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Abstract. We show that deterministic collapsible pushdown automata of second order can
recognize a language that is not recognizable by any deterministic higher-order pushdown
automaton (without collapse) of any order. This implies that there exists a tree generated
by a second order collapsible pushdown system (equivalently, by a recursion scheme of
second order) that is not generated by any deterministic higher-order pushdown system
(without collapse) of any order (equivalently, by any safe recursion scheme of any order).
As a side effect, we present a pumping lemma for deterministic higher-order pushdown
automata, which potentially can be useful for other applications.

1. Introduction

Already in the 70’s, Maslov [Mas74, Mas76] generalized the concept of pushdown automata
to higher-order pushdown automata (n-PDA) by allowing the stack to contain other stacks
rather than just atomic elements. In the last decade, renewed interest in these automata
has arisen. They are now studied not only as acceptors of string languages, but also as
generators of graphs and trees. It was an interesting problem whether the class of trees
generated by n-PDA coincides with the class of trees generated by order-n recursion schemes.
Knapik, Niwiński, and Urzyczyn [KNU02] showed something similar but different: that
this class coincides with the class of trees generated by safe order-n recursion schemes
(safety is a syntactic restriction on the recursion scheme), and Caucal [Cau02] gave another
characterization: trees of order n + 1 are obtained from trees of order n by an MSO-
interpretation of a graph, followed by application of unfolding.

Driven by the question whether safety implies a semantical restriction to recursion
schemes Hague, Murawski, Ong, and Serre [HMOS08] extended the model of n-PDA to
order-n collapsible pushdown automata (n-CPDA) by introducing a new stack operation
called collapse, and proved that the class of trees generated by n-CPDA coincides with the
class of trees generated by order-n recursion schemes (earlier, Knapik, Niwiński, Urzyczyn,
and Walukiewicz [KNUW05] introduced panic automata, a model equivalent to 2-CPDA).
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Let us mention that these trees have decidable MSO theory [Ong06], and that higher-order
recursion schemes have close connections with verification of some real life higher-order
programs [Kob09].

Nevertheless, it was still an open question whether these two hierarchies of trees are
possibly the same hierarchy? This problem was stated in Knapik et al. [KNU02] and repeated
in other papers concerning higher-order pushdown automata [KNUW05, AdMO05, Ong06,
HMOS08]. A partial answer to this question was given in our previous paper [Par11]: there
is a tree generated by a 2-CPDA that is not generated by any 2-PDA. We prove the following
stronger property.

Theorem 1.1. There is a tree generated by a 2-CPDA (equivalently, by a recursion scheme
of order 2) that is not generated by any n-PDA, for any n (equivalently, by any safe recursion
scheme of any order).

This confirms that the correspondence between higher-order recursion schemes and
higher-order pushdown automata is not perfect. The tree used in Theorem 1.1 (after some
adaptations) comes from Knapik et al. [KNU02] and from that time was conjectured to be a
good example.

In this paper we work with PDA that recognize words instead of generating trees. While
in general PDA used to recognize word languages can be nondeterministic, trees generated
by PDA closely correspond to word languages recognized by deterministic PDA. Technically,
we prove the following theorem, from which Theorem 1.1 follows (it is shown in Section 3
how these theorems are related).

Theorem 1.2. There is a language recognized by a deterministic 2-CPDA that is not
recognized by any deterministic n-PDA, for any n.

As a side effect, in Section 9 we present a pumping lemma for higher-order pushdown
automata. Although its formulation is not very natural, we believe it may be useful for some
other applications. The lemma is similar to the pumping lemma from our another paper
[Par12c]; see Section 9 for some comments. Earlier, several pumping lemmas related to the
second order of the pushdown hierarchy were proposed [Hay73, Gil96, Kar11].

This paper is an extended version of our conference paper [Par12b]. The proof of
Theorem 1.1 goes along the same line, but with essential differences in details. The part
about types (Section 7) was simplified slightly, in the cost of complicating other parts (which
was necessary since Theorem 7.3 is now proven in a weaker form than in the conference
paper).

1.1. Related Work. One may ask a similar question for word languages instead of trees:
is there a language recognized by a CPDA that is not recognized by any (nondeterministic)
PDA? This is an independent problem. The answer is known only for order 2 and is opposite:
one can see that in 2-CPDA the collapse operation can be simulated by nondeterminism,
hence 2-PDA and 2-CPDA recognize the same languages [AdMO05]. It is also an open
question whether all word languages recognized by CPDA are context-sensitive.

We have shown [Par12a] that the collapse operation increases the expressive power of
deterministic higher-order pushdown automata with data. In this model of automata each
letter from the input word is equipped by a data value, which comes from an infinite set;
these data values can be stored on the stack and compared with other data values. In such
a setting the proof becomes easier than in the no-data case considered in this paper.
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One can consider configuration graphs of n-PDA and n-CPDA, and their ε-closures. We
know [HMOS08] that there is a 2-CPDA whose configuration graph has undecidable MSO
theory, hence which is not a configuration graph of an n-PDA, nor an ε-closure of such, as
they all have decidable MSO theories.

Engelfriet [Eng91] showed that the hierarchies of word languages and of trees generated
by PDA are strict (that is, for each n there is a language recognized by an n-PDA that is
not recognized by any (n− 1)-PDA, and similarly for trees). As observed by Haußner and
Kartzow [HK13], his proof works equally well for these hierarchies for CPDA, once we know
that the reachability problem for n-CPDA is (n− 1)-EXPTIME complete (which follows
from Kobayashi and Ong [KO09]).

2. Preliminaries

For natural numbers a, b, where b ≥ a− 1, by [a, b] we denote the set {a, . . . , b} (which is
empty if b = a− 1).

In the whole paper, the letter n is used exclusively for the order of pushdown automata,
which is usually assumed to be fixed and known implicitly.

We now define stacks of order k (k-stacks for short). Traditionally, a 0-stack is just a
single symbol, and a k-stack for k ≥ 1 is a (possibly empty) sequence of nonempty (k − 1)-
stacks. However, having a k-stack that is a part of an r-stack for k < r, it is convenient to
know where this k-stack is located in the r-stack. For this reason, we equip every element of
a stack by its position, written as a vector of natural numbers. Thus, for a fixed alphabet Γ
(of stack symbols), a stack of order 0 is a pair (γ, x), where γ ∈ Γ and x = (xn, xn−1, . . . , x1)
is a vector of n positive integers, called a position. Then, for k ∈ [1, n] we define k-stacks by
induction: a k-stack is a list [s1, s2, . . . , sm] of nonempty (k−1)-stacks (where, by convection,
all 0-stacks are nonempty) for which there exist numbers xn, xn−1, . . . , xk+1 such that, for
i ∈ [1,m], all positions in si are of the form (xn, xn−1, . . . , xk+1, i, yk−1, yk−2, . . . , y1). By
Γk∗ and Γk+ we denote the the set of order-k stacks, and the set of nonempty order-k stack,
respectively, where k ∈ [0, n]. The top of a stack is on the right.

For example, when we have a 3-stack s, and n = 5, then the second 0-stack of the
third 1-stack (counting from the bottom) of the bottommost 2-stack of s is of the form
(γ, (x5, x4, 1, 3, 2)), where x5 and x4 say where s is located in an imaginary 5-stack; the
numbers x5 and x4 should be the same in the whole s.

For a k-stack sk, where k ∈ [0, n− 1], let p+1(sk) be the k-stack obtained from sk by
increasing the (n− k)-th coordinate of all its positions by 1. For example p+1((γ, (2, 3))) =
(γ, (2, 4)), and p+1([(γ, (2, 1)), (γ, (2, 2))]) = [(γ, (3, 1)), (γ, (3, 2))].

Let us emphasize that when for two k-stacks sk, tk we write sk = tk, we mean that not
only their contents are equal, but also positions contained in their 0-stacks are equal; thus,
when sk and tk come from the same n-stack, this actually means that sk and tk refer to the
same k-stack.

While comparing two stacks, we sometimes need to ignore positions contained in their
0-stacks, and compare only their contents. For a k-stack sk, let positionless stack pos↓(sk)
be the list of lists of ... of lists of stack symbols obtained from sk by removing positions
from all 0-stacks. We say that two k-stacks sk, tk are positionless-equal, denoted sk ∼= tk,
when pos↓(sk) = pos↓(tk). When sn− is a positionless n-stack, there is a unique n-stack sn

such that sn− = pos↓(sn); we write pos+(sn−) for sn.
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The size of a k-stack sk, denoted |sk|, is the number of (k− 1)-stacks it contains. When

sk = [s1, s2, . . . , sm] ∈ Γk∗, and sk−1 ∈ Γk−1
+ , and [s1, s2, . . . , sm, s

k−1] is a valid k-stack, we

denote this k-stack by sk : sk−1. The operator “:” is assumed to be right associative (i.e.,
e.g., s2 : s1 : s0 = s2 : (s1 : s0)). When 0 ≤ k ≤ r, and sr = tr : tr−1 : · · · : tk ∈ Γr+, by

topk(sr) we denote the topmost k-stack of sr, that is, tk. We use the name positionless
topmost k-stack for pos↓(topk(·)).

When Γ is fixed, the stack operations of order k ≥ 1 are popk and pushkγ for each γ ∈ Γ.
We can apply them to a nonempty r-stack for r ≥ k, which gives the following:

• popk(sr : sr−1 : · · · : sk : sk−1) = sr : sr−1 : · · · : sk, that is, we remove the topmost
(k−1)-stack; it is defined only when the topmost k-stack contains at least two (k−1)-stacks;

• pushkγ(sr : sr−1 : · · · : s0) = sr : sr−1 : · · · : sk+1 : (sk : sk−1 : · · · : s0) : p+1(sk−1 : sk−2 :

· · · : s1 : (γ, x)) for s0 = (γ′, x), that is, we duplicate the topmost (k − 1)-stack, and then
we replace the topmost stack symbol by γ, adjusting appropriately all positions.1

A deterministic word-recognizing pushdown automaton of order n (n-DPDA for short)
is a tuple (A,Γ, γI , Q, qI , F, δ) where A is an input alphabet, Γ is a stack alphabet, γI ∈ Γ
is an initial stack symbol, Q is a set of states, qI ∈ Q is an initial state, F ⊆ Q is a set of
accepting states, and δ is a transition function that maps every element of Q× Γ into one of
the following objects:

• read(~q), where ~q : A→ Q is an injective function, or
• (q, op), where q ∈ Q and op is a stack operation of order at most n.

A configuration of A consists of a state and of a nonempty n-stack, that is, it is an
element of Q×Γn+. The initial configuration consists of the initial state qI and of the n-stack
containing only one 0-stack, enclosing the initial stack symbol γI . We use the notation
πi((p1, . . . , pk)) = pi; in particular for a configuration c, π1(c) denotes its state, and π2(c)
its stack. Additionally, for a set X of tuples we define πi(X) to be {πi(p) : p ∈ X}. In order
to shorten the notation, for a configuration c we sometimes write topk(c) or popk(c) for
topk(π2(c)) or popk(π2(c)), respectively.

We use a shorthand δ(c) for a configuration c to denote δ(π1(c), pos↓(top0(c))). A
configuration d is a successor of a configuration c, if

• δ(c) = read(~q), and d = (~q(a), π2(c)) for some a ∈ A, or
• δ(c) = (q, op), and d = (q, op(π2(c))).

Notice that a configuration c has

• |A| successors, if the transition is read(~q);
• no successors, if the operation is popk but there is only one (k − 1)-stack on the topmost
k-stack;
• one successor, otherwise.

Next, we define a run of A. For 0 ≤ i ≤ m, let ci be a configuration. A run R from c0

to cm is a sequence c0, c1, . . . , cm such that, for each i ∈ [1,m], ci is a successor of ci−1. We
set R(i) = ci and call |R| = m the length of R. The subrun R�i,j is ci, ci+1, . . . , cj . For runs
R,S with R(|R|) = S(0), we write R ◦ S for the composition of R and S that is defined as
expected. Sometimes we also consider infinite runs, such that the sequence c0, c1, c2, . . . is
infinite. However, unless stated explicitly, a run is finite.

1 In the classical definition the topmost symbol can be changed only when k = 1 (for k ≥ 2 it required
that γ = γ′). We make this (unimportant) extension to have a uniform definition of pushk for all k.
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The word read by a run is a word over the input alphabet A. For a run from a
configuration c to its successor d, it is the empty word if the transition between them is
of the form (q, op). If the transition is read(~q), this is the one-letter word consisting of the
letter a for which π1(d) = ~q(a) (this letter is determined uniquely, as ~q is injective). For a
longer run R this is defined as the concatenation of the words read by the subruns R�i−1,i for
i ∈ [1, |R|]. A run is accepting if it ends in a configuration whose state is accepting. A word
w is accepted by A if it is read by some accepting run starting in the initial configuration.
The language recognized by A is the set of words accepted by A.

2.1. Collapsible 2-DPDA. In Section 4 we also use deterministic collapsible pushdown
automata of order 2 (2-DCPDA for short). Such automata are defined like 2-DPDA, with
the following differences. A 0-stack contains now three parts: a symbol from Γ, a position,
and a natural number, but still only the symbol (together with a state) is used to determine
which transition is performed from a configuration. The push1

γ operation sets the number in

the topmost 0-stack to the current size of the 2-stack (while push2
γ does not modify these

numbers). We have a new stack operation collapse. Its result collapse(s) is obtained from
s by removing its topmost 1-stacks, so that only k − 1 of them are left, where k is the
number stored in top0(s) (intuitively, we remove all 1-stacks on which the topmost 0-stack
is present).

3. Relation between Word Languages and Trees

In this section we describe how word languages recognized by DPDA are related to trees
generated by PDA. Before seeing how Theorem 1.2 implies Theorem 1.1, we need to define
how n-PDA are used to generate trees. We consider ranked, potentially infinite trees. Beside
of the input alphabet A we have a function rank : A → N; a tree node labelled by some
a ∈ A has always rank(a) children.

Automata used to generate trees are defined like DPDA or DCPDA (in particular they
are deterministic as well), with the difference that they do not have the set of accepting states,
and that instead of the read(~q) transitions, there are branch(a, q1, q2, . . . , qrank(a)) transitions,
for a ∈ A, and for pairwise distinct states q1, q2, . . . , qrank(a) ∈ Q. If the transition from
c is δ(c) = branch(a, q1, q2, . . . , qrank(a)), in a successor d of c we have π2(d) = π2(c) and
π1(d) = qi for some i ∈ [1, rank(a)] (in particular c has no successors if rank(a) = 0).

Let T (A) be the set of all configurations c of A reachable from the initial one, such that
a branch transition should be performed from c. If there is a configuration of A reachable
from the initial one, from which there is no run to a configuration from T (A), by definition
A does not generate any tree. Otherwise, a tree generated by A has runs from the initial
configuration to a configuration from T (A) as its nodes. A node R is labelled by a ∈ A such
that δ(R(|R|)) = branch(a, q1, q2, . . . , qrank(a)). A node S is its i-th child (1 ≤ i ≤ rank(a)),
if S is the composition of R and a run S′ that uses a branch transition only in its first
transition, and for which π1(S′(1)) = qi. Notice that the graph obtained this way is really
an A-labelled ranked tree.

We now see how Theorem 1.1 follows from Theorem 1.2. Let L ⊆ A∗ be the language
recognized by a 2-DCPDA A that is not recognized by any n-DPDA, for any n (L exists
by Theorem 1.2). First, we transform A into a 2-DCPDA B, recognizing L as well, such
that each configuration of B reachable from the initial one has a successor. Observe that
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the only reason why in A there may be configurations with no successors is that it wants
to empty a stack using a pop operation. To avoid such situations, B should have some
bottom-of-stack marker ⊥ on the bottom of each 1-stack, and on the bottom of the 2-stack
(a 1-stack containing only the ⊥ marker). Thus, B starts with the ⊥ marker as the initial
stack symbol, performs push2

⊥ and push1
γI

, placing the original initial stack symbol γI . Then,
whenever A blocks because it wants to empty a stack, in B the bottom-of-stack marker is
uncovered; in such a situation B starts some loop with no accepting state. There is also
a technical detail, that a pop operation that would block A, in B can enter an accepting
state; to overcome this problem, every pop operation ending in an accepting state should
first end in some auxiliary, not accepting state, from which (if the bottom-of-stack marker is
not seen) the accepting state is reached.

Next, we create a tree-generating 2-CPDA C, which generates a tree over the alpha-
bet B = {X,Y, Z}, where rank(X) = |A| and rank(Y ) = rank(Z) = 1. It is obtained
from B in two steps. First, we replace each transition read(~q) of B by the transition
branch(X, ~q(a1), ~q(a2), . . . , ~q(a|A|)), where A = {a1, . . . , a|A|}. Then, in each transition we
replace the resulting state q by a fresh auxiliary state q, and from q (for any topmost stack
symbol) we perform transition branch(Y, q) if q was accepting, or transition branch(Z, q)
if q was not accepting (this way, after each step of the original automaton, we perform a
transition branch(Y, ·) or branch(Z, ·)). Notice that from each configuration of C reachable
from the initial one, there exists a run to a configuration from T (C), as required by the
definition of a tree-generating CPDA. Let tC be the tree generated by C.

Finally, suppose that tC can also be generated by some n-PDA D (without collapse).
From D we create a word-recognizing n-DPDA E . We replace each transition of the form
branch(X, q1, q2, . . . , q|A|) of D by the transition read(~q), where ~q(ai) = qi. We replace each

transition branch(Y, q) of D by the transition (p, push1
γ) for a fresh accepting state p and some

stack symbol γ; from (p, γ) we perform the transition (q, pop1) (thus, we replace branch(Y, q)
by a pass through an accepting state). The same for a branch(Z, q) transition, but the fresh
state p is not accepting.

Notice that E recognizes L; this contradicts our assumptions about L, so tC is not
generated by any n-PDA. Indeed, take any word w ∈ L. We have an accepting run of B
that reads w and starts in the initial configuration. This run corresponds to a run of C, that
is, to a path p in tC from the root to a Y -labelled node. Letters of w tell us which child the
path p chooses in X-labelled nodes: if i-th letter of w is aj , then from the i-th X-labelled
node of p, the path continues to the j-th child. This path p corresponds also to a run of D,
so to a run of E . This run starts in the initial configuration, ends with an accepting state,
and reads w; thus, E accepts w. Similarly, each word accepted by E is also accepted by B.

We also recall that a tree is generated by a recursion scheme of order 2 if and only if
it is generated by a 2-CPDA [HMOS08], and that a tree is generated by a safe recursion
scheme of order n if and only if it is generated by an n-PDA [KNU02]; this implies the
“equivalently” parts of Theorem 1.1.

4. The Separating Language

In this section we define a language U that can be recognized by a 2-DCPDA, but not by
any n-DPDA, for any n. It is a language over the alphabet A = {[, ], ?, ]}. For a word
w ∈ {[, ], ?}∗ we define stars(w). Whenever in some prefix of w there are more closing
brackets than opening brackets, stars(w) = 0. Also when in the whole w we have the
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n1 n2 nN ...mN+1 mN... m0[ [[ [ [ ] ] ][

Figure 1: The stack of a 1-DPDA after reading the word w1

same number of opening and closing brackets, stars(w) = 0. Otherwise, let stars(w) be the
number of stars in w before the last opening bracket that is not closed. Let U be the set of
words w]stars(w)+1, for any w ∈ {[, ], ?}∗ (i.e., these are words w consisting of brackets and
stars, followed by stars(w) + 1 sharp symbols).

It is known that languages similar to U can be recognized by a 2-DCPDA (cf., e.g.,
Aehlig, de Miranda, and Ong [AdMO05]), but for completeness we briefly show it below.
The 2-DCPDA uses three stack symbols: X (used to mark the bottom of 1-stacks), Y (used
to count brackets), Z (used to mark the bottommost 1-stack). The initial symbol is X. The
automaton first pushes Z, makes a copy of the 1-stack (i.e., it performs push2

Z), and pops Z
(hence the first 1-stack is marked with Z, unlike any other 1-stack used later). Then, for
an opening bracket we push Y , for a closing bracket we pop Y , and for a star we perform
push2

γ (where γ is the topmost stack symbol). Hence for each star we have a 1-stack and on
the last 1-stack we have as many Y symbols as the number of currently open brackets. If
for a closing bracket the topmost symbol is X, it means that in the word read so far we
have more closing brackets than opening brackets; in this case we should accept suffixes of
the form {[, ], ?}∗], which is easy.

Finally, the ] symbol is read. If the topmost symbol is X, we have read as many opening
brackets as closing brackets, hence we should accept one ] symbol. Otherwise, the topmost
Y symbol corresponds to the last opening bracket that is not closed. We execute the collapse
operation. It leaves the 1-stacks created by the stars read before this bracket, except one
(plus the first 1-stack). Thus, the number of 1-stacks is precisely equal to stars(w). Now
we should read as many ] symbols as we have 1-stacks, plus one (after each ] symbol we
perform pop2), and then accept.

In the remaining part of the paper we prove that any n-DPDA cannot recognize U ; in
particular all automata appearing in the following sections do not use collapse.

5. Overview of the Proof

Before we start the real proof, in this section we present its general structure, on the intuitive
level. Let us first see why U cannot be recognized by any 1-DPDA A. Consider the input
word

w1 = [?n1 [?n2 . . . [?nN [?mN+1 ]?mN ] · · · ?m1 ] ?m0 [

(where each bracket is matched, except the last opening bracket). Notice that stars(w1)
equals the sum of all ni and mi, so A, after reading w1, has to store all these numbers
in its stack. Thus, it first stores the number n1 on the stack (by repeating some stack
symbol n1 times), then it can mark that there was an opening bracket, then it stores n2,
and so on (see Figure 1); none of these numbers can be removed later. Now consider the
prefix w1,i of w1 that ends just after the i-th closing bracket. Since A is deterministic, the
stack at the end of w1,i looks similar: it is just shorter, but for sure it ends to the right of
the vertical line, which denotes the stack size after the last opening bracket. We see that
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stars(w1,i) = n1 + · · ·+ nN−i. Thus, when A sees a ] after w1,i, it has to remove (ignore)
the numbers above nN−i, and sum the rest. In particular it passes the vertical line in some
state qi. We see that for each i, at the moment of crossing this line, the stack is the same
(everything to the right of the line is removed), only the state qi can differ. So in fact each
qi has to be different, since for each i we expect a different behavior. This is a contradiction
when N is greater than the number of states.

It follows that A is of order at least 2, and while reading w1 at some moment a push
of order 2 has to be performed, where in the topmost 1-stack we don’t remember some of
the numbers ni or mi (for example, in order to recognize w1, after each ] we can copy the
topmost 1-stack, and remove a fragment of its copy, so that the matching opening bracket is
on the top). But now we can consider the word

w2 = w1 ?
n′1 w1 ?

n′2 . . . w1 ?
n′N w1?

m′N+1 ]?m
′
N ] · · · ?m′1 ] ?m

′
0 [ ,

where the numbers ni,mi in each copy of w1 are independent (so in fact each w1 is a different
word). Notice that each w1 ends by an unmatched opening bracket; they are matched by the
closing brackets at the end of w2. We can now almost repeat the previous reasoning. First,
stars(w2) equals the sum of all numbers, so they all have to be kept on the stack. Then, we
draw a line after reading the last w1 (that is, separating the 1-stacks created before that
moment from those created later). By the order-1 argument, some number from each w1 is
not present in the topmost 1-stack after reading this w1, so it cannot be present above the
line. Next, for each i we try to end the word already after the i-th closing bracket (among
those at the end of w2, not those inside words w1). When we have a ] after each of these
prefixes, we have to go below the line and behave differently (include a different subset of
those values which are not present above the line), so we have to cross the line in different
states. This is again a contradiction when N is greater than the number of states. By
induction we can continue like this, and nesting the words wn again we can show that for
each order of the DPDA there is a problem.

Although the above idea of the proof looks simple, formalizing it is not straightforward.
We have to deal with the following issues:

(1) Above we have argued why a 1-DPDA cannot deal correctly with the word w1. But in
fact we should consider any n-DPDA, and prove that it is impossible that it stores all
numbers from w1 inside one 1-stack. Then there arises a problem: when crossing “the
line” it is no longer true that the stack can only be of one form. Indeed, the topmost
1-stack has one fixed form, but we can cross the line in a copy of this 1-stack, with
anything below this 1-stack. We can even cross the line multiple times, in several copies
of the 1-stack. Thus, it is no longer true that the number of states gives the number of
ways in which we can visit a substack. The ways of visiting a substack are described by
types of stacks and by types of sequences of configurations, defined in Section 7. The
key point is that there are finitely many types for a fixed DPDA.

(2) Where exactly is a number stored in a stack? And, where exactly “the line” should be
placed? This is not sharp, since a DPDA may delay some stack operations by keeping
information in its state, as well as it may temporarily create some fancy redundant
structures on the stack, which are removed later in the run. To deal with this issue,
in Section 8 we define milestone configurations. Intuitively, these are configurations in
which no additional garbage is present on the stack.

(3) Finally, why it would be wrong when, while reading the ] symbols, the automaton did
not visit a place where there is stored a number that is a part of stars(·)? Maybe,
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accidentally, this number is equal to some other amount in the stack. Or maybe it
was propagated to some other region on the stack by some involved manipulations. To
overcome this difficulty, in Section 9 we prove a pumping lemma. It allows to change
any of the numbers in the input word, without altering too much the whole stack. If
some number (included in stars(·)) is changed, the DPDA has to enter the part of the
stack changed by the pumping lemma; otherwise it would incorrectly accept after the
same number of the ] symbols for two words with different stars(·).

6. The History Function and Special Runs

We begin this section by defining the history function. Then we define two classes of runs
that are particularly interesting for us, namely k-upper runs and k-returns.

For any run R and any k-stack sk of R(|R|), where k ∈ [0, n], we define a k-stack
hist(R, sk). Intuitively, hist(R, sk) is the (unique) k-stack of R(0), which evolved to the
k-stack sk in R(|R|). Formally, we define hist(R, sk) by induction on the length of R, starting
with the case of k = 0. When |R| = 0, we take hist(R, s0) = s0. Consider now a longer
run R = S ◦ T with |T | = 1. We take hist(R, s0) = hist(S, s0) if the last transition of R
is read or performs pop, as well as if the transition performs pushrγ and s0 is not in the

topmost (r − 1)-stack of R(|R|). If the last transition of R performs pushrγ and s0 is in

the topmost (r − 1)-stack of R(|R|), then hist(R, s0) = hist(S, t0), where t0 is equal to s0

with the (n− r + 1)-th coordinate of its position decreased by 1 (i.e., t0 is the 0-stack of
T (0) from which s0 was obtained as a copy). Notice that (for technical convenience) hist
works in this way also for the topmost 0-stack, although the content of the topmost 0-stack
changes during the pushrγ operation. For k > 0, we define hist(R, sk) to be the k-stack of

R(0) containing hist(R, s0) for all 0-stacks s0 in sk (observe that when s0, t0 are two 0-stacks
in sk, the 0-stacks hist(R, s0) and hist(R, t0) are in the same k-stack).

It is important to notice that whenever R = S ◦ T , then hist(S, hist(T, sk)) = hist(R, sk).
In the sequel we extensively use this property, which we call compositionality of histories.

For k ∈ [0, n], we say that a run R is k-upper if hist(R, topk(R(|R|))) = topk(R(0)); let
upk be the set of all such runs. Intuitively, a run R is k-upper when the topmost k-stack of
R(|R|) is a copy of the topmost k-stack of R(0), but possibly some changes were made to it.
Notice that upn contains all runs, upk ⊆ upl for k ≤ l, and for a run R ◦ S with S ∈ upk it
holds R ∈ upk ⇐⇒ R ◦ S ∈ upk (the last property is by compositionality of histories).

For k ∈ [1, n], a run R is a k-return if

• hist(R, topk−1(R(|R|))) = topk−1(popk(R(0))), and
• R�i,|R| 6∈ upk−1 for all i ∈ [0, |R| − 1].

Let retk be the set of k-returns. Observe that retk ⊆ upk. Intuitively, R is a k-return when
the topmost k-stack of R(|R|) is obtained from the topmost k-stack of R(0) by removing its
topmost (k − 1)-stack (but not only in the sense of contents, but we require that really it
was obtained this way).

Example 6.1. Consider a 2-DPDA, and its run R of length 6 in which pos↓(π2(R(0))) =
[[a, b], [c, d]], and in which the operations between consecutive configurations are

push2
e , pop

1 , pop2 , pop1 , push1
d , pop

1 .

