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Abstract. We set up a parametrised monadic translation for a class of call-by-value
functional languages, and prove a corresponding soundness theorem. We then present
a series of concrete instantiations of our translation, demonstrating that a number of
fundamental notions concerning higher-order computation, including termination, continuity
and complexity, can all be subsumed into our framework. Our main goal is to provide a
unifying scheme which brings together several concepts which are often treated separately
in the literature. However, as a by-product, we also obtain (i) a method for extracting
moduli of continuity for closed functionals of type (Nat → Nat) → Nat in (extensions of)
System T, and (ii) a characterisation of the time complexity of bar recursion.

1. Introduction

Monads are a fundamental tool for analysing functional programs [23, 39]. They allow us to
capture information about a program’s execution, such as its computational complexity, and
similarly enable us to reason about intensional aspects of higher-order functionals, such as
continuity properties enjoyed by terms of System T.

This paper comprises a general study of monads and their application to higher-order
functional languages, with an emphasis on languages which pertain to proof theory and
program extraction. We focus on a simple yet powerful technique frequently encountered in
the literature, which can be roughly described as follows:

(I) set up a mapping |·| which transforms terms e of type ρ in some pure functional
language into terms |e| of type |ρ| in some monadic metalanguage,

(II) establish a logical relation J between ρ and |ρ|,
(III) appeal to induction over the structure of terms to prove that e J |e| for all terms e

of type ρ.

We explore an abstract translation of this kind, which maps a higher-order call-by-value
target language into a metalanguage based on the writer monad C ×−. Our mapping will
actually be the composition of a syntactic monadic translation |·| together with a standard
denotational semantics J·K, and we define a general logical relation J on ρ × J|ρ|K which
comprises a monadic part ⇓ together with a semantic bounding relation C.
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Our first main result is to establish a general soundness theorem for J, which identifies
a set of abstract conditions that guarantee that e J J|e|K for all terms of our target language.
We then demonstrate that this combination of a monadic and bounding component is
rich enough to express a variety of fundamental concepts from the theory of higher-order
computation, including majorizability (in the sense of Howard [16]), continuity (on the Baire
space) and several notions of time complexity.

In the case of continuity, we focus on terms of type level 2 that induce functionals
NN → N. It is well known that functionals of this sort that are definable as closed terms of
Gödel’s System T are continuous in the sense that their output is determined by a finite part
of their input. Moreover, explicit moduli of continuity can be defined within System T itself.
In recent years there has been a renewed interest in syntactic approaches to continuity which
provide explicit moduli of continuity, and several new proofs of the continuity of System T
definable functionals have been given, including [8, 12, 14] and most recently [17, 29, 40].
We provide another proof of this fact via our abstract framework, which applies not just to
System T but to arbitrary languages that satisfy the relevant conditions.

We then show that by adjusting the parameters of our translation, we are able to
characterise the time complexity, or cost, of terms in our programming language. Here, we
crucially consider the cost of a higher-order term to be a higher-order object itself. Though
the analysis of higher-order complexity via higher-order cost expressions dates back to the
1980s and has been widely researched since (e.g. [1, 30, 34, 37]), our general bounding
relation C allows us to also approach complexity along the lines of Danner et al. [9, 10],
where datatypes are assigned abstract sizes and the translation seeks to provide upper
bounds on the cost of programs.

The main significance of our work lies in our development an abstract semantics for
reasoning about intensional properties of higher-order functionals, which encompasses a
number of somewhat disparate concepts, ranging from majorizability, which is of fundamental
importance to the proof mining program (Section 4.3), to the static cost analysis of functional
programs (Section 6). This effort towards unification is not just of theoretical interest, but
could potentially inform those working on the formalization of monadic translations1.

A second novelty is that we focus not only on variants of Gödel’s System T, but also
more complex forms of recursion such as Spector’s bar recursion [35]. Recursion of this kind
is rarely treated in the context of static analysis, but has great importance in proof theory
and particularly the area of program extraction, where it is used to give a computational
interpretation to the axiom of countable choice. We carry out what is, to the best of our
knowledge, the first static cost analysis of bar recursion as functional programs, and in doing
so we hope more generally to provide another illustration of how monads enable us to better
understand structures from proof theory.

2. A higher-order functional language

We start by outlining our target language, to which our monadic translation will be applied.
This will be a standard call-by-value typed functional language, where for now we do not
specify what our datatypes or function symbols will be. Rather we take these as parameters,
and consider a number of concrete instantiations of the language later on.

1For example, in the case of continuity, both [12] and [40] have been formalised in Agda, while bounded
complexity as set out in [10] comes with a Coq implementation
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Types: ρ, τ ::= δ | ρ→ τ for δ ∈ datatype

Terms: s, t ::= x | c | f | λx.t | ts for c ∈ cons, f ∈ func

Γ, x : ρ ` x : ρ
Γ, x : ρ ` t : τ

Γ ` λx.t : ρ→ τ

Γ ` t : ρ→ τ Γ ` s : ρ

Γ ` ts : τ

Γ ` c : δ1 → . . .→ δm → δ Γ ` f : ρ1 → . . .→ ρn → ρ

Figure 1: Types and terms of target language

Patterns: p, q ::= xρ | cp1 . . . pk for k = ar(c)

Values: u, v ::= cv1 . . . vi | fv1 . . . vj | λx.r for i ≤ ar(c), j < ar(f), x : ρ ` r

Figure 2: Patterns and values

Types and terms of the language are outlined in Figure 1. Types are built from a base
set of datatypes datatype, and a single rule which allows for the construction of function
types. Terms are then built in the usual way via lambda abstraction and function application
from a countable set of variables x : ρ for each type together with a set of constructor terms
cons and a set of function symbols func. Each constructor term c is assigned some type
δ1 → . . . → δk → δ, where the δi are datatypes and k = ar(c) is the arity of c. Similarly,
each function symbol f is assigned a type ρ1 → . . . → ρk → ρ, where now the ρi, ρ are
arbitrary and k = ar(f) is a specified arity of f . Formal typing rules Γ ` t : ρ for terms are
included, though we often just write t : ρ or tρ where this is unambiguous and the context is
not necessary. A closed term e is a term without any free variables, or alternatively one
typeable as ∅ ` e : ρ.

In order to specify the operational semantics of our language, we introduce standard
notions of patterns and values, which are defined as in Figure 2. Note that values are always
closed terms - in the third clause this is ensured by the typing restriction that r has no
free variables other than x : ρ. We also need the notion of a substitution, and later that of
a value environment. For Γ, x : ρ ` t : τ and Γ ` s : ρ we write Γ ` t[s/x] to denote the
term obtained by substituting all free occurrences of x in t by s (with the usual restrictions
on free variables in s). This is formally definable by induction on the structure of t. For
a term Γ ` t : ρ with Γ :≡ x1 : ρ1, . . . , xn : ρn, a value environment σ is a mapping which
assigns each variable xi : ρi a value σ(xi) of type ρi. We denote by tσ : ρ the closed term
t[σ(x1)/x1, . . . , σ(xk)/xk].

A big step operational semantics for our language is given in Figure 3. Note that
reductions are of the form e ↓ρ v where e : ρ is a closed term and v : ρ a value of the same
type. We often omit the typing on ↓ρ when there is no risk of ambiguity. Reductions follow
the usual rules for the call-by-value lambda calculus, together with a set of defining rules for
each function symbol of the form

fp1 . . . pk  r

where p1, . . . , pk are patterns, k = ar(f) and r is a term whose free variables are contained
in those of p1, . . . , pk. We assume that the rules defining each function symbol are complete
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v ↓ρ v for values v

r[u/x] ↓τ v
(λx.r)u ↓τ v

for x : ρ ` r and u : ρ a value

rσ ↓ρ v
fv1 . . . vn ↓ρ v

for v1, . . . , vn = p1σ, . . . , pnσ and fp1 . . . pn  r

e ↓ρ→τ u e′ ↓ρ v uv ↓τ w
ee′ ↓τ w

if one of e, e′ is not a value

Figure 3: Operational semantics of target language

and orthogonal, by which we mean that for each f of arity k and any values v1, . . . , vk of the
appropriate type, there is exactly one rule fp1 . . . pk  r such that v1, . . . , vn = p1σ, . . . , pkσ
for a suitable environment σ. Note that for any closed term e, at most one rule in Figure 3
is applicable, and thus a simple induction over derivations proves that if e ↓ v and e ↓ v′
then v = v′.

Remark 2.1. A more traditional presentation of our target language would have been to
instead take the formation rule

Γ ` t1 : ρ1 · · · Γ ` tn : ρn
Γ ` ft1 . . . tn : ρ

as primitive, together with an analogous rule for the constructors. Then values would simply
be terms of the form cv1 . . . vm (for m = ar(c)) or λx.r, and the semantics would be altered
accordingly. However, we have instead chosen to take the function symbols as primitive, as
it is slightly more convenient for the purposes of setting up our monadic translation.

We now give some concrete instantiations of our parametrised language, all of which
will play a role later.

2.1. Gödel’s System T (simple variant). A call-by-value variant of System T is obtained
in our setting by defining datatype := {Nat}, cons := {0Nat, sNat→Nat} and

func := {recρ→(Nat→ρ→ρ)→Nat→ρ
ρ : ρ a type}

where the recursor recρ has defining equations

recρ x y 0 x rec x y (sz) y z (recρ x y z).

