bisimilarity is an instance of symbolic bisimilarity.

Proposition 4.15. Let 〈N1,m1〉 and 〈N2,m2〉 be two marked nets both with interface I.
Thus 〈N1,m1〉 ∼

NS 〈N2,m2〉 iff 〈N1,m1〉 ∼
SYM
I 〈N2,m2〉.

Thus, in order to prove that ∼N=∼NS, we have only to prove that η and TN are sound
and complete w.r.t. N and then apply the general Theorem 4.12.

Proposition 4.16. η and TN are sound and complete w.r.t. N .

Corollary 4.17 (From Theorem 4.12). ∼N=∼NS.

Symbolic Semantics for asynchronous π. In the case of asynchronous π-calculus, the
ordinary lts closely corresponds to the scts that we are going to introduce. The transitions
labeled with an input a(b) are substantially transitions saying that if the process is inserted
into −|ab, then it can perform a τ . The symbolic transition system α for the asynchronous π-
calculus is defined by the following rules, where in the premises there are standard transitions
(from Table 1), i, j ∈ ω0 represent in the premises the corresponding names in N , while in
the conclusion the numbers in ω0 and − ∈ Out[n, n] and −|im ∈ Out[n, n′].

p
τ
−→ p′

pn
−,τ
−→α p′n

p
ij
−→ p′

pn
−,ij
−→α p′n

p
i(n+1)
−−−→ p′

pn
−,i()
−−→α p′n+1

p
i(m)
−→ p′ n′ = max{m,n}

pn
−|im,τ
−−−→α p′n′

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 21

Note that the only non standard rule is the fourth. If, in the standard transition system
a process can perform an input, in the scts the same process can perform a τ , provided
that there is an output process in parallel. Note that the interface of the arriving state
depends on the received name m: if it is smaller than n, then the arriving interface is still
n, otherwise it is extended to m (i.e., max fn(p′) ≤ max {m,n} = n′).

Part of the scts of τ.νy.ya + a(b).ab1 and τ.01 are shown in Figure 1(B). There and
in the following we avoid to specify the source and the target of the contexts labelling the
transitions, since these can be inferred by the sorts of starting and arriving states. As well
as the ordinary lts, the symbolic transition system is infinite, because the input can receive
any possible name in N . It is well known that, instead of considering all possible input
names, it is enough to consider only the free names and one fresh name (all the other fresh
are useless). By slightly modifying the general definition of the context interactive system A,
we could have defined a symbolic context transition system that only receive in input those
names that are strictly needed. We have made a different choice for the following reasons:
(a) the presentation of this modified context interactive system is a bit more contrived;
(b) the actual presentation is mainly aimed at showing how an input transition “can be
matched” by a τ transition (instead of focusing on finite representation); (c) there exists
several other sources of infiniteness (discussed in Section 9) that cannot be trivially tackled
by our framework.

Let us define an inference system TA that describes how contexts transform transitions.
Since our contexts are just parallel outputs, all the contexts preserve transitions. This is
expressed by the following rules parametric w.r.t. n,m ∈ ω, i, j ∈ n, c ∈ Out[n,m].

(tauc)
pn

τ
−→ qn

c(pn)
τ
−→ c(qn)

(outc)
pn

ij
−→ qn

c(pn)
ij
−→ c(qn)

(boutc)
pn

i()
−→ qn+1

c(pn)
i()
−→ c+1(qn+1)

Here, c+1 ∈ Out[n+1,m+1] is the same syntactic context as c, but with different interfaces.
Derivations amongst transitions of asynchronous π-processes are quite analogous to

those amongst open Petri nets. Particularly relevant is the following kind of derivation: for
all processes pn, qn, for all names i ∈ n and j ∈ m,

pn
−,τ
−→α qn ⊢TA

pn
−|ij,τ
−−→ q|ijm.

Intuitively, this means that in the original lts, the τ transitions derive the input transitions.
Instantiating the general definition of symbolic bisimulation to α and TA, we retrieve the

definition of asynchronous bisimulation. Indeed transitions of the form p
−,µ
−→α p′ (in the

original lts, these correspond to τ and output), can be matched only by transitions with
the same label, since the context − is not decomposable.

The transitions p
−|ij,τ
−−→α p′ (corresponding to the input in the original lts) can be

matched either by q
−|ij,τ
−−→α q′, or by q

−,τ
−→α q′. In other words, when p

−|ij,τ
−−→α p′, then q can

answer with q
−,τ
−→α q′, since q

−|,τ
−→α q′ ⊢TA

q
−|ij,τ
−−→ q′|ij.

Proposition 4.18. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then
p ∼a q iff pn ∼

SYM
n qn.

Therefore ∼1 is the saturated bisimulation for A, while ∼a is its the symbolic version.
We can employ our general Theorem 4.12 to prove that ∼1=∼a by showing that the scts
α and the inference system TA are sound and complete w.r.t. A.

22 F. BONCHI AND U. MONTANARI

Proposition 4.19. α and TA are sound and complete w.r.t. A.

Corollary 4.20 (By Theorem. 4.12). ∼1=∼a as shown in [1].

5. (Structured) Coalgebras

In this section we recall the basic notions of the theory of coalgebras and the coalgebraic
characterization of labeled transition systems and bisimilarity.

Definition 5.1 (Coalgebra). Let B : C → C be an endofunctor on a category C. A
B-coalgebra is a pair 〈X,α〉 where X is an object of C and α : X → B(X) is an arrow.
A B-morphism f : 〈X,α〉 → 〈Y, β〉 is an arrow f : X → Y of C such that the following
diagram commutes. B-coalgebras and B-morphisms form the category CoalgB.

X

α
��

f // Y

β
��

B(X)
B(f)

// B(Y)

For instance, labeled transition systems with labels in L are coalgebras for the functor
P(L× Id) : Set→ Set, where Set denotes the category of sets and functions. This functor
maps each set X into the set P(L × X) (i.e., the powerset of L × X) and each function
f : X → Y into P(L × f) : P(L ×X) → P(L × Y) that, for all A ∈ P(L ×X), is defined
as P(L× f)(A) = {(l, f(x)) s.t. (l, x) ∈ A}. Concretely, a lts is a set of states X together
with a transition function α : X → P(L ×X) mapping each state into a set of pairs (l, x)
representing transitions with labels l ∈ L and next state x ∈ X. A P(L × Id)-morphism
is a “zig-zag” morphism, i.e., a function between the sets of states that both preserves and
reflects the transitions.

We can think of symbolic transition systems as ordinary P(L×Id)-coalgebras where the
labels in L are pairs (c, o) (for c a contexts, and o an observation), but this representation is
somehow inadequate. Figure 6 shows a function between the states space of two P(L× Id)-

coalgebras. This is not a P(L × Id)-morphism since the transition γ1
ab,•
−→ ab ⊲ ε.0 is

not preserved. The same holds for the morphisms in Figure 7: these are not P(L × Id)-

morphisms since the transitions l
$3,α
−→ m and τ.νy.ya+a(b).ab1

−|aa,τ
−−−→ aa1 are not preserved.

In Section 7, we will show the category of normalized coalgebras where these maps are
morphisms.

Under certain conditions, CoalgB has a final coalgebra (unique up to isomorphism) into
which every B-coalgebra can be mapped via a unique B-morphism. The final coalgebra
can be viewed as the universe of all possible B-behaviours: the unique morphism into
the final coalgebra maps every state of a coalgebra to a canonical representative of its
behaviour. This provides a general notion of behavioural equivalence (hereafter referred to
as bisimilarity): two B-coalgebras are B-equivalent iff they are mapped to the same element
of the final coalgebra. Moreover, the image of a coalgebra through the final morphism is its
minimal realization w.r.t. bisimilarity. In the finite case, this can be done via a minimization
algorithm, that for ltss coincides with [26].

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 23

γ2 a

''PPPPPP

��

γ1
a //

ab ''OOOOOO

��

a⊲ ab.0
b //

��

ab⊲ 0

��

ab⊲ ab.0
εoo

��

ab⊲ ε.0
ε

66llllll

''
γ a // γ′

b // γ′′ bU(γ
′)

εoo

Figure 6: The dotted arrows represent a map between the states space of two transition
systems. It is not a P(L× Id)-morphism but it is a morphism in the category of
normalized coalgebra.

l
$3,α//

∅,α A
AA

AA

��
m

∅,β//
%%

n$2
∅,β // &&

o$
∅,β //

%%
p

$,β��
;;u

∅,α // v

$,β

w

∅,β
oo x

∅,β
oo $3

Y
(v)

∅,β
oo

q

$,β
RR

77

q$1
∅,βoo

HH

q$2
∅,βoo

HH

q$3
∅,βoo

BB

. . .

ab2
−,ab //

02 // q2 −|abZ(q1)

−,aboo

τ.νy.ya+ a(b).ab1

−|ab,τ //

...
00

−|aa,τ //

−,τ **VVVVVVV 77aa1
��

−,aa // 01

--

p1

−,τ $$II
II

I

νy.ya1 ;;νy.ya|aa1
−,aaoo

44
q1 −|aaZ(q1)

−,aaoo

νy.ya2

II

νy.ya|ab2
−,aboo

HH

Figure 7: The dotted arrows represent maps between the states space of transition systems.
Both are not P(L × Id)-morphisms, but they are morphisms in the category of
normalized coalgebras.

Unfortunately, due to cardinality reasons, P(L × Id) does not have a final object [40].
One satisfactory solution consists in replacing the powerset functor P by the countable
powerset functor Pc, which maps a set to the family of its countable subsets. Then, Pc(L×
Id)-coalgebras are one-to-one with transition systems with countable degree. Unlike the
functor P(L× Id), the functor Pc(L× Id) admits final coalgebras (Example 6.8 of [40]).

The coalgebraic representation using functor Pc(L× Id) is not completely satisfactory,
because the intrinsic algebraic structure of the states is lost. This calls for the introduction
of structured coalgebras [14], i.e., coalgebras for an endofuctor on a category AlgΓ of algebras
for a specification Γ. Since morphisms in a category of structured coalgebras are also Γ-
homomorphisms, bisimilarity (i.e. the kernel of a final morphism) is a congruence w.r.t. the
operations in Γ.

24 F. BONCHI AND U. MONTANARI

Moreover, since we would like that the structured coalgebraic model is compatible with
the unstructured, set-based one, we are interested in functors BΓ : AlgΓ → AlgΓ that are
the lifting of some functor B : Set → Set along the forgetful functor UΓ : AlgΓ → Set

(i.e., the following diagram commutes).

AlgΓ

U
Γ

��

B
Γ

// AlgΓ

U
Γ

��
Set

B

// Set

Proposition 5.2 (From [14]). Let Γ be an algebraic specification. Let UΓ : AlgΓ → Set be
the forgetful functor. If BΓ : AlgΓ → AlgΓ is a lifting of Pc(L × Id) along UΓ, then (1)
CoalgBΓ

has a final object, (2) bisimilarity is uniquely induced by Pc(L× Id)-bisimilarity
and (3) bisimilarity is a congruence.

In [42], bialgebras are used as structures combining algebras and coalgebras. Bialgebras
are richer than structured coalgebras, in the sense that they can be seen both as coalgebras
on algebras and also as algebras on coalgebras. In [14], it is shown that whenever BΓ

is a lifting of some B, then BΓ-coalgebras are also bialgebras. In Section 7.2, we will
introduce normalized coalgebras that are structured coalgebras, but not bialgebras (i.e.,
their endofunctor is not the lifting of some endofunctor on Set). This is our motivation for
using structured coalgebras.

6. Coalgebraic Saturated Semantics

Recall the definition of context interactive system (Definition 4.1). Here, and in the rest of
the paper we will always assume to work with a context interactive system I = 〈C,X, O, tr〉
where (a) ||C|| (the set of morphisms of the small category C) is a countable set and (b) the
transition relation tr has countable degree, i.e., the set of transitions outgoing from a state
is countable. These two assumptions also guarantee that the saturated transition system
has countable degree.

In this section we introduce the coalgebraic model for the saturated transition system.
First we model it as a coalgebra over Set|C|, i.e., the category of |C|-sorted families of sets
and functions. Therefore in this model, all the algebraic structure is missing. Then we lift
it to AlgΓ(C) that is the category of Γ(C)-algebras and Γ(C)-homomorphisms. Recall that

when X is a |C|-sorted family of sets,
∫
X =

∑
i∈|C|Xi.

Definition 6.1. G : Set|C| → Set|C| is defined for each |C|-sorted family of set X and for
each i ∈ |C| as G(Xi) = Pc(

∑
j∈|C|(C[i, j]×O ×

∫
X)). Analogously for arrows.

A G-coalgebra is a C-sorted family α = {αi : Xi → G(Xi) | i ∈ |C|} of functions
assigning to each p ∈ Xi a set of transitions (c, o, q) where c is an arrow of C (context) with
source i, o is an observation and q is the arriving state. Note that q can have any possible
sort (q ∈

∫
X).

For each I = 〈C,X, O, tr〉, we define the G-coalgebra 〈X,αI〉 corresponding to the
satts, where ∀i ∈ |C|, ∀p ∈ Xi, (c, o, q) ∈ αI(p) iff (cX(p), o, q) ∈ tr.

Now we want to define an endofunctor H on AlgΓ(C) that is a lifting of G and such
that 〈X, αI〉 is a H-coalgebra. In order to do that, we must define how H modifies the

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 25

operations of Γ(C)-algebras. This is described by the following rule.

p
c1,o
−→ q c1 = d; c2

d(p)
c2,o
−→ q

Intuitively, this rule states how to compute the saturated transitions of d(p) from the sat-

urated transitions of p. Indeed, if p
d;c2,o
−−→S q, then d; c2(p)

o
−→ q and then d(p)

c2,o
−→S q.

Hereafter, in order to make lighter the notation, we will avoid to specify sorts. We will
denote a Γ(C)-algebra X as 〈X, d0

X
, d1

X
, . . . 〉 where X is the |C|-sorted carrier set of X and

di
X
is the function corresponding to the operator di ∈ ||C||.

Definition 6.2. H : AlgΓ(C) → AlgΓ(C) maps each X = 〈X, d0
X
, d1

X
, . . . 〉 ∈ AlgΓ(C) into

〈G(X), d0
H(X) , d

1
H(X), . . . 〉 where ∀d ∈ ||C||, ∀A ∈ G(X), dH(X)A = {(c2, l, x)|(c1, l, x) ∈

A and c1 = d; c2}. For arrows, it is defined as G.

Intuitively, H : AlgΓ(C) → AlgΓ(C) can be thought of as an extension of the functor

G : Set|C| → Set|C| to the category AlgΓ(C). Each algebra X with (|C|-sorted) carrier
set X is mapped to an algebra having as (|C|-sorted) carrier set G(X). The elements
of G(X) with sort i are sets of triples (c1, o, x) (representing sets of transitions) where
c1 : i → j is an arrow in C. For each arrow d : i → k, there is an operator in H(X)
dH(X) : G(Xi) → G(Xk) that maps each set A of triples in G(Xi) into the set of triples
{(c2, l, x)|(c1, l, x) ∈ A and c1 = d; c2} (note that the arrows c2 have source k).