Recall that our definition is that a push of any order can change the topmost stack symbol.
The contents of the stacks of the configurations in the run, and subruns being k-upper
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Table 1: Stack contents of the example run, and subruns being k-upper runs and k-returns

j pos↓(π2(R(j))) i : R�i,j ∈ up0 i : R�i,j ∈ up1 i : R�i,j ∈ ret1 i : R�i,j ∈ ret2

0 [[a, b], [c, d]] 0 0 − −
1 [[a, b], [c, d], [c, e]] 0, 1 0, 1 − −
2 [[a, b], [c, d], [c]] 2 0, 1, 2 0, 1 −
3 [[a, b], [c, d]] 0, 3 0, 3 − 1, 2
4 [[a, b], [c]] 4 0, 3, 4 0, 3 −
5 [[a, b], [c, d]] 4, 5 0, 3, 4, 5 − −
6 [[a, b], [c]] 4, 6 0, 3, 4, 5, 6 5 −

runs and k-returns are presented in Table 1. Notice that R is not a 1-return. We have
hist(R�0,5, (d, (2, 2))) = (c, (2, 1)).

6.1. Basic Properties of Runs. We now state several easy propositions, which are useful
later, and also give more intuition about the above definitions.

Proposition 6.2. Let R be a k-upper run (where k ∈ [0, n]) such that R�i,|R| 6∈ upk for each

i ∈ [1, |R| − 1]. Then either

• topk(R(0)) ∼= topk(R(|R|)); additionally for every 0-stack s0 in topk(R(|R|)), hist(R, s0)
is the corresponding 0-stack in topk(R(0)), or
• |R| = 1 and the only transition of R performs popr for r ≤ k, or pushrγ for r ≤ k.

Proof. For |R| ≤ 1 we immediately fall into one of the possibilities. Otherwise, we look at
the history of the topmost k-stack of R(|R|). It is covered by the first operation of R, and
then it is not the topmost k-stack until R(|R|). Thus, it remains unchanged (we have the
first possibility).

Next, we give four propositions about k-upper runs and k-returns.

Proposition 6.3. Let R be a k-upper run, where k ∈ [1, n]. Then R is (k− 1)-upper if and
only if |topk(R(0))| ≤ topk(R(i))| for each i ∈ [0, |R|] such that R�i,|R| ∈ upk.

Proposition 6.4. Let S ◦ T be a (k − 1)-upper run in which T is k-upper, where k ∈ [1, n].
Then S is (k − 1)-upper.

Proposition 6.5. Let R be a run that is not (k − 1)-upper, where k ∈ [1, n]. Suppose that
R�0,j is (k − 1)-upper for the greatest index j ∈ [0, |R| − 1] such that R�j,|R| is k-upper (in

particular such an index j exists). Then R is a k-return.

Proposition 6.6. Let R be a k-return, where k ∈ [1, n]. Then popk(topk(R(0))) ∼=
topk(R(|R|)). Additionally for every 0-stack s0 in topk(R(|R|)), hist(R, s0) is the corre-
sponding 0-stack in popk(topk(R(0))).

Proof of Propositions 6.3-6.6. Recall that a (k−1)-upper run, a composition of two k-upper
runs, and a k-return are special cases of k-upper runs. Thus in all four propositions we have
a k-upper run R, where k ∈ [1, n] (where for Proposition 6.4 we take R = S ◦ T ). Let X
denote the set of those indices i ∈ [0, |R|] for which R�i,|R| is k-upper. Notice that 0 ∈ X
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Figure 2: Illustrations to Equality (6.1) and Propositions 6.3-6.6. Particular columns repre-
sent a k-stack in consecutive configurations of a run. Arrows show the value of
the hist function. The run on the first diagram is not (k − 1)-upper. The run on
the second diagram is (k − 1)-upper; notice that every its prefix is (k − 1)-upper,
assuming that (in the final configuration of the prefix) the illustrated k-stack is
the topmost one (cf. Proposition 6.4). The run on the last diagram is a k-return.

and |R| ∈ X. For i ∈ X, let ri = |topk(R(i))|, and let si(r) be the r-th (k − 1)-stack in
topk(R(i)) (for r ∈ [1, ri]). We claim that for all b, e ∈ X with b ≤ e, and for each r ∈ [1, re],

hist(R�b,e, se(r)) = sb
(

min({r} ∪ {rl : l ∈ X ∧ b ≤ l < e})
)
. (6.1)

See Figure 2 for an illustration. We prove Equality (6.1) by induction on e−b. For e = b it is
true. For the induction step consider the smallest e′ ∈ X that is greater than e. Notice that
for all l ∈ [e+ 1, e′ − 1] necessarily R�l,e′ 6∈ upk (since R�l,e′ ∈ upk implies that R�l,|R| ∈ upk,

that is, that l ∈ X), so the subrun R�e,e′ is in one of the forms described by Proposition 6.2.
For both of them we see that for each r ∈ [1, re′ ],

hist(R�e,e′ , se′(r)) = se(min{r, re}) .
Together with the induction assumption for b, e, this implies Equality (6.1) for b, e′.

We also claim that for all b, e ∈ X with b ≤ e,
R�b,e ∈ upk−1 ⇔ rb ≤ ri for each i ∈ X ∩ [b, e] . (6.2)

Indeed, R�b,e is (k − 1)-upper if and only if hist(R�b,e, se(re)) = sb(rb), and, as we see from
Equality (6.1), the latter holds if and only if rb ≤ ri for each i ∈ X ∩ [b, e].

Proposition 6.3 follows directly from Equivalence (6.2) used with b = 0 and e = |R|.
In order to prove Proposition 6.4, we suppose that R = S ◦ T , that R is (k − 1)-upper,

and that T is k-upper. Using Equivalence (6.2) with b = 0 and e = |R|, we obtain that
r0 ≤ ri for each i ∈ X. Since T is k-upper, |S| ∈ X. Thus, we can use Equivalence (6.2)
with b = 0 and e = |S|; it tells us that S is (k − 1)-upper, as required.

Consider now a situation as in Proposition 6.5, namely, let R 6∈ upk−1, let j = max(X ∩
[0, |R| − 1]), and let R�0,j ∈ upk−1. If j < |R| − 1, then from Proposition 6.2 applied to

R�j,|R| we obtain that hist(R�j,|R|, top
k−1(R(|R|))) = topk−1(R(j)), that is, that R�j,|R| is

(k−1)-upper. Since a composition of (k−1)-upper runs is (k−1)-upper, this contradicts the
assumptions that R�0,j is (k−1)-upper but R is not. Thus, j = |R|−1. By Equivalence (6.2),

the assumptions R�0,|R|−1 ∈ upk−1 and R 6∈ upk−1 imply that r0 ≤ ri for each i ∈ X \ {|R|},
but not for i = |R|. It follows that r0 = r|R|−1 = r|R| + 1, since |r|R|−1 − r|R|| ≤ 1. From

Equality (6.1) we deduce that hist(R, topk−1(R(|R|))) = topk−1(popk(R(0))), and from
Equivalence (6.2) that R�i,|R| 6∈ upk−1 for i ∈ X ∩ [0, |R| − 1]. For i 6∈ X, we also have that

R�i,|R| 6∈ upk ⊇ upk−1 by definition of X. Thus R is a k-return.
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Finally, suppose that R is a k-return. By definition, this implies that R�i,|R| is not

(k − 1)-upper for any i ∈ X \ {|R|}, so, by Equivalence (6.2), for every i ∈ X \ {|R|} there
is some j ∈ X such that j > i and ri > rj . By transitivity, it actually holds that ri > r|R|
for each i ∈ X \ {|R|}. Thus, Equality (6.1) implies that hist(R, s|R|(r)) = s0(r) for each

r ∈ [1, r|R|]; moreover, hist(R�i,|R|, s|R|(r)) 6= topk−1(R(i)) for all i < |R|, which implies that

s|R|(r) is an unmodified copy of s0(r) (a (k− 1)-stack can be modified only when it becomes

the topmost (k − 1)-stack). It means that topk(R(|R|)) consists of the r|R| bottommost

(k − 1)-stacks of topk(R(0)), also in the sense of the history function. By the definition of a
k-return, hist(R, s|R|(r|R|)) = s0(r0 − 1), so r|R| = r0 − 1.

We now give one more proposition, which is an immediate consequence of Proposition 6.6.

Proposition 6.7. Let R be a run such that its first transition performs pushkγ, and R�1,|R|
is a k-return, where k ∈ [1, n]. Then topk(R(0)) ∼= topk(R(|R|)). Additionally, for every
0-stack s0 in topk(R(|R|)), hist(R, s0) is the corresponding 0-stack in topk(R(0)).

6.2. Characterization of Returns and Upper Runs. Next we give two propositions,
which describe possible forms of upper runs and returns.

Proposition 6.8. A run R is k-upper (where k ∈ [0, n]) if and only if

(1) |R| = 0, or
(2) |R| = 1, and the only transition of R is read, or it performs pushrγ for any r, or popr

for r ≤ k, or
(3) the first transition of R performs pushrγ for r ≥ k + 1, and R�1,|R| is an r-return, or

(4) R is a composition of two nonempty k-upper runs.

Proof. The right-to-left implication is almost immediate; in Case (3) we use Proposition 6.7.
Concentrate on the left-to-right implication. If |R| = 0, then we have Case (1). Suppose

that |R| ≥ 1. Notice that the first transition, between R(0) and R(1), cannot perform popr

for r ≥ k + 1, as such an operation removes the topmost k-stack of R(0), which contradicts
the assumption that R is k-upper. Thus, if |R| = 1, then we have Case (2). Suppose that
|R| ≥ 2. If the first transition is read, or performs popr for r ≤ k, or pushrγ for r ≤ k,
then both R�0,1 and R�1,|R| are k-upper; we have Case (4). We can do the same when the
operation is pushrγ for r ≥ k + 1 and R�1,|R| is k-upper.

The remaining case is that the first operation is pushrγ for r ≥ k + 1 and R�1,|R|
is not k-upper. Notice that hist(R�0,1, s

k) = topk(R(0)) holds only for two k-stack of

R(1): for sk = topk(R(1)) and for sk = topk(popr(R(1))). So, because R is k-upper and
R�1,|R| is not k-upper, which by definition means that hist(R, topk(R(|R|))) = topk(R(0))

and hist(R�1,|R|, top
k(R(|R|))) 6= topk(R(1)), it has to be hist(R�1,|R|, top

k(R(|R|))) =

topk(popr(R(1))). Thus, also hist(R�1,|R|, top
r−1(R(|R|))) = topr−1(popr(R(1))). Let x be

the smallest positive index for whichR�x,|R| is (r−1)-upper. Then hist(R�1,x, top
r−1(R(x))) =

topr−1(popr(R(1))) (by compositionality of histories, because hist(R�x,|R|, top
r−1(R(|R|))) =

topr−1(R(x)) and hist(R�1,|R|, top
r−1(R(|R|))) = topr−1(popr(R(1)))), and there is no i ∈

[1, x− 1] such that R�i,x is (r − 1)-upper (because R�i,x ∈ upr−1 and R�x,|R| ∈ upr−1 would

imply that R�i,|R| ∈ upr−1). Thus, R�1,x is an r-return. The knowledge at this point of the
proof is summarized in Figure 3.
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Figure 3: Illustration for the proof of
Proposition 6.8

1 x

∈retk

|R|

pushkγ

0

∈retr

∈upk

R

Figure 4: Illustration for the proof of
Proposition 6.9

If x = |R|, then we have Case (3). For the remaining part of the proof suppose that
x < |R|. Let sk = hist(R�x,|R|, top

k(R(|R|))). Because R�x,|R| ∈ upr−1 and topk(R(|R|)) is in

topr−1(R(|R|)) (recall that k ≤ r−1), we have that sk is in topr−1(R(x)). On the other hand,
because R ∈ upk, by compositionality of histories we know that hist(R�0,x, s

k) = topk(R(0)).
Proposition 6.7 applied to R�0,x (its first operation is pushrγ , and R�1,x is an r-return) implies

that sk = topk(R(x)), that is, that R�0,|R| and R�x,|R| are k-upper. Thus, we have Case

(4).

Proposition 6.9. A run R is an r-return (where r ∈ [1, n]) if and only if

(1) |R| = 1, and the only transition of R performs popr, or

(2) the first transition of R is read, or it performs popk for k < r, or pushkγ for k 6= r, and
R�1,|R| is an r-return, or

(3) the first transition of R performs pushkγ for k ≥ r, and R�1,|R| is a composition of a
k-return and an r-return.

Proof. Let us analyze the right-to-left implication, which is easier. Case (1) is trivial. In Case
(2) we observe that hist(R�0,1, top

r−1(popr(R(1)))) = topr−1(popr(R(0))) (it is important

that k 6= r in the case of pushkγ), and hence

hist(R, topr−1(R(|R|))) = hist(R�0,1, hist(R�1,|R|, top
r−1(R(|R|))))

= hist(R�0,1, top
r−1(popr(R(1)))) = topr−1(popr(R(0))) .

In particular, this implies that R is not (r − 1)-upper; moreover R�i,|R| is not (r − 1)-upper

for i ∈ [1, |R|−1] because R�1,|R| is an r-return. Thus, R is an r-return. In Case (3), let x−1

be the length of the first return (so the k-return ends in R(x)). The situation is depicted
in Figure 4. Recall that k ≥ r. By Proposition 6.7, hist(R�0,x, top

r−1(popr(R(x)))) =

topr−1(popr(R(0))). Since hist(R�x,|R|, top
r−1(R(|R|))) = topr−1(popr(R(x))), we conclude

that hist(R, topr−1(R(|R|))) = topr−1(popr(R(0))). This in particular implies that R is not
(r−1)-upper. Because R�x,|R| is an r-return, R�i,|R| cannot be (r−1)-upper for i ∈ [x, |R|−1].

If R�i,|R| was (r − 1)-upper for some i ∈ [1, x − 1], then hist(R�i,x, top
r−1(popr(R(x)))) =

topr−1(R(i)). This would imply that R�i,x is (k − 1)-upper (both for k > r and k = r),
which is impossible, because R�1,x is a k-return. We conclude that R is an r-return.

Concentrate now on the left-to-right implication. Before starting the proof, notice
that in order to prove that R�x,|R| ∈ retr for some x ∈ [0, |R|], it is enough to check that

hist(R�x,|R|, top
r−1(R(|R|))) = topr−1(popr(R(x))): the condition that R�i,|R| 6∈ upr−1 for

all i ∈ [x, |R| − 1] is ensured by the fact that R itself is an r-return.
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Of course |R| ≥ 1. Because R is an r-return,

hist(R�0,1, hist(R�1,|R|, top
r−1(R(|R|)))) = hist(R, topr−1(R(|R|)))

= topr−1(popr(R(0))) . (6.3)

Observe that the first operation, between R(0) and R(1), cannot be popk for k ≥
r + 1, as after such an operation there would be no (r − 1)-stack sr−1 of R(1) such that
hist(R�0,1, s

r−1) = topr−1(popr(R(0))), which contradicts Equality (6.3).
Suppose that the first operation of R is popr. In this situation, the only (r − 1)-stack

sr−1 of R(1) such that hist(R�0,1, s
r−1) = topr−1(popr(R(0))) is sr−1 = topr−1(R(1)), and

thus we have hist(R�1,|R|, top
r−1(R(|R|))) = topr−1(R(1)) by Equality (6.3). This means

that R�1,|R| is (r − 1)-upper. A nonempty suffix of an r-return cannot be (r − 1)-upper, so

|R| = 1; we have Case (1).

Next, suppose that the first operation is read, or popk for k ≤ r − 1, or pushkγ for

k ≤ r− 1. In this situation, the only (r− 1)-stack sr−1 of R(1) such that hist(R�0,1, s
r−1) =

topr−1(popr(R(0))) is sr−1 = topr−1(popr(R(1))), and thus hist(R�1,|R|, top
r−1(R(|R|))) =

topr−1(popr(R(1))), by Equality (6.3). In consequence, R�1,|R| is an r-return; we have Case

(2).

Finally, suppose that the first operation of R is pushkγ for k ≥ r. If k > r, then

there are two (r − 1)-stacks sr−1 of R(1) such that hist(R�0,1, s
r−1) = topr−1(popr(R(0))),

namely sr−1 = topr−1(popr(R(1))) and sr−1 = topr−1(popr(popk(R(1)))). If k = r,
only the latter possibility remains: sr−1 = topr−1(popr(popk(R(1)))). By Equality (6.3),
hist(R�1,|R|, top

r−1(R(|R|))) has to be one of these two (r − 1)-stacks.

Suppose first that hist(R�1,|R|, top
r−1(R(|R|))) = topr−1(popr(R(1))) and k > r. Then

R�1,|R| is an r-return; we have Case (2).

The opposite possibility is that hist(R�1,|R|, top
r−1(R(|R|))) = topr−1(popr(popk(R(1)))).

Because topr−1(R(|R|)) and topr−1(popr(popk(R(1)))) are in topk(R(|R|)) and topk(R(1)),
respectively (recall that k ≥ r), this implies that R�1,|R| ∈ upk. Let x be the smallest

positive index such that R�1,x 6∈ upk−1 and R�x,|R| ∈ upk (it exists: in the worst case we

can take x = |R|, since R�1,|R| 6∈ upk−1 and R�|R|,|R| ∈ upk). Because R�1,|R| and R�x,|R|
are k-upper, also R�1,x is k-upper. Moreover, because R�1,x 6∈ upk−1 and R�1,1 ∈ upk−1,

necessarily x > 1. Let also j be the greatest index in [1, x − 1] such that R�j,x ∈ upk (it

exists, because R�1,x ∈ upk and 1 ∈ [1, x− 1]). Then R�j,|R| (a composition of two k-upper

runs) is k-upper, and thus R�1,j is not (k− 1)-upper, by minimality of x. In such a situation,

Proposition 6.5 implies that R�1,x is a k-return. Let tr−1 = hist(R�x,|R|, top
r−1(R(|R|))).

Because R�x,|R| ∈ upk and topr−1(R(|R|)) is in topk(R(|R|)) (since k ≥ r), we have that tr−1

is in topk(R(x)). On the other hand, because R ∈ retr, by compositionality of histories we
know that hist(R�0,x, t

r−1) = topr−1(popr(R(0))). Proposition 6.7 applied to R�0,x (its first

operation is pushkγ , and R�1,x is a k-return) implies that tr−1 = topr−1(popr(R(x))), that is,
that R�x,|R| ∈ retr; we have Case (3).
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7. Types and Sequence Equivalence

In this section we assign to each configuration a type from a finite set. The slogan is that
configurations with the same positionless topmost k-stacks and the same type are starting
points of similar k-upper runs. We start by an example.

Example 7.1. Consider a 3-DPDA that (while being in some state) can perform the
following 1-upper run: it executes pop1, push3, and then it starts analyzing the topmost
2-stack using pop1 and pop2; when a 0-stack containing a fixed stack symbol a is found, the
automaton performs pop3; the run ends in the same state as it begins. As an effect of this
run, only the topmost 0-stack is removed, so this is indeed a 1-upper run. Notice that it can
be executed only when the topmost 2-stack contains the a symbol, and can be repeated as
long as the topmost 1-stack is nonempty. Consider now two configuration of this 3-DPDA,
having the same positionless topmost 1-stack. If additionally the topmost 2-stacks of both
configurations contain the a symbol, then from each of them we can start the 1-upper run
described above, and repeat it the same number of times.

Because a 1-upper run can arbitrarily modify the topmost 1-stack, we consider configu-
rations having the same positionless topmost 1-stack. On the other hand, we summarize the
rest of the stack in a small piece of information, called a type. In this example we only need
to know whether there is the a symbol in the topmost 2-stack (below the topmost 1-stack).
In general, whenever a 3-DPDA removes the topmost 1-stack and starts analyzing the stack
below, next it has to remove the whole topmost 2-stack (since we consider a 1-upper run).
Thus, for each entering state (i.e., the state when removing the topmost 1-stack) we only
need to know the exit state (i.e., the state when removing the topmost 2-stack). For higher
orders the situation is slightly more complicated, but similar.

There is also a second goal of this section. Suppose that we have a sequence of
configurations, all having the same positionless topmost k-stack and the same type. Then,
as said above, from each of them we can execute a similar k-upper run. Typically, these
k-upper runs are prefixes of some accepting runs. We want to determine whether such
accepting runs can read an unbounded number of ] symbols, or not. (For technical reasons,
we consider n-returns instead of accepting runs.)

For this section we fix an n-DPDA A with stack alphabet Γ, state set Q, and input
alphabet A that contains a distinguished symbol ]. Moreover, we fix a morphism ϕ : A∗ →M
into a finite monoid M . For a run R reading a word w, by ϕ(R) we denote ϕ(w), and by ](R)
we denote the number of sharps in w. The goal of the morphism is to describe when two
upper runs read a similar word: we want to distinguish input words evaluating to different
elements of M .

Recall that when both R ◦ S and S are k-upper runs, then R is k-upper as well. It
follows that any nonempty k-upper run R can be uniquely represented as a composition
of the maximal number of nonempty k-upper runs R1 ◦ · · · ◦ Rr: we keep on cutting off
minimal suffixes that are k-upper (notice that infixes or even prefixes of Ri can be k-upper,
but suffixes are not). We compare k-upper runs using the following definition of being
(k, ϕ)-parallel.

Definition 7.2. Let R = R1 ◦ · · · ◦Rr and S = S1 ◦ · · · ◦ Ss be k-upper runs decomposed
into the maximal number of nonempty k-upper runs. We say that R and S are (k, ϕ)-parallel
when r = s, and for each i ∈ [1, r] it holds that ϕ(Ri) = ϕ(Si) and topk(Ri(0)) ∼= topk(Si(0)),
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as well as topk(R(|R|)) ∼= topk(S(|S|)). In particular, two runs R, S of length 0 are (k, ϕ)-
parallel when topk(R(0)) ∼= topk(S(0)). When saying that two runs are (k, ϕ)-parallel we
implicitly mean that they are k-upper.

We claim that if runs R and S are (k, ϕ)-parallel, and R is divided in any way into k-
upper runs R = R′1◦· · ·◦R′m, then S can be as well divided into k-upper runs S = S′1◦· · ·◦S′m
such that for each i ∈ [1,m] it holds that ϕ(R′i) = ϕ(S′i) and topk(R′i(0)) ∼= topk(S′i(0)), as
well as topk(R(|R|)) ∼= topk(S(|S|)). Indeed, on the one hand, each nonempty R′i can be
further subdivided into k-upper runs of the finest decomposition. On the other hand, for
each empty R′i we can insert an empty S′i into the sequence for S.

As already mentioned, to each configuration c we assign its (A, ϕ)-type (simply called
type when A and ϕ are fixed), which comes from a finite set. Before giving a definition, we
state two theorems, which describe required properties of our types.

Theorem 7.3. Let R be a k-upper run, where k ∈ [0, n], and let c be a configuration having
the same (A, ϕ)-type and the same positionless topmost k-stack as R(0). Then from c we
can start a run that is (k, ϕ)-parallel to R.

In addition to types, we also define an equivalence relation over infinite sequences of
configurations of A, called (A, ϕ)-sequence-equivalence, which has finitely many equivalence
classes. The goal is to specify whether the number of ] symbols read by a run constructed
in Theorem 7.3 is big or small. However, instead of having “big” and “small” numbers, we
say whether their sequence is bounded or unbounded. This is made precise in the following
theorem.

Theorem 7.4. Let R ◦ R′ be a run in which R is k-upper and R′ is an n-return, where
k ∈ [0, n]. Let c1, c2, . . . and d1, d2, . . . be infinite sequences of configurations that are (A, ϕ)-
sequence-equivalent, and in which all configurations have the same (A, ϕ)-type and the same
positionless topmost k-stack as R(0). Then for each i there exist runs Si ◦ S′i from ci, and
Ti ◦ T ′i from di in which Si and Ti are (k, ϕ)-parallel to R, and S′i and T ′i are n-returns
such that ϕ(S′i) = ϕ(T ′i ) = ϕ(R′), and such that the sequences ](S1 ◦ S′1), ](S2 ◦ S′2), . . . and
](T1 ◦ T ′1), ](T2 ◦ T ′2), . . . are either both bounded or both unbounded.

Let us mention briefly how this theorem is used in Section 10. We consider there a
configuration c reached after reading a complicated word, containing some blocks of stars,
separated by some brackets. Using a pumping lemma developed in Section 9, we increase
the number of stars read in one of such blocks, obtaining configurations c1, c2, . . . at the end
of the run (where consecutive configurations are reached after reading more and more stars
in the considered block). It is ensured that all ci have the same (A, ϕ)-type, and the same
positionless topmost k-stack. Likewise, we increase the number of stars read in some other
block of stars, obtaining configurations d1, d2, . . . . Having more blocks of stars than classes
of the (A, ϕ)-sequence-equivalence relation we can ensure that the sequences c1, c2, . . . and
d1, d2, . . . are (A, ϕ)-sequence-equivalent, by the pigeonhole principle. Theorem 7.4 says
that the two sequences of configurations cannot be distinguished by runs (of a specific
form) starting in these configurations: the runs contain sharps corresponding to stars either
from both considered blocks of stars (and then both sequences ](S1 ◦ S′1), ](S2 ◦ S′2), . . .
and ](T1 ◦ T ′1), ](T2 ◦ T ′2), . . . are unbounded) or from none of them (and then both these
sequences are bounded).

The n-returns in Theorem 7.4 should be understood as accepting runs. Indeed, in
Section 10 we increase by 1 the order of an arbitrary (n − 1)-DPDA, and we add a popn
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operation just before reaching an accepting state; after such a modification, a run is accepting
if and only if it is an n-return. This trick is performed only for uniformity of presentation:
instead of considering accepting runs as a separate concept, we see them as a special case of
returns (and returns are used anyway).

One may be puzzled by the fact that Theorem 7.3 talks about a k-upper run, while
Theorem 7.4 about a k-upper run composed with an n-return. This difference is application-
driven: the first theorem needs to be used without an n-return, while the second one with
an n-return. In fact Theorem 7.3 is true also with an n-return at the end, and Theorem 7.4
also without an n-return.

Example 7.5. Consider the 3-DPDA and the 1-upper run from Example 7.1, with the
difference that now whenever a b symbol is removed from the stack during the analysis of
the topmost 2-stack, the DPDA reads the ] symbol from the input. Additionally, suppose
that when the topmost 1-stack becomes empty (a bottom-of-stack symbol is uncovered),
the DPDA performs pop3; this pop3 serves as the 3-return R′. Then basically we need two
equivalence classes of sequences of configurations (recall that only for sequences with the
same positionless topmost 1-stack the relation is meaningful): one where the number of b
symbols in the topmost 2-stacks in the configurations is bounded, and one where this number
is unbounded. Depending on this fact, the runs read either a bounded or an unbounded
number of sharps. Of course in general we need more classes than just two (“bounded” and
“unbounded”), because, for example, another 1-upper run (having a different image under ϕ)
might read one sharp per each c symbol found on the stack (instead of the b symbols).

The rest of this section is devoted to defining types and sequence-equivalence, and
proving Theorems 7.3 and 7.4. This is independent from the rest of the paper.

7.1. Definition of Types. The types considered here are similar to stack automata
of Broadbent, Carayol, Hague, and Serre [BCHS12], as well as to intersection types of
Kobayashi [Kob09]. Notice, however, that we extend them by a productive/nonproductive
flag, which is not present there. This flag is essential for our proof, since we want to estimate
the number of ] symbols read by a run, not just to determine existence of some kind of
runs. On the other hand, in the conference version of the current paper [Par12b] we were
using types that were directly describing returns (while here returns correspond to using an
assumption); these types were more complicated.

Run Descriptors. We label stacks by run descriptors. To label a k-stack sk, where k ∈ [0, n],
we can use a run descriptor from a set T k. The sets T k are defined inductively as follows:

T k = Q× P(M × T n)× P(M × T n−1)× · · · × P(M × T k+1)× {np, pr} ,
where P(X) denotes the power set of X. We use lowercase Greek letters (σ, τ, . . . ) to
denote elements of T k, uppercase Greek letters (Ψ,Φ, . . . ) to denote subsets of M ×T k, and

uppercase Greek letters with a tilde (Ψ̃, Φ̃, . . . ) to denote subsets of T k; to all of them we
often attach k in superscript.

A run descriptor in T k is of the form σ = (p,Ψn,Ψn−1, . . . ,Ψk+1, f). Its first coordinate,
p, is called the state of σ. The sets Ψi, for i ∈ [k + 1, n], are called assumption sets of σ,
and are denoted assi(σ). The last coordinate, f , is called a productivity flag of σ. When
f = np, we say that σ is nonproductive; otherwise, it is productive. By Tnp and Tpr we denote
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the subsets of
⋃
k∈[0,n] T k containing only nonproductive and productive run descriptors,

respectively.
A run descriptor σ assigned to some k-stack sk describes a run that starts in a configu-

ration with state p and topmost k-stack sk. The run descriptor “can be used” only when the
stack tn : tn−1 : · · · : tk+1 : sk in this configuration is such that for each i ∈ [k + 1, n] to the
i-stack ti we have assigned π2(Ψi). An assumption (m, τ) ∈ Ψi is used when (a copy of) the
stack ti becomes uncovered. The run descriptor τ describes a run from such a configuration
d; this run is a suffix of the run from c = (p, tn : tn−1 : · · · : tk+1 : sk). The run from c to d,
which uncovers ti, is an i-return. The monoid element m describes the word w read by the
return: m = ϕ(w).

