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Abstract. The Algebraic Dichotomy Conjecture states that the Constraint Satisfaction
Problem over a fixed template is solvable in polynomial time if the algebra of polymor-
phisms associated to the template lies in a Taylor variety, and is NP-complete otherwise.
This paper provides two new characterizations of finitely generated Taylor varieties. The
first characterization is using absorbing subalgebras and the second one cyclic terms. These
new conditions allow us to reprove the conjecture of Bang-Jensen and Hell (proved by
the authors) and the characterization of locally finite Taylor varieties using weak near-
unanimity terms (proved by McKenzie and Maróti) in an elementary and self-contained
way.

Introduction

The Constraint Satisfaction Problem (CSP) is a generic problem in computer science. An
instance consists of a number of variables and constraints imposed on them and the objective
is to determine whether variables can be assigned values in such a way that all the constraints
are met. As CSP provides a common framework for many theoretical problems as well as
for many real-life applications, it has been studied by computer scientists for over forty
years.
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The results contained in this paper follow a long line of research devoted to verifying
the Constraint Satisfaction Problem Dichotomy Conjecture of Feder and Vardi [FV99]. It
deals with so called non-uniform CSP — the same decision problem as the ordinary CSP,
but in this case the set of allowed constraint relations is finite and fixed. The conjecture
states that, for every finite, fixed set of constraint relations (a fixed template), the CSP
defined by it is NP-complete or solvable in polynomial time, i.e. the class of CSPs exhibits
a dichotomy.

The conjecture of Feder and Vardi dates back to 1993. At that time it was sup-
ported by two major results, Schaefer’s dichotomy theorem for two–element templates
[Sch78], and the dichotomy theorem for undirected graphs by Hell and Nešetřil [HN90].
The first breakthrough in the research appeared in 1997 in the work of Jeavons, Cohen and
Gyssens [JCG97], refined later by Bulatov, Jeavons and Krokhin [BKJ00, BJK05]. At heart
of the new approach lies a proof that the complexity of CSP, for a fixed template, depends
only on a set of certain operations — polymorphisms of the template. Thus the study of
templates gives rise to the study of algebras associated to them.

The algebraic approach has lead to a better understanding of the known results and
brought a number of new results which were out of reach for pre-algebraic methods. The the-
orem of Schaefer [Sch78] has been extended by Bulatov [Bul06] to three–element domains.
Another major result of Bulatov [Bul03, Bul11] establishes the dichotomy for templates
containing all unary relations. The conjecture of Bang-Jensen and Hell [BJH90], gener-
alizing Hell’s and Nešetřil’s dichotomy theorem [HN90], was confirmed [BKN08, BKN09].
New algorithms were devised [BD06, Dal06, IMM+07] and pre-algebraic algorithms were
characterized in algebraic terms [BK09a, BK09b].

The hardness parts in the dichotomy results mentioned above were obtained using a
theorem of Bulatov, Jeavons and Krokhin [BKJ00, BJK05] stating that whenever an algebra
associated with a core template does not lie in a Taylor variety then the CSP defined by
the template is NP-complete. In the same paper the authors conjecture that in all the
other cases the associated CSP is solvable in polynomial time. All the known partial results
agree with this proposed classification, which is now commonly referred to as the Algebraic
Dichotomy Conjecture.

In order to prove the Algebraic Dichotomy Conjecture one has to devise an algorithm
that works for any relational structure with the corresponding algebra in a Taylor vari-
ety. As the characterization originally provided by Taylor [Tay77] is difficult to work with,
a search for equivalent conditions is ongoing. A technical, but useful condition was ob-
tained by Bulatov who used it to prove his dichotomy theorems [Bul03, Bul06]. Another
powerful tool is the characterization of (locally finite) Taylor varieties in terms of weak near-
unanimity operations due to Maróti and McKenzie [MM08]. Unfortunately, their proof uses
a deep algebraic theory of Hobby and McKenzie [HM88], therefore is not easily accessible
for a nonspecialist. The proof of the conjecture of Bang-Jensen and Hell hinges on this
characterization; also the algebraic characterization of problems of bounded width [BK09b]
relies on a similar characterization of congruence meet semi-distributive varieties provided
in the same paper [MM08]. Recently, a surprisingly simple condition for Taylor varieties
was found by Siggers [Sig10], and an analytical characterization was given by Kun and
Szegedy [KS09].

In this paper we provide two new conditions for (finitely generated) Taylor varieties.
These new characterizations already proved to be useful. Not only they provide new tools
for attacking the algebraic dichotomy conjecture, but they also allow us to present easy
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and elementary proofs for some of the results mentioned above. Moreover, their proofs are
self-contained and do not require heavy algebraic machinery.

The first, structural characterization (the Absorption Theorem) is expressed in terms of
absorbing subalgebras developed and successfully applied by the authors in [BKN08, BKN09,
BK09a, BK09b]. We use it to present an elementary proof of the conjecture of Bang-Jensen
and Hell. Recently, the Absorption Theorem was applied to give a short proof of Bulatov’s
dichotomy theorem for conservative CSPs [Bar11]. The second, equational characterization
involves cyclic terms and is a stronger version of the weak near-unanimity condition. We
use it to restate the Algebraic Dichotomy Conjecture in simple combinatorial terms and to
provide a very short proof of the theorem of Hell and Nešetřil.

The results of this paper also show that the tools developed for the CSP can be suc-
cessfully applied to algebraic questions which indicates a deep connection between the CSP
and universal algebra.

Organization of the paper. In section 1 we introduce the necessary notions concern-
ing algebras and the CSP. In section 2 we define absorbing subalgebras and present the
Absorption Theorem and its corollaries. In section 3 we use the absorbing subalgebra char-
acterization to provide an elementary proof of the conjecture of Bang-Jensen and Hell in a
slightly stronger version which is needed in section 4. Finally, in section 4 we prove the char-
acterization using cyclic terms and its corollaries: the theorem of Hell and Nešetřil [HN90]
and the weak near-unanimity characterization of locally finite Taylor varieties of Maróti
and McKenzie [MM08].

1. Preliminaries

1.1. Notation for sets. For a set A and a natural number n, elements of An are the
n-tuples of elements of A. We index its coordinates starting from zero, for example
(a0, a1, . . . , an−1) ∈ An.

Let R be a subset of a Cartesian product A1×A2×· · ·×An. R is called subdirect (R ⊆S

A1 × · · · ×An) if, for every i = 1, 2, . . . , n, the projection of R to the i-th coordinate is the
whole set Ai.

Given R ⊆ A×B and S ⊆ B × C, by S ◦R we mean the following subset of A× C:

S ◦R = {(a, c) : ∃ b ∈ B (a, b) ∈ R, (b, c) ∈ S}.

If R ⊆ A×A and n is a natural number greater than zero, then we define

R◦n = R ◦R ◦ · · · ◦R
︸ ︷︷ ︸

n

.
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1.2. Algebras and varieties. An algebraic signature is a finite set of function symbols
with a natural number (the arity) associated to each of them. An algebra of a signature
Σ is a pair A = (A, (tA)t∈Σ), where A is a set, called the universe of A, and tA is an

operation on A of arity ar(t), that is, a mapping Aar(t) → A. We always use a boldface
letter to denote an algebra and the same letter in a plain type to denote its universe. We
often omit the superscripts of operations when the algebra is clear from the context.

A term in a signature Σ is a formal expression using variables and compositions of sym-
bols in Σ. In this paper we introduce a special notation for a particular case of composition
of terms: given a k-ary term t1 and an l-ary term t2 we define a kl-ary term t1 ∗ t2 by

t1 ∗ t2(x0, x1, . . . , xkl−1) = t1(t2(x0, . . . , xl−1), t2(xl, . . . , x2l−1), . . . , t2(x(k−1)l . . . , xkl−1)).

For an algebra A and a term h in the same signature Σ, hA has the natural meaning in
A and is called a term operation of A. Again, we usually omit the superscripts of term
operations when the algebra is clear from the context. The set of all term operations of A
is called the clone of term operations of A and it is denoted Clo(A).

For a pair of terms s, t over a signature Σ, we say that an algebra A in the signature Σ
satisfies the identity s ≈ t if the term operations sA and tA are the same.

There are three fundamental operations on algebras of a fixed signature Σ: forming
subalgebras, factoralgebras and products. A subset B of the universe of an algebra A is
called a subuniverse, if it is closed under all operations (equivalently term operations) of
A. Given a subuniverse B of A we can form the algebra B by restricting all the operations
of A to the set B. In this situation we write B ≤ A or B ≤ A. We call the subuniverse
B (or the subalgebra B) proper if ∅ 6= B 6= A. The smallest subalgebra of A containing a
set B ⊆ A is called the subalgebra generated by B and will be denoted by SgA(B). It can
be equivalently described as the set of elements which can be obtained by applying term
operations of A to elements of B.

Given a family of algebras Ai, i ∈ I we define its product
∏

i∈I Ai to be the algebra
with the universe equal to the cartesian product of the Ai’s and with operations computed
coordinatewise. The product of algebras A1, . . . , An will be denoted by A1×· · · ×An and
the product of n copies of an algebra A by An. R is a subdirect subalgebra of A1×A2×· · ·×
An if R is subdirect in A1×A2×· · ·×An and, in such a case, we write R ≤S A1×· · ·×An.

An equivalence relation ∼ on the universe of an algebra A is a congruence, if it is a
subalgebra of A2. The corresponding factor algebra A/ ∼ has, as the universe, the set
of ∼-blocks and the operations are defined using (arbitrarily chosen) representatives. A
congruence is nontrivial, if it is not equal to the diagonal or to the full relation A×A.

A variety is a class of algebras of the same signature closed under forming isomorphic
copies, subalgebras, factoralgebras and products. For a pair of terms s, t over a signature
Σ, we say that a class of algebras V in the signature Σ satisfies the identity s ≈ t if every
algebra in the class does. By Birkhoff’s theorem, a class of algebras is a variety if and only
if there exists a set of identities E such that the members of V are precisely those algebras
which satisfy all the identities from E.

A variety V is called locally finite, if every finitely generated algebra (that is, an algebra
generated by a finite subset) contained in V is finite. V is called finitely generated, if there
exists a finite set K of finite algebras such that V is the smallest variety containing K. In
such a case V is actually generated by a single, finite algebra, the product of members of
K. Every finitely generated variety is locally finite, and if a variety is generated by a single
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algebra then the identities satisfied in this algebra are exactly the identities satisfied in the
variety.