It is worth to note that by definition, H is a lifting of G. Thus, by Proposition 5.2,
follows that CoalgH has final object and that bisimilarity is a congruence.2

In [42], it is shown that every process algebra whose operational semantics is given by
GSOS rules, defines a bialgebra. In that approach the carrier of the bialgebra is an initial
algebra TΣ for a given algebraic signature Σ, and the GSOS rules specify how an endofunctor
BΣ behaves with respect to the operations of the signature. Since there exists only one
arrow ?Σ : TΣ → BΣ(TΣ), to give SOS rules is enough for defining the bialgebra (i.e.,
〈TΣ, ?Σ〉) and then for assuring compositionality of bisimilarity. Our construction slightly
differs from this. Indeed, the carrier of our coalgebra is X, that is not the initial algebra of
AlgΣ(C). Then there might exist several or none structured coalgebras with carrier X. In
the following we prove that αI : X→ H(X) is a Γ(C)-homomorphism.

Theorem 6.3. 〈X, αI〉 is a H-coalgebra.

Now, since a final coalgebra FH exists in CoalgH and since 〈X, αI〉 is a H-coalgebra,
there exists a final morphism from 〈X, αI〉. The kernel of this coincides with ∼S, because
(a) H-bisimilarity coincides with G-bisimilarity (by Proposition 5.2(2)) and (b) bisimilarity
of G-coalgebras for the saturated transition system coincides with saturated bisimilarity.

By [13], 〈X, αI〉 is also a bialgebra (since H is a lifting). In the next section we will
introduce coalgebraic models for symbolic semantics that are structured coalgebras but not
bialgebras.

2Proposition 5.2 holds also for many-sorted algebras and many sorted-sets [15].

26 F. BONCHI AND U. MONTANARI

7. Coalgebraic Symbolic Semantics

In Section 6 we have characterized saturated bisimilarity as the equivalence induced by the
final morphism from 〈X, αI〉 (i.e., the H-coalgebra corresponding to satts) to FH. This
is theoretically interesting, but pragmatically useless. Indeed satts is usually infinitely
branching (or in any case very inefficient), and so is the minimal model. In this section
we use symbolic bisimilarity in order to give an efficient and coalgebraic characterization
of ∼S. We provide a notion of redundant transitions and we introduce normalized coalge-
bras as coalgebras without redundant transitions. The category of normalized coalgebras
(CoalgNT

) is isomorphic to the category of saturated coalgebras (CoalgST
) that is (iso-

morphic to) a full subcategory of CoalgH that contains only those coalgebras “satisfying”
an inference system T . From the isomorphism follows that ∼S coincides with the kernel
of the final morphism in CoalgNT

. This provides a characterization of ∼S really useful:
every equivalence class has a canonical model that is smaller than that in CoalgH because
normalized coalgebras have no redundant transitions. Moreover, minimizing in CoalgNT

is usually feasible since it abstracts away from redundant transitions.

7.1. Saturated Coalgebras. Hereafter we refer to a context interactive system I =
〈C,X, O, tr〉 and to an inference system T . First, we extend ⊢T (Definition 4.8) with the
operators of Γ(C)-algebras.

Definition 7.1 (Extended Derivation). Let X be a Γ(C)-algebra. A transition p
c1,o1
−−→ q1

derives a transition dX(p)
c2,o2
−−→ q2 in X through T (written (c1, o1, q1) ⊢

d
T,X (c2, o2, q2)) iff

there exist e, e′ ∈ ||C|| such that c1; e = d; c2 and e
o1
o2

// e′ ∈ Φ(T) and e′
X
(q1) = q2.

Intuitively, ⊢dT,X allows to derive from the set of transitions of a state p some transitions

of dX(p). Consider the symbolic transition γ1
a,•
−→ω a⊲ ab.0 in Figure 4 (C). The derivation

(a, •, a ⊲ ab.0) ⊢aTW ,W (ε, •, a ⊲ ab.0) ⊢bTW ,W (b, •, abb ⊲ ab.0) means that aW(γ1) = a ⊲

a.ab.0
ε,•
−→ a⊲ ab.0 and abW(γ1) = ab⊲ a.ab.0

b,•
−→ abb⊲ ab.0. Note that both the transitions

are in the saturated transition system (by soundness of ω and TW). The former is also in
the symbolic transition system ω, while the latter is not.

For open nets, take the symbolic transition l
$3,α
−→η m of 〈N4, l〉 in Figure 3. The

derivation ($3, α,m) ⊢$
2

TN ,N ($, α,m) ⊢$
2

TN ,N ($, α,m$2) means that l$2
$,α
−→ m and l$4

$,α
−→ m$2.

Note that both the transitions are in the saturated transition system (by soundness of η
and TN). The former is also in the symbolic transition system η, while the latter is not.

Analogously for τ.νy.ya + a(b).ab1
−|aa,τ
−−−→α aa. The derivation (−|aa, τ, aa1) ⊢

−|aa
TA,A

(−, τ, aa1) ⊢
−
TA,A (−|ab, τ, aa|ab2) means that τ.νy.ya + a(b).ab|aa1

−,τ
−→ aa1 and τ.νy.ya +

a(b).ab|aa1
−|ab,τ
−−→ aa|ab2. Note that both the transitions are in the saturated transition

system (by soundness of α and TA). The former is also in the symbolic transition system
α, while the latter is not.

Definition 7.2 (Sound Inference System). An inference system T is sound w.r.t. a H-
coalgebra 〈X, α〉 (or viceversa, 〈X, α〉 satisfies T) provided that whenever (c, o, q) ∈ α(p)
and (c, o, q) ⊢dT,X (c′, o′, q′), then (c′, o′, q′) ∈ α(dX(p)).

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 27

For example, 〈W, αW〉 (i.e., theH-coalgebra corresponding to the satts of swc) satisfies
TW , while the coalgebra corresponding to the symbolic transition system ω does not. Anal-
ogously for the coalgebra 〈N, αN 〉 of open nets and the coalgebra 〈A, αA〉 of asynchronous
π-calculus. Hereafter we use ⊢T,X to mean ⊢idT,X.

Definition 7.3 (Saturated Set). Let X be a Γ(C)-algebra. A set A ∈ G(X) is saturated in
T and X if it is closed w.r.t. ⊢T,X. The set S

T

X
(X) is the subset of G(X) containing all and

only the saturated sets in T and X.

Definition 7.4. ST : AlgΓ(C) → AlgΓ(C) maps each X = 〈X, d0
X
, d1

X
, . . . 〉 ∈ AlgΓ(C)

into ST(X) = 〈ST

X
(X), d0

ST(X), d
1
ST(X), . . . 〉 where ∀d ∈ ||C||, ∀A ∈ G(X), dST(X)A =

{(c2, o2, x2) s.t. (c1, o1, x1) ∈ A and (c1, o1, x1) ⊢
d
T,X (c2, o2, x2)}. For arrows, it is defined as

G.

There are two differences w.r.t. H. First, we require that all the sets of transitions are
saturated. Then the operators are defined by using the relation ⊢dT,X.

Notice that ST cannot be regarded as a lifting of any endofunctor over Set|C|. Indeed
the definition of ST

X
(X) depends on the algebraic structure X. For this reason we cannot

use Proposition 5.2.
Now, let ιX : ST

X
(X) → G(X) be the inclusion function. In Appendix D it is proved

that it also a Γ(C)-homomorphism ιX : ST(X) → H(X) and that it extends to a natural
transformation.

Lemma 7.5. Let ι be the family of morphisms ι = {ιX : ST(X)→ H(X), ∀X ∈ |AlgΓ(C)|}.
Then ι : ST ⇒ H is a natural transformation.

It is well-known that every natural transformation between endofunctors induces a
functor between the corresponding categories of coalgebras [40]. In our case, ι : ST ⇒ H

induces the functor I : CoalgST
→ CoalgH that maps each ST-coalgebra α : X → ST(X)

into the H-coalgebra α; ιX : X→ H(X).
Let CoalgHI be the full subcategory of CoalgH containing the H-coalgebras α : X→

H(X) that factor through ιX, i.e., those α = α′; ιX for some Γ(C)-homomorphisms α′ : X→
ST(X). It is trivial to see that this category is isomorphic to CoalgST

.
In order to prove the existence of final object in CoalgST

, we show that CoalgHI is
the full subcategory of CoalgH containing all and only the coalgebras satisfying T . More
precisely, we show that |CoalgHI | is a covariety of CoalgH.

Lemma 7.6. Let 〈X, α〉 be a H-coalgebra. Then it is in |CoalgHI | iff it satisfies T .

Proposition 7.7. |CoalgHI | is a covariety of CoalgH.

From this follows that we can construct a final object in CoalgHI as the biggest sub-
object of FH satisfying T . Thus the kernel of final morphisms in CoalgHI coincides with
the kernel of final morphisms in CoalgH. This argument extends to CoalgST

, since it is
isomorphic to CoalgHI .

If T is sound w.r.t. 〈X, αI〉, then the latter is in |CoalgHI |, i.e., αI = α′
I ; ιX. Note that

〈X, α′
I〉 corresponds through the isomorphism to 〈X, αI〉 (namely, I(〈X, α′

I〉) = 〈X, αI〉).
Thus, by assuming T to be sound w.r.t. 〈X, αI〉, we have that the kernel of final morphism
from 〈X, α′

I〉 in CoalgST
coincides with ∼S.

It is worth to give an intuition about FST
, the final coalgebra of CoalgST

. One can
roughly thinks of FH (the final coalgebra of CoalgH) as the standard final coalgebra of

28 F. BONCHI AND U. MONTANARI

transition systems (with labels in ||C|| ×O), i.e., the coalgebra of all synchronization trees.
The final coalgebra of CoalgST

is the biggest subcoalgebra of FH containing all and only
those synchronization trees that are sound w.r.t. T . Note that FST

is not a “convenient
semantics domain” since all the set of transitions of a given state are saturated. In the next
subsection, we are going to show the category of normalized coalgebras, where the final
coalgebra contains only few “essential” symbolic transitions.

7.2. Normalized Coalgebras. In this subsection we introduce normalized coalgebras,
in order to characterize ∼S without considering the whole satts and by relying on the
derivation relation ⊢T,X. The following observation is fundamental to explain our idea.

Lemma 7.8. Let X be a Γ(C)-algebra. For all triples (c1, o1, p1), (c2, o2, p2) ∈ H(X), if
(c1, o1, p1) ⊢T,X (c2, o2, p2) then p2 = eX(p1) for some e ∈ ||C||. Moreover ∀q1 ∈

∫
X,

(c1, o1, q1) ⊢T,X (c2, o2, eX(q1)).

Consider a H-coalgebra 〈X, γ〉 and the equivalence ∼γ induced by the final morphism.

Suppose that p
c1,o1
−−→γ p1 and p

c2,o2
−−→γ eX(p1) such that (c1, o1, p1) ⊢T,X (c2, o2, eX(p1)). If

〈X, γ〉 satisfies T (i.e., it is a ST-coalgebra), we can forget about the latter transition.

Indeed, for all q ∈
∫
X, if q

c1,o1
−−→γ q1 then also q

c2,o2
−−→γ eX(q1) (since 〈X, γ〉 satisfies T) and

if p1 ∼
γ q1, then also eX(p1) ∼

γ eX(q1) (since ∼γ is a congruence). Thus, when checking
bisimilarity, we can avoid to consider those transitions that are derivable from others. We
call such transitions redundant.

A wrong way to efficiently characterize ∼γ by exploiting ⊢T,X, consists in removing
all the redundant transitions from 〈X, γ〉 obtaining a new coalgebra 〈X, β〉 and then com-
puting ∼β (i.e., the ordinary bisimilarity on 〈X, β〉). When considering 〈X, αI〉 (i.e., the
H-coalgebra corresponding to satts), this roughly means to build a symbolic transition
system and then computing the ordinary bisimilarity over this. But, as we have seen in
Section 4, the resulting bisimilarity (denoted by ∼W) does not coincide with the original
one. Generally, this happens when

(1) p
c1,o1
−−→β p1 and p

c2,o2
−−→β p2 with (c1, o1, p1) ⊢T,X (c2, o2, eX(p1)) and

(2) eX(p1) 6= p2, but
(3) eX(p1) ∼

γ p2.

Notice that p
c2,o2
−−→β p2 is not removed, because it is not considered redundant since eX(p1)

is different from p2 (even if semantically equivalent). A transition as the latter is called
semantically redundant and it causes the mismatch between ∼β and ∼γ . Indeed, take a

process q that only performs q
c1,o1
−−→β q1 with p1 ∼

γ q1. Clearly p 6∼β q, but p ∼γ q.

Indeed (c1, o1, q1) ⊢T,X (c2, o2, eX(q1)) and thus q
c2,o2
−−→γ eX(q1) (since 〈X, γ〉 satisfies T) and

p2 ∼
γ eX(p1) ∼

γ eX(q1) (since ∼
γ is a congruence).

As an example consider the symbolic transition system of γ1 (Figure 4(C)). We have

that (1) γ1
a,•
−→ω a⊲ ab.0 and γ1

ab,•
−→ω ab⊲ ε.0 with (a, •, a ⊲ ab.0) ⊢TW ,W (ab, •, ab ⊲ ab.0);

(2) ab ⊲ ab.0 6= ab ⊲ ε.0, but (3) ab ⊲ ab.0 ∼S ab ⊲ ε.0. Thus, the symbolic transition

γ1
ab,•
−→ω ab ⊲ ε.0 is semantically redundant and it is the reason why γ2 = ε ⊲ a.ab.0 is

not syntactically bisimilar to γ1 (i.e., γ1 6∼
W γ2) even if they are saturated bisimilar (as

discussed in Section 3).

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 29

As a further example consider 〈N4, l〉 (Figure 3): (1) l
∅,α
−→η q and l

$3,α
−→η m with

(∅, α, q) ⊢TN ,N ($3, α, $3
N
(q)) and (2) $3

N
(q) = q$3 6= m, but q$3 ∼S m. Now consider 〈N1, a〉.

a
∅,α
−→η b. Clearly l 6∼W a but l ∼S a (as shown in Section 2).

For the asynchronous π-calculus consider the symbolic transitions of p1 = τ.νy.ya +

a(b).ab1 in Figure 1(B): (1) p1
−,τ
−→α νy.ya1 and p1

−|aa,τ
−−−→α aa1 with (−, τ, νy.ya1) ⊢TA,A

(−|aa, τ,−|aaA(νy.ya1)); (2) −|aaA(νy.ya1) = νy.ya|aa1 6= aa1, but (3) νy.ya|aa1 ∼
S aa1.

Now the process τ.01 only performs
−,τ
−→α 01. Clearly τ.νy.ya+ a(b).ab1 6∼

W τ.01, but they
are saturated bisimilar (as shown in Section 1).