Beside of the state p, and the assumption sets, in σ we also have a productivity flag.
Roughly speaking, the run descriptor σ is productive if sk is itself responsible for reading
some ] symbols. It means that either some reading of a ] symbol is performed “inside sk”,
or some productive run descriptor (coming from some assumption set Ψi) is used at least
twice as an assumption (the latter also increases the number of ] symbols read, since some
reading described by this productive assumption is repeated). Thanks to the productivity
flag, we can estimate the number of ] symbols read, by calculating the number of productive
run descriptors used.

One may wonder which runs have a description by a run descriptor. The answer is that
all runs: we do not restrict ourselves to any specific kind of runs at this point.

We now give more intuitions on run descriptors, in particular cases. Run descriptors in
T n, assigned to stacks sn of the maximal order n, are simply of the form (p, f). When the
starting state p is fixed, we only have two run descriptors: (p, np) and (p, pr). The former
describes runs from (p, sn) that do not read any ] symbols, while the latter those that do
read some ] symbols.

A run descriptor in T n−1 is of the form (p,Ψn, f). When assigned to a stack sn−1, it
describes a run R from a configuration of the form c = (p, tn : sn−1). It is possible that R
never visits tn, and only builds on top of sn−1 (i.e., R is (n− 1)-upper). In this situation,
the set of assumptions Ψn is empty, and the flag f simply says whether R reads some ]
symbols. The opposite case is that R uncovers the stack tn in some configuration d = (q, tn),
that is, that some its prefix R�0,i is an n-return. In this situation Ψn = {(ϕ(R�0,i), τ)},
where τ describes the suffix R�i,|R|. Because we are considering the highest order, when tn is

uncovered in R(i) there are no other copies of tn. This means that only a single assumption
may be used for tn (i.e., |Ψn| ≤ 1), and this assumption is used only once. The flag f simply
says whether the prefix R�0,i reads some ] symbol.

For run descriptors in T n−2 the situation becomes more interesting. We explain this by
means of an example.

Example 7.6. Consider a run R such that

• R(0) = (p0, t
n : tn−1 : sn−2),

• R�0,i is an (n− 1)-return with R(i) = (p1, (t
n : tn−1 : un−2) : p+1(tn−1)) (notice that R�0,i

performs some pushnγ without a corresponding popn);

• R�i,j is an n-return with R(j) = (p2, t
n : tn−1 : un−2);

• R�j,k is an (n− 1)-return with R(k) = (p3, t
n : tn−1);

• R�k,l is an n-return with R(l) = (p4, t
n).

Let us see how such a run is described by a run descriptor σ = (p0,Ψ
n,Ψn−1, f) ∈ T n−2,

which can be assigned to the (n− 2)-stack sn−2. Necessarily Ψn is a singleton containing
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(ϕ(R�0,l), τ4) for τ4 describing the suffixR�l,|R|. The set Ψn−1 contains in general two elements:

(ϕ(R�0,i), τ1) for τ1 describing the suffix R�i,|R|, and (ϕ(R�0,k), τ3) for τ3 describing the suffix

R�k,|R|. If τ1 6= τ3, then f says whether R�0,i or R�j,k reads some ] symbol (and the flags

in τ1, τ3, τ4 are responsible for the subruns R�i,k, R�k,l, and R�l,|R|, respectively). In may
also happen that τ1 = τ3. In this situation, we say that the run descriptor τ1 is used twice
as an assumption. Then f = pr if R�0,i or R�j,k reads some ] symbol, but also when τ1 is
productive (i.e., when a productive run descriptor is used more than once as an assumption).
The intuition for this is that now while looking at run descriptors in π2(Ψn−1) it is not
visible that there are two subruns R�i,j and R�k,l reading ] symbols, as they both correspond
to the same assumption; by setting f = pr we reflect the fact that R reads more ] symbols
than in the situation when every assumption would be used only once.2

We remark that a run descriptor σ = (p,Ψn,Ψn−1, . . . ,Ψk+1, f) should not be seen as a
classical implication of the form “if the stacks below the topmost k-stack satisfy assumptions
Ψn,Ψn−1, . . . ,Ψk+1, then there exists a run satisfying some properties”. It is much closer
to an implication in a linear logic. Indeed, the conclusion of the implication is trivial, as
it, basically, says only that there exists some (arbitrary) run. The interesting information
about the run is contained in the sets of assumptions: by specifying an assumption, we
say that there is a suffix of the run corresponding to this assumption. In particular, it is
essential that there are no redundant assumptions (every assumption “has to be used”, at
least once). Moreover, the information whether some assumptions are used more than once
is also recorded, in the productivity flag.

Composers. For m ∈M and Ψ ⊆M×T k we use the notation m◦Ψ for {(m·m′, σ) : (m′, σ) ∈
Ψ}. Given a run descriptor σ = (p,Ψn,Ψn−1, . . . ,Ψl+1, f) ∈ T l, for k ∈ [l, n] by redk(σ) we
denote the “reduced” run descriptor (p,Ψn,Ψn−1, . . . ,Ψk+1, g) ∈ T k in which

g = np⇔ (f = np, and π2(Ψi) ⊆ Tnp for each i ∈ [l + 1, k]) .

The following proposition is a direct consequence of the definition.

Proposition 7.7. For 0 ≤ l ≤ j ≤ k ≤ n and σ ∈ T l it holds that redk(redj(σ)) =

redk(σ).

We now define composers, which are used to compose run descriptors corresponding to
smaller stacks into run descriptors corresponding to greater stacks.

Definition 7.8. Consider a tuple (Φk,Φk−1 . . . ,Φl; Ψk; f), where 0 ≤ l ≤ k ≤ n, Φi ⊆
M ×T i for each i ∈ [l, k], Ψk ⊆M ×T k, and f ∈ {np, pr}. Such a tuple is called a composer
if

(C1) Φi =
⋃
{m ◦ assi(σ) : (m,σ) ∈ Φl} for each i ∈ [l + 1, k],

(C2) Ψk = {(m, redk(σ)) : (m,σ) ∈ Φl},
(C3) |π2(Ψk)| = |π2(Φl)| (which means that each σ ∈ π2(Φl) gives a different redk(σ)), and

2 One can imagine two possible definitions of “the same assumption”: we may compare either only run
descriptors (in our case, τ1 = τ3), or pairs consisting of a monoid element and a run descriptor (in our case,
(ϕ(R�0,i), τ1) = (ϕ(R�0,k), τ3)). At first glance both definitions look equally good, or the latter definition
seems to be more natural than the former. It turns out, however, that the latter definition is problematic.
The difficulty is that for pairs that are originally different, (m1, σ1) 6= (m2, σ), it may happen that after
multiplying them by a monoid element they become equal, (m ·m1, σ1) = (m ·m2, σ). We prefer to avoid
this, and hence we stick to the former definition.
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(C4) f = np if and only if π2(assi(σ)) ∩ π2(assi(τ)) ⊆ Tnp for each i ∈ [l + 1, k] and each

σ, τ ∈ π2(Φl) such that σ 6= τ .

Suppose that we have a k-stack tk = sk : sk−1 : · · · : sl, where, for i ∈ [l, k], elements of
Φi “are assigned” to si. Intuitively, a tuple (Φk,Φk−1 . . . ,Φl; Ψk; f) is a composer, if in such
a situation the set Ψk can be assigned to the whole stack tk. As we see, the definition does
not depend on the stacks that are actually composed, only on the sets Φi assigned to these
stacks. One can think about Φk,Φk−1 . . . ,Φl as about inputs to the composer, and about
Ψk and f as outputs. Nevertheless, already Φl determines all remaining coordinates of the
composer (when l and k are fixed). We remark that not every set Φl ⊆M × T l can be used
in a composer, due to Condition (C3) of the definition.

The definition says that run descriptors assigned to tk are of the form redk(σ) for σ
assigned to sl (the reason is that if the topmost k-stack of a configuration is tk, then its
topmost l-stack is sl). Moreover, the assumptions of σ that are contained in assi(σ) for

i ∈ [l + 1, k] have to be realized by the stacks si. We notice that the run descriptor redk(σ)
is productive when σ is productive or some of the assumptions in assi(σ) for i ∈ [l + 1, k] is

productive (cf. the definition of redk(σ)); in other words, in a run corresponding to the run
descriptor, the part corresponding to the stack tk is productive when some part corresponding
to si for some i ∈ [l, k] is productive.

The composer itself also has a productivity flag f . The intuition is that we set this flag
to pr if the runs described by elements of Ψk read more ] symbols than those described
by elements of Φk,Φk−1 . . . ,Φl, in total. This is the case when a productive run descriptor
(coming from some Φi for i ∈ [l + 1, k]) is used as an assumption for more than one element
of Φl. While summing over all run descriptors from all Φi, such a run descriptor is added
only once, but it contributes to more than one run descriptor in Ψk.

Another important issue is that in Φk,Φk−1 . . . ,Φl we only have elements that really
contribute while constructing elements of Ψk. Simultaneously, we require that every run
descriptor in Ψk has exactly one realization by run descriptors from Φk,Φk−1 . . . ,Φl (i.e.,
it is obtained by reducing exactly one run descriptor from Φl). The justification for both
these properties is the same: we want to “approximate” the number of ] symbols read by
runs described by elements of Ψk while looking at the number of ] symbols read by runs
described by elements of Φk,Φk−1 . . . ,Φl. Any redundant run descriptors in Φk,Φk−1 . . . ,Φl

would bias our calculations; multiple decompositions of a single element of Ψk would also
bias our calculations.

In the sets Φk,Φk−1 . . . ,Φl and Ψk we also have monoid elements, not only run descriptors.
Intuitively, a pair (m,σ) ∈ Ψk (or (m,σ) ∈ Φi) corresponds to a run consisting of two parts:
the first part reads a word evaluating to m and uncovers the stack tk (si, respectively);
the second part starts when the topmost k-stack is tk (the topmost i-stack is si), and it
is described by σ. The monoid elements in Ψk are the same as in Φl, since uncovering tk

means uncovering sl. On the other hand, elements in Φi for i ∈ [l+ 1, k] are obtained as the
composition of m coming from (m,σ) ∈ Φl (describing the word read before uncovering sl)
and of m′ coming from a particular assumption (m′, τ) ∈ assi(σ) (describing the word read
after uncovering sl, but before uncovering si).

Example 7.9. Suppose that n = 2. Let τnp ∈ T 1 ∩ Tnp and τpr ∈ T 1 ∩ Tpr. Consider the
following elements of T 0:

σ1 = (p,Ψ2, {(m1, τnp), (m2, τpr)}, np) , σ2 = (p,Ψ2, {(m3, τnp)}, np) ,
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σ′1 = (p,Ψ2, {(m3, τnp)}, pr) , σ3 = (q,Φ2, {(m4, τnp), (m5, τpr)}, pr) ,

and the following elements of T 1:

ξ1 = (p,Ψ2, pr) , ξ2 = (p,Ψ2, np) , ξ3 = (q,Φ2, pr) .

It holds that red1(σi) = ξi for i ∈ {1, 2, 3}, and red1(σ′1) = ξ1. We have composers resulting
in a single pair from M × T 1, like

({(m6 ·m1, τnp), (m6 ·m2, τpr)}, {(m6, σ1)}; {(m6, ξ1)}; np) , or

({(m6 ·m3, τnp)}, {(m6, σ
′
1)}; {(m6, ξ1)}; np) .

Notice that these two composers have the same “output set”. We may also repeat the same
run descriptor with multiple monoid elements:

({(m6 ·m3, τnp), (m7 ·m3, τnp)}, {(m6, σ
′
1), (m7, σ

′
1)}; {(m6, ξ1), (m7, ξ1)}; np) .

Here, the situation that m6 ·m3 = m7 ·m3 is allowed as well (and then the first set has
only a single element). Observe that that all the above composers are nonproductive, even
though they involve productive run descriptors. Next, we can also have composers involving
multiple run descriptors, like

({(m6 ·m3, τnp)}, {(m6, σ
′
1), (m6, σ2)}; {(m6, ξ1), (m6, ξ2)}; np) .

This composer is again nonproductive: although there is a run descriptor τnp that appears
in assumption sets of both σ′1 and σ2, this run descriptor τnp is nonproductive. But if a
productive run descriptor τpr appears in assumption sets of two run descriptors (like for σ1

and σ3), we have a productive composer:

({(m6 ·m1, τnp), (m7 ·m4, τnp), (m6 ·m2, τpr), (m7 ·m5, τpr)}, {(m6, σ1), (m7, σ3)};
{(m6, ξ1), (m7, ξ3)}; pr) .

As negative examples, we have the following tuples, which are not composers:

({(m6 ·m3, τnp), (m6 ·m2, τpr)}, {(m6, σ
′
1)}; {(m6, ξ1)}; np) , and

({(m6 ·m1, τnp), (m6 ·m2, τpr), (m7 ·m3, τnp)}, {(m6, σ1), (m7, σ
′
1)};

{(m6, ξ1), (m7, ξ1)}; np) .

In the first tuple, the first set contains a redundant pair (m6 ·m2, τpr), which is forbidden.
In the second tuple, we have simultaneously two realizations of ξ1: one using σ1, and one
using σ′1; this is forbidden as well.

In the next proposition we notice that composers are associative.

Proposition 7.10. Let 0 ≤ l ≤ j ≤ k ≤ n. For all fixed Φk,Φk−1, . . . ,Φl,Ψk and f ∈
{np, pr}, the following two conditions are equivalent:

• (Φk,Φk−1, . . . ,Φl; Ψk; f) is a composer, and
• (Φj ,Φj−1, . . . ,Φl; Ψj ; f1) and (Φk,Φk−1, . . . ,Φj+1,Ψj ; Ψk; f2) are composers for some Ψj

and f1, f2 such that (f = np)⇔ (f1 = f2 = np).

Proof. We use symbols X and X1, X2 for the tuples from the first and second item, respec-
tively. First, notice that the definition of a composer instantiated either for X, or for both
X1 and X2 simultaneously, implies that Φi ⊆ M × T i for i ∈ [l, k], and Ψk ⊆ M × T k.
While proving the right-to-left implication, Condition (C2) of the definition of a composer
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instantiated for X1 implies that Ψj = {(m, redj(σ)) : (m,σ) ∈ Φl}. While proving the
opposite implication, we choose Ψj in this way; the effect is that X1 satisfies Condition (C2).

We see that assi(redj(σ)) = assi(σ) for i ∈ [j + 1, k] and σ ∈ T l, so Condition (C1) for
X is equivalent to the conjunction of Condition (C1) for X1 and X2.

By Proposition 7.7 we have that redk(redj(σ)) = redk(σ) for σ ∈ T l, which implies that
Condition (C2) instantiated for X is equivalent to Condition (C2) instantiated for X2.

Notice that |π2(Ψk)| ≤ |π2(Ψj)| ≤ |π2(Φl)|, because π2(Ψk) = {redk(σ) : σ ∈ π2(Ψj)}
and π2(Ψj) = {redj(σ) : σ ∈ π2(Φl)}. Thus |π2(Ψk)| = |π2(Φl)| if and only if |π2(Ψk)| =
|π2(Ψj)| = |π2(Φl)|; we obtain equivalence for Condition (C3).

Finally, Condition (C4) for X1 says that f1 = np if and only if π2(assi(σ))∩π2(assi(τ)) ⊆
Tnp for each i ∈ [l+1, j] and each σ, τ ∈ π2(Φl) such that σ 6= τ ; otherwise f1 = pr. ForX2 and

f2 we have the same with i ∈ [j+1, k] (here we use again the fact that assi(redj(σ)) = assi(σ)).
Thus, while proving the right-to-left implication we have these equivalences for f1 and f2;
they imply that (f = np)⇔ (f1 = f2 = np). While proving the left-to-right implication we
define f1 and f2 so that this is satisfied; then we have Condition (C4) for X1 and X2, and
the equivalence (f = np)⇔ (f1 = f2 = np).

Derivation Trees. Next, we say when a run descriptor σ from T 0 can be assigned to a stack
symbol γ. To this end, we define how statements of the form γ ` σ can be derived. Such a
statement means that from a configuration with topmost stack symbol γ one can start a run
described by the run descriptor σ (assuming that the stacks below γ satisfy the assumptions
of σ). Actually, it is not enough to define when γ ` σ is true; we explicitly need to handle
derivation trees justifying such statements. Thus, in Definition 7.11 we define the notion of
a derivation tree for γ ` σ. Having such a derivation tree D, γ ` σ is called the conclusion
of D, and σ is called the run descriptor of D and is denoted rd(D).

Definition 7.11. We define the set of derivation trees as the smallest set satisfying the
following conditions. Let p be a state, and γ a stack symbol.

(1) A triple (empty, γ, p) is a derivation tree for γ ` (p, ∅, ∅, . . . , ∅, np).
(2) Suppose that δ(γ, p) = read(~q) and that D′ is a derivation tree for γ ` τ , where the state

of τ is ~q(a) for some a ∈ A. Denote Φi = ϕ(a) ◦ assi(τ) for i ∈ [1, n]. Then (read, p,D′)
is a derivation tree for γ ` (p,Φn,Φn−1, . . . ,Φ1, f), where f = np if and only if τ ∈ Tnp
and a 6= ].

(3) Suppose that δ(γ, p) = (q, popk), and that τk ∈ T k is a run descriptor with state q.
Then (pop, γ, p, τk) is a derivation tree for

γ ` (p, assn(τk), assn−1(τk), . . . , assk+1(τk), {(1M , τk)}, ∅, . . . , ∅, np) .

(4) Suppose that δ(γ, p) = (q, pushkα), and that D′ is a derivation tree for α ` τ , where
the state of τ is q. Denote Ψi = assi(τ) for i ∈ [1, n]. Moreover, suppose that
(Φk,Φk−1, . . . ,Φ0; Ψk; f) is a composer, and D is a set of derivation trees, all having
the stack element γ in their conclusion, and such that {rd(E) : E ∈ D} = π2(Φ0) and
|D| = |π2(Φ0)|. Let

Υi =

 Ψi for i ∈ [k + 1, n] ,
Φi for i = k ,
Ψi ∪ Φi for i ∈ [1, k − 1] .
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Then (push, γ, p,D′,D) is a derivation tree for γ ` (p,Υn,Υn−1, . . . ,Υ1, g), where g = np
if and only if f = np, and {τ} ∪ π2(Φ0) ⊆ Tnp, and π2(Ψi) ∩ π2(Φi) ⊆ Tnp for each
i ∈ [1, k − 1].

The depth of a derivation tree D, denoted depth(D), is defined naturally: it is 0 in
Cases (1) and (3), 1 + depth(D′) in Case (2), and 1 + max(depth(D′),maxE∈D depth(E)) in
Case (4).

Notice that a derivation tree D determines its conclusion. This can be seen by induction
on the structure of D. In Cases (1) and (3) this is immediate. In Case (2), γ and τ are
determined by D′, and the letter a is determined by p and by the state of τ (recall that ~q is
required to be injective, by the definition of the read operation); this already fixes the whole
conclusion of D. Case (4) is the most complicated one. First, we can see that π2(Φ0) and
all Ψi are fixed by D′ and D. Then, by the definition of a composer, we have that the set
Φ0 has to contain those pairs (m, τ) ∈M × π2(Φ0) for which (m, redk(τ)) ∈ Ψk. The set Φ0

fixes the rest of the composer, and thus the whole conclusion of D.
We now comment on the intuitions staying behind Definition 7.11. Let D be a derivation

tree for γ ` σ, where the state of σ is p. We should have in mind a run R with R(0) =
(p, sn : sn−1 : · · · : s1 : u0

γ), where pos↓(u0
γ) = γ. Basically, the run descriptor σ describes

such a run, and the derivation tree D specifies parts of this run for which the 0-stack u0
γ is

responsible.
Case (1) corresponds to an empty run (|R| = 0). Thus, the assumption sets of σ are

empty (stacks si are never uncovered), and the run descriptor is nonproductive.
In the remaining cases, nonempty runs are considered. Case (2) talks about a run R

starting with a read operation. Say that this operation reads a symbol a, and ends in a
state ~q(a). The derivation tree D′ (and, in particular, its run descriptor τ) describes the
suffix R�1,|R|. Thus, we require that the state in τ is ~q(a). Because R�0,1 does not modify

the stack, assumptions from assi(τ), referring to topi(popi(R(1))), refer simultaneously to
topi(popi(R(0))) (for i ∈ [1, n]). This is expressed by the fact that as assi(σ) we almost take
assumptions from assi(τ). The only difference is that we multiply the monoid element in
every pair by ϕ(a) on the left. This is because monoid elements in assi(τ) correspond to
some prefixes of R�1,|R|, while monoid elements in assi(σ) should talk about prefixes of the
whole R; the latter prefixes additionally read the symbol a at the very beginning. Our new
run descriptor σ is productive either when the first operation reads the ] symbol, or when
the run descriptor τ , describing the rest of the run, is productive. Recall that ~q is required
to be injective (cf. the definition of the read operation), so seeing the state ~q(a) we can
determine the symbol a that was read.

In Case (3) the first operation of R is popk, which leads to a configuration of the form
(q, sn : sn−1 : · · · : sk). The suffix R�1,|R| is described by a run descriptor τk. In particular,

the state in τk should be q. For i ∈ [1, k− 1] the i-stack si is never uncovered (it is destroyed
by the popk operation), so the assumption set assi(σ) is set to ∅. The k-stack sk is uncovered
after the first operation, so we put τk to the assumption set assk(σ), together with the
neutral element of the monoid (because the word read by R�0,1 is empty). This is the only

pair in assk(σ), because before R(1) no copies of sk are created, so sk cannot be uncovered
again. For i ∈ [k + 1, n], the assumption set assi(τk) talks about uncovering si, and hence it
is taken as assi(σ) (the monoid elements remain unchanged, because R�0,1 does not read any
symbols). Notice that, unlike for the read operation, we do not include in D any derivation
tree talking about τk. This is because in D we only describe the part of R for which the
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0-stack u0
γ is responsible: on the one hand, after the read operation, the 0-stack u0

γ is still on
the top of the stack and is responsible for continuing the run; on the other hand, after the
popk operation, u0

γ is no longer present on the stack. The run descriptor σ is nonproductive:

u0
γ is not responsible for reading any ] symbol, and every assumption of σ is used only once

(for i ∈ [k + 1, n], we simply pass every assumption from assi(σ) to τk; independently, τk

may use these assumptions more than once, but this is a responsibility of τk, not of σ).

Finally, we have Case (4), where the first operation of R is pushkα, leading to a con-
figuration of the form (q, sn : sn−1 : · · · : sk+1 : tk : p+1(sk−1 : sk−2 : · · · : s1 : u0

α)) with
tk = sk : sk−1 : · · · : s1 : u0

γ and with pos↓(u0
α) = α. A run descriptor τ (having state q)

describes the suffix R�1,|R|. In D we include a derivation tree D′ for α ` τ , talking about

the parts of R�1,|R| for which the new topmost 0-stack u0
α is responsible, because u0

γ is

responsible for creating u0
α. For i ∈ [1, k − 1] ∪ [k + 1, n], the assumption set assi(τ) refers

to the i-stack si, and hence we take assumptions from assi(τ) to assi(σ). The assumption
set assk(τ), in turn, refers to the k-stack tk, not directly to sk. Because of that, we need
a composer to decompose the assumption set assk(τ) to sets Φk,Φk−1, . . . ,Φ0, referring to
stacks sk, sk−1, . . . , s1, u0

γ . Then, for i ∈ [1, k], assumptions from Φi are taken to assi(σ).

Elements of Φ0 refer to our 0-stack u0
γ , and hence should be realized by our derivation

tree. Thus, for every run descriptor in Φ0 we provide a derivation tree (in the set D). We
should set σ to be productive if u0

γ is responsible for reading some ] symbols, or when some
productive run descriptor from an assumption set is used more than once. Maybe this
happens inside τ or inside some run descriptor from Φ0; when any of them is productive,
we set σ to be productive. But it may also happen that a productive run descriptor is
used as an assumption by τ and by some run descriptor from Φ0, or that a productive run
descriptor is used as an assumption by multiple run descriptors from Φ0 (in the latter case,
the composer is productive); in both these situation we also set σ to be productive.

As already said, a derivation tree D is not a representation of the whole run R, it only
talks about parts of R for which the topmost 0-stack u0

γ is responsible. It is not, however, a
precise representation even of these parts. This can be seen in Case (4) of the definition. It
is possible that τ uses some run descriptor ξ from the assumption set assk(τ) more than
once. This means that we have multiple suffixes of the run R described by ξ. But in D
we include only one derivation tree talking about ξ, corresponding to one of the suffixes of
R. Thus, in a sense, a derivation tree for γ ` σ is a proof that a run described by σ exists,
rather than a way of representing any such run.

Example 7.12. Consider the 2-DPDA A1 depicted below; its stack alphabet is {γ}, and
input alphabet A = {a, b, ]}.

push1
q1 q2

push2
q3 q4

pop1
q5 q6 q7

a b ]

pop2
pop2

pop2

The arrow from q1 to q2 denotes that δ(q1, γ) = (q2, push
1
γ), the arrow from q4 to q5 denotes

that δ(q4) = read(~q) with ~q(a) = q5, and so on. Take also a monoid M = {1, ne} with
1 · 1 = 1 and 1 · ne = ne · 1 = ne · ne = ne, and a morphism ϕ : A∗ →M that maps the empty
word to 1 and all nonempty words to ne.
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Consider run descriptors

σi = (qi, {(1, (q3, pr))}, ∅, np) for i ∈ {5, 6, 7} , and

σ4,f = (q4, {(ne, (q3, pr))}, ∅, f) for f ∈ {np, pr} .
They describe runs that are compositions of a 2-return, and of a run that starts in the state
q3 and reads some ] symbols (is productive). For i ∈ {5, 6, 7}, the 2-return should not read
anything. Thus, in this case Di = (pop, γ, qi, (q3, pr)) is a derivation tree for γ ` σi. On the
other hand, for i = 4 the 2-return should read a nonempty word, which should contain some
] symbol when f = pr. We can derive γ ` σ4,pr by D4,] = (read, q4, D7), and γ ` σ4,np by
D4,a = (read, q4, D5), as well as by D4,b = (read, q4, D6).

For f ∈ {np, pr}, denote σ1
4,f = red1(σ4,f ), that is, σ1

4,f = (q4, {(ne, (q3, pr))}, f). The
next run descriptors that we consider are

σ3,f = (q3, {(ne, (q3, pr))}, {(1, σ1
4,f )}, np) for f ∈ {np, pr} .

They describe runs whose some suffix (that starts before reading anything, and after a
1-return) is described by σ1

4,f , and some other suffix (that starts after reading a nonempty

word, and after a 2-return) is described by (q3, pr). We can derive γ ` σ3,f by D3,f =
(pop, γ, q3, σ

1
4,f ), for f ∈ {np, pr}. Notice that the derivation trees D3,f (and the former ones

as well) specify precisely only a prefix of a run; more precisely, the fragment of the run that
corresponds to the topmost 0-stack, before using an assumption. It is not checked that the
assumption can be fulfilled by any stack that would be placed below the topmost 0-stack.
We can equally well have a derivation tree like (pop, γ, q3, ξ4) with ξ4 = (q4, {(1, (q1, pr))}, pr),
which derives γ ` (q3, {(1, (q1, pr))}, {(1, ξ4)}, np), although it is impossible to deliver ξ4 by
any 1-stack (because, e.g., there is no 2-return that ends in the state q1).

Next, for f1, f2 ∈ {np, pr} consider run descriptors

σ2,f1,f2 = (q2, {(ne, (q3, pr))}, {(1, σ1
4,f1), (ne, σ1

4,f2)}, f3) , where f3 = pr⇔ f1 = f2 = pr .

We can derive γ ` σ2,f1,f2 by D2,f1,f2 = (push, γ, q2, D3,f1 , {D3,f2}). The derivation tree has
to specify fragments of the run for which the topmost 0-stack is responsible. When applied
to a stack s2 : s1 : s0, the push2

γ operation (resulting in (s2 : s1 : s0) : p+1(s1 : s0)) splits the

topmost 0-stack s0 into two copies; D2,f1,f2 says that, with the new copy of s0, we should
continue according to the derivation tree D3,f1 . The run descriptor rd(D3,f1) (i.e., σ3,f1)
says that the 1-stack s1 will be used with run descriptor σ1

4,f1
(before reading anything),

and that the 2-stack s2 : s1 : s0 will be used with run descriptor (q3, pr) (after reading a
nonempty word). The definition of our derivation tree involves a composer

({(ne, (q3, pr))}, {(ne, σ1
4,f2)}, {(ne, σ3,f2)}; {(ne, (q3, pr))}; np) .

