
Logical Methods in Computer Science
Vol. 8 (1:05) 2012, pp. 1–28
www.lmcs-online.org

Submitted Mar. 9, 2011
Published Feb. 16, 2012

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH

MIKO LAJ BOJAŃCZYK AND S LAWOMIR LASOTA

Warsaw University
e-mail address: {bojan,sl}@mimuw.edu.pl

Abstract. We define a new kind of automata recognizing properties of data words or
data trees and prove that the automata capture all queries definable in Regular XPath.
We show that the automata-theoretic approach may be applied to answer decidability and
expressibility questions for XPath.

1. Introduction

In this paper, we study data trees. In a data tree, each node carries a label from a finite
alphabet and a data value from an infinite domain. We study properties of data trees, such
as those defined in XPath, which refer to data values only by testing if two nodes carry the
same data value. Therefore we define a data tree as a pair (t,∼) where t is a tree over a
finite alphabet and ∼ is an equivalence relation on nodes of t. Data values are identified
with equivalence classes of ∼.

Recent years have seen a lot of interest in automata for data trees and the special
case of data words. The general theme is that it is difficult to design an automaton which
recognizes interesting properties and has decidable emptiness.

Decidable emptiness is important in XML static analysis. A typical question of static
analysis is the implication problem: given two properties ϕ1, ϕ2 of XML documents (mod-
eled as data trees), decide if every document satisfying ϕ1 must also satisfy ϕ2. Solving the
implication problem boils down to deciding emptiness of ϕ1 ∧ ¬ϕ2.

A common logic for expressing properties is XPath. For XPath, satisfiability is unde-
cidable in general, even for data words, see [1]. This means that most problems of static
analysis are undecidable for XPath, e.g. the implication problem. Satisfiability is undecid-
able also for most other natural logics on data words or data trees, including first-order
logic with predicates for order (or even just successor) and data equality.

The approach chosen in prior work was to find automata on data words or trees that
would have decidable emptiness and recognize interesting, but necessarily weak, logics or

1998 ACM Subject Classification: F.1.1, H.2.3.
Key words and phrases: satisfiability of (regular) XPath queries, automata on data words and trees, data

automata.
This work has been partially supported by the Polish government grants no. N206 008 32/0810 and N206

567840; and by the FET-Open grant agreement FOX, number FP7-ICT-233599.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:05) 2012
c© M. Bojańczyk and S. Lasota
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BOJAŃCZYK AND S. LASOTA

fragments of XPath. These weak logics include: fragments of XPath without recursion or
negation [1,11]; first-order logic with two variables [4,5]; forward-only fragments related to
alternating automata [8–10, 12]. The original automaton model for data words was [13].
See [14] for a survey.

In this paper, we take a different approach. Any model that captures XPath will have
undecidable emptiness. We are not discouraged by this, and try to capture XPath by
something that feels like an “automaton”. Three tangible goals are: 1. use the automaton
to decide emptiness for interesting restrictions of data trees; 2. use the automaton to prove
easily that the automaton (and consequently XPath) cannot express a property; 3. unify
other automata models that have been suggested for data trees and words.

What is our new model? To explain it, we use logic. From a logical point of view, a
nondeterministic automaton is a formula of the form ∃X1 . . . ∃Xn ϕ(X1, . . . , Xn), where the
kernel ϕ is relatively simple, e.g. it only talks about the relationship of labels in successive
positions. As often in automata theory, when designing the automaton model, we try to
use the prefix of existential set quantifiers as much as possible, in the interest of simplifying
the kernel ϕ. For satisfiability, this is like a free lunch, since deciding satisfiability with or
without the prefix are the same problem.

In the automaton model that we propose in this paper, the kernel ϕ is of the form “for
every class X of ∼, property ψ(X,X1, . . . , Xn) holds”, where ψ is an MSO formula that
can use predicates for navigation (sibling order, descendant), predicates for testing labels
from the finite alphabet, but not the predicate ∼ for data equality. The data ∼ is only
used in saying that X is a class. In the case of data words, this model is an extension of
the data automata introduced in [5], which correspond to the special case when first-order
quantifiers in ψ range only over positions from X. For instance, our new model, but not
data automata, can express the property “between every two different positions in the same
class there is at most one position outside the class with label a”.

The principal technical contribution of this paper is that the model above can recognize
all unary queries of XPath. This proof is difficult, and takes over ten pages. We believe the
real value of this paper lies in this proof, which demonstrates some powerful normalization
techniques for formulas describing properties of data trees. Since the scope of applicabil-
ity for these techniques will be clear only in the future; and since the appreciation of an
“automaton model” may ultimately be a question of taste, we describe in more details the
three tangible goals mentioned above.

1. The ultimate goal of this research is to find interesting classes of data trees which
yield decidable emptiness for XPath. As a proof of concept, we define a simple subclass
of data trees, called bipartite data trees, and prove that emptiness of our automata (and
consequently of XPath) is decidable for bipartite data trees. This is only a preliminary
result, we intend to find new subclasses in the future.

2. We use the automaton to prove that XPath cannot define certain properties. Proving
inexpressibility results for XPath is difficult, because the truth value of an XPath query in a
position x might depend on the truth value of a subquery in a position y < x, which in turn
might depend on the truth value of a subquery in a position z > y, and so on. On the other
hand, our automaton works in one direction, so it is easier to understand its limitations.
We use (an extension of) our automata to prove that for documents with two equivalence
relations ∼1 and ∼2, some properties of two-variable first-order logic cannot be captured
by XPath, which was an open question.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 3

3. We use the automaton to classify existing models for data words in a single frame-
work. A problem with the research on data words and data trees is that the models are
often incomparable in expressive power. In an upcoming paper1, we will show that many
existing models can be seen as syntactic fragments of our automaton. We hope that this
classification will underline more clearly what the differences are between the models.

2. Preliminaries

Trees. Trees are unranked, finite, and labeled by a finite alphabet Σ. We use the terms
child, parent, sibling, descendant, ancestor, node in the usual way. The siblings are ordered.
We write x ≤ y when x is an ancestor of y. Every nonempty set of nodes x1, . . . , xn in a
tree has a greatest common ancestor (the greatest lower bound wrt. ≤), which is denoted
gca(x1, . . . , xn).

Let t and s be two trees, over alphabets Σ and Γ, respectively, that have the same sets
of nodes. We write t ⊗ s for the tree over the product alphabet Σ × Γ that has the same
nodes as s and t, and where every node has the label from t on the first coordinate, and
the label from s on the second coordinate. If X is a set of nodes in a tree t, we write t⊗X
for the tree t ⊗ s, where s is the tree over alphabet {0, 1}, whose nodes are the nodes of t
and whose labeling is the characteristic function of X.

Regular tree languages and transducers. We use the standard notion of regular tree
languages for unranked trees [7]. We also use transductions, which map trees to trees. Let Σ
be an input alphabet and Γ an output alphabet. A regular tree language f over the product
alphabet Σ×Γ can be interpreted as a binary relation, which contains pairs (s, t) such that
s⊗ t ∈ f . We use the name letter-to-letter transducer for such a relation, underlining that
the trees in a pair (s, t) ∈ f must have the same nodes. In short, we simply say transducer.
Observe that the transducer is nondeterministic. We often treat a transducer as a function
that maps an input tree to a set of output trees, writing t ∈ f(s) instead of (s, t) ∈ f .

Data trees. A data tree is a tree t equipped with an equivalence relation ∼ on its nodes
that represents data equality. We use the name class for equivalence classes of ∼.

Queries. Fix an input alphabet. We use the name n-ary query for a function φ that maps
a tree t over the input alphabet to a set φ(t) of n-tuples of its nodes. In this paper, we deal
with queries of arities 0,1,2 and 3, which are called boolean, unary, binary and ternary. We
also study queries that input a data tree (t,∼); they output a set of node tuples φ(t,∼) as
well.

1This paper is a journal version of a LICS 2010 paper [3], which included a rough description of the
classification mentioned in item 3. However, a thorough explanation of the classification requires much
space, and uses different techniques than the results in this paper. Therefore, we plan to present the
classification in a separate paper.

4 M. BOJAŃCZYK AND S. LASOTA

MSO. Logic is a convenient way of specifying queries, both for trees and data trees. We
use monadic second-order logic (MSO). In a given tree, or a data tree, a formula of MSO is
allowed to quantify over nodes of the tree using individual variables x, y, z, and also over sets
of nodes using set variables X,Y, Z. A formula φ with free individual variables x1, . . . , xn
defines an n-ary query, which selects in a tree t the set φ(t) of tuples (x1, . . . , xn) that make
the formula true. To avoid confusion, we use round parentheses for the tree input of a
query, φ(t), and square parentheses for indicating the free variables of a query. The two
parenthesis can appear together, e.g. φ[x1, . . . , xn](t) will be the set of n-tuples selected in
a tree t by a query with free variables x1, . . . , xn.

When working over trees without data, MSO formulas use binary predicates for the child
and next-sibling relations (that allow to define descendant and following-sibling relations),
as well as a unary predicate for each label. Queries defined by MSO with these predicates
are called regular queries (of course, regular queries can also be characterized in terms of
automata). When working over data trees, we additionally allow a binary predicate ∼ to
test data equality. A query using ∼ is no longer called regular. For instance, the following
unary query selects positions that have classes of size at least two:

ϕ(x) = ∃y x 6= y ∧ x ∼ y.

Extended Regular XPath. We define a variant of XPath that works over data trees. For
unary queries, the variant is an extension of XPath, thanks to including MSO as part of
its syntax. We call the variant Extended Regular XPath. Unlike XPath, Extended Regular
XPath allows for queries of arbitrary arity. Expressions of Extended Regular XPath are
defined below.