The above observation tells us that we have to remove not only the redundant transition,
i.e., those derivable from ⊢T,X, but also the semantically redundant ones. But immediately a
problem arises. How can we decide which transitions are semantically redundant, if semantic
redundancy itself depends on bisimilarity?

Our solution is the following: we define a category of coalgebras without redundant
transitions (CoalgNT

) and, as a result, a final coalgebra contains no semantically redundant
transitions.

Definition 7.9 (Normalized Set and Normalization). Let X be a Γ(C)-algebra.
A transition (c′, o′, q′) is equivalent to (c, o, q) in T,X (written (c′, o′, q′) ≡T,X (c, o, q))

iff (c′, o′, q′) ⊢T,X (c, o, q) and (c, o, q) ⊢T,X (c′, o′, q′).
A transition (c′, o′, q′) dominates (c, o, q) in T,X (written (c′, o′, q′) ≺T,X (c, o, q)) iff

(c′, o′, q′) ⊢T,X (c, o, q) and (c, o, q) 0T,X (c′, o′, q′).
Let A ∈ G(X). A transition (c, o, q) ∈ A is redundant in A w.r.t. T,X if ∃(c′, o′, q′) ∈ A

such that (c′, o′, q′) ≺T,X (c, o, q).
The set A is normalized w.r.t. T,X iff it does not contain redundant transitions and

it is closed by equivalent transitions. The set NT

X
(X) is the subset of G(X) containing all

and only the normalized sets w.r.t. T,X.
The normalization function normT,X : G(X)→ NT

X
(X) mapsA ∈ G(X) into {(c′, o′, q′)

s.t. ∃(c, o, q) ∈ A s.t. (c′, o′, q′) ≡T,X (c, o, q) and (c, o, q) not redundant in A w.r.t. T,X}.

RecallW = 〈Wor,W, OW , trW〉 and TW (introduced in Section 4). Consider the coalge-
bra 〈U, ζ〉 partially depicted in Figure 8(B). Here we have that (a, •, γ′) ⊢TW ,U (ab, •, bU(γ

′))
but (ab, •, bU(γ

′)) 6⊢TW ,U (a, •, γ′). Thus (a, •, γ′) ≺TN ,U (ab, •, bU(γ
′)) and then the set

ζ(γ), i.e., the set of transitions of γ, is not normalized (w.r.t. TW ,U) since the transition
(ab, •, bU(γ

′)) is redundant in ζ(γ). By applying normTW,U
to ζ(γ), we get the normalized

set of transitions {(a, •, γ′)} (Figure 8(C)). It is worth noting that in swc, two transitions
are equivalent iff they are the same transition.

Now consider N = 〈Tok,N,Λ, trN 〉, TN (introduced in Section 4) and the coalgebra
〈Y, γ〉 partially depicted in Figure 9(A). Here we have that (∅, α, v) ⊢TN ,Y ($3, α, $3

Y
(v)) but

($3, α, $3
Y
(v)) 6⊢TN ,Y (∅, α, v). Thus (∅, α, v) ≺TN ,Y ($3, α, $3

Y
(v)) and then the set γ(u), i.e.,

the set of transitions of u, is not normalized (w.r.t. TN ,Y) since the transition ($3, α, $3
Y
(v))

is redundant in γ(u). By applying normY,TN
to γ(u), we get the normalized set of transitions

{(∅, α, v)} (Figure 9(B)). Also in open Petri nets, two transitions are equivalent iff they are
the same transition.

Finally consider A = 〈Out,A, OA, trA〉, TA (introduced in Section 4) and the coalgebra
〈Z, δ〉 partially depicted in Figure 9(C). We have that (−, τ, q1) ⊢TA,Z (−|aa, τ,−|aaZ(q1))
but (−|aa, τ,−|aaZ(q1)) 6⊢TA,Z (−, τ, q1). The same holds for (−|ab, τ,−|abZ(q1)). Thus

30 F. BONCHI AND U. MONTANARI

γ2 a

''OOO
OO

OO

��

γ1
a //

ab ''NNNNN
NN

��

a⊲ ab.0
b //

��

ab⊲ 0

��

ab⊲ ab.0
εoo

��

(A)

ab⊲ ε.0
ε

66mmmmmm

��

γ a //

ab

55
γ′

b // γ′′ bU(γ
′)

εoo (B)

γ a // γ′
b // γ′′ bU(γ

′)
εoo (C)

Figure 8: (A) Part of the normalized coalgebra 〈W, αW ;normTW ,W〉. (B) Part of a not nor-
malized coalgebra 〈U, ζ〉. (C) Part of a normalized coalgebra 〈U, ζ;normTW ,U〉.
The dotted arrows represent a NTW

-morphism from 〈W, αW ;normTW ,W〉 to
〈U, ζ;normTW ,U〉.

u
∅,α //

$3,α

66
v

$,β

w

∅,β
oo x

∅,β
oo $3

Y
(v)

∅,β
oo u

∅,α // v

$,β

w

∅,β
oo x

∅,β
oo $3

Y
(v)

∅,β
oo

(A) (B)

q2 −|abZ(q1)
−,aboo

p1

−,τ %%KK
KK

K −|aa,τ
$$

−|ab,τ 55

q1 −|aaZ(q1)
−,aaoo

q2 −|abZ(q1)
−,aboo

p1

−,τ %%KK
KK

K

q1 −|aaZ(q1)
−,aaoo

(C) (D)

Figure 9: (A) Part of a not normalized coalgebra 〈Y, γ〉. (B) Part of a normalized coalgebra
〈Y, γ;normTN ,Y〉. (C) Part of a not normalized coalgebra 〈Z, δ〉. (D) Part of a
normalized coalgebra 〈Z, δ;normTA,Z〉.

the set δ(p1), i.e., the set of transitions of p1, is not normalized (w.r.t. TA,Z) since the
transitions (−|aa, τ,−|aaZ(q1)) and (−|ab, τ,−|abZ(q1)) are redundant in δ(p1) (they are
dominated by (−, τ, q1)). By applying normZ,TA

to δ(p1), we obtain the normalized set of
transitions {(−, τ, q1)} (in Figure 9(D)). Also in the asynchronous π-calculus, two transitions
are equivalent iff they are the same transition.

Definition 7.10. NT : AlgΓ(C) → AlgΓ(C) maps each X = 〈X, d0
X
, d1

X
, . . . 〉 ∈ AlgΓ(C) into

NT(X) = 〈NT

X
(X), d0

ST(X);normT,X, d
1
ST(X);normT,X, . . . 〉. For all h : X → Y, let H′(h) :

NT(X) → H(Y) be the restricion of H(h) to NT(X). Then, NT(h) : NT(X) → NT(Y) is
defined as H′(h);normT,Y.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 31

Hereafter we will sometimes write H(h) to mean its restriction H′(h).
The coalgebra 〈U, ζ〉 (partially depicted in Figure 8) and 〈Y, γ〉, 〈Z, δ〉 (in Figure

9(A)(C)) are not normalized. In order to get a normalized coalgebra for our running exam-
ples, we can normalize their saturated coalgebra 〈W, αW〉, 〈N, αN 〉 and 〈A, αA〉 obtaining,
respectively, 〈W, αW ;normTW ,W〉, 〈N, αN ;normTN ,N〉 and 〈A, αA;normTA,A〉. For γ1 and
γ2 in Figure 4(C), for the nets in Figure 3 and for the process τ.νy.ya + a(b).ab1, this co-
incides with their scts. Section 8 discusses the exact relationship between a scts and the
transition system that is obtained by normalizing αI .

The most important idea behind normalized coalgebra is in the definition of NT(h): we
first apply H(h) and then the normalization normT,Y. Thus NT-morphisms must preserve
not all the transitions of the source coalgebras, but only those that are not redundant when
mapped into the target.

For instance, consider the function h from 〈W, αW ;normTW ,W〉 to 〈U, ζ;normTW ,U〉 that

is partially depicted in Figure 8. Note that the transition γ1
ab,•
−→ ab⊲ ε.0 is not preserved,

but h is however an NT-morphisms because the transition (ab, •, bU(γ
′)) is removed by

normTW ,U. Thus, h forgets about the transition γ1
ab,•
−→ ab⊲ ε.0 that is indeed semantically

redundant.
For the asynchronous π, consider the coalgebra 〈N, αN ;normTN ,N〉. For the state l,

it coincides with the scts η (Figure 3(C)). Consider 〈Y, γ;normTN ,Y〉 (partially repre-
sented in Figure 9(B)) and the Γ(Tok)-homomorphism h : N → Y that maps l,m, n, o
into u, $3

Y
(v), x, w (respectively) and p, q into v. The morphism is shown in Figure 7. Note

that the transition l
$3,α
−→η m is not preserved (i.e., u 6

$3,α
−→γ h(m)), but h is however a

NT-morphism, because the transition ($3, α, h(m)) ∈ H(h)(η(l)) is removed by normTN ,Y.

Indeed h(m) = $3
Y
(v) and (∅, α, v) ⊢TN ,Y ($3, α, $3

Y
(v)). Thus, we forget about l

$3,α
−→η m

that is, indeed, semantically redundant.
As a further example, consider the coalgebras 〈A, αA;normTA,A〉. For the state τ.νy.ya+

a(b).ab1, it coincides with the scts α (in Figure 1(B)). Consider 〈Z, δ;normTA,Z〉 (par-
tially represented in Figure 9(D)) and the Γ(Out)-homomorphism h : A → Z shown in

Figure 7. Note that for all i ∈ N the transitions τ.νy.ya + a(b).ab1
−|ai,τ
−−→α aii are not

preserved (i.e., p1 6
−|ai,τ
−−→δ h(aii)), but h is however a NT-morphism, because the transi-

tions (−|ai, τ, h(aii)) ∈ H(g)(α(τ.νy.ya + a(b).ab1)) are removed by normTA,Z. Indeed
h(aii) = −|aiZ(q1) and (−, τ, q1) ⊢TA,Z (−|ai, τ,−|aiZ(q1)). Thus, we forget about all the

transitions
−|ai,τ
−−→α aii that are, indeed, semantically redundant.

7.3. Isomorphism Theorem. Now we prove that CoalgNT
is isomorphic to CoalgST

.

Definition 7.11 (Saturation). Let X be a Γ(C)-algebra. The saturation function satT,X :

G(X)→ ST

X
(X) maps all sets of transitions A ∈ G(X) into the set {(c′, o′, x′) s.t. (c, o, x) ∈

A and (c, o, x) ⊢T,X (c′, o′, x′)}.

Saturation is intuitively the opposite of normalization. Indeed saturation adds to a set
all the redundant transitions, while normalization junks all of them. Thus, if we take a
saturated set of transitions, we first normalize it and then we saturate it, we obtain the
original set. Analogously for a normalized set.

32 F. BONCHI AND U. MONTANARI

However, in order to get such correspondence, we must add a constraint to our theory.
Indeed, according to the actual definitions, there could exist a ST-coalgebra 〈X, γ〉 and an

infinite descending chain like: · · · ≺T,X p
c2,o2
−−→γ p2 ≺T,X p

c1,o1
−−→γ p1. In this chain, all the

transitions are redundant and thus if we normalize it, we obtain an empty set of transitions.

Definition 7.12 (Normalizable System). A context interactive system I = 〈C,X, O, tr〉
is normalizable w.r.t. T iff ∀X ∈ AlgΓ(C), ≺T,X is well founded, i.e., there are not infinite
descending chains of ≺T,X.

In Appendix A, we show that the context interactive systems for open nets and asyn-
chronous π are normalizable w.r.t. their inference systems.

Lemma 7.13. Let I be a normalizable system w.r.t. T . Let X be Γ(C)-algebra and A ∈
G(X). Then ∀(d, o, x) ∈ A, either (d, o, x) ∈ normT,X(A) or ∃(d′, o′, x′) ∈ normT,X(A),
such that (d′, o′, x′) ≺T,X (d, o, x).

The above lemma guarantees that normalizing a set of transitions produces a new set
containing all the transitions that are needed to retrieve the original one. Hereafter, we
always refer to normalizable systems.

Proposition 7.14. Let normT , respectively, satT be the families of morphisms {normT,X :
ST(X) → NT(X), ∀X ∈ |AlgΓ(C)|} and {satT,X : NT(X) → ST(X), ∀X ∈ |AlgΓ(C)|}.
Then normT : ST ⇒ NT and satT : NT ⇒ ST are natural transformations. More precisely,
they are natural isomorphisms, one the inverse of the other.

As for the case of the natural transformation ι, we use the fact that that any natural
transformation between endofunctors induces a functor between the corresponding cate-
gories of coalgebras [40]. In the present case, normT : ST ⇒ NT induces the functor
NORMT : CoalgST

→ CoalgNT
that maps every coalgebra 〈X, α〉 in 〈X, α;normT,X〉

and every cohomomorphism h in itself. Analogously satT : NT ⇒ ST induces SATT :
CoalgNT

→ CoalgST
. These two functors are one the inverse of the other.

Theorem 7.15. CoalgST
and CoalgNT

are isomorphic.

ThusCoalgNT
has a final coalgebra FNT

and the final morphisms from 〈X, αI ;normT,X〉
(that is NORMT〈X, αI〉) still characterizes ∼

S. This is theoretically very interesting, since
the minimal canonical representatives of ∼S in CoalgNT

do not contain any (semantically)
redundant transitions and thus they are much smaller than the (possibly infinite) minimal
representatives in CoalgST

. Pragmatically, it allows for an effective procedure for minimiz-
ing that we will discuss in the next section. Notice that minimization is usually unfeasible
in CoalgST

, since the saturated transitions systems are usually infinite.

8. From Normalized Coalgebras to Symbolic Minimization

In [10], we have introduced a partition refinement algorithm for symbolic bisimilarity. First,
it creates a partition P0 equating all the states (with the same interface) of a symbolic
transition system β and then, iteratively, refines this partition by splitting non equivalent
states. The algorithm terminates whenever two subsequent partitions are equivalent. It

computes the partition Pn+1 as follows: p and q are equivalent in Pn+1 iff whenever p
c,o
−→β p1

is not-redundant in Pn, then q
c,o
−→β q1 is not-redundant in Pn and p1, q1 are equivalent in

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 33

γ2 a

''PPPPPP

γ1
a //

ab ''OOOOOO a⊲ ab.0
b // ab⊲ 0 ab⊲ ab.0

εoo

ab⊲ ε.0
ε

66llllll

P0 = {γ1, γ2, a⊲ ab.0, ab⊲ 0, ab⊲ ε.0, ab⊲ ab.0}
P1 = {γ1, γ2}{a⊲ ab.0}{ab ⊲ 0}{ab⊲ ε.0, ab ⊲ ab.0}
P2 = {γ1, γ2}{a⊲ ab.0}{ab ⊲ 0}{ab⊲ ε.0, ab ⊲ ab.0}

Figure 10: The partitions computed for γ1 = ε⊲ a.ab.0+ ab.ε.0 and γ2 = ε⊲ a.ab.0.