We write n := s(n)(0) for the numeral representation of n ∈ N. In this language, one can
show by induction on the size of v that the only values of type Nat are indeed those of the
form n, a fact which we will freely use throughout. The operational semantics of recρ can
be concisely expressed via the following derived rules:

recρ v1 v2 0 ↓ρ v1
v2 n ↓ρ→ρ u recρ v1 v2 n ↓ρ v uv ↓ρ w

recρ v1 v2 s(n) ↓ρ w
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2.2. Gödel’s System T (list based variant). A slightly richer (but computationally
equivalent) version of System T is obtained by defining datatype := {Nat, Nat∗}, cons :=
{0Nat, sNat→Nat, εNat

∗
, :: Nat∗→Nat→Nat∗} and

func := {foldρ→(Nat→ρ→ρ)→Nat∗→ρ
ρ : ρ a type} ∪ {+,×, <, len}

where +,×, < have type Nat → Nat → Nat and len has type Nat∗ → Nat. We adopt the
usual convention of writing s :: t instead of :: s t, and similarly for the operator symbols,
and in addition we write [s1, . . . , sk] for (. . . (ε :: s1) :: . . . ) :: sk. For a = (a1, . . . , ak) ∈ N∗
we write a := [a1, . . . ,ak]. Again, a simple induction over the size of values establishes that
any v : Nat∗ is of the form v = a for some a ∈ N∗. Along with the usual defining equation
for the fold function:

foldρ x y ε x foldρ x y (zs :: z) y z (foldρ x y zs)

which gives rise to the derived rules

foldρ v1 v2 ε ↓ρ v1
v2 n ↓ρ→ρ u foldρ v1 v2 a ↓ρ v uv ↓ρ w

foldρ v1 v2 (a :: n) ↓ρ w
we can incorporate basic operators into our language by defining each of them explicitly
via a countable set of rules e.g. m + n  k for k = m + n and so on, which then satisfy
operational rules m + n ↓Nat k. We define < and len in an analogous fashion so that

m < n ↓Nat 0 if m < n, else m < n ↓Nat 1.

len a ↓Nat k for k = |a|
where |a| denotes the length of a ∈ N∗.

2.3. Spector’s bar recursion. The final language we consider here is an extension of the
list language in Section 2.2 with Spector’s bar recursor of lowest type, originally introduced in
[35] (but see e.g. [24] for a more modern introduction). This is a form of backward recursion
over wellfounded trees, where for this particular variant, wellfoundedness is typically ensured
by appealing to some form of continuity on the parameters of the recursion. In a simple
equational calculus it would be given by the defining equation

B(ω, φ, ψ, a) =N

{
φ(a) if ω(â) < |a|
ψ(a, λx . B(ω, φ, ψ, a ∗ x)) otherwise

where the output type is N as indicated, and the input parameters have type ω : NN → N,
φ : N∗ → N and ψ : N∗ × (N → N) → N and a ∈ N∗ respectively. In addition, we have
a ∗ x := (a1, . . . , ak, x) and â : N→ N is defined by ân := ai for i < n and otherwise 0. Bar
recursion will primarily play a role in Sections 4.2 and 6.2, where we focus on termination
and complexity, respectively. For now, we simply give the main definitions we will need
later. We first need to add three additional function symbols

ext : Nat∗ → Nat→ Nat

bar : ρ1 → ρ2 → ρ3 → Nat∗ → Nat

bar1 : ρ1 → ρ2 → ρ3 → Nat∗ → Nat→ Nat
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where
ρ1 := (Nat→ Nat)→ Nat

ρ2 := Nat∗ → Nat

ρ3 := Nat∗ → (Nat→ Nat)→ Nat

which have defining equations

ext [x1, . . . , xk] n 

{
xn if n < k

0 otherwise

bar f g h xs bar1 f g h xs (f(ext xs) < len xs)

bar1 f g h xs 0 g xs

bar1 f g h xs sz  h xs (λx . bar f g h (xs :: x))

It is not difficult to show that the operational semantics in this case give rise to the following
derived rules for bar (here we eliminate the intermediate steps involving bar1)

v1(ext a) ↓Nat k k < |a| v2 a ↓Nat n

bar v1 v2 v3 a ↓ n

v1(ext a) ↓Nat k k ≥ |a| v3 a (λx . bar v1 v2 v3 (a :: x)) ↓Nat n

bar v1 v2 v3 a ↓Nat n

Remark 2.2. The above formulation of bar recursion as a rewrite system is inspired by
Berger [5], which in turn uses a trick due to Vogel [38]. There bar recursion is considered
in its general form, where the type of a and the output can be arbitrary. Though such a
generalisation can easily be incorporated here by encoding lists of type ρ as objects of type
Nat→ ρ, for us bar recursion plays a predominantly illustrative role, and so for simplicity
we restrict ourselves to the recursor of base type.

3. The main soundness theorem

In this section we present our main framework, first setting up our monadic translation and
the associated logical relation, before proving that the translation is sound with respect
to the relation. This soundness result, given as Theorem 3.5, is just an instance of the
General Theorem of Logical Relations for our particular relation. As mentioned right at
the beginning, our translation is actually the composition of a syntactic translation into a
monadic metalanguage and a standard denotational semantics. We outline each of these in
turn.

3.1. The monadic metalanguage. The metalanguage is defined similarly to our target
language. However, here we only specify types and terms, which will then be assigned a
denotational semantics in the next section. The monadic language is summarised in Figure
4. Types are constructed from a special type γ together with base types |δ| for all datatypes
of the target language, and now allow both function types and cartesian product types. We
extend the mapping |·| on datatypes of the target language to arbitrary types by defining

|ρ→ τ | := |ρ| → γ × |τ |.
Terms now include a symbol 〈c〉 resp. 〈f〉 for each constructor resp. function symbol in
the target language, whose types are indicated in Figure 4. Together with the usual term
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Types: ρ, τ ::= γ | |δ| | ρ× τ | ρ→ τ for δ ∈ datatype

Terms: r, s, t ::= ι | t+ | {r, s, t} | x | 〈c〉 | 〈f〉 | λx.t | ts | (s, t) | tl | tr for c ∈ cons, f ∈ func

Γ ` ι : γ
Γ ` t : γ

Γ ` t+ : γ

Γ ` r : γ Γ ` s : γ Γ ` t : γ

Γ ` {r, s, t} : γ

Γ ` s : ρ Γ ` t : τ

Γ ` (s, t) : ρ× τ
Γ ` t : ρ× τ

Γ ` tl : ρ

Γ ` t : ρ× τ
Γ ` tr : τ

Γ ` 〈c〉 : |δ1| → . . .→ |δm| → |δ| Γ ` 〈f〉 : |ρ1| → . . .→ |ρn| → γ × |ρ|

Figure 4: Types and terms of metalanguage

Γ ` t : ρ 7→ |Γ| ` |t| : γ × |ρ|

|x| := (ι, x)

|λx.t| := λ∗x . (|t|l+, |t|r)
|ts| := ({|t|l, |s|l, (|t|r|s|r)l}, (|t|r|s|r)r)
|c| := λ∗x1, . . . , xm . (ι, 〈c〉x1 . . . xm)

|f | := λ∗x1, . . . , xn . 〈f〉x1 . . . xn

Figure 5: Translation from target to metalanguage

forming rules of the lambda calculus (now with pairing and projection to account for the
product), we have three nonstandard rules for forming terms of type γ: a constant ι, a unary
operation t+ and a ternary operation {r, s, t}. The meaning of these will become clearer
later on.

For the first step of our translation, we assign to each Γ ` t : ρ in the target language
a term |Γ| ` |t| : γ × |ρ| in the metalanguage as indicated in Figure 5, where for Γ =
x1 : ρ1, . . . , xk : ρk, we define |Γ| := x1 : |ρ1|, . . . , xk : |ρk|. Here we also use the following
shorthand: for r : γ × |τ | we define

λ∗xρ.r := (ι, λxρ.r) : γ × |ρ→ τ |
and similarly for the iterated version λ∗xρ11 , . . . , x

ρk
k .r : γ × |ρ1 → . . .→ ρk → τ |.

3.2. A denotational semantics for the metalanguage. We assign our metalanguage
a denotational semantics as specified in Figure 6. We assign sets C and Dδ to the base
types γ and |δ| respectively, for each δ ∈ datatype. We leave open the precise meaning of
the function space X ⇒ Y for now. In what follows we will typically work in total models,
where function spaces will either be the full set-theoretic function space, or the space of
continuous functions from X to Y in the sense of Kleene [19] or Kreisel [22]

Terms Γ ` t : ρ of the metalanguage are assigned an interpretation JtKξ ∈ JρK in the
usual way, where ξ is an environment mapping each xi : ρi ∈ Γ to some ξ(xi) ∈ JρiK. We
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JγK := C J|δ|K := Dδ Jρ× τK := JρK× JτK Jρ→ τK := JρK⇒ JτK
JιKξ := ε

Jt+Kξ := inc(JtKξ)
J{r, s, t}Kξ := com(JrKξ, JsKξ, JtKξ)

JxKξ := ξ(x)

J〈c〉Kξ := c

J〈f〉Kξ := f

Jλx.tKξ := λλa.JtKξ{x 7→ a}
JtsKξ := JtKξ(JsKξ)

J(s, t)Kξ := (JsKξ, JtKξ)
JtlKξ := π0(JtKξ)
JtrKξ := π1(JtKξ)

Figure 6: Denotational semantics of metalanguage

assume that we have chosen suitable interpretations c, f for each 〈c〉 and 〈f〉 respectively.
Terms of type γ are interpreted via a triple (εC , incC→C , comC×C×C→C).