• Let Γ = {φ1, . . . , φn} be a set of already defined unary queries of Extended Regular XPath,
which will be treated as unary predicates. In the induction base, the set Γ is necessarily
empty. Suppose that ϕ[x1, . . . , xm] is an MSO query that uses unary predicates for queries
from Γ, unary predicates for letters of the input alphabet, and the binary child and next-
sibling predicates. Then ϕ is an m-ary query of Extended Regular XPath. It is important
that ϕ does not introduce any new use of the data equality predicate ∼, all appearances
of ∼ are reserved to the queries from Γ.
• Suppose that ϕ[x, y1, y2] is a ternary query of Extended Regular XPath. Then the fol-

lowing property of x is a unary query of Extended Regular XPath

∃y1∃y2 y1 ∼ y2 ∧ ϕ[x, y1, y2]. (2.1)

Likewise for y1 6∼ y2 instead of y1 ∼ y2.

The definition above allows for queries of any arity. In the paper, we will be principally
interested in queries of arity one, and the queries of arity at most three used to build them.
By abuse of nomenclature, we will write XPath instead of Extended Regular XPath.

Binary trees. A binary tree is a tree where each node has at most two children. Although
the interest of XPath is mainly for unranked trees, we assume in the proofs that trees are
binary. This assumption can be made because XPath, as well as the models of automata
introduced later on, are stable under the usual first-child / next-sibling encoding in the
following sense. A language L of unranked data trees can be expressed by a boolean XPath
query if and only if the set of binary encodings of trees from L can be expressed by a boolean
XPath query. A similar, though more technical, statement holds for unary queries.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 5

Words will be considered as a special case of binary trees where each node has at most
one child.

3. Class automata

In this section we define a new type of automaton for data trees, called a class automaton,
and state the main result: class automata capture all queries definable in XPath.

A class automaton is a type of automaton that recognizes properties of data trees. A
class automaton is given by: an input alphabet Σ, a work alphabet Γ, a nondeterministic
letter-to-letter tree transducer f from the input alphabet Σ to the work alphabet Γ, and a
regular tree language on alphabet Γ×{0, 1}, called the class condition. The class automaton
accepts a data tree (t,∼) over input alphabet Σ if there is some output s ∈ f(t) such that
for every class X, the class condition contains the tree s⊗X.

Example 1. Consider an input alphabet Σ = {a, b}. Let L be the data trees where some
class contains at least three nodes with label a. This language is recognized by a class
automaton. The work alphabet is Γ = {a, c}. The transducer guesses three nodes with
label a, and outputs a on them, other nodes get c. The class condition consists of trees
s⊗X over alphabet Γ×{0, 1} where X contains all or none of the nodes with label a. Note
that the class condition does not inspect positions outside X.

Example 2. Let K be the set of data words over Σ = {a, b} where each class has exactly
two positions x < y, and there is at most one a in the positions {x + 1, . . . , y − 1}. In
the class automaton recognizing K, the transducer is the identity function, and the class
condition is

Σ∗0 · Σ1 · b∗0 · (a0 + ε) · b∗0 · Σ1 · Σ∗0
where Σi is a shortcut for Σ× {i}, likewise for ai and bi.

Comparison to data automata. Class automata are closely related to data automata
introduced in [5]. Data automata were defined for data words. Since it is not clear what
the correct tree version thereof is, we just present the version for data words. Like a
class automaton, a data automaton has an input alphabet Σ, a work alphabet Γ, and a
nondeterministic letter-to-letter transducer f (this time only for words). The difference is
in the class condition, which is less powerful in a data automaton. In a data automaton, the
class condition is a word language over Γ, and not Γ×{0, 1}. The data automaton accepts
a data word (w,∼) if there is some output v ∈ f(w) such that for every class X, the class
condition contains the subsequence of v obtained by only keeping positions from X. In the
realm of data words, data automata can be seen as a special case of class automata, where
the class condition is only allowed to look at positions from the current class. The language
L in Example 1 can be recognized by a data automaton (in the case of words), while the
language K in Example 2 is a language that can be recognized by class automata, but not
data automata.

The difference between data automata and class automata is crucial for decidability
of emptiness. Data automata have decidable emptiness [5], the proof being a reduction
to reachability in Vector Addition Systems with States. Class automata have undecidable
emptiness, because they capture the logic XPath, which has undecidable satisfiability. Also,

6 M. BOJAŃCZYK AND S. LASOTA

a direct and simple proof of undecidable emptiness for class automata can be given, by
encoding runs of two-counter machines, without going through the difficult reduction from
XPath.

Closure properties. Suppose that f : Σ1 → Σ2 is any function. We extend f to a function
f̂ from data trees over alphabet Σ1 to data trees over alphabet Σ2, by just changing the
labels of nodes, and not the tree structure or data values. We use the name relabeling for
any such function f̂ .

Lemma 1. Languages of data trees recognized by class automata are closed under union,
intersection, images under relabelings, and inverse images under relabelings.

Proof. The inverse images are the simplest: the letter-to-letter tree transducer in the class
automaton is composed with the relabeling. For intersection, one uses Cartesian product.
For union and images under relabelings, one uses nondeterminism.

Evaluation. The evaluation problem (given an automaton and a data word/tree, check
if the latter is accepted by the former) is NP-complete, even for a fixed data automaton
(cf. [2]). Hence it is also NP-complete for class automata, which extend data automata.

Class automata as a fragment of MSO. As mentioned in the introduction, one can see
a class automaton as a restricted type of formula of monadic second-order logic. This is a
formula of the form:

∃X1 · · · ∃Xn ∀X class(X)⇒ ϕ(X1, . . . , Xn, X) (3.1)

where X1, . . . , Xn, X are variables for sets of nodes, the class formula is

class(X) = ∃y∀x x ∈ X ⇐⇒ y ∼ x
and ϕ is a formula of MSO that does not use∼. Formulas of the above form recognize exactly
the same languages of data trees as class automata. For translating a class automaton to a
formula, one uses the variables X1, . . . , Xn to encode the output of the transducer, and the
formula ϕ to test two things: a) the variables X1, . . . , Xn encode a legitimate output of the
transducer; and b) the class condition holds for X.

Main result. The main result of this paper is Theorem 1 below, which says that unary
XPath queries over data trees can be recognized by class automata. To state the theorem,
we need to say how a class automaton recognizes a unary query. We do this by encoding a
unary query φ over data trees as a language of data trees:

Lφ = {(t⊗X,∼) : (t,∼) is a data tree, X = φ(t,∼)}.
In other words, the language consists of data trees decorated with the set of nodes selected
by the query. This encoding does not generalize to binary queries.

Theorem 1. Every unary XPath query over data trees can be recognized by a class au-
tomaton.

We begin the proof of Theorem 1, mainly to show where the difficulties appear. Then,
we lay out the proof strategy in more detail. When referring to the language of a unary
query, we mean the encoding above.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 7

We do an induction on the size of the unary query. The base case, when the query is a
label a, is straightforward. Consider now the induction step, with a unary query

φ[x] = ∃y1∃y2 y1 ∼ y2 ∧ ϕ[x, y1, y2]

as in (2.1). (The same argument works for the case where y1 6∼ y2.) Let φ1, . . . , φn be all the
unary XPath subqueries that appear in ϕ. By the induction assumption, the languages of
the subqueries are recognized by class automataA1, . . . ,An. Let the variablesX,X1, . . . , Xn

denote sets of nodes. Consider the set L of data trees

(t⊗X ⊗X1 ⊗ · · · ⊗Xn,∼)

such that a) for each i ∈ {1, . . . , n}, the data tree (t⊗Xi,∼) is accepted by the automaton
Ai; and b) X is the set of nodes selected by the query φ′ obtained from φ by replacing each
subquery φi with “has 1 on coordinate corresponding to Xi”. Suppose that the language
of φ′ is recognized by a class automaton. Then so is L, by closure of class automata under
intersection and inverse images of projections, see Lemma 1. Finally, the language of φ is
the image of L under the projection which removes the labels describing the sets X1, . . . , Xn.

It remains to show that φ′ is recognized by a class automaton (the advantage of φ′ over
φ is that it uses data equality ∼ only once, to say that y1 ∼ y2). A major part of this paper
is devoted to this case, which is stated in the following proposition.

Proposition 1. Class automata can recognize queries

φ[x] = ∃y1∃y2 y1 ∼ y2 ∧ ϕ[x, y1, y2],

where ϕ is a regular ternary query (i.e. ϕ does not use ∼). Likewise for y1 6∼ y2.

Proof strategy. The construction of the automaton for φ[x] is spread across several sec-
tions. In Section 3.2, we introduce the main concepts underlying the proof. In particular,
we define a new complexity measure for binary relations on tree domains, called guidance
width, that seems to be of independent interest. In Section 3.3 we start the proof itself,
formulate an induction, and reduce Proposition 1 to a more technical Theorem 2. Then in
Section 4 we identify a simplified form of queries appearing in Theorem 2 and show how
arbitrary queries can be transformed to the simplified form. Finally, Section 5 contains the
proof of Theorem 2 for these simplified queries, the heart of the whole proof.

3.1. Discussion of the proof. In this section, we discuss informally the concepts that
appear in the proof of Theorem 1. For the purpose of illustration, we use words.

We begin our discussion with words without data. For a regular binary query ϕ[x, y],
consider the unary query

ψ[x] = ∃y ϕ[x, y].