It says that in order to provide (q3, pr) by the 2-stack s2 : s1 : s0, we have to provide σ3,f2

by s0, and σ1
4,f2

by s1, and (q3, pr) by s2. Because (q3, pr) for s2 : s1 : s0 will be used after

reading a nonempty word (the pair in the output set of the composer is (ne, (q3, pr))), also
the run descriptors for s0, s1, s2 will be used after reading a nonempty word. The derivation
tree D2,f1,f2 says also how the lower copy of s0 provides σ3,f2 ; this is described by the
derivation tree D3,f2 . In the order-1 assumption set of σ2,f1,f2 we put both assumptions,
(1, σ1

4,f1
) and (ne, σ1

4,f2
); the former needs to be provided by the new copy of s1, and the

latter by the lower copy of s1. Notice that σ2,pr,pr is productive, because for f1 = f2 = pr
the same (productive) run descriptor σ1

4,pr is used for s1 twice.
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Consider also run descriptors

σ1,f = (q1, {(ne, (q3, pr))}, ∅, f) for f ∈ {np, pr} .

We can derive γ ` σ1,np by D1,a,a = (push, γ, q1, D2,np,np, {D4,a}). After performing push1
γ

from s2 : s1 : s0, we obtain s2 : (s1 : s0) : p+1(s0). The derivation tree D2,np,np specifies the
behavior of the new topmost 0-stack. The composer

(∅, {(1, σ4,np), (ne, σ4,np)}; {(1, σ1
4,np), (ne, σ1

4,np)}; np)

specifies how the assumptions of rd(D2,np,np) (i.e., σ2,np,np) can be realized by the 1-stack
s1 : s0. It says that (the lower copy of) s0 should provide σ4,np, and the derivation tree
D4,a specifies how it is provided. The whole D1,a,a corresponds to a run that reads the
letter a twice. Similarly, γ ` σ1,np can be derived by D1,b,b = (push, γ, q1, D2,np,np, {D4,b}),
which corresponds to a run that reads the letter b twice. On the other hand, there is no
derivation tree corresponding to a run that first reads the letter a, and then the letter b
(or vice versa). The reason is that we have to provide exactly one realization of σ4,np for
s0; this can be either D4,a, or D4,b, but not both. The statement γ ` σ1,pr can be derived
by D1,],] = (push, γ, q1, D2,pr,pr, {D4,]}), by D1,],a = (push, γ, q1, D2,pr,np, {D4,], D4,a}), by
D1,a,] = (push, γ, q1, D2,np,pr, {D4,], D4,a}), and by similar derivation trees using the letter b
instead of a. Notice that here we have sets with two derivation trees, D4,] and D4,a; this is
because one provides a realization for σ4,pr, and the other for σ4,np.

Finally, consider run descriptors

τ7 = (q7, ∅, ∅, np) ,

τ4 = (q4, ∅, ∅, pr) , and

τ3 = (q3, ∅, {(1, τ1
4 )}, np) with τ1

4 = red1(τ4) = (q4, ∅, pr) .
Run descriptors τ4 and τ7 have empty assumption sets, hence they describe runs that never
uncover stacks that are below the topmost 0-stack (in other words, these are runs whose
every prefix is 0-upper). We can derive γ ` τ7 by E7 = (empty, γ, q7), which corresponds to
the empty run; γ ` τ4 by E4 = (read, q4, E7), which corresponds to the run that reads ] and
stops; and γ ` τ3 by E3 = (pop, γ, q3, τ

1
4 ).

Annotated Stacks. A derivation tree provides an information about a part of a run R for
which a particular 0-stack is responsible. In order to describe the whole R, we have to
specify derivation trees for all 0-stacks in R(0). To the end, we annotate stacks using sets of
derivation trees.

An annotated k-stack is a positionless3 k-stack over an extended alphabet, whose
elements are pairs (γ,D), where γ ∈ Γ and D is a set of derivation trees having conclusions
with the stack symbol γ, and different run descriptors (that is, rd(D) = rd(E) for D,E ∈ D
implies D = E). Annotated stacks are denoted using boldface letters, often with their order
written in the superscript: s0, t5, etc. The projection of each letter in an annotated k-stack
sk to the Γ coordinate is denoted by st(sk).

We also define the type of an annotated k-stack, which is a subset of T k:
type((γ,D)) = {rd(D) : D ∈ D} , type([ ]) = ∅ ,

3It turns out that while considering annotated k-stacks we do not need positions, so for notational
convenience we assume that annotated stacks are positionless (i.e., their 0-stacks do not contain positions,
conversely to non-annotated stacks).
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type(sk : sk−1) = {redk(σ) : σ ∈ type(sk−1)} .
We always want to annotate stacks in a consistent way. Intuitively, when a run descriptor

assigned to some stack element requires some assumptions, then the part of the stack that is
below has to deliver annotations fulfilling these assumptions. Simultaneously, all annotations
have to be useful: they cannot provide derivation trees for run descriptors that do not appear
as assumptions of annotations assigned higher in the stack. To formalize this, we define
below when an annotated k-stack sk is well-formed.

Definition 7.13. Each annotated 0-stack, and the empty annotated k-stack for each k ≥ 1,
are always well-formed. An annotated k-stack sk : sk−1 is well-formed if both sk and sk−1

are well-formed, and type(sk) =
⋃
{π2(assk(σ)) : σ ∈ type(sk−1)}, and |type(sk : sk−1)| =

|type(sk−1)|.

In the sequel, generally we only consider well-formed annotated stacks (except for some
moments when we first define an annotated stack, and then we prove that it is well-formed).

Notice that beside of the condition mentioned earlier (saying that type(sk) provides
exactly assumptions for run descriptors in type(sk−1)), we also have the second condition,
|type(sk : sk−1)| = |type(sk−1)|, saying that every run descriptor in type(sk : sk−1) has
exactly one realization by a composition of run descriptors from type(sk) and type(sk−1).
Both conditions have the same goal, which is also the same as for analogous conditions in
the definition of a composer (Definition 7.8): we want to estimate the number of ] symbols
read by a run by looking at the number of productive run descriptors associated to 0-stacks
in an annotated stacks. Two realizations of the same run descriptor, as well as realizations
of a run descriptor not appearing in an assumption set, would bias these calculations.

The definition of types and well-formedness connects only the type of sk : sk−1 with
the types of sk and sk−1, but similar conditions can be written for a stack of the form
sk : sk−1 : · · · : sl.

Proposition 7.14. Let 0 ≤ l ≤ k ≤ n, and let s = sk : sk−1 : · · · : sl be an annotated
k-stack in which each si is well-formed. Then,

(T1) type(s) = {redk(σ) : σ ∈ type(sl)}.
Moreover, s is well-formed if and only if

(T2) type(si) =
⋃
{π2(assi(σ)) : σ ∈ type(sl)} for every i ∈ [l + 1, k],

(T3) |type(s)| = |type(sl)|.

Proof. Induction on k− l. Suppose first that k− l = 0. In this case, Item (T1) holds because

s = sl and because redk(σ) = σ when σ ∈ T k. Moreover s is well-formed by assumption,
Item (T2) is true because [l + 1, k] = ∅ is empty, and Item (T3) is true because s = sl; thus
we have the equivalence.

Suppose now that k − l ≥ 1, and denote t = sk−1 : sk−2 : · · · : sl. We then have
s = sk : t. We apply the induction assumption to t = sk−1 : sk−2 : · · · : sl. By Item (T1) of

the induction assumption, type(t) = {redk−1(σ) : σ ∈ type(sl)}, and by the definition of the
type of s = sk : t,

type(s) = {redk(σ) : σ ∈ type(t)} = {redk(redk−1(σ)) : σ ∈ type(sl)} .

Recalling that redk(redk−1(σ)) = redk(σ), we obtain Item (T1).
Suppose that s is well-formed. Then, in particular, t is well-formed, so Items (T2)

and (T3) hold for the substack t by the induction assumption. Item (T2) from the induction
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assumption is the same as our Item (T2) for i ∈ [l+1, k−1]. By well-formedness of s = sk : t,

type(sk) =
⋃
{π2(assk(σ)) : σ ∈ type(t)} =

⋃
{π2(assk(redk−1(σ))) : σ ∈ type(sl)} .

Recalling that assk(redk−1(σ)) = assk(σ) we obtain Item (T2) for i = k. Moreover, Item (T3)
of the induction assumption says that |type(t)| = |type(sl)|, and by well-formedness of
s = sk : t we have that |type(s)| = |type(t)|, thus |type(s)| = |type(sl)| (Item (T3)).

Conversely, suppose that Items (T2) and (T3) hold for s. Because type(s) is the image

of type(t) under the function redk, and type(t) is the image of type(sl) under the function

redk−1, we necessarily have |type(s)| ≤ |type(t)| ≤ |type(sl)|, and thus |type(s)| = |type(sl)|
(Item (T3)) implies that |type(s)| = |type(t)| = |type(sl)|; we thus have Item (T3) for t.
Moreover, Item (T2) for t is a direct consequence of this item for s (we only restrict the
considered orders i to [l + 1, k − 1]). Thus, by the induction assumption, t is well-formed.

Using Item (T2) for i = k, the equality assk(σ) = assk(redk−1(σ)), and Item (T1) for t we
obtain that

type(sk) =
⋃
{π2(assk(σ)) : σ ∈ type(sl)}

=
⋃
{π2(assk(redk−1(σ))) : σ ∈ type(sl)} =

⋃
{π2(assk(σ)) : σ ∈ type(t)} .

Together with the equality |type(s)| = |type(t)| this implies that s = sk : t is well-formed.

An annotated stack s is called singular if |type(s)| = 1. When an annotated n-stack sn

is singular, we define conf(sn) to be the configuration (q, pos+(st(sn))), where q is the state
of the only run descriptor in type(sn).

As the type of a configuration c, denoted typeA,ϕ(c), we take the union of type(top0(sn))
over all well-formed singular annotated n-stacks sn such that conf(sn) = c,

typeA,ϕ(c) =
⋃
{type(top0(sn)) : sn well-formed, conf(sn) = c} .

We remark that in the union we could also allow well-formed annotated stacks sn that
are not necessarily singular, but are such that pos+(st(sn)) is the stack of c and the state of
all run descriptors in type(sn) is the state of c. On the other hand, in general there does not
exist a single well-formed annotated stack sn such that type(top0(sn)) = typeA,ϕ(c). Namely,
we can have a situation like in Example 7.9, where we cannot assign both σ1 and σ′1 to
the topmost 0-stack, as both of them result in the same run descriptor ξ1 for the topmost
1-stack.

Actually, we see a direct connection between the well-formedness property and composers.

Proposition 7.15. Let 0 ≤ l ≤ k ≤ n, let s = sk : sk−1 : · · · : sl be an annotated k-stack
in which each si is well-formed, and let Ψk ⊆ M × T k. The following two conditions are
equivalent:

• there exists a composer (Φk,Φk−1, . . . ,Φl; Ψk; f) such that π2(Φi) = type(si) for each
i ∈ [l, k], and
• s is well-formed and π2(Ψk) = type(s).

Proof. Suppose first that we have a composer (Φk,Φk−1, . . . ,Φl; Ψk; f) such that

π2(Φi) = type(si) for i ∈ [k, l] . (7.1)

Notice that

type(s) = {redk(σ) : σ ∈ type(sl)} = {redk(σ) : σ ∈ π2(Φl)} = π2(Ψk) , (7.2)
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where the consecutive equalities follow from Item (T1) of Proposition 7.14, from Equal-
ity (7.1), and from Condition (C2) of Definition 7.8, respectively. Moreover, for i ∈ [l+ 1, k],

type(si) = π2(Φi) =
⋃
{π2(assi(σ)) : σ ∈ π2(Φl)} =

⋃
{π2(assi(σ)) : σ ∈ type(sl)} , (7.3)

where the equalities are consequences of Equality (7.1), of Condition (C1) of Definition 7.8,
and of Equality (7.1) again. Simultaneously,

|type(s)| = |π2(Ψk)| = |π2(Φl)| = |type(sl)| , (7.4)

where the consecutive equalities follow from Equality (7.2), from Condition (C3) of Defini-
tion 7.8, and from Equality (7.1), respectively. Equalities (7.3) and (7.4) give Items (T2)
and (T3) of Proposition 7.14, which implies that s is well-formed; together with Equality (7.2)
this gives the thesis.

Conversely, suppose that s is well-formed and

π2(Ψk) = type(s) . (7.5)

We define

Φl = {(m,σ) : σ ∈ type(sl) ∧ (m, redk(σ)) ∈ Ψk} , and (7.6)

Φi =
⋃
{m ◦ assi(σ) : (m,σ) ∈ Φl} for i ∈ [l + 1, k] . (7.7)

By Equality (7.5) and by Item (T1) of Proposition 7.14 we have that

π2(Ψk) = type(s) = {redk(σ) : σ ∈ type(sl)} . (7.8)

This means that for every σ ∈ type(sl) there is some m such that (m, redk(σ)) ∈ Ψk. In the
light of Equality (7.6) this implies that

π2(Φl) = type(sl) . (7.9)

On the other hand, by Equality (7.7) and by Item (T2) of Proposition 7.14, for i ∈ [l+ 1, k],
we have that

π2(Φi) =
⋃
{π2(assi(σ)) : σ ∈ π2(Φl)} = type(si) . (7.10)

Let us now check particular conditions of Definition 7.8. Condition (C1) is immediate from

Equality (7.7). By Equality (7.6), for every pair (m,σ) ∈ Φl, the pair (m, redk(σ)) is in Ψk.

Conversely, by Equality (7.8), every pair in Ψk is of the form (m, redk(σ)) with σ ∈ type(sl),
hence (m,σ) ∈ Φl by Equality (7.6). This implies Condition (C2). Using consecutively
Equality (7.5), Item (T3) of Proposition 7.14, and Equality (7.9), we obtain Condition (C3):

|π2(Ψk)| = |type(s)| = |type(sl)| = |π2(Φl)| .

Condition (C4) always holds for some f ∈ {np, pr}. Thus (Φk,Φk−1, . . . ,Φl; Ψk; f) is a
composer, which together with Equalities (7.9) and (7.10) gives the thesis.

Example 7.16. This is a continuation of Example 7.12. With the derivation trees considered
there,

s1 = [[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D1,],a})]] and

s2 = [[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,], D4,a}), (γ, {D2,pr,np})]]
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are well-formed (singular) annotated 2-stacks. On the other hand, the following annotated
2-stacks are not well-formed:

s3 = [[(γ, {E4}), (γ, {E3})], [(γ, {E1}), (γ, {D1,],a})]] ,
s4 = [[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,], D4,a, D4,b}), (γ, {D2,pr,np})]] , and

s5 = [[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,]}), (γ, {D2,pr,np})]] .
In s3, we provide a spare derivation tree E1, not needed by the derivation trees assigned
above. In s4, two derivation trees, D4,a and D4,b, provide the same run descriptor. Finally,
in s5, we are missing a derivation tree that would provide σ4,np.

When Ψ̃ is a subset of the type of a well-formed annotated k-stack s, we can remove
some of the annotations in s in order to obtain a well-formed annotated k-stack s�

Ψ̃
whose

type is Ψ̃. We do this by induction:

• For k = 0, we restrict the set of derivation trees in s to those trees whose run descriptor is

in Ψ̃.
• The type of the empty stack is empty, so we need not to restrict it in any way.

• For s = sk : sk−1, we restrict sk−1 to the set Φ̃ containing those σ ∈ type(sk−1) for which

redk(σ) ∈ Ψ̃, and we restrict sk to
⋃
σ∈Φ̃

π2(assk(σ)).

Plan for the Remaining Part of the Section. We have already defined types of configurations,
as needed for Theorem 7.3. Type of a configuration c is defined via existence of annotated
stacks s such that conf(s) = c. Theorem 7.3 says that if two configurations c, d have the
same type, and we have a run starting in c, then a similar run starts d. Roughly, the strategy
of the proof is as follows. First, basing on the run starting in c, we construct an annotated
stack s with conf(s) = c, corresponding to this run. More precisely, we do not process the
whole run in this way, but rather its particular fragments. Then, because the types of c and
d equal, there exists an annotated stack t with conf(t) = d, and with rd(t) = rd(s). Having
t we proceed in the opposite direction: basing on the annotated stack t we construct a run
starting in d, satisfying the thesis of the theorem.

Recall that an annotated stack is, roughly, a description of a run. The run described by
an annotated stack is called annotated run, and is defined in Subsection 7.2. In Lemma 7.33
(located in Subsection 7.4) we prove that annotated runs have the expected form, that
is, that using an assumption of a run descriptor corresponds to performing a return. In
Subsection 7.5 we present the opposite direction: how to construct an annotated stack basing
on a run. The proof of Theorem 7.3 is finalized in Subsection 7.6.

Simultaneously, we prepare ourselves for a proof of Theorem 7.4, which additionally
talks about the number of ] symbols read by a run. We thus need to estimate the number of
] symbols read by an annotated run. To this end, in Subsection 7.2 we define two numbers
corresponding to an annotated stack s, namely low(s) and high(s). They provide a lower
bound and, respectively, an upper bound for the number of ] symbols read by an annotated
run starting in s, as showed in Lemma 7.22. (We also define there a third number, len(s),
and we prove that it gives an upper bound for the length of an annotated run starting in s.
Its role is auxiliary: it is only needed for showing that the constructed annotated run is finite.
Actually, this is needed already while proving Theorem 7.3.) The essential property is that
high(s) can be bounded by a function of low(s), as shown in Proposition 7.32, contained in
Subsection 7.3. Thus low(s) itself estimates the number of ] symbols read by an annotated
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run starting in s. With such a function low we can define sequence-equivalence, as needed in
Theorem 7.4. Namely, having a sequence of configurations (all of the same type), for every
run descriptor σ it is enough to know one think: whether there is a sequence of annotated
stacks corresponding to these configurations (and to the run descriptor σ), and such that
the values of low for these annotated stacks are bounded. If this is the case, using these
annotated stacks we can reproduce runs that read a bounded number of ] symbol. If not,
then a sequence of annotated stacks corresponding to the considered configurations also
exists, but the values of low for these annotated stacks are unbounded, and in effect the
reproduced runs read an unbounded number of ] symbols. A proof of Theorem 7.4, following
these ideas, is given in Subsection 7.7.

7.2. Annotated Runs. In this subsection we describe how, having an annotated stack, we
can reproduce a run. This is formalized in the notion of annotated runs. We also relate
the number of ] symbols read by a run with the number of productive run descriptors in
annotations of the starting configuration. Later, in Subsection 7.5, we do the converse: we
show how to construct an annotated stack basing on a run. Recall that when a well-formed
annotated stack is singular, then its topmost 0-stack is singular as well (cf. Item (T3) of
Proposition 7.14).

Definition 7.17. Let s = sn : sn−1 : · · · : s0 be a well-formed singular annotated n-stack,
where s0 = (γ, {D}). We define the successor of s.

(1) If D = (empty, γ, p), then s has no successor.
(2) If D = (read, p,D′), then the successor is sn : sn−1 : · · · : s1 : (γ, {D′}).
(3) If D = (pop, γ, p, τk), then the successor is sn : sn−1 : · · · : sk.
(4) Suppose that D = (push, γ, p,D′,D). Let α, k, Ψi, Φi be as in Definition 7.11(4). In

this situation, the successor of s is

sn : sn−1 : · · · : sk+1 : tk : sk−1�π2(Ψk−1) : sk−2�π2(Ψk−2) : · · · : s1�π2(Ψ1) : (α, {D′}) ,

where tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D).

We notice that in Case (4) for i ∈ [1, k] we have that π2(Φi) ⊆ type(si), and for
i ∈ [1, k − 1] we have that π2(Ψi) ⊆ type(si), and thus the restrictions are legal. Indeed,
from Proposition 7.14 applied to s we know that type(si) = π2(assi(rd(D))) for all i ∈ [1, n];
moreover, by Definition 7.11(4), assi(σ) = Ψi ∪ Φi for i ∈ [1, k − 1], and assk(σ) = Φk.

Proposition 7.18. Let t be the successor of a well-formed singular annotated n-stack s.
Then t is singular, well-formed, and conf(t) is a successor of conf(s) (in the considered
automaton).

Proof. Let s = sn : sn−1 : · · · : s0, and s0 = (γ, {D}), and σ = rd(D). All si are well-formed,
because s is well-formed. Moreover, by Proposition 7.14, type(si) = π2(assi(σ)) for all
i ∈ [1, n].

We have several cases depending on the shape of s. We cannot have D = (empty, γ, p),
as then s has no successor.

Suppose that D = (read, p,D′). Recall from Definition 7.11 that π2(assi(rd(D′)) =
π2(assi(σ)) for all i ∈ [1, n]. By Proposition 7.14, t is singular (its type is a singleton
{redn(rd(D′))}) and well-formed. Moreover, δ(γ, p) = read(~q), where ~q(a) equals the state of
rd(D′) for some a ∈ A. The transition from conf(s) reading this a leads to conf(t).
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Next, suppose that D = (pop, γ, p, τk). By Definition 7.11 we have that π2(assk(σ)) =
{τk} (hence type(sk) = {τk}) and assi(σ) = assi(τk) (hence type(si) = π2(assi(τk))) for
i ∈ [k + 1, n]. Proposition 7.14 applied to t = sn : sn−1 : · · · : sk implies that it is singular
and well-formed. Moreover, δ(γ, p) = (q, popk), where q is the state of τk, so the transition
from conf(s) leads to conf(t).

Finally, suppose that D = (push, γ, p,D′,D). Let α, k, Ψi, Φi, f be as in Defini-
tion 7.11(4), and tk as in Definition 7.17(4). Obviously, type(si�π2(Φi)) = π2(Φi), for all

i ∈ [1, k]; moreover, type((γ,D)) = {rd(E) : E ∈ D} = π2(Φ0), by Definition 7.11(4).
Furthermore, again by this definition, (Φk,Φk−1, . . . ,Φ0; Ψk; f) is a composer. It fol-
lows from Proposition 7.15 that tk is well-formed, and type(tk) = π2(Ψk) (recall that
tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D)). By Definition 7.11(4), for all i ∈ [1, n]

we have that Ψi = assi(rd(D′)). Moreover,

• for i ∈ [k + 1, n], we have assi(σ) = Ψi by Definition 7.11(4), so type(si) = π2(assi(σ)) =
π2(Ψi) = π2(assi(rd(D′)));
• type(tk) = π2(Ψk) = π2(assk(rd(D′));
• for i ∈ [1, k − 1], we have that type(si�π2(Ψi)) = π2(Ψi) = π2(assi(rd(D′)).

In effect, t, which is a composition of these stacks, and of (α, {D′}) is singular and well-

formed by Proposition 7.14. Additionally, δ(γ, p) = (q, pushkα), where q is the state of rd(D′),
so the transition from conf(s) leads to conf(t).

An annotated run R is a sequence s0, . . . , sm of well-formed singular n-stacks in which
si is the successor of si−1 for each i ∈ [1,m]. By replacing each si by conf(si) we obtain a
run denoted st(R).

Notice that an annotated stack s may have less successors than conf(s). Indeed, in
the case of D = (empty, γ, p) there are no successors of s, but conf(s) may have successors.
Similarly, in the case of D = (read, p,D′) there is exactly one successor of s (the state in
rd(D′) determines which letter should be read), while in a run from conf(s) we can read any
letter.

Example 7.19. Recall the 2-DPDA A1 from Example 7.12, and the annotated stack
s1 = [[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D1,],a})]] from Example 7.16. The successors of s1

are, consecutively,

[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,], D4,a}), (γ, {D2,pr,np})]] ,
[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,a}), (γ, {D3,np})], [(γ, ∅), (γ, {D4,]}), (γ, {D3,pr})]] ,
[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,a}), (γ, {D3,np})], [(γ, ∅), (γ, {D4,]})]] ,
[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,a}), (γ, {D3,np})], [(γ, ∅), (γ, {D7})]] ,
[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,a}), (γ, {D3,np})]] ,
[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D4,a})]] ,
[[(γ, {E4}), (γ, {E3})], [(γ, ∅), (γ, {D5})]] ,
[[(γ, {E4}), (γ, {E3})]] ,
[[(γ, {E4})]] ,
[[(γ, {E7})]] ;

the last of them has no more successors. In the transition between the first and the second
line, D2,pr,np says that the new topmost 0-stack should be annotated by D3,pr, and that the
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previously topmost 0-stack should be annotated by D3,np. Because ass1(rd(D3,pr)) = σ1
4,pr

and ass1(rd(D3,np)) = σ1
4,np, we know that D4,] should be taken to the topmost 1-stack (we

have that red1(rd(D4,])) = σ1
4,pr), and that D4,a should be left in the second topmost 1-stack

(we have that red1(rd(D4,a)) = σ1
4,np).

We can see that not every run is of the form st(R) for some annotated run R. For
example, this is the case for the run that starts in (q1, pos+([[γ, γ], [γ, γ]])) and reads a, then
b, and then ]. Indeed, in order to obtain such a run as an annotated run, to the topmost
0-stack we have to assign a hypothetical derivation tree D1,a,b, saying that we should first
read a and then b, but there is no such derivation tree (as already explained in Example 7.12).
Another run that is not of the form st(R) for any annotated run R is the run that starts in
(q2, pos+([[γ, γ], [γ, γ, γ]])) and reads a, then b, and then ]. This time the problem is that to
the second topmost 0-stack we cannot assign simultaneously D4,a and D4,b, as they both
have the same run descriptor. More generally, the push in Case (4) of Definition 7.17 leaves
the same annotations in the original substack as in the copied substack, up to a restriction,
which causes that fragments of the annotated run corresponding to these substacks have to
be the same.

A priori there might exist an infinite annotated run. But, as we see below, this
is impossible: always after some number of steps we reach an annotated stack with no
successors (Case (1) of Definition 7.17). Moreover, we show that the number of ] symbols read
by the run starting in an annotated stack s can be estimated by the number of productive
run descriptors in the annotations of s. To this end, to each well-formed annotated stack s
we assign three natural numbers: low(s), high(s), and len(s). The first two of them give a
lower and an upper bound on the number of ] symbols read by our run, and the last one
gives an upper bound on the length of the run.

Definition 7.20. For positive integers m1, . . . ,mk we define pow(m1, . . . ,mk) by induction
on k:

pow() = 1 , and pow(m1,m2, . . . ,mk) = (1 +m1)pow(m2,...,mk) − 1 .

Notice that, in particular, pow(m1) = m1 and pow(m1,m2) = (1 +m1)m2 − 1.

Definition 7.21. For a well-formed annotated k-stack s we define natural numbers low(s),
high(s), and len(s) by induction on the structure of s.

• If s = (γ,D), we take

low(s) = |type(s) ∩ Tpr| ,

high(s) =
∏

D∈D : rd(D)∈Tpr

Cdepth(D) , and

len(s) =
∏
D∈D

Cdepth(D) ,

where Cz is defined inductively:

C0 = 2 , and Cz+1 = (2|T 0|)n · (Cz)|T
0|+1 .

• We take low([ ]) = 0 and high([ ]) = len([ ]) = 1.
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• If s = sk : sk−1, we take

low(s) =
∑

σ∈type(sk−1)

(
low(sk�π2(assk(σ))) + low(sk−1�{σ})

)
,

high(s) =
∏

σ∈type(sk−1)

pow
(
high(sk�π2(assk(σ))), high(sk−1�{σ})

)
, and

len(s) =
∏

σ∈type(sk−1)

pow
(
len(sk�π2(assk(σ))), len(sk−1�{σ})

)
.

The three numbers are interesting for us, because of the following lemma. Recall that,
for a run R, by ](R) we denote the number of ] symbols read by R.

Lemma 7.22. If R is an annotated run,

low(R(0)) ≤ ](st(R)) + low(R(|R|)) ,
high(R(0)) ≥ ](st(R)) + high(R(|R|)) , and

len(R(0)) ≥ |R|+ len(R(|R|)) .

This is one of key lemmas of this section. We now give some examples and intuitions
staying behind this lemma, and behind the definitions of low, high, and len; after that, we
prove this lemma.

We see that the last inequality of Lemma 7.22 bounds the length of an annotated run
R by len(R(0)), that is, by a function of the annotated stack R(0), in which the annotated
run starts. Similarly, the second inequality bounds the number of ] symbols read by R,
by another function of R(0), namely by high(R(0)). The additional components added
on the right of these inequalities only strengthen them. Conversely, the role of the first
inequality is to give a lower bound for the number of ] symbols read by R. If R is maximal
(i.e., cannot be prolonged), then the topmost 0-stack of R(R) is annotated by a derivation
tree of the form (empty, γ, q), and all other 0-stacks are annotated by empty sets. In effect
low(R(|R|)) = 0, and we simply obtain that low(R(0)) ≤ ](st(R)). But for an arbitrary
run R, which may end prematurely, even before reading any ] symbol, we have to add
low(R(|R|)) on the right side of the inequality.

Roughly speaking, low(R(0)) counts the number of productive run descriptors in the
annotations of R(0). The intuition is that every productive run descriptor is responsible for
increasing the number of ] symbols read, so the first inequality of Lemma 7.22 should hold
with such a definition of low.