For a more in depth introduction to universal algebra and proofs of the above mentioned
results we recommend [BS81].

1.3. Taylor varieties. A term s is idempotent in a variety (or an algebra), if it satisfies
the identity

s(x, x, . . . , x) ≈ x.

An algebra (a variety) is idempotent if all its terms are.
A term t of arity at least 2 is called a weak near-unanimity term of a variety (or an

algebra), if t is idempotent and satisfies

t(y, x, x, . . . , x) ≈ t(x, y, x, x, . . . , x) ≈ . . . · · · ≈ t(x, x, . . . , y, x) ≈ t(x, x, . . . , x, y).

A term t of arity at least 2 is called a cyclic term of a variety (or an algebra), if t is
idempotent and satisfies

t(x0, x1, . . . , xk−1) ≈ t(x1, x2, . . . , xk−1, x0).

Finally, a term t of arity k is called a Taylor term of a variety (or an algebra), if t is
idempotent and for every j < k it satisfies an identity of the form

t(�0,�1, . . . ,�k−1) ≈ t(△0,△1, . . . ,△k−1),

where all �i’s and △i’s are substituted with either x or y, but �j is x while △j is y.

Definition 1.1. An idempotent variety V is called Taylor if it has a Taylor term.

Study of Taylor varieties has been a recurring subject in universal algebra for many years.
One of the first characterizations is due to Taylor [Tay77]

Theorem 1.2 (Taylor [Tay77]). Let V be an idempotent variety. The following are equiv-
alent.

• V is a Taylor variety.
• V does not contain a two-element algebra whose every (term) operation is a projection.

Further research led to discovery of other equivalent conditions [HM88, MM08, Sig10, KS09].
One of the most important ones is the result of Maróti and McKenzie [MM08].

Theorem 1.3 (Maróti and McKenzie [MM08]). Let V be an idempotent, locally finite
variety. The following are equivalent.

• V is a Taylor variety.
• V has a weak near-unanimity term.

This result, together with a similar characterization provided in the same paper for con-
gruence meet semi-distributive varieties, found deep applications in CSP [BKN08, BKN09,
BK09b].
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1.4. Relational structures and CSP. A convenient formalization of non-uniform CSP
is via homomorphisms between relational structures [FV99].
A relational signature is a finite set of relation symbols with arities associated to them. A
relational structure of the signature Σ is a pair A = (A, (RA)R∈Σ), where A is a set, called

the universe of A, and RA is a relation on A of arity ar(R), that is, a subset of Aar(R).
Let A,B be relational structures of the same signature. A mapping f : A→ B is a homo-

morphism from A to B, if it preserves all R ∈ Σ, that is, (f(a0), f(a1), . . . , f(aar(R)−1)) ∈ RB

for any (a0, . . . , aar(R)−1) ∈ RA. A finite relational structure A is a core, if every homomor-
phism from A to itself is bijective.

For a fixed relational structure A of a signature Σ, CSP(A) is the following decision
problem:

INPUT: A relational structure X of the signature Σ.
QUESTION: Does X map homomorphically to A?

It is easy to see that if A′ is a core of A (i.e. a core which is contained in A and such that
A can be mapped homomorphically into it) then CSP(A) and CSP(A′) are identical.

The celebrated conjecture of Feder and Vardi [FV99] states that the class of CSPs
exhibits a dichotomy:

The dichotomy conjecture of Feder and Vardi. For any relational structure A, the
problem CSP(A) is solvable in polynomial time, or NP-complete.

1.5. Algebraic approach to CSP. A mapping f : An → A is compatible with an m-ary
relation R on A if the tuple

(
f(a00, a

1
0, . . . , a

n−1
0 ), . . . , f(a0m−1, a

1
m−1, . . . , a

n−1
m−1)

)

belongs to R whenever (ai0, . . . , a
i
m−1) ∈ R for all i < n. A mapping compatible with all

the relations in a relational structure A is a polymorphism of this structure.
For a given relational structure A = (A, (RA)R∈Σ) we define an algebra IdPol(A) (often

denoted by just A). This algebra A has its universe equal to A and the operations of A
are the idempotent polymorphisms of A (we formally define a signature of A to be identical
with the set of its operations).

It follows from an old result [BKKR69, Gei68] that a relation R of arity k is a subuni-
verse of IdPol(A)k if and only if R can be positively primitively defined from relations in A
and singleton unary relations identifying every element of A. That is, R can be defined by
a first-order formula which uses relations in A, singleton unary relations on A, the equality
relation on A, conjunction and existential quantification.

Already the first results on the algebraic approach to CSP [JCG97, BKJ00, BJK05] show
that whenever a relational structure A is a core then IdPol(A) fully determines the compu-
tational complexity of CSP(A). Moreover, Bulatov, Jeavons and Krokhin showed [BKJ00,
BJK05]:

Theorem 1.4 (Bulatov, Jeavons and Krokhin [BKJ00, BJK05]). Let A be a finite relational
structure which is a core. If IdPol(A) does not lie in a Taylor variety, then CSP(A) is NP -
complete.

In the same paper they conjectured that these are the only cases of finite cores which give
rise to NP-complete CSPs.
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The Algebraic Dichotomy Conjecture. Let A be a finite relational structure which is a
core. If IdPol(A) does not lie in a Taylor variety, then CSP(A) is NP -complete. Otherwise
is it solvable in polynomial time.

This conjecture is supported by many partial results on the complexity of CSPs [Bul03,
Bul06, BKN08, BKN09, BK09b, IMM+07] and it renewed interest in properties of finitely
generated Taylor varieties.

2. Absorbing subalgebras and absorption theorem

In this section we introduce the concept of an absorbing subalgebra and prove the Absorp-
tion Theorem and its corollaries. The proof is self-contained and elementary. In section 3 we
use Theorem 2.3 to reprove a stronger version of the “Smooth Theorem” [BKN08, BKN09]
which, in turn, will be used to prove the second main result of this article, Theorem 4.1.
This approach simplifies significantly the known proof of the Smooth Theorem, and does
not rely on the involved algebraic results results from [MM08]. It has also lead to a simple
proof [Bar11] of the dichotomy theorem for conservative CSPs [Bul03].

2.1. Absorption. A subalgebra B of an algebra A is an absorbing subalgebra, if there
exists a term operation of A which outputs an element of B whenever all but at most one
of its arguments are from B. More precisely

Definition 2.1. Let A be an algebra and t ∈ Clo(A). We say that a subalgebra B of A is
an absorbing subalgebra of A with respect to t if, for any k < ar(t) and any choice of ai ∈ A
such that ai ∈ B for all i 6= k, we have t(a0, . . . , aar(t)−1) ∈ B.

We say that B is an absorbing subalgebra of A, or that B absorbs A (and write B ⊳A),
if there exists t ∈ Clo(A) such that B is an absorbing subalgebra of A with respect to t.

We also speak about absorbing subuniverses, i.e. universes of absorbing subalgebras. Recall
that an (absorbing) subalgebra B of A is proper, if ∅ 6= B  A.

The Absorption Theorem says that the existence of a certain kind of subuniverse R of
a product of two Taylor algebras A and B forces a proper absorbing subuniverse in one of
these algebras. It is helpful to draw R as a bipartite undirected graph in the following sense:
the vertex set is the disjoint union of A (draw it on the left) and B (on the right) and two
elements a ∈ A from the left side and b ∈ B from the right side are adjacent if (a, b) ∈ R.
We say that two vertices are linked if they are connected in this graph, and we call R linked
if the graph is connected after deleting the isolated vertices. Note that R ≤S A×B if and
only if there are no isolated vertices.

Definition 2.2. Let R ⊆ A × B and let a, a′ ∈ A. We say that a, a′ ∈ A are linked in R,
or R-linked, via c0, . . . , c2n, if a = c0, c2n = a′ and (c2i, c2i+1) ∈ R and (c2i+2, c2i+1) ∈ R for
all i = 0, 1, . . . , n− 1.

In a similar way we define when a ∈ A, a′ ∈ B (or a ∈ B, a′ ∈ A, or a ∈ B, a′ ∈ B) are
R-linked.

We say that R is linked, if a, a′ are R-linked for any elements a, a′ of the projection of
R to the first coordinate.

These definitions allow us to state the Absorption Theorem which is the first main result
of the paper.
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Theorem 2.3. Let V be an idempotent, locally finite variety, then the following are equiv-
alent.

• V is a Taylor variety;
• for any finite A,B ∈ V and any linked R ≤S A×B:
− R = A×B or
− A has a proper absorbing subuniverse or
− B has a proper absorbing subuniverse.

2.2. Proof of Absorption Theorem. We start with a couple of useful observations. The
first one says that absorbing subalgebras are closed under taking intersection, and that ⊳ is
a transitive relation:

Proposition 2.4. Let A be an algebra.

• If C ⊳B ⊳A, then C ⊳A.
• If B ⊳A and C ⊳A, then B ∩ C ⊳A.

Proof. We start with a proof of the first item. Assume that B absorbs A with respect
to t (of arity m) and that C absorbs B with respect to s (of arity n). We will show
that C is an absorbing subalgebra of A with respect to s ∗ t. Indeed, take any tuple
(a0, . . . , amn−1) ∈ Amn such that ai ∈ C for all but one index, say j, and consider the
evaluation of s ∗ t(a0, . . . , amn−1). Every evaluation of the term t appearing in s ∗ t is of the
form

t(aim, . . . , aim+m−1)

and therefore whenever j does not fall into the interval [im, im+m− 1] the result of it falls
in C (as C is a subuniverse of A). In the case when j is in that interval we have a term t
evaluated on the elements of C (and therefore elements of B) in all except one coordinate.
The result of such an evaluation falls in B (as B absorbs A with respect to t). Thus s is
applied to a tuple consisting of elements of C on all but one position, and on this position
the argument comes from B. Since C absorbs B with respect to s the results falls in C and
the first part of the proposition is proved.

For the second part we consider B ⊳A and C ⊳A; it follows easily that B ∩C ⊳C with
respect to the same term as B ⊳A. Now it is enough to apply the first part.