We use the name witness function in a word w for a function which maps every position
x satisfying ψ to some y such that ϕ[x, y] holds. Consider, as an example, the case where
ϕ[x, y] says that there exists exactly one z that has label a and satisfies x < z < y. The
following picture shows a witness function.

a a a a aaa b bb b b b

8 M. BOJAŃCZYK AND S. LASOTA

The way the picture is drawn is important. The witness function is recovered by
following arrowed lines. The arrowed lines are colored black, dashed black, or gray, in such
a way that no position is traversed by two arrowed lines of the same color. With the formula
ψ in the example, any input word has a witness function that can be drawn with three colors
of arrowed lines. This can be generalized to arbitrary MSO binary queries; the number of
colors depends only on the query, and not the input word.

The above observation may be used to design a nondeterministic automaton recognizing
a property like ∀x ψ[x]. The automaton would guess the labeling by arrows and then verify
its correctness. The number of states in the automaton would grow with the number of
colors; hence the need for a bound on the number of colors. Of course, there are other ways
of recognizing ∀x ψ[x], but we talk about the coloring since this is the technique that will
work with data.

We now move to data words. Consider a unary query

ψ[x] = ∃y1∃y2 y1 ∼ y2 ∧ ϕ[x, y1, y2],

where ϕ[x, y1, y2] says that y1 < x ≤ y2, there is exactly one a label in the positions
{y1, . . . , x− 1} and there is exactly one b label in the positions {x, . . . , y2}. The query ψ[x]
is an example of a query as in Proposition 1. Consider the following data word (the labels
are blank, a and b, the data values are 1 . . . 6).

1 2 3 4 5
a
6

b
4

b
5 3

b
2
b

1
b

Say x is the first node with label b. This node is selected by ψ. Consider the pairs (y1, y2)
required by ψ[x], which we call witnesses. The only possibility for y2 is x itself; thus y1 is
also determined, as the only other position with the same data value. So there is only one
witness pair. The same situation holds for all other positions with label b, which are the
only positions selected by ψ. The drawing below shows how witness pairs are assigned to
positions.

1 2 3 4 5
a
6

b
4

b
5 3

b
2
b

1
b

We would like to draw this picture with colored arrows, as we did for the first example
of witness functions. If we insist on drawing arrows that connect each position x with its
corresponding witness y1, then we will need 5 colors as the middle position (labeled by a)
is traversed by 5 arrows; the picture also generalizes to any number of colors. On the other
hand, connecting each position x with its corresponding y2 (a self-loop) requires only one
color. We can symmetrically come up with instances of data words where connecting each
node x to y2 requires an unbounded number of colors.

A consequence of our main technical result, Theorem 2, is that a bounded number of
colors is sufficient if we want to perform the following task: for each position x selected by
ψ, choose some witness pair y1 ∼ y2, and connect x to either y1 or y2. The bound depends
only on ψ; in particular, the bound does not depend on input data tree.

The concepts of witness functions and coloring are defined more precisely below.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 9

3.2. The core result. We will state some technical results for a structure more general
than a data tree, namely a graph tree. A graph tree is a tree t endowed with an arbitrary
symmetric binary relation E over its nodes. A data tree is the special case of a graph tree
where E is an equivalence relation.

Witness functions. Let ϕ[x, y1, y2] be a regular query (think of Proposition 1), and con-
sider a graph tree (t, E). We are interested in triples (x, y1, y2) selected by ϕ in t such that
(y1, y2) ∈ E. (Think of E being either the data equivalence relation ∼, or its complement.)
Consider any such triple. The node x is called the source node; the notion of source node
is relative to the query ϕ and relation E, which will usually be clear from the context and
not mentioned explicitly. The pair (y1, y2) is called the witness pair, y1 is called the first
witness, and y2 is called the second witness. These notions are all relative to a given x, but
if we do not mention the x, then x is quantified existentially. Let X be a set of nodes in
a graph tree (not necessarily containing all nodes). A witness function for ϕ and X in a
graph tree is a function which maps every node x ∈ X, treated as a source node, to some
(first or second) witness. There may be many witness functions, since for each node we can
choose to use either a first witness or a second witness, and there may be multiple witness
pairs.

The key technical result of this paper is that one can always find a witness function of
low complexity. The notion of complexity is introduced below.

Guidance width. A guide in a tree t is given by two nonempty sets of source nodes and
target nodes. The support of the guide is the set of all nodes and edges on (the shortest)
paths that connect some source node with a target node, including all the source and target
nodes. A guide conflicts with another guide if their supports intersect. We write π for
guides.

A guidance system is a set of guides Π. It induces a relation containing all pairs (x, y)
of tree nodes such that x is a source and y a target in some guide in Π. An n-color guidance
system is a guidance system whose guides can be colored by n colors so that conflicting
guides have different colors. The guidance width of a binary relation R on tree nodes is the
smallest n such that some n-color guidance system induces R.

In the proof we will only consider guidance systems for relations R that are partial func-
tions from tree nodes to tree nodes. In such cases, it is sufficient to restrict to deterministic
guides, i.e., those with precisely one target node. From now on, if not stated otherwise, a
guidance system will be implicitly assumed to contain only deterministic guides.

Witness functions of bounded width. We are now ready to state the main technical
result, which forms the core of the proof of Theorem 1.

Theorem 2. Let ϕ be a regular ternary query. There exists a constant m, depending only
on ϕ, such that in every graph tree, every set of source nodes has some witness function of
guidance width at most m.

In other words, regular ternary queries have witness functions of bounded guidance
width. Before proving the theorem, we show how it implies Theorem 1.

10 M. BOJAŃCZYK AND S. LASOTA

3.3. From Theorem 2 to Proposition 1. We show how Theorem 2 implies the last
remaining piece of Theorem 1, namely Proposition 1. Consider a unary query φ[x] as in the
statement of Proposition 1. We begin with the case when φ[x] is of the form

φ[x] = ∃y1∃y2 y1 ∼ y2 ∧ ϕ[x, y1, y2].

We need to find a class automaton that accepts the data trees (t ⊗ X,∼) where X is the
set of all nodes selected by φ in the data tree (t,∼). The class automaton will test the
conjunction of two properties:

Completeness. Each node selected by φ in (t,∼) is in X.
Correctness. Each node in X is selected by φ in (t,∼).

Recall that ϕ is a regular query. We give separate class automata for the two properties.
Completeness is simple. It can be rephrased as

for every class Y and triple (x, y1, y2) selected by ϕ, if y1, y2 ∈ Y then x ∈ X.

This is the type of property class automata are designed for: for every class, test a regular
property. (Recall the discussion on class automata as a fragment of MSO.) Correctness is
the difficult property, since the order of quantifiers is not the same as in a class automaton:

for every x ∈ X there is a class Y and y1, y2 ∈ Y such that (x, y1, y2) is
selected by ϕ.

Our solution is to use, as a part of the class automaton to be designed, a guidance system
given by Theorem 2.

Apply Theorem 2 to ϕ, yielding a constant m. The class automaton for the correctness
property works as follows. Given an input data tree (t ⊗ X,∼), it guesses an m-color
guidance system; let R stand for the induced relation. The automaton then checks the two
conditions below.

A. For every x ∈ X there is some y with xRy.
B. For every class Y , if xRy, x ∈ X, y ∈ Y , then either (x, y, y′) or (x, y′, y) is in ϕ(t), for

some y′ ∈ Y .

If the class automaton accepts, then clearly every position in X is a source node. Con-
versely, if all nodes in X are source nodes, then there is an accepting run of the above class
automaton. This accepting run uses the guidance system for the witness function from
Theorem 2.

This completes the proof for the case when φ[x] requires y1 ∼ y2. For the case y1 6∼ y2,
the proof is almost the same, except for two changes. The first change is that we apply
Theorem 2 to the graph trees (t, E), obtained from data trees (t,∼) by taking as E the
complement of ∼. This explains why Theorem 2 is formulated for graph trees and not just
data trees. The second change is that we write y′ 6∈ Y instead of y′ ∈ Y at the end of
condition B.

4. Simplifying the query

Before proving Theorem 2, we formulate two simplifying conditions about the regular query
ϕ[x, y1, y2].

For two nodes x, y in a tree t, we write wordt(x, y) for the sequence of labels on the
unique shortest path from x to y in t, including x and y. We omit the subscript t when a

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 11

tree is clear from the context. Note that wordt(x, y) is always nonempty and wordt(x, x) is
the label of x.

The two conditions about the query ϕ[x, y1, y2] are:

(1) All selected triples satisfy y1 < x < y2.
(2) Whether or not a triple is selected depends only on the words wordt(y1, x) and

wordt(x, y2). It does not depend on nodes outside the path from y1 to y2.

The goal of this section is to reduce Theorem 2 to the case when ϕ[x, y1, y2] is a sim-
plified query, as defined above. This simplification is achieved in several steps. (In the
case of words, the simplification would be standard, but for trees it requires new ideas
about guidance systems.) Formally, in this section we show that Theorem 2 follows from
Theorem 3 (deliberately formulated as late as in the forthcoming Subsection 4.7) that only
speaks about simplified queries. Theorem 3 itself is proved in Section 5.

4.1. Generalized witness functions. Fix any number n ∈ N, although we will be mainly
interested in n ∈ {1, 2}. Consider a regular query ϕ[x, y1, . . . , yn] over trees. Consider now
a tree t together with a set E of n-tuples of nodes in t. As before, the idea is that E gives a
constraint on the witness variables. A witness tuple for a node x is a tuple (y1, . . . , yn) ∈ E
such that (x, y1, . . . , yn) is selected by ϕ in t. In this case, we say that x is a source, and yi
is an i-th witness for x (the other variables are quantified existentially).