We see that the function high takes into account the same productive run descriptors
as low, but instead of sums we use products and the pow function. Indeed, it is shown
in Proposition 7.27 that if all run descriptors in the annotations of a substack sk−1 are
nonproductive, then high(sk−1) = 1 (and low(sk−1) = 0). Suppose that sk−1 is singular, that
is, its type is a singleton {σ}. If sk : sk−1 is well-formed, we have type(sk) = π2(assk(σ)).
Observe that pow(x, 1) = (1 + x)1 − 1 = x for every x, and thus

high(sk : sk−1) = pow(high(sk�π2(assk(σ))), high(sk−1�{σ}))

= pow(high(sk), high(sk−1)) = pow(high(sk), 1) = high(sk) .
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This is similar to the behavior of the low function, as in such a case we also have

low(sk : sk−1) = low(sk�π2(assk(σ))) + low(sk−1�{σ})

= low(sk) + low(sk−1) = low(sk) + 0 = low(sk) .

Technical details of the definition of high were chosen so that it is possible to perform
a proof, but two facts are important here. First, nonproductive run descriptors cannot
be responsible for increasing the number of ] symbols read, and thus (in order to obtain
the second inequality of Lemma 7.22) it is enough to have a function high that takes into
account only productive run descriptors (i.e., ignores nonproductive run descriptors). Second,
because high(R(0)) and low(R(0)) are counting the same productive run descriptors, only
in a different way, the two values are related. Namely, high(R(0)) can be bounded by a
function of low(R(0)). This essential property is shown in Proposition 7.32, in the next
subsection.

The function len is defined very similarly to high, but it takes into account all run
descriptors, not only productive ones. Thus, roughly, it depends on the size of the annotated
stack.

Example 7.23. We continue the previous examples, concerning the 2-DPDA A1 from
Example 7.12. Consider the annotated stack s1 = [[t4, t3], [t2, t1]], where

t1 = (γ, {D1,],a}) , t3 = (γ, {E3}) ,
t2 = (γ, ∅) , t4 = (γ, {E4}) .

We have that

type(t1) = {rd(D1,],a)} = {σ1,pr} , π2(ass1(σ1,pr)) = ∅ ,
type(t2) = ∅ ,
type(t3) = {rd(E3)} = {τ3} , π2(ass1(τ3)) = {τ1

4 } ,
type(t4) = {rd(E4)} = {τ4} . π2(ass1(τ4)) = ∅ .

In effect

type([t2, t1]) = {red1(σ) : σ ∈ type(t1)} = {red1(σ1,pr)} , π2(ass2(red1(σ1,pr))) = {(q3, pr)} ,
type([t2]) = {red1(σ) : σ ∈ type(t2)} = ∅ ,
type([t4, t3]) = {red1(σ) : σ ∈ type(t3)} = {red1(τ3)} , π2(ass2(red1(τ3))) = ∅ ,
type([t4]) = {red1(σ) : σ ∈ type(t4)} = {red1(τ4)} = {τ1

4 } , and finally

type([[t4, t3]]) = {red2(σ) : σ ∈ type([t4, t3])} = {red2(red1(τ3))} = {(q3, pr)} .
Recall that τ3 ∈ Tnp and σ1,pr, τ4 ∈ Tpr. We can compute low(s1) as follows:

low([t4]) =
∑

σ∈type(t4)

(
low([ ]�π2(ass1(σ))) + low(t4�{σ})

)
= low([ ]�∅) + low(t4�{τ4}) = low([ ]) + low(t4) = 0 + 1 = 1 ,
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low([[t4, t3]]) =
∑

σ∈type([t4,t3])

(
low([ ]�π2(ass2(σ))) + low([t4, t3]�{σ})

)
= low([ ]�∅) + low([t4, t3]�{red1(τ3)}) = 0 + low([t4, t3])

=
∑

σ∈type(t3)

(
low([t4]�π2(ass1(σ))) + low(t3�{σ})

)
= low([t4]�{τ14 }) + low(t3�{τ3}) = low([t4]) + low(t3) = 1 + 0 = 1 ,

low([t2]) =
∑

σ∈type(t2)

(
low([ ]�π2(ass1(σ))) + low(t2�{σ})

)
= 0 ,

low([t2, t1]) =
∑

σ∈type(t1)

(
low([t2]�π2(ass1(σ))) + low(t1�{σ})

)
= low([t2]�∅) + low(t1�{σ1,pr}) = low([t2]) + low(t1) = 0 + 1 = 1 ,

low(s1) =
∑

σ∈type([t2,t1])

(
low([[t4, t3]]�π2(ass2(σ))) + low([t2, t1]�{σ})

)
= low([[t4, t3]]�{(q3,pr)}) + low([t2, t1]�{red1(σ1,pr)})

= low([[t4, t3]]) + low([t2, t1]) = 1 + 1 = 2 .

We see that the restrictions of annotated stacks appearing in the above formulas do not
modify these annotated stacks (this is the case because all annotations are either singletons
or empty sets).

Next, we compute high(s1). To this end, recall that depth(D1,],a) = 2 and depth(E4) = 1.
This time we give the formulas ignoring the restrictions, as again they do not change
anything:

high([t4, t3]) = pow(high([t4]), high(t3)) = pow(pow(high([ ]), high(t4)), high(t3))

= pow(pow(1, Cdepth(E4)), 1) = pow(pow(1, C1), 1) = 2C1 − 1 ,

high([t2, t1]) = pow(high([t2]), high(t1)) = pow(1, Cdepth(D1,],a)) = 2C2 − 1 ,

high(s1) = pow(high([[t4, t3]]), high([t2, t1]))

= pow(pow(high([ ]), high([t4, t3])), high([t2, t1]))

= pow(pow(1, 2C1 − 1), 2C2 − 1) = 2(2C1−1)(2C2−1) − 1 .

Notice that high(t3) = 1, because type(t3) contains only a nonproductive run descriptor.
Similarly, we can compute len(s1), but this should also take into account E3, whose

depth is 0:

len([t4, t3]) = pow(len([t4]), len(t3)) = pow(pow(len([ ]), len(t4)), len(t3))

= pow(pow(1, Cdepth(E4)), Cdepth(E3)) = pow(pow(1, C1), C0) = 2C1·C0 − 1 ,

len([t2, t1]) = pow(len([t2]), len(t1)) = pow(1, Cdepth(D1,],a)) = 2C2 − 1 ,

len(s1) = pow(len([[t4, t3]]), len([t2, t1]))

= pow(pow(len([ ]), len([t4, t3])), len([t2, t1]))

= pow(pow(1, 2C1·C0 − 1), 2C2 − 1) = 2(2C1·C0−1)(2C2−1) − 1 .
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We have said that low counts the number of productive run descriptors in all annotations.
This is a good high-level intuition, but strictly speaking this is not true. Indeed, say that
we have two run descriptors σ, σ′ ∈ type(sk−1) such that assk(σ) = assk(σ′). Then, in the
formula for low(sk : sk−1) we add low(sk�π2(assk(σ))) twice (once for σ, and once for σ′). This
is illustrated by the next example.

Example 7.24. Consider the 2-DPDA A2 depicted below; its stack alphabet is {γ}, and
input alphabet {]}.

push2
q1 q2

pop1
q3 q4

pop1
q5 q6 q7

]

pop1

pop2 pop1

This time we consider the trivial monoid M = {1}. Denote

σ1
i = (qi, {(1, (q6, pr))}, pr) for i ∈ {3, 4, 7} .

We are interested in derivation trees

D1 = (push, γ, q1, (pop, γ, q2, σ
1
3), {(pop, γ, q6, σ

1
7)}) ,

Di = (pop, γ, qi, σ
1
4) for i ∈ {3, 7}, and

D4 = (read, q4, (pop, γ, q5, (q6, pr))) .

The annotated 1-stack s = [(γ, {D4}), (γ, {D3, D7}), (γ, {D1})] is well-formed. Notice that
the run descriptor of D4 is productive, while run descriptors of D1, D3, and D7 are
nonproductive. We can see, though, that D1 uses both D3 and D7 as assumptions, and
both D3 and D7 use D4 as an assumption. In effect low(s) counts the nonproductive run
descriptor rd(D4) twice:

low(s) = low([(γ, {D4}), (γ, {D3, D7})]) + low((γ, {D1}))
= low([(γ, {D4})]) + low((γ, {D3})) + low([(γ, {D4})]) + low((γ, {D7})) + 0

= 1 + 0 + 1 + 0 + 0 = 2 .

Remark 7.25. Consider the function in(k) defined by

i0(k) = k and in+1(k) = 2in(k) .

One can construct an n-DPDA A that recognizes the language {]ka]in−1(k) : k ∈ N} (see
Blumensath [Blu08, Example 9] for a very similar construction). After reading a prefix
]ka, the number of 0-stacks in the n-stack s of A is linear in k. It is possible to annotate
s, resulting in an annotated stack s, such that the maximal annotated run starting from
s reads in−1(k) ] symbols. It follows that the high function (and thus len as well) has to
be at least (n− 1)-fold exponential in the size of an annotated n-stack. According to our
definition, high and len are (in the worst case) (n + 1)-fold exponential, which is slightly
larger than necessary. We believe that it is possible to save these two exponentiations, at
the cost of complicating proofs.

We now prove Lemma 7.22, which fills the rest of this subsection. We start by proving
some (in)equalities regarding the pow function.

Proposition 7.26. The following is true for all positive integers:

pow(a1, . . . , ak, pow(b1, . . . , bl)) = pow(a1, . . . , ak, b1, . . . , bl) , (7.11)
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pow(a1, . . . , ak, pow(c0, c1, . . . , cl), b1, . . . , bl) ≤
≤ pow(a1, . . . , ak, c0, b1c1, . . . , blcl) , (7.12)

pow(a1, . . . , ai−1, a
x
i , ai+1, . . . , ak−1, ak) ≤ pow(a1, . . . , ak−1, xak) for i < k , (7.13)

pow(a1, . . . , ak−1, ak) + 1 ≤ pow(a1, . . . , ak−1, ak + 1) , (7.14)

pow(a1, . . . , ak) · pow(b1, . . . , bk) ≤ pow(a1b1, . . . , akbk) . (7.15)

Proof. Equality (7.11) can be shown by induction on k. For k = 0 we have that

pow(pow(b1, . . . , bl)) = (1 + pow(b1, . . . , bl))
pow() − 1

= (1 + pow(b1, . . . , bl))
1 − 1 = pow(b1, . . . , bl) ,

and for k > 0 we directly use the induction assumption:

pow(a1, . . . , ak, pow(b1, . . . , bl)) = (1 + a1)pow(a2,...,ak,pow(b1,...,bl)) − 1

= (1 + a1)pow(a2,...,ak,b1,...,bl) − 1

= pow(a1, . . . , ak, b1, . . . , bl) .

For Inequality (7.12) suppose first that k = 0. By Inequality (7.15), which we prove
below, it follows that

pow(pow(c0, c1, . . . , cl), b1, . . . , bl) = (1 + pow(c0, c1, . . . , cl))
pow(b1,...,bl) − 1

= (1 + (1 + c0)pow(c1,...,cl) − 1)pow(b1,...,bl) − 1

= (1 + c0)pow(b1,...,bl)·pow(c1,...,cl) − 1

≤ (1 + c0)pow(b1c1,...,blcl) − 1 = pow(c0, b1c1, . . . , blcl) .

It is easy to see that pow is monotone, thus the general form of Inequality (7.12) follows
from the above special form thanks to Equality (7.11):

pow(a1, . . . , ak, pow(c0, c1, . . . , cl), b1, . . . , bl)

= pow(a1, . . . , ak, pow(pow(c0, c1, . . . , cl), b1, . . . , bl))

≤ pow(a1, . . . , ak, pow(c0, b1c1, . . . , blcl)) = pow(a1, . . . , ak, c0, b1c1, . . . , blcl) .

Heading toward proving Inequality (7.13), we first show that

x · pow(ai+1, . . . , ak) ≤ pow(ai+1, . . . , ak−1, xak) , (7.16)

where i < k, and the numbers x, ai+1, . . . , ak are positive integers. This is shown by induction
on k − i. When k − i = 1, we simply have that

x · pow(ak) = x · ((1 + ak)
1 − 1) = (1 + xak)

1 − 1 = pow(xak) .

Suppose that k − i > 1. Notice that xb ≤ bx for all x ∈ N and b ≥ 2. Thus,

x · pow(ai+1, . . . , ak) = x · ((1 + ai+1)pow(ai+2,...,ak) − 1)

≤ x · (1 + ai+1)pow(ai+2,...,ak) − 1 ≤ (1 + ai+1)x·pow(ai+2,...,ak) − 1

≤ (1 + ai+1)pow(ai+2,...,ak−1,xak) − 1 = pow(ai+1, . . . , ak−1, xak) .

Above, the first inequality holds because x ≥ 1; the second inequality follows from the
inequality xb ≤ bx, where we notice that (1 + ai+1)pow(ai+2,...,ak) ≥ 2 (because ai+1 ≥ 1 and
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pow(. . . ) ≥ 1); the third inequality is an application of the induction assumption. From
Inequality (7.16) it follows that

pow(axi , ai+1, . . . , ak) = (1 + axi )pow(ai+1,...,ak) − 1 ≤ (1 + ai)
x·pow(ai+1,...,ak) − 1

≤ (1 + ai)
pow(ai+1,...,ak−1,xak) − 1 = pow(ai+1, . . . , ak−1, xak) .

This gives the thesis, by Equality (7.11) and by monotonicity of pow:

pow(a1, . . . , ai−1, a
x
i , ai+1, . . . , ak−1, ak) = pow(a1, . . . , ai−1, pow(axi , ai+1, . . . , ak−1, ak))

≤ pow(a1, . . . , ai−1, pow(ai, . . . , ak−1, xak)) = pow(a1, . . . , ak−1, xak) .

Inequality (7.14) is shown by induction on k. For k = 1 we simply have

pow(a1) + 1 = (1 + a1)1 − 1 + 1 = (1 + a1 + 1)1 − 1 = pow(a1 + 1) .

For k > 1 we use the induction assumption as follows (the first inequality below holds
because a1 ≥ 1):

pow(a1, . . . , ak−1, ak) + 1 = (1 + a1)pow(a2,...,ak) − 1 + 1 ≤ (1 + a1)pow(a2,...,ak)+1 − 1

≤ (1 + a1)pow(a2,...,ak−1,ak+1) − 1 = pow(a1, . . . , ak−1, ak + 1) .

Inequality (7.15) is also shown by induction on k. For k = 0 the thesis is trivial:

pow() · pow() = 1 · 1 = 1 = pow() .

Suppose now that k ≥ 1, and denote x = pow(a2, . . . , ak) and y = pow(b2, . . . , bk). We claim
that

((1 + a1)x − 1)((1 + b1)y − 1) ≤ (1 + a1b1)xy − 1 . (7.17)

Let us prove this inequality. By symmetry, we can assume that x ≥ y. We have three cases.
If x = y = 1, Inequality (7.17) simply says that

((1 + a1)1 − 1)((1 + b1)1 − 1) = a1b1 ≤ (1 + a1b1)1·1 − 1 .

Next, suppose that x ≥ 2 and y = 1. We see that

0 ≤ (b1 − 1)2 ,

0 ≤ b21 − 2b1 + 1 ,

4b1 ≤ b21 + 2b1 + 1 ,

4b1 ≤ (b1 + 1)2 ,

b1 ≤
(
b1 + 1

2

)2

.

Because x ≥ 2 and b1 ≥ 1, it follows that

b1 ≤
(
b1 + 1

2

)x
. (7.18)

Next, observe that

0 ≤ (a1 − 1)(b1 − 1) ,

0 ≤ a1b1 − a1 − b1 + 1 ,

a1b1 + a1 + b1 + 1 ≤ 2a1b1 + 2 ,

(1 + a1)(b1 + 1) ≤ 2 + 2a1b1 ,
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(1 + a1)

(
b1 + 1

2

)
≤ 1 + a1b1 . (7.19)

Using Inequalities (7.18) and (7.19) we obtain Inequality (7.17):

((1 + a1)x − 1)((1 + b1)1 − 1) = (1 + a1)x · b1 − b1 ≤ (1 + a1)x · b1 − 1

≤ (1 + a1)x
(
b1 + 1

2

)x
− 1 ≤ (1 + a1b1)x·1 − 1 .

The remaining case is when x ≥ y ≥ 2. In this case we have that

((1 + a1)x − 1)((1 + b1)y − 1) ≤ (1 + a1)x(1 + b1)y − 1 ≤ (1 + a1)x(1 + b1)x − 1

≤ (1 + a1b1)x(1 + a1b1)x − 1 = (1 + a1b1)x·2 − 1

≤ (1 + a1b1)x·y − 1 .

Thus, we have shown Inequality (7.17) in all cases. Using this inequality and the induction
assumption, we can conclude that

pow(a1, . . . , ak) · pow(b1, . . . , bk) = ((1 + a1)x − 1)((1 + b1)y − 1) ≤ (1 + a1b1)x·y − 1

≤ (1 + a1b1)pow(a2b2,...,akbk) − 1 = pow(a1b1, . . . , akbk) .

Heading toward the proof of Lemma 7.22, we now observe some auxiliary properties.

Proposition 7.27. Let s be a well-formed annotated stack. If type(s) ⊆ Tnp then low(s) = 0
and high(s) = 1; otherwise low(s) ≥ 1 and high(s) ≥ 2.

Proof. By induction on the structure of s. In the base cases of a 0-stack and of an empty
k-stack, the thesis follows directly from Definition 7.21. In the induction step denote
s = sk : sk−1. Recall that type(s) = {redk(σ) : σ ∈ type(sk−1)} (by the definition of types),
so

type(s) ⊆ Tnp ⇔ ∀σ∈type(sk−1)red
k(σ) ∈ Tnp .

Moreover,

redk(σ) ∈ Tnp ⇔ (σ ∈ Tnp ∧ π2(assk(σ)) ⊆ Tnp)

for σ ∈ T k−1 (by the definition of redk). It follows that

type(s) ⊆ Tnp ⇔ ∀σ∈type(sk−1)(σ ∈ Tnp ∧ π2(assk(σ)) ⊆ Tnp) .

If type(s) ⊆ Tnp then, by the induction assumption, low(sk�π2(assk(σ))) = low(sk−1�{σ}) =

0 and high(sk�π2(assk(σ))) = high(sk−1�{σ}) = 1 for all σ ∈ type(sk−1); in effect

low(s) =
∑

σ∈type(sk−1)

(
low(sk�π2(assk(σ))) + low(sk−1�{σ})

)
=

∑
σ∈type(sk−1)

(0 + 0) = 0 , and

high(s) =
∏

σ∈type(sk−1)

pow
(
high(sk�π2(assk(σ))), high(sk−1�{σ})

)
.

=
∏

σ∈type(sk−1)

pow(1, 1) =
∏

σ∈type(sk−1)

1 = 1 .
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Conversely, if type(s) 6⊆ Tnp then, by the induction assumption, at least one among

low(sk�π2(assk(σ))) and low(sk−1�{σ}) for σ ∈ type(sk−1) is positive (and all other are non-

negative); in effect low(s), being their sum, is positive. Similarly, at least one among
high(sk�π2(assk(σ))) and high(sk−1�{σ}) is greater than 1 (and all other are positive); in ef-

fect some pow
(
high(sk�π2(assk(σ))), high(sk−1�{σ})

)
is greater than 1 (notice that pow(2, 1) =

(1 + 2)1 − 1 = 2, and pow(1, 2) = (1 + 1)2 − 1 = 3, and that pow is monotone), and thus
their product high(s) is greater than 1.

Proposition 7.28. For every well-formed annotated stack s,

low(s) =
∑

σ∈type(s)

low(s�{σ}) , high(s) =
∏

σ∈type(s)

high(s�{σ}) , and

len(s) =
∏

σ∈type(s)

len(s�{σ}) .

Proof. We analyze Definition 7.21. Suppose first that s = (γ,D) (i.e., that s is of order 0).
Because type(s�{σ}) = {σ},

low(s) = |type(s) ∩ Tpr| =
∑

σ∈type(s)

|{σ} ∩ Tpr|

=
∑

σ∈type(s)

|type(s�{σ}) ∩ Tpr| =
∑

σ∈type(s)

low(s�{σ}) .

Recall that type(s) = {rd(D) : D ∈ D}, and that s�{σ} = (γ, {D ∈ D : rd(D) = σ}); thus,

high(s) =
∏

D∈D : rd(D)∈Tpr

Cdepth(D)

=
∏

σ∈type(s)

 ∏
D∈D : rd(D)=σ∈Tpr

Cdepth(D)

 =
∏

σ∈type(s)

high(s�{σ}) , and

len(s) =
∏
D∈D

Cdepth(D) =
∏

σ∈type(s)

 ∏
D∈D : rd(D)=σ

Cdepth(D)

 =
∏

σ∈type(s)

len(s�{σ}) .

If s = [ ], then type(s) = ∅, and thus

low(s) = 0 =
∑
σ∈∅

low(s�{σ}) , high(s) = 1 =
∏
σ∈∅

high(s�{σ}) , and

len(s) = 1 =
∏
σ∈∅

len(s�{σ}) .

Finally, suppose that s = sk : sk−1. Recall that type(s) = {redk(τ) : τ ∈ type(sk−1)}.
Moreover, by well-formedness of s, for every σ ∈ type(s) there is exactly one τ ∈ type(sk−1)

such that redk(τ) = σ; denote it τσ. By the definition of a restriction, we have that
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s�{σ} = sk�π2(assk(τσ)) : sk−1�{τσ}. Recalling that type(s�{σ}) = {σ}, we obtain

low(s) =
∑

τ∈type(sk−1)

(
low(sk�π2(assk(τ))) + low(sk−1�{τ})

)
=

∑
σ∈type(s)

(
low(sk�π2(assk(τσ))) + low(sk−1�{τσ})

)
=

∑
σ∈type(s)

low(s�{σ}) ,

high(s) =
∏

τ∈type(sk−1)

pow
(
high(sk�π2(assk(τ))), high(sk−1�{τ})

)
=

∏
σ∈type(s)

pow
(
high(sk�π2(assk(τσ))), high(sk−1�{τσ})

)
=

∏
σ∈type(s)

high(s�{σ}) , and

len(s) =
∏

τ∈type(sk−1)

pow
(
len(sk�π2(assk(τ))), len(sk−1�{τ})

)
=

∏
σ∈type(s)

pow
(
len(sk�π2(assk(τσ))), len(sk−1�{τσ})

)
=

∏
σ∈type(s)

len(s�{σ}) .

Proposition 7.29. Let 0 ≤ l ≤ k ≤ n, and let s = sk : sk−1 : · · · : sl be a well-formed
annotated k-stack that is singular. In this situation

low(s) =
k∑
i=l

low(si) ,

high(s) = pow(high(sk), high(sk−1), . . . , high(sl)) , and

len(s) = pow(len(sk), len(sk−1), . . . , len(sl)) .

Proof. Induction on k − l. For k − l = 0, we simply have s = sk; both sides of each equality
are the same (recall that pow(x) = x for every x).

Suppose that k − l ≥ 1, and denote t = sk−1 : sk−2 : · · · : sl; we have that s = sk : t.
Because s is well-formed and type(s) is a singleton, also type(t) is a singleton {σ}, where
type(sk) = π2(assk(σ)). In effect, restricting t to {σ} or sk to π2(assk(σ)) does not change
the annotated stacks, so, by definition,

low(s) =
∑

σ∈type(t)

(
low(sk�π2(assk(σ))) + low(t�{σ})

)
= low(sk) + low(t) .

Similarly,

high(s) = pow(high(sk), high(t)) and len(s) = pow(len(sk), len(t)) .

From the induction assumption we know that

low(t) =
k−1∑
i=l

low(si) ,

high(t) = pow(high(sk−1), high(sk−2), . . . , high(sl)) , and

len(t) = pow(len(sk−1), len(sk−2), . . . , len(sl)) .

By substituting this to equalities for low(s), high(s), and len(s) we obtain the thesis, where
in the case of high and len we additionally use Equality (7.11).
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Proposition 7.30. Let 0 ≤ l ≤ k ≤ n, let s = sk : sk−1 : · · · : sl be a well-formed annotated
k-stack, and let σ ∈ type(sl). In this situation

s�{redk(σ)} = sk�π2(assk(σ)) : sk−1�π2(assk−1(σ)) : · · · : sl+1�π2(assl+1(σ)) : sl�{σ} .

Proof. Proposition 7.14 used for s implies that type(s) = {redk(σ) : σ ∈ type(sl)} and

|type(s)| = |type(sl)|; the latter means that redk(σ) = redk(σ′) implies σ = σ′ for σ, σ′ ∈
type(sl).

Observe that topl(s�{redk(σ)}) equals sl restricted to a subset of type(sl). Proposition 7.14

used for s�{redk(σ)} implies that this subset is a singleton {σ′}, and that redk(σ′) = redk(σ).

This implies that σ′ = σ, by the previous paragraph. Using also Item (T2) of Proposition 7.14,
we see that

s�{redk(σ)} = sk�π2(assk(σ)) : sk−1�π2(assk−1(σ)) : · · · : sl+1�π2(assl+1(σ)) : sl�{σ} ,

as required.

Next, we observe how the functions low, high, and len interplay with composing annotated
stacks.

Lemma 7.31. Let 0 ≤ l ≤ k ≤ n, let (Φk,Φk−1, . . . ,Φl; Ψk; f) be a composer, and let
s = sk : sk−1 : · · · : sl be a well-formed annotated k-stack such that type(si) = π2(Φi) for
each i ∈ [l, k]. In this situation

k∑
i=l

low(si) ≤ low(s) , (7.20)

k∑
i=l

low(si) < low(s) if f = pr , (7.21)

pow
(
high(sk), high(sk−1), . . . , high(sl+1),

∣∣T 0
∣∣n · high(sl)

)
≥ high(s) , (7.22)

pow
(
high(sk), high(sk−1), . . . , high(sl+1), high(sl)

)
≥ high(s) if f = np , (7.23)

pow
(
len(sk), len(sk−1), . . . , len(sl+1),

∣∣T 0
∣∣n · len(sl)

)
≥ len(s) . (7.24)

Proof. Because type(sl) = π2(Φl), Proposition 7.14 used for s implies that type(s) =

{redk(σ) : σ ∈ π2(Φl)} and |type(s)| = |π2(Φl)|, which means that the mapping defined

by σ 7→ redk(σ) is a bijection between π2(Φl) and type(s). Moreover, for σ ∈ π2(Φl),

s�{redk(σ)} = sk�π2(assk(σ)) : sk−1�π2(assk−1(σ)) : · · · : sl+1�π2(assl+1(σ)) : sl�{σ} ,

by Proposition 7.30.
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For i ∈ [l+ 1, k] and σ ∈ π2(Φl) denote H i
σ = high(si�π2(assi(σ))). Using Proposition 7.28,

the above property, and Proposition 7.29, we obtain that

low(s) =
∑

τ∈type(s)

low(s�{τ}) =
∑

σ∈π2(Φl)

low(s�{redl(σ)})

=
∑

σ∈π2(Φl)

(
low(sl�{σ})) +

k∑
i=l+1

low(si�π2(assi(σ)))
)

= low(sl) +

k∑
i=l+1

∑
σ∈π2(Φl)

low(si�π2(assi(σ))) , and (7.25)

high(s) =
∏

τ∈type(s)

high(s�{τ}) =
∏

σ∈π2(Φl)

high(s�{redk(σ)})

=
∏

σ∈π2(Φl)

pow
(
Hk
σ , H

k−1
σ , . . . ,H l+1

σ , high(sl�{σ})
)
. (7.26)

For each i ∈ [l + 1, k] it holds that type(si) = π2(Φi) =
⋃
{π2(assi(σ)) : σ ∈ π2(Φl)} (by

the definition of a composer, Condition (C1)), so, by Proposition 7.28,

low(si) =
∑

τ∈type(si)

low(si�{τ}) ≤
∑

σ∈π2(Φl)

∑
τ∈π2(assi(σ))

low(si�{τ}) =
∑

σ∈π2(Φl)

low(si�π2(assi(σ))) .

(7.27)

Altogether, Equality (7.25) and Inequality (7.27) used for all i ∈ [l + 1, k] imply Inequal-
ity (7.20).

For Inequality (7.21), recall from the definition of a composer (Condition (C4)) that if
f = pr, then for some i ∈ [l+1, k], some τ ∈ Tpr appears in π2(assi(σ)) simultaneously for two

different σ ∈ π2(Φl). By Proposition 7.27, low(si�{τ}) ≥ 1 for this τ (because it is productive).

Thus, some positive component low(si�{τ}) appears in two sums
∑

τ∈π2(assi(σ)) low(si�{τ}) in

Inequality (7.27) used for this i, so this inequality (and, in effect, Inequality (7.20)) becomes
strict.

