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ABSTRACT. This paper shows how to harness existing theorem proverfirge-order logic to au-
tomatically verify safety properties of imperative progiathat perform dynamic storage allocation
and destructive updating of pointer-valued structure $ieldne of the main obstacles is specifying
and proving the (absence) of reachability properties anaymgmically allocated cells.

The main technical contributions are methods for simutpteachability in a conservative way
using first-order formulas—the formulas describe a sup@fséhe set of program states that would
be specified if one had a precise way to express reachablitigse methods are employed for semi-
automatic program verification (i.e., using programmepgied loop invariants) on programs such
as mark-and-sweep garbage collection and destructivesahaf a singly linked list. (The mark-and-
sweep example has been previously reported as being beyerdpabilities of ESC/Java.)

1. INTRODUCTION

This paper explores how to harness existing theorem préwefisst-order logic to prove reach-
ability properties of programs that manipulate dynamjcallocated data structures. The approach
that we use involves simulating reachability in a conséveaway using first-order formulas—i.e.,
the formulas describe a superset of the set of program stetesould be specified if one had an
accurate way to express reachability.
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Automatically establishing safety and liveness properté sequential and concurrent pro-
grams that permit dynamic storage allocation and low-l@a@hter manipulations is challenging.
Dynamic allocation causes the state space to be infinitegover, a program is permitted to mutate
a data structure by destructively updating pointer-valiglds of nodes. These features remain even
if a programming language has good capabilities for dattatigon. Abstract-datatype operations
are implemented using loops, procedure calls, and segsi@idew-level pointer manipulations;
consequently, it is hard to prove that a data-structurerigmtis reestablished once a sequence of
operations is finished [Hoal75]. In languages such as Jamauo@ncy poses yet another challenge:
establishing the absence of deadlock requires estaliishaabsence of any cycle of threads that
are waiting for locks held by other threads.

Reachability is crucial for reasoning about linked datacttires. For instance, to establish
that a memory configuration contains no garbage elementsnugt show that every element is
reachable from some program variable. Other cases whereaieitity is a useful notion include

e Specifying acyclicity of data-structure fragments, ifeom every element reachable from node
n, one cannot reach

e Specifying the effect of procedure calls when referencegassed as arguments: only elements
that are reachable from a formal parameter can be modified

e Specifying the absence of deadlocks

e Specifying safety conditions that allow establishing thdata-structure traversal terminates, e.g.,
there is a path from a node to a sink-node of the data structure

The verification of such properties presents a challengenBimple decidable fragments of first-
order logic become undecidable when reachability is ad@dH99, IRR"044]. Moreover, the
utility of monadic second-order logic on trees is ratheiitén because (i) many programs allow non-
tree data structures, (ii) expressing the postconditica ocedure (which is essential for modular
reasoning) usually requires referring to the pre-statehbhls before the procedure executes, and
thus cannot, in general, be expressed in monadic secordogic on trees—even for procedures
that manipulate only singly-linked lists, such as the to-dist-reversal program shown in Fig. 6,
and (iii) the complexity is prohibitive.

While our work was actually motivated by our experience gsbstract interpretation — and,
in particular, the TVLA system [LAS00, SRWD2, RSWO04] — toadsish properties of programs
that manipulate heap-allocated data structures, in tlpsrpae consider the problem of verifying
data-structure operations, assuming that we have usphietipoop invariants. This is similar to
the approach taken in systems like ESC/Java [F02], and Pale [MS01].

The contributions of the paper can be summarized as follows:

Handling FO(TC)formulas using FO theorem provers. We want to use first-order theorem
provers and we need to discuss the transitive closure odinebinary predicatesf. However,
first-order theorem provers cannot handle transitive ciasiVe solve this conundrum by adding
a new relation symbof;. for each suchf, together with first-order axioms that assure tfiatis
interpreted correctly. The theoretical details of how tkislone are presented in Sectl[dn 3. The
fact that we are able to handle transitive closure effelstiaad reasonably automatically is quite
surprising.

As explained in Sectiop] 3, the axioms that we add to cont®lbshavior of the added predi-
cates,fi., must be sound but not necessarily complete. One way to #hbokit this is that we are
simulating a formulay, in which transitive closure occurs, with a pure first-orfibegmulay’. If our
axioms are not complete then we are allowifigo denote more stores thandoes. The study of
methods that are sound but potentially incomplete is mi&d/édy the fact thaabstraction[CC77]
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can be an aid in the verification of many properties. In terfsgic, abstraction corresponds to
using formulas that describe a superset of the set of progtai®s that can actually arise. A definite
answer about whether a property always holds can sometimebthined even when information
has been lost because of abstraction.

If " is proven valid in FO thely is also valid in FO(TC); however, if we fail to prove thatis
valid, it is still possible tha is valid: the failure would be due to the incompleteness efakioms,
or the lack of time or space for the theorem prover to completeroof.

As we will see in Sectiofl3, it is easy to write a sound axidh,f], that is “complete” in the
very limited sense that every finite, acyclic model satisfyl’ [ /] must interpretf;. as the reflexive,
transitive closure of its interpretation ¢f However, in practice this is not worth much because, as
is well-known, finiteness is not expressible in first-ordegit. Thus, the properties that we want to
prove do not follow fromT; [f]. We do prove thaf}[f] is complete for positive transitive-closure
properties (Propositidn_3.2). The real difficulty lies iroping properties involving the negation of
fie, 1.€., that a certairf-path does not exist.

Induction axiom scheme. To solve the above problem, we add an induction axiom scheme.
Although in general, there is no complete, recursivelymerable axiomatization of transitive clo-
sure (Propositioh 411), we have found, on the practical, $ide on the examples we have tridd,
plus induction allows us to automatically prove all of ousided properties. On the theoretical side,
we prove that our axiomatization is complete for word mo@&heoren 4.B).

We think of the axioms that we use as aides for the first-ofgsorem prover that we employ
(SPAssS|WGR9E]) to prove the properties in question. Rather tha&ingi SPAssmany instances of
the induction scheme, our experience is that it finds thefgester if we give it several axioms that
are simpler to use than induction. As already mentionedhénd part is to show that certain paths
do not exist.

Coloring axiom schemes.In particular, we use three axiom schemes, having to do véth p
titioning memory into a small set of colors. We call instasof these schemes “coloring axioms”.
Our coloring axioms are simple, and aeasily proved using SPASS (in under ten seconds) from
the induction axioms. For example, the first coloring axiom scherNmEXit[A, f], says that if no
f-edges leave color clasd, then nof-paths leaved. It turns out that théNoExit axiom scheme
implies — and thus is equivalent to — the induction schemewedyer, we have found in practice
that explicitly adding other coloring axioms (which are sequences dfloExit) enables 8assto
prove properties that it otherwise fails at.

We first assume that the programmer provides the colors bynsrm&dirst-order formulas with
transitive closure. Our initial experience indicates tiat generated coloring axioms are useful to
SPASS In particular, it provides the ability to verify programkd the mark phase of a mark-and-
sweep garbage collector. This example has been previamiyted as being beyond the capabilities
of ESC/Java. TVLA also succeeds on this example; howevem@utapproach provides verification
methods that can in some instances be more precise than TVLA.