A witness function for ϕ and a set of source nodes X in (t, E) is a function which
assigns to each node x ∈ X some witness (an i-th witness for some i, with i depending on
x).

We say that a regular query ϕ[x, y1, . . . , yn] has witness functions of guidance width m
if for every tree t, every choice E of n-tuples of nodes of t and every set X of source nodes
in (t, E), there is a witness function for ϕ and X of guidance width at most m. A query ϕ
has witness functions of bounded guidance width if some such m exists.

4.2. Three arrangements. By an arrangement of the nodes x, y1, y2 in a tree we mean
the information on how these nodes, and their greatest common ancestors

gca(x, y1) gca(x, y2) gca(y1, y2)

are related with respect to the descendant ordering. We distinguish three different arrange-
ments, pictured below.

y1 y2

x y1

y2x

gca(x,y1) = gca(y1,y2)gca(x,y1) = gca(x,y2)

gca(y1,y2) gca(x,y2)

y1

y2

x

gca(x,y1)

gca(x,y2) = gca(y1,y2)

These arrangements correspond, respectively, to the following situations.

gca(x, y1) = gca(x, y2) ≤ gca(y1, y2) (A1)

gca(x, y1) = gca(y1, y2) ≤ gca(x, y2) (A2)

gca(x, y2) = gca(y1, y2) ≤ gca(x, y1) (A3)

12 M. BOJAŃCZYK AND S. LASOTA

The arrangements are not contradictory, for instance the case x = y1 = y2 is covered by
all three. The slightly more general case y1 = y2 that essentially represents binary queries
ϕ[x, y], is fully covered by (A1).

Lemma 2. We may assume without loss of generality that all the triples selected by ϕ, as
in the statement of Theorem 2, have the same arrangement.

Proof. Otherwise we can split ϕ into a union of three queries, one for each arrangement,
and then combine the three separate guidance systems.

4.3. Path-based queries. Let us fix one of the arrangements. There are four words
w1, w2, w3, w4 that will interest us. These are shown on the picture below for the arrange-
ment (A1) only, but the reader can easily see the situation for all other arrangements.

w1 = word(gca(x,y1), x) w2 = word(gca(x,y1), gca(y1,y2)) w3 = word(gca(y1,y2), y1) w4 = word(gca(y1,y2), y2)

y1 y2

x

y1 y2

x

y1 y2

x

y1 y2

x

.

A regular query ϕ[x, y1, y2] is called path-based if its truth value depends only on some reg-
ular properties of the four words w1, . . . , w4. The precise definition of path-based queries
we use in this paper is in terms of monoids. A query that selects triples only in arrange-
ment (A1) is called path-based if there exists a monoid morphism

α : Σ∗ → S

such that membership (x, y1, y2) ∈ ϕ(t) depends only on the values assigned by α to the
words w1, . . . , w4. In other words, there is a set of accepting quadruples F ⊆ S4 such that
(x, y1, y2) belongs to ϕ(t) if and only if

(α(w1), . . . , α(w4)) ∈ F .

An analogous definition of path-based queries is given for the other arrangements (A2)
and (A3).

Lemma 3. We may assume without loss of generality that ϕ, as in the statement of
Theorem 2, is path-based.

Proof. The key observation is that there is a functional letter-to-letter transducer f and a
path-based query γ such that ϕ = γ ◦ f , i.e. for a tree t the set ϕ(t) of tuples selected by ϕ
in t is the same as the set of tuples selected by γ in f(t). The observation can be proved
using logical methods (the transducer computes MSO theories) or using automata methods
(the transducer computes state transformations).

To prove the lemma, we need to show that if Theorem 2 is true for the path-based
queries γ, then it is also true for arbitrary ternary queries ϕ. But this is straightforward,
as ϕ and γ have the same witness functions in trees t and f(t), respectively.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 13

4.4. Composing guidance systems. In the sequel we will compose guidance systems as
outlined in the lemma below. For two partial functions f, g on the set of nodes of a tree,
by the composition g ◦ f we mean, somewhat non-standardly, the partial function with the
same domain as f , and defined as follows:

(g ◦ f)(x) =

{
g(f(x)) if g is defined on f(x)

f(x) otherwise.

Lemma 4. Let f, g be partial functions on the set of nodes of a tree, of guidance width m1

and m2, respectively. Then their composition g ◦ f is of guidance width at most 2m1m2.

Proof. Fix a tree t together with some m1- and m2-color guidance systems Πf and Πg,
inducing f and g, respectively. We will show existence of a 2m1m2-color guidance system
for g ◦ f .

As the first step, combine Πf and Πg as follows: a node x is first guided by Πf , and
then, if g is defined on f(x), guided by Πg to its final destination. Formally, Π contains
those guides of Πf whose destination node is not in the domain of g; and moreover a number
of guides that are composed of at least two guides, to be described now.

Fix a pair of colors (k, l), where k is a color used in Πf and l is a color used in Πg.
A composed guide, colored by the pair (k, l), is derived from one l-colored guide from Πg,
say π, and all those k-colored guides from Πf whose destination node is a source node of
π, The source nodes of the composed guide are all source nodes of all the above-mentioned
k-colored guides from Πf . The target node of the composed guide is the target node of π.

We will focus on the composed guides only. (A ’non-composed’ guide in Π, say colored
k, may be safely considered as colored by (k, l), for any l.)

The above coloring, using m1m2 colors, is not satisfactory as same colored guides may
be in conflict. We will show how to resolve these conflicts by introducing an additionally
distinguishing piece of data into the colors. Fix a color pair (k, l) as above. Note that a
conflict may only arise when the Πg-part (l-colored in Πg) of one (k, l)-colored guide, say π1,
conflicts with the Πf -part (k-colored in Πf) of another same colored guide, say π2. Consider
an undirected graph G, whose nodes are all (k, l)-colored guides; there is an edge between
π1 and π2 in the graph if the abovementioned conflict arises.

We claim that the graph G is a forest, i.e., a disjoint union of trees. Towards a contra-
diction, suppose that G has a cycle consisting of n pairwise different guides π1, . . . , πn. Take
πn+1 = π1. Let x1, . . . , xn denote arbitrarily chosen nodes witnessing the conflicts, i.e., xi
belongs to the supports of guides πi and πi+1. In πi+1, for any i ≤ n, there is a unique path
from xi to xi+1 (take xn+1 as x1), denote it pi; pi always uses a path of a guide from Πf ,
colored k, and a path of a guide from Πg, colored l. As the k-colored guides never conflict,
and likewise the l-colored ones, the k-colored part of pi is separated from the same colored
part of pi+1 by at least one l-colored edge; thus the paths pi are nonempty, i.e., xi 6= xi+1.
Assume that x1, . . . , xn are pairwise distinct (if this is not the case, i.e., xi = xj , consider
xi, . . . , xj−1 instead; and consider πi, . . . , πj−1 instead of π1, . . . , πn).

Now we are prepared to obtain a contradiction, thus proving that G is a forest. If two
paths pi and pi+1 share an edge adjacent to xi+1, the edge may be removed from both
paths; this clearly forces xi+1 to be replaced appropriately. Thus the paths can be made
edge-disjoint; moreover we keep the xi nodes pairwise distinct, argued as above. Hence the
paths p1, . . . , pn form a cycle in the tree t, a contradiction.

14 M. BOJAŃCZYK AND S. LASOTA

Knowing that G is a forest, we may easily label its nodes by two numbers 1, 2, level
by level, starting from an arbitrary leaf in any connected component. This additional
numbering, added to the colors of the guides in Π, eliminates the problematic conflicts and
makes Π a 2m1m2-color guidance system as required.

4.5. Binary queries.

Lemma 5. Every binary regular query ϕ[x, y] has witness functions of bounded guidance
width.

Proof. Whenever a pair (x, y) belongs to ϕ(t), call the node z = gca(x, y) an x-intermediate
node, and call y a z-final node. We will define two guidance systems, the first one directing
any source node x to an x-intermediate one, and the second one directing any intermediate
node z to a z-final one. The two guidance systems will be combined using Lemma 4.

A binary query is essentially a degenerate case of ternary query, with y1 = y2. By
Lemma 3 assume that ϕ is path-based. Thus its truth value in a tree t only depends on
some regular properties of two words

w1 = wordt(x, gca(x, y)) and w2 = wordt(gca(x, y), y),

as depicted in the figure in Section 4.3. (Words w3 and w4 are empty as y1 = y2.) Namely,
(x, y) belongs to ϕ(t) if and only if (α(w1), α(w2)) ∈ F , for a designated set F ⊆ S2. Fix
(s1, s2) ∈ F . We will define a guidance system for pairs (x, y) which satisfy

α(w1) = s1, α(w2) = s2.

(Then the required guidance system will be a disjoint union over all pairs (s1, s2) ∈ F .)
Assume further, without loss of generality, that x is in the left subtree, and y is in the

right subtree of gca(x, y), including possibly y = gca(x, y). (Again, the required guidance
system will be a disjoint union of two systems.)

Consider deterministic word automata A1 and A2 that recognize the properties α−1(s1)
and α−1(s2), respectively. Think of a run of A1, starting from a source node x, along the
path in t leading from x to some x-intermediate node. Consider such runs of A1 starting
from all source nodes x, one run from every source node. These runs may be translated
into a guidance system, as follows.

Each of the runs labels nodes on the path from x to an x-intermediate node with states
of A1. The idea is that two source nodes x and x′ may be directed to the same intermediate
node if the two runs of A1 that start in x and x′ label some node of t with the same state.
In other words, one may use the same guide both for x and x′. Thus there is a guidance
system, with as many colors as the number of states of A1, that follows the runs of A1 until
acceptance, and directs any source node x to some x-intermediate node.