3.3. The logical relation. Let ρ be a type of our target language. We denote the set of
all closed terms of type ρ by Clρ, and the set of all values by Valρ. We now suppose that
we are given a pair of relations

⇓ρ on Clρ × C × Valρ and Cδ on Valδ × J|δ|K,
where ρ ranges over all types in our target language and δ over all datatypes. We will
generalise Cρ to arbitrary types via the inductive clause

uCρ→τ f :⇔ (∀v ∈ Valρ, a ∈ J|ρ|K)(v Cρ a⇒ uv Jτ f(a))

where the relation Jρ on Clρ × (C × J|ρ|K) is defined by

e Jρ a :⇔ (∃v ∈ Valρ)(e ⇓π0aρ v ∧ v Cρ π1a),

where in what follows we often abbreviate the inner conjunction as e ⇓π0a v C π1a. In the
remainder of this section we seek to establish conditions under which the translation J|·|K is
sound with respect to J, by which we mean the following:

Definition 3.1. Given a value environment σ for Γ := x1 : ρ1, . . . , xk : ρk in our target
language and some denotational environment ξ for |Γ| = x1 : |ρ1|, . . . , xk : |ρk|, we write
σ CΓ ξ if σ(xi) Cρi ξ(xi) for all i = 1, . . . , k. We say that J|·|K is sound w.r.t. J if for all
Γ ` t : ρ in our target language, we have

σ CΓ ξ ⇒ tσ Jρ J|t|Kξ
for all σ, ξ.

We start by focusing on the monadic part of our relation.
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Definition 3.2. We say that (ε, inc, com) is compatible with ⇓ if the following rules are
satisfied:

v ⇓ερ v for values v

r[u/x] ⇓cτ v
(λx.r)u ⇓inc(c)

τ v
for x : ρ ` r and u : ρ a value

e ⇓c0ρ→τ u e′ ⇓c1ρ v uv ⇓c2τ w

ee′ ⇓com(c0,c1,c2)
τ w

Lemma 3.3. Suppose that (ε, inc, com) is compatible with ⇓. For f ∈ C×(J|ρ|K→ C×J|τ |K)
and a ∈ C × J|ρ|K, define

f ◦ a := (com(π0f, π0a, π0((π1f)(π1a))), π1((π1f)(π1a))) ∈ C × J|τ |K.
Then whenever e Jρ→τ f and e′ Jρ a then ee′ Jτ f ◦ a.

Proof. We have e ⇓π0f u Cρ→τ π1f and e′ ⇓π0aρ v C π1a for some u, v, and thus uv Jτ

(π1f)(π1a), or in other words uv ⇓π0((π1f)(π1a))
τ w Cτ π1((π1f)(π1a)) for some w. Thus by

Definition 3.2 we have ee′ ⇓π0(f◦a)
τ w Cτ π1(f ◦ a), which is just ee′ Jτ f ◦ a.

Definition 3.4. We say that our interpretations c for the constructor terms are compatible
with C if for all constructor symbols c : δ1 → . . .→ δm → δ we have cv1 . . . vm Cδ ca1 . . . am
whenever vi Cδi ai for all i = 1, . . . ,m and values vi.

Theorem 3.5. Suppose that (ε, inc, com) is compatible with ⇓ and the c are compatible
with C. Suppose in addition that for all function symbols f : ρ1 → . . .→ ρn → ρ we have
fv1 . . . vn Jρ fa1 . . . an whenever vi Cρi ai for all i = 1, . . . , n and values vi. Then J|·|K is
sound w.r.t. J.

Proof. We use induction on the structure of terms Γ ` t : ρ to prove that tσ Jρ J|t|Kξ whenever
σ CΓ ξ. For variables, xσ Jρ J|x|Kξ = (ε, ξ(x)) follows from the fact that σ(x) ⇓ε σ(x) and
σ(x)Cρ ξ(x). For constructor symbols, suppose that c : δ1 → . . .→ δm → δ. Then we have
c ⇓ερ c, and since J|c|K = (ε, Jλx1λ

∗x2, . . . , xm.(ι, 〈c〉x1 . . . xm)K) it remains to show that for
v1 Cδ1 a1 we have

cv1 J Jλ∗x2, . . . , xm.(ι, 〈c〉x1 . . . xm)K{x1 7→ a1}.
Continuing this way for cv1v2, . . . we must ultimately show that

cv1 . . . vm J J(ι, 〈c〉x1 . . . xm)K{x1, . . . , xm 7→ a1, . . . am} = (ε, c̄a1 . . . am)

which follows from the fact that c is compatible with C. This argument is easily adapted to
show that f J J|f |K, using the main assumption of the theorem.

For function application, by the induction hypothesis we have tσ Jρ→τ J|t|Kξ and
sσ Jρ J|s|Kξ. Thus by Lemma 3.3 we have

(ts)σ = (tσ)(sσ) Jτ J|t|Kξ ◦ J|s|Kξ = J|ts|Kξ
where the last equality follows from unwinding definitions. In remains to deal with abstraction.
Suppose that σ C ξ. We need to show that

(λx.t)σ = (λx.tσ) Jρ→τ Jλ∗x . (|t|l+, |t|r)Kξ = (ε, λλ a . (inc(π0(J|t|Kξa)), π1(J|t|Kξa)))



17:10 T. Powell Vol. 16:3

for ξa := ξ{x 7→ a}. But since λx.tσ ⇓ερ→τ λx.tσ this reduces to showing that for any uCρ a
we have

(λx.tσ)u ⇓inc(π0(J|t|Kξa))
τ v Cτ π1(J|t|Kξa)

for some v ∈ Valτ . Because uCρ a implies σ{x 7→ u}C ξa, by the induction hypothesis we
have

tσ{x 7→ u} = tσ[u/x] ⇓π0(J|t|Kξa)
τ v Cτ π1(J|t|Kξa)

for some v, and thus the result follows from Definition 3.2.

This concludes the first main part of the article, where we introduce our target language
and establish a sound monadic translation which acts on it. Up to this point everything has
been fairly standard: The first component of our translation into the monadic metalanguage
is a simple call-by-value monadic translation using the writer monad. Theorem 3.5 is then a
confirmation that the logical relation defined on terms of our target language and denotations
of our metalanguage acts as it should. We now move onto the applications, where we show
that Theorem 3.5, though simple, is surprisingly versatile.

4. Some simple applications for C = {0}

Before we move on to our main applications of the translation, we demonstrate that in the
simple case where C = {0} is a terminal object, thus collapsing the monadic part of the
translation, our soundness theorem can still be related to a number of key concepts in the
literature. In each of the examples that follow, we define

e ⇓0
ρ v :⇔ e ↓ v

Note that in this case, (ε, inc, com) are uniquely defined as just constant functions, and are
compatible with ⇓ since the conditions of Definition 3.2 follow from the definition of ↓ in
Figure 3.

4.1. Reducibility predicates. Let’s first consider the case where in addition to C = {0}
we have Dδ = {0} for all datatypes, and thus JρK ∼= {0} for all types of the metalanguage -
where here we implicitly use the isomorphisms {0} × {0} ∼= {0} and (X → {0}) ∼= {0}. We
define

v Cδ 0 :⇔ T.

Now let us write Rρ(e) :⇔ e Jρ 0 and Rval
ρ (v) :⇔ v Cρ 0. Then it is easy to show that

Rδ(e)⇔ (∃v)(e ↓ v) Rρ→τ (e) :⇔ (∃u)(e ↓ u ∧ (∀v)(Rval
ρ (v)⇒ Rτ (uv)))

and therefore R(e) and Rval(v) act as reducibility predicates. Moreover, whatever our
constant symbols are, the c̄ ∈ {0} are trivially compatible with C. Thus the following result
follows directly from our abstract soundness theorem.

Theorem 4.1. Suppose that all function symbols f : ρ1 → . . . ρn → ρ in our target language
satisfy

Rval
ρ1 (v1) ∧ . . . ∧Rval

ρn (vn)⇒ Rρ(fv1 . . . vn)

for all values v1, . . . vn of the appropriate type. Then for any closed term e : ρ there exists
some value v such that e ↓ v.
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The above result confirms that termination of our target language as a whole follows
from termination of the function symbols. As a simple application, we prove that our
call-by-value version of System T (Section 2.1) terminates.

Corollary 4.2. System T is terminating.

Proof. We need to show that for any v1, v2 of the appropriate type and numeral n we have

Rval
ρ (v1) ∧Rval

Nat→ρ→ρ(v2)⇒ Rρ(recρ v1 v2 n)

(note that Rval
Nat(n) trivially holds). We do this by induction on n ∈ N, using the derived rules

for the recursor given in Section 2.1. For n = 0 we have recρ v1 v2 0 ↓ v1 and since Rval
ρ (v1)

holds by assumption it follows that Rρ(recρ v1 v2 0). Now for the induction step, we assume
that Rρ(recρ v1 v2 n) for some n ∈ N, which means that recρ v1 v2 n ↓ v for some v

satisfying Rval
ρ (v). Since Rval

Nat→ρ→ρ(v2) implies that v2 n ↓ u for some u with Rval
ρ→ρ(u), we

then have Rρ(uv), which means that uv ↓ρ w for some w with Rval
ρ (w). Finally, by the

derived rule for the recursor, we have recρ v1 v2 s(n) ↓ w and thus Rρ(recρ v1 v2 s(n)),
and we’re done.