Pn (and viceversa). By “not-redundant in Pn”, we mean that no transition p
c′,o′
−→β p′1 exists

such that (c′, o′, p′1) ⊢T,X (c, o, p′2) and p′2, p1 are equivalent in Pn.
Figure 10 shows the partitions computed by the algorithm for the symbolic transition

system ω of γ1 = ε ⊲ a.ab.0 + ab.ε.0 and γ2 = ε ⊲ a.ab.0. In P0 all the configurations are
equivalent since they all have the same interface (more generally, in swc, all the configura-
tions have the same interface). Then in P1, {ab ⊲ ε.0, ab ⊲ ab.0} are distinguished by all
the other configurations because they are the only ones that can perform a transition with
ε. Analogously, ab⊲ 0 is different from all the others, because it is the only that performs
no transition, while a ⊲ ab.0 is distinguished because it can perform a b transition. Note

that γ1 and γ2 are equivalent in P1, because the transition γ1
ab,•
−→ω ab⊲ ε.0 is redundant in

P0. Indeed (a, •, a⊲ ab.0) ⊢TW ,W (ab, •, ab⊲ ab.0) and ab⊲ ε.0 is equivalent to ab⊲ ab.0 in
P0. The same holds for P2.

Figure 11 shows the partitions computed by the algorithm for the scts η of the marked
nets 〈N1, a〉 and 〈N4, l〉 of Figure 3. Note that a and l are equivalent in the partition

P1, because the transition l
$3,α
−→η m is redundant in P0. Indeed, l

∅,α
−→η q, (∅, α, q) ⊢TN ,N

($3, α, q$3) and m is equivalent to q$3 in P0. Analogously, for the other Pi.
Figure 12 shows the partitions computed by the algorithm for the scts α of the

asynchronous processes τ.νy.ya + a(b).ab1 and τ.01. Since the scts of the former pro-
cess is infinite, our algorithm cannot work in reality. We discuss this issue in the next
section and for the time being, we imagine to have a procedure that can manipulate
this infinite lts. First of all, note that all the states with different interfaces are differ-
ent in P0 (while in the case of swc and open nets, all the states have the same inter-
face). Moreover, τ.νy.ya + a(b).ab1 and τ.01 are equivalent in the partition P1, because

for all i ∈ ω0, the transitions τ.νy.yb + a(b).ab1
−|ai,τ
−−→α aii are redundant in P0. Indeed,

τ.νy.ya+ a(b).ab1
−,τ
−→α νy.ya1, (−, τ, νy.ya1) ⊢TA,A (−|ai, τ, νy.ya|aii) and aii is equivalent

to νy.ya|aii in P0. Analogously, for P2.

The terminal sequence 1 ← NT(1) ← N2
T
(1) ← . . . (where 1 is a final Γ(C)-algebra)

induces a sequence of approximations of the final morphism from 〈X, αI ;normT,X〉 to
FNT

. The 0-approximation !0 : X → 1 is the unique morphism in AlgΓ(C). The n + 1-

approximation !n+1 : X→ Nn+1
T

(1) is defined as αI ;normT,X;NT(!n).

34 F. BONCHI AND U. MONTANARI

a
∅,α // b

$,β

��

l
$3,α//

∅,α !!C
CC

CC
m

∅,β// n$2
∅,β // o$

∅,β // p
$,β��

q

$,β
RR q$1

∅,βoo q$2
∅,βoo q$3

∅,βoo

P0 = {a, l, b, p, q, q$
1, o$, q$2, n, q$3,m}

P1 = {a, l}{b, p, q}{q$
1 , o$, q$2, n, q$3,m}

P2 = {a, l}{b, p, q}{q$
1 , o$}{q$2, n, q$3,m}

P3 = {a, l}{b, p, q}{q$
1 , o$}{q$2, n}{q$3,m}

P4 = {a, l}{b, p, q}{q$
1 , o$}{q$2, n}{q$3,m}

Figure 11: The partitions computed for the marked nets 〈N1, a〉 and 〈N4, l〉.

X
!n //

αI ;normT,X

��

!n+1

%%KKKKKKKKKKK Nn
T
(1)

NT(X)
NT(!n)

// Nn+1
T

(1)

OO

In this section, we show that the kernel of the n-approximation !n coincides with the partition
Pn computed by the algorithm. Formally, !n(p) =!n(q) iff p is equivalent to q in Pn.

Proposition 8.1. Let I = 〈C,X, O, tr〉 be a context interactive system. Let T and β
be, respectively, an inference system and scts that are sound and complete for I. Then
αI ;normT,X = β;normT,X.

The above proposition states that the transition systems resulting from the normal-
ization of the saturated αI coincides with the systems resulting from the normalization
of the symbolic β. Note that usually β 6= β;normT,X, because our definition of symbolic
transition system does not guarantee that β is normalized (according to our definition, also
the satts is a symbolic transition system). For instance, the symbolic transition system of
γ1 in Figure 4 (C) is normalized, while the one of ε⊲ u.p + v.p in Figure 4 (B) is not.

For all the nets in Figure 3, the symbolic transition system is normalized w.r.t. N but, for

the net S2 in Figure 2, it is not. Indeed both d
∅,β
−→η z and d

y,β
−→η zy, and the former dominates

the latter in N. Also in the case of asynchronous π, the symbolic transition system α is not

normalized. Consider the process τ.cd+a(b).(cd|ab)4. The symbolic transition
−|ab,τ
−−→α cd|ab4

is dominated by
−,τ
−→α cd4.

However, when computing the n + 1-approximation !n+1, we can simply use β instead
of β;normT,X. Indeed,

β;normT,X;NT(!n) = β;normT,X;H(!n);normT,Nn
T
(1) = β;H(!n);normT,Nn

T
(1)

where the former equivalence follows from the definition of NT(!n) (Definition 7.10) and
the latter follows from Lemma E.3.2 in the Appendix. Thus, !n+1 = β;H(!n);normT,Nn

T
(1).

Now we can show by induction that !n+1(p) =!n+1(q) if and only if p and q belongs to
the same partition in Pn+1.

The base case trivially holds since !0 : X → 1 maps all the states (with the same
interface) into the same element and P0 equates all the states (with the same interface).

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 35

. . .

ab2
−,ab // 02

τ.νy.ya+ a(b).ab1

−|ab,τ //

... //

−|aa,τ //

−,τ **VVVVVVV
aa1

−,aa // 01 τ.01
−,τoo

νy.ya1 νy.ya|aa1
−,aaoo

νy.ya2 νy.ya|ab2
−,aboo

P0 = {τ.01, τ.νy.ya+ a(b).ab1,01, νy.ya1, νy.ya|aa1, aa1}
{02, νy.ya2, νy.ya|ab2, ab2}{03, νy.ya3, νy.ya|ac3, ac3} . . .

P1 = {τ.01, τ.νy.ya+ a(b).ab1}{01, νy.ya1}{νy.ya|aa1, aa1}
{02, νy.ya2}{νy.ya|ab2, ab2}{03, νy.ya3}{νy.ya|ac3, ac3} . . .

P2 = {τ.01, τ.νy.ya+ a(b).ab1}{01, νy.ya1}{νy.ya|aa1, aa1}
{02, νy.ya2}{νy.ya|ab2, ab2}{03, νy.ya3}{νy.ya|ac3, ac3} . . .

Figure 12: The partitions computed for τ.νy.yb+ a(b).ab and τ.0.

For the inductive case, note that by definition β;H(!n)(p) is equal to the set of tran-

sitions (c, o, !n(p1)) such that p
c,o
−→β p1. Then applying normT,Nn

T
(1) to this set, means to

remove all the transitions (c, o, !n(p1)) such that there exists a (non equivalent) transition
(c′, o′, !n(p

′
1)) ∈ β;H(!n)(p) such that (c′, o′, !n(p

′
1)) ⊢T,Nn

T
(1) (c, o, !n(p1)). By Lemma D.2

and Lemma D.3 in the Appendix, the latter becomes: there exists a (non equivalent) tran-
sition (c′, o′, p′1) ∈ β(p) such that (c′, o′, p′1) ⊢T,X (c, o, p′2) and !n(p1) =!n(p

′
2). By inductive

hypothesis, !n(p1) =!n(p
′
2) iff p1 and p′2 belongs to the same partition in Pn. Thus, the

normalization normT,Nn
T
(1) junks away all the redundant transitions in Pn. Summarizing

!n+1(p) is equal to the set of transitions (c, o, !n(p1)) such that p
c,o
−→β p1 and the latter is

not redundant in Pn. Therefore, !n+1(p) =!n+1(q), iff whenever p
c,o
−→β p1 is not-redundant

in Pn, then q
c,o
−→β q1 is not-redundant in Pn and p1, q1 are equivalent in Pn.

We end up this section by showing “in algorithmic terms” why normalized coalge-
bras are not bialgebras. By virtue of Proposition 5.2.2, minimization in bialgebras can be
performed, by first forgetting the algebraic structure, and then minimizing in Set. Mini-
mization in CoalgNT

, instead, heavily relies on the algebraic structure. Indeed in Figure
10, the algorithm needs ab⊲ab.0 to compute the partition of γ1. Note that γ1 cannot reach

through the symbolic transitions ab⊲ab.0, but this is needed for checking if γ1
ab,•
−→ω ab⊲ε.0

is redundant. In Figure 11, in order to compute the partitions of l, the algorithm needs the
state q$3 that is not reachable from l. Also in Figure 12, we need the state νy.ya|aa1 that
is not reachable from τ.νy.ya+ a(b).ab1.

Summarizing, given a state x of a normalized coalgebra 〈X, β;normT,X〉, in order to
compute the partitions on the states reachable from x, the algorithm needs “some” states
that are not reachable but that are somehow connect via the algebraic structure X (such
as the states described above). In [10], we have shown that the number of the needed
“extra states” is finite in all the interesting cases and it can be computed in the initializa-
tion phase of the algorithm. Moreover, it is important to remark here that X is the only

36 F. BONCHI AND U. MONTANARI

algebraic structure that is involved in the algorithm: as described above, the normalization
normT,Nn

T
(1) (at iteration n+ 1) can be computed by just using the algebra X.

9. Conclusions and related works

The paper introduces two coalgebraic models for context interactive systems [8]. In the first
one, the saturated transition system is an ordinary structured coalgebra 〈X, αI〉 and its final
morphism induces ∼S . The second model is the normalized coalgebra 〈X, αI ;normT,X〉 that
is obtained by pruning all the redundant transitions from the first one. The equivalence
induced by its final morphism is still ∼S , but this characterization is much more convenient.
Indeed, in the final normalized coalgebra all the (semantically) redundant transitions are
eliminated. Moreover, minimization is usually feasible with normalized coalgebras and
coincides with the symbolic minimization algorithm introduced in [10].

As a lateral result, we have obtained coalgebraic models for both open Petri nets and
asynchronous π-calculus.

Unfortunately, symbolic minimization is unfeasible in the case of asynchronous π, be-
cause the symbolic transition system is infinite. Indeed, in the definition of ∼1 (Definition
1.2), a process is put in parallel with all possible outputs ab. Our symbolic transition sys-
tem eliminates all those outputs whose subjects a are not needed, but yet it considers all
the possible objects b. We could have defined a different scts that considers only those
objects that are strictly needed but, anyway, in the asynchronous π-calculus there are sev-
eral other sources of infiniteness. Amongst these, one always appears when considering
“nominal calculi” where systems are able to generate and communicate names: every time
that a system generates a new name and extrudes it, the system goes in a new state that is
different from all the previous. HD-Automata [34] are peculiar ltss that allow to garbage
collect names and avoid this further source of infiniteness. As future work, we would like to
extend our framework to HD-Automata, so that we will be able to handle systems that gen-
erates infinitely many names. In particular we conjecture that the resulting minimization
algorithm will generalize both [35] and [38] that provide a partition refinement algorithm
for asynchronous and open bisimilarity. The reader is referred to [10] for a more detailed
comparison with [35] and [38].

Concerning open bisimilarity [41], a coalgebraic model has been proposed in [22]. How-
ever, this is the saturated version, i.e., the one that takes into account all the possible
substitutions. In [8], we have given a context interactive system for open π-calculus, and
thus our work also provides a coalgebraic model for the “efficient characterization” of open
bisimilarity.

Besides open Petri nets, asynchronous and open π-calculus, context interactive systems
also generalize Leifer and Milner’s reactive systems [29]. The main novelty of our framework
consists in having observations and inference rules. The latter generalize the notion of
reactive contexts of [29]. Indeed c is reactive iff the following inference rule holds.

p
τ
−→ q

c(p)
τ
−→ c(q)

Concretely, the main advantage of our framework w.r.t. [29] is that we do not need the
existence of RPOs and thus we can avoid those encodings into bigraphs [32] and borrowed
contexts [16]. The main disadvantage is that our framework does not provide a constructive
definition for the lts: constructing a sound and complete symbolic transition system is left

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 37

to the ingenuity of the researcher. We refer the reader to [8, 4] for a detailed comparison
between context interactive systems and reactive systems.

In [6], the first author together with Gadducci and Monreale has shown a reactive sys-
tem for mobile ambients [12]. Thus, the present work indirectly provides also a coalgebraic
semantics for mobile ambients. A coalgebraic model for this calculus has been previously
proposed in [23] but it characterizes action bisimilarity that is strictly included into reduc-
tion barbed congruence [30]. Action bisimilarity is defined as the ordinary bisimilarity on
the symbolic transition system and thus it is an instance of what we have called syntactic
bisimilarity (∼W).

Besides their large applicability, normalized coalgebras are interesting for a more the-
oretical reason: at our knowledge, these are the first example in literature of structured
coalgebras that are not bialgebras. Indeed, both the definitions of saturated and normal-
ized set of transitions (Definition 7.3 and 7.9, respectively) strongly rely on the underlying
algebraic structures. This is evident in the minimization algorithm in CoalgNT

that heavily
employs the algebraic structure.

Acknowledgement

The authors would like to thank the anonymous referees (of this and the preliminary version
in [9]) for the precious comments that have improved the quality of the paper.

References

[1] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asynchronous
π-calculus. In Proc. of CONCUR, volume 1119 of LNCS, pages 147–162. Springer, 1996.

[2] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, Reiko Heckel, and B. König. Bisimilarity and
behaviour-preserving reconfiguration of open Petri nets. In Proc. of CALCO, volume 4624 of LNCS,
pages 126–142. Springer, 2007.

[3] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, and Reiko Heckel. Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer Science, 15(1):1–35,
2005.