Using Equality (7.26), Inequality (7.15), and Proposition 7.28 we obtain

high(s) =
∏

σ∈π2(Φl)

pow
(
Hk
σ , H

k−1
σ , . . . ,H l+1

σ , high(sl�{σ})
)

≤ pow
( ∏
σ∈π2(Φl)

Hk
σ ,

∏
σ∈π2(Φl)

Hk−1
σ , . . . ,

∏
σ∈π2(Φl)

H l+1
σ ,

∏
σ∈π2(Φl)

high(sl�{σ})
)

= pow
( ∏
σ∈π2(Φl)

Hk
σ ,

∏
σ∈π2(Φl)

Hk−1
σ , . . . ,

∏
σ∈π2(Φl)

H l+1
σ , high(sl)

)
. (7.28)
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Observe that by restricting an annotated stack we can only decrease the value of high. Thus,
for each i ∈ [l + 1, k],∏

σ∈π2(Φl)

H i
σ =

∏
σ∈π2(Φl)

high(si�π2(assi(σ)))

≤
∏

σ∈π2(Φl)

high(si) = (high(si))|π2(Φl)| ≤ (high(si))|T
0| .

The last inequality is true because |π2(Φl)| ≤ |T l| ≤ |T 0|. Using Inequality (7.13) we move
the |T 0| exponents (there is at most n of them) into the last argument of pow and we obtain
Inequality (7.22):

high(s) ≤ pow
(
(high(sk))|T

0|, (high(sk−1))|T
0|, . . . , (high(sl+1))|T

0|, high(sl)
)
≤

≤ pow
(
high(sk), high(sk−1), . . . , high(sl+1), |T 0|n · high(sl)

)
.

Now suppose that f = np. It implies, for each i ∈ [l + 1, k], that each τ ∈ π2(Φi) ∩ Tpr
belongs to the set π2(assi(σ)) only for one σ ∈ π2(Φl), so all the common factors are equal
to 1 (cf. Proposition 7.27):∏

σ∈π2(Φl)

H i
σ =

∏
σ∈π2(Φl)

∏
τ∈π2(assi(σ))

high(si�{τ}) =
∏

τ∈π2(Φi)

high(si�{τ}) = high(si) .

By substituting this to Inequality (7.28) we obtain Inequality (7.23).
Inequality (7.24) is obtained in the same way as Inequality (7.22), because the definitions

of len and high differ only in the base case.
We are now ready to prove Lemma 7.22.

Proof of Lemma 7.22. It is enough to prove the lemma for annotated runs of length 1. Then
the result for longer runs follow by an immediate induction. Thus, assume that |R| = 1,
and denote R(0) = sn : sn−1 : · · · : s0 with s0 = (γ, {D}). Recall that our goal is to prove
the following inequalities:

low(R(0)) ≤ ](st(R)) + low(R(1)) ,

high(R(0)) ≥ ](st(R)) + high(R(1)) , and

len(R(0)) ≥ 1 + len(R(1)) .

We have four cases, depending on the shape of D.

Case 1. It is impossible that D is of the form (empty, γ, p), since then R(0) would not have
a successor.

Case 2. Suppose that D = (read, p,D′). Then R(1) = sn : sn−1 : · · · : s1 : (γ, {D′}).
Because both R(0) and R(1) are singular, by Proposition 7.29 we have that

low(R(0)) = low(s0) +
n∑
i=1

low(si) and low(R(1)) = low((γ, {D′})) +
n∑
i=1

low(si) .

Thus, the required inequality about low can be restated as

low(s0) ≤ ](st(R)) + low((γ, {D′})) .

It holds when rd(D) ∈ Tnp (as then low(s0) = 0). If rd(D) ∈ Tpr, then low(s0) = 1, and either
rd(D′) ∈ Tpr or the letter read by st(R) is ], so the right side is positive.
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Again by Proposition 7.29 we have that

high(R(0)) = pow(high(sn), high(sn−1), . . . , high(s1), high(s0)) , and

high(R(1)) = pow(high(sn), high(sn−1), . . . , high(s1), high((γ, {D′}))) .

If rd(D) ∈ Tnp, then ](st(R)) = 0 and rd(D′) ∈ Tnp. In this case high(s0) = high((γ, {D′})) =
1, so the two sides of the inequality are equal:

high(R(0)) = ](st(R)) + high(R(1)) .

If rd(D) ∈ Tpr, then using Inequality (7.14) we obtain

high(R(0)) = pow(high(sn), high(sn−1), . . . , high(s1), Cdepth(D))

≥ pow(high(sn), high(sn−1), . . . , high(s1), Cdepth(D′) + 1)

≥ pow(high(sn), high(sn−1), . . . , high(s1), Cdepth(D′)) + 1

≥ ](st(R)) + high(R(1)) .

In the same way we obtain the required inequality for len.

Case 3. Suppose that D = (pop, γ, p, τk). Then R(1) = sn : sn−1 : · · · : sk. The operation
between conf(R(0)) and conf(R(1)) is popk, so ](st(R)) = 0. For i ∈ [1, k − 1], by Defini-
tion 7.11(3) we have that assi(rd(D)) = ∅, and by well-formedness of R(0) we have that
type(si) = π2(assi(rd(D))) (cf. Proposition 7.14); in effect type(si) = ∅, hence low(si) = 0
and high(si) = 1. By Definition 7.11(3), rd(R) ∈ Tnp, so low(s0) = 0 and high(s0) = 1;
moreover len(s0) = C0 = 2. Because R(0) and R(1) are singular, by Proposition 7.29 we
can write

low(R(0)) =

n∑
i=0

low(si) =

n∑
i=k

low(si) = ](st(R)) + low(R(1)) ,

high(R(0)) = pow
(
high(sn), high(sn−1), . . . , high(sk), 1, . . . , 1

)
= pow

(
high(sn), high(sn−1), . . . , high(sk)

)
= ](st(R)) + high(R(1)) , and

len(R(0)) = pow
(
len(sn), len(sn−1), . . . , len(sk), 1, . . . , 1, 2

)
≥ pow

(
len(sn), len(sn−1), . . . , len(sk), 1, . . . , 1, 1

)
+ 1

= pow
(
len(sn), len(sn−1), . . . , len(sk)) + 1 = 1 + len(R(1)) ,

as required.

Case 4. Suppose that D = (push, γ, p,D′,D). Let α and k be such that δ(γ, p) performs

pushkα; this transition does not read anything, so ](st(R)) = 0. By Definition 7.11(4) we
have a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f) such that π2(Φ0) = {rd(E) : E ∈ D}. Denote also
Ψi = assi(rd(D′)) for i ∈ [1, k − 1]. By Definition 7.17(4),

R(1) = sn : sn−1 : · · · : sk+1 : tk : sk−1�π2(Ψk−1) : sk−2�π2(Ψk−2) : · · · : s1�π2(Ψ1) : (α, {D′}) ,

where tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D).
From Lemma 7.31 we obtain the following inequality, which is strict if f = pr:

k∑
i=1

low(si�π2(Φi)) + low((γ,D)) ≤ low(tk) . (7.29)
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Because R(0) is well-formed, type(si) = π2(assi(rd(D))) for all i ∈ [1, n] (cf. Proposition 7.14).
By Definition 7.11(4), assk(σ) = Φk, and assi(σ) = Ψi ∪ Φi for i ∈ [1, k − 1]. In effect,
type(sk) = π2(Φk) and type(si) = π2(Ψi) ∪ π2(Φi) for i ∈ [1, k − 1], so

low(sk) = low(sk�π2(Φk)) , and (7.30)

low(si) =
∑

σ∈type(si)

low(si�{σ})

≤
∑

σ∈π2(Ψi)

low(si�{σ}) +
∑

σ∈π2(Φi)

low(si�{σ})

= low(si�π2(Ψi)) + low(si�π2(Φi)) for i ∈ [1, k − 1] , (7.31)

where the equalities in the second formula are by Proposition 7.28. Moreover, if π2(Ψi) ∩
π2(Φi) 6⊆ Tnp for some i ∈ [1, k − 1], then the appropriate inequality is strict (since the
component corresponding to τ ∈ π2(Ψi)∩ π2(Φi)∩Tpr, which is positive by Proposition 7.27,
appears in both sums on the right side, and only once on the left side). Because R(0) and
R(1) are singular,

low(R(0)) =
n∑
i=0

low(si) , and

low(R(1)) =

n∑
i=k+1

low(si) + low(tk) +

k−1∑
i=1

low(si�π2(Ψi)) + low((α, {D′}))

by Proposition 7.29. We apply (In)equalities (7.30) and (7.31) to the formula for low(R(0));
next, we substitute Inequality (7.29); we obtain

low(R(0)) ≤
n∑

i=k+1

low(si) +
k−1∑
i=1

low(si�π2(Ψi)) +
k∑
i=1

low(si�π2(Φi)) + low(s0) ≤

≤
n∑

i=k+1

low(si) +
k−1∑
i=1

low(si�π2(Ψi)) + low(tk)− low((γ,D)) + low(s0) =

= low(R(1))− low((α, {D′}))− low((γ,D)) + low(s0) ≤ low(R(1)) + low(s0) .

If {rd(D′)} ∪ π2(Φ0) 6⊆ Tnp, the last inequality is strict, as we have removed negative
components. Because low(s0) ≤ 1, if some of the above inequalities was strict, we can remove
low(s0), and we obtain low(R(0)) ≤ low(R(1)), as required. On the other hand, if none of
these inequalities was strict, then π2(Ψi) ∩ π2(Φi) ⊆ Tnp for each i ∈ [1, k − 1], and f = np,
and {rd(D′)} ∪ π2(Φ0) ⊆ Tnp; from Definition 7.11(4) it follows that in this case rd(D) ∈ Tnp,
so low(s0) = 0, and we obtain the required inequality as well.

Next, we prove the inequality for high. Denote

ai = high(si) for i ∈ [k + 1, n] ,

ai = high(si�π2(Ψi)) for i ∈ [1, k − 1] ,

bi = high(si�π2(Φi)) for i ∈ [1, k] .

Suppose first that rd(D) ∈ Tnp. Then, by Definition 7.11(4), {rd(D′)} ∪ π2(Φ0) ⊆ Tnp, and
f = np, and π2(Ψi) ∩ π2(Φi) ⊆ Tnp for each i ∈ [1, k − 1]. In consequence, high(s0) =
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high((γ,D)) = high((α, {D′})) = 1. Recall that type(si) = π2(Ψi) ∪ π2(Φi) for i ∈ [1, k − 1].
Thus, by Proposition 7.28,

high(si) =
∏

σ∈type(si)

high(si�{σ}) =
∏

σ∈π2(Ψi)

high(si�{σ}) ·
∏

σ∈π2(Φi)

high(si�{σ})

= ai · bi for i ∈ [1, k − 1] ; (7.32)

the second equality above holds because for σ ∈ π2(Ψi)∩π2(Φi) ⊆ Tnp we have high(si�{σ}) = 1

(cf. Proposition 7.27). Because f = np, from Lemma 7.31 we know that

pow(bk, bk−1, . . . , b1, 1) = pow
(
bk, bk−1, . . . , b1, high((γ,D))

)
≥ high(tk) .

Using Proposition 7.29 and Equalities (7.32), then Inequality (7.12), then the above inequality,
and then again Proposition 7.29, we obtain

high(R(0)) = pow(an, an−1, . . . , ak+1, bk, ak−1bk−1, ak−2bk−2, . . . , a1b1, 1)

≥ pow(an, an−1, . . . , ak+1, pow(bk, bk−1, . . . , b1, 1), ak−1, ak−2 . . . , a1, 1)

≥ pow(an, an−1, . . . , ak+1, high(tk), ak−1, ak−2, . . . , a1, 1) = high(R(1)) .

Next, suppose that rd(D) ∈ Tpr. Then Lemma 7.31 gives us the inequality

pow
(
bk, bk−1, . . . , b1, |T 0|n · high((γ,D))

)
≥ high(tk) . (7.33)

By definition it holds

high(s0) = Cdepth(D) = (2|T 0|)n · (Cdepth(D)−1)|T
0|+1

≥ 2k−1 · |T 0|n · Cdepth(D′) ·
∏
E∈D

Cdepth(E)

≥ 2k−1 · |T 0|n · high((α, {D′})) · high((γ,D)).

Using Inequality (7.13) we replace 2k−1 in the last argument of pow by 2 in the k − 1
previous arguments; then we observe that (high(si))2 ≥ aibi for each i ∈ [1, k − 1]; then we
use Inequality (7.12), and finally Inequality (7.33):

high(R(0)) = pow
(
high(sn), high(sn−1), . . . , high(s1), high(s0)

)
≥ pow

(
high(sn), high(sn−1), . . . , high(s1),

2k−1 · |T 0|n · high((α, {D′})) · high((γ,D))
)

≥ pow
(
high(sn), high(sn−1), . . . , high(sk), (high(sk−1))2, (high(sk−2))2, . . . ,

(high(s1))2, |T 0|n · high((α, {D′})) · high((γ,D))
)

≥ pow
(
an, an−1, . . . , ak+1, bk, ak−1bk−1, ak−2bk−2, . . . , a1b1,

|T 0|n · high((α, {D′})) · high((γ,D))
)

≥ pow
(
an, an−1, . . . , ak+1, pow

(
bk, bk−1, . . . , b1, |T 0|n · high((γ,D))

)
,

ak−1, ak−2, . . . , a1, high((α, {D′}))
)

≥ pow
(
an, an−1, . . . , ak+1, high(tk), ak−1, ak−2, . . . , a1, high((α, {D′}))

)
= high(R(1)) .

The inequality for len can be proved in a very similar way as that for high in the case
rd(D) ∈ Tpr.
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7.3. Relating Upper and Lower Bounds. As already mentioned, it is meaningful to
consider the functions low and high because they are closely related: one is bounded if the
other is bounded. This is shown in the following proposition.

Proposition 7.32. There exists a function H : N→ N such that for each configuration c
and each run descriptor σ ∈ typeA,ϕ(c) there exists a well-formed annotated n-stack s for

which type(top0(s)) = {σ}, and conf(s) = c, and high(s) ≤ H(low(s)).

Proof. Let d be a number such that for each derivation tree there exists a derivation tree
with the same conclusion and depth at most d; such a number exists, because there are only
finitely many possible conclusions. For each k ≥ 0 we define a function Nk : N→ N, and we
take H = Nn. The definition is inductive: Nk(0) = 1, and, for L > 0,

N0(L) = (Cd)
|T 0| ,

Nk(L) =
(
pow(Nk(L− 1), Nk−1(L))

)|T k−1|
for k > 0 ,

where Cd is the constant from Definition 7.21.
By definition of a type, for each configuration c and each run descriptor σ ∈ typeA,ϕ(c)

there exists a well-formed annotated n-stack s such that type(top0(s)) = {σ} and conf(s) = c.
We can assume without loss of generality that all derivation trees in s have depth at most d:
we can safely replace each tree by another (smaller) tree having the same conclusion. Thus,
it is enough to prove that for each well-formed annotated k-stack s, in which all derivation
trees have depth at most d, it holds high(s) ≤ Nk(low(s)).

Denote L = low(s). If L = 0 then high(s) = 1 = Nk(L), thanks to Proposition 7.27.
Suppose that L > 0. In this case we prove the thesis by induction on the structure of s. For
a stack s = (γ,D) of order 0 it holds

high(s) ≤
∏
D∈D

Cdepth(D) ≤ (Cd)
|T 0| = N0(L) .

Next, consider a stack s = sk : sk−1. Recall that low(s) equals the sum of low for
sk�π2(assk(σ)) and sk−1�{σ} over all σ ∈ type(sk−1). We have two cases. One possibility is

that low(sk�π2(assk(σ))) = L for some σ ∈ type(sk−1). Then low for all other considered stacks
is 0, so their high is 1. Using the induction assumption we obtain

high(s) ≤ pow(Nk(L), 1) ·
∏

τ∈type(sk−1)\{σ}

pow(1, 1) = Nk(L) .

The opposite situation is that low(sk�π2(assk(σ))) ≤ L− 1 for each σ ∈ type(sk−1). Observing

that Nk is monotone, by the induction assumption high(sk�π2(assk(σ))) ≤ Nk(L − 1) and

high(sk−1�{σ}) ≤ Nk−1(L) for each σ ∈ type(sk−1), so we obtain

high(s) ≤
∏

σ∈type(sk−1)

pow(Nk(L− 1), Nk−1(L)) ≤ Nk(L) .
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7.4. Assumptions Are Used in Returns. Our next goal is to formally prove that when-
ever an assumption of a run descriptor is used in an annotated run, then we have a return.

Lemma 7.33. Let s = sn : sn−1 : · · · : s0 be a well-formed singular annotated n-stack, where
type(s0) = {σ}. If (m, ξ) ∈ assr(σ), then there exists an annotated run R starting in s such
that st(R) is an r-return, ϕ(st(R)) = m, and topr(R(|R|)) = sr�{ξ}.

Proof. We use induction on len(s). Thanks to Lemma 7.22 we can always use the induction
assumption for the successor of s. We have several cases depending on the shape of the
derivation tree D in s0 (that is, on the first operation in an annotated run starting in s).
We use the characterization of returns from Proposition 6.9.

Case 1. If D = (empty, γ, p) then assr(σ) = ∅, so the assumptions cannot hold.

Case 2. Suppose that D = (read, p,D′). Then the successor t of s differs from s only in the
topmost 0-stack; the new topmost 0-stack has type {τ} such that assr(σ) = ϕ(a) ◦ assr(τ),
where a is the letter read by the step between conf(s) and conf(t). Because (m, ξ) ∈ assr(σ),
there exists m′ such that m = ϕ(a) ·m′ and (m′, ξ) ∈ assr(τ). By the induction assumption
for t, there exists an annotated run SS starting in t such that st(SS) is an r-return,
ϕ(st(SS)) = m′, and topr(SS(|SS|)) = sr�{ξ}. Together with the step between s and t, it
gives us an annotated run as required.

Case 3. Suppose that D = (pop, γ, p, τ), where τ ∈ T k. The successor of s is t = sn : sn−1 :
· · · : sk. Recall that assi(σ) = ∅ for i < k, so r ≥ k. Moreover, assk(σ) = {(1M , τ)}, and
type(sk) = π2(assk(σ)) = {τ} by well-formedness of s (cf. Proposition 7.14). If r = k, then
(m, ξ) = (1M , τ). In this case the annotated run of length 1 satisfies the thesis. Otherwise
r > k, and (m, ξ) ∈ assr(σ) = assr(τ). Then as well (m, ξ) ∈ assr(τ ′), where τ ′ is the run

descriptor in the type of top0(sk) (since τ = redk(τ ′)). The induction assumption for t gives
us an annotated run SS starting in t such that st(SS) is an r-return, ϕ(st(SS)) = m, and
topr(SS(|SS|)) = sr�{ξ}. Together with the step between s and t, it gives us an annotated
run as required.

Case 4. Suppose that D = (push, γ, p,D′,D). Let α, k, Ψi, Φi be as in Definition 7.11(4).
The successor of s is

t = sn : sn−1 : · · · : sk+1 : tk : sk−1�π2(Ψk−1) : sk−2�π2(Ψk−2) : · · · : s1�π2(Ψ1) : (α, {D′}) ,

where tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D). Recall from our previous proofs

that type(si) = π2(Ψi) for i ∈ [k + 1, n], and type(tk) = π2(Ψk). If (m, ξ) ∈ Ψr and r 6= k,
then the induction assumption for t gives us an annotated run SS starting in t such that
st(SS) is an r-return, ϕ(st(SS)) = m, and topr(SS(|SS|)) = sr�{ξ}; together with the step

between s and t, it gives us an annotated run as required. Otherwise (m, ξ) ∈ Φr and r ≤ k.
Recall that we have a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f). The definition of a composer
(Condition (C1)) gives us some (m1, τ) ∈ Φ0 and m2 ∈ M such that m = m1 · m2 and

(m2, ξ) ∈ assr(τ). We see that (m1, red
k(τ)) ∈ Ψk (by Condition (C2) of the definition). The

induction assumption for t and (m1, red
k(τ)) ∈ Ψk gives us an annotated run SS starting

in t such that st(SS) is a k-return, ϕ(st(SS)) = m1, and topk(SS(|SS|)) = tk�{redk(τ)}. By

Proposition 7.30,

tk�{redk(τ)} = sk�π2(assk(τ)) : sk−1�π2(assk−1(τ)) : · · · : s1�π2(ass1(τ)) : (γ,D)�{τ} .
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Recalling that r ≤ k, the induction assumption for SS(|SS|) and (m2, ξ) ∈ assr(τ) gives us
an annotated run T starting in SS(|SS|) such that st(T) is an r-return, ϕ(st(T)) = m2,
and topr(T(|T|)) = sr�{ξ}. The step between s and t composed with SS and then with T
gives us an annotated run as required.

7.5. Completeness of Types. In the previous subsection we have proved soundness of the
type system, which means that if a run descriptor is contained in the type of a configuration
then a corresponding run exists from this configuration. As usual, we need the opposite
direction (completeness) as well; that is, having a run from a configuration, we want to imply
that the corresponding run descriptor is in the type of this configuration. This is shown in
Lemma 7.34, which is a converse of Lemma 7.33. While reversing Lemma 7.33 we have to
remember that not every run can be extended to an annotated run, so in Lemma 7.34 we
need to use runs, not annotated runs.

Lemma 7.34. Let R be an r-return, and let ξ ∈ typeA,ϕ(R(|R|)). Then there exists a run
descriptor σ ∈ typeA,ϕ(R(0)) such that (ϕ(R), redr(ξ)) ∈ assr(σ).

Before proving Lemma 7.34, we first state four auxiliary lemmas. These lemmas are
used not only in the proof of Lemma 7.34, but also in the next subsection. Actually, every of
these lemmas has a part denoted by (?); these parts are needed only in the next subsection.

Lemma 7.35. Let R be a run of length 1 whose transition is read, and let τ ∈ typeA,ϕ(R(1)).

Then there exists σ ∈ typeA,ϕ(R(0)) such that assi(σ) = ϕ(R) ◦ assi(τ) for each i ∈ [1, n].

Moreover, there exists a well-formed singular annotated 0-stack v0 such that type(v0) = {σ},
and the following is satisfied.

(?) Let s′ be a well-formed annotated n-stack with top0(s′) = v0. Then there exists an
annotated run SS of length 1 such that SS(0) = s′, the transition of st(SS) is read, it
reads the same letter as the transition of R, and type(top0(SS(1))) = {τ}.

Proof. By definition of typeA,ϕ, there exists a well-formed annotated stack s = sn : sn−1 :

· · · : s1 : (γ, {D′}) such that rd(D′) = τ and conf(s) = R(1). Well-formedness of s implies
that type(si) = π2(assi(τ)) for each i ∈ [1, n] (cf. Proposition 7.14). When p is the state of
R(0), Definition 7.11(2) implies that D = (read, p,D′) is a derivation tree with conclusion
γ ` σ, where σ = (p,Φn,Φn−1, . . . ,Φ1, f) and Φi = ϕ(R)◦assi(τ) for each i ∈ [1, n]. Because
π2(assi(σ)) = π2(assi(τ)), the annotated stack sn : sn−1 : · · · : s1 : (γ, {D}) is well-formed
(again, cf. Proposition 7.14), so σ ∈ typeA,ϕ(R(0)).

In order to prove Property (?), as v0 we take (γ, {D}). Clearly type(v0) = {rd(D)} = {σ}.
Consider now any well-formed annotated n-stack s′ with top0(s′) = v0. Let SS be the
annotated run from s′ to its successor. Because the topmost 0-stack of s′ is annotated by
D = (read, p,D′), the successor of s′ indeed exists, and the transition of st(SS) is read. The
state of R(1) and the state of conf(SS(1)) are the same (namely π1(rd(D′))), so st(SS)
reads the same letter as R. Moreover, top0(SS(1)) = (γ, {D′}), so type(top0(SS(1))) =
{rd(D′)} = {τ}, as required.

Lemma 7.36. Let R be a run of length 1 performing popk, and let τ ∈ typeA,ϕ(R(1)).

Then there exists σ ∈ typeA,ϕ(R(0)) such that assi(σ) = assi(τ) for each i ∈ [k + 1, n], and

assk(σ) = {(1M , redk(τ))}. Moreover, there exists a well-formed singular annotated k-stack
vk such that type(top0(vk)) = {σ}, and the following is satisfied.
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(?) Let s′ be a well-formed annotated n-stack with topk(s′) = vk. Then there exists an
annotated run SS of length 1 such that SS(0) = s′, and st(SS) performs popk, and
type(top0(SS(1))) = {τ}.

Proof. Denote R(0) = (p, sn : sn−1 : · · · : s0); then π2(R(1)) = sn : sn−1 : · · · : sk. By
definition of typeA,ϕ, there exists a well-formed annotated stack s = sn : sn−1 : · · · : sk such

that type(top0(sk)) = {τ}, and st(si) = pos↓(si) for each i ∈ [k, n]. Then, by Proposition 7.14,

type(sk) = {redk(τ)}. Well-formedness of s implies that type(si) = π2(assi(τ)) for each
i ∈ [k + 1, n] (cf. Proposition 7.14). For i ∈ [1, k − 1] let si be the well-formed annotated
i-stack such that type(si) = ∅ and st(si) = pos↓(si) (we annotate si by empty sets). Finally,

by Definition 7.11(3), D = (pop, s0, p, redk(τ)) is a derivation tree with conclusion γ ` σ,
where γ = pos↓(s0) and

σ = (p, assn(τ), assn−1(τ), . . . , assk+1(τ), {(1M , redk(τ)}, ∅, . . . , ∅, np) ,

so s0 = (γ, {D}) has type {σ}. Using Proposition 7.14 we observe that sn : sn−1 : · · · : s0 is
well-formed, so σ ∈ typeA,ϕ(R(0)).

In order to prove Property (?), as vk we take sk : sk−1 : · · · : s0. Clearly type(top0(vk)) =
type(s0) = {σ}. Consider now any well-formed annotated n-stack s′ with topk(s′) = vk.
Let SS be the annotated run from s′ to its successor. Because the topmost 0-stack of s′

is annotated by D, the successor of s′ indeed exists, and st(SS) performs popk. Moreover,
topk(SS(1)) = sk, so type(top0(SS(1))) = type(top0(sk)) = {τ}.

Lemma 7.37. Let R be a run of length 1 performing pushkα, and let τ ∈ typeA,ϕ(R(1)).

Then there exists σ ∈ typeA,ϕ(R(0)) such that assi(τ) ⊆ assi(σ) for each i ∈ [1, n] \ {k}.
Moreover, there exists a well-formed singular annotated 0-stack v0 such that type(v0) = {σ},
and the following is satisfied.

(?) Let s′ be a well-formed annotated n-stack with top0(s′) = v0. Then there exists an

annotated run SS of length 1 such that SS(0) = s′, and st(SS) performs pushkα, and
type(top0(SS(1))) = {τ}.

Proof. Before starting the actual proof, we observe that for each pair of well-formed annotated
stacks s, t such that st(s) = st(t) we can construct a well-formed annotated stack s ⊕ t
whose type is type(s) ∪ type(t) and such that st(s ⊕ t) = st(s). We construct s ⊕ t by

induction on the structure of s. Denote Ψ̃ = type(t) \ type(s). If s is of order 0, then we
take s⊕ t = (γ,D ∪D′), where s = (γ,D) and t�

Ψ̃
= (γ,D′). If s = t = [ ], then s⊕ t = [ ]

is fine. If s = sj : sj−1 and t�
Ψ̃

= tj : tj−1, then as s⊕ t we take (sj ⊕ tj) : (sj−1 ⊕ tj−1);
observe that it is well-formed, because the types of s and t�

Ψ̃
are disjoint.

Denote R(0) = (p, sn : sn−1 : · · · : s1 : (γ, x)); then π2(R(1)) equals

sn : sn−1 : · · · : sk+1 : (sk : sk−1 : · · · : s1 : (γ, x)) : p+1(sk−1 : sk−2 : · · · : s1 : (α, x)) .

By definition of typeA,ϕ, there exists a well-formed annotated stack s = sn : sn−1 : · · · :

s1 : (α, {D′}) in which sk = tk : tk−1 : · · · : t1 : (γ,D), such that rd(D′) = τ , and
st(si) = pos↓(si) for each i ∈ [1, n] \ {k}, and st(ti) = pos↓(si) for each i ∈ [1, k]. Denote
Ψi = assi(τ) for each i ∈ [1, n]. Well-formedness of s implies that type(si) = π2(Ψi)
for each i ∈ [1, n] (cf. Proposition 7.14), and, thanks to Proposition 7.15, there exists
a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f) such that type(ti) = π2(Φi) for each i ∈ [1, k] and
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{rd(E) : E ∈ D} = π2(Φ0). By Definition 7.11(4), D = (push, γ, p,D′,D) is a derivation
tree with conclusion γ ` σ, where

σ = (p,Ψn,Ψn−1, . . . ,Ψk+1,Φk,Ψk−1 ∪ Φk−1,Ψk−2 ∪ Φk−2, . . . ,Ψ1 ∪ Φ1, g) .