Likewise for A2, there is a corresponding guidance system, that leads any intermediate
node z to some z-final node. Applying Lemma 4 for these two guidance systems we get the
result.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 15

4.6. Arrangement (A1). In this section we show that Theorem 2 holds if all triples selected
by ϕ[x, y1, y2] have arrangement (A1), pictured below.

y1 y2

x

Suppose τ [x, y] is a binary query, and σ[y, y1, y2] is a ternary query. We define the
following ternary query

τ ◦y σ[x, y1, y2] = ∃y τ [x, y] ∧ σ[y, y1, y2] .

Lemma 6. Let τ, σ be as above. If τ and σ have bounded width witness functions then so
does τ ◦y σ.

Proof. By considering the witness function for τ ◦yσ obtained as a composition and applying
Lemma 4.

Lemma 7. We may assume without loss of generality that ϕ only selects triples (x, y1, y2)
where x = gca(y1, y2).

Proof. By the considerations in Section 4.3, we know that a triple (x, y1, y2) is selected by
ϕ if and only if the images, under the morphism α, of the four path words w1, w2, w3, w4

belong to a designated set F ⊆ S4 of accepting tuples.
Let s1, . . . , s4 ∈ S. Let τs1,s2 be the binary query that selects a pair (x, y) if

α(wordt(gca(x, y), x)) = s1

α(wordt(gca(x, y), y)) = s2 .

Likewise, let σs3,s4 be the ternary query that selects a triple (y, y1, y2) if

gca(y1, y2) = y

α(wordt(y, y1)) = s3

α(wordt(y, y2)) = s4 .

The queries τs1,s2 and σs3,s4 can be joined to define ϕ, in the following way.

ϕ =
⋃

(s1,s2,s3,s4)∈F

τs1,s2 ◦y σs3,s4 .

By Lemma 6, we see that the width of witness functions for ϕ is bounded by the widths of
the witness functions for the τ queries, which is bounded by Lemma 5, and the width of
the witness functions for the σ queries. The latter are queries where the first variable is the
gca of the second and third variables, which concludes the proof of the lemma.

16 M. BOJAŃCZYK AND S. LASOTA

Thanks to the above lemma, we are left with a query ϕ that selects triples in the
arrangement pictured below (for future reference let us call this arrangement trivial).

y1 y2

x

We will provide a 2-color guidance system that induces a witness function for ϕ in (t, E).
This is guaranteed by the following lemma:

Lemma 8. Let ϕ be any (not necessarily regular) query that selects only nodes in a trivial
arrangement. Then ϕ has witness functions of guidance width 2.

Proof. The guidance system is constructed in a single root-to-leaf pass.
More formally, for each set X of nodes that is closed under ancestors, we will provide a

guidance system ΠX that directs each node that is a source node and in X to some witness,
either y1 or y2. The guidance system will have the additional property that no tree edge is
traversed by two guides.

The guidance system is constructed by induction on the size of X. The induction base,
when X has no nodes, is straightforward. We now show how ΠX should be modified when
adding a single x node to X. When x is not a source node, then nothing needs to be done.
Otherwise, suppose that x is a source node, and the witness is (y1, y2). Since all guides in
ΠX originate in nodes from X, any guide that passes through x must also pass through its
parent. Using the additional assumption, we conclude that at most one guide π from ΠX

passes through x. In particular, either the left subtree of x, which contains y1, or the right
subtree of x, which contains y2, has no guide passing through it. We create a new guide
that connects x to the witness in the subtree without a guide.

For arrangement (A1) the proof of Theorem 2 is thus completed.

4.7. Arrangements (A2) and (A3). For the remaining arrangements, in this section we
only show how they can be reduced to the simplified ones. We formulate Theorem 3
below, which we will use in this section, and which follows easily from the Main Lemma
(forthcoming Lemma 9) to be proven in the next section.

To state the theorem, we need a new notion. A guidance system in a graph tree is
called consistent wrt. a given ternary query if each of guides obeys the following uniqueness
requirement: whenever a set Z ⊆ X of source nodes is guided to the same node y, then
there is a pair (y1, y2) that is a witness pair for all nodes Z, with y1 = y or y2 = y.
Roughly speaking: if all nodes in Z agree on the witness they are guided to, then they
agree on the other witness as well. The notion of consistency is meaningful only relative
to a given ternary query. Below, the consistency property will make it possible to combine
two guidance systems appropriately.

Theorem 3. Every simplified regular query has witness functions of bounded guidance
width. Furthermore, a consistent guidance system always exists (of the required bounded
guidance width).

Now using Theorem 3 we prove Theorem 2 for arrangements (A2) and (A3). By sym-
metry, we only consider the arrangement (A2). We simplify the arrangement in two steps.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 17

First we claim that without loss of generality x can be assumed to be an ancestor of y2

– this may be shown by essentially the same technique as in Lemma 7 hence we omit the
details. Second, we show that y1 can be assumed to be an ancestor of x and y2. The
arrangement (A2), as well as its two successive simplifications, are pictured below.

y1

y2x

y1

y2

x

y1

y2

x

Let our starting arrangement be the middle one in the picture above, i.e. we assume
that the first simplification has been already applied. Without loss of generality we may
assume that y1 is in the left subtree, and x in the right subtree of the gca(x, y1) node (thus
we again split into two sub-cases), and that both x and y1 are not equal to gca(x, y1).

By the considerations in Section 4.3, we know that a triple (x, y1, y2) is selected by ϕ
in t if and only if the images, under the morphism α, of the three path words:

wordt(x, gca(x, y1)), wordt(x, y2), wordt(gca(x, y1), y1),

belong to a designated set F ⊆ S3 of accepting tuples.
Fix (s1, s2, s3) ∈ F . We define a guidance system for triples (x, y1, y2) which satisfy

s1 = wordt(x, gca(x, y1)), s2 = wordt(x, y2), s3 = wordt(gca(x, y1), y1).

In general, the guidance system will be a disjoint union over all triples (s1, s2, s3) ∈ F .
Consider an arbitrary graph tree (t, E) over which ϕ is evaluated, together with an arbitrary
subset X of source nodes. We aim at constructing a guidance system whose number of colors
depends only on ϕ, that directs any source node x ∈ X to either y1 or y2, for some triple
(x, y1, y2) selected by ϕ. We will do it in two stages. In the first stage, the node x is
directed either to y2, or to y = gca(x, y1). By Theorem 3 we will be able to assume that
this guidance system is consistent. In the second stage, every y node will be directed either
to an appropriate y1 node, or to the y2 node, using Lemma 8. Finally, we will compose the
two guidance systems using Lemma 4.

Formally speaking, for the first stage we use the simplified query σs1,s2 [x, y, y2] that
selects a triple (x, y, y2) if

• α(wordt(x, y)) = s1

• α(wordt(x, y2)) = s2

• y < x ≤ y2

• x is in the right subtree of y.

The idea now is that the query σs1,s2 is evaluated over a modified graph tree (t, Es3).
The relation Es3 is defined as follows: (y, y2) is in Es3 iff (y1, y2) ∈ E for some y1 such that

• y = gca(y1, y2),
• y1 is in the left subtree of y,
• α(wordt(y, y1)) = s3.

Intuitively, the first node y1 of every edge (y1, y2) ∈ E is moved to y = gca(y1, y2), but
only if the equation α(wordt(y, y1)) = s3 holds. Note that we use here the more general
notion of graph trees, rather than data trees, as the relation Es3 is not an equivalence in
general. By Theorem 3 we know that σs1,s2 has a witness function induced by a consistent

18 M. BOJAŃCZYK AND S. LASOTA

m-color guidance system Π, where m only depends on σs2,s3 and does not depend on t, E
or X.

Each source node x is directed so far either to some y < x, or to y2 ≥ x. Without loss
of generality we may assume that colors used for target nodes of the first kind are distinct
from colors used for target nodes of the other kind. For the second stage, consider the set Y
of all target nodes y of Π of the first kind, and restrict attention to the induced sub-guidance
system of Π. Note that every such node y ∈ Y has an associated node y1 located in the
left subtree of y such that α(wordt(y, y1)) = s3. Moreover, due to consistency of Π, y has
also an associated node y2 located in the right subtree of y such that α(word(y, y2)) = s1s2.
Consider the set of all such triples (y, y1, y2) and apply Lemma 8 to obtain a 2-color guidance
system that directs every y ∈ Y to one of its two associated nodes.

Finally, using Lemma 4 we obtain a guidance system for ϕ of bounded width.
As the graph tree (t, E) and the subset X were chosen arbitrarily, this completes the

proof of Theorem 2.

5. Proof of Theorem 3

Fix in this section a simplified regular query ϕ[x, y1, y2], i.e., satisfying the conditions (1)
and (2) from Section 4. Since the query is regular, the dependency stated in item (2) is a
regular dependency. We may thus assume a semigroup morphism α : Σ∗ → S recognizing
ϕ, which maps each word to an element of a finite semigroup S. Whether or not a triple
(x, y1, y2) is selected by ϕ depends only on the images

s1 = α(wordt(y1, x)) ∈ S (5.1)

s2 = α(wordt(x, y2)) ∈ S. (5.2)

In other words, there is a set of accepting pairs F ⊆ S2 such that ϕ(w) is the set of triples
(x, y1, y2) with (s1, s2) ∈ F . We fix the morphism α for the rest of this section.