Prototype implementation. Perhaps most exciting, we have implemented the heurigtics f
selecting colors and their corresponding axioms in a pypwtusing $Ass We have used this
to automatically choose useful color axioms and then vexieries of small heap-manipulating
programs. We believe that the detailed examples presemieddive convincing evidence of the
promise of our methodology. Of course much further studyemsded.

Strengthening Nelson’s resultsGreg Nelson considered a set of axiom schemes for reasoning
about reachability in function graphs, i.e., graphs in \Whiwere is at most ong-edge leaving any
node [Nel83]. He left open the question of whether his axichesies were complete for function
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graphs. We show that Nelson’s axioms are provable figrplus our induction axioms. We also
show that Nelson’s axioms are not complete: in fact, theyatomply NoEXxit.

Outline. The remainder of the paper is organized as follows: Sectierpfains our notation
and the setting; Section 3 fills in our formal framework, aunces the induction axiom scheme,
and presents the coloring axiom schemes; Section 4 proumbes detail about TC-completeness
including a description of Nelson’s axioms, a proof thaythee not TC-complete for the functional
case, and a proof that our axiomatization is TC-completevfinds; Section 5 presents our heuris-
tics including the details of their successful use on a e examples; Section 6 describes the
applicability of our methodology, relating it to the reasandone in the TVLA system; Section 7
describes some related work; and Section 8 describes samkisimns and future directions.

2. PRELIMINARIES

This section defines the basic notations used in this pagktharsetting.

2.1. Notation. Syntax A relationalvocabulary 7 = {p1,p2, ..., pr} IS a set of relation symbols,
each of fixed arity. We use the lettersv, andw (possibly with numeric subscript) for first-order
variables. We write first-order formulas overwith quantifiersvV and d, logical connectives\,
V, —, <, and—, where atomic formulas include: equaliy,(vi, v, ... vs,), andTC[f](v1,v2),
wherep; € 7 is of aritya; and f € 7 is binary. Hereé['C|[f](v1, v2) denotes the existence of a finite
path of 0 or moref edges fromy; to vy. A formula withoutTC is called &first-order formula.

We use the following precedence of logical operaterdias highest precedence, followed by
A andv, followed by — and«, andv andd have lowest precedence.

SemanticsA model, A, of vocabularyr, consists of a non-empty universel|, and a relation
p“ over the universe interpreting each relation sympal 7. We write A |= ¢ to mean that the
formulay is true in the model. ForX. a set of formulas, we writ® = ¢ (X semantically implies
) to mean that all models At satisfyp.

2.2. Setting. We are primarily interested in formulas that arise whilevimg the correctness of
programs. We assume that the programmer specifies pre atidquubtions for procedures and
loop invariants using first-order formulas with transitelesure on binary relations. The transformer
for a loop body can be produced automatically from the progeade.

For instance, to establish the partial correctness witheeso a user-supplied specification of
a program that contains a single loop, we need to establisk ffroperties: First, the loop invariant
must hold at the beginning of the first iteration; i.e., we tai®w that the loop invariant follows
from the precondition and the code leading to the loop. Secibre loop invariant provided by the
user must be maintained; i.e., we must show that if the loeariant holds at the beginning of an
iteration and the loop condition also holds, the transforoaises the loop invariant to hold at the
end of the iteration. Finally, the postcondition must fallsom the loop invariant and the condition
for exiting the loop.

In general, these formulas are of the form

1 [T] A Tr[r, 7] — aho[7’]
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where 7 is the vocabulary of the before stat€,is the vocabulary of the after stﬁeand Tris
the transformer, which may use both the before and afteriqats$ to describe the meaning of the
module to be executed. If symbgldenotes the value of a predicate before the operation, then
denotes the value of the same predicate after the operation.

An interesting special case is the proof of the maintenaaoaudla of a loop invariant. This
has the form:

LC[r) A LI[T) AN Tr[r,7'] — LI[7']

Here LC is the condition for entering the loop aiid is the loop invariantZI[7’] indicates that the
loop invariant remains true after the body of the loop is exed.

The challenge is that the formulas of interest contain tti@asclosure; thus, the validity of
these formulas cannot be directly proven using a theorewepffor first-order logic.

3. AXIOMATIZATION OF TRANSITIVE CLOSURE

The original formula that we want to provg, contains transitive closure, which first-order
theorem provers cannot handle. To address this problemeplaaey by a new formulay’, where
all appearances afC[f] have been replaced by the new binary relation symhel,

We show in this paper that fron, we can often automatically generate an appropriate first-
order axiomg, with the following two properties:

(1) if 0 — x is valid in FO, theny is valid in FO(TC).
(2) Atheorem prover successfully proves that> ' is valid in FO.

We now explain the theory behind this processT®@ model, A, is a model such that if and
fic are in the vocabulary ofl, then(fi.)* = (f4)*; i.e., A interpretsf;. as the reflexive, transitive
closure of its interpretation of.

Afirst-order formulap is TC valid iff it is true in all TC models. We say that an axiomatization,
3., is TC sound if every formula that follows from> is TC valid. Since first-order reasoning is
sound,X is TC sound iff everyr € X is TC valid.

We say that: is TC completeif for every TC-validp, ¥ = ¢. If ¥ is TC complete and TC
sound, then for all first-ordep,

YEe & o is TC valid

Thus a TC-complete set of axioms proves exactly the firsgrofdrmulas,’, such that the
corresponding FO(TC) formula;, is valid.

All the axioms that we consider are TC valid. There is no reiety enumerable TC-complete
axiom system (Propositidn_4.1). However, the axiomatirathat we give does allowF8ssto
prove all the desired properties on the examples that wethiage We do prove that our axiomati-
zation is TC complete for word models (Theorem 4.8).

1in some cases it is useful for the postcondition formula ferréo the original vocabulary as well. This way the
postcondition can summarize some of the behavior of thefioamer, e.g., summarize the behavior of an entire proeedur
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3.1. Some TC-Sound Axioms.We begin with our first TC axiom scheme. For any binary refatio
symbol, f, let,

Tl[f] = Vu,v.ftc(u,’u) A (u:’u)\/EIw.f(u,w)/\ftC(w,v)

We first observe thdl}[f] is “complete” in a very limited way for finite, acyclic graphse.,
T, [f] exactly characterizes the meaningfaf for all finite, acyclic graphs. The reason that we say
this is limited is that it does not give us a complete set of-firsler axioms: as is well known, there
is no first-order axiomatization of “finite”.

Proposition 3.1. Any finite and acyclic model @f; [f] is a TC model.

Proof. Let A = T1[f] whereA is finite and acyclic. Letg, b € |.A|. Assume that there is afrpath
from ag to b. SinceA = Ti[f], it is easy to see thatl = fi.(ag,b). Conversely, suppose that
A E fic(ag,b). If ap = b, then there is a path of length O framp to b. Otherwise, byr}[f], there
exists am; € |A| such thatd = f(ao,a1) A fic(a1,b). Note thata; # ap since A is acyclic. If
a; = bthen there is arf-path of length 1 fronu to b. Otherwise there must exist an € |.A| such
that A = f(a1,a2) A fic(a2,b) and so on, generating a sgt;, as,...}. None of thea; can be
equal toa;, for j < i, by acyclicity. Thus, by finiteness, somg= b. Henced is a TC model. []

Let 77 [ f] be the— direction of T [ f]:
Tif] = Yu,v. fic(u,v) — (u=2v)VIw. fu,w) A fi(w,v)
Proposition 3.2. Let f;. occur only positively inp. If ¢ is TC valid, therl][f] |= .