Using Proposition 7.14 we observe that the annotated stack

sn : sn−1 : · · · : sk+1 : tk : (sk−1 ⊕ tk−1) : (sk−2 ⊕ tk−2) : · · · : (s1 ⊕ t1) : (γ, {D})
is well-formed, so σ ∈ typeA,ϕ(R(0)).

In order to prove Property (?), as v0 we take (γ, {D}). Clearly type(v0) = {rd(D)} = {σ}.
Consider now any well-formed annotated n-stack s′ with top0(s′) = v0. Let SS be the
annotated run from s′ to its successor. Because the topmost 0-stack of s′ is annotated by
D, the successor of s′ indeed exists, and st(SS) performs pushkα. Moreover, top0(SS(1)) =
(α, {D′}), so type(top0(SS(1))) = {rd(D′)} = {τ}.

Lemma 7.38. Let R be a run in which R�0,1 performs pushkα and R�1,|R| is a k-return,

let τ ∈ typeA,ϕ(R(|R|)), and let ρ ∈ typeA,ϕ(R(1)) be such that (ϕ(R), redk(τ)) ∈ assk(ρ).

Then there exists σ ∈ typeA,ϕ(R(0)) such that ϕ(R) ◦ assi(τ) ⊆ assi(σ) for each i ∈ [1, k].

Moreover, there exists a well-formed singular annotated 0-stack v0 such that type(v0) = {σ},
and the following is satisfied.

(?) Let s′ be a well-formed annotated n-stack with top0(s′) = v0. Then there exists an

annotated run SS of length 1 such that SS(0) = s′, and st(SS) performs pushkα, and
type(top0(SS(1))) = {ρ}, and τ ∈ type(top0(popk(SS(1)))).

Proof. Denote R(0) = (p, sn : sn−1 : · · · : s1 : (γ, x)); then π2(R(1)) is as in the previous
lemma, and topk(R(0)) ∼= topk(R(|R|)) (due to Proposition 6.7). The definition of typeA,ϕ
gives us a well-formed annotated n-stack u such that type(top0(u)) = {τ} and conf(u) =
R(|R|), and a well-formed annotated stack s = sn : sn−1 : · · · : s1 : (α, {D′}) such that
rd(D′) = ρ and conf(s) = R(1). Denote uk = topk(u). Then type(top0(uk)) = {τ}, and
st(uk) = pos↓(sk : sk−1 : · · · : s1 : (γ, x)), and st(si) = pos↓(si) for each i ∈ [1, n] \ {k},
and st(sk) = pos↓(sk : sk−1 : · · · : s1 : (γ, x)). Denote Ψi = assi(ρ) for each i ∈ [1, n].
Well-formedness of s implies that type(si) = π2(Ψi) for each i ∈ [1, n] (cf. Proposition 7.14).

By Proposition 7.14, type(uk) = {redk(τ)}. Thanks to the assumption redk(τ) ∈ π2(assk(ρ))
we have that type(uk) ⊆ π2(Ψk). In effect, the annotated stack uk ⊕ sk has type π2(Ψk),
equal to the type of sk, but additionally τ ∈ type(top0(uk ⊕ sk)) (recalling the construction
from the previous proof, we see that to uk ⊕ sk we take all annotations from uk and some
annotations from sk). Denote uk ⊕ sk = tk : tk−1 : · · · : t1 : (γ,D). By Proposition 7.15
we have a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f) such that type(ti) = π2(Φi) for each i ∈ [1, k]

and {rd(E) : E ∈ D} = π2(Φ0). Because τ ∈ π2(Φ0) and (ϕ(R), redk(τ)) ∈ Ψk, it holds
(ϕ(R), τ) ∈ Φ0 (thanks to Conditions (C2) and (C3) of the definition of a composer), which
implies ϕ(R) ◦ assi(τ) ⊆ Φi for each i ∈ [1, k] (thanks to Condition (C1) of the definition).
By Definition 7.11(4), D = (push, γ, p,D′,D) is a derivation tree with conclusion γ ` σ,
where

σ = (p,Ψn,Ψn−1, . . . ,Ψk+1,Φk,Ψk−1 ∪ Φk−1,Ψk−2 ∪ Φk−2, . . . ,Ψ1 ∪ Φ1, g) .

We observe that the annotated stack

sn : sn−1 : · · · : sk+1 : tk : (sk−1 ⊕ tk−1) : (sk−2 ⊕ tk−2) : · · · : (s1 ⊕ t1) : (γ, {D})
is well-formed (by Proposition 7.14), so σ ∈ typeA,ϕ(R(0)).
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In order to prove Property (?), as v0 we take (γ, {D}). Clearly type(v0) = {rd(D)} = {σ}.
Consider now any well-formed annotated n-stack s′ with top0(s′) = v0. Let SS be the
annotated run from s′ to its successor. Because the topmost 0-stack of s′ is annotated by
D, the successor of s′ indeed exists, and st(SS) performs pushkα. Moreover, top0(SS(1)) =
(α, {D′}), so type(top0(SS(1))) = {rd(D′)} = {ρ}. On the other hand, top0(popk(SS(1))) is
(γ,D), so its type is {rd(E) : E ∈ D} = π2(Φ0), and we know that τ ∈ π2(Φ0).

Proof of Lemma 7.34. Recall that we are given an r-return R, and a run descriptor ξ ∈
typeA,ϕ(R(|R|)), and we have to show existence of a run descriptor σ ∈ typeA,ϕ(R(0))
such that (ϕ(R), redr(ξ)) ∈ assr(σ). We use induction on the length of the r-return R.
Proposition 6.9 gives us possible forms of R; we analyze these cases.

Suppose first that |R| = 1 and the only transition of R performs popr. We take σ
from Lemma 7.36, where we take ξ as τ and r as k. By assumption ϕ(R) = 1M , so
(ϕ(R), redr(ξ)) ∈ assr(σ).

Next, suppose that R�1,|R| is an r-return, and the first transition of R is read, or performs

popk for k < r, or pushkα for k 6= r. The induction assumption for R�1,|R| gives us a run

descriptor τ ∈ typeA,ϕ(R(1)) such that (ϕ(R�1,|R|), red
r(ξ)) ∈ assr(τ), and Lemma 7.35, or

7.36, or 7.37, respectively, used for R�0,1 gives us a run descriptor σ ∈ typeA,ϕ(R(0)) such
that ϕ(R�0,1) ◦ assr(τ) ⊆ assr(σ) (where ϕ(R�0,1) may be nontrivial only when the transition
is read).

Finally, suppose that the first transition of R performs pushkα for k ≥ r and R�1,|R| = S◦T
for some k-return S and r-return T . The induction assumption for T gives us a run descriptor
τ ∈ typeA,ϕ(T (0)) such that (ϕ(T ), redr(ξ)) ∈ assr(τ), and the induction assumption for

S gives us a run descriptor ρ ∈ typeA,ϕ(R(1)) such that (ϕ(S), redk(τ)) ∈ assk(ρ). Using
Lemma 7.38 for R�0,1 ◦ S we obtain a run descriptor σ ∈ typeA,ϕ(R(0)) such that ϕ(S) ◦
assr(τ) ⊆ assr(σ) (recalling that r ≤ k), so (ϕ(R), redr(ξ)) = (ϕ(S) ◦ ϕ(T ), redr(ξ)) ∈
ϕ(S) ◦ assr(τ) ⊆ assr(σ).

7.6. Reproducing Upper Runs. Till now we were using types to describe returns from a
configuration, but thanks to the decomposition given by Proposition 6.8 we can also describe
r-upper runs. This is stated in the following lemma.

Lemma 7.39. Let R be an r-upper run (where r ∈ [0, n]), and let τ ∈ typeA,ϕ(R(|R|)).
Then there exists a run descriptor σ ∈ typeA,ϕ(R(0)) and a monotone function fR : N→ N
such that the following is satisfied.

(?) Let s be a well-formed annotated n-stack such that type(top0(s)) = {σ} and topr(conf(s))
∼= topr(R(0)). Then there exists a well-formed annotated n-stack t such that type(top0(t))
= {τ}, and there exists a run S from conf(s) to conf(t) that is (r, ϕ)-parallel to R, and
such that

low(s) ≤ fR(](S) + low(t)) , and fR(high(s)) ≥ ](S) + high(t) .

The idea staying behind a proof of this lemma is that the run R can be split into parts
of two kinds. First, we have parts for which the topmost r-stack of R(0) is responsible.
Since in conf(s) the topmost r-stack is the same, we can execute them also from conf(s).
Second, we have parts not controlled by the topmost r-stack of R(0), but (according to
Proposition 6.8) these are returns. Analogous returns can be executed from conf(s), because
of the run descriptor σ in type(top0(s)).
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Two aspects of the statement of the lemma can be understood basing on the above
idea. First, the correction function fR is really needed (i.e., the lemma would be false if
the identity function was always taken as fR). Second, there does not need to exist an
annotated run from s to t; we only prove existence of a (non-annotated) run from conf(s) to
conf(t). The justification of both these phenomena is the same: while creating the run from
conf(s), we completely ignore the annotations contained in the topmost r-stack of s (while
an annotated run from s necessarily follows them); instead, as long as the topmost r-stack
of st(s) controls the run, we copy steps of the run R (only after leaving the topmost r-stack,
we start using the annotations from s). In a sense, fR describes how much can be lost while
ignoring annotations in the topmost r-stack of s (recall that, while ignoring annotation, this
r-stack is the same as in R(0), thus fixed; only the annotations are not fixed).

Before proving Lemma 7.39 we show how Theorem 7.3 follows from it. For this
purpose the inequalities regarding low and high are redundant; they are used later to prove
Theorem 7.4.

Proof of Theorem 7.3. Recall that we are given a k-upper run R, and a configuration c
having the same (A, ϕ)-type and the same positionless topmost k-stack as R(0). Consider
the run descriptor τ = (π1(R(|R|)), ∅, . . . , ∅, np) and observe that τ ∈ typeA,ϕ(R(|R|)) (we
annotate the topmost 0-stack of R(|R|) by the derivation tree from Definition 7.11(1)).
Applying Lemma 7.39 we obtain a run descriptor σ ∈ typeA,ϕ(R(0)) = typeA,ϕ(c). Then we

take any well-formed annotated n-stack s such that type(top0(s)) = {σ} and conf(s) = c,
existing by the definition of typeA,ϕ. Since topk(conf(s)) ∼= topk(R(0)), from Property (?) of
Lemma 7.39 we obtain a run S that starts in c and is (k, ϕ)-parallel to R, as required.

Below, we give an auxiliary lemma, showing how to construct a function fR needed for
Lemma 7.39.

Lemma 7.40. Let k ∈ [0, n], and let vk be a well-formed singular annotated k-stack. Then
there exists a monotone function fvk : N→ N such that for all well-formed singular annotated
n-stacks s, s′ with s = sn : sn−1 : · · · : sk+1 : sk and s′ = sn : sn−1 : · · · : sk+1 : vk and
st(sk) = st(vk) it holds that low(s) ≤ fvk(low(s′)) and fvk(high(s)) ≥ high(s′).

Proof. We first define the function fvk , and then we show that it satisfies the thesis.
Suppose that k and vk are fixed. We construct fvk(N) by induction on N . Consider
some N ∈ N. First, we ensure that fvk(N) ≥ N + low(sk) for all annotated k-stacks
sk such that st(sk) = st(vk). This is possible, because low(sk) equals the number of
productive run descriptors altogether in the types of all 0-stacks in sk. So, although
there are infinitely many annotated k-stacks sk such that st(sk) = st(vk), the value of
low(sk) is bounded by the number of 0-stacks in st(sk) times |T 0|. Next, we ensure that
fvk(N) ≥ pow(an, an−1, . . . , ak+1, high(vk)) for all tuples (an, an−1, . . . , ak+1, ak) of positive
integers such that pow(an, an−1, . . . , ak+1, ak) = N . Notice that there are only finitely many
such tuples (in particular, none of ai may be greater than N). Finally, we ensure that
fvk(N) ≥ fvk(N − 1) (unless N = 0), in order to ensure monotonicity of fvk (since we are
defining fvk by induction, fvk(N − 1) is already defined).

Consider now well-formed singular annotated n-stacks s, s′ such that s = sn : sn−1 : · · · :
sk+1 : sk, and s′ = sn : sn−1 : · · · : sk+1 : vk, and st(sk) = st(vk). Using Proposition 7.29
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and properties of fvk ensured in its definition, we obtain the required inequalities:

low(s) = low(sk) +
n∑

i=k+1

low(si) ≤ fvk
( n∑
i=k+1

low(si)
)

≤ fvk
(
low(vk) +

n∑
i=k+1

low(si)
)

= fvk(low(s′)) ,

fvk(high(s)) = fvk
(
pow

(
high(sn), high(sn−1), . . . , high(sk+1), high(sk)

))
≥ pow

(
high(sn), high(sn−1), . . . , high(sk+1), high(vk)

)
= high(s′) .

Proof of Lemma 7.39. The proof is by induction on the length of the r-upper run R. Propo-
sition 6.8 gives us possible forms of R; we analyze these cases.

If R has length 0, then we can take τ as σ and the identity function as fR; given s we
take it as t, and as S we take the run of length 0 from conf(s).

Suppose that R has length 1, and its transition either is read or performs pushkα. Then
we construct σ and v0 out of R and τ as in Lemma 7.35 or Lemma 7.37, respectively.
Recall that σ ∈ typeA,ϕ(R(0)), as needed. As fR we take the function fv0 constructed in

Lemma 7.40 for the annotated 0-stack v0. Next, we are given a well-formed annotated
n-stack s such that type(top0(s)) = {σ} and topr(conf(s)) ∼= topr(R(0)). Let s′ be the
annotated n-stack obtained from s by replacing its topmost 0-stack with v0. Because
type(v0) = {σ} = type(top0(s)), we have that s′ is also well-formed. As t we take the
successor of s′, and as S the one-step run from conf(s′) (i.e., from conf(s)) to conf(t). By
Property (?) of Lemma 7.35 or Lemma 7.37, respectively, the successor of s′ indeed exists,
and type(top0(t)) = {τ}; moreover, the run S performs the same transition as R, and in the
case of read it reads the same letter, so S is (r, ϕ)-parallel to R. Recalling that fR satisfies
the thesis of Lemma 7.40, and using Lemma 7.22, we obtain the required inequalities:

low(s) ≤ fR(low(s′)) ≤ fR(](S) + low(t)) , and

fR(high(s)) ≥ high(s′) ≥ ](S) + high(t) .

Next, suppose that R has length 1 and performs popk for k ≤ r. We construct σ
and vk out of R and τ as in Lemma 7.36. Recall that σ ∈ typeA,ϕ(R(0)), as needed.
As fR we take the function fvk constructed in Lemma 7.40 for the annotated k-stack
vk. Then, we are given an annotated stack s = sn : sn−1 : · · · : sk+1 : sk such that
type(top0(s)) = {σ} and topr(conf(s)) ∼= topr(R(0)). Consider s′ = sn : sn−1 : · · · : sk+1 : vk.
Because type(top0(vk)) = {σ} = type(top0(s)), by Proposition 7.14 we have that type(vk) =

{redk(σ)} = type(topk(s)); in effect s′ is also well-formed. As t we take the successor of s′,
and as S the one-step run from conf(s′) to conf(t). By Property (?) of Lemma 7.36, the
successor of s indeed exists, and type(top0(t)) = {τ}, and the transition of S performs popk.
Clearly S is (r, ϕ)-parallel to R. The required inequalities are obtained in the same way as
in the previous case, due to Lemmas 7.40 and 7.22.

Next, suppose that R�0,1 performs pushkα and R�1,|R| is a k-return, where k ≥ r + 1.
This case is similar, but slightly more complicated. First, using Lemma 7.34, we construct a
run descriptor ρ ∈ typeA,ϕ(R(1)) such that (ϕ(R), redk(τ)) ∈ assk(ρ). Then, we construct σ

and v0 out of R, τ , and ρ as in Lemma 7.38. Recall that σ ∈ typeA,ϕ(R(0)), as needed. As

fR we take the function fv0 constructed in Lemma 7.40 for the annotated 0-stack v0. When
we are given s, we proceed as follows. First, as s′ we take the annotated n-stack obtained
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from s by replacing its topmost 0-stack with v0. As in the previous cases, s′ is well-formed.
Let SS be the one-step annotated run from s′, and let SS(1) = un : un−1 : · · · : u0. By

Property (?) of Lemma 7.38, SS indeed exists, and st(SS) performs pushkα, and type(u0) =

{ρ}, and τ ∈ type(top0(uk)). Because (ϕ(R), redk(τ)) ∈ assk(ρ), Lemma 7.33 gives us an
annotated run T starting in SS(1) such that st(T) is a k-return, ϕ(st(T)) = ϕ(R), and
topk(T(|T|)) = uk�redk(τ). As S we take st(SS◦T), and as t we take T(|T|). Proposition 7.30

implies that {τ} = type(top0(uk�redk(τ))) = type(top0(t)). By Proposition 6.7 we obtain that

topk(R(0)) ∼= topk(R(|R|)) and topk(S(0)) ∼= topk(S(|S|)). Since k ≥ r + 1, topr(R(|R|)) ∼=
topr(S(|S|)) as well. Together with ϕ(S) = ϕ(S�1,|S|) = ϕ(R�1,|R|) = ϕ(R) this means that

R and S are (r, ϕ)-parallel, because by definition no suffix of a k-return can be (k− 1)-upper
(r-upper). The inequalities are obtained as in the previous cases.

Finally, suppose that R is a composition of shorter k-upper runs R1 and R2. The
induction assumption used for R2 and for τ gives us a run descriptor ρ ∈ typeA,ϕ(R2(0)) and
a function f2. Then, the induction assumption used for R1 and for ρ gives us a run descriptor
σ ∈ typeA,ϕ(R(0)) and a function f1. As fR we take a monotone function such that for each
pair a, b of natural numbers it holds fR(a) ≥ f1(a) + f2(f1(a)) and fR(a+ b) ≥ f1(a+ f2(b)).

Then, we are given a well-formed annotated n-stack s such that type(top0(s)) = {σ}
and topr(conf(s)) ∼= topr(R(0)). From the induction assumption for R1 we obtain a well-
formed annotated n-stack u such that type(top0(u)) = {ρ}, and a run S1 from conf(s) to
conf(u) being (r, ϕ)-parallel to R1. Then, from the induction assumption for R2 we obtain
a well-formed annotated n-stack t such that type(top0(t)) = {τ}, and a run S2 from conf(u)
to conf(t) being (r, ϕ)-parallel to R2. As S we take the composition of S1 and S2; it is
(r, ϕ)-parallel to R. Using the inequalities from the induction assumption we obtain

low(s) ≤ f1(](S1) + low(u)) ≤ f1(](S1) + f2(](S2) + low(t)))

≤ fR(](S1) + ](S2) + low(t)) = fR(](S) + low(t))

fR(high(s)) ≥ f1(high(s)) + f2(f1(high(s)) ≥ ](S1) + high(u) + f2(](S1) + high(u))

≥ ](S1) + f2(high(u)) ≥ ](S1) + ](S2) + high(t) = ](S) + high(t) .

7.7. Sequence-Equivalence. In the final part of this section we define sequence-equivalence,
and we prove Theorem 7.4.

Definition 7.41. Let (ci)
∞
i=1 be a sequence of configurations. We define stype((ci)

∞
i=1) ⊆ T 0

to be the set of such σ ∈ T 0 that there exists a sequence of well-formed annotated n-
stacks (si)

∞
i=1 for which type(top0(si)) = {σ} and conf(si) = ci for each i, and the sequence

(high(si))
∞
i=1 is bounded (notice that we require the same type {σ} for all i). We say that

two sequences of configurations, (ci)
∞
i=1 and (di)

∞
i=1, are (A, ϕ)-sequence-equivalent when it

holds that stype((ci)
∞
i=1) = stype((di)

∞
i=1).

Proof of Theorem 7.4. Recall that we are given a run R ◦ R′ in which R is k-upper and
R′ is an n-return; we are also given two infinite sequences of configurations c1, c2, . . . and
d1, d2, . . . that are (A, ϕ)-sequence-equivalent, and in which all configurations have the same
(A, ϕ)-type and the same positionless topmost k-stack as R(0). Our goal is to construct,
for each i, runs Si ◦ S′i from ci, and Ti ◦ T ′i from di in which Si and Ti are (k, ϕ)-parallel
to R, and S′i and T ′i are n-returns such that ϕ(S′i) = ϕ(T ′i ) = ϕ(R′), and such that the
sequences ](S1 ◦ S′1), ](S2 ◦ S′2), . . . and ](T1 ◦ T ′1), ](T2 ◦ T ′2), . . . are either both bounded
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or both unbounded. Let ξ = (π1(R′(|R′|)), ∅, . . . , ∅, np). We see that ξ ∈ typeA,ϕ(R′(|R′|)),
because we can annotate the topmost 0-stack (γ, x) by {(empty, γ, π1(R′(|R′|)))} and all
other 0-stacks by ∅. Lemma 7.34 applied to R′ and ξ implies that typeA,ϕ(R′(0)) contains a
run descriptor τ such that (ϕ(R′), redn(ξ)) ∈ assn(τ). Then, Lemma 7.39 applied to R and
τ gives us a run descriptor σ ∈ typeA,ϕ(R(0)) and a function fR. We have two cases.

Case 1. Suppose first that σ ∈ stype((ci)
∞
i=1) (hence also σ ∈ stype((di)

∞
i=1)). Then we have

a sequence of annotated n-stacks (si)
∞
i=1 such that type(top0(si)) = {σ} and conf(si) = ci for

each i, and the sequence (high(si))
∞
i=1 is bounded. Recall that the topmost k-stacks of ci and of

R(0) are positionless-equal, for each i. We use Property (?) of Lemma 7.39 for the annotated
stack si. We obtain a well-formed annotated n-stack ti such that type(top0(ti)) = {τ},
and a run Si from ci to conf(ti) being (k, ϕ)-parallel to R and such that fR(high(si)) ≥
](Si)+high(ti). Next, for each i we apply Lemma 7.33 for ti and for the pair (ϕ(R′), redn(ξ)).
We obtain an annotated run SS′i starting in ti such that st(SS′i) is an n-return, ϕ(st(SS′i)) =
ϕ(R′), and type(SS′i(|SS′i|)) = {redn(ξ)}. Let S′i = st(SS′i), and ui = SS′i(|SS′i|). Thanks to
Lemma 7.22, high(ti) ≥ ](S′i) + high(ui). Because (high(si))

∞
i=1 is bounded, we see that the

sequence (](Si ◦ S′i))∞i=1 is bounded as well.
We perform the same construction for (di)

∞
i=1, obtaining runs Ti ◦ T ′i from di, such that

(](Ti ◦ T ′i ))∞i=1 is bounded.

Case 2. This is the opposite case: we suppose that σ 6∈ stype((ci)
∞
i=1). Recall that σ ∈

typeA,ϕ(R(0)) = typeA,ϕ(ci) for each i. Using Proposition 7.32 we construct a well-formed

annotated n-stack si such that type(top0(si)) = {σ}, and conf(si) = ci, and high(si) ≤
H(low(si)) for a function H not depending on i. Our assumption ensures that (high(si))

∞
i=1

is unbounded, so (low(si))
∞
i=1 is unbounded as well. We construct the runs exactly in the

same way as in Case 1, but this time we concentrate on the opposite inequalities. For
each i it holds that low(si) ≤ fR(](Si) + low(ti)) ≤ fR(](Si ◦ S′i) + low(ui)). Additionally
low(ui) = 0, because type(ui) = type(SS′i(|SS′i|)) = {redn(ξ)} ⊆ Tnp (cf. Proposition 7.27).
It follows that (](Si ◦ S′i))∞i=1 is unbounded, and similarly (](Ti ◦ T ′i ))∞i=1.

8. Milestone Configurations

In this section we define so-called milestone configurations and we show their basic properties.
The intuitions are as follows. Consider a long run reading only stars. Looking globally, the
stack grows (or remains unchanged). Locally, however, some parts of the stack might be
constructed, and a few steps later removed. In order to handle this behavior, we concentrate
on those configurations of the run in which the stack is minimal (in appropriate sense) and
will not be destroyed later; they are called milestone configurations.

The idea of considering milestone configurations comes from Kartzow [Kar10], but our
definition is slightly different (namely, their definition is relative to a run, which can be
arbitrary, while our definition is absolute: we always consider the run reading only stars).
For this section we fix an n-DPDA A with stack alphabet Γ and with input alphabet A
containing a distinguished symbol denoted ? (star).

Definition 8.1. We say that a configuration c is a milestone (or a milestone configuration)
if there exists an infinite run R from c reading only stars, and an infinite set I of indices
such that 0 ∈ I, and R�i,j ∈ up0 for all i, j ∈ I, i ≤ j.
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Example 8.2. Consider a DPDA of order 3. Suppose that there is a run that begins in a
stack pos+([[[a, a]]]), and performs forever the following sequence of operations, in a loop:

push2
a , push

3
a , pop

1 , push3
a , pop

2 , push3
a .

Then the positionless topmost 2-stack is, alternately, [[a, a]], or [[a, a], [a, a]], or [[a, a], [a]].
This run does not read any symbols, so it is a degenerate case of an infinite run that reads
only stars. Configurations with positionless topmost 2-stack [[a, a]] are milestones (and no
other configurations in this run). To obtain a less degenerate case, we may consider a loop
of transitions as above, but containing additionally a read transition; when a star is read,
the loop continues (we do not care what happens when any other symbol is read). Then
again configurations having [[a, a]] as the topmost 2-stack are milestones.

If c is a milestone, R the (unique) infinite run from c reading only stars, and I a set like
in the definition of a milestone, then for each i ∈ I the configuration R(i) is a milestone as
well. The following lemma shows that in fact the set I can contain all indices i for which
R(i) is a milestone.

Lemma 8.3. Let R be a run between two milestone configurations. If R reads only stars,
then it is 0-upper.

Proof. We prove by induction on n− k, where k ∈ [0, n], that each run R as in the lemma is
k-upper. Trivially each run is n-upper. Now suppose that the thesis holds for some k > 0,
take a run R between two milestone configurations, and suppose that it reads only stars.
Let S be the infinite run that starts in R(0) and reads only stars (since R(0) is a milestone,
the run is really infinite); R is its prefix. Notice that we can find a milestone S(i) such that
i ≥ |R| and S�0,i is (k − 1)-upper (it can be even 0-upper): it is enough to take any i ≥ |R|
from the infinite set I from Definition 8.1. From the induction assumption we know that
S�|R|,i is k-upper. We conclude that S�0,|R| = R is (k − 1)-upper using Proposition 6.4 for
the run S�0,|R| ◦ S�|R|,i.

Another important property is that in a very long run reading only stars we can find
a milestone configuration. What “very long” means of course depends on the size of the
configuration where the run starts.

Lemma 8.4. Let l ∈ [1, n]. There exists a function β, assigning a natural number to every
positionless l-stack, having the following property. Let R be a run that reads only stars, let
sl|R| be an l-stack of R(|R|), and let sli = hist(R�i,|R|, s

l
|R|) for all i ∈ [0, |R|]. If there exist at

least β(pos↓(sl0)) indices i such that sli = topl(R(i)), then for some index i the configuration
R(i) is a milestone and sli = topl(R(i)).

Corollary 8.5. If R is an infinite run reading only stars, then for infinitely many indices i
the configuration R(i) is a milestone.

Proof. To obtain a first milestone configuration, it is enough to use Lemma 8.4 for l := n and
for the prefix of R of length β(pos↓(π2(R(0)))). We repeat this procedure for the remaining
suffix of R.4

In order to get some intuitions on Lemma 8.4, let us first see why it works for l = n. In this
case sl0 is just the whole n-stack of R(0). Moreover, the assumption that there exist at least
β(pos↓(sl0)) indices i such that sli = topl(R(i)) simply expresses that |R|+ 1 ≥ β(pos↓(sl0)).

4 There exists a direct proof of this corollary, not presented here, which is much easier than the proof of
Lemma 8.4.
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Thus, the lemma says that if we have a long enough run that starts in a configuration with
stack sl0 and reads only stars, then the run reaches a milestone configuration. This, in turn,
means that we cannot decrease the stack sl0 forever. Indeed, recall the intuition that a
milestone configuration is a minimal configuration, that is, such that the run reading only
stars never visits a “smaller” configuration. It is just enough to consider the infinite run
reading only stars, and take the ,,smallest” configuration visited by this run; this should be
a milestone configuration.

When l < n, the lemma concentrates on the history of a single l-stack sl|R| (another

point of view is that it concentrates on the future of a single l-stack sl0). We look at the
fragments of R where this l-stack is the topmost l-stack; the length of these fragments is
required to be at least β(pos↓(sl0)) in total. The lemma says that regardless of what happens
in other fragments of R, controlled by other parts of the n-stack of R(0) (outside of sl0), the
stack sl0 can itself ensure that a milestone configuration is reached.