We distinguish two types of edges in a graph tree (t, E). The tree edges are edges that
connect parents with children, as well as a dummy edge going into the root of the tree and
dummy edges going out of the leaves. The class edges are the edges from E. We order tree
edges by the ancestor relation ≤, according to the positions in the tree, with the dummy
edges coming as the least one and the maximal ones, respectively. For two tree edges e ≤ f
in a tree t, we write wordt(e, f) for the word labeling t on the path that begins in the target
of e and ends in the source of f . In particular wordt(e, e) = ε.

Forward Ramseyan splits. The key tool in our proof is a forward Ramseyan split, as
defined by Colcombet in [6]. Let t be a tree labeled with Σ. A split of height n in t is a
function σ that maps each tree edge to a number in {1, . . . , n}. We say that two tree edges
e < f are neighbors with respect to a split σ, if σ assigns the same number to e and f ,
and all tree edges between e and f are mapped to at most σ(e). A split σ is called forward
Ramseyan with respect to a morphism α if

α(wordt(e, f)) = α(wordt(e, g)) (5.3)

holds for every three pairwise neighboring tree edges e < f < g. The following theorem was
shown in [6].

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 19

Theorem 4. Fix a morphism α : Σ∗ → S. Every tree t has a forward Ramseyan split of
height O(|S|). Furthermore, the split is top-down deterministic in the sense that all tree
edges from a node to its children are assigned the same number in the split.

From now on wlog we consider only complete binary trees, where each non-leaf node
has precisely two children.

Factors. Two comparable wrt. ≤ (i.e., belonging to one path) tree edges e and f are called
visible if all tree edges between e and f are mapped by the split to values strictly smaller
than σ(e) and σ(f). Visible pairs of tree edges naturally determine a nested factorization
of t in the following way.

A pre-factor in a tree t is a connected set of nodes (connected by tree edges) such
that if a node x is in the pre-factor, then either all children of x are in the pre-factor, or
none of them. Each pre-factor of t has a root and some leaves (maximal nodes wrt. ≤),
and inherits its edges from t. In the definitions below, we talk about tree edges and not
class edges. We distinguish internal edges of a pre-factor, connecting two nodes in that
pre-factor, and external edges connecting the root or the leaves with some node outside
the pre-factor. This includes the tree edge leading to the root of the pre-factor (called the
root edge of the pre-factor) and the tree edges going out of the leaves (called the leaf edges
of the pre-factor). Note that external edges may be either proper tree edges, or dummy
edges. As the split σ is assumed to be deterministic, all tree edges leaving a given leaf of a
pre-factor are assigned the same number. A pre-factor F is called a factor in t if it respects
the split σ in the following way: the root edge is visible from each of the leaf edges. This
means that on each (shortest) path in a factor from its root edge to a leaf edge, numbers
assigned by σ to the internal edges on that path are strictly smaller than those assigned to
the two external edges. By the height of a factor we mean the greatest number assigned to
an internal edge, or 0 if no such edge exists (the case of one-node pre-factor). Additionally,
the whole tree t is also a factor if, wlog, we assume that the root dummy edge is visible
from all leaf dummy edges; its height at most equals the height of σ.

A subfactor of a factor F is any factor G (F that is maximal with respect to inclusion.
By the definition of factor, we get:

Claim 1. Every two different subfactors of F are disjoint (have disjoint sets of nodes, but
possibly share an external edge).

Proof. Indeed, assume two non-disjoint different subfactors F1, F2 of some factor F . The
root node of one of them, say the root node r1 of F1, is necessarily contained in the other.
As F1 is not included in F2, there must be a leaf node l1 of F1 not contained in F2; the path
that leads to that leaf node passes though a leaf node l2 of F2. If we denote by r2 the root
node of F2 we know that the four nodes are located on one path in the following order:

r2 ≤ r1 ≤ l2 < l1.

This arrangement of the nodes is in a clear contradiction with the assumption that the tree
edge incoming to ri is visible from (all) tree edges outgoing from li, for i = 1, 2.

Hence each factor F is the disjoint union of its subfactors. We say a subfactor G is an
ancestor of a subfactor H if their roots are so related. Likewise we talk about a subfactor
being a child or parent of some other subfactor.

A factor of height 2 together with its decomposition into subfactors is pictured below.

20 M. BOJAŃCZYK AND S. LASOTA

5 5

4

4 4

4 4

3

3
3

3

2 2

22

2 2

2 2

1

1
1

1 1

1

5 5

4

4 4

4 4

3

3
3

3

2 2

22

2 2

2 2

1

1
1

1 1

1 1

1
1

1

1 1

Our proof of Theorem 3 is based on the Main Lemma stated below. The lemma is
proved by induction on the height of factors. To state the lemma recall the notion of
consistent guidance system introduced in Section 4.7.

Lemma 9 (Main Lemma). Fix a factor height h. There is a bound n ∈ N, depending only
on ϕ and h, such that for every graph tree (t, E), every factor F in t of height h, and every
set X ⊆ F of source nodes, there is a witness function for ϕ and X in (t, E) induced by a
consistent guidance system using at most n colors. Furthermore, this witness function only
points to descendants of the root of F .

The proof of the lemma is by induction on the height h. The number of colors n will
depend on h and the size of the monoid S recognizing the query. It will not depend on t.
When going from height h to height h+ 1, there will be a quadratic blowup in the number
of colors. Therefore, n will be doubly exponential in the height of F .

Since the witness function will be induced by a guidance system, the last assumption
in Lemma 9 could be restated as saying that no guide passes through the root edge of F .
Theorem 3 is a special case of the Main Lemma when F is the whole tree.

The base case when h = 0, and hence the factor F has one or no nodes, is easy (1
color, going downwards, is sufficient). For the induction step, fix a factor F , and assume
that there is a bound n sufficient for any factor of smaller height than F , which includes
all subfactors of F . Below, subfactors of F are simply called subfactors, without explicitly
referring to F .

A tree edge of F that is an external edge of one if its subfactors is called a border edge.
In particular each external edge of F is a border edge. Special care will be paid in our
proof to internal (i.e. not external) border edges, i.e., the edges that connect one subfactor
to another.

Claim 2. If two internal border edges in a factor are comparable by the ancestor relation
≤ then they are assigned the same value by the split.

Proof. Assume two internal border edges e < f , with different values assigned by the split,
such that no other internal border edge is located on the (shortest) path from e to f . As
values assigned to all external border edges are strictly larger, one of e, f is visible from
some (possibly external) border edge “over” the other. That is, either e is visible from some
e′ > f , or f is visible from some f ′ < e. In both cases, one of e, f is an internal edge of
some subfactor – a contradiction.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 21

We do a case distinction, regarding the number of internal border edges on the paths
from a source to witness nodes. For a node x ∈ X and a witness (y1, y2) we define two
numbers m1,m2. Let m1 be the number of internal border edges on the path between y1

and x, and let m2 be the number of internal border edges on the path between x and y2.
For technical convenience, we deliberately choose not to count external border edges. We
divide the set X into three parts:

X1 Nodes x ∈ X that have a witness with m2 ≤ 1.
X2 Nodes x ∈ X that have a witness with m1 ≤ 1 and m2 ≥ 2.
X3 Nodes x ∈ X that have a witness with m1,m2 ≥ 2.

We prove the Main Lemma for each of the three parts separately. Next, we combine the
three guidance systems into a single guidance system. Our construction will yield two
kinds of guides: the ancestor guides pointing to the first witness and thus going up a
tree; and descendant guides pointing to the second witness, and thus going down the tree.
Interestingly, ancestor guides will be only created in case of nodes from X2. All the guides
will satisfy the consistency condition required in Lemma 9.

Nodes from X1, i.e. nodes that have a witness with m2 ≤ 1. Consider a subfactor
G of F . In this case, each node x ∈ X1 ∩G has a descendant witness y2 that is either in G,
or in a child subfactor of G, or perhaps outside F . Apply the induction assumption to G,
producing a guidance system ΠG with at most n colors. Since the Main Lemma requires
the guidance system to point to descendants of the factor’s root, and m2 ≤ 1, we infer
that inside F the guides of ΠG can only intersect G and its child subfactors, and no other
subfactors (it is possible that the guides leave the factor F , though). Therefore, all the
guidance systems ΠG, for all subfactors G of F , can be combined into a single guidance
system with at most 2n colors, used alternatingly for even and odd depths.

Nodes from X2, i.e. nodes that have a witness with m1 ≤ 1 and m2 ≥ 2. In this
case, for each node x ∈ X2 there is an ancestor witness y1 that is either in the subfactor
of x, in the parent subfactor, or outside F . Note that the latter is possible only when x
belongs either to the root subfactor of F , or to some of its child subfactors; denote this set
of subfactors by G0. We will construct the guidance system in a step-by-step manner, for
all subfactors, according to the ancestor ordering.

Formally speaking, consider a family G of subfactors that is closed under ancestors and
includes G0. We provide a guidance system ΠG of 4n2 + 3n colors that provides witnesses
for all nodes of X belonging to the subfactors in G. The construction of ΠG is by induction
on the number of subfactors in G.

The induction base is when G equals G0. For each subfactor G ∈ G0, we apply the
Main Lemma, for the smaller height, to G and nodes from X2 that belong to G, yielding an
n-color guidance system. We combine these guidance systems into ΠG0 as follows: use one
set of n colors for the root subfactor, and another set of n colors for all the child subfactors
of the root.