Proof. Suppose thaty[f] ~ ¢. Let A = Tj[f] A —¢. Note thatf. occurs only negatively in
—p. Furthermore, sincel = T7[f], it is easy to show by induction on the length of the path, that
if there is anf-path froma to b in A, then A |= fi.(a,b). Define A’ to be the model formed from
A by interpretingf;. in A’ as(f“)*. Thus.A’ is a TC model and it only differs fromi by the fact
that we have removed zero or more pairs frofp.) to form (fi.)*'. Becaused = —¢ and fi.
occurs only negatively im, it follows that.A’ = —¢, which contradicts the assumption thats

TC valid. ]

Propositior 3.2 shows that proving positive facts of therfgi.(u, v) is easy; it is the task of
proving that paths do not exist that is more subtle.

Propositior 3.1l shows that what we are missing, at leastaragdyclic case, is that there is no
first-order axiomatization of finiteness. Traditionallyh@n reasoning about the natural numbers,
this problem is mitigated by adding induction axioms. Wetnettoduce an induction scheme that,
together withl’;, seems to be sufficient to prove any property we need comgefirc.

Notationt In general, we will useF’ to denote the set of all binary relation symbaofs,such
that TC|[f] occurs in a formula we are considering. dff] is a formula in whichf occurs, let
¢lF] = Nser #lf]. Thus, for example]:[F] is the conjunction of the axior; [f] for all binary
relation symbolsyf, under consideration.

Definition 3.3. For any first-order formula%/(u), P(u), and binary relation symbolf, let the
induction principle, IND [Z, P, f], be the following first-order formula:
Vw.Z(w) — P(w)) A (Vu,v.P(u) A f(u,v) — P(v))
— Yu,w.Z(w) A fie(w,u) — P(u)

In order to explain the meaning &fID and other axioms it is important to remember that we
are trying to write axiomsy, that are,
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e TCvalid, i.e., true in all TC models, and
e useful, i.e., all models of: are sufficiently like TC models that they satisfy the TC-gtgroper-
ties we want to prove.

To make the meaning of our axioms intuitively clear, in thést®on we will say, for example, that
“y is fi.-reachable fronx” to mean thatfi.(z, y) holds. Later, we will assume that the reader has
the idea and just say “reachable” instead fif. “reachable”.

The intuitive meaning of the induction principle is that feey zero point satisfie®, and P
is preserved when following-edges, then every poirft.-reachable from a zero point satisfigs
Obviously this principle is TC valid, i.e., it is true for atructures such thgt. = f*.

As an easy application of the induction principle, consitherfollowing cousin offy [f],

D) = Vuv. fielwo) o (w=1v)VIw. fielu,w) A flw,o)

The difference betweel; and7; is thatT; requires that each path representedfRystarts with
an f edge andl; requires the path to end with ghedge. It is easy to see that neitherZaf f],
T5[f] implies the other. However, in the presence of the inducgionciple they do imply each
other. For example, it is easy to pro¥g[f] from T1[f] usingIND [Z, P, f] whereZ(v) = v = u
andP(v) = u =V Jw. fic(u,w) A f(w,v). Here, for each: we uselND [Z, P, f] to prove by
induction that every reachable fromu satisfies the right-hand side %[ f].

Another useful axiom scheme provable frdmplusIND is the transitivity of reachability:

Trans[f] = Yu,v,w. fic(u,w) A fic(w,v) = fie(u,v)

3.2. Coloring Axioms. We next describe three TC-sound axioms schemes that arepli¢d by
T, [F| A T>[F], and are provable from the induction principle. We will see¢hie sequel that these
coloring axioms are very useful in proving that paths do xigtepermitting us to verify a variety
of algorithms. In Sectiohl5, we will present some heuristarsautomatically choosing particular
instances of the coloring axiom schemes that enable us te pur goal formulas.

The first coloring axiom scheme is the NoEXxit axiom scheme:

(Vu,v. A(u) A —A(v) — = f(u,v)) — Yu,v.A(u) A=AW) — = fie(u,v)

for any first-order formulad(u), and binary relation symbof,, NoEXxit[A, f] says that if nof-edge
leaves color clasd, then no point outside ol is fi.-reachable fromA.

Observe that although it is very simpIBoEXit[A, f] does not follow fromTi[f] A Tx[f].
Let G; = (V,f, fic, A) be a model consisting of two disjoint cycle$, = {1,2,3,4}, f =
{(1,2),(2,1),(3,4),(4,3)}, and A = {1,2}. Let fi. have all 16 possible pairs. Thus, sat-
isfies T [f] A T2[f] but violatesNoEXit[A, f]. Even for acyclic modelsNoEXxit[A, f] does not
follow from T3 [f] A T»[f] because there are infinite models in which the implicatioasdwot hold
(Propositior 4.17).

NoEXxit[A, f] follows easily from the induction principle: if nf-edges leavel, then induction
tells us that everything.-reachable from a point id satisfiesA. Similarly, NoEXxit[A, f] implies
the induction axiomIND [Z, A, f], for any formulaZ.

The second coloring axiom scheme is the GoOut axiom: for astydrder formulasi(u), B(u),
and binary relation symbolf, GoOut[A, B, f] says that if the onlyf-edges leaving color clas$
are toB, then anyf;.-path from a point in4 to a point not inA must pass through.

(Vu,v. A(u) A =A(W) A f(u,v) — B(v)) —
Vu,v. A(u) A =AW) A fie(u,v) — Jw.B(w) A fic(u,w) A fie(w,v)
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To see thaGoOut[A, B, f] follows from the induction principle, assume that the ofibedges out
of A enterB. For any fixedu in A, we prove by induction that any poiatf;.-reachable fromu is
either inA or has a predecessoérin B, that is f;.-reachable from.

The third coloring axiom scheme is tidewsStart axiom, which is useful in the context of
dynamically changing graphs: for any first-order formdl@.), and binary relation symbolg and
g, think of f as the previous edge relation apés the current edge relatioNewStart[ A, f, g] says
that if there are no new edges betwetnodes, then any new path, i.g,, but not f;., from A must
leave A to make its change:

(Vu,v. A(u) AN A(v) A g(u,v) — f(u,v)) —
Y, 0. gie (1, 0) A = fre(u,0) = Fw. ~Aw) A gie (1, w) A ge(w, v)

NewsStart[A, f, g] follows from the induction principle by a proof that is sianilto the proof of
GoOut[4, B, f].

3.2.1. Linked Lists. The spirit behind our consideration of the coloring axiomsimilar to that
found in a paper of Greg Nelson’s in which he introduced a se¢achability axioms for a func-
tional predicatef, i.e., there is at most ongedge leaving any point [Nel83]. Nelson asked whether
his axiom schemes are complete for the functional settingrafhark that Nelson’s axiom schemes
are provable fron¥} plus our induction principle. However, Nelson’s axiom sties are not com-
plete: we constructed a functional graph that satisfiesdd&saxioms but violate®oEXxit[A, f]
(Propositior 4.17).