Let R be a subuniverse of A×B. We use the following notation for the neighborhoods of
X ⊆ A or Y ⊆ B:

X+R = {b ∈ B : ∃ a ∈ X (a, b) ∈ R}

Y −R = {a ∈ A : ∃ b ∈ Y (a, b) ∈ R}

When R is clear from the context we write just X+ and Y −. The next lemma shows that
these operations preserve (absorbing) subalgebras.

Lemma 2.5. Let R ≤ A × B, where A,B are algebras of the same signature. If X ≤ A

and Y ≤ B, then X+ ≤ B and Y − ≤ A. Moreover, if R ≤S A×B and X ⊳A and Y ⊳B,
then X+ ⊳B and Y − ⊳A.

Proof. Suppose X ≤ A and take any term t, say of arity j, in the given signature. Let
b0, . . . , bj−1 ∈ X+ be arbitrary. From the definition of X+ we can find a0, . . . , aj−1 ∈ X
such that (ai, bi) ∈ R for all 0 ≤ i < j. Since R is a subuniverse of A × B, the pair
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(t(a0, . . . , aj−1), t(b0, . . . , bj−1)) is in R. But t(a0, . . . , aj−1) ∈ X as X is a subuniverse of
A. Therefore t(b0, . . . , bj−1) ∈ X+ and we have shown that X+ is closed under all term
operations of B, i.e. X+ ≤ B.

Suppose X absorbs A with respect to a term t of arity j. Let 0 ≤ k < j be arbitrary
and let b0, . . . , bj ∈ B be elements such that bi ∈ X+ for all i 6= k. Then, for every
i, i 6= k, we can find ai ∈ X such that (ai, bi) ∈ R. Also, since the projection of R to
the second coordinate is B, we can find ak ∈ A such that (ak, bk) ∈ R. We again have
(t(a0, . . . , aj−1), t(b0, . . . , bj−1)) ∈ R and t(a0, . . . , aj−1) ∈ X (as X absorbs A with respect
to t). It follows that t(b0, . . . , bj−1) ∈ X+ and that X+ ⊳B with respect to t.

The remaining two statements are proved in an identical way.

The subalgebra of A generated by B can be obtained by applying term operations of A to
elements of B. The following auxiliary lemma provides a single term for all subsets B.

Lemma 2.6. Let A be a finite idempotent algebra. Then there exists an operation s ∈
Clo(A) such that for any B ⊆ A and any b ∈ SgA(B) there exists a0, . . . , aar(s)−1 ∈ B such
that s(a0, . . . , aar(s)−1) = b.

Proof. From the definition of SgA(B) it follows that for every B ⊆ A and every b ∈ SgA(B)
there exists an operation s(B,b) ∈ Clo(A) of arity n and elements a0, . . . , an−1 ∈ B such
that s(B,b)(a0, . . . , an−1) = b. This operation is idempotent, as A is.

For any two idempotent operations t1, t2 on A (of arities n1, n2) and any a0, . . . , an1−1,
b0, . . . , bn2−1 ∈ A we have

t1 ∗ t2(a0, . . . , a0
︸ ︷︷ ︸

n2

, a1, . . . , a1
︸ ︷︷ ︸

n2

, . . . , an1−1, . . . , an1−1
︸ ︷︷ ︸

n2

)

equal to t1(a0, . . . , an1−1) and

t1 ∗ t2(b0, b1, . . . , bn2−1, . . . , b0, b1, . . . , bn2−1)

equal to t2(b0, . . . , bn2−1). Therefore the term operation

s = s(B1,b1) ∗ s(B2,b2) ∗ . . . ∗ s(Bl,bl),

where (B1, b1), (B2, b2), . . . , (Bl, bl) is a complete list of pairs such that bi ∈ SgA(Bi), satisfies
the conclusion of the lemma.

The following proposition is the only place in this article, where we use a Taylor term.
Although the proof is quite easy, we believe that this proposition is of an independent
interest.

Proposition 2.7. Let A be a finite algebra in a Taylor variety and suppose that A has no
proper absorbing subalgebra. Then there exists an operation v ∈ Clo(A) such that for any
b, c ∈ A and any coordinate i < ar(v) there exist a0, . . . , aar(v)−1 ∈ A such that ai = b and
v(a0, . . . , aar(v)−1) = c.

Proof. For a term operation t ∈ Clo(A) of arity k, an element b ∈ A, and a coordinate
i < ar(t) we set

W (t, b, i) = {t(a0, . . . , ak−1) : ai = b and aj ∈ A ∀j}.

Our aim is to find a term v such that W (v, b, i) = A for any b ∈ A and any coordinate i.
We will achieve this goal by gradually enlarging the sets W (t, b, i).
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Let n < |A| and assume we already have an operation v(n) ∈ Clo(A) such that each
W (v(n), b, i) contains a subuniverse of A with at least n elements. From idempotency it
follows that all the one-element subsets of A are subuniverses of A, thus any operation in
Clo(A) can be taken as v(1).

For an induction step we first find an operation w(n+1) ∈ Clo(A) such that each

W (w(n+1), b, i) has at least (n+ 1)-elements:

Claim 2.8. Let t ∈ Clo(A) be a Taylor term operation and put w(n+1) = t ∗ v(n). Then
|W (w(n+1), b, i)| > n for all b ∈ A and all coordinates i < ar(w(n+1)).

Proof. Let j = i div ar(t), k = i mod ar(t) and let B ⊆W (v(n), b, k) be a subuniverse of A
with |B| ≥ n.

First we observe that B ⊆W (w(n+1), b, i). Indeed, take an arbitrary element c ∈ B, and

find a tuple a0, . . . , aar(v(n))−1 ∈ A such that ak = b and that v(n)(a0, . . . , aar(v(n))−1) = c.

The application of t ∗ v(n) to a concatenation of ar(t)-many copies of (a0, . . . , aar(v(n))−1)

produces t(c, c, . . . , c) = c. Since on the i-th coordinate of this catenation we have b, we

showed that c ∈ W (w(n+1), b, i). Therefore if B = A the claim holds and we can assume
B  A.

As t is a Taylor operation, it satisfies an identity of the form

t(�0,�1, . . . ,�m−1) ≈ t(△0,△1, . . . ,△m−1),

where all �l’s and △l’s are substituted with either x or y, but �j is x while △j is y.
Let r(x, y) = t(�0,�1, . . . ,�m−1). Clearly r ∈ Clo(A). Since A has no proper absorb-

ing subuniverses, the subuniverse B is not an absorbing subuniverse of A with respect to
the operation r. Therefore there exist c ∈ B and d ∈ A such that either r(c, d) 6∈ B or

r(d, c) 6∈ B. We will show that r(c, d), r(d, c) ∈W (w(n+1), b, i).
For each e ∈ {r(c, d), r(d, c)} we can find a tuple f0, . . . , far(t)−1 ∈ {c, d} such that

fj = c and that t(f0, . . . , far(t)−1) = e. To obtain this we put

• fl = c if �l = x, and fl = d if �l = y in the case that e = r(c, d) and
• fl = c if △l = x, and fl = d if △l = y in the case that e = r(d, c).

Further, since c ∈ B ⊆ W (v(n), b, k), we can find elements a0, . . . , aar(v(n))−1 ∈ A such that

ak = b and v(n)(a0, . . . , aar(v(n))−1) = c. To construct the argument for t ∗ v(n) we expand

each element of the tuple (f0, . . . , far(t)−1) into ar(v(n))-many identical copies of itself except

fj which is substituted by (a0, . . . , aar(v(n))−1). It is easy to verify that t ∗ v(n) applied to

such an argument produces e.
We have proved that B∪{r(c, d), r(d, c)} ⊆W (w(n+1), b, i). As |B| ≥ n and r(c, d) 6∈ B

or r(d, c) 6∈ B, we are done

Now we are ready to define an operation v(n+1) such that each W (v(n+1), b, i) contains a
subuniverse with at least (n+ 1) elements:

Claim 2.9. Let s be the operation from Lemma 2.6 and let v(n+1) = s∗w(n+1). Then, for all
b ∈ A and all coordinates i < ar(v(n+1)), W (v(n+1), b, i) contains a subuniverse with more
than n elements.

Proof. Let j = i div ar(t), k = i mod ar(t) and let B = W (w(n+1), b, k). We will show that

SgA(B) ⊆W (v(n+1), b, i).



ABSORPTION, CYCLIC TERMS, AND CSP 11

Choose an arbitrary c ∈ SgA(B). By Lemma 2.6, there exist f0, . . . , far(s)−1 ∈ B such

that s(f0, . . . , far(s)−1) = c. As before we prepare the tuple of arguments for s ∗ w(n) by

expanding the tuple (f0, . . . , far(s)−1). Each fi gets expanded into ar(w(n+1))-many identical
copies of itself, except fj which gets expanded into a tuple (a0, . . . , aar(w(n+1))−1) ∈ A with

ak = b and such that w(n+1)(a0, . . . , aar(w(n+1))−1) = fj (such a tuple exists as fj ∈ B). It

is clear that s ∗ w(n+1) applied to such a tuple produces c and the claim is proved.

To finish the proof of Proposition 2.7, it is enough to set v = v(|A|).

It is an easy corollary that for two (or any finite number of) algebras in a Taylor variety we
can find a common term satisfying the conclusion of Proposition 2.7.

Corollary 2.10. Let A,B be finite algebras in a Taylor variety without proper absorbing
subalgebras. Then there exists a term v such that for any b, c ∈ A (resp. b, c ∈ B) and any
coordinate j < ar(v) there exist a0, . . . , aar(v) ∈ A (resp. a0, . . . , aar(v) ∈ B) such that aj = b
and v(a0, . . . , aar(v)) = c.

Proof. If v1 (resp. v2) is the term obtained from Proposition 2.7 for the algebra A (resp.
B), then we can put v = v1 ∗ v2.

We are now ready to prove Theorem 2.3. One direction of the proof is straightforward: if
an idempotent variety V is not a Taylor variety, then, by Theorem 1.2, it contains a two-
element algebra whose every operation is a projection. Such an algebra has no absorbing
subuniverses and any three-element subset of its square is a linked subdirect subalgebra
which falsifies the second condition of Theorem 2.3. Therefore it remains to prove the
following.

Theorem 2.11. Let A,B be finite algebras in a Taylor variety and let R be a proper,
subdirect and linked subalgebra of A×B. Then A or B has a proper absorbing subalgebra.