[4] Filippo Bonchi. Abstract Semantics by Observable Contexts. PhD thesis, 2008.
[5] Filippo Bonchi, Fabio Gadducci, and Barbara König. Process bisimulation via a graphical encoding. In

Proc. of ICGT, volume 4178 of LNCS, pages 168–183, 2006.
[6] Filippo Bonchi, Fabio Gadducci, and Giacoma Valentina Monreale. Reactive systems, barbed semantics

and the mobile ambients. In Proc. of FOSSACS, volume 5504 of LNCS, pages 272–287. Springer, 2009.
[7] Filippo Bonchi and Ugo Montanari. Coalgebraic models for reactive systems. In Proc. of CONCUR,

volume 4703 of LNCS, pages 364–379, 2007.
[8] Filippo Bonchi and Ugo Montanari. Symbolic semantics revisited. In Proc. of FOSSACS, volume 4962

of LNCS, pages 395–412. Springer, 2008.
[9] Filippo Bonchi and Ugo Montanari. Coalgebraic symbolic semantics. In Proc. of CALCO, volume 5728

of LNCS, pages 173–190. Springer, 2009.
[10] Filippo Bonchi and Ugo Montanari. Minimization algorithm for symbolic bisimilarity. In Proc. of ESOP,

volume 5502 of LNCS, pages 267–284. Springer, 2009.
[11] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based language for specifying service

level agreements. In Proc. of ESOP, volume 4421 of LNCS, pages 18–32. Springer, 2007.
[12] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213,

2000.
[13] Andrea Corradini, Martin Große-Rhode, and Reiko Heckel. Structured transition systems as lax coal-

gebras. Elect. Notes in Theor. Comp. Sci., 11, 1998.

38 F. BONCHI AND U. MONTANARI

[14] Andrea Corradini, Martin Große-Rhode, and Reiko Heckel. A coalgebraic presentation of structured
transition systems. Theoretical Computer Science, 260:27–55, 2001.

[15] Andrea Corradini, Reiko Heckel, and Ugo Montanari. Tile transition systems as structured coalgebras.
In Proc. of FCT, pages 13–38, 1999.

[16] Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the DPO approach to graph
rewriting. In Proc. of FOSSACS, volume 2987 of LNCS, pages 151–166. Springer, 2004.

[17] Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully abstract model for the π-calculus.
Information and Computation, 179(1):76–117, 2002.

[18] Marcelo P. Fiore and Daniel Turi. Semantics of name and value passing. In LICS, pages 93–104. IEEE,
2001.

[19] Fabio Gadducci. Term graph rewriting and the π-calculus. Programming Languages and Semantics,
volume 2895 of LNCS, pages 37–54. Springer, 2003.

[20] Fabio Gadducci and Ugo Montanari. A concurrent graph semantics for mobile ambients. Mathemati-

cal Foundations of Programming Semantics, volume 45 of Elect. Notes in Theor. Comp. Sci. Elsevier
Science, 2001.

[21] Fabio Gadduci and Ugo Montanari. The tile model. Proof, Language and Interaction: Essays in honour

of Robin Milner. MIT Press, 1999.
[22] Neil Ghani, Kidane Yemane, and Björn Victor. Relationally staged computations in calculi of mobile

processes. Elect. Notes in Theor. Comp. Sci., 106:105–120, 2004.
[23] Daniel Hausmann, Till Mossakowski, and Lutz Schröder. A coalgebraic approach to the semantics of

the ambient calculus. Theoretical Computer Science, 366(1-2):121–143, 2006.
[24] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138(2):353–389, 1995.
[25] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In Proc. of

ECOOP, volume 512 of LNCS, pages 133–147. Springer, 1991.
[26] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three problems

of equivalence. Information and Computation, 86(1):43–68, 1990.
[27] Ekkart Kindler. A compositional partial order semantics for Petri net components. In Proc. of ATPN,

volume 1248 of LNCS, pages 235–252. Springer, 1997.
[28] Alexander Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, 2000.
[29] James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive systems. In Proc. of

CONCUR, volume 1877 of LNCS, pages 243–258. Springer, 2000.
[30] Massimo Merro and Francesco Zappa Nardelli. Bisimulation proof methods for mobile ambients. In

Proc. of ICALP, volume 2719 of LNCS, pages 584–598. Springer, 2003.
[31] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.
[32] Robin Milner. Bigraphical reactive systems. In Proc. of CONCUR, volume 2154 of LNCS, pages 16–35.

Springer, 2001.
[33] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i and ii. Information

and Computation, 100(1):1–40, 41–77, 1992.
[34] Ugo Montanari and Marco Pistore. An introduction to history dependent automata. Elect. Notes in

Theor. Comp. Sci., 10, 1997.
[35] Ugo Montanari and Marco Pistore. Finite state verification for the asynchronous π-calculus. In Proc.

of TACAS, volume 1579 of LNCS, pages 255–269. Springer, 1999.
[36] Ugo Montanari and Vladimiro Sassone. Dynamic congruence vs. progressing bisimulation for ccs. Fun-

dam. Inform., 16(1):171–199, 1992.
[37] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-

cesses. In LICS, pages 176–185. IEEE, 1998.
[38] Marco Pistore and Davide Sangiorgi. A partition refinement algorithm for the π-calculus. Information

and Computation, 164(2):264–321, 2001.
[39] Wolfgang Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science.

Springer Verlag, 1985.
[40] Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80, 2000.
[41] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Inf., 33(1):69–97, 1996.
[42] Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In LICS, pages

280–291. IEEE, 1997.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 39

[43] Lucian Wischik and Philippa Gardner. Strong bisimulation for the explicit fusion calculus. In Proc. of

FOSSACS, volume 2987 of LNCS, pages 484–498. Springer, 2004.
[44] Lucian Wischik and Philippa Gardner. Explicit fusions. Theoretical Computer Science, 340(3):606–630,

2005.

Appendix A. Normalizable Systems

In this appendix we show that the context interactive system N = 〈Tok,N,Λ, trN 〉 is
normalizable w.r.t. TN and that A = 〈Out,A, OA, trA〉 is normalizable w.r.t. TA (all these
are defined in Section 4). Then we show an example of a not normalizable systems.

Proposition A.1. N = 〈Tok,N,Λ, trN 〉 is normalizable w.r.t. TN .

Proof. Recall that arrows of Tok are multisets (over sets of input places) and that c; d = e
if and only if c⊕ d = e. Then, for all Γ(Tok)-algebra Y,

(c1, λ, x1) ≺TN ,Y (c2, λ
′, x2)

only if the multiset c1 is strictly included into the multiset c2. Since all multisets are finite
also the descending chains must be finite.

Proposition A.2. A = 〈Out,A, OA, trA〉 is normalizable w.r.t. TA.

Proof. Recall that arrows of Out are contexts representing parallel output processes and
that c; d = e if and only if e is the syntactic composition of c with d. Then, for all Γ(Out)-
algebra Y,

(c1, o, q1) ≺TA,Y (c2, o
′, q2)

only if the context c2 is the parallel composition of c1 with some other outputs. Since all
contexts are finite then the descending chains must be also finite.

Example A.3. As an example of not normalizable context interactive system consider the
category NAT≥ defined as follow:

• objects are natural numbers and ∞,
• there is an arrow n→ m, if n ≥ m or if n =∞.

Since for any two objects n,m there is only one arrow, we call this arrow just as n → m.
Consider now a context interactive system NAT≥ = 〈NAT≥,X, O, tr〉 for some X, O, tr.
Let T be the tile system that states that all contexts preserve transitions.

We have that NAT≥ is not normalizable with respect to T . Indeed, let F be the final
Γ(NAT≥). In this algebra there is only one element ⋆ for each sort (natural number), and
an arrow n→ m of NAT≥ is interpreted in the function mapping ⋆ of sort n into ⋆ of sort
m. Since ∞→ n can be decomposed in ∞→ n+ 1→ n, then

(∞→ n+ 1, l, ⋆) ≺T,F (∞→ n, l, ⋆).

This trivially leads to an infinite descending chain.

40 F. BONCHI AND U. MONTANARI

Appendix B. Proofs of Section 4

Proposition 4.3. ∼S is the coarsest bisimulation congruence.

Proof. Since ∼S is a saturated bisimulation, then it is also a congruence: if p ∼S q, then
for all contexts cX, it holds that cX(p) ∼

S cX(q).
In order to prove that it is the coarsest bisimulation congruence, we prove that any

bisimulation congruence R is a saturated bisimulation.

Suppose that p R q. Suppose that cX(p)
o
−→ p′. Since R is a congruence, then

cX(p) R cX(q). Since R is a bisimulation cX(q)
o
−→ q′ and p′Rq′. Thus R is a saturated

bisimulation.

Proposition 4.4. Let 〈N1,m1〉 and 〈N2,m2〉 be two marked nets both with interface I.
Thus 〈N1,m1〉 ∼

N 〈N2,m2〉 iff 〈N1,m1〉 ∼
S
I 〈N2,m2〉.

Proof. The definition of ∼S instantiated to the context interactive system N , requires that
〈N1,m1〉 and 〈N2,m2〉 (a) make the same transitions with the rule (tr) and (b) they are
still equivalent when adding multisets i ∈ I⊕. The definition of ∼N instead requires that
the two nets perform the same transitions with both the rule (tr) and the rule (in). But
the latter rule just adds multisets i ∈ I⊕ and thus it is just the same of point (b) above.

Proposition 4.5. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then
p ∼1 q iff pn ∼

S
n qn.

Proof. Let R = {(p, q) | pn ∼
S
n qn n ≥ max fn(p ∪ q)}. In order to prove that pn ∼

S
n qn

implies p ∼1 q, we prove that R is an 1-bisimulation, i.e., an oτ -bisimulation closed under

composition with output processes. Suppose that p
i(j)
−→ p′ (the cases of τ and output are

easier). First of all observe that pn ∼
S
n qn implies that ∀m ≥ n pm ∼

S
m qm. Now since j

is fresh, we have that j − 1 ≥ n, and thus pj−1 ∼
S
j−1 qj−1. By definition of trA, we have

that pj−1
i()
−→A p′j and, since pj−1 ∼

S
j−1 qj−1, it follows that qj−1

i()
−→A q′j and p′j ∼

S
j q′j and

then, p′Rq′. Again by definition of trA, we have that q
i(j)
−→ q′. This prove that R is an

oτ -bisimulation. Now we have to prove that it is closed under composition with output
processes, but this is immediate since ∼S is a congruence w.r.t. composition with output
processes.

Let R be the ω-sorted relation, such that ∀n ∈ ω, Rn = {(pn, qn) | p ∼1 q, n ≥
max fn(p ∪ q)}. In order to prove that p ∼1 q implies pn ∼

S
n qn, we prove that R is a

saturated bisimulation. Let c ∈ Out[n,m] and suppose that c(pn)m
i()
−→A p′m+1 (the case

of τ and output are easier). By definition of trA, c(p)
i(m+1)
−−−→ p′. Now, since p ∼1 q, by

definition of 1-bisimulation, it follows that c(p) ∼1 c(q) because contexts c are just parallel

output processes. Thus c(q)
i(m+1)
−−−→ q′ and p′ ∼1 q′. By definition of trA, it follows that

c(qn)
i()
−→A q′m+1 and, by definition of R, that p′m+1Rm+1q

′
m+1.

Theorem 4.12. Let I be a context interactive system, β a context transition system and
T an inference system. If β and T are sound and complete w.r.t. I, then ∼SYM=∼S.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 41

Proof. Let R = {Ri ⊆ Xi × Xi | i ∈ |C|} be the |C|-sorted family of relations, such that
∀j ∈ |C|,

Rj = {(c(pi), c(qi)) | c ∈ C[i, j], pi ∼
SYM
i qi}.

In order to prove that ∼SYM⊆∼S we prove that R is a saturated bisimulation. Suppose
that ajRjbj thus there exists c ∈ C[i, j] such that c(pi) = aj, c(qi) = bj and pi ∼

SYM
i qi.

Hereafter, in order to make lighter the notation, we avoid to specify the sort of processes
and contexts. Thus, p, q, a, b stand for, respectively, pi, qi, aj , bj .

Suppose that d(a) = d(c(p))
l1−→ p1 then, by definition of satts, p

c;d,l1
−−→S p1. By

completeness of β and T , we have that p
c2,l2
−→β p2 such that p

c2,l2
−→β p2 ⊢T p

c;d,l1
−−→ p1, i.e.,

∃e, e1 ∈ ||C|| such that:

• e
l2

l1
// e1 ∈ Φ(T),

• c2; e = c; d,
• e1(p2) = p1.

Since p ∼SYM q, q
c3,l3
−→β q3 ⊢T q

c2,l2
−→ q2 and p2 ∼

SYM q2. From the former we have that
∃f, f1 ∈ ||C|| such that:

• f
l3

l2
// f1 ∈ Φ(T),

• c3; f = c2,
• f1(q3) = q2.

Since Φ(T) is closed by composition, then f ; e
l3

l1
// f1; e1 ∈ Φ(T). Moreover c3; f ; e =

c2; e = c; d. Thus q
c3,l3
−→β q3 ⊢T q

c;d,l1
−−→ e1(q2). Since β and T are sound, it follows that

q
c;d,l1
−−→S e1(q2), i.e., d(b)

l1−→ e1(q2). Since p2 ∼
SYM q2, then e1(p2) R e1(q2), i.e., p1 R e1(q2).

For proving that ∼S⊆∼SYM , take p ∼S q: if p
c,l
−→β p1 then also p

c,l
−→S p1 and, since

p ∼S q, q
c,l
−→S q1 with p1 ∼

S q1. By completeness of β, we have that q
c1,l1
−→β q1 ⊢T q

c,l
−→S q1.

Proposition 4.13. ω and TW are sound and complete w.r.t. W.

Proof. Proving soundness is quite easy. Just observe that (1) if u ⊲ p
v,•
−→ω u′ ⊲ p′ then

uv ⊲ p
•
−→ u′ ⊲ p′ and (2) the “monotonicity property” described in Section 3 holds.

For proving completeness we suppose that wW(γ)
•
−→ γ′′ (i.e., γ

w,•
−→S γ′′) and we proceed

by induction on the structure of the process of the configuration γ. The inductive case for
γ = u⊲ p1 + p2 is trivial. The base case is as follows.

Take γ = u1 ⊲u2.p (thus wW(γ) = u1w⊲u2.p). Note that γ′′ must be equal to u1w⊲ p
(by the rules defining trW). Since the configuration u1w ⊲ u2.p perform a transition then
u2 is a prefix of u1w (again by the rules defining trW). There are two possible cases: either
u2 is a prefix of u1 or not.

In the former case, by the leftmost rule (defining ω), γ = u1 ⊲ u2.p
ε,•
−→ω u1 ⊲ p and by

definition of ⊢TW
, this transition derives γ

w,•
−→ wW(u1 ⊲ p) = u1w ⊲ p = γ′′.

If u2 is not a prefix of u1, then there exists u, v ∈ A∗ such that w = vu and u2 = u1v.

By the central rule (defining ω), we have that γ = u1⊲u1v.p
v,•
−→ω u1v⊲p and, by definition

of ⊢TW
, this transition derives γ

vu,•
−→ uW(u1v ⊲ p) = u1w ⊲ p = γ′′.

42 F. BONCHI AND U. MONTANARI

Proposition 4.15. Let 〈N1,m1〉 and 〈N2,m2〉 be two marked nets both with interface I.
Thus 〈N1,m1〉 ∼

NS 〈N2,m2〉 iff 〈N1,m1〉 ∼
SYM
I 〈N2,m2〉.