At least one of Nelson’s axiom schemes seems orthogonal rt@eaaring axioms and may
be useful in certain proofs. Nelson’s fifth axiom schemeestdhat the points reachable from a
given point are linearly ordered. The soundness of the axdoneme is due to the fact thétis
functional. We make use of a simplified version of Nelson@eoing axiom scheme: L&unc[f] =
Yu,v,w. f(u,v) A f(u,w) — v = w; then,

Order[f] = Func[f] — Yu,v,w. fic(u,v) A fic(u,w) — fic(v,w) V fie(w,v)

3.2.2. Trees. When working with programs manipulating trees, we have alfset of selector§el
and transitive closure is performed on dwun relation, defined as

Vi, vg . down(vy,vg) < \/ s(v1,v9)
seSel

Trees have no sharing (i.e., tewn relation is injective), thus a similar axiom @rder [f] is used:
Vu, v, w . downg (v, u) A downge(w,u) — downg (v, w) V downg(w,v)

Another important property of trees is that the subtreesvbédistinct children of a node are disjoint.
We use the following axioms to capture this, where# sy € Sel:

Yo, v1,v9, w . = (s1(v,v1) A s2(v,v2) A downge (v, w) A downge (ve, w))
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4, ON TC-COMPLETENESS

In this section we consider the concept of TC-Completeneskeiail. The reader anxious to
see how we use our methodology is encouraged to skim or gkigehtion.
We first show that there is no recursively enumerable TC-detmmzet of axioms.

Proposition 4.1. LetI" be an r.e. set of TC-valid first-order sentences. Thésnot TC-complete.

Proof. By the proof of Corollary 9, page 11 of [IRF04a], there is a recursive procedure that, given
any Turing machine\Z,, as input, produces a first-order formutg in a vocabularyr,, such that
©n is TC-valid iff Turing machine M,,, on input0 never halts. The vocabulaty, consists of the
two binary relation symbolsE, E:., constant symbols;, d, and some unary relation symbols. It
follows that if " were TC-complete, then it would prove all true instanceg,pénd thus the halting
problem would be solvable. L]

Propositior 4.1l shows that even in the presence of only araprelation symbol, there is no
r.e. TC-complete axiomatization.

In JAvr03]], Avron gives an elegant finite axiomatization bétnatural numbers using transitive
closure, a successor relation and the binary function synmibd. Furthermore, he shows that
multiplication is definable in this language. Since the urid C-model for Avron’s axioms is the
standard natural numbers it follows that:

Corollary 4.2. LetT" be an arithmetic set of TC-valid first-order sentences oveoeabulary in-
cluding a binary relation symbol and a binary function syintoo a ternary relation symbol). Then
I"is not TC-complete.

In Propositiorf 3.1 we showed that any finite and acyclic maddl; [f] is a TC model. This
can be strengthened to

Proposition 4.3. Any finite model of; plusIND is a TC-model.

Proof. Let A be a finite model off; plusIND. Let f be a binary relation symbol, and letb be
elements of the universe of. SinceA |= 11, if there is anf path froma to b then A |= fi.(a,b).
Conversely, suppose that there is fipath froma to b. Let R, be the set of elements of the
universe ofA that are reachable from Letk = |R,|. SinceA is finite we may use existential
guantification to name exactly all the elementsi)f : x1,...,xr. We can then define the color
class:C(y) =y =z V---Vy = x,. Then we can prove usin®{D, or equivalentlyNoExit, that
no vertex outside this color class is reachable figre., A = = fi.(a, b). Thus, as desired4 is a
TC-model. []

4.1. More About TC-Completeness. Even though there is no r.e. set of TC-complete axioms in
general, there are TC-complete axiomatizations for aelitaieresting cases. Lef be a set of
formulas. We say that is TC-valid wrtX iff every TC-model ofX satisfies). LetI" be TC-sound.
We say thafl" is TC-complete wrt iff T' U X - 1) for everyt that is TC-valid wrt3. We are
interested in whethéer; plusIND is TC-complete with respect to interesting theorigs,

SinceTC]ls|(a, b) asserts the existence of a finikgath froma to b, we can express that a
structure is finite by writing the formulad = Func[s] A 3aVy . si.(x, y). Observe that every TC-
model that satisfie® is finite. Thus, if we are in a setting — as is frequent in logighere we may
add a new binary relation symbal, thenfiniteness is TC-expressible
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Proposition 4.4. LetX be a finite set of formulas, aridan r.e., TC-complete axiomatization ¥t
in a language where finiteness is TC-expressible. Then fiGtealidity for is decidable.

Proof. Let ® be a formula as above that TC-expresses finitenessa Lt any formula. Ify is
not finite TC-valid wrt3, then we can find a finite TC model & where) is false. Ify is finite
TC-valid, thenI' U X + & — ¢, and we can find this out by systematically generating albfsro
fromT. []

From Propositioi 414 we know that we must restrict our sefoclkases of TC-completeness
to those where finite TC-validity is decidable. In particukince the finite theory of two functional
relations is undecidable, e.d., [IRR4a], we know that,

Corollary 4.5. There are no r.e. TC-valid axioms for the functional casenafieve restrict to at
most two binary relation symbols.

4.2. Nelson’s Axioms. Our idea of considering transitive-closure axioms is samih spirit to the
approach that Nelson takes [Nel83]. To prove some programpepties, he introduces a set of
reachability axiom schemes for a functional predicgte,By “functional” we mean thaff is a
partial function:Func|f] = Vu,v,w . f(u,v) A f(u,w) — v = w.

We remark that Nelson’s axiom schemes are provable ffpplus our induction principle. At
least two of his schemes may be useful for us to add in our approNelson asked whether his
axioms are complete for the functional setting. It followsnfi Corollary 4.5 that the answer is no.
We prove below that Nelson’s axioms do not préN@Exit.

Nelson’s basic relation symbols are ternary. For exampgleyiites ‘¢ £, v” to mean that there
is an f-path fromu to v that follows no edges out of. We encode thismag",tﬁ(u,v), where, for
each parameter we add a new relation symbaf;*, together with the assertioNu, v . f*(u,v) <
f(u,v) A (u # x). Nelson also includes a notation for modifying the partiaidtion f. He writes,

féf”) for the partial function that agrees witheverywhere except on argumenvhere it has value
g. Nelson’s eighth axiom scheme asserts a basic consistaopenty for this notation. In our
translation we simply assert thﬂp)(u,v) — (u#pA flu,v)) V(u=pAv=q). When we
translate Nelson’s eighth axiom scheme the result is tagical, so we can safely omit it.

Using our translation, Nelson’s axiom schemes are theviatig.