Proof. For contradiction, assume that R,A,B form a counterexample to the theorem. Thus
neither A nor B has a proper absorbing subalgebra and R ≤S A × B is a linked, proper
subset of A×B.

First we find another counterexample satisfying R−1 ◦R = A×A. As R is linked, there
exists a natural number k such that (R−1 ◦R)◦k = A2. Take the smallest such k. If k = 1,
then R−1 ◦ R = A × A and we need not to do anything. Otherwise we replace B by A

and R by (R−1 ◦ R)◦(k−1). Our new choice of R,A,B is clearly a counterexample to the
theorem satisfying R−1 ◦R = A×A.

From now on we assume that our counterexample satisfies R−1 ◦R = A×A. In other
words, for any a, c ∈ A, there exists b ∈ B such that (a, b), (c, b) ∈ R.

For a X ⊆ A we set

N(X) = {b ∈ B : ∀ a ∈ X (a, b) ∈ R} =
⋂

a∈X

{a}+

Claim 2.12. N(X) = N(SgA(X)).

Proof. If t is a k-ary term, a0, . . . , ak−1 are elements of X and b ∈ N(X), then (ai, b) ∈
R for any i = 0, 1, . . . , k − 1. Therefore (t(a0, . . . , ak−1), b) ∈ R. This shows that b ∈
{t(a0, . . . , ak−1)}

+.
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Claim 2.13. N(A) 6= ∅.

Proof. We call a subset X ⊆ A good, if (N(X))− = A. Since R−1 ◦ R = A × A, every
one-element subset of A is good. We prove the claim by showing that A is good.

Let X be a maximal, with respect to inclusion, good subset of A. We know that ∅ 6= X,
since each one-element subset is good, and also X 6= A, otherwise the claim is proved. As
N(X) = N(SgA(X)) due to the Claim 2.12, X is a subuniverse of A. Let v ∈ Clo(A) be
the operation from Proposition 2.7. Due to our assumption that A has no proper absorbing
subuniverses, X is not an absorbing subuniverse of A with respect to the operation v. It
follows that there exists a coordinate j < ar(v) and elements a0, . . . , aar(v)−1 ∈ A such that
ai ∈ X for all i 6= j, and b := v(a0, . . . , aar(v)−1) 6∈ X.

We will prove that the set X ∪ {b} is good, which will contradict the maximality of X.
Let c ∈ A be arbitrary. From Proposition 2.7 we obtain d0, . . . , dar(v)−1 ∈ A such that dj =

aj and v(d0, . . . , dar(v)−1) = c. Since (N(X))− = A, we can find e0, . . . , ear(v)−1 ∈ N(X)
such that (di, ei) ∈ R for all i. Put f = v(e0, . . . , ear(v)−1). As R is a subuniverse of A×B

and (di, ei) ∈ R for all i, it follows that (v(d0, . . . , dar(v)−1), v(e0, . . . , ear(v)−1)) = (c, f) ∈ R.
The set N(X) is a subuniverse of B thus we have f ∈ N(X). For all i 6= j, we have
aj ∈ X and ej ∈ N(X), hence (aj , ej) ∈ R. But also (ai = di, ei) ∈ R and, again, R is
a subuniverse of A×B, therefore (v(a0, . . . , aar(v)−1), v(e0, . . . , ear(v)−1)) = (b, f) ∈ R. We

have proved that, for any c ∈ A, there exists f ∈ N(X) ∩ {b}+ = N(X ∪ {b}) such that
(c, f) ∈ R. Therefore X ∪{b} is good, a contradiction. This contradiction shows that N(A)
is nonempty.

Since R is a proper subset of A × B, N(A) is a proper subset of B. This set is
an intersection of subuniverses of B, thus N(A) a subuniverse of B. Since N(A) is not an
absorbing subuniverse of B with respect to v, there exists a coordinate j < ar(v) and a tuple
b0, . . . , bar(v)−1 ∈ B such that bi ∈ N(A) for all i 6= j, and c := v(b0, . . . , bar(v)−1) 6∈ N(A).

We will prove that (d, c) ∈ R for all d ∈ A, which will contradict the definition of
N(A). Let a ∈ A be any element of A such that (a, bj) ∈ R (we use subdirectness of
R here) and let ai ∈ A be obtained from Proposition 2.7 in such a way that aj = a
and v(a0, . . . , aar(v)) = d. For all i 6= j, we have (ai, bi) ∈ R as bi ∈ N(A), and also
(aj = a, bj) ∈ R. Thus (v(a0, . . . , aar(v)−1), v(b0, . . . , bar(v)−1)) = (d, c) ∈ R.

2.3. Minimal absorbing subalgebras. We present a number of properties of absorbing
subuniverses required in the proof of Theorem 4.1. Most of them are corollaries of the Ab-
sorption Theorem and they give us some information about minimal absorbing subalgebras:

Definition 2.14. If B ⊳A and no proper subalgebra of B absorbs A, we call B a minimal
absorbing subalgebra of A (and write B ⊳⊳ A).

Alternatively, we can say that B is a minimal absorbing subalgebra of A, if B⊳A and B has
no proper absorbing subalgebras. Equivalence of these definitions follows from transitivity
of ⊳ (proved in Proposition 2.4). Observe also that two minimal absorbing subuniverses of
A are either disjoint or coincide, but the union of all minimal absorbing subuniverses need
not be the whole set A.

Proposition 2.15. Let V be a Taylor variety, let A and B be finite algebras in V and let
R ≤S A×B.

(i) If R is linked and E ⊳R, then E is linked.
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(ii) If C ⊳⊳ A, D ⊳⊳ B, and (C ×D) ∩R 6= ∅, then (C×D) ∩R ≤S C×D.
(iii) If R is linked, C ⊳⊳ A, D ⊳⊳ B, and (C ×D) ∩R 6= ∅, then C×D ⊳⊳ R.
(iv) If R is linked, and C ⊳⊳ A, then there exists D ⊳⊳ B such that C ×D ⊆ R.
(v) If R is linked, C ⊳⊳ A or C ⊳⊳ B, D ⊳⊳ A or D ⊳⊳ B, c ∈ C, and d ∈ D, then c and

d can be linked via c0, . . . , cj where each ci is a member of some minimal absorbing
subalgebra of A or B.

To avoid ambiguity in the statement of item (v), assume that the algebras A,B are disjoint.
When we apply the corollary this need not be the case, but the assumptions (and therefore
conclusions) of the corollary will be satisfied when we substitute the algebras A,B with
their isomorphic, disjoint copies.

Proof.

(i) Suppose that E absorbsR with respect to an operation t. Let (a, b), (a′, b′) be arbitrary
elements of E. As R is linked, there exist c0, c1, . . . , c2n ∈ A ∪ B such that c0 = a,
c2n = a′, (c2i, c2i+1) ∈ R and (c2i+2, c2i+1) ∈ R for all i = 0, 1, . . . , n− 1. The pair

t((c2i, c2i+1), (a, b), (a, b), . . . , (a, b)),

which is, by definition of the product of two algebras, equal to

(t(c2i, a, a, . . . , a), t(c2i+1, b, b, . . . , b))

is in E for all i, since E absorbs R with respect to t. Similarly,

(t(c2i+2, a, a, . . . , a), t(c2i+1, b, b, . . . , b)) ∈ E.

Therefore the elements a = t(a, a, . . . , a) and t(a′, a, a, . . . a) are linked in E via
t(c0, a, . . . , a), t(c1, b, . . . , b), . . . , t(c2n, a, . . . , a).

Using the same reasoning, the pairs

(t(a′, c2i, a, . . . , a), t(b
′, c2i+1, b, . . . , b))

and
(t(a′, c2i+2, a, . . . , a), t(b

′, c2i+1, b, . . . , b))

are in E and it follows that t(a′, a, a, . . . , a) and t(a′, a′, a, a, . . . , a) are linked in E. By
continuing similarly we get that a = t(a, a, . . . , a) and a′ = t(a′, a′, . . . , a′) are linked
in E as required.

(ii) By Lemma 2.5 D− ⊳ A, therefore ∅ 6= (D− ∩ C) ⊳ A (by Proposition 2.4) and, as
C ⊳⊳ A, we get D− ⊇ C. A symmetric reasoning shows that C+ ⊇ D and the item is
proved.

(iii) Let E = (C ×D) ∩ R and let E be the subalgebra of A ×B with universe E. From
(ii) it follows that E ≤S C×D. Clearly E ⊳R, therefore E is linked by (i). Theorem
2.11 together with the minimality of C and D now gives E = C ×D.

Let ∅ 6= F ⊳ E. The projection of F to the first (resp. the second) coordinate is
clearly an absorbing subuniverse of C (resp. D). Therefore F ≤S C ×D. Using (i)
and Theorem 2.11 as above we conclude that F = C ×D.

(iv) Let D′ = C+. According to Lemma 2.5, D′ is an absorbing subuniverse of B. Let D′

be the subalgebra of A with universe D′ and let D be a minimal absorbing subalgebra
of D′. The claim now follows from (iii).
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(v) We prove this fact by induction on the length of the path connecting c and d. If
the length is 2, then we have c, d ∈ A (thus {c}+ ∩ {d}+ 6= ∅), or c, d ∈ B (thus
{c}− ∩ {d}− 6= ∅). Without loss of generality we assume the first case and, conclude
using Lemma 2.5 and Proposition 2.4, that ∅ 6= (C+ ∩ D+) ⊳ B. Let E be any
subuniverse such that E⊳⊳ (C+∩D+). Then, as (C×E)∩R 6= ∅ and (D×E)∩R 6= ∅,
by (iii), we obtain C × E ⊆ R and D × E ⊆ R and the first case is proved.

For the induction step, we assume, without loss of generality, that C⊳⊳ A and define
C0 = C,C1 = C+

0 , C2 = C−1 , C3 = C+
2 , . . . with d ∈ Cn. Suppose, for simplicity of the

presentation, that d appears on the right side (i.e. d ∈ B) and consider (Cn−1∩D
−)⊳A.

Let E ⊳⊳ (Cn−1 ∩D−). By (iii) we have E × D ⊆ R and, by inductive assumption
we have an element of E, say e, linked inside minimal absorbing subuniverses to some
element of C say c′. Therefore d is linked (through e) inside minimal sets to some
c′ ∈ C. By (iv) we link, inside minimal absorbing subuniverses, c′ to c and the item is
proved.