In the remaining part of the section we prove Lemma 8.4. Our proof strategy is as
follows. The indices i for which sli is the topmost l-stack give us a decomposition of an
infix of R into many l-upper runs. As a first step, consecutively for k = l − 1, l − 2, . . . , 0
we construct a decomposition of an infix of R into many k-upper runs. Then, among the
borders of the constructed 0-upper runs we find two configurations having the same type.
Using Theorem 7.3 we can replicate the 0-upper run between them into arbitrarily many
consecutive 0-upper runs, proving that these two configurations are milestones.

The division of an infix of R into k-upper runs is described using k-advancing sets,
defined as follows. Assuming that R is fixed, a set Ik ⊆ [0, |R|] is called k-advancing if

∅ 6= Ik = {i ∈ [min Ik,max Ik] : R�i,max Ik ∈ upk} .

Notice that when min Ik ≤ i ≤ j ∈ Ik, then i belongs to Ik if and only if R�i,j is k-upper. In
other words, a k-advancing set not only gives us a decomposition into k-upper runs, but also
these k-upper runs cannot be further subdivided into shorter k-upper runs. The following
auxiliary lemma describes our induction step.

Lemma 8.6. Let k ∈ [1, n], and N ∈ N. There exists a function fkN : N → N, having the

following properties. Let R be a run that reads only stars, and let Ik be a k-advancing
set. If |Ik| ≥ fkN (|topk(R(min Ik))|), then there exists a (k − 1)-advancing subset Ik−1 ⊆ Ik
of size at least N , such that pos↓(topk−1(R(min Ik−1))) is one of the (k − 1)-stacks in
pos↓(topk(R(min Ik))).

Proof. We prove the lemma by induction on N . For N = 1 we can take fk1 (r) := 1, and
then Ik−1 := {min Ik}. Let now N ≥ 2. We take

fkN (r) := 1 +

r∑
m=1

fkN−1(m+ 1) .

Fix some R and Ik satisfying the assumptions. Let a := min Ik and r := |topk(R(min Ik))|.
For each j ∈ Ik denote

rj := |topk(R(j))| and mj := min{ri : i ∈ Ik ∧ i ≤ j} .
Notice that 1 ≤ mj ≤ r (because ra = r) and that mj ≥ mj′ for j ≤ j′. From the formula

for fkN (r) we see that for some m we have at least fkN−1(m+ 1) + 1 indices j ∈ Ik such that

mj = m, by the pigeonhole principle (if for every m there were at most fkN−1(m+ 1) such
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indices, in total we would have at most
∑r

m=1 f
k
N−1(m+ 1) = fkN (r)− 1 indices in Ik, but

we have at least fkN (r) of them). Choose some such m; let b be the first index such that
mb = m, and e the last such index. We see that m = rb.

Let c be the next element of Ik after b (of course c ≤ e). Notice that rc ≤ rb+ 1 = m+ 1;
this follows from Proposition 6.2 used for the run R�b,c. Thus,

|Ik ∩ [c, e]| ≥ fkN−1(m+ 1) ≥ fkN−1(rc) .

We use the induction assumption for Ik ∩ [c, e]. We obtain a (k − 1)-advancing subset
Jk−1 ⊆ Ik ∩ [c, e] of size at least N − 1. We take

Ik−1 := {i ∈ [b,min Jk−1] : R�i,max Jk−1 ∈ upk−1} ∪ Jk−1 .

We easily see that Ik−1 is (k− 1)-advancing (we add to Jk−1 exactly these indices for which
the appropriate run is (k − 1)-upper). Because ri ≥ mi = m = rb for each i ∈ Ik ∩ [b, e]
(hence, in particular, for each i ∈ Ik∩ [b,max Jk−1]), Proposition 6.3 implies that R�b,max Jk−1

is (k− 1)-upper. Thus, Ik−1 in addition to the N − 1 elements of Jk−1 contains at least one
additional element b.

Finally, we show that pos↓(topk−1(R(b))) is one of the (k−1)-stacks in pos↓(topk(R(a))).
We know that ri ≥ mi > m = rb for each i ∈ Ik ∩ [a, b − 1], so, due to Proposition 6.3,
run R�i,b is not (k − 1)-upper. This means that the topmost (k − 1)-stack of R(b) was
not modified since R(a). On the other hand R�a,b is k-upper, thus, indeed, the topmost
(k − 1)-stack of R(b) is one of the (k − 1)-stacks in the topmost k-stack of R(a) (while
ignoring positions annotating the stacks).

While using Theorem 7.3 we need to ensure that the replicated run reads only stars.
For this reason, fix a finite monoid M , and a morphism ϕ : A∗ → M , such that its value
ϕ(w) determines whether a word w consists only of stars. Our second auxiliary lemma is
used to conclude the proof of Lemma 8.4.

Lemma 8.7. Let S be a nonempty 0-upper run reading only stars, in which S(|S|) has the
same (A, ϕ)-type and the same topmost stack symbol as S(0) (where ϕ as above). Then
S can be extended into a run S ◦ T ◦ U reading only stars, where T and U are nonempty
0-upper runs, and U(|U |) has the same (A, ϕ)-type and the same topmost stack symbol as
U(0). As a consequence, S(0) is a milestone.

Proof. First, we observe that for each r ∈ N we can construct a composition S1 ◦ · · · ◦ Sr of
r nonempty 0-upper runs, reading only stars, in which S1 = S. For r = 1 this is trivially
true. Suppose that we have such a composition for some r. Then Theorem 7.3 applied to
this composition and to S(|S|) (where we use the fact that S(|S|) has the same (A, ϕ)-type
and the same positionless topmost 0-stack as (S1 ◦ · · · ◦ Sr)(0)) gives us a run that starts in
S(|S|) and is (A, ϕ)-parallel to S1 ◦ · · · ◦ Sr. Recalling the definition of being (A, ϕ)-parallel,
we see that this run is a composition S′1 ◦ · · · ◦ S′r of r nonempty 0-upper runs reading only
stars. Together with S at the beginning, they give a longer composition as required.

Take such a composition for r equal to the number of stack symbols in our alphabet
Γ, times the number of (A, ϕ)-types, plus two. Then, by the pigeonhole principle, we can
find two indices i, j ∈ [2, r] with i < j for which Sj(|Sj |) has the same (A, ϕ)-type and the
same topmost stack symbol as Si(|Si|). Skipping the part after Sj , we obtain a composition
S ◦ T ◦ U as required.

We can repeat the same construction for U , and append two more nonempty 0-upper
runs, out of which the second has equal (A, ϕ)-type and topmost stack symbol at its two
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Figure 5: An example configuration at the end of a run of a 2-DPDA, and an analogous
configuration after pumping. The 2-stack grows from left to right. White symbols
were already present in R(0); dark gray symbols were created while reading stars
at the beginning of R; light gray symbols were created later.

ends. Continuing this forever, we obtain an infinite run reading only stars, divided into
0-upper runs. Since it starts in S(0), this configuration is a milestone.

Proof of Lemma 8.4. Fix some l-stack sl0. Let N0 be equal to the number of stack symbols
in the alphabet, times the number of (A, ϕ)-types, plus one, where again ϕ checks whether a
word consists only of stars. For k ∈ [1, l] we take Nk = fkNk−1

(rk), where rk is the maximal

size of a k-stack that appears in sl0, and fkNk−1
is the function from Lemma 8.6. We define

β(pos↓(sl0)) := Nl.
Now take a run R and l-stacks sli for i ∈ [1, |R|], such that the assumptions of the lemma

are satisfied. First, for each k ∈ [0, l] we want to construct a k-advancing set Ik of size at
least Nk, such that pos↓(topk(R(min Ik))) is one of the k-stacks in pos↓(sl0).

As I l we take the set of those indices i for which sli = topl(R(i)). It is immediate
from the definitions that I l is l-advancing (recall that sli = hist(R�i,j , s

l
j) for i ≤ j). By

assumption |I l| ≥ β(pos↓(sl0)) = Nl. Moreover, sl
min Il

was not modified from the beginning

of the run (as it was not the topmost l-stack), so this l-stack is positionless-equal to sl0.
Then by induction on l − k, we construct Ik−1 out of Ik using Lemma 8.6. Notice that

the size of the topmost k-stack of R(min Ik) is at most rk, so we can indeed obtain Ik−1 of
size at least Nk−1.

Finally, we have a 0-advancing set I0 such that |I0| ≥ N0. Observe that in I0 we can find
two indices i, j with i < j such that R(j) has the same (A, ϕ)-type and the same topmost
stack symbol as R(i), by the pigeonhole principle (recall the definition of N0 from the first
paragraph of the proof). Lemma 8.7 applied to R�i,j proves that R(i) is a milestone. By

construction i ∈ I0 ⊆ · · · ⊆ I l, so sli = topl(R(i)).

9. Pumping Lemma

In this section we present a pumping lemma, which can be used to change the number of
stars read in some place of a run, without changing too much the rest of the run. For this
section we fix an n-DPDA A with input alphabet A containing a ? symbol. We also fix a
morphism ϕ : A∗ →M into a finite monoid.
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We start by an intuitive explanation of the pumping lemma. In the situation that we
consider, we have a milestone configuration from which we start runs that first read some
number of stars, and later also other symbols. One possibility is that most of these runs
are k-upper (for some k), except maybe some runs reading a small number of stars at the
beginning. Then we are unable to use our pumping lemma, but we gain the knowledge that
our run is k-upper. The opposite situation is that there are runs from this configuration
that are not k-upper and read arbitrarily many stars at the beginning; our pumping lemma
talks about this situation. Consider such a run R of a 2-DPDA, whose last configuration is
depicted on the left of Figure 5. It starts in a milestone, so its initial fragment that reads
only stars is basically 0-upper. This means that the automaton builds on top of the stack of
R(0) (depicted in white), without modifying it; also in the copies of the topmost 1-stack
the original part is not modified (the automaton can inspect this part, but then it has to
be removed). We consider a run that is not 0-upper, so later, when we start reading other
symbols than stars, the “white part” of the topmost 1-stack is uncovered; its content is the
same as in R(0). By assumption there exists a run from the same configuration that reads
more (arbitrarily many) stars at the beginning, and is not 0-upper. When it uncovers the
“white part” of the topmost 1-stack, this part is exactly the same as in the original run, so
these runs can continue in the same way. This is depicted on the right of the figure.

Next, we state our pumping lemma. For uniformity of presentation, we refer there to
(−1)-upper runs, with the assumption that no run is (−1)-upper.

Theorem 9.1 (Pumping lemma). For each milestone configuration c there exists a number
pb(c) having the following property. Let R ◦ R′ be a run starting in c, where R is not
(k−1)-upper and reads a word beginning with at least pb(c) stars, and R′ is k-upper. In such
a situation, for each l ∈ N there exists a run S ◦S′ starting in c, and such that ϕ(S) = ϕ(R),
and S reads a word beginning with at least l stars, and S′ is (k, ϕ)-parallel to R′.

Let us mention that another pumping lemma for higher-order pushdown automata was
presented in a former paper by the author [Par12c]. There are several differences between
these two lemmas. An advantage of the former lemma is that it gives a precise value for pb(c),
in terms of the size of c. Moreover, it works not only for deterministic PDA, but also for
nondeterministic PDA in which the ε-closure of the configuration graph is finitely-branching.
On the other hand, the former pumping lemma is only given for k = 0. Additionally, it
just says that the length of the word read by the run increases, not necessarily the number
of stars at its beginning. The former pumping lemma was later generalized to collapsible
pushdown automata [KP12].

In the rest of the section we present a proof of Theorem 9.1. Its essence is as described
above: we consider the moment when the run ceases to be (k − 1)-upper. One possibility is
as depicted in Figure 5: this happens during a popk operation; our topmost k-stack becomes
positionless-equal to popk(topk(R(0))). This can also happen during a popr operation for
some r > k. Then we can obtain another topmost k-stack, but altogether we have only
finitely many possibilities. At least one of these possibilities happens for runs reading
arbitrarily large number of stars at the beginning, by the pigeonhole principle; we can stick
to this possibility. Next, when we change the number of stars read at the beginning, we still
land in a configuration having the same positionless topmost k-stack as in the original run,
when the run ceases to be (k − 1)-upper; from this configuration we can mimic the rest of
the original run. When k < n− 1, the type of the rest of the stack is important as well (the
latter fragment of the run can perform returns visiting interiors of our stack; the existence
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of such returns is described by the type). This is not a problem, since the type comes from
a finite set, so we can assume that it is fixed as well.

The most difficult part of the proof is to show that indeed when the run ceases to be
(k − 1)-upper, there are only finitely many possible shapes for the topmost k-stack. This is
shown in Corollary 9.3. It is based on Lemma 9.2, in which we analyze the situation just
after reading the stars.

In order to state Lemma 9.2, we need two definitions. For a run R starting in a
configuration c, and for a k-stack sk in some configuration R(i), where k ∈ [1, n], we say that
sk is c-clear in R(i) (with respect to R) when hist(R�0,i, top

k−1(sk)) 6= topk−1(c). Moreover,

for a configuration c, and for k ∈ [1, n], let Sk(c) be the smallest set of positionless k-stacks
such that if R is a run that starts in c and reads only stars, and sk is a k-stack of R(|R|)
that is c-clear with respect to R, then pos↓(sk) ∈ Sk(c).

Lemma 9.2. For each milestone configuration c, and for k ∈ [1, n], the set Sk(c) is finite.

Proof. Let X (c) be the set containing all positionless k-stacks of c, and additionally
pos↓(popk(topk(c))); clearly X (c) is finite. We claim that every positionless k-stack in
Sk(c) can be obtained from a positionless k-stack sk− ∈ X (c) by applying at most β(sk−) push
and pop operations, where β is the function from Lemma 8.4; this immediately implies that
Sk(c) is finite.

Fix a run R that starts in c and reads only stars, and fix a c-clear k-stack sk of R(|R|).
Consider the smallest index i for which the k-stack hist(R�i,|R|, s

k) is c-clear in R(i); denote

tk = hist(R�i,|R|, s
k). We claim that pos↓(tk) ∈ X (c). Indeed, either i = 0 and tk is one of the

k-stacks of c, or hist(R�i−1,|R|, s
k) is not c-clear in R(i− 1). In the latter case, this k-stack

becomes c-clear in the next configuration, so necessarily this is the topmost k-stack, and the
operation between these configurations is popk. We see that R�0,i−1 is (k − 1)-upper, and
R�0,i is not (k−1)-upper. Proposition 6.5 implies that R�0,i is a k-return, and Proposition 6.6

implies that tk = topk(R(i)) ∼= popk(topk(c)); thus, pos↓(tk) ∈ X (c).
Observe that tk can be changed in R�i,|R| only when it is the topmost k-stack. If there

exist at most β(pos↓(tk)) indices j ∈ [i, |R|] such that hist(R�j,|R|, s
k) = topk(R(j)), then sk

can be obtained from tk by applying at most β(pos↓(tk)) push and pop operations, as we
wanted to prove.

It remains to prove that indeed there are at most β(pos↓(tk)) indices j ∈ [i, |R|] such that
hist(R�j,|R|, s

k) = topk(R(j)). Suppose to the contrary that there are more than β(pos↓(tk))
such indices j. Then we can use Lemma 8.4 for R�i,|R|; it gives us an index j such that

the configuration R(j) is a milestone and hist(R�j,|R|, s
k) = topk(R(j)). Because both c and

R(j) are milestones, we know that R�0,j is 0-upper, thanks to Lemma 8.3. One case is that

i = 0; then hist(R, sk) 6= topk(c) (because, by the definition of i, hist(R, sk) is c-clear in
c), and we know that hist(R�j,|R|, s

k) = topk(R(j)), so R�0,j is not k-upper; in particular

it cannot be 0-upper. Otherwise, as already observed, R�0,i is not (k − 1)-upper and

hist(R�i,|R|, s
k) = topk(R(i)), which implies that R�i,j is k-upper. But R�0,j is (k− 1)-upper,

so this contradicts Proposition 6.4 applied for R�0,i ◦R�i,j .

Corollary 9.3. For each milestone configuration c there exists a finite set S(c) of configu-
rations having the following property. Let k ∈ [0, n], let R be a run starting in c, and let
r ∈ [0, |R|] be such that R�0,r reads only stars. Suppose that R is not (k − 1)-upper, but
for each i ∈ [r, |R| − 1] either R�0,i is (k − 1)-upper or R�i,|R| is not k-upper. Then we can
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find a configuration d ∈ S(c) having the same (A, ϕ)-type and the same positionless topmost
k-stack as R(|R|).
Proof. There are only finitely many possible values of an (A, ϕ)-type of a configuration.
Thus, it is enough to show, for each k, that there are only finitely many possible positionless
topmost k-stacks over all configurations R(|R|) satisfying the assumptions. For k = 0 this is
trivial as a positionless 0-stack contains just one symbol. Suppose that k ≥ 1. We have two
cases.

First suppose that R�i,|R| is k-upper for some i ∈ [r, |R| − 1]; fix the greatest such index

i. Then by assumption R�0,i is (k − 1)-upper, but R is not. This is possible only when
i = |R| − 1 (thanks to Proposition 6.2 used for R�i,|R|). Proposition 6.5 says that R is

necessarily a k-return. Thus, topk(R(|R|)) ∼= popk(topk(R(0))) (cf. Proposition 6.6); the
content of this k-stack is fixed.

The other case is that R�i,|R| is not k-upper for every i ∈ [r, |R| − 1]. This means that

the topmost k-stack of R(|R|) is an unchanged copy of some k-stack of R(r). As R is not
(k − 1)-upper, this k-stack of R(r) is c-clear; it thus belongs to the set Sk(c), which is finite
by Lemma 9.2.

Proof of Theorem 9.1. Consider the infinite run P starting at the milestone configuration
c and reading only stars. Consider first the degenerate case when in P only finitely many
stars are read. As pb(c) we take their number, plus one. Then the thesis is satisfied trivially,
as there is no run that starts in c and reads a word beginning with pb(c) stars. So for the
rest of the proof suppose that P reads infinitely many stars.

Let S(c) be the set from Corollary 9.3 (used for c). For each i ≥ 1 we define the set
Ti ⊆ [0, n]×S(c)×M as follows. A triple (j, d,m) belongs to Ti if and only if there exists a
run R from c such that the word read by R begins with (at least) i stars, and ϕ(R) = m,
and R(|R|) has the same (A, ϕ)-type and the same positionless topmost j-stack as d. By
definition Ti+1 ⊆ Ti (for each i), and there are only finitely many possible sets, so from some
moment every Ti is the same. As pb(c) we take a positive number such that Ti = Tpb(c) for
all i ≥ pb(c).

Consider now a run R ◦R′ starting in c, where R is not (k − 1)-upper and reads a word
beginning with at least pb(c) stars, and R′ is k-upper, for some k ∈ [0, n]. Consider also a
number l. Our goal is to construct a run S ◦ S′ starting in c and such that ϕ(S) = ϕ(R),
and S reads a word beginning with at least l stars, and S′ is (k, ϕ)-parallel to R′. Without
loss of generality, we can assume that l ≥ pb(c). Let r be an index such that R�0,r reads
exactly pb(c) stars. Without loss of generality, we can assume that there is no i ∈ [r, |R| − 1]
such that R�0,i is not (k − 1)-upper and R�i,|R| is k-upper (if such i exists, we move the

subrun R�i,|R| to R′, that is, we use the pumping lemma for R�0,i ◦ (R�i,|R| ◦R′), and then

in the resulting S′ we find the subrun (k, ϕ)-parallel to R�i,|R| and we move it back to S).
We use Corollary 9.3 for R and r; its assumptions are satisfied thanks to our “without

loss of generality” assumption. We obtain some d ∈ S(c) that has the same (A, ϕ)-type
and the same positionless topmost k-stack as R(|R|). It means that (k, d, ϕ(R)) ∈ Tpb(c).
Because Tpb(c) = Tl, there exists a run S from c such that the word read by S begins with (at
least) l stars, and ϕ(S) = ϕ(R), and S(|S|) has the same (A, ϕ)-type and the same topmost
k-stack as R(|R|).

Finally, we use Theorem 7.3 for R′ in order to obtain an accepting run S′ that starts in
S(|S|) and is (k, ϕ)-parallel to R′.
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10. Why U Cannot Be Recognized?

In this section we prove that the language U cannot be recognized by a deterministic
higher-order pushdown automaton. Notice that our techniques presented in previous sections
were quite general (not too much related to the U language). We believe that they can be
useful for other purposes, for instance, to analyze behavior of some automata (in particular
automata whose main objective is to count and compare the number of times a symbol
appears on the input).

Of course our proof is by contradiction: suppose that for some n we have an (n− 1)-
DPDA recognizing U . We construct an n-DPDA A that works as follows. First it performs
a pushn operation. Then it simulates the (n − 1)-DPDA (not using the pushn and popn

operations). When the (n− 1)-DPDA is going to accept, A performs a popn operation and
afterwards accepts. Clearly, A recognizes U as well (here we use the fact that no word in U
is a prefix of another word in U). Such a normalization allows us to use Theorem 7.4, as in
A every accepting run is an n-return.

Fix a finite monoid M and a morphism λ : A∗ →M that checks whether a word is of
the form ]∗ (some number of ] symbols), or of the form ?∗]?∗ (a closing bracket surrounded
by some number of stars), or of neither of these two forms. This means that λ(u) 6= λ(v) for
all words u, v being of different forms. Let N be the number of equivalence classes of the
(A, λ)-sequence-equivalence relation, times the number of (A, λ)-types, plus one. Consider
the following words:

w0 = [ ,

wk+1 = wNk ]N [ for k ∈ [0, n− 1] ,

where the number in the superscript (in this case N) denotes the number of repetitions of a
word. For a word w, its pattern is a word obtained from w by removing its letters other
than brackets (leaving only brackets). Fix a morphism ϕ : A∗ →M such that from its value
ϕ(w) we can deduce

• whether the word w contains the ] symbol, and
• whether the pattern of w is longer than |wn| (recall that n is the order of A), and
• the exact value of the pattern of w, whenever this pattern is not longer than |wn|.

We fix a run R, and an index z(w) for each prefix w of wn, such that the following holds.
The run R begins in the initial configuration. Between R(0) and R(z(ε)) only stars are read.
For each prefix w of wn, the configuration R(z(w)) is a milestone. Just after z(w), the run
R reads pb(R(z(w))) stars, where pb is the function from Theorem 9.1 used for morphism
ϕ. If w = va (where a is a single letter), the word read by R between R(z(v)) and R(z(w))
consists of a surrounded by some number of stars. Of course such a run R exists: we read
stars until we reach a milestone (succeeds thanks to Corollary 8.5), then we read as many
stars as required by the pumping lemma, then we read the next letter of wn, and so on
(because A accepts U , it will never block).

It is important to analyze relations between configurations R(z(v)) for some prefixes
v of wn. In order to avoid complicated subscripts, for any prefixes v, w of wn we denote
〈v, w〉 := R�z(v),z(w).

By construction of A, for every prefix v of wn the run 〈v, wn〉 is (n − 1)-upper (as
we never perform a popn operation before reading some ] symbol). This contradicts the
following key lemma (taken for k = n− 1 and u = ε).
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u wk wkwk wk

wkwk
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] ]]

] ]

] ] ]

]

]

]

many stars

d1,l

d3,l

many ]

Figure 6: Illustration of runs appearing in the proof (where N = 4, x = 1, y = 3). Recall
that stars can appear between letters of the words.

Lemma 10.1. Let k ∈ [−1, n− 1], and let u be a word such that uwk+1 is a prefix of wn.
Then there exist a prefix v of wk+1 such that v 6= wk+1 and 〈uv, uwk+1〉 is not k-upper.

Proof. The proof is by induction on k. For k = −1 this is obvious, as no run is (−1)-upper
(we take v = ε).

Let now k ≥ 0. Figure 6 may be helpful in finding different runs present in the proof
below. Suppose that the thesis of the lemma does not hold. Then for each prefix v of wk+1

the run 〈uv, uwk+1〉 is k-upper. From this we get the following property ♥.

Let v′ be a prefix of wk+1, and v a prefix of v′. Then 〈uv, uv′〉 is k-upper.

In the proof, we construct two sequences of accepting runs, with many extra stars
inserted in two different places. Namely, in one sequence we insert extra stars before the last
opening bracket that is not closed, and in the other sequence—after this bracket. In effect,
the number of sharp symbols read by runs in one of these sequences should be unbounded,
and in the other—bounded. The sequences are constructed in such a way that this violates
Theorem 7.4, which says that the number of sharp symbols read by runs in these sequences
is either bounded in both sequences or unbounded in both sequences.

Now we come to details. By the induction assumption (where uwi−1
k is taken as u), for

each i ∈ [1, N ] there exists a prefix vi of wk such that 〈uwi−1
k vi, uw

i
k〉 is not (k − 1)-upper.

As 〈uwik, uwNk 〉 is k-upper (property ♥), from Proposition 6.4 we know that 〈uwi−1
k vi, uw

N
k 〉

cannot be (k − 1)-upper as well.
Now we are ready to use the pumping lemma (Theorem 9.1). For each i ∈ [1, N ] we use

it for 〈uwi−1
k vi, uw

N
k 〉 ◦ 〈uwNk , uwk+1〉. Recall from the definition of R that the word read by

〈uwi−1
k vi, uw

N
k 〉 begins with such a number of stars that the pumping lemma can be used.

For each number l we obtain a run Si,l ◦S′i,l, such that ϕ(Si,l) = ϕ(〈uwi−1
k vi, uw

N
k 〉), and Si,l

reads a word beginning with at least l stars, and S′i,l is (k, ϕ)-parallel to 〈uwNk , uwk+1〉; let

di,l = Si,l(|Si,l|). Notice that the run R�0,z(uwi−1
k vi)

◦ Si,l, starts in the initial configuration,

ends in di,l, and reads a word having pattern uwNk .
Because there are finitely many possible (A, λ)-types, we can assume that typeA,λ(di,l) =

typeA,λ(di,j) for each i ∈ [1, N ] and each l and j. Indeed, we can choose (for each i separately)
some value of typeA,λ(di,l) that appears infinitely often, and then we take the subsequence
of only these di,l that give this value.

Since there are more possible indices i ∈ [1, N ] than the number of classes of the (A, λ)-
sequence-equivalence relation, times the number of (A, λ)-types, there have to exist two
indices x, y with 1 ≤ x < y ≤ N such that typeA,λ(dx,1) = typeA,λ(dy,1), and the sequences
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dx,1, dx,2, . . . and dy,1, dy,2, . . . are (A, λ)-sequence-equivalent. From now we fix these two
indices x, y. Furthermore, because S′i,l is (k, ϕ)-parallel to 〈uwNk , uwk+1〉 for each i ∈ [1, N ]
and each l, we know that the topmost k-stacks of all dx,l and of all dy,l are positionless-equal.

Let R′ be a prefix of S′x,1 that is (k, ϕ)-parallel to 〈uwNk , uwNk ]N−x〉. Notice that R′

consists of N −x runs, each of which is k-upper and reads a word of the form ?∗]?∗ (a closing
bracket surrounded by some number of stars). Let also R′′ be an n-return that starts in
R′(|R′|) and reads only ] symbols (because A recognizes U , there is an accepting run R′′

that starts in R′(|R′|) and reads only ] symbols; by construction of A, it is an n-return).
Finally, we use Theorem 7.4 for λ (as ϕ), sequences dx,1, dx,2, . . . (as c1, c2, . . . ) and

dy,1, dy,2, . . . (as d1, d2, . . . ), and for run the R′ ◦ R′′.5 As noticed above (in particular
because R′(0) = dx,1), the configurations R′(0), and dx,l, and dy,l for each l all have the
same (A, λ)-types and positionless topmost k-stacks. Thus, the assumptions of the theorem
are satisfied. For each l, we obtain runs Sl = S′l ◦ S′′l (from dx,l) and Tl = T ′l ◦ T ′′l (from dy,l).
The word read by any of these runs contains N − x closing brackets with some number of
stars around them, and after them some number of ] symbols.

The runs R�0,z(uwx−1
k vx) ◦ Sx,l ◦ Sl and R�

0,z(uwy−1
k vy)

◦ Sy,l ◦ Tl for each l have pattern

uwNk ]N−x. In this pattern the last opening bracket that is not closed is the last bracket of
the x-th wk after u. Recall that configurations dx,l were obtained by pumping inside the
x-th wk, so before this bracket; for l→∞ the number of stars inserted there is unbounded.
From the definition of the language U it follows that the sequence ](S1), ](S2), . . . has to be
unbounded. On the other hand, configurations dy,l were obtained by pumping inside the y-th
wk, so after the last opening bracket that was not closed (as y > x). For each l the number
of stars before this bracket is the same. From the definition of the language U it follows
that the sequence ](T1), ](T2), . . . has to be constant, hence bounded. This contradicts the
thesis of Theorem 7.4, which says that these sequences are either both bounded or both
unbounded.
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