(N1) fie(u,v) < (u=2v)V3Iz.(f"(u,2) A fiiz,0))
(N2) fic(u,v) A fie(v,w) = fic(u, w)

(
(N3) ftf‘;;(u,v) - ftc(u7v)
(N4) fic(u, @) A fi(u,y) — fi(u, )
(N5) frc(u,z) — fie(w,2) V fie(u,y)

(NB) fi(u,z) A fi(u,y) — fE(z,y)

(N7) f(x7u) A ftc(uvv) - ftmc(u7v)

These axiom schemes can be proved using appropriate iestafif; and the induction prin-
ciple. Just as we showed in Proposition 3.1 that any finitesagdlic model off [f] is a TC model,
we have that,

Proposition 4.6. Any finite and functional model of Nelson’s axioms is a TC#hod
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Proof. Consider any finite and function modek. We claim that for eaclf andz € | M|,
(fE)M = ((f5)M)*. If there is anf® path fromu to v, then it follows from repeated uses of
(N1) that fZ holds.

If there is nof* path fromu to v andw is not on anf-cycle, then using (N1) we can follow
f-edges fromu to the end and prove thgf. does not hold.

If there is nof* path fromu to v andw is on anf-cycle containinge, then using (N1) we can
follow f-edges fromu to z to prove thatf?.(u, v) does not hold.

Finally, if there is nof path fromu to v andw is on an f-cycle, suppose for the sake of a
contradiction thaff;.(u, v) holds. Letz be the predecessor ofon the cycle. By N7 2 (u,v) must
hold. However, this contradicts the previous paragraph. ]

Axiom schemes (N5) and (N7) may be useful for us to assert whierfunctional. (N5) says
that the points reachable fromare totally ordered in the sense thatibndy are both reachable
from u, then in the path from: eitherz comes first ory comes first. (N7) says that if there is an
edge fromzx to » and a path fromu to v, then there is a path from to v that does not go through
z. This implies the useful property that no vertex not on ae&yslreachable from a vertex on the
cycle.

We conclude this section by proving the following,

Proposition 4.7. Nelson’s axioms do not impNoEXit.

Proof. Consider the structur€@ = (V,, f, fie, fo, fL, f2, ..., £, A) such that’ = N U {cc}, the
set of natural numbers plus a point at infinity. L&t= N, i.e., the color clasgl is interpreted as all
points excepto. Definef = {(u,u + 1) |u € N}, i.e., there is an edge from every natural number
to its successor, bub is isolated. However, lef,. = {(u,v) |u < v}, i.e.,G believes that there is
a path from each natural number to infinity. Similarly, focka € V, f£ = {(u,v)ju < v A (k <
uVo<k)}

It is easy to check tha¥ satisfies all of Nelson’s axioms.

The problem is thatG = —-NoEXxit[A, f]. It follows that Nelson’s axioms do not entail
NoEXxit[4, f]. This is another proof that they are not TC complete. L]

4.3. TC-Completeness for Words. In this subsection, we prove that plusIND is TC-complete
for words.

For any alphabet, let the vocabulary of words ovét bevocab(X) = (0, max; s?, s2., P}
o € %) . The domain of a word model is an ordered set of positions tle@dinary relatior, (x)
expresses the presence of symba@it position x.s is the successor relation over positions, apd
is its transitive closure. The constatendmax represent the first and last positions in the word.
A simple axiomatization of words idy,,, the conjunction of the following four statements:

(Al) Vx.(=s(z,0) A =s(maz,z) A (x #0 — Jy.s(y,x)) A (x # max — Jy. s(z,y)))
(A2) Vayz. ((s(z,y) As(z,2)) V (s(y,x) As(z,x))) > y==z
(A3) Vz . 5tc(0,2) A ste(z, maz)
(A4) Va. \/ (Py(x) A J\ =Pr(2))
oen o

In particular, observe that a TC-model 4f.,, is exactly @ word. Letl’ = IND U {77 }. We
wish to prove the following:

Theorem 4.8.T" is TC-complete wridy,,.
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We first note thal’ U { Ay, } implies acyclicity:Vzy . s(x,y) — —si(y, z). The proof using
induction proceeds as follows: in the base case, there isamat0. Inductively, suppose there is
no loop starting at, s(x,y) holds, but there is aloop gt i.e.,3z. s(y, z) A stc(2,y). Then byT;
andIND we know3z’ . sic(z,2') A s(2’,y), andsi.(y, 2’). (A2) asserts that the in-degreeso 1,
which means’ = x and we have a contradiction;.(y, x).

In order to prove Theorem 4.8, we need to show thatig true in all TC models of U{Ax,,},

i.e., in all words, thed” U {As,, } F . By the completeness of first-order logic it suffices to show
thatl’ U {As.} = ¢. We prove the contrapositive of this in Lemma 4.10. In ordetd so, we first
construct a DFAD, that has some desirable properties.

Lemma 4.9. For any ¢ € L(vocab(X)) we can build a DFAD, = (Q,, X, d,, 1, F,), satisfying
the following properties:

(1) The statesyy, go, . . . g, Of D,, are first-order definable as formulag, i, ... ¢}, where intu-
itively ¢; (=) will mean thatD,, is in stateg; after reading symbols at word positiofisl, . .. , z.
(2) The transition functiord,, of D, is captured by the first-order definitions of the states. That
forall i <n,I' U Ay, semantically implies the following two formulas for evetigtasg;:
@ 4:(0) < \/ B0

0€X,0,(q1,0)=¢;

(b) Yu,v.s(u,v) — (qi(v) — \/ (Py(v) A qj(u))>
0€X,04(q5,0)=q;
() TU{Asw} E ¢ < F(maz), whereF(u)= \/ gi(u).
qi€Fy,

Proof. We prove properties 1, 2, and 3 while constructing and the first-order definitions of
its states by induction on the length ¢f The reward is that we get a generalized form of the
McNaughton-Papert [MP71] construction that works on ntamdard models.

Some subformulas gf may have free variables, e.g:,y. In the inductive step considering
such subformulas, we expand the vocabulary of the autontathh = {z,¢} x {y,e} x . We
write P, (u) A (z = u) A (y # u) to mean that at position, symbolo occurs, as does, but noty.

Note: Since every structure gives a unique value to each variablee are only interested in
strings in whichz occurs at exactly one position.

For the following induction, le8 be any model of* U { Ay, }. For the intermediate stages of
induction where some variables may occur freely, we asshatdstinterprets these free variables.
We prove that the formulas of properties 2 and 3 must holl & each step of the induction.

Base casesy is eitherP, (z), z = y, s(z,y), Of si.(z,y).
¢ = P,(z): The automaton foP,(z) and its state definitions are shown in Elg 1.

on ‘ i i iti
e @ State predicate Definition

Q1E'U§ _‘St(C(x>)U) P ( )
i} q2(v Ste(T, V) A (T
XA O e Q3(’U) Stc($> U) A —|Pg(l')

' Table 1:Dp,_(,)

Figure 1:Dp_ (.
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Properties 2 and 3 can be verified as follows:

For property 2b, suppose tht= s(u,v). We must show tha |= ¢2(v) iff one of two rules
leading to state- holds. These two rules correspond to the edge fgpifif = = v), and the self
loop ong, (if © # v). Supposes = ¢a2(v) A (v = x). Expanding the definition afz, we get
B = sic(z,v) A Py(z) A (v = z). But this mean®3 |= —sic(z,u) sinceB = T'U {Asx, } and
we have acyclicity. Therefore, we ha¥e|= ¢;(u) by definition ofg;, and we get the desired
conclusion,3 = q1(u) A Py(v).