3. New proof of the Smooth Theorem

The Smooth Theorem classifies the computational complexity of CSPs generated by smooth
digraphs (digraphs, where every vertex has at least one incoming and at least one outgoing
edge). This classification was conjectured by Bang-Jensen and Hell [BJH90] and confirmed
by the authors in [BKN08, BKN09]. The proof presented in those papers heavily relied on
the results of McKenzie and Maroti [MM08] which characterized the locally finite Taylor
varieties in terms of weak near-unanimity operations. We present an alternative proof which
depends only on Theorem 2.3. The Smooth Theorem states:

Theorem 3.1. Let H be a smooth digraph. If each component of the core of H is a circle,
then CSP(H) is polynomially decidable. Otherwise CSP(H) is NP-complete.

3.1. Basic digraph notions. A digraph is a pair G = (V,E), where V is a finite set of
vertices and E ⊆ V × V is a set of edges. If the digraph is fixed we write a→ b instead of
(a, b) ∈ E. The induced subgraph of G with vertex set W ⊆ V is denoted by G|W , that is,
G|W = (W,E ∩ (W ×W )). A loop is an edge of the form (a, a). G is said to be smooth if
every vertex has an incoming and an outgoing edge, in other words, G is smooth, if E is
a subdirect product of V and V . The smooth part of G is the largest subset W of V such
that G|W is smooth (it can be empty).

An oriented path is a digraph P with vertex set P = {p0, . . . , pk} and edge set consisting
of k edges — for all i < k either (pi, pi+1), or (pi+1, pi) is an edge of P. An initial segment
of such a path is any path induced by P on vertices {p0, . . . , pi} for some i < k. We denote

the oriented path consisting of k edges pointing forward by ·
k
−→ · and, similarly the oriented

path consisting of k edges pointing backwards by ·
k
←− ·. The concatenation of paths is

performed in the natural way. A (k, n)-fence (denoted by F[k, n]) is the oriented path
consisting of 2kn edges, k forward edges followed by k backward edges, n times i.e.:

·
k
−→ ·

k
←− · · · ·

k
−→ ·

k
←− ·

︸ ︷︷ ︸

n
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The algebraic length of an oriented path is the number of forward edges minus the
number of backward edges (and thus all the fences have algebraic length zero). Let G be a
digraph, let P be an oriented path with vertex set P = {p0, . . . , pk}, and let a, b be vertices
of G. We say that a is connected to b via P, if there exists a homomorphism f : P → G

such that f(p0) = a and f(pk) = b. We sometimes write a
k
−→ b when a is connected to b via

·
k
−→ ·. If a

k
−→ a (for some k) then a is in a cycle and any image of the path ·

k
−→ · with the

same initial and final vertex is a cycle. A circle is a cycle which has no repeating vertices
and no chords.

The relation “a is connected to b (via some path)” is an equivalence, its blocks (or
sometimes the corresponding induced subdigraphs) are called the weak components of G.

The vertices a and b are in the same strong component if a
k
−→ b

k′
−→ a for some k, k′. For a

subset B of A and an oriented path P we set

BP = {c : ∃b ∈ B b is connected to c via P }.

Note that B·
k

−→· is formally equal to B+E◦k
but we prefer the first notation.

Finally, G has algebraic length k, if there exists a vertex a of G such that a is connected
to a via a path of algebraic length k and k is the minimal positive number with this property.
The following proposition summarizes easy results concerning reachability via paths:

Proposition 3.2. Let G be a smooth digraph, then:

• for any vertices a, b in G if a is connected to b via ·
k
−→ · then a is connected to b via every

path of algebraic length k;
• for any vertex a and any path P there exists a vertex b and a path Q which is an initial
segment of some fence such that {a}P ⊆ {b}Q;
• if H ⊆ G is such that H ·→· ⊇ H or H ·←· ⊇ H then the digraph G|H contains a cycle (i.e.
the smooth part of G|H is non-empty)

Proof. The first item of the proposition follows directly form the definition of a smooth
digraph.

We prove the second item by induction on the length of P. If the length is zero there is
nothing to prove. Therefore we take an arbitrary path P of length n and arbitrary a ∈ A.
The proof splits into two cases depending on the direction of the last edge in P. We consider
the case when the last edge of P points forward first and set P′ to be P take away the last
edge. The inductive assumption for a and P′ provides a vertex b and a path Q′ (an initial
fragment of a fence F[k, l]). If the algebraic length of Q′ is strictly smaller than k, we put
Q′′′ to be a path such that the concatenation of Q′ and Q′′′ is an initial fragment of the fence
F[k, l+1] and such that the algebraic length of Q′′′ is one; then the concatenation of Q′ and
Q′′′ proves the second item of the proposition (as, by the first item of the proposition, every

element reachable from {b}Q
′
by · → · is also reachable by Q′′′). If the algebraic length of

Q′ equals k we consider a path Q′′ obtained from Q′ by substituting each subpath of the

shape · → · ← · with ·
2
−→ ·

2
←− ·. The path Q′′ is an initial fragment of F[k + 1, l] and we

have {b}Q
′
⊆ {b}Q

′′
(as the digraph is smooth). Now we can find Q′′′ as in the previous

case.
If the last edge of P points backwards, we proceed with dual reasoning. If the algebraic

length of Q′ is greater than zero we obtain Q′′′ of algebraic length −1 as before and the
proposition is proved. If the algebraic length of Q′ is zero we substitute b with any vertex
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b′ such that b′ → b and alter Q′ by substituting each · ← · → · with ·
2
←− ·

2
−→ ·. The new

path is an initial fragment of F[k + 1, l] and we can proceed as in previous case.
For the third item of the proposition. Without loss of generality we can assume the

first possibility and choose an arbitrary b0 ∈ H. As H ⊆ H ·→· there is an element b1 ∈ H
such that b1 → b0. Repeating the same reasoning for b1, b2, . . . we obtain a sequence of
vertices in H such that bi+1 → bi. As H is finite, we obtain a cycle in H and the last item
of the proposition is proved.

The following lemma shows that the smooth part of an induced subdigraph of a smooth
digraph shares some algebraic properties with the induced subdigraph.

Lemma 3.3. Let A be a finite algebra and let G = (A,E) be a smooth digraph such that E
is a subuniverse of A2. If B is a subuniverse of A (an absorbing subuniverse of A) then the
smooth part of G|B forms a subuniverse of A (an absorbing subuniverse of A respectively).

Proof. Note that if the smooth part of G|B is empty then the lemma holds. Assume it is
non-empty and let A, G, B be as in the statement of the lemma. We put B1 ⊆ B to be
the set of all the vertices in B with at least one outgoing and at least one incoming edge in
G|B (i.e. an outgoing edge and an incoming edge to elements of B). As B1 = B∩B+E∩B−E

Lemma 2.5 implies that B1 is a subuniverse (absorbing subuniverse resp.) of A. We put

B2 = B1 ∩B
+E
1 ∩B−E1 and continue the reasoning. Since A is finite we obtain some k such

that Bk = Bk+1. Since G|Bk
has no sources and no sinks the lemma is proved.

3.2. Reduction of the problem. The first part of Theorem 3.1 is easy: if a digraph H
has a core which is a disjoint union of circles then CSP(H) is solvable in polynomial time
(see [BJH90]). On the other hand, using Theorem 1.4 and the fact that CSPs of a relational
structure and its core are the same, it suffices to prove that:

Theorem 3.4. If a smooth digraph admits a Taylor polymorphism then it retracts onto the
disjoint union of circles.

Finally, Theorem 3.4 reduces to the theorem below. An elementary proof of this reduction
can be found in [BKN08, BKN09].

Theorem 3.5. If a smooth digraph has algebraic length one and admits a Taylor polymor-
phism then it contains a loop.

In fact, in the remainder of this section, we prove a stronger version of Theorem 3.5:

Theorem 3.6. Let A be a finite algebra in a Taylor variety and let G = (A,E) be a smooth
digraph of algebraic length one such that E is a subuniverse of A2. Then G contains a
loop. Moreover, if there exists an absorbing subuniverse I of A which is contained in a
weak component of G of algebraic length 1, then the loop can be found in some J such that
J ⊳⊳ A.
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3.3. The proof. Our proof of Theorem 3.6 proceeds by induction on the size of the vertex
set of G = (A,E). If |A| = 1 there is nothing to prove (as the only smooth digraph on
such a set contains a loop); for the induction step we assume that Theorem 3.6 holds for
all smaller digraphs.

Claim 3.7. Let H be a weak component of G of algebraic length one, then there exists
a ∈ H and a path P such that {a}P contains a cycle.

Proof. We choose a ∈ H to be the element of the component H such that there is a path
Q of algebraic length one connecting a to a. We define the sequence of sets B0 = {a}

and Bi = BQi−1 recursively. As a is connected to a via Q we have B0 ⊆ B1 and therefore

Bi ⊆ Bi+1 for any i (as by definition Bi−1 ⊆ Bi implies that BQi−1 ⊆ BQi i.e. Bi ⊆ Bi+1).
As Q is of algebraic length one we can use Proposition 3.2 to infer that {a}·→· ⊆ B1 and

further that {a}·
k

−→· ⊆ Bk for any k. These facts together imply that

k⋃

i=0

{a}·
i

−→· ⊆ Bk

and, as the digraph is finite, we can find a cycle in one of the Bk’s. Take P to be the Q
concatenated with itself sufficiently many times to witness the claim.

Claim 3.8. Let H be a weak component of G of algebraic length one, then there exists
a ∈ H and a fence F such that {a}F = H.

Proof. Let us choose a ∈ H and P′ as provided by Claim 3.7. Set B to be the set of elements
of {a}P

′
which belong to some cycle fully contained in {a}P

′
. Proposition 3.2 implies that

BF[|A|,1] contains all elements reachable by ·
i
−→ · or ·

i
←− · (for any i), from any element of B.

Indeed if such a c is reachable from b ∈ B by ·
i
←− · then it is reachable by ·

|A|
←−− · from some

b′ ∈ B and further by F[|A|, 1] from some b′′ ∈ B. In the other case b
i
−→ c for some b ∈ B.