Proof. The general condition of symbolic bisimilarity

• if p
c,o
−→β p′, then q

c1,o1
−−→β q′1 and q

c1,o1
−−→β q′1 ⊢T q

c,o
−→ q′ and p′Rkq

′.

for the context interactive system N , the scts η and the inference system TN , becomes

• if 〈N1,m1〉
i,λ
−→η 〈N1,m

′
1〉, then 〈N2,m2〉

j,λ1
−→η 〈N2,m

′
2〉 and 〈N2,m2〉

j,λ1
−→η 〈N2,m

′
2〉 ⊢TN

〈N2,m2〉
i,λ
−→η 〈N2,m

′′
2〉 and 〈N1,m

′
1〉RI〈N2,m

′′
2〉.

From the latter, we have that λ1 = λ and there exists k ∈ I⊕ such that i = j ⊕ k and
m′′

2 = m′
2 ⊕ k. These are the conditions of net-symbolic bisimilarity.

Proposition 4.16. η and TN are sound and complete w.r.t. N .

Proof. We have to prove:

• (completeness) if 〈N,m〉
i,λ
−→S 〈N,m′〉 then

〈N,m〉
i1,λ1
−−→η 〈N,m1〉 and 〈N,m〉

i1,λ1
−−→η 〈N,m1〉 ⊢TN

〈N,m〉
i,λ
−→ 〈N,m′〉.

• (soundness) if 〈N,m〉
i1,λ1
−−→η 〈N,m1〉 and 〈N,m〉

i1,λ1
−−→η 〈N,m1〉 ⊢TN

〈N,m〉
i,λ
−→ 〈N,m′〉

then 〈N,m〉
i,λ
−→S 〈N,m′〉.

Let us prove completeness. If N,m ⊕ i
λ
−→N N,m′, then there exists a transition t ∈ T ,

such that λ(t) = l and m ⊕ i = •t ⊕ c and m′ = t• ⊕ c. We can take c1 = m ⊖ (m ∩ •t)

and i1 =
•t⊖ (m ∩ •t). and apply the only rule of η, and N,m

i1,λ
−→η N, t• ⊕ c1. Note that

i1 ⊆ i, since by definition i1 is the smallest multiset that allow the transition t. Thus let

x = i⊖ i1. We have N,m
i1,λ
−→η N, t• ⊕ c1 ⊢TN

N,m
i,λ
−→TN (η) N,m′. Indeed:

• i1 ⊕ x = i;
• t• ⊕ c1 ⊕ x = m′, because c1 ⊕ x = m⊖ (•t ∩m)⊕ x = m⊕ •t⊖ (•t ∩m) ⊕ x⊖ •t =
m⊕ i1 ⊕ x⊖ •t = m⊕ i⊖ •t = c.

For proving soundness observe that if 〈N,m〉
i1,λ1
−−→η 〈N,m1〉 then 〈N,m ⊕ i1〉

λ1−→ 〈N,m1〉.

Moreover, if 〈N,m〉
i1,λ1
−−→η 〈N,m1〉 ⊢TN

〈N,m〉
i,λ
−→ 〈N,m′〉, then λ1 = λ there exists x ∈ I⊕

such that i1 ⊕ x = i and m1 ⊕ x = m′.

Thus, 〈N,m⊕ i1 ⊕ x〉
λ1−→ 〈N,m1 ⊕ x〉, that means 〈N,m〉

i,λ
−→S 〈N,m′〉.

Proposition 4.18. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then
p ∼a q iff pn ∼

SYM
n qn.

Proof. Here we prove that if pn ∼
SYM
n qn then p ∼a q (the other implication is analogous).

Let R = {p, q | pn ∼
SYM
n qn} be a symmetric relation. We prove that R is an asynchro-

nous bisimulation.

Take pn ∼
SYM
n qn and suppose that p

i(j)
−→ p′ and j is fresh. First, observe that ∀m ≥ n,

pm ∼
SYM
m qm. Then, note that since j is fresh, j − 1 ≥ n and thus pj−1 ∼

SYM
j−1 qj−1.

By definition of trA, pj−1
−,i()
−−→α p′j. Now since pj−1 ∼

SYM
j−1 qj−1, qj−1 must answer with

a transition qj−1
c,o
−→α q′′ such that qj−1

c,o
−→α q′′ ⊢TA

qj−1
−,i()
−−→ q′j and p′j ∼

SYM
j q′j. By

definition of TA, the only such transition is qj−1
−,i()
−−→α q′j. Now, by definition of α, we have

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 43

that q
i(j)
−→ q′ and, by definition of R, p′Rq′. We can proceed analogously in the case of

output and τ .

For the input, suppose that p
i(j)
−→ p′. Then pn

−|ij,τ
−−→α p′n′ where n′ = max {j, n}. Now

since pn ∼
SYM qn, qn must answer with a transition qn

c,o
−→α q′′ such that qn

c,o
−→α q′′ ⊢TA

qn
−|ij,τ
−−→α q′n′ and p′n′ ∼SYM

n′ q′n′ .
By definition of TA there are two possibilities:

• qn
−|ij,τ
−−→α q′n′ and p′n′ ∼SYM

n′ q′n′. Thus q
i(j)
−→ q′ and p′Rq′.

• qn
−,τ
−→α q′′n and by using the rule (tau)−|ij , qn

−,τ
−→α q′′n ⊢TA

qn
−|ij,τ
−−→α q′′n|ij and p′n′ ∼SYM

n′

(q′′|ij)n′ . Thus q
τ
−→ q′′ and p′Rq′′|ij.

Note that it is correct to write q′n′ , since fn(q′) = fn(q|ij) ⊆ n′. The same holds also for

(q′′|ij)n′ : fn(q′′) = fn(q) ⊆ n and thus fn(q′′|ij) ⊆ n′.

Proposition 4.19. α and TA are sound and complete w.r.t. A.

Proof. We have to prove:

• (completeness) if pn
c,µ
−→S qm then pn

c′,µ′

−→α q′m′ and pn
c′,µ′

−→α q′m′ ⊢TA
pn

c,µ
−→S qm.

• (soundness) if pn
c′,µ′

−→α q′m′ and pn
c′,µ′

−→α q′m′ ⊢TA
pn

c,µ
−→S qm then pn

c,µ
−→S qm.

For soundness just observe that if p
c,µ
−→α p′ then c(p)

µ
−→ p′ and that all the rules of TA

are sound. Let us prove completeness. Suppose that µ = τ (the other cases are easier):

pn
c,τ
−→S qm implies that c(pn)m

τ
−→ qm and c ∈ Out[n,m]. By definition of trA, it follows

that c(p)
τ
−→ q. Since c could be only the parallel composition of outputs, by the definition

of the operational semantics of asynchronous π, it follows that either p
τ
−→ q′ (such that

q = c(q′)) or c
ij
−→ c′ (where c = −|ij|c′) and p

i(j)
−→ q′ (such that q = c′|q′).

In the former case, by definition of α, we have that pn
−,τ
−→α q′n and using the rule (tau)c

of TA, we have that pn
−,τ
−→α q′n ⊢TA

pn
c,τ
−→α c(q′n)m = qm. In the latter case, by definition of

α, we have that pn
−|ij,τ
−−→α q′n′ where n′ = max{j, n}. Now, take c′ ∈ Out[n′,m], by the rule

(tau)c′ of TA, we have that pn
−|ij,τ
−−→α q′n′ ⊢TA

pn
−|ij|c′,τ
−−−−→ c′(q′n′)m = qm.

Appendix C. Proofs of Section 6

Theorem 6.3. Let I = 〈C,X, O, tr〉 be a context interactive system. Then 〈X, αI〉 is a
H-coalgebra.

Proof. We have to prove that αI : X → H(X) is a Γ(C)-homomorphism, i.e., that ∀x ∈ X
and ∀d ∈ Γ(C), αI(dX(x)) = dH(X)(αI(x)).

Let (c, l, y) ∈ αI(dX(x)) be a saturated transition of dX(x). Then by definition of
αI , (d; c, l, y) ∈ αI(x). By definition of dH(X) and by (d; c, l, y) ∈ αI(x), follows that
(c, l, y) ∈ dH(X)(αI(x)).

Now let (c, l, y) ∈ dH(X)(αI(x)). By definition of dH(X) we have that (d; c, l, y) ∈ αI(x)
and, analogously to before, (c, l, y) ∈ αI(dX(x)).

44 F. BONCHI AND U. MONTANARI

Appendix D. Proofs of Section 7.1

Before proving Lemma 7.6 and Proposition 7.7, we prove some important lemmas about
the derivation relation ⊢dT,X. Moreover, at the end of this appendix we formally show the
existence of the final object in CoalgST

.

Lemma D.1 (composition of ⊢dT,X).

If (c, l, x) ⊢dT,X (c′, l′, x′) ⊢eT,X (c′′, l′′, x′′) then (c, l, x) ⊢d;eT,X (c′′, l′′, x′′).

Proof. From the hypothesis we derives that there exists d′, d′′, e′, e′′ ∈ ||C|| such that d; c′ =

c; d′ and e; c′′ = c′; e′ and d′
l

l′
// d′′ and e′

l′

l′′
// e′′ such that d′′

X
(x) = x′ and e′′

X
(x′) = x′′.

From all this, we derive that (d; e); c′′ = c; (d′; e′) and that d′; e′
l

l′′
// d′′; e′′ and that

e′′
X
(d′′

X
(x)) = x′′. Then the thesis immediately follows.

Lemma D.2 (⊢dT,X is preserved by homomorphisms).

Let h : X → Y be a Γ(C)-homomorphism. If (c, l, x) ⊢dT,X (c′, l′, x′), then (c, l, h(x)) ⊢dT,Y
(c′, l′, h(x′)).

Proof. If (c, l, x) ⊢dT,X (c′, l′, x′), then there exists d′ ∈ ||C|| such that d; c′ = c; d′ and

d′
l

l′
// d′′ and d′′

X
(x) = x′. Since h is an homomorphism h(x′) = h(d′′

X
(x)) = d′′

Y
(h(x)),

and then (c, l, h(x)) ⊢dT,Y (c′, l′, h(x′)).

Lemma D.3 (⊢dT,X is reflected by homomorphisms).

Let h : X → Y be a Γ(C)-homomorphism. If (c, l, h(x)) ⊢dT,Y (c′, l′, y′), then ∃x′ ∈ X, such

that h(x′) = y′ and (c, l, x) ⊢dT,X (c′, l′, x′).

Proof. From the hypothesis we derive that there exists f ∈ ||C|| such that c; f = d; c′ and

f
l

l′
// f ′ and f ′

Y
(h(x)) = y′. Since h is an homomorphism, h(f ′

X
(x)) = y′. Then we have

that (c, l, x) ⊢dT,X (c′, l′, f ′
X
(x)).

Proposition D.4. ST : AlgΓ(C) → AlgΓ(C) is a functor.

Proof. First of all, we have to show that ∀X ∈ |AlgΓ(C)|, ST(X) ∈ |AlgΓ(C)|. Notice that

all the operators dST
(X) are well defined, i.e., ∀A ∈ ST

X
(X), dST

(X)(A) is still a saturated

set of transitions, i.e., it is closed w.r.t. ⊢idT,X. Then we have to prove that idST(X) coincides

with the identity function. This is trivial since idST(X)(A) consists in closing the set of

transition A w.r.t. ⊢idT,X. But since A is saturated , it is already closed. Finally we have to

prove that (c; d)ST(X) = cST(X); dST(X), but this is trivial consequence of Lemma D.1.
Then we have to prove that if h : X→ Y in AlgΓ(C), then also ST(h) : ST(X)→ ST(Y).

This follows easily by Lemma D.2 and Lemma D.3.
Then preservation of identity and arrow composition follows from the fact that ST is

defined as H on arrows and on the fact that H is a functor.

Lemma D.5. The inclusion ιX : ST

X
(X) → G(X) is a Γ(C)-homomorphism from the

algebra ST(X) to H(X).

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 45

Proof. We have to prove that for all A ∈ ST

X
(X) and d ∈ ||C||, ιX(dST(X)(A)) = dH(X)(ι(A)).

Let (c, l, x) ∈ ιX(dST(X)(A)), then there exists (c′, l′, x′) ∈ A such that (c′, l′, x′) ⊢dT,X
(c, l, x). By definition of ⊢dT,X, we also have that (c′, l′, x′) ⊢T,X (d; c, l, x) and since A

is saturated, then (d; c, l, x) ∈ A. Since ιX is simply the inclusion, we also have that
(d; c, l, x) ∈ ιX(A) and thus, by definition of dH(X), (c, l, x) ∈ dH(X)(ιX(A)).

The other direction is analogous.

Lemma 7.5. Let ι be the family of morphisms ι = {ιX : ST(X)→ H(X),∀X ∈ |AlgΓ(C)|}.
Then ι : ST ⇒ H is a natural transformation.

Proof. From Lemma D.5, it follows that each ιX is a morphism in AlgΓ(C). The fact that
∀h : X→ Y, ιY;H(h) = ST(h); ιY follows from the fact that, by definition, ST(h) = H(h).

Lemma 7.6. Let 〈X, α〉 be a H-coalgebra. Then it is in |CoalgHI | iff it satisfies T .

Proof. Let 〈X, α〉 be a H-coalgebra. If it satisfies T , then ∀x ∈ X, α(x) ∈ ST

X
(X). This

means that α factor through the inclusion ιX : ST(X)→ H(X).
If T is not sound, then ∃x ∈ X, d ∈ ||C|| such that (c, l, y) ∈ α(x) and (c, l, y) ⊢dT,X

(c′, l′, y′) and (c′, l′, y′) /∈ α(dX(x)) = dH(X)(α(x)). From (c, l, y) ⊢dT,X (c′, l′, y′), we have

that (c, l, y) ⊢T,X (d; c′, l′, y′). From this setting follows that (d; c′, l′, y′) /∈ α(c) because,
otherwise, by definition of dH(X), we would have that (c′, l′, y′) ∈ dH(X)(α(x)). Thus α(x)

is not saturated, i.e., α(x) /∈ ST

X
(X).

Proposition 7.7. |CoalgHI | is a covariety of CoalgH, i.e., is closed under:

(1) subcoalgebras,
(2) homomorphic images,
(3) sums.

Proof. A coalgebra 〈X, α〉 is a subcoalgebra of 〈Y, β〉 if there is an arrow m : 〈X, α〉 → 〈Y, β〉
that is mono in all its components (for a more formal definition look at Appendix F).

The fact that |CoalgHI | is closed under subcoalgebras means that whenever there is
a subcoalgebra m : 〈X, α〉 → 〈Y, β〉 in CoalgH such that 〈Y, β〉 ∈ |CoalgHI |, then also
〈X, α〉 ∈ |CoalgHI |. This can be easily proved by employing Lemma 7.6.