For the usual formulation of System T as an equational calculus, the above result roughly
corresponds to the fact that any inner-most, left-most sequence of reductions terminates in
some normal form (cf. Troelstra [36, Theorem 2.2.6]). It readily generalises to functional
languages with more complex datatypes and other forms of wellfounded recursion. However,
for languages involving bar recursion, such as that presented in Section 2.3, termination
requires us to make use of our bounding component C.

4.2. Termination via denotational semantics. We now instantiate Cρ so that it mimics
the logical relation used in Plotkin’s famous adequacy proof for PCF [27], and demonstrate
that this allows us to prove termination of bar recursion. The key here is to interpret our
metalanguage in a continuous model, and then appeal to properties of the model in order
to establish termination. Our approach closely follows Berger [4, 5], who sets up a more
general framework in which strong normalization of higher-order rewrite systems can be
proven using domain theoretic means.

We work with the instance of our target language given in Example 2.3, which contains
two datatypes Nat and Nat∗. We define C = {0} as before, but now let DNat := N and
DNat∗ := N∗. In addition, we interpret the function space X ⇒ Y in our denotational model
as the space of all total continuous functionals from X to Y . Thus our metalanguage is
interpreted in the standard model Cω of total continuous functionals over base types N and
N∗, which has various presentations in the literature: Via limit spaces (Scarpellini [31]),
encodings or neighbourhoods (Kleene/Kreisel [19, 22]) or as the extensional collapse of the
partial continuous functionals (Ershov [11]).

We first observe that for any type ρ in our target language, J|ρ|K is isomorphic to the
usual (non-monadic) denotational semantics of that type, since

J|ρ→ τ |K = J|ρ|K⇒ {0} × J|τ |K ∼= J|ρ|K⇒ J|τ |K
and thus we can ignore the monadic part of our translation. We define our logical relation
as in Section 4.1, but now with a semantic component as follows:

nCNat m :⇔ n = m aCNat∗ b :⇔ a = b,
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and as such, Jρ takes the following simplified form:

e Jρ a :⇔ (∃v)(e ↓ v ∧ v Cρ a)

uCρ→τ f :⇔ (∀v, a)(v Cρ a⇒ uv Jτ f(a)).

Interpreting the constructor symbols in the obvious way i.e.

0 := 0 s(n) := n+ 1 ε := [] ::(a, n) := a ∗ n
it is clear that these interpretations are compatible with C. In addition, we interpret the
operator function symbols of our target language in the usual way, where in particular i.e.

len(a) := |a| ext(a) := â.

Finally, for bar recursion we let

bar(ω, g, h, a) =

{
g(a) if ω(â) < |a|
h(a, λλ x . bar(ω, g, h, a ∗ x)) otherwise

Note that bar is just the traditional defining equation of bar recursion, and is known to be
an object of Cω as originally proven by Scarpellini [31]. We now prove that the program bar

is terminating.

Lemma 4.3. Whenever v1 C(Nat→Nat)→Nat ω, v2 CNat∗→Nat g, v3 CNat∗→(Nat→Nat)→Nat h and
a ∈ N∗, we have

bar v1 v2 v3 a JNat bar(ω, g, h, a).

Proof. Assuming the hypotheses of the lemma throughout, we first claim that for all a ∈ N∗,
whenever

(∗) bar v1 v2 v3 a :: n JNat bar(ω, g, h, a ∗ n)

for all n ∈ N then bar v1 v2 v3 a JNat bar(ω, g, h, a). There are two cases to consider:

• Case 1: ω(â) < |a|. Then since ext a C â and v1 C ω we have v1(ext a) JNat ω(â) and
thus v1(ext a) ↓ k for k = ω(â) < |a|. Since in addition v2 C g and thus v2 a JNat g(a) it
follows that v2 a ↓ n for n = g(a), and thus by the first derived rule given in Section 2.3
we have bar v1 v2 v3 a ↓ n for n = bar(ω, g, h, a).
• Case 2: ω(â) ≥ |a|. By the same reasoning, we have v1(ext a) ↓ k for k = ω(â) ≥ |a|.

Now, by our assumption (∗) we have

(bar v1 v2 v3 a :: x)[n/x] JNat bar(ω, g, h, a :: x){x 7→ n}
for any n, and since nCm iff n = m it follows that

λx . bar v1 v2 v3 a :: xCNat→Nat λλx . bar(ω, g, h, a :: x).

Using in addition that v3 C h it is not hard to show that

v3 a (λx . bar v1 v2 v3 a :: x) JNat h(a, λλ x . bar(ω, g, h, a :: x))

and thus v3 a (λx . bar v1 v2 v3 a :: x) ↓ n for n = bar(ω, g, h, a :: x)). Thus by the
second derived rule we have bar v1 v2 v3 a ↓ n for n = bar(ω, g, h, a).

Combining cases we obtain bar v1 v2 v3 a J bar(ω, g, h, a), which proves the claim. We
now come to the crucial part of the proof in which we utilise properties of the model Cω
to establish termination of bar recursive programs. Suppose that for some a ∈ N∗ it is not
the case that bar v1 v2 v3 a J bar(ω, g, h, a). Then using our claim (in its contrapositive
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form) together with dependent choice on a metalevel (which is permitted in Cω) there is an
infinite sequence of numbers b := b0, b1, b2, . . . such that

¬(bar v1 v2 v3 (a :: b0 :: · · · :: bl−1) J bar(ω, g, h, a ∗ [b](l)))

for all l ∈ N, where [b](l) := (b0, . . . , bl−1) denotes the initial segment of b of length l. But it
can be shown using a standard continuity argument (cf. [31]) that for any ω : NN → N that
there exists some L ∈ N such that

ω( ̂a ∗ [b](L)) < |a|+ L

and thus by an identical argument to the first case above (note that only Case 2 appeals to
the assumption (∗)) we have

bar v1 v2 v3 (a :: b0 :: · · · :: bL−1) J bar(ω, g, h, a ∗ [b](L))

a contradiction. Thus bar v1 v2 v3 a J bar(ω, g, h, a) for all a ∈ N∗.

This establishes the requirement of Theorem 3.5 for the functional symbol bar. A simple
adaptation of Lemma 4.3 can be used to to show that the same condition holds for the
auxiliary term bar1 together with a suitably defined bar1, while a straightforward induction
achieves the same for foldρ, the details of which we also omit. As a result, Theorem 3.5
yields the following:

Theorem 4.4. For all closed terms e : ρ in the bar recursive target language of Section 2.3
we have e ↓ v for some v.

The above theorem represents a normalization result for bar recursion, where for
illustrative purpose we only consider the bar recursor of lowest type. Strong normalization of
bar recursion (of arbitrary type) was first established by [38], and then (without infinite terms)
in [6]. Our approach, which also replaces infinite terms by appealing to the construction
of choice sequences in the model, has been explored in much more detail by Berger [4, 5],
where also normalization results for variants of bar recursion (including the so-called BBC
functional [2] and open recursion [3]) are established. One crucial difference is that we work
in a total model instead of a partial model, and it is open whether or not we can extend our
framework (which works in total models) to incorporate other forms of recursion such as
those mentioned above.

Remark 4.5. A well known result of Schwichtenberg [33] asserts that bar recursion of
lowest type when applied to primitive recursive parameters is actually definable within
System T (a generalisation of which has been more recently presented in [26]). Thus our
bar recursive language as presented here would technically also be definable in System T,
and as such a detour through the continuous functionals is not strictly necessary in order to
prove termination. However, as already pointed out in Remark 2.2, we could readily extend
our language to include bar recursion of arbitrary type, and the termination proof given as
Lemma 4.3 would generalise accordingly. We also note that our approach is modular, and
thus any extension of our bar recursive language with new function symbols which can be
given a suitable interpretation is also terminating as a whole.
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4.3. Majorizability. Our final simple application for the case C = {0} will be an adaptation
of Howard’s majorizability relation [16] to higher-order rewrite systems. Majorizability is an
extension of the usual ordering ≤ on N to functionals of arbitrary finite type. In addition
to forming the basis for interesting models of higher-order calculi, majorizability plays an
essential role in the proof mining program, where it is used in conjunction with Gödel’s
functional interpretation to form the monotone functional interpretation (introduced in
[20]), which is crucial for interpreting forms of compactness related to the binary König’s
lemma (for a detailed background on majorizability and its use in proof mining, see [21]).
For simplicity we work over a target language with a single base type Nat with DNat = N.
We define

nCNat m :⇔ n ≤ m.
In this case, the logical relation e Jρ a is just a variant of the usual majorizability relation
majρ at all finite type, which in an equational setting is defined as follows (cf. [16] or [21,
Definition 3.34])

x∗ majNat x :⇔ x∗ ≥ x
x∗ majρ→τ x :⇔ ∀y∗, y(y∗ majρ y ⇒ x∗y∗ majτ xy).