There obviously exists d such that d
|A|
←−− c and since b

i
−→ c

|A|
−−→ d we have some j ≤ |A| and

b
j
−→ d. Thus there exists b′ ∈ B with b′

|A|
−−→ d and c is reachable by F[|A|, 1] from b′.

For every element c in H we can find b0, b1, . . . , b|A| = c such that each bj, j 6= |A|, is

in a cycle Bj where B0 ⊆ B, and b0
i0−→ b1

i1←− b2
i2−→ b3 ←− . . . b|A| for some i0, i1, . . . , i|A|−1.

The reasoning above shows that Bj is contained in B
F[|A|,1]
j−1 (for all 1 ≤ j < |A|) and b|A|

belongs to B
F[|A|,1]
|A|−1 , therefore BF[|A|,|A|] = H.

Thus, for an appropriate path P we have a connected to every element of H by P. The
second item of Proposition 3.2 provides b and an initial segment Q of a fence F such that b
is connected to every element from H by Q. Let S denote the remaining part of the fence
F. Then {b}F = ({b}Q)S = HS = H and the claim is proved.

The remaining part of the proof splits into two cases: in the first case the algebra A

has an absorbing subuniverse in a weak component of algebraic length one and in the
second it doesn’t. Let us focus on the first case and define I ⊳ A contained in a weak
component (denoted by H) of algebraic length one of G.

Claim 3.9. There is a fence F such that IF = H.

Proof. Let a and F′ be provided by Claim 3.8. We put F to be a concatenation of F′ with
itself. Since a ∈ IF

′
, then IF = H.
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Let P be the longest initial segment of F (provided by Claim 3.9) such that IP 6= H. Put
S = IP. By multiple application of Lemma 2.5 we infer that S is a subuniverse of A and
that S ⊳A. The definition of S implies that S·→· = H ⊇ S or S·←· = H ⊇ S, and therefore,
by Proposition 3.2, S contains a cycle. Thus the smooth part of G|S, denoted by S′, is
non-empty and, by Lemma 3.3, it absorbs A. If the digraph G|S′ has algebraic length one
and is weakly connected, then we use the inductive assumption:

• either G|S′ has no absorbing subuniverses in a weak component of algebraic length one; in
such a case, as it is weakly connected, it has no absorbing subuniverses at all — therefore
S′ ⊳⊳ A and the inductive assumption provides a loop in S′, or
• G|S′ has an absorbing subuniverse; then it has a loop in J ⊳⊳ S′ and, as J ⊳⊳ A, the
theorem is proved.

Therefore to conclude the first case of the theorem it remains to prove

Claim 3.10. G|S′ is a weakly connected digraph of algebraic length 1.

Proof. Assume that S′ absorbs A with respect to t of arity k and let m,n be natural
numbers such that every two vertices of H are connected via the (m,n)-fence (implied by
Claim 3.8) denoted by F. We will show that any two vertices a, b ∈ S′ are connected via
the (m,nk)-fence in the digraph G|S′.

As the digraph G|S′ is smooth, a is connected to a via F and b is connected to b via

F (by the first item of Proposition 3.2). Let f : F→ S′ and g : F→ S′ be the corresponding
digraph homomorphisms. Moreover, a is connected to b via F in the digraph G and we take
the corresponding homomorphism h : F→ G. For every i = 0, 1, . . . , k − 1 we consider the
following matrix with k rows and 2nm+ 1 columns: To the first (k − i− 1) rows we write
f -images of the vertices of F, to the (k− i)th row we write h-images, and to the last i rows
we write g-images. We apply the term operation t to columns of this matrix. Since E ≤ A2

we obtain a homomorphism from F to G which realizes a connection from

t(a, a, . . . , a
︸ ︷︷ ︸

(k−i)

, b, b, . . . , b
︸ ︷︷ ︸

i

)

to
t(a, a, . . . , a
︸ ︷︷ ︸

(k−i−1)

, b, b, . . . , b
︸ ︷︷ ︸

(i+1)

).

Moreover, since all but one member of each column are elements of S′ and S′⊳A, we actually
get a homomorphism F → S′. By joining these homomorphisms for i = 0, 1, . . . , k − 1 we
obtain that a = t(a, a, . . . , a) is connected to b = t(b, b, . . . , b) via the (m,nk)-fence in S′.

As S′ ⊆ H all the elements of S′ are connected in H, and, using the paragraph above,
also in S′. Moreover we can take two elements a, b ∈ S′ such that a→ b. As a is connected
to b via a (m,nk)-fence in S′ the algebraic length of G|S′ is one.

It remains to prove the case of Theorem 3.6 when there is no absorbing subuniverse in any
weak component of G of algebraic length one. We choose such a component and call it H.
By Claim 3.8 there is an a ∈ H and F such that H = {a}F. Since {a} is a subuniverse,
multiple application of Lemma 2.5 (as above) shows that H is a subuniverse as well. If
H  A we are done by the inductive assumption. Therefore H = A and there is no
absorbing subuniverse in A.

Let k be minimal such that there exists m and a ∈ A with {a}F[k,m] = A. This implies
that E◦k ≤S A× A is linked and, as there is no absorbing subuniverse in A, Theorem 2.3
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implies that E◦k = A×A. In particular the digraph G is strongly connected. Choose any
a ∈ A and consider the fence F[k − 1,m′] for m′ large enough so that B = {a}F[k−1,m

′] =

{a}F[k−1,m
′+1]. The set B is a proper subset of A (by minimality of k) and it is a subuniverse

of A (by Lemma 2.5 again). It suffices to prove that the smooth part of G|B (which is a
subuniverse by Lemma 3.3) has algebraic length 1.

Claim 3.11. The smooth part of G|B, denoted by B′, is non-empty and has algebraic length
one.

Proof. Note that, by definition of B, BF[k−1,1] = B.
Let b be an arbitrary element of B. As G is smooth we can find c ∈ A such that

b
k−1
−−→ c. Since E◦k = A × A we get b

k
−→ c. Consider the first element b1 on this path:

b → b1 and b1 ∈ B as b
k−1
−−→ c

k−1
←−− b1. Therefore b → b1 in G|B. We have shown that

B·←· ⊇ B. By Proposition 3.2 the smooth part of B is non-empty.
To show that G|B′ has algebraic length one we pick arbitrary b, b′ ∈ B′ such that

b
k−1
−−→ b′ in G|B′ . As E◦k = A×A we have b

k
−→ b′ in G. All the vertices on the path b

k
−→ b′

are in B, because BF[k−1,1] = B and b′ is in the smooth part of G|B . Since b, b′ are in B′,
the whole path falls in B′. This gives a path of algebraic length one connecting b to b in B′

which proves the claim.

4. Cyclic terms in Taylor varieties

In the final section we prove our second main result – a characterization of Taylor varieties
as the varieties possessing a cyclic term.

Theorem 4.1. Let V be an idempotent variety generated by a finite algebra A then the
following are equivalent.

• V is a Taylor variety;
• V (equivalently the algebra A) has a cyclic term;
• V (equivalently the algebra A) has a cyclic term of arity p, for every prime p > |A|.

The proof uses the Absorption Theorem and its corollaries, and Theorem 3.6. This result
is then applied to restate the Algebraic Dichotomy Conjecture, and to give short proofs of
Theorem 1.3 and the dichotomy theorem for undirected graphs [HN90]. At the very end
of the section we provide more information about possible arities of cyclic terms of a finite
algebra.

4.1. Proof of Theorem 4.1. As every cyclic term is a Taylor term, Theorem 4.1 will
follow immediately when we prove:

Theorem 4.2. Let A be a finite algebra in a Taylor variety and let p be a prime such that
p > |A|. Then A has a p-ary cyclic term operation.

As in the proofs of partial results [BKM+09, BK10], the proof of Theorem 4.2 is based on
studying cyclic relations:

Definition 4.3. An n-ary relation R on a set A is called cyclic, if for all a0, . . . , an−1 ∈ A

(a0, a1, . . . , an−1) ∈ R ⇒ (a1, a2, . . . , an−1, a0) ∈ R.
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The following lemma from [BKM+09] gives a connection between cyclic operations and
cyclic relations.

Lemma 4.4. For a finite, idempotent algebra A the following are equivalent:

• A has a k-ary cyclic term operation;
• every nonempty cyclic subalgebra of Ak contains a constant tuple.

Proof. Assume first that A has a k-ary cyclic term operation t and consider an arbi-
trary tuple a = (a0, a1, . . . , ak−1) in a cyclic subalgebra R of Ak. We denote by σ(a),
σ2(a), . . . , σk−1(a) the cyclic shifts of a, that is σ(a) = (a1, a2, . . . , ak−1, a0), σ2(a) =
(a2, a3, . . . , ak−1, a0, a1), . . . , σ

k−1(a) = (ak−1, a0, a1, . . . , ak−2). As R is cyclic, all these
shifts belong to R. By applying t to the tuples a, σ(a), . . . , σk−1(a) coordinatewise we get
the tuple

(t(a0, a1, . . . , ak−1), t(a1, a2, . . . , ak−1, a0), . . . , t(ak−1, a0, a1, . . . , ak−2)),

which belongs to R, since R is a subuniverse of Ak. But t is a cyclic operation, therefore
this tuple is constant.

To prove the converse implication, we assume that every nonempty cyclic subalgebra
of Ak contains a constant tuple. For a k-ary operation t ∈ Clo(A) we define S(t) ⊆ Ak to
be the set of all a ∈ Ak such that t(a) = t(σ(a)) = · · · = t(σk−1(a)). Let t be such that
|S(t)| is maximal.

If S(t) = Ak, then the term operation t is cyclic and we are done. Assume the contrary,
that is, there exists a tuple a ∈ Ak such that t(a) = t(σ(a)) = · · · = t(σk−1(a)) fails.
Consider the tuple b = (b0, b1, . . . , bk−1) defined by bi = t(σi(a)), 0 ≤ i < k, and let
B = {b, σ(b), . . . , σk−1(b)}.

We claim that the subalgebra C = SgAk(B) of Ak is cyclic. Indeed, every tuple
c ∈ C can be written as c = s(b, σ(b), . . . , σk−1(b)) for some term s. Then the element
s(σ(b), σ2(b), . . . , σk−1(b),b) of C is equal to σ(c).