The case corresponding 10 # v is also easy, and relies on the fact tifat= s (z,v) A
s(u,v) A (x # v) — sic(z,u). In other words, ifg2(v) holds ande # v, thengs holds atv’s
predecessor too.

This proves one direction of property 2b for state The other direction fog,, and the proofs
for other states proceed similarly. The proof for 2a is samil

For property 3, we need to show thét= P,(z) < g2(max). This can be verified easily
from the definition ofys.

¢ = (x =y) or s(z,y): The automata and their state definitionsfor= (x = y) andy = s(z,y)
are shown in FigEl2 and 3. Properties 2 and 3 can be verifiely éasihese definitions.

X
w0
3 © State predicaté Definition
q1(v) —8te(T,v)
XAy q2(v) (x =y) A sc(z,v)
) g3(v) (T # y) A ste(,0)
' Table 2:D,—,
Figure 2:D,_,
X
' X ‘ State predicate Definition
() (2) ©) q1(v) —Ste(T, V)
q2(v) T=0
By q3(v) s(x,y) A se(y, v)
qa(v) Ste(x,v) A (x # V)A
a _|S(33‘, y)
‘ Table 3: Dy, )
Figure 3: D, )

» = stc(x,y): The automaton fop = si.(z,y), and its state definitions are shown in Eig 4.

We provide a sketch of the proof of property 2b for staie Proofs for other states follow
using similar arguments. SuppoBel= ¢3(v) A s(u,v). Expanding the definition ofs;(v), we
getB E sic(x,y) A ste(y,v) A s(u,v).

There are two possibilitiesy # y andv = y, corresponding to the loop on statg and the
incoming edges from, or ¢;. Suppose = y. Now we have two further cases= y andx # y.
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State predicate Definition
q1(v) —5tc (T, v)
q2(v) Ste(x, v)A
_'(Stc(x> y) A Stc(yv U))
q3(v) Stc(T,y) A ste(y, v)
Table 4Dy, (2

Figure 4:Dstc(m7y)

If 2 =y = v, we getB = —sie(x,u), or B = qi(u) A s(u,x) A (x = y = v), denoting the
appropriate transition from staie.

On the other hand, B |~ (= # y), we need to show tha was reached vig,. Expanding the
definition ofgs(v) we haveB3 |= sic(z, y)Astc(y,v). Sincey = v, we getBB = sic(x, u)As(u, y).
But by definition ofga, this means3 = g2(u). Thus, we havé8 = g2(u) A s(u,v) Av =y, the
appropriate transition rule for moving from stateto g¢s.

For this direction of property 2b, the only remaining casg ig v. In this case, it is easy to
prove that we entered stajg aty, and looped thereafter using the appropriate transitiothi®
loop.

For the reverse direction, we need to prove that if a tramsitule is applicable at a position
then the corresponding next state must hold at the nextigsithis is easily verified using the
state-definitions. Property 2 for other states follows loyilsir arguments. Property 3 can also be
verified easily using the definition af.

Inductive steps ¢ is eithery; A g, or =, or 3z . Y (x).

@ = @1 Ap2: Inductively we haveD,,, andD,,, with final state definitiong;, andq, respectively.
To constructD,,, we perform the product construction: lgtbe state definitions ab,,, andgq;
those ofD,,. Then the state definitions @,, areqy; ;), and we havey; ;y(u) = gi(u) A g;(u).
The accepting states are

Fsm/\soz (u) = \/ q<f17f2>(u)'
fiEFRINf2eF
Property 1 holds because we are still in first-order. Prgp2rollows because we are just
performing logical transliterations of the standard DFAjomction operation. Property 3 follows
from the fact that we already hay®|= F(max) < ¢1 andB = Fx(maz) < @2, and from the
definition of £, 1., .
¢ = ). In this case, we take the complement/of, which is easy because our automata are
deterministic. Let the final state @#,, be F’. D, has the same state definitionsygsut its final
state definition i’ (u) = —F’(u). Itis easy to see that properties 1, 2 and 3 hold in this case.
v =3dx.¢Y(x):
Inductively we haveD,, = ({q1,...,qn}, 2 x {z,€},0yp,q1, Fy).
First we transformD,, to an NFAN, = ({p1,...,pn, P}, ..., 0L}, 2,0, p1, F), whereF =
{pila: € Fy} andd(pi, o) = {pj, pi|0y (¢, o A ~x) = g5, 04 (¢, 0 AN x) = g}
ThusN, no longer sees’s. Instead, it guesses the one place thatight occur, and that is
where the transition from; to p; occurs. (See Fid.l5)
Let pi(u) = 3z . asge(x, u) A gi(uw);  ph(u) =z . see(z, u) A gi(u).
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)3 )3

,,,,,,,,,,,,,,, Leftversion i i Rightversion

Figure 5:N5, p, (2)

DefineD,, to be the DFA equivalent t&/, using the subset construction. L®&t= {p;,, p|j €
Jo}, S1={pi,, pj|j € J1} be two states aD,,. (Note that each reachable state’pf has exactly
one element ofp1,...,pn}.)

Observe that in a “run” o\, on B, we can be in statg; at positionu iff B |= p;(u) and we
can be in statg/, of u iff B = p}(u). Thus, the first-order formula capturing st&gis

So(w) = pig A /\ pi(u) A /\ —pj(u)
Jj€Jo Ji¢Jo
Conditions 2 and 3 foD,, thus follow by these conditions fab,;,, which hold by inductive
assumption.
For example, i, (S, o) = S, thendy (pi,, o A—x) = p;;, andj € Jy iff 6y (gi0, 0 A T) = g
or 6,(qj,, 0 N ~x) = q; for someyjy € Jy.
Thus, we have inductively constructed thg and proved that it satisfies properties 1, 2, and3.

Lemma[4.9 tells us that for any mod8lof I' U {Asx,, }, B = ¢ iff B = F,(max). In other
words,B = ¢ iff B “believes” that there is a path from the start state to sgpia F,,. As a part of
the next lemma, we use induction to prove that this implies there actually must be a pathih,
from the start state to somg in F,.

Lemma 4.10. SupposeB = I' U {As,} U {¢}. Then, there exists a wordy,, such that its
corresponding word modefj, satisfiesp.

Proof. By Lemmal4.9, we can construél,, and we haveB |= F,(max). SoB “believes” that
there is a path to somg € F,,. Suppose there is no such path/iy. Let C' denote the disjunction
of all states that are truly reachable from the start statB jn This situation can be expressed as
follows: Yu,v.C(u) A s(u,v) — C(v). But this is exactly the premise for the axiom scheme
NoExit, which must hold sinc# |= I'. Therefore, we hav8 = Vu,v.C(v) A sge(u,v) — C(v).
This implies some accepting state should be inC, becauseB = Vu . si.(u, max) A F,(max),
and we get a contradiction.

Therefore, there has to be a real path from the start statéralatateg, in D,. This implies
that the DFAD,, accepts some standard wortd,. Let By be the word model corresponding#g.
ThusB, = F,(max), and therefore by Lemnia 4/%) = ¢ as desired. Il
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Node reverse(Node x){
[0] Node y = null;
[1] while (x !'= null){

[ 2] Node t = x. next;
[ 3] X. hext =y;

[ 4] y = X;

[ 5] X =t;

[6] }

[7] return vy;

Figure 6: A simple Java-like implementation of the in-plaeeersal of a singly linked list.