We compare this to our relation, which is based on the same idea but now phrased in terms
of our programming language, and can be expanded as follows:

e JNat m⇔ (∃n ∈ N)(e ↓ n ∧ n ≤ m)

e Jρ→τ f ⇔ (∃u)(e ↓ u ∧ (∀v, a)(v Cρ a⇒ (∃w)(uv ↓ w Cτ f(a)))).

To illustrate this correspondence further, note that in an equational calculus we would have

x∗ majNat→Nat x :⇔ ∀y∗, y(y∗ ≥ y ⇒ x∗y∗ ≥ xy)

whereas in our setting this would be rendered as

e JNat→Nat f ⇔ (∃u)(e ↓ u ∧ (∀n,m)(n ≤ m⇒ (∃k)(un ↓ k ∧ k ≤ fm))).

In fact, we can prove the following key lemma, which is analogous to [21, Lemma 3.35 (iii)]:

Lemma 4.6. Suppose that e : ρ for ρ := ρ1 → . . .→ ρn → Nat. Then

e Jρ g ⇔ (∀v1, a1, . . . , vn, an)

(
n∧
i=1

vi C ai ⇒ (∃k)(ev1 . . . vn ↓ k ∧ k ≤ g(a1, . . . , an))

)
Proof. Induction on n. For n = 0 this is just the definition of JNat, and for the induction
step we have

e J g

⇔(∃u)(e ↓ u ∧ (∀v0, a0)(v0 C a0 ⇒ uv0 J g(a0))

⇔(∃u)(e ↓ u ∧ (∀v0, a0, . . . vn, an)(
n∧
i=0

vi C ai ⇒ (∃k)(uv0 . . . vn ↓ k ∧ k ≤ g(a0, . . . an)))

⇔(∀v0, a0, . . . vn, an)(

n∧
i=0

vi C ai ⇒ (∃k)(ev0 . . . vn ↓ k ∧ k ≤ g(a0, . . . an))

where for the last step we use ev ↓ w ⇔ (∃u)(e ↓ u ∧ uv ↓ w), which follows directly from
the operational semantics of the language.

The following lemma is analogous to [21, Lemma 3.66].
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Lemma 4.7. Suppose that e : Nat→ ρ for ρ := ρ1 → . . .→ ρk → Nat and that e n Jρ g(n)
for all n ∈ N. Then e JNat→ρ g

M for

gM (m, a1, . . . , ak) := max{g(i, a1, . . . , ak) | i ≤ m}

Proof. By Lemma 4.6 we have that e J gM is equivalent to

(∀m,n, v1, a1, . . . , vk, ak)(m ≤ n∧
k∧
i=1

viC ai ⇒ (∃l)(env1 . . . vk ↓ l∧ l ≤ gM (m, a1, . . . , ak)))

and the result then follows by a straightforward induction on m.

Now, supposing for example that we work in an instance of our language, as in Section
2.1, where there are just two constructor symbols 0 and s, which we interpret in the usual
way as 0 := 0 and s(n) := n+ 1 so that they are compatible with C. In this case our main
soundness theorem becomes

Theorem 4.8. If for all function symbols f : ρ1 → . . .→ ρn → ρ of our language there is a
suitably defined f satisfying fv1 . . . vn Jρ fa1 . . . an whenever vi Cρi ai for all i = 1, . . . , n
and values vi, then any term t : ρ has an interpretation J|t|K ∈ JρK which majorizes it, in
the sense that σ C ξ implies tσ Jρ J|t|Kξ. In particular, whenever t : Nat and σ C ξ, we have
eσ ↓ n with n ≤ J|t|Kξ.

Corollary 4.9. Any term t : ρ in System T has an interpretation J|t|K which majorizes it.

Proof. We just need to interpret the recursor, to which end we define R : JρK⇒ (N⇒ JρK⇒
JρK)⇒ N⇒ JρK by

R(a, f, n) =

{
a if n = 0

f(n′, R(a, f, n′)) if n = n′ + 1.

then it’s easy to show that whenever v1 Cρ a, v2 Cρ f and n ∈ N then

rec v1 v2 n Jρ R(a, f, n)

using induction on n. Then by Lemma 4.7 it follows that

rec v1 v2 JNat→ρ R(a, f)M ,

and thus defining rec(a, f, n) = R(a, f)M (n) it follows that for n ≤ m we have rec v1 v2 n Jρ
rec(a, f,m).

Corollary 4.9 is closely related to classic results of Howard [16] and Bezem [7] which
show that various type structures of majorizable functionals are a model of System T. This
also holds more generally for bar recursion, and we conjecture that a variant of Theorem 4.8
dealing with bar as defined in Section 2.3 can be proven within our framework, though we do
not attempt to work out the details here. The most important property of our Theorem 4.8
is that it can be extended in a uniform way to a number of different programming languages.
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5. Extracting moduli of continuity for functional languages

We now utilise the monadic part of our soundness theorem for the first time, to present a
simple framework in which we can extract moduli of continuity from those functionals of
type level 2 which are definable by a term in our target language.

That all type level 2 functionals definable in System T have a modulus of continuity also
definable in T was apparently first presented by Kreisel in lectures from 1971/72, and early
proofs can be found in e.g. [32] and [36] (Theorem 2.3.9). The approach presented here is
more closely connected to recent work, where continuity and the extraction of corresponding
moduli are established by appealing to monads and effects (e.g. [8, 12, 14, 17, 29, 40], though
this list is by no means exhaustive). A related monadic translation in all finite types due to
the present author, but using the state monad and working in an equational setting, is also
the basis for [28].

Our main motivation in studying continuity lies not in the fact that this result is new or
surprising in itself, but in demonstrating that it fits elegantly into our uniform framework,
which can, moreover, be readily extended to other languages and forms of recursion.

5.1. The languages P, PT and Pg. We illustrate our approach by working in a target
language with a single datatype Nat and the usual constructors 0 and s, and assume that
we have fixed some collection of function symbols func. We call this base language P, and
observe that our simple variant of System T outlined in Section 2.1 is an instance of P,
which we later label as PT .

Now, to an arbitrary function g : NN we associate a variant Pg (resp. PTg ) of our base
language, whose function symbols are the same as those of P but now extended to include
an oracle α : Nat→ Nat whose defining equations are given by

α n g(n)

for each n ∈ N, where here g(n) denotes the numeral representation of g(n). Note that for
any two functions g, h : NN the languages Pg and Ph have the same terms, and so differ
only in the operational semantics of α. We clearly distinguish the operational semantics of
P from that of Pg by using e ↓g v to denote the big-step relation of the latter, which also
includes the derived rule α n ↓g g(n).

5.2. The monadic translation. We now define DNat := N as usual, but this time set
C := N∗. Fixing some g : NN, we define the logical relation Jg on terms of Pg via
nCm :⇔ n = m and

e ⇓cg v :⇔ (e ↓g v ∧ ∀h(g =c h⇒ e ↓h v))

where
g =c h :⇔ (∀i ∈ c)(g(i) = h(i))

Finally, our denotational semantics J·Kg of the monadic metalanguage arising from Pg, which
is also parametrised by g, is defined by firstly instantiating our monadic components as

ε := [] inc(c) := c com(c0, c1, c2) := c0 ∗ c1 ∗ c2.

and interpreting our constructors in the obvious way. We assume that for each function
symbol we have an interpretation f which is independent of g, and as such, this parameter
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only plays a role in the interpretation of the oracle function symbol α : Nat→ Nat, whereby
we set αg : N⇒ N∗ × N to be

αg(n) := ([n], g(n)).

If we are working in either the full set theoretic model Sω or a continuous model Cω,
everything up until now is well defined. As before, it is clear that the interpretation of the
constructors is compatible with CNat, and we also have the following:

Lemma 5.1. The tuple (ε, inc, com) is compatible with ⇓g.

Proof. We deal with each rule in turn. We have v ↓h v for any values and parameter h, and
so v ⇓cg v is true for any c, and in particular c = [].

If r[u/x] ⇓cg v then r[u/x] ↓g v and whenever g =c h then r[u/x] ↓h v. But then
(λx.r)u ↓g v in Pg, and since g =inc(c) h is just g =c h we have r[u/x] ↓h v, and so also
(λx.r)u ↓h v in Ph.

Finally, if e ⇓c0ρ→τ,g u, e′ ⇓c1ρ,g v and uv ⇓c2τ,g w, then we have e ↓g u, e′ ↓g v and uv ↓g w
and thus ee′ ↓g w. Now suppose that g =c0∗c1∗c2 h. Then we have g =ci h for i = 0, 1, 2, and
thus e ↓h u, e′ ↓h v and uv ↓h w and therefore ee′ ↓h w. This establishes ee′ ⇓c0∗c1∗c2τ w.

Our main soundness theorem gives rise in this case to the following continuity theorem.

Theorem 5.2. Suppose that for all non-oracle function symbols of f : ρ1 → . . .→ ρn → ρ
in the base language P and any g : NN we have fv1 . . . vk Jρ,g fa1 . . . ak whenever viCρi,g ai.
Let e : (Nat→ Nat)→ Nat be a closed term of P. Then we have

(∀g, h ∈ NN)(eα ↓g n ∧ (g =c h⇒ eα ↓h n))

for (c, n) := J|eα|Kg.