If 〈Y, β〉 ∈ |CoalgHI |, then it satisfies T . Suppose ab absurdum that 〈X, α〉 does
not satisfy T . Then there exists x ∈ |X|, (c1, l1, x1) ∈ α(x) and (c2, l2, x2) /∈ α(x)
such that (c1, l1, x1) ⊢X,T (c2, l2, x2). Now, since m is a cohomomorphism we have that
(c1, l1,m(x1)) ∈ β(m(x)). By Lemma D.2, it follows that (c1, l1,m(x1)) ⊢Y,T (c2, l2,m(x2)).
Since 〈Y, β〉 satisfies T then also (c2, l2,m(x2)) ∈ β(m(x)). At this point, since m is a coho-
momorphism then it must exist a x3 ∈ X, such that (c1, l1, x3) ∈ α(x) and m(x3) = m(x2).
But since m is mono in all its components, then x2 = x3 and thus (c1, l1, x2) ∈ α(x) against
the hypothesis.

Let h : 〈X, α〉 → 〈Y, β〉 be an arrow in CoalgH. The homomorphic image of 〈X, α〉
through h, is the coalgebra 〈I, γ〉 induced by the unique factorization of h = e;m (as shown
below), where e is an arrow with all components epi and m is an arrow with all components
mono (look at Appendix F).

46 F. BONCHI AND U. MONTANARI

X
h //

α

��

e

((RRRRRRRRRR Y

β

��

I

γ
�

�

�

�

���
�
�
�

m

66llllllllll

H(X)
H(h) //

H(e) ''PPPPPP
H(Y)

H(I)
H(m)

77nnnnnn

The fact that |CoalgHI | is closed under homomorphic images means that whenever
there is a cohomomorphism h : 〈X, α〉 → 〈Y, β〉 in CoalgH such that 〈X, α〉 ∈ |CoalgHI |,
then also 〈I, γ〉 ∈ |CoalgHI |. This can be easily proved by employing Lemma 7.6.

If 〈X, α〉 ∈ |CoalgHI |, then it satisfies T . Suppose ab absurdum that 〈I, γ〉 does not
satisfy T . Then there exists an i ∈ |I|, (c1, l1, i1) ∈ γ(i) and (c2, l2, i2) /∈ γ(i) such that
(c1, l1, i1) ⊢I,T (c2, l2, i2). Now, since e is epi in all its components, there exists x1, such
that e(x1) = i1 and since e is a cohomomorphism there exists x ∈ X such that h(x) = i
and (c1, l1, x1) ∈ α(x). By Lemma D.3 and by (c1, l1, i1) ⊢I,T (c2, l2, i2), it follows that
there exists x2 ∈ (X) such that e(x2) = i2 and (c1, l1, x1) ⊢X,T (c2, l2, x2). Now, since
〈X, α〉 satisfies T , then also (c2, l2, x2) ∈ α(x). And now, since e is a cohomomorphism
(c2, l2, i2) ∈ γ(i) against the initial hypothesis.

InCoalgH, all the colimits are defined as inAlgΓ(C) (for classical argument in coalgebra

theory). Recalling that AlgΓ(C) is isomorphic to SetC, it is easy to see that all colimits
exists and they are constructed as in Set. Thus, it is trivial to prove that if 〈X, α〉 and
〈Y, β〉 satisfy T , also their sum, i.e., 〈X+ Y, α+ β〉, satisfies T .

Theorem D.6. CoalgHI has final object FHI .

Proof. The proof is a standard argument in the theory of coalgebras.
Hereafter, we write “HI -coalgebra” as a short-hand for “H-coalgebra in |CoalgHI |”.

In order to construct FHI , consider all the unique H-cohomorphisms of HI -coalgebras to
FH (the final object of CoalgH). Consider their homomorphic images through these final
morphisms. All of them are subobjects of FH and all of them are HI -coalgebras, because
|CoalgHI | is closed under homomorphic images. Now, since these are subobjects of FH, we
can define FHI as their union. In order to prove that FHI is final, it is important to note
that it is still a subcoalgebra of FH (Corollary 1.4.14 of [28]), and thus we have a mono
m : FHI → FH

3. Then for any HI -coalgebra 〈X, α〉 there exists a morphism to FHI since
it is the union of all the images to FH. Then, this morphism is unique since m is mono.
Moreover, FHI satisfies T , since covarieties are also closed by unions of subcoalgebras.

Another way of proving this theorem relies on Corollary 2.2.4 of [28]. From such
corollary and from Proposition 7.7, it follows that CoalgHI is a reflective subcategory
of CoalgH.

Corollary D.7. CoalgST
has final object FST

.

Proof. From the above theorem and from the fact that CoalgST
is isomorphic to CoalgHI .

3For this is important to notice that all morphisms in MC (defined in Appendix F) are also mono.

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 47

Corollary D.8. Let 〈X, α〉 be a ST-coalgebras. Let !H〈X,α〉 be the unique morphism to FH

and let !ST

〈X,α〉 be the unique morphism to FST
. Thus

!H〈X,α〉(x) =!H〈X,α〉(y) if and only if !ST

〈X,α〉(x) =!ST

〈X,α〉(y).

Proof. Note that FHI = I(FST
) for I being the functor described in Section 7.1. Moreover,

from the proof of the above theorem, we have that FHI is a subobject of FH.

Appendix E. Proofs of Section 7.2

In this appendix we prove several lemmas that describe interesting properties of the nor-
malization function. In particular these properties are useful to show that NT is a functor.
Hereafter, we will always implicitly assume to have a normalizable context interactive sys-
tem (Definition 7.12).

Lemma 7.8. Let X be a Γ(C)-algebra. If (c1, o1, p1) ⊢T,X (c2, o2, p2) then p2 = eX(p1) for
some e ∈ ||C||. Moreover ∀q1 ∈ Y , (c1, o1, q1) ⊢T,X (c2, o2, eX(q1)).

Proof. Both observations trivially follows from the definition of ⊢T,X (Def. 7.1).

Lemma 7.13. Let I be a normalizable system w.r.t. T . Let X be Γ(C)-algebra and A ∈
G(X). Then ∀(d, o, x) ∈ A, either (d, o, x) ∈ normT,X(A) or ∃(d′, o′, x′) ∈ normT,X(A),
such that (d′, o′, x′) ≺T,X (d, o, x).

Proof. If there exists no (d′, o′, x′) with (d′, o′, x′) ≺T,X (d, o, x), then (d, o, x) ∈ normT,X(A).
If it exists, then consider a chain · · · ≺T,X (d2, l2, x2) ≺T,X (d1, l1, x1) ≺T,X (d, l, x). Since
≺T,X is well founded there exists no infinite chains like this. Let (d′, l′, x′) ∈ A be the
last element of such a chain. Since it is the last, it is not redundant and then (d′, l′, x′) ∈
normT,X(A). Moreover since ≺T,X is transitive (as proved in the next lemma), we have that
(d′, l′, x′) ≺T,X (d, l, x).

Lemma E.1. Let I be a context interactive system and T be an inference system. Let X,
Y be Γ(C)-algebras.

(1) ≺T,X is transitive,
(or better, if (d′′, l′′, x′′) ⊢T,X (d′, l′, x′) ≺T,X (d, l, x) then (d′′, l′′, x′′) ≺T,X (d, l, x)),

(2) If (d′0, l
′
0, x

′
0) ≡T,X (d0, l0, x0) ≺T,X (d1, l1, x1) ≡T,X (d′1, l

′
1, x

′
1) then

(d′0, l
′
0, x

′
0) ≺T,X (d′1, l

′
1, x

′
1),

(3) If h : X→ Y and (d, l, x) ≡T,X (d′, l′, x′) then (d, l, h(x)) ≡T,Y (d′, l′, h(x′)).

Proof. Suppose that (d′′, l′′, x′′) ⊢T,X (d′, l′, x′) ≺T,X (d, l, x), then we have both

(d′′, l′′, x′′) ⊢T,X (d′, l′, x′) ⊢T,X (d, l, x) and (d, l, x) 0T,X (d′, l′, x′).

We derive (d′′, l′′, x′′) ⊢T,X (d, l, x) by the former, and (d, l, x) 0T,X (d′′, l′′, x′′) by the latter
(otherwise if (d, l, x) ⊢T,X (d′′, l′′, x′′) then also (d, l, x) ⊢T,X (d′, l′, x′)).

For the second point is sufficient to note that

(d′0, l
′
0, x

′
0) ⊢T,X (d0, l0, x0) ⊢T,X (d1, l1, x1) ⊢T,X (d′1, l

′
1, x

′
1),

and then (d′0, l
′
0, x

′
0) ⊢T,X (d′1, l

′
1, x

′
1). Moreover (d′1, l

′
1, x

′
1) 0T,X (d′0, l

′
0, x

′
0), since otherwise

(d1, l1, x1) ⊢T,X (d0, l0, x0).
For the third point we use that ⊢T,X is preserved by homomorphisms (Lemma D.2).

48 F. BONCHI AND U. MONTANARI

Lemma E.2. If (d, l, x) ∈ normT,X; cST(X)(A), then (d, l, x) ∈ cST(X)(A).

Proof. If (d, l, x) ∈ normT,X; cST(X)(A), then by definition of cST(X), there exists (d
′, l′, x′) ∈

normT,X(A) such that (d′, l′, x′) ⊢cT,X (d, l, x). Now by definition of normalization, there ex-

ists (d′′, l′′, x′′) ∈ A such that (d′′, l′′, x′′) ≡T,X (d′, l′, x′). Then (d′′, l′′, x′′) ⊢T,X (d′, l′, x′) ⊢cT,X
(d, l, x), and then (d, l, x) ∈ cST(X)(A).

Lemma E.3. ∀X,Y ∈ |AlgΓ(C)| and ∀h ∈ AlgΓ(C)[X,Y],

(1) normT,X; dST(X);normT,X = dST(X);normT,X,
(2) normT,X;H(h);normT,Y = H(h);normT,Y,
(3) normT,X is idempotent.

Proof. For the first point we prove that ∀A ∈ |H(X)| and ∀c ∈ Γ,

cST(X);normT,X(A) = normT,X; cST(X);normT,X(A).

cST(X);normT,X(A) ⊆ normT,X; cST(X);normT,X(A)

Suppose that (e′, l′, x′) ∈ cST(X);normT,X(A), then there exists (e, l, x) ∈ cST(X)(A) such
that:

(1) (e, l, x) ≡T,X (e′, l′, x′),
(2) it is not redundant in cST(X)(A).

By definition of cST(X), there exists (d0, l0, x0) ∈ A such that (d0, l0, x0) ⊢
c
T,X (e, l, x).

Now, by Lemma 7.13, there exists (d′0, l
′
0, x

′
0) ∈ normT,X(A) that either dominates

(d0, l0, x0) or (d′0, l
′
0, x

′
0) = (d0, l0, x0). From definition of cST(X), it follows that (e, l, x) ∈

normT,X; cST(X)(A). Now we have directly that (e, l, x) ∈ normT,X; cST(X);normT,X(A).
Indeed, suppose ab absurdum that (e, l, x) /∈ normT,X; cST(X);normT,X(A), then there exists
a (e1, l1, x1) ∈ normT,X; cST(X)(A) that dominates (e, l, x). Now, by Lemma E.2, we have
also that (e1, l1, x1) ∈ cST(X)(A) that leads to absurd with 2.
Then (e, l, x) ∈ normT,X; cST(X);normT,X(A), and also (e′, l′, x′) ∈ normT,X; cST(X)

;normT,X(A), since the normalization function closes w.r.t. all equivalent transitions.

normT,X; cST(X);normT,X(A) ⊆ cST(X);normT,X(A)

Suppose that (e′, l′, x′) ∈ normT,X; cST(X);normT,X(A), then there exists

(e, l, x) ∈ normT,X; cST(X)(A) such that:

(1) (e, l, x) ≡T,X (e′, l′, x′),
(2) it is not redundant in normT,X; cST(X)(A).

Now, by Lemma E.2, (e, l, x) ∈ cST(X)(A). Now we have that (e, l, x) ∈ cST(X);
normT,X(A). Indeed, suppose ab absurdum that (e, l, x) /∈ cST(X);normT,X(A), then there
exists a (e1, l1, x1) ∈ cST(X)(A) that dominates (e, l, x). Now, by definition of cST(X),
(d′′0 , l

′′
0 , x

′′
0) ∈ A such that (d′′0 , l

′′
0 , x

′′
0) ⊢

c
T,X (e1, l1, x1). Now, by Lemma 7.13, and by

(d′′0 , l
′′
0 , x

′′
0) ∈ A, it follows that (d′′′0 , l

′′′
0 , x

′′′
0) ∈ normT,X(A) that either dominates (d′′0 , l

′′
0 , x

′′
0)

or (d′′′0 , l
′′′
0 , x

′′′
0) = (d′′0 , l

′′
0 , x

′′
0). By definition of cST(X), (e1, l1, x1) ∈ normT,X; cST(X)(A) and

this together with 2 leads to an absurd.
Thus (e, l, x) ∈ cST(X);normT,X(A), and since (e, l, x) ≡ (e′, l′, x′),

(e′, l′, x′) ∈ cST(X);normT,X(A).

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 49

For the second point we prove that ∀A ∈ H(X),

normT,X;H(h);normT,Y(A) = H(h);normT,Y(A).

normT,X;H(h);normT,Y(A) ⊆ H(h);normT,Y(A)

Suppose that (d′, l′, y′) ∈ normT,X;H(h);normT,Y(A). Then there exists

(d, l, y) ∈ normT,X;H(h)(A) such that

(1) (d, l, y) ≡T,Y (d′, l′, y′),
(2) it is not redundant in normT,X;H(h)(A).

Then ∃x ∈ X such that h(x) = y and (d, l, x) ∈ normT,X(A) and then ∃(d′′, l′′, x′′) ∈ A such
that (d, l, x) ≡T,X (d′′, l′′, x′′) and (d′′, l′′, h(x′′)) ∈ H(h)(A).

Now suppose ab absurdum that (d′′, l′′, y′′) /∈ H(h);normT,Y(A) where y′′ = h(x′′).
Then ∃(d0, l0, y0) ∈ H(h)(A) such that (d0, l0, y0) ≺T,Y (d′′, l′′, y′′). However, if (d0, l0, y0) ∈
H(h)(A), then (d0, l0, x0) ∈ A such that h(x0) = y0 and by Lemma 7.13 there exists
(d′0, l

′
0, x

′
0) ∈ normT,X(A) that either dominates (d0, l0, x0) or (d′0, l

′
0, x

′
0) = (d0, l0, x0). By

Lemma D.2, we have that (d′0, l
′
0, h(x

′
0)) ⊢T,Y (d0, l0, h(x0)) ≺T,Y (d′′, l′′, y′′) and, by Lemma

E.1.1, (d′0, l0, h(x
′
0)) ≺T,Y (d′′, l′′, y′′) ≡T,Y (d, l, y). Since (d′0, l

′
0, h(x

′
0)) ∈ normT,X;H(h)(A),

this leads to an absurdum.
Now we have (d′′, l′′, y′′) ∈ H(h);normT,Y(A) and (d′′, l′′, y′′) ≡T,Y (d, l, y) ≡T,Y (d′, l′, y′)

and, since normT,Y closes w.r.t. all equivalent transitions,

(d′, l′, y′) ∈ H(h);normT,Y(A).