5. HEURISTICS FORUSING THE COLORING AXIOMS

This section presents heuristics for using the coloringrasi. Toward that end, it answers the
following questions:

e How can the coloring axioms be used by a theorem prover toepy@Section 5.2)

e When should a specific instance of a coloring axiom be giveh@édheorem prover while trying
to provex? (Section 54)

e What part of the process can be automated? (Section 5.5)

We first present a running example (more examples are dedciibSectiorh 5)6 and used in later

sections to illustrate the heuristics). We then explain flogvcoloring axioms are useful, describe

the search space for useful axioms, give an algorithm foloexyg this space, and conclude by

discussing a prototype implementation we have developaidpifoves the example presented and

others.

5.1. Reverse Specification.The heuristics described in Sectidns|5.2+-5.4 are illuedrain prob-
lems that arise in the verification of partial correctnesa bt reversal procedure. Other examples
proven using this technique can be found in Sedtioh 5.6.

The procedure reverse, shown in Figy. 6, performs in-plagersal of a singly linked list, de-
structively updating the list. The precondition requirbattthe input list be acyclic and unshared
(i.e., each heap node is pointed to by at most one heap nodegirplicity, we assume that there
is no garbage. The postcondition ensures that the resditing acyclic and unshared. Also, it
ensures that the nodes reachable from the formal paramregsttiy to reverse are exactly the nodes
reachable from the return value of reverse at the exit. Mopbitantly, it ensures that each edge in
the original list is reversed in the returned list.

The specification for reverse is shown in Kify. 7. We use unegglipates to represent program
variables and binary predicates to represent data-staufitlds. Fig[¥(a) defines some shorthands.
To specify that a unary predicatecan point to a single node at a time and that a binary predicate
f of a node can point to at most one node (i,£is a partial function), we usenique[z] and
func[f] . To specify that there are no cycles f5fields in the graph, we useyclic|f]. To specify
that the graph does not contain nodes shared-kglds, (i.e., nodes witl2 or more incomingf-
fields), we useinshared|f]. To specify that all nodes in the graph are reachable frpr 25 by
following f-fields, we useéotal[z1, z2, f]. Another helpful shorthand is, ;(v) which specifies that
v is reachable from the node pointed to:bysing f-edges.
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The precondition of the reverse procedure is shown in[Rilg). 7(Ve use the predicates
andne to record the values of the variabteand the next field at the beginning of the procedure.
The precondition requires that the list pointed tosbye acyclic and unshared. It also requires
thatuniquelz] and func|[f] hold for all unary predicates that represent program variables and all
binary predicatey that represent fields, respectively. For simplicity, weuass that there is no
garbage, i.e., all nodes are reachable fram

The post-condition is shown in Figl 7(c). It ensures thatrémlting list is acyclic and un-
shared. Also, it ensures that the nodes reachable from theafgarameter: on entry to the
procedure are exactly the nodes reachable from the retiua yat the exit. Most importantly, we
wish to show that each edge in the original list is reversatiérreturned list (see Ed.(5.9)).

A loop invariant is given in Fid.]7(d). It describes the statehe program at the beginning of
each loop iteration. Every node is in one of two disjointligbinted to byr andy (Eq. (5.10)). The
lists are acyclic and unshared. Every edge in the list pditidyx is exactly an edge in the original
list (Eq. (5.12)). Every edge in the list pointed to bys the reverse of an edge in the original list
(Eq. (5.13)). The only original edge going outipfs to x (Eq. (5.14)).

The transformer is given in Figl 7(e), using the primed pretisr’, 2/, andy’ to describe the
values of predicates, x, andy, respectively, at the end of the iteration.

5.2. Proving Formulas using the Coloring Axioms. All the coloring axioms have the form =
Py — C4, whereP4 andCy4 are closed formulas. We calty the axiom’s premise an@'4 the
axiom’s conclusion. For an axiom to be useful, the theoreovgrwill have to prove the premise
(as a subgoal) and then use the conclusion in the proof of ahéfgrmulay. For each of the
coloring axioms, we now explain when the premise can be gkdwaw its conclusion can help, and
give an example.

NoExit. The premisePyoexit[C: f] States that there are rfoedges exiting color class§'.
When(C is a unary predicate appearing in the program, the premsenietimes a direct result of
the loop invariant. Another color that will be used heavilyaughout this section is reachability
from a unary predicate, i.e., unary reachability, formalfined in Eq.[(5)6). Let us examine
two cases. P\ogexit[rz, 7> f] IS immediate from the definition of, ; and the transitivity off;..
PnoExit[7z,f» '] actually states that there is rfepath fromz to an edge for whictf” holds butf
does not, i.e., a change jfi with respect tof. Thus, we use the absence fopaths to prove the
absence of’-paths. In many cases, the change is an important part obtipeiivariant, and paths
from and to it are part of the specification.

A sketch of the proof by refutation aP\oEexit[72.n, 7] that arises in the reverse example is
given in Fig[8. The numbers in brackets are the stages ofrtiad.p

(1) The negation of the premise expands to:
FJuy, ug, uz . ' (ur) A nge(u, ug) A —ne(ur, ug) A n'(ug, ug)

(2) Sinceus is reachable fromu; andus is not, byTs, we have-n(ug, us).

(3) By the definition ofn’ in the transformer, the only edge in whiehdiffers from»’ is out of z
(one of the clauses generated from Eq.(5.15Yis vo . —n/(v1, v2) Vn(vy, v2) Va(vy)) . Thus,
x(ug) holds.

(4) By the definition ofz’ it has an incoming: edge fromz. Thus,n(usg, u;) holds.

The list pointed to byr must be acyclic, whereas we have a cycle betwegeandus; i.e., we have
a contradiction. ThusPyogxit (72,7, 7] must hold.

CNoExit|C, f] states there are nppaths (f;. edges) exiting”. This is useful because proving
the absence of paths is the difficult part of proving formuwiéts TC.
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uniquelz] = Yup,v9.2(v1) A z(v2) — v = vy (5.1)

func[f] ' Yoy, 09, 0. fo,v) A f(v,v9) = v =ve  (5.2)

acyclic|f] ' Yoy, vs. = f(v1,v2) VTC[f](va, v1) (5.3)

(a) unshared|f] L' Yoy, va, 0. flui,v) A f(vg,v) = v1 =v2  (5.4)

total[z1, 22, f] Y Vo.Jw.(z1(w) V za(w)) A TC[f](w,v) (5.5)

s, £(V) ' Jw. x(w) A TC[f](w,v) (5.6)

rF (v) & Jw . z(w) A TC[f] (v, w) (5.7)

(b) pre & total|xe, xe, ne] A acyclic[ne] A unsharedne] A (5.8)
uniquelxe] A func[ne]

(©) post & total [y,y,n] A acyclic|n] A unsharedn] A (5.9)

Vi, v9.ne(vy, vy) < n(ve, v1)

LI[x,y,n] def total[z,y,n] A Vv.(=rgn(v) V-orya(v)) A (5.10)
acyclicln] A unshared|[n]