Proof. By assumption the translation J|·|Kg is sound with respect to Jg for the function
symbols of P (i.e. the non-oracle function symbols of Pg) so to verify soundness of the
extended language Pg it remains to check the oracle symbol α. But for any n ∈ N we have

α n ↓g g(n) ∧ (g =[n] h⇒ α n ↓h h(n) = g(n))

and thus α n JNat,g ([n], g(n)) = αg(n). Therefore it follows that for any closed e′ : ρ in
Pg we have e′ Jρ,g J|e′|Kg. In particular, for e : (Nat→ Nat)→ Nat, setting e′ := eα : Nat
we obtain eα JNat,g (c, n) for (c, n) := J|eα|Kg. But this just means that eα ⇓cg n, which is
exactly what we want to show.

Corollary 5.3. Theorem 5.2 holds for PT (i.e. System T as defined in Section 2.1).

Proof. We need to find a suitable interpretation of the recursors recρ independent of g, to
which end we define recρ by

rec(a, f, n) =

{
([], a) if n = 0

fn′ ◦ rec(a, f, n′) if n = n′ + 1

where ◦ is as defined in Lemma 3.3. Then using Lemma 3.3 together with induction it is
straightforward to show that for any parameter g, whenever v1 Cρ,g a and v2 CNat→ρ→ρ,g f
then rec v1 v2 n Jρ,g rec(a, f, n).

To see this, note that for the base case we have rec v1 v2 0 ↓g v1 Cρ,g a, and since for

any h it’s also the case that rec v1 v2 0 ↓h v1 this implies that rec v1 v2 0 ⇓[]
g v1 and thus

rec v1 v2 0 Jρ,g ([], a).
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For the induction step, by v2CNat→ρ→ρ,g f we have v2 n Jρ→ρ,g fn and by the induction
hypothesis rec v1 v2 n Jρ,g rec(a, f, n). Therefore by Lemma 3.3 we have

v2 n (rec v1 v2 n) Jρ,g fn ◦ rec(a, f, n) = rec(a, f, n+ 1)

which implies that v2 n (rec v1 v2 n) ⇓cg w Cρ,g r for (c, r) := rec(a, f, n+ 1). But since by
our operational semantics v2 n (rec v1 v2 n) ↓h w implies rec v1 v2 s(n) ↓h w for any h, it
follows that rec v1 v2 s(n) ⇓cg w and hence rec v1 v2 s(n) Jρ,g (c, r).

5.3. Continuity of functionals NN → N definable in System T. We now use the
main theorem above to prove a more traditional formulation of the continuity of System T
functionals, namely that any set-theoretic object F : NN → N which is definable in System
T is continuous in the following sense:

∀g∃N∀h(g =N h⇒ F (f) = F (g)),

where we write g =N h if g(i) = h(i) for all i < N . We first set up a connection between PT
and the usual formulation of System T as subset of the set theoretic type structure Sω.

Definition 5.4. For each Γ ` t : ρ in our target language PT we define the usual semantic
interpretation [Γ] ` [t] : [ρ] in Sω as follows: [Nat] := N and [ρ → τ ] := [ρ] ⇒ [τ ], and on
terms:

[x]η := η(x) [λx.t]η := λλa.[t]η{x 7→ a} [ts]η := [t]η([s]η)

[0] := 0 [s](n) := n+ 1

[recρ](a, h, 0) := a [recρ](a, h, n+ 1) = hn([rec](a, h, n))

This interpretation then eliminates any difference between our formulation of System
T as a call-by-value language and those based on equational calculi: An object of Sω is
definable in System T precisely when it is of the form [e] for some closed term e in PT . We
now extend the above definition to incorporate our oracle symbol.

Definition 5.5. For each g ∈ NN and Γ ` t : ρ in PTg , we define [Γ]g ` [t]g : [ρ] by extending
the clauses of Definition 5.4 with

[α]g(n) := g(n).

It is easy to prove that if t is a term of PTg which does not contain α, then it is also a term

of PT and moreover [t]gη = [t]η for any η.

We now need a result which confirms that the pure interpretation [·]g can be related to
the semantic part of J|·|Kg.

Lemma 5.6. Define the auxiliary logical relation ∼ρ on [ρ]× J|ρ|K as follows:

m ∼Nat n :⇔ m =N n f ∼ρ→τ g :⇔ ∀a, b(a ∼ρ b⇒ fa ∼τ π1(gb))

We write η ∼Γ ξ if η(x) ∼ρ ξ(x) for all x : ρ ∈ Γ. Then for any g ∈ NN and Γ ` t in PTg , if
η ∼Γ ξ then we have [t]gη ∼ρ π1(J|t|Kgξ).

Proof. A simple induction on terms. For variables this follows directly. For abstraction, if
a ∼ρ b then

[λx.t]gη(a) = [t]gη{x 7→ a} ∼τ π1(J|t|Kgξ{x 7→ b}) = π1(π1(J|λx.t|Kgξ(b)))
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and thus [t]gη ∼ρ→τ π1(J|λx.t|Kgξ). For application, since [t]gη ∼ρ→τ π1(J|t|Kgξ) and [s]gη ∼ρ
π1(J|s|Kgξ) we have [ts]gη ∼ρ π1(π1(J|t|Kgξ)(π1(J|s|Kgξ))) = π1(J|ts|Kgξ). For the constants
the result is trivial, and for the recursor we must show that

a ∼ρ a′ ∧ h ∼Nat→ρ→ρ h
′ → [recρ](a, h, n) ∼ρ π1(recρ(a

′, h′, n))

for all n ∈ N, which is a simple induction appealing to a variant of the argument used for
application. Finally, for the oracle symbol, we must show that

[α]g(n) = π1(αg(n)) = g(n)

for any n ∈ N, which is the case by definition.

Corollary 5.7. Suppose e : (Nat → Nat) → Nat is a closed term of PT . Then for any
g ∈ NN we have π1(J|eα|Kg) = [e](g).

Proof. If e : (Nat→ Nat)→ Nat is a closed term of PT then in particular it can be viewed
as a term of PTg which does not contain α, and as such we have [e]g = [e]. Since [α]g = g by
definition, by Lemma 5.6 we have [eα]g = π1(J|eα|Kg) and thus

[e](g) = [e]g([α]g) = [eα]g = π1(J|eα|Kg)
and we are done.

Theorem 5.8. Suppose that F : NN → N is definable in System T. Then

∀g, h(g =Φ(g) h⇒ F (g) = F (h))

where Φ is defined by

Φ(g) := max{j : j ∈ π0(J|e|K ◦ ([], λλ n.([n], gn)))}+ 1

for some closed term e representing F .

Proof. If F is definable in System T, there is some closed term e : (Nat→ Nat)→ Nat of
PT such that for all f ∈ NN we have [e](f) = F (f). Observing that

J|eα|Kg = J|e|K ◦ J|α|Kg = J|e|K ◦ ([], λλ n.([n], gn))

we have g =Φ(g) h implies that g =π0(J|eα|Kg) h. Thus by Theorem 5.2, which by Corollary

5.3 applies to PT , we have eα ↓g n and eα ↓h n for n = π1(J|eα|Kg), and by Corollary 5.7
we have π1(J|eα|Kg) = [e](g) = F (g). Now, by Theorem 5.2 again, we have eα ↓h m where
m = π1(J|eα|Kh). But by uniqueness of derivations in PTh , we therefore have n = m and
therefore n = m = π1(J|eα|Kh) = [e](h) = F (h) and thus F (g) = F (h).

We also note that the term J|e|K is, in turn, constructed using only basic operations of
the lambda calculus, cartesian product and list operations, together with primitive recursion,
and can thus also be defined in some suitable variant of System T.

This section demonstrates how our main result on continuity (Theorem 5.2) can be
reformulated in terms of continuity of functionals NN → N. It goes without saying that our
approach throughout this section could be extended to other systems, such as extensions of
System T with bar recursion, though we don’t go through any of the details here.
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v ↓0ρ v for values v

r[u/x] ↓cτ v
(λx.r)u ↓c+1

τ v
for x : ρ ` r and u : ρ a value

rσ ↓cρ v
fv1 . . . vn ↓c+1

ρ v
for v1, . . . , vn = p1σ, . . . , pnσ and fp1 . . . pn  r

e ↓c0ρ→τ u e′ ↓c1ρ v uv ↓c2τ w

ee′ ↓c0+c1+c2
τ w

if one of e, e′ is not a value

Figure 7: Cost semantics of target language

6. A denotational cost semantics

In our final application, we show how various denotational complexity semantics of functional
languages can be re-obtained in a uniform way in our setting. As mentioned in the
introduction, the static cost analysis of functional programs dates back to at least the 1980s
[30, 34], and has been explored more recently in a generalised categorical setting [37] and
from the perspective of automating the analysis of synthesised programs [1], though naturally
these papers constitute just a few representative examples of the very diverse literature on
complexity in higher types.

A distinguishing feature shared by each of the works mentioned above is that they view
the complexity of a higher-order functional as a higher-order object in its own right, namely
a cost functional which not only tracks the number of steps it takes for a higher-order term
t to reduce to a normal form λx.u, but encodes information about the cost of evaluating
(λx.u)v for any input v, and so on. The synthesis of cost functionals from higher-order
programs in this sense is readily accomplished in our setting by instantiating the monadic
part of our translation as a simple step counting operation. In particular, the result of our
translation is an object J|e|K which is always given as recursive equation in our model which
reflects the syntactic structure of the original term e. This recursive equation can then be
solved to give a closed form expression for the cost of evaluating e (see Example 6.5 for an
illustration of this in the case of Spector’s search functional).