H(h);normT,Y(A) ⊆ normT,X;H(h);normT,Y(A)

Suppose that (d′, l′, y′) ∈ H(h);normT,Y(A), then there exists (d, l, y) ∈ H(h)(A), such
that:

(1) (d, l, y) ≡T,Y (d′, l′, y′),
(2) it is not redundant in H(h)(A).

Then ∃x ∈ X, such that h(x) = y and (d, l, x) ∈ A.
By Lemma 7.13, ∃(d0, l0, x0) ∈ normT,X(A) (and (d0, l0, x0) ∈ A) that either dominates

(d, l, x) or (d0, l0, x0) = (d, l, x), and by Lemma D.2 (d0, l0, h(x0)) ⊢T,Y (d, l, h(x)). Now we
have two possible cases: or (d, l, h(x)) 0T,Y (d0, l0, h(x0)), or (d, l, h(x)) ⊢T,Y (d0, l0, h(x0)).
In the first case we have that (d0, l0, h(x0)) ≺T,Y (d, l, h(x)), and this lead to absurdum with
2. Then, only the latter is possible, i.e., (d0, l0, h(x0)) ≡T,Y (d, l, h(x)).

Now suppose ab absurdum that (d0, l0, h(x0)) /∈ normT,X;H(h);normT,Y(A). Then
∃(d1, l1, y1) ∈ normT,X;H(h)(A) that dominates (d0, l0, h(x0)). Thus ∃x1 ∈ X such that
h(x1) = y1 and (d1, l1, x1) ∈ normT,X(A) and (d′1, l

′
1, x

′
1) ∈ A such that (d′1, l

′
1, x

′
1) ≡T,X

(d1, l1, x1).
Thus (d′1, l

′
1, h(x

′
1)) ∈ H(h)(A) and

(d′1, l
′
1, h(x

′
1)) ≡T,Y (d1, l1, y1) ≺T,Y (d0, l0, h(x0)) ≡T,Y (d, l, y),

i.e., (d′1, l
′
1, h(x

′
1)) ≺T,Y (d, l, y), against 2.

Then we have (d0, l0, h(x0)) ∈ normT,X;H(h);normT,Y(A) and then also (d′, l′, y′) ∈
normT,X;H(h);normT,Y(A).

For the third point we prove that ∀A ∈ NT(X), normT,X(A) = A. This is trivial,
since normT,X junks away all the redundant transitions and add all those equivalent. But

50 F. BONCHI AND U. MONTANARI

since A is normalized, it does not contain any redundant transitions, and it is still closed
by equivalent transitions.

Proposition E.4. NT : AlgΓ(C) → AlgΓ(C) is a functor.

Proof. First of all we have to prove that ∀X ∈ AlgΓ(C), NT(X) is a Γ(C)-algebra. In order
to prove that, it is enough to show that (c; d)NT(X) = cNT(X); dNT(X) and that idNT(X) is
the identity function.

For the former, notice that (c; d)NT(X) = (c; d)ST(X);normT,X = cST(X); dST(X);normT,X

since ST(X) is a Γ(C)-algebra. Now, By Lemma E.3.1, we have that it is equal to

cST(X);normT,X; dST(X);normT,X,

i.e., cNT(X); dNT(X).
For the latter, notice that applying idNT(X) to a set of transitions A, it is the same of

closing A w.r.t. the derivation relation ⊢T,X and then normalizing it. Now, if A is normalized,
one can close it w.r.t ⊢T,X, and then normalize it, obtaining the same set A. This is formally
proved by Proposition 7.14.

Now we prove that NT(h) is still a Γ(C)-homomorphism. Recall that H(h) = ST(h),

cNT(X);NT(h) = cST(X);normT,X;NT(h) = cST(X);normT,X;ST(h);normT,Y =

(by Lemma E.3.2)

cST(X);ST(h);normT,Y = ST(h); cST(Y);normT,Y =

(by Lemma E.3.1)

ST(h);normT,X; cST(X)normT,Y = NT(h); cST(Y);normT,Y = NT(h); cNT(X).

In order to prove that NT(idX) = idNT(X) it is enough to observe that NT(idX) =
H(idX);normT,X = idH(X);normT,X. Since in NT(X) all the elements are normalized, by
Lemma E.3.3, normalization plays no role.

In order to prove that NT preserves composition we use Lemma E.3.2: ∀h : X→ Y, g :
Y→ Z,

NT(h; g) = H(h; g);normT,Z = H(h);H(g);normT,Z

= H(h);normT,Y;H(g);normT,Z = NT(h);NT(g).

At the end of the appendix we prove the main theorem. Note that proof of Lemma 7.13 is
in Appendix E.

Lemma E.5. normT,X : ST(X) → NT(X) and satT,X : NT(X) → ST(X) are Γ(C)-
homomorphisms.

Proof. For all operators c, we have that

cST(X);normT,X = by Lemma E.3.1 = normT,X; cST(X);normT,X = normT,X; cNT(X).

For satT,X we have that cNT(X); satT,X = cST(X);normT,X; satT,X. Note that

cST(X);normT,X; satT,X = cST(X); satT,X

SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 51

since saturation adds everything that is removed by normalization. At this point, it is
enough to prove that cST(X); satT,X = satT,X; cST(X).

We have to prove that ∀A ∈ |H(X)|, cST(X); satT,X(A) = satT,X; cST(X)(A).

cST(X); satT,X(A) ⊆ satT,X; cST(X)(A)

Suppose that (e, l, x) ∈ cST(X); satT,X(A), then there exists (e′, l′, x′) ∈ cST(X)(A) such that
(e′, l′, x′) ⊢T,X (e, l, x), and by definition of cST(X), there exists (e

′
0, l

′
0, x

′
0) ∈ A (and then also

in satT,X(A)) such that (e′0, l
′
0, x

′
0) ⊢

c
T,X (e′, l′, x′) ⊢T,X (e, l, x). Then (e′0, l

′
0, x

′
0) ⊢

c
T,X (e, l, x),

and then (e, l, x) ∈ satT,X; cST(X)(A).

satT,X; cST(X)(A) ⊆ cST(X); satT,X(A)

Suppose that (e, l, x) ∈ satT,X; cST(X)(A), then there exists (d′, l′, x′) ∈ satT,X(A) such that

(d′, l′, x′) ⊢cT,X (e, l, x). Thus, by definition of satT,X, there exists (d′′, l′′, x′′) ∈ A such that

(d′′, l′′, x′′) ⊢T,X (d′, l′, x′). Then (d′′, l′′, x′′) ⊢cT,X (e, l, x) and then (e, l, x) ∈ cST(X)(A), and

then (e, l, x) ∈ cST(X); satT,X(A).

Lemma E.6. normT and satT are isomorphisms, one the inverse of the other.

Proof. Since by Lemma E.5, normT,X and satT,X are morphisms in AlgΓ(C), we have just
to prove that normT,X; satT,X = idST(X) and satT,X;normT,X = idNT(X).

normT,X; satT,X(A) ⊆ A

If (d, l, x) ∈ normT,X; satT,X(A), then (d′, l′, x′) ∈ normT,X(A) such that (d′, l′, x′) ⊢T,X
(d, l, x). Thus (d′′, l′′, x′′) ∈ A such that (d′′, l′′, x′′) ≡T,X (d′, l′, x′). Then (d′′, l′′, x′′) ⊢T,X
(d, l, x). Now, also (d, l, x) ∈ A, since A is saturated.

A ⊆ normT,X; satT,X(A)

If (d, l, x) ∈ A then, by Lemma 7.13, there exists (d′, l′, x′) ∈ normT,X(A) that either
dominates (d, l, x) or (d′, l′, x′) = (d, l, x). Thus (d, l, x) ∈ normT,X; satT,X(A).

satT,X;normT,X(A) ⊆ A

If (d′, l′, x′) ∈ satT,X;normT,X(A) then there exist (d, l, x) ∈ satT,X(A) such that

(1) (d, l, x) ≡T,X (d′, l′, x′),
(2) it is not redundant in satT,X(A).

Then ∃(d0, l0, x0) ∈ A such that (d0, l0, x0) ⊢T,X (d, l, x). Now we have two possibilities.
Firstly, (d, l, x) 0T,X (d0, l0, x0), then (d0, l0, x0) ≺T,X (d, l, x) and this is absurd with 2. Sec-
ondly, (d, l, x) ⊢T,X (d0, l0, x0) and then (d, l, x) ≡T,X (d0, l0, x0), and since A is normalized,
(d, l, x) ∈ A.

A ⊆ satT,X;normT,X(A)

If (d, l, x) ∈ A, then (d, l, x) ∈ satT,X(A). Now suppose ab absurdum that (d, l, x) /∈
satT,X;normT,X(A) then there exists a (d′, l′, x′) ∈ satT,X(A) that dominates (d, l, x). Then,
by definition of satT,X, (d′′, l′′, x′′) ∈ A that dominates (d′, l′, x′). But then (d′′, l′′, x′′)
dominates also (d, l, x), against the hypothesis that A is normalized.

52 F. BONCHI AND U. MONTANARI

X
h //

α

��

Y

β

��
ST(X)

ST(h)
// ST(Y)

ST(X)
ST(h) //

normT,X

��

ST(Y)

normT,Y

��
NT(X)

NT(h)
// NT(Y)

NT(X)
NT(h) //

satT,X

��

NT(Y)

satT,Y

��
ST(X)

ST(h)
// ST(Y)

(i) (ii) (iii)

Figure 13: normT and satT are natural transformations.

Proposition 7.14. Let normT , respectively, satT be the families of morphisms {normT,X :
ST(X) → NT(X), ∀X ∈ |AlgΓ(C)|} and {satT,X : NT(X) → ST(X), ∀X ∈ |AlgΓ(C)|}.
Then normT : ST ⇒ NT and satT : NT ⇒ ST are natural transformations. More precisely,
they are natural isomorphisms, one the inverse of the other.

Proof. Since by Lemma E.6, normT,X and satT,X are one the inverse of the other, we have
only to prove that they are natural transformation, i.e., that diagrams (ii) and (iii) in
Figure 13 commute. Notes that by definition, NT(h) = H(h);normT,Y and thus diagram
(ii) commutes by Lemma E.3.2.

Then, by Lemma E.6, also diagram (iii) commutes.

Theorem 7.15. CoalgST
and CoalgNT

are isomorphic.

Proof. Let NORMT : CoalgST
→ CoalgNT

be the functor sending an object 〈X, α〉 into
〈X, α;normT,X〉 and any morphism h to itself. Let SATT : CoalgNT

→ CoalgST
be the

functor sending 〈X, α〉 into 〈X, α; satT,X〉 and any morphism h in itself. By Proposition 7.14,
these are clearly, one the inverse of the other.

Appendix F. Factorization system for H-coalgebras

The notions of subcoalgebra and homomorphic image have been introduced in [40], for coal-
gebras over Set. These notions have been extended by Kurz in his thesis [28] to coalgebras
over a generic category C, by employing factorization systems.

As subcolagebras and homomorphic images are fundamental for proving that |CoalgST
|

is a covariety of CoalgH (and thus proving the existence of final system), we briefly report
here these definitions.

Definition F.1 (Factorization System). Let C be some category, and let E,M be classes
of morphisms in C. Then (E,M) is a factorization system for C if and only if

(1) E,M are closed under isomorphism,
(2) C has (E,M)-factorizations, i.e., every morphism f in C has a factorization f = e;m

for e ∈ E and m ∈M ,
(3) C has the unique (E,M)-diagonalisation property, i.e., whenever the square

A

f
��

e // B

g

��
d
~

~

~~~
~

C m
// D



SYMBOLIC AND ASYNCHRONOUS SEMANTICS VIA NORMALIZED COALGEBRAS 53

commutes for m ∈ M and e ∈ E, then there is a unique diagonal d making the two
triangle commute.

The theory of coalgebras has been mainly developed for coalgebras over Set. In Section 1.4
of [28], Kurz generalizes this theory for coalgebras over a generic category C, by providing
four axioms relying on a factorization system for C and some properties of the endofunctor.
These axioms guarantees that the resulting category has all the good qualities of coalgebras
over Set, such as, for example, that the collection of all subcoalgebras of a coalgebra is a
complete lattice.

It can be easily proved (looking at AlgΓ(C) as Set
C) that the endofunctor H satisfies

these four axioms when considering the following factorization system.

Definition F.2. The factorization system forAlgΓ(C) is (EC,MC), where EC is the class of
|C|-indexed homomorphism having all components epi, while MC is the class of |C|-indexed
homomorphism having all components mono.

Here, we want to show that the forgetful functor U : CoalgST
→ AlgΓ(C) creates

factorizations with respect to (EC,MC) (Axiom 1.2). This means that if h : (X, α)→ (Y, β)
is a morphism in CoalgST

and h = e;m is a factorization in (EC,MC), then it is also a
factorization in CoalgST

, i.e., e,m are also cohomomorphisms. This is graphically depicted
below.

X
h //

α

��

e

((RRRRRRRRRR Y

β

��

I

γ
�

�

�

�

���
�
�
�

m

66llllllllll

H(X)
H(h) //

H(e) ''PPPPPP
H(Y)

H(I)
H(m)

77nnnnnn

If the back square commutes and h = e;m is factorization with respect to (EC,MC), then
also H(e) is in EC and H(m) is in MC. The unique arrow γ comes from the diagonalization
property noting that:

X
e //

α;H(e)
��

I

m;β
��

γv
v

v

{{v
v

H(I)
H(m)

// H(Y)

At this point we can define subcoalgebra and homomorphic image.

Definition F.3 (Subcoalgebra). Let m : 〈X, α〉 → 〈Y, β〉 be an arrow of CoalgH. Then
〈X, α〉 is said a subcoalgebra of 〈Y, β〉 if m ∈MC.

Definition F.4 (Homomorphic Image). Let f : 〈X, α〉 → 〈Y, β〉 be an arrow of CoalgH.
The homomorphic image of 〈X, α〉 through f is the coalgebra 〈I, γ〉 shown in the diagram
above.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	Introduction
	1. Asynchronous -calculus
	2. Open Petri nets
	3. A Simple Words Calculus
	4. Saturated and Symbolic Semantics
	4.1. Saturated Semantics
	4.2. Symbolic Semantics

	5. (Structured) Coalgebras
	6. Coalgebraic Saturated Semantics
	7. Coalgebraic Symbolic Semantics
	7.1. Saturated Coalgebras
	7.2. Normalized Coalgebras
	7.3. Isomorphism Theorem

	8. From Normalized Coalgebras to Symbolic Minimization
	9. Conclusions and related works
	Acknowledgement
	References
	Appendix A. Normalizable Systems
	Appendix B. Proofs of Section ??
	Appendix C. Proofs of Section ??
	Appendix D. Proofs of Section ??
	Appendix E. Proofs of Section ??
	Appendix F. Factorization system for H-coalgebras