(d) uniquelx] A uniquely] A funcln] A (5.112)

Vo, v2.(ren(v1) —  (ne(vi,vs) < n(vi,v2))) A (5.12)

Vi, va.(rym(v2) A —y(v1) —  (ne(vi,v2) < n(va,v1))) A (5.13)

Vi, ve,v.y(v1) —  (x(v2) < ne(vy,va)) (5.14)

T dEva (y ( ) <= x(v) A
© Yor,ve.n/(vy,ve)
((n(vy,v2) A—x(vy)) vV

Vo. (2 (v) < Fw.x(w) An(w,v)) A

(z(v1) Ay(va))) (5.15)

Figure 7. Example specification of reverse procedure: (ajtBands, (b) preconditiopre, (C)
postconditionpost, (d) loop invariantLI[z,y, n], (€) transformefl’ (effect of the loop
body).

n[4]

%
x'[1] @Yig@% x[3]

Figure 8: ProvingPnoExit 72,1, 7']-

GoOut. The premisePgqoyt[4, B, f] states that alf edges going out of color clas go to
B. When A and B are unary predicates that appear in the program, again &mige sometimes
holds as a direct result of the loop invariant. An interastipecial case is wheB is defined as
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Jw. A(w) A f(w,v). In this case the premise is immediate. Note that in this taseconclu-
sion is provable also frord;. However, from experience, the axiom is very useful for iayimg
performance (2 orders of magnitude when proving the acyelit of reverse’s postcondition).

Cgooutl4: B, f] states that all paths out of must pass througl. Thus, under the premise
Pgooutl4, B, f], if we know that there is a path frovd to somewhere outside ef, we know that
there is a path to there frora. In case all nodes i3 are reachable from all nodes i together
with the transitivity of f;. this means that the nodes reachable fiBrare exactly the nodes outside
of A that are reachable from.

For exampleCgo0outly’, v, '] allows us to prove that only the original list pointed to#ys
reachable fromy’ (in addition toy’ itself).

NewStart. The premisePewstart!C, 9, b States that aly edges between nodesdhare also
h edges. This can mean the iteration has not added edges arthrasnmoved edges according to the
selection ofh andg. In some cases, the premise holds as a direct result of thataefiof C' and
the loop invariant.

CNewstartlC, g, h] means that every path that is not ah path must pass outside 6f. To-
gether withCnoexit [C, 9], it proves there are no new paths witfdin

For example, in reverse tidewStart scheme can be used as follows. No outgoing edges were
added to nodes reachable frgmThere are na or n’ edges from nodes reachable frgno nodes
not reachable fromy. Thus, no paths were added between nodes reachableyfr@mce the list
pointed to byy is acyclic before the loop body, we can prove that it is acyatithe end of the loop
body.

We can see thatlewStart allows the theorem prover to reason about paths within a,catml
the other axioms allow the theorem prover to reason abobtsgatween colors. Together, given
enough colors, the theorem prover can often prove all ths that it needs about paths and thus
prove the formula of interest.

5.3. The Search Space of Possible Axiomslo answer the question of when we should use a
specific instance of a coloring axiom when attempting to erthe target formula, we first define
the search space in which we are looking for such instandesaXioms can be instantiated with the
colors defined by an arbitrary unary formula (one free védglahnd one or two binary predicates.
First, we limit ourselves to binary predicates for whi€k® was used in the target formula. Now,
since it is infeasible to consider all arbitrary unary fotas) we start limiting the set of colors we
consider.

The initial set of colors to consider are unary predicates tfccur in the formula we want to
prove. Interestingly enough, these colors are enough teepittat the postcondition of mark and
sweep is implied by the loop invariant, because the onlyraxie need iNoExit[marked, f].

An immediate extension that is very effective is forward dadkward reachability from unary
predicates, as defined in EQ. (5.6) and Eq.l(5.7), respéctivestantiating all possible axioms from
the unary predicates appearing in the formula and theimfioarvard reachability predicates, allows
us to prove reverse. For a list of the axioms needed to proegse, see Fi]9. Other examples are
presented in Sectidn 5.6. Finally, we consider Boolean d¢oations of the above colors. Though
not used in the examples shown in this paper, this is neededxample, in the presence of sharing
or when splicing two lists together.

All the colors above are based on the unary predicates tipgaapn the original formula. To
prove the reverse example, we needéds part of the initial colors. Tablg 5 gives a heuristic for
finding the initial colors we need in cases when they cannataokeiced from the formula, and how
it applies to reverse.
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NoEXxit[r, ,,n'| GoOut[z,z’,n] NewStart|r, ,, n,n'] NewStart[r, ,,,n’, n
NoEXxit[r, ,/,n] GoOut[z,y,n’] NewStart|r, ,/,n,n'] NewStart[r, ,/,n’, n]
NoEXit[ry ,, ] NewStart[r, ,,, n,n'] NewStartr, ,,n’,n]
NoEXit[r, ,,/, n] NewsStart[r, ,»,n,n'] NewStart[r, ,/,n’, n]

Figure 9: The instances of coloring axioms used in provinvgnee.

Group Criteria

Roots[f] All changes are reachable from one of the colors uging
StartChangelf,g] All edges for whichf andg differ start from a node in these colors
EndChange[f,g] |All edges for whichf andg differ end at a node in these colors

(@)

Group Colors
Roots|n| z(v), y(v)
Roots[n’| z'(v), y'(v)

StartChange[n,n'] | x(v)
EndChange[n,n'] | y(v), 2'(v)
(b)

Table 5: (a) Heuristic for choosing initial colors. (b) Réswf applying the heuristic on reverse.

An interesting observation is that the initial colors we ch@an, in many cases, be deduced
from the program code. As in the previous section, we haveod g@y for deducing paths between
colors and within colors in which the edges have not chan@dw program usually manipulates
fields using pointers, and can traverse an edge only in oretitin. Thus, the unary predicates that
represent the program variables (including the temporarialles) are in many cases what we need
as initial colors.

5.4. Exploring the Search Space.When trying to automate the process of choosing colors, the
problem is that the set of possible colors to choose from ihlyeexponential in the number of
initial colors; giving all the axioms directly to the theameprover is infeasible. In this section, we
define a heuristic algorithm for exploring a limited numbgaxioms in a directed way. Pseudocode
for this algorithm is shown in Fig._10. The operatois implemented as a call to a theorem prover.

Because the coloring axioms have the fodre=s P4 — C4, the theorem prover must prové,
or the axiom is of no use. Therefore, the pseudocode worldiitely, trying to proveP, from the
currenty A X, and if successful it addS 4 to X.

The algorithm tries colors in increasing levels of compiexiBC (i, C) gives all the Boolean
combinations of the predicates @ up to sizei. After each iteration we try to prove the goal
formula. Sometimes we need the conclusion of one axiom teeptioe premise of another. The
NoEXxit axioms are particularly useful for provinByewstart: Therefore, we need a way to order
instantiations so that axioms useful for proving the presisef other axioms are acquired first.
The ordering we chose is based on phases: First, try to tie@@xioms from the axiom scheme
GoOut. Second, try to instantiate axioms from the axiom schdlmExit. Finally, try to instantiate
axioms from the axiom schem¢ewStart. For NewStart|