According to our assumption, the algebra C contains a constant tuple. It follows that
there exists a k-ary term s ∈ Clo(A) such that b ∈ S(s). Now consider the term r defined
by

r(x0, x1, . . . , xk−1) = s(t(x0, x1, . . . , xk−1), t(x1, . . . , xk−1, x0), . . . , t(xk−1, x0, x1, . . . , xk−2)).

We claim that S(t) ⊆ S(r), but also that a ∈ S(r). This would clearly be a contradiction
with the maximality of |S(t)|. Let x ∈ S(t). Then

r(σi(x)) = s(t(σi(x)), t(σi+1(x)), . . . , t(σi−1(x))) = s(t(x), t(x), . . . , t(x)) = t(x)

for all i, so x ∈ S(r). On the other hand,

r(σi(a)) = s(t(σi(a)), t(σi+1(a)), . . . , t(σi−1(a))) = s(bi, bi+1, . . . , bi−1) = s(σi(b)),

which is constant for all i by the choice of s. Therefore a ∈ S(r) and the contradiction is
established.

For the rest of the proof of Theorem 4.2 we fix a prime number p, we fix a Taylor variety
V and we consider a minimal counterexample to the theorem with respect to the size of A.
Thus A is a finite algebra in V, p > |A|, and for all B ∈ V with |B| < |A|, B has a cyclic
term of arity p, i.e., by Lemma 4.4, every nonempty cyclic subuniverse of Bp contains a
constant tuple.

An easy reduction proving the following claim can also be found in [BKM+09].
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Claim 4.5. A is simple.

Proof. Suppose that A is not simple, and α is a nontrivial congruence of A.
To apply Lemma 4.4 we focus on an arbitrary cyclic subalgebra R of Ap. Our first

objective is to find a tuple in R with all elements congruent to each other modulo α.
Let us choose any tuple (a0, . . . , ak−1) ∈ R and let c(x0, . . . , xk−1) be the operation of A
which gives rise to the cyclic operation of A/α (such an operation exists from the min-
imality assumption). Therefore c(a0, . . . , ak−1), c(a1, . . . , ak−1, a0), . . . all lie in one con-
gruence block of α as the results of these evaluations are equal in A/α. Now we apply
the term c(x0, . . . , xk−1) in R to (a0, . . . , ak−1), (a1, . . . , ak−1, a0), . . . and obtain the tuple
(c(a0, . . . , ak−1), c(a1, . . . , ak−1, a0), . . . ) in R with all the coordinates in the same congru-
ence block.

Let C be a congruence block of α such that Cp ∩ R 6= ∅. It is easy to see that in
such a case Cp ∩ R is a (nonempty) cyclic subuniverse of Cp. As the block C has a cyclic
operation of arity p then, again by Lemma 4.4, we obtain a constant in Cp ∩ R and the
claim is proved.

From Lemma 4.4 it follows that there exists a cyclic subalgebra R of Ap containing no
constant tuple. We fix such a subalgebra R. Let Rk, k = 1, 2, . . . , p, denote the projection
of R to the first k coordinates, that is

Rk = {(a0, a1, . . . , ak−1) : (a0, . . . , ap−1) ∈ R}.

Note that, from the cyclicity of R, it follows that for any i we have

Rk = {(ai, ai+1, . . . , ai+k−1) : (a0, . . . , ap−1) ∈ R},

where indices are computed modulo p. In the next claim we show that R is subdirect in
Ap.

Claim 4.6. R1 = A.

Proof. The projection of R to any coordinate is a subalgebra of A. From the cyclicity of
R it follows that all the projections are equal, say to B. The set B is a subuniverse of A
and if it is a proper subset of A, then R ≤S Bp contains a constant tuple by the minimality
assumption, a contradiction.

We will prove the following two claims by induction on n = 1, 2, . . . , p. Note that for n = 1
both claims are valid and that property (P1) for n = p contradicts the absence of a constant
tuple in R.

(P1) There exists I ⊳⊳ A such that In ⊳⊳ Rn.
(P2) If I1, . . . , In ⊳⊳ A and (I1 × · · · × In) ∩Rn 6= ∅, then I1 × · · · × In ⊳⊳ Rn.

We assume that both (P1) and (P2) hold for some n ∈ {1, . . . , p − 1} and we aim to prove
these properties for n+ 1. We fix I ⊳⊳ A such that In ⊳⊳ Rn guaranteed by (P1). Let

S = {((a0, . . . , an−1), an) : (a0, . . . , an) ∈ Rn+1}

and let S denote the subalgebra of An+1 with universe S. Thus S is basically Rn+1, but
we look at it as a (subdirect) product of two algebras Rn and A: S ≤S Rn ×A.

The aim of the next few claims is to show that S is linked. First we show, that it is
enough to have a “fork”.

Claim 4.7. If there exist a ∈ Rn and b, b′ ∈ A, b 6= b′ such that (a, b), (a, b′) ∈ S, then S is
linked.
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Proof. Let k = |A|. We define a binary relation ∼ on A by putting b ∼ b′ if and only if
there exist tuples a1, . . . ,ak ∈ Rn and elements b = c0, c1, . . . , ck = b′ ∈ A such that for
every i ∈ {1, 2, . . . , k} we have

(ai, ci−1), (a
i, ci) ∈ S.

The relation ∼ is clearly reflexive and symmetric. It is also transitive as we have chosen k
big enough. It follows immediately from the definition that ∼ is a subuniverse of A2.

Therefore ∼ is a congruence of A. Moreover, from the assumption of the claim it follows
that it is not the smallest congruence (as b ∼ b′ for b 6= b′). Since, by Claim 4.5, A is simple,
then ∼ is the full relation on A and therefore S is linked.

The next claim shows that S is linked in case that A has no proper absorbing subuniverse.

Claim 4.8. If I = A then S is linked.

Proof. From (P1) we have Rn = An. If there are (a0, . . . , ap−1), (b0, . . . , bp−1) ∈ R such that
ai 6= bi for some i and a0 = b0, a1 = b1, . . . , ai−1 = bi−1, ai+1 = bi+1, . . . , an−1 = bn−1, then,
by cyclically shifting these tuples, we obtain tuples (a′0, a

′
1, . . . , a

′
p−1) and (b′0, b

′
1, . . . , b

′
p−1)

such that a′0 = b′0, . . . , a
′
n−1 = b′n−1, and an 6= bn. Then Claim 4.7 proves that S is linked.

In the other case, tuples in R are determined by the first n projections, thus |R| =
|Rn| = |A|

n. Consider the mapping σ : R → R sending a tuple (a0, . . . , ap−1) ∈ R to its
cyclic shift (a1, . . . , ap−1, a0) ∈ R. Clearly, σ is a permutation of R satisfying σp = id. Now
p is a prime number and |R| = |A|n is not divisible by p (as p > |A|), therefore σ has a
fixed point, that is, a constant tuple. A contradiction.

The harder case is when I 6= A. We need two more auxiliary claims.

Claim 4.9. If I 6= A then there exists J ⊳⊳ A such that I 6= J and (In × J) ∩Rn+1 6= ∅.

Proof. Observe that Ip∩R is a cyclic subuniverse of Ip without a constant tuple. Therefore,
by minimality, the intersection Ip ∩R is empty. On the other hand In ∩Rn 6= ∅ by (P1), so
that there exists a greatest number k, n ≤ k < p, such that (Ik × Ap−k) ∩ R is nonempty.
Consider the set

X = {a : (a0, . . . , ak−1, a) ∈ Rk+1, a0, . . . , ak−1 ∈ I}.

It is easy to check that X is an absorbing subuniverse of A. As Ik+1 ∩ Rk+1 is empty, X
is disjoint from I. Let J be a minimal absorbing subuniverse of X. We have J ⊳⊳ A (as
J ⊳⊳ X ⊳A), I 6= J and (Ik × J) ∩ Rk+1 6= ∅. We take a tuple in R whose projection to
the first (k + 1) coordinates lies in Ik × J , and shift it (k − n) times to the left (recall that
k − n ≥ 0). This tuple shows that (In × J) ∩Rn+1 is nonempty.

Similarly we can show that there exists a minimal absorbing subalgebra J′ of A distinct
from I such that (J ′ × In) ∩Rn+1 is nonempty.

We consider the following two subsets of A×A.

F = {(a, b) : ∃ (a, c1, . . . , cn−1, b) ∈ Rn+1}

E = {(a, b) : ∃ (a, c1, . . . , cn−1, b) ∈ Rn+1 and ∀i ci ∈ I}

Let V1 and V2 denote the projections of E to the first and the second coordinate, so that
E ⊆S V1 × V2.

Claim 4.10. E is a subuniverse of A2, is linked and subdirect in V1 × V2 and V1, V2 ⊳A.
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Proof. It is straightforward to check that E and F are subuniverses of A2, that E ⊳ F

and that V1,V2 ⊳ A, where E,F denote the subalgebras of A2 with universes E,F and
V1,V2 denote the subalgebras of A with universes V1, V2. From Claim 4.6 we know that
F ≤S A×A.

Similarly as in the proof of Claim 4.7 we will show that F is linked. Let k = |A| and let
us define a congruence ∼ on A by putting b ∼ b′ if and only if there are a1, a2, . . . , ak, b =
b0, b1, . . . , bk = b′ ∈ A such that for all i ∈ {1, 2, . . . , k}

(ai, bi−1), (ai, bi) ∈ F.

The proof that ∼ is a congruence follows exactly as in Claim 4.7.
Take an arbitrary tuple (a0, . . . , ap−1) ∈ R. As p is greater than |A| we can find indices

i 6= j such that ai = aj. There exists k such that ai+kn 6= aj+kn (indices computed modulo
p), otherwise (as p is a prime number) the tuple would be constant. It follows that there
exist i′, j′ such that ai′ = aj′ and ai′+n 6= aj′+n. The pairs (ai′ , ai′+n) and (aj′ , aj′+n) are
in F (by shifting (a0, . . . , ap−1)), therefore ∼ is not the smallest congruence. Since A is
simple, ∼ is the full congruence on A, thus F is linked. By Proposition 2.15.(i), E is linked
as well.

Now we can finally show that S is linked.

Claim 4.11. S is linked.