For the induction step, suppose that we have already constructed ΠG for G, and that
G 6∈ G is a subfactor whose parent is in G. Consider the guides of ΠG that pass through the
root edge of G. We apply two distinctions to these guides. First, we use the name parent
guides, for the guides that originate in the parent subfactor of G, and the name far guides
for the other guides. Second, we use the name ending guides for the guides whose target is
in G and the name transit guides for the other guides, which continue into a child subfactor

22 M. BOJAŃCZYK AND S. LASOTA

of G, or even exit F . Altogether, there are four possibilities: parent transit guides, far
ending guides, etc. We assume additionally that there are at most n parent guides and at
most 2n far and parent guides altogether, and hence at most 2n guides entering G. This
additional invariant is satisfied by the induction base, and it will be preserved through the
construction.

Apply the induction assumption of the Main Lemma to G and nodes from X2 that
belong to G, yielding a guidance system Π with n fresh colors. We use the name starting
guides for the guides of Π. We want to combine ΠG with Π in such a way that the resulting
guidance system still uses at most 4n2 + 3n colors, like ΠG , and satisfies the additional
invariant. If we were to simply take the two systems together, we might end up with a leaf
edge of G which is traversed both by starting and transit guides, which could exceed the
bound 2n on guides passing through border edges.

We solve this problem as follows. Consider the leaf edges of G that are traversed by the
far transit guides. There are at most 2n such edges by our invariant assumption. We will
remove all starting guides that pass any of these edges, and find other witnesses for nodes
that use these starting guides. This guarantees that the invariant condition is recovered:
at most 2n guides passes through any leaf edge of G, and at most n of them are starting
guides. These other witnesses will be ancestors. This explains why the induction starts
with G containing the root subfactor and its children, since these are the subfactors that
may have ancestor witnesses outside the whole factor F (recall that passing through the
root edge is not counted in m1). The statement of the Main Lemma does not allow guides
that pass through the root edge of F .

The removing of starting guides proceeds as follows. Let e be a leaf edge of G that is
traversed by a far transit guide, which has color j in the guidance system ΠG . Let π be a
starting guide, which has color i in Π, that also traverses e, with y2 its target node. By
the consistency property of π, there is some y1 such that (y1, y2) ∈ E is a witness pair for
all source nodes of π. Note that by assumption on m1 ≤ 1, the node y1 is either in the
subfactor G or its parent. We create an ancestor guide with a fresh color that connects all
the source nodes of π to y1. The color of this guide, which we call an ancestor color, will
take into account three parameters: the colors i and j, as well as a parity bit b ∈ {0, 1}.
The parity bit is 0 if and only if G has an even number of ancestor subfactors. We use the
triple (i, j, b) for the color name.

We will show that this new ancestor guide does not conflict with any other ancestor
guide with the same color. Each new ancestor guide is contained in G and possibly its
parent subfactor H, by assumption on m1 ≤ 1. Inside the subfactor G there is at most one
ancestor guide of each color, so there are no collisions inside G. One could imagine, though,
that a new ancestor guide π with color (i, j, b) collides inside the parent subfactor H with
some other ancestor guide π′ of the same color. Since the colors of π and π′ agree on the
parity bit b, we conclude that the guide π′ cannot originate in H, which has a different
parity than G. Therefore, π′ must originate in some other child subfactor of H, call it G′,
that had been previously added to G. Since the color of π′ is also (i, j, b), we conclude that
j was the color of a far transit guide in G′. This is impossible, since a far transit guide in
G′ or G must originate not in H, but in an ancestor of H, and therefore there would be a
collision in the root of H.

The ancestor guides created above are the only ancestor guides in our solution. In the
subfactors where they are used, the ancestor guides have the target in the parent subfactor.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 23

Let us count the number of colors used. We need 2n colors for the transit guides, and
n colors for the starting guides. For the ancestor guides, we need 4n2 colors. Altogether,
we need 4n2 + 3n colors. Note that all the guides satisfy the consistency condition required
by Lemma 9.

Nodes from X3, i.e. nodes that have a witness with m1,m2 ≥ 2. In this case, each
node x ∈ X3 has a witness (y1, y2) such that the path from y1 to x, as well as the path from
x to y2, passes through at least two internal border edges. This case is the only one where
we use the forward Ramseyan split.

Consider a source x with a witness (y1, y2). The internal border edges naturally split
wordt(y1, x) and wordt(x, y2) into m1+1 and m2+1 words, respectively:

wordt(y1, x) = v0·v1· . . . ·vm1

wordt(x, y2) = w0·w1· . . . ·wm2 .

The first letter of v0 is the label of y1. The last letter of vm1 and also the first letter of
w0 is the label of x. The last letter of wm2 is the label of y2 (recall that y1 or y2 might be
outside F). Furthermore, each two consecutive internal border edges are not only visible,
but also neighbouring, by Claim 2. Hence, as we have a forward Ramseyan split (cf. (5.3)),
the values α(wordt(y1, x)) and α(wordt(x, y2)) are determined by the first two parts and
the last part:

(i) α(wordt(y1, x)) = α(v0)·α(v1)·α(vm1)

(ii) α(wordt(x, y2)) = α(w0)·α(w1)·α(wm2).
(5.4)

Let us fix six values s1, . . . , s6 ∈ S. By splitting the set X3 into at most |S|6 parts, each
requiring a separate guidance system, we can assume that each x ∈ X3 has a witness where

s1 = α(v0) s2 = α(v1) s3 = α(vm1)

s4 = α(w0) s5 = α(w1) s6 = α(wm2).

We will only consider witnesses that satisfy the assumptions above.
We now proceed to create the guidance system. As in the case m1 ≤ 1, the guidance

system will be defined for a family G of subfactors that is closed under ancestors. The
guidance system will use at most 3 colors, and will have the following additional invariant
property: if e is an edge that connects a subfactor G with a child subfactor H, then at most
two guides pass through e. Furthermore, if exactly two guides pass through e, then one of
the guides has its target in H.

The construction is by induction on the number of subfactors in G. The induction base
when G has no subfactors is obvious. Below we show how to modify a guidance system ΠG
for G when adding a new subfactor G.

Consider the (at most two) guides of ΠG that pass through the edge connecting G
to ΠG . As in the case m1 ≤ 1, we use the term transit guide for the guides of ΠG that
enter G through its root and exit through one of its external leaf edges. By the invariant
assumption, there is at most one transit guide.

We now define a guidance system Π for the nodes in G, which we will next combine
with ΠG .

Claim 3. There is a one-color guidance system Π defining a witness function for all nodes
in G ∩X3.

24 M. BOJAŃCZYK AND S. LASOTA

Proof. For each node x ∈ G ∩ X3, choose the lexicographically first witness y2 > x that
satisfies the assumptions on the six images in the semigroup, call it yx. Let Y be all
these witnesses yx, for x ∈ G ∩X3; this set is an antichain with respect to the descendant
relation. For each y ∈ Y , let Xy be the chain of nodes x which are witnessed by y. By the
lexicographic assumption, if y, y′ ∈ Y are such that y is lexicographically before y′, then
no element from Xy has an ancestor in Xy′ . Consequently, if we define πy to be the guide
that connects all Xy to y, then Π = {πy}y∈Y is a one-color guidance system for all nodes
in G ∩X3.

The guides of Π we call starting guides as usual.
We now need to combine Π and ΠG . If we simply combine ΠG and Π, we might end up

with a starting guide going through and external edge of G that is already traversed by two
transit guides. To avoid this problem, we need to do an optimisation relying on a simple
observation formulated in the claim below.

A descendant guide π is called live in a subfactor G if π passes through G, and its
target is not in a child subfactor of G (i.e., the target is in a proper descendant of some
child of G, or outside F). The idea is that the target of π satisfies the assumption m2 ≥ 2
from the ’point of view’ of nodes in G. Note that guides live in G may be either transit or
starting in G.

Claim 4. Suppose that two consistent descendant guides π and π′ are live in a subfactor
G and exit G through the same edge. Suppose also that at least one of them is starting in
G. Then all source nodes of one of π, π′ can be moved to the other.

Proof. Let (y1, y2) be the witness pair corresponding to π and let (y′1, y
′
2) be the witness pair

corresponding to π′ – by consistency, not only the second witnesses y2 and y′2 are determined
by π and π′, but the whole witness pairs. Note that the source nodes of a descendant guide
in G are all situated on one path from the root of G to one of the leaves. If both π and π′

are starting in G, assume wlog that π has a source node that is an ancestor of all source
nodes of π′; otherwise one of the guides is starting in G, wlog assume it is π′. As only the
case of m1,m2 ≥ 2 is considered, and the values s1, . . . , s6 are fixed, due to equation (5.4)(i)
the pair (y1, y2) is a witness for all source nodes of π′ as well. Thus, these nodes may be
guided to y2 instead of y′2.

We use the term live transit guide for the transit guides that are live in G, and dead
transit guide for the other transit guides (those that have their target in a child subfactor
of G).

Consider an edge e that connects G with a child subfactor H. Suppose first that e
is traversed by a starting guide and a live transit guide. Using the claim we merge the
starting guide with the transit one. Therefore, we end up satisfying the invariant property:
e is passed by at most one live guide, and possibly by one dead transit guide.

We have thus completed the proof of the Main Lemma and thus also of Theorem 3.

6. Applications

In this section, we present two applications of our results. The first application is a class
of XML documents for which emptiness of XPath is decidable. The second application is
a proof that two-variable first-order logic is not captured by XPath, in the presence of two
attribute values per node.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 25

Satisfiability of XPath. As we said in the introduction, our study on class automata is
a first step in a search for structural restrictions on data words and data trees which make
XPath satisfiability decidable.