However, we also show that different choices of our semantic component lead to inter-
esting characterisations of complexity. In particular, by combining the aforementioned cost
operation with a form of majorizability similar to that discussed in Section 4.3, we obtain in
a uniform way the bounded cost semantics explored recently by Danner et al. in [9, 10].

On top of all this, we apply our translation not just to variants of System T, as is often
the case in the literature, but to bar recursive extensions, for which soundness of our cost
analysis requires us to appeal to semantic continuity principles as in Section 4.2.

6.1. Exact cost expressions for call-by-value languages. We begin by defining what
we mean by the cost of a closed term e in our parametrised target language. We do this
using annotated big step relations e ↓c v for c ∈ N, where intuitively, e ↓c v iff e ↓ v in c
rewrite steps. We define this formally in Figure 7.
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Throughout this section our main illustrative example will be our list based variant of
System T from Section 2.2, together with its bar recursive extension from Section 2.3. As
such, we formulate our soundness theorem (Theorem 6.1) in terms of an arbitrary target
language over datatypes Nat and Nat∗ with constructors 0, s ε and :: , noting that both of
the aforementioned languages follow as simple instances of this. Our monadic translation
for exact costs is based on setting C := N with DNat := N and DNat∗ := N∗, and we define
our logical relation via

e ⇓cρ v :⇔ e ↓cρ v nCNat m :⇔ n = m aCNat∗ b :⇔ a = b

and thus Jρ becomes

e Jρ (c, a) :⇔ (∃v)(e ↓cρ v ∧ v Cρ a)

uCρ→τ f :⇔ (∀v, a)(v Cρ a⇒ uv Jτ f(a)).

For our denotational semantics of terms, we define the monadic components by

ε := 0 inc(c) := c+ 1 com(c0, c1, c2) := c0 + c1 + c2

and interpret our constructors in the obvious way, so that the interpretations are in particular
compatible with C. Note that it is clear from the definition of cost that (ε, inc, com) is
compatible with ⇓. Thus our main soundness proof (Theorem 3.5) results in the following
characterisation of costs in higher types.

Theorem 6.1. Suppose that for each function symbol f in our target language there is a
suitable interpretation f such that fv1 . . . vk J fa1 . . . ak whenever vi Cρi ai. Then for any
closed e : ρ we have

e ↓π0J|e|K v

for some value v : ρ.

It is relatively straightforward to apply the metatheorem above to the full list based
variant of System T, and even its extension with bar recursion. For our basic operators, we
have e.g. n + m JNat (1, n+m) and ext a n JNat (1, ân), and so on.

Definition 6.2. For c ∈ N and a ∈ N× ρ define c++ a := (c+ π0a, π1a) ∈ N× ρ.

Lemma 6.3. (a) We have fold v1 v2 a J fold(b, h, a) for any v1 C b, v2 C h and a ∈ N∗,
where fold is defined by

fold(b, h, a) := 1 ++

{
(0, b) if a = []

hn ◦ fold(b, h, a′) if a = a′ ∗ n.

(b) We have bar v1 v2 v3 a J bar(ω, g, h, a) for any v1 C ω, v2 C g, v3 C h and a ∈ N∗.
where bar is defined by

bar(ω, g, h, a) :=4 + ω0(λλ i.(1, âi))

++

{
g(a) if ω1(λλ i.(1, âi)) < |a|
ha ◦ (0, λλ n . 1 ++ bar(ω, g, h, a ∗ n)) otherwise

for ωi(f) := πi(ω(f)).
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Proof. Part (a) is a simple induction on the length of a, observing that the derived rules for
fold give rise to the following cost rules:

foldρ v1 v2 ε ↓1ρ v1

v2 n ↓c0ρ→ρ u foldρ v1 v2 a ↓c1ρ v uv ↓c2ρ w

foldρ v1 v2 a :: n ↓1+c0+c1+c2
ρ w

For part (b), we work in the continuous model Cω as in Section 4.2 and follows the same
strategy as the proof of Lemma 4.3. By keeping track of costs we see that that the derived
operational semantics of bar recursion give rise to the following derived cost rules:

v1(ext a) ↓c0Nat k k < |a| v2 a ↓c1Nat n

bar v1 v2 v3 a ↓4+c0+c1 n

v1(ext a) ↓c0Nat k k ≥ |a| v3 a (λx . bar v1 v2 v3 (a :: x)) ↓c1Nat n

bar v1 v2 v3 a ↓4+c0+c1
Nat n

To formally derive each of these rules involves a careful analysis of the defining rules of the
bar recursor constants, along with the cost semantics as set out in Figure 7. For the first,
note that from the defining equation

bar1 f g h xs 0 g xs

we can infer bar1 v1 v2 v3 a 0 ↓1+c1 n from v2 a ↓c1 n. Now if k < |a| it follows that
(k < len a) ↓2 0, since this involves the reduction of two elementary operations, and thus
(v1(ext a) < len a) ↓2+c0 0 follows from v1(ext a) ↓c0Nat k. Putting this all together we
obtain

bar1 v1 v2 v2 a (v1(ext a) < len a) ↓3+c0+c1 n

and from the defining equation

bar f g h xs bar1 f g h xs (f(ext xs) < len xs)

we derive bar v1 v2 v3 a ↓4+c0+c1 n. The second derived rule is established in a similar
manner. Now, continuing with the main proof, we first note that ext aCNat→Nat λλ i.(1, âi),
and thus since v1 C ω it follows that v1(ext a) JNat ω(λλ i.(1, âi)) and thus v1(ext a) ↓c0Nat k
with

(c0, k) := ω(λλ i.(1, âi)).

As in Lemma 4.3, we now assume inductively that

bar v1 v2 v3 a :: n J bar(ω, g, h, a ∗ n) (∗)
for some fixed a ∈ N∗ and all n ∈ N, and seek to establish bar v1 v1 v2 a J bar(ω, g, h, a).
There are two cases to deal with.

• Case 1: k < |a|. Observing that from v2 C g we have v2 a ↓c1 n for (c1, n) = g(a), it
follows that bar v1 v2 v3 a ↓4+c0+c1 n where (4 + c0 + c1, n) = (4 + c0) ++ g(a).
• Case 2: k ≥ |a|. By our assumption (∗) we have

(bar v1 v2 v3 a :: x)[n/x] ↓c m

for (c,m) := bar(ω, g, h, a :: n) and thus

(λx . bar v1 v2 v3 a :: x)n ↓c+1 m

from which we can infer

λx . bar v1 v2 v3 a :: x JNat→Nat (0, λλ n . 1 ++ bar(ω, g, h, a :: n)).
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Since v3 C h we then have v3 a J ha and thus by Lemma 3.3 it follows that

v3 a (λx . bar v1 v2 v3 a :: x) ↓c1 n

for (c1, n) = ha ◦ (0, λλ n . 1 ++ bar(ω, g, h, a :: n)). Therefore by the second derived rule
we have bar v1 v2 v3 a ↓4+c0+c1 n where (4 + c0 + c1, n) = (4 + c0) ++ ha ◦ (0, λλ n . 1 ++
bar(ω, g, h, a :: n)).

Putting both cases together we see that bar v1 v1 v2 a J bar(ω, g, h, a) holds whenever
(∗) holds. We now suppose as in Lemma 4.3 that it is not the case that bar v1 v2 v3 a J
bar(ω, g, h, a), and construct an infinite sequence b on the metalevel such that

¬(bar v1 v2 v3 (a :: b0 :: . . . :: bl−1) J bar(ω, g, h, a ∗ [b](l)))

for all l ∈ N. This time we apply a continuity argument to ω1 : (N→ N× N)→ N and the
sequence β := λλ i.(1, (a ∗ b)i), by which there exists some N such that

ω1([β](|a|+N) ∗ γ) = ω1(β)

for all γ : N→ N× N. In particular setting L := max{N,ω1(β) + 1− |a|} we have

ω1(λλ i.(1, ( ̂a ∗ [b](L))i) = ω1(β) < |a|+ L.

Thus for input a ∗ [b](L) Case 1 applies and we have

bar v1 v2 v3 (a :: b0 :: . . . :: bL−1) J bar(ω, g, h, a ∗ [b](L)),

a contradiction. Therefore it must be the case that bar v1 v2 v3 a J bar(ω, g, h, a) for all
a ∈ N∗, which completes the proof.

Corollary 6.4. Let e : ρ be a closed term definable in System T plus bar recursion (in the

sense of Section 2.3). Then e ↓π0J|e|K v for some value v.

Example 6.5. Consider the so-called Spector search functional Φ : ((N → N) → N) →
(N→ N)→ N given by

Φ(ω, β, a) =

{
0 if ω(â) < |a|
1 + Φ(ω, β, a :: β(|a|)). otherwise

This functional was introduced by Howard in [15], though he attributes it to Kreisel. The
idea is that Φ(ω, β, []) forms a bound on how far we need to look to find some N such that

ω( ̂[β](N)) < N , confirming that such an N can be computed using bar recursion.
The search functional can be defined in our target language via the closed term

spec := λx, y, z . bar x (λx′.0)(λz′, p . s(p(y(len z′)))) z.

Then given v1 J ω and v2 J g, it is not too difficult to work out that

spec v1 v2 a JNat φ(ω, g, a)

where φ is defined as

φ(ω, g, a) = bar(ω, λλ b′.(1, 0), λλ b . (1, λλ f . (4 + g0(|b|) + f0(g1(|b|)), 1 + f1(g1(|b|)))), a).