Proof. From Claim 4.9 and the remark following it we know that (a, b′), (a′, b) ∈ E for
some a, b ∈ I, a′ ∈ J ′, b′ ∈ J , J, J ′ ⊳⊳ A, I 6= J , I 6= J ′. As E is linked, we can find
elements a = c0, c1, . . . , c2i = a′ such that c0, c2, . . . , c2i ∈ V1, c1, c3, . . . , c2i−1 ∈ V2 and
(c2j , c2j+1), (c2j+2, c2j+1) ∈ E for all j = 0, 1, . . . , i − 1. By Proposition 2.15.(v) (used
for E ≤S V1 ×V2) we can assume that all the elements c0, . . . c2i lie in minimal absorbing
subuniverses of V1 or V2 (which are also minimal absorbing subuniverses of A, since V1, V2⊳
A). It follows that there exist w ∈ W ⊳⊳ V1 and u ∈ U ⊳⊳ V2, v ∈ V ⊳⊳ V2 such that
(w, u), (w, v) ∈ E, U 6= V . Therefore there exist a1, . . . , an−1, a

′
1, . . . , a

′
n−1 ∈ I such that

(w, a1, . . . , an−1, u), (w, a
′
1, . . . , a

′
n−1, v) ∈ Rn+1.

From the induction hypotheses (P2) we know that W × In−1 ⊳⊳ Rn. Also V ⊳⊳ A and
((W×In−1)×V )∩S 6= ∅. By Proposition 2.15.(ii), ((W×In−1)×V )∩S ≤S (W×In−1)×V .
In particular, there exists v′ ∈ V such that (w, a1, . . . , an−1, v

′) ∈ Rn+1. Now recall that
(w, a1, . . . , an−1, u) ∈ Rn+1 and observe that u and v′ are distinct, since they lie in different
minimal absorbing subuniverses. Then S is linked by Claim 4.7.

We are ready to prove (P2) for n+ 1.

Claim 4.12. (P2) holds for n+ 1.

Proof. Let I1, . . . , In+1 be absorbing subalgebras of A such that (I1×· · ·×In+1)∩Rn+1 6= ∅.
Now S is a linked subdirect subuniverse of Rn ×A, I1 × · · · × In is a minimal absorbing
subuniverse of Rn (from the induction hypotheses (P2)), In+1 ⊳⊳ A and ((I1 × · · · × In)×
In+1) ∩ S 6= ∅. By Proposition 2.15.(iii), (I1 × · · · × In) × In+1 is a minimal absorbing
subuniverse of S and thus I1 × · · · × In+1 is a minimal absorbing subuniverse of Rn+1.

To prove (P1) for n+ 1 we define a digraph on the vertex set Rn by putting

((a0, . . . , an−1), (a1, . . . , an)) ∈ H

whenever (a0, . . . , an) ∈ Rn+1. We want to apply Theorem 3.6 to obtain a loop of the
digraph G = (Rn,H) in a minimal absorbing subuniverse of Rn.
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Observe that H is a subuniverse of R2
n. Next we show that In is contained in a weak

component of G.

Claim 4.13. Any two elements of In are in the same weak component of the digraph G.

Proof. The set X = {x : (a0, . . . , an−1, x) ∈ Rn+1, a0, . . . , an−1 ∈ I} is an absorbing
subuniverse of A. Let X0 be a minimal absorbing subuniverse of the algebra X with
universe X. We have found X0 ⊳A such that (In ×X0) ∩Rn+1 6= ∅. Similarly we can find
X1,X2, . . . ,Xn−1 such that (In−i×X0×X1×· · ·×Xi)∩Rn+1 6= ∅ for all i = 0, 1, . . . , n−1.
From (P2) for n+ 1 (Claim 4.12) it follows that In−i ×X0 ×X1 × · · · ×Xi ⊆ Rn+1 for all
i. Now choose arbitrary elements xi ∈ Xi and take any tuple (b0, . . . , bn−1) ∈ In. Since, for
all i = 0, 1, . . . , n − 1, the tuple (bi, . . . , bn−1, x0, x1, . . . , xi) belongs to Rn+1, the vertices
(bi, . . . , bn−1, x0, . . . , xi−1) and (bi+1, . . . , bn−1, x0, . . . , xi) are in the same weak component
of G. Therefore the vertex (b0, . . . , bn−1), which was an arbitrarily chosen vertex in In, is
in the same weak component as the vertex (x0, . . . , xn−1).

The last assumption of Theorem 3.6 is proved in the next claim.

Claim 4.14. The weak component of G containing In has algebraic length 1.

Proof. Let b ∈ I be arbitrary. As E is linked, b ∈ V1 can be E-linked to b ∈ V2,
i.e. there exist b = c0, c1, . . . , c2i such that (c2j , c2j+1), (c2j+2, c2j+1) ∈ E for all j =
0, . . . , i − 1 and (c2i, b) ∈ E. By Proposition 2.15.(v) we can assume that these ele-
ments lie in minimal absorbing subuniverses of A. Property (P2) for n + 1 (Claim 4.12)
proves that (c2j , b, . . . , b, c2j+1), (c2j+2, b, . . . , b, c2j+1) ∈ Rn+1 for all j = 0, . . . , i − 1 and
(c2i, b, . . . , b, b) ∈ Rn+1. This gives rise to a (1, j)-fence connecting, in G, the tuple (c0 =
b, . . . , b) to the tuple (c2i, b, . . . , b). As ((c2i, b, . . . , b), (b, . . . , b)) ∈ H we showed that the
algebraic length of the weak component containing In is one.

By Theorem 3.6 there exists a loop inside a minimal absorbing subuniverse K of Rn. Since
the projection J of K to the first coordinate is a minimal absorbing subuniverse of A, we
actually get an element a ∈ J ⊳⊳ A such that (a, . . . , a) ∈ Rn+1. Now (P1) follows from
(P2) and the proof of Theorem 4.2 is concluded.

4.2. Consequences of Theorem 4.1. First we restate the hardness criterion in Theo-
rem 1.4 and the Algebraic Dichotomy Conjecture of Bulatov, Jeavons and Krokhin. These
statements are equivalent to the original ones by Theorem 4.1 and Lemma 4.4.

Theorem 4.15. Let A be a core relational structure and let p be a prime number greater
than the size of the universe of A. If there exists a nonempty positively primitively defined
cyclic p-ary relation without a constant tuple then CSP(A) is NP-complete.

The Algebraic Dichotomy Conjecture. Let A be a a core relational structure. Let p
be a prime number greater than the size of the universe of A. If every nonempty positively
primitively defined cyclic p-ary relation has a constant tuple then CSP(A) is solvable in
polynomial time. Otherwise it is NP-complete.

As a second consequence we reprove the dichotomy theorem of Hell and Nešetřil [HN90]. It
follows immediately from the Smooth Theorem from Section 3, but the following proof is
an elegant way of presenting it.

Corollary 4.16 (Hell and Nešetřil [HN90]). Let G be an undirected graph without loops. If
G is bipartite then CSP(G) is solvable in polynomial time. Otherwise it is NP-complete.
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Proof. Without loss of generality we can assume that G is a core. If the graph G is bipartite
then it is a single edge and CSP(G) is solvable in polynomial time. Assume now that

G is not bipartite — therefore there exists a cycle a
2k+1
−−−→ a of odd length in G. As

vertex a is in a 2-cycle (i.e. an undirected edge) we can find a path a
i(2k+1)+j2
−−−−−−−→ a for

any non-negative numbers i and j. Thus, for any number l ≥ 2k we have a
l
−→ a. Let

p be any prime greater than max{2k, |A|} and t be any p-ary polymorphism of G. Let
a = a0 → a1 → · · · → ap−1 → a. Then

t(a0, . . . , ap−1)→ t(a1, . . . , ap−1, a0)

and, if t were a cyclic operation we would have

t(a0, . . . , ap−1) = t(a1, . . . , ap−1, a0)

which implies a loop in G. This contradiction shows that G has no cyclic polymorphism for
some prime greater than the size of the vertex set which, by Theorem 4.1, implies that the
associated variety is not Taylor and therefore, by Theorem 1.4, CSP(G) is NP-complete.

Equivalently one can consider the relation

R = {(a0, . . . , ap−1) : a0 → a1 → a2 → · · · → ap−1 → a0},

where p is chosen as above. It is easy to see that R is a cyclic, positively primitively
defined nonempty relation without a constant tuple and therefore CSP(G) is NP-complete
by Theorem 4.15.

Finally, we observe that the weak near-unanimity characterization of Taylor varieties (The-
orem 1.3) is a consequence of Theorem 4.1:

Corollary 4.17 (Maroti and McKenzie [MM08]). For a locally finite idempotent variety V
the following are equivalent.

• V is a Taylor variety;
• V has a weak near-unanimity term.

Proof. In the case that V is finitely generated, the theorem is an immediate consequence of
Theorem 4.1. In the general case the proof can be done by a standard universal algebraic
argument — we apply Theorem 4.1 to the free algebra on two generators.

As opposed to the previous theorem the assumption in Theorem 4.1 that V is finitely
generated cannot be relaxed to locally finite [BKM+09].

It was observed by Matt Valeriote [Val] that Sigger’s characterization of Taylor varieties
[Sig10] is also an easy corollary of Theorem 4.1. The proof will appear elsewhere.

4.3. Arities of cyclic terms. Let A be a finite algebra and let C(A) be the set of arities
of cyclic operations of A i.e.:

C(A) = {n : A has a cyclic term of arity n}.

The following simple proposition was proved in [BKM+09].

Proposition 4.18 ([BKM+09]). Let A be a finite algebra let m,n be natural numbers.
Then the following are equivalent.

(i) m,n ∈ C(A);
(ii) mn ∈ C(A).
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This implies that C(A) is fully determined by its prime elements. There are algebras in
Taylor varieties with no cyclic terms of arities smaller than their size [BKM+09]. However
the following simple lemma provides, under special circumstances, additional elements in
C(A). Its proof follows the lines of the proof of Claim 4.5.

Lemma 4.19. Let A be a finite, idempotent algebra and α be a congruence of A. If A/α
and every α-block in A have cyclic operation of arity k then so does A.

This leads to the following observation.

Corollary 4.20. Let A be a finite, idempotent algebra in Taylor variety. Let 0A = α0 ⊆
· · · ⊆ αn = 1A be an increasing sequence of congruences on A. If p is a prime number such
that, for every i ≥ 1, every class of αi splits into less than p classes of αi−1 then A has a
p-ary cyclic term.
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