One idea for a structural restriction would be a variant of bounded clique width, or
tree width. Maybe bounded clique or tree width are interesting restrictions, but they are
not relevant in the study of class automata. This is because bounded clique width or tree
width, when defined in the natural way for data trees, guarantees decidable satisfiability for
a logic far more powerful than class automata: MSO with navigation and equal data value
predicates.

Here we provide a basic example of a restriction on inputs that works for class automata
but not for MSO. A data tree is called bipartite (bipartite refers to the data) if its nodes
can be split into two connected (by the child relation) sets X,Y such that every class has
at most one node in X and at most one node in Y .

Satisfiability of MSO, or even FO, with navigation and data equality predicates is unde-
cidable even for bipartite data words. For instance, a solution to the Post Correspondence
Problem can be encoded in a bipartite data word using a FO formula.

This coding, however, cannot be captured by class automata, which is implied by the
following theorem.

Theorem 5. On bipartite data trees, emptiness is decidable for class automata, and there-
fore also for XPath.

Proof. The key insight is that data trees which use each data value at most twice can be
described using semilinear sets. To avoid notational complications, assume that every data
value appears exactly twice in a bipartite tree.

Consider a class automaton A over input alphabet Σ. Suppose that the work alphabet
is Γ, and the transducer is f . Let the class condition be a language over alphabet Γ×{0, 1},
recognized by a deterministic bottom-up tree automaton C, with states Q. For technical
convenience, assume that a run of C labels tree edges, instead of tree nodes, with states.
Thus all leaf dummy edges of an input tree u over Γ × {0, 1} are labeled with the initial
state of C, and the labeling of all other edges is uniquely determined by u. Let C(u) denote
the state that labels the root dummy edge of u. A tree u is accepted if C(u) is an accepting
state.

By assumption, the nodes of a bipartite data tree (t,∼) are partitioned into two con-
nected subsets, and thus there is a single edge that splits the two subsets; call this edge the
border edge. Such a tree t with a distinguish edge may be modeled as t ⊗ {z, z′}, where z
and z′ are the two nodes connected by the border edge. Further, t may be split into two
smaller trees, according to the partition: the border edge is a dummy root edge for one of
the trees, and a leaf dummy edge for the other one. Call these two induced trees lower and
upper tree, respectively.

For the lower tree of t, call it tl, and a subset X of nodes of tl, it makes sense to write
C(tl ⊗X). For the upper one, call it tu, we will need a slightly different notation. Assume
that the automaton C reads tu⊗X, for some X, starting in the initial state in all dummy leaf
edges of tu except for the border edge, where the automaton starts in some chosen state q.
If C accepts the tree tu⊗X under this assumption, we write q ∈ C−1(tu⊗X). In particular,
observe that the automaton C accepts t⊗X if and only if C(tl⊗Xl) ∈ C−1(tu⊗Xu), where
X = Xl ∪Xu is the induced partition of X.

26 M. BOJAŃCZYK AND S. LASOTA

Given a tree t over Γ with a single distinguished edge, say t⊗ {z, z′}, let π(t⊗ {z, z′})
be the set of all trees s over Q× {l, u} that satisfy the following conditions:

• the set of nodes of s is the same as the set of nodes of t,
• if a node x of s is in tl then it is labeled by (C(tl ⊗ {x}), l),
• if a node x of s is in tu then it is labeled by (q, u), for some q ∈ C−1(tu ⊗ {x}).
Using π, we define the relation σ between trees over Γ and trees over Q× {l, u} as follows:
(t, s) ∈ σ if s ∈ π(t⊗ {z, z′}) for some edge (z, z′) in t.

Claim 5. The relation σ is computable by a nondeterministic letter-to-letter transducer.

Let TΣ denote the set of all trees over Σ. As nondeterministic transducers preserve
regular languages, we have:

Claim 6. Both K = f(TΣ) and σ(K) = {s : (t, s) ∈ σ, t ∈ K} are effectively computable
regular languages over Γ and Q× {l, u}, respectively.

Claim 7. A class automaton A accepts some bipartite data tree if and only if σ(K) contains
a tree that satisfies, for every q ∈ Q, the following condition: the number of nodes labeled
by (q, l) is the same as the number of nodes labeled by (q, u).

With the last two observations decidability follows immediately. To decide emptiness of
a given class automaton A, compute the Parikh image of the language σ(K), an effectively
semi-linear set by Claim 6, intersect this set with the semi-linear condition of Claim 7, and
ckeck for emptiness of the resulting semi-linear set.

Multiple attributes. Heretofore, we have studied data trees, which model XML docu-
ments where each node has one data value. In this section, and this one only, we consider
the situation where each node x has n data values. Formally, an n-data tree consists of a
tree t over the finite alphabet and functions d1, . . . , dn which map the tree nodes to data
values. How does XPath deal with multiple data values? Instead of y1 ∼ y2 and y1 6∼ y2,
we can use any formula of the form

di(y1) = dj(y2) where i, j ∈ {1, . . . , n}
or its negation (for inequality). For n > 1 we need more information than just the partitions
of nodes into classes of ∼i, for each i ∈ {1, . . . , n}. An example is the property “every node
has the same data value on attributes 1 and 2”.

How do we extend class automata to read n-data trees? For one data value, the class
condition is a language over the alphabet Γ× {0, 1}. For n data values, the class condition
is a language over the alphabet Γ × {0, 1}n. An n-data tree (t, d1, . . . , dn) is accepted if
there is an output s of the transducer on t such that for every data value d, the tree

s⊗ d−1
1 (d)⊗ · · · ⊗ d−1

n (d)

is accepted by the class condition. By the same technique as in the proof of Theorem 1, we
can prove that the automata capture XPath.

A consequence is that for n ≥ 2, XPath does not capture two-variable first-order logic
(unlike the case of n = 1). This was an open question.

Theorem 6. The following (two-variable) property

ψ = ∀x∀y d1(x) = d1(y) ⇐⇒ d2(x) = d2(y)

cannot be defined by a boolean query of XPath.

AN EXTENSION OF DATA AUTOMATA THAT CAPTURES XPATH 27

Proof. Towards a contradiction, suppose that ψ is recognized by any class automaton in the
generalized version for 2 data values. The document that will confuse the automaton will
be a word. Consider the document (over a one letter alphabet) with positions 1, . . . , 2n,
where the data values are defined

d1(i) = d1(n+ i) = i for i ∈ {1, . . . , n}
d2(i) = d2(n+ i) = −i for i ∈ {1, . . . , n}

Since the above document satisfies ψ, it should also be accepted by the automaton. Let the
work alphabet of the automaton be Γ, and let a1 · · · a2n ∈ Γ∗ be the word produced by the
automaton in the accepting run. For a data value d, we use the term class string of d for
the word

a1 · · · a2n ⊗ d−1
1 (d)⊗ d−1

2 (d).

By definition of the way class automata accept documents, each class string should belong
to the class condition. Consider a number i ∈ {1, . . . , n}. The class string of i is

ui = a1 · · · a2n ⊗ {i, n+ i} ⊗ ∅
Suppose that

α : (Γ× {0, 1} × {0, 1})∗ → S

is a morphism recognizing the class condition. If n is greater than |S|2, then we can find
two data values i < j ∈ {1, . . . , n} such that

α(ui|{1, . . . , n}) = α(uj |{1, . . . , n})
α(ui|{n+ 1, . . . , 2n}) = α(uj |{n+ 1, . . . , 2n}).

Consider a new document obtained from the previous one by swapping the first, but not
second, data value in the positions i and j. This new document violates the property ψ.
To get the contradiction, we will construct an accepting run of the class automaton for this
new document. The output of the transducer is the same a1 · · · a2n. The class strings are
the same for data values other than i and j, so they are also accepted. For the class strings
of i and j, the images under α are the same by assumption on i and j, and hence they are
also accepted.

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable comments.

References

[1] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of DTDs. J. ACM,
55(2), 2008.

[2] H. Björklund and T. Schwentick. On notions of regularity for data languages. In FCT, pages 88–99,
2007.

[3] M. Bojańczyk and S. Lasota. An extension of data automata that captures XPath. In Proc. LICS’10,
pages 243–252, 2010.

[4] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML
reasoning. J. ACM, 56(3), 2009.

[5] Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable
logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

28 M. BOJAŃCZYK AND S. LASOTA

[6] T. Colcombet. A combinatorial theorem for trees. In ICALP, pages 901–912, 2007.
[7] Julien Cristau, Christof Löding, and Wolfgang Thomas. Deterministic automata on unranked trees. In

FCT, pages 68–79, 2005.
[8] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans. Comput.

Log., 10(3), 2009.
[9] D. Figueira. Satisfiability of downward XPath with data equality tests. In PODS, pages 197–206, 2009.

[10] D. Figueira. Forward-XPath and extended register automata on data-trees. In ICDT, pages 231–241,
2010.

[11] F. Geerts and W. Fan. Satisfiability of XPath queries with sibling axes. In DBPL, pages 122–137, 2005.
[12] M. Jurdziński and R. Lazić. Alternation-free modal mu-calculus for data trees. In LICS, pages 131–140,

2007.
[13] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–363, 1994.
[14] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, pages 41–57,

2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Class automata
	3.1. Discussion of the proof
	3.2. The core result
	3.3. From Theorem 2 to Proposition 1

	4. Simplifying the query
	4.1. Generalized witness functions
	4.2. Three arrangements
	4.3. Path-based queries
	4.4. Composing guidance systems
	4.5. Binary queries
	4.6. Arrangement (A1)
	4.7. Arrangements (A2) and (A3)

	5. Proof of Theorem 3
	6. Applications
	Acknowledgment
	References