Unwinding the defining equations of bar we obtain

φ(ω, g, a) = 4 + ω0(λλ i.(1, âi)) ++

{
(1, 0) if ω1(λλ i.(1, âi)) < |a|
r otherwise

where r := (6 + g0(|a|) + φ0(ω, g, a ∗ g1(|a|)), 1 + φ1(ω, g, a ∗ g1(|a|)))
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We now solve the complexity component of these equations to find a closed form expression
for the complexity of the search functional. For any function f : N→ N and n ∈ N define
fn : N→ N× N by

fn := λλ i.(1, ̂[f ](n)i).

We now consider φ0(ω, g, [g1](n)). In the case that ω1(gn1 ) < n we have

φ0(ω, g, [g1](n)) = 4 + ω0(gn1 ) + 1

and otherwise we have

φ0(ω, g, [g1](n)) = 4 + ω0(gn1 ) + 6 + g0(n) + φ0(ω, g, [g1](n+ 1))

Putting these together we obtain

φ0(ω, g, [g1](n)) = 5 + ω0(gn1 ) +

{
0 if ω1(gn1 ) < n

5 + g0(n) + φ0(ω, g, [g1](n+ 1)) otherwise

We can then use this to expand φ0(ω, g, []) until we reach a pointN ∈ N such that ω1(gN1 ) < N .
More precisely, if N is the first such point, we have

φ0(ω, g, []) = 10N + 5 +
N∑
i=0

ω0(gi1) +
N−1∑
i=0

g0(i).

This then forms a closed expression for the cost c of evaluating spec v1 v2 ε whenever v1 J ω
and v2 J g. Note that this cost expression would be formally defined using the Spector
search function itself, just as the cost expression for primitive recursion is also a primitive
recursive functional.

6.2. Bounded costs. In the final part of the paper, we show how we can modify our
denotational cost semantics to provide upper bounds on the cost of derivations, along the
lines of [10], which is generalised to a richer language with recursion over arbitrary datatypes
in [9]. The main motivation for looking for upper bounds (rather than a precise measure of
complexity) is that it allows us to abstract away certain parts of the program (for instance,
treating all number inputs as the same) and thereby obtain simplified expressions for the
cost of programs. We now no longer denote a numeral n by the corresponding natural
number n, but assign all numerals a uniform size 1. Lists are then interpreted by a single
natural number that represents an upper bound on their length. In this way, we sacrifice
precision for a simplified upper bound on the cost of running a program.

To be more precise, while we still have C = N we alter the semantic side of our
denotational semantics by setting DNat = DNat∗ = N, and adapt our logical relation so that

e ⇓c v :⇔ (∃c′)(e ↓c′ v ∧ c′ ≤ c)
nCNat m :⇔ 1 ≤ m
aCNat∗ m :⇔ |a| ≤ m

and thus Jρ becomes

e Jρ (c, a) :⇔ (∃v, c′)(e ↓c′ρ v ∧ c′ ≤ c ∧ v Cρ a)

uCρ→τ f :⇔ (∀v, a)(v Cρ a⇒ uv Jτ f(a)).
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It is easy to see that ε := 0, inc(c) := c+ 1 and com(c0, c1, c2) := c0 + c1 + c2 as defined in
Section 6.1 is also compatible with our new definition of ⇓. However, this time we must
interpret our constructors differently: We set 0 := 1 and s(n) := 1, so that J|n|K = (0, 1) for
all n ∈ N, and for lists we define ε := 0 and ::(m,n) := m+ 1, so that J|a|K = (0, |a|) for all
a ∈ N∗. In this way, we ensure that our constructors are compatible with C, which then
gives rise to the following metatheorem:

Theorem 6.6. Suppose that each function symbol f of our target language is interpreted
by some suitable f which satisfies fv1 . . . vk J fa1 . . . ak whenever vi Cρi ai. Then for any
closed e : ρ we have

e ↓c v for some c ≤ π0J|e|K
and some value v : ρ.

We now demonstrate how this metatheorem can be applied to our list based variant of
System T. In order to do this we need to generalise the usual maximum operator between
two natural numbers to arbitrary types.

Definition 6.7. For types ρ of our target language, define ∨ρ : J|ρ|K × J|ρ|K → J|ρ|K
inductively by

m ∨δ n := max{m,n} for δ = Nat, Nat∗

f ∨ρ→τ g := λλa . (max{f0a, g0a}, f1a ∨τ g1a).

Lemma 6.8. For all types ρ, if uCρ a then uCρ a ∨ρ b and uCρ b ∨ρ a for any b ∈ J|ρ|K.

Proof. Induction on types. We only prove uC a∨ b because the other way round is identical.
For base types nCm implies 1 ≤ m, but since then 1 ≤ max{m, k} we have nCm ∨Nat k.
Similarly for lists: aCNat∗ m implies |a| ≤ m ≤ max{m, k} and thus aCNat∗ m ∨Nat∗ k.

For function types, suppose that uCρ→τ f , which means that for any v Cρ a we have
uv ↓c w for some c, w with c ≤ f0a and wCτ f1a. But c ≤ max{f0a, g0a} and by the induction
hypothesis w Cτ f1a ∨τ g1a, and since v, a were arbitrary we have uCρ→τ f ∨ρ→τ g.

Lemma 6.9. We have fold v1 v2 a J fold(b, h, n) for any v1 C b, v2 C h and a ∈ N∗ with
|a| ≤ n, where fold is defined by

fold(a, h, n) = 1 ++

{
(0, a) if n = 0

(h1 ◦ fold0(a, h, n′), a ∨ρ h1 ◦ fold1(a, h, n′)) if n = n′ + 1

Proof. Induction on n. If n = 0 then we must have a = [], and since v1 ↓0 v1 Cρ a we have
fold v1 v2 [] ↓1 v1 C a and thus fold v1 v2 [] Jρ (1, a).

For n = n′+1 there are two possibilities. Either a = [] and fold v1 v2 [] ↓1ρ v1Ca as before,

and since 1 ≤ 1 ++h1◦fold0(a, h, n′) and (by Lemma 6.8) v1Ca∨ρ h1◦fold1(a, h, n′) we’re
done. Otherwise a = a′ :: m. By the induction hypothesis we have fold v1 v2 a′ Jρ
fold(a, h, n′), and since m CNat 1 and thus v2 m Jρ→ρ h1 we have (by Lemma 3.3)
v2 m (fold v1 v2 a′) J h1 ◦ fold(a, h, n′) which is just

v2 m (fold v1 v2 a′) ↓c′ w ∧ c′ ≤ c ∧ w Cρ b
for (c, b) = h1 ◦ fold(a, h, n′), and therefore

fold v1 v2 a′ :: m ↓c′+1 w ∧ c′ + 1 ≤ c+ 1 ∧ w Cρ b.
Thus fold v1 v2 a′ :: mC fold(a, h, n′ + 1) follows from another application of Lemma 6.8,
and we’re done.
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As a result of the above lemma, we obtain soundness of the translation for our list based
variant of System T, which is analogous to Corollary 3 of [10]:

Corollary 6.10. Let e : ρ be a closed term of our list-based variant of System T. Then
e ↓c v for some value v and c ≤ π0J|e|K.

Naturally, our approach can also be applied to arbitrary rewrite systems whose function
symbols have a suitable interpretation, such as forms of recursion over more general data
structures, as in [9]. Though the usual formulation of bar recursion does not have a bounded
semantics of this kind, we could consider finite variants along the lines of [13, 25].

7. Conclusion

We have introduced a general monadic translation acting on higher-order functional languages,
which combines both a monadic component and a semantic component, where the latter
could play the role of a normal denotational semantics, or alternatively something more
interesting, such a variant of the majorizability relation. Applications of our translation
included a proof that functionals of type level two expressible by closed terms in our language
are continuous, together with various denotational cost semantics for functional languages.
The emphasis throughout was less on obtaining new results, and more on demonstrating
that ideas from a range of different areas - from proof theory to static program analysis
- can be brought together under the same framework. Nevertheless, as a side product we
presented for the first time a cost analysis of Spector’s variant of bar recursion.

So far, our work only applies to functional languages whose function symbols give rise
to terminating computations. An obvious next step would be to incorporate partiality into
our setting, allowing us to reason about potentially non-terminating computations. In the
context of normalization via denotational semantics (discussed here in Section 4.2), this
has been explored in more generality by Berger [5], where a term e is shown to be strongly
normalizing if JeK 6= ⊥, where now J·K represents a so-called strict denotational semantics.
This approach also appeals to the notion of a stratified rewrite system, where function
symbols f are labelled with natural numbers in order to track the number of times they
can be rewritten. A similar extension of Danner et al’s complexity framework to arbitrary
PCF programs is given in [18]. It would be interesting to see if an approach along these
lines, using stratified rewrite systems together with a partial denotational semantics, could
be used to extend our framework to arbitrary PCF programs, without requiring the user to
first prove that function symbols have a suitable interpretation.

There is also, naturally, the prospect of working with other monads and modelling
other evaluation strategies, such as parallel computation. However, our simple call-by-value
framework based on the writer monad is already rich enough to reason about extensional
properties such as majorizability and continuity, and in addition allows us to characterise a
variety of cost measures for higher order functional programs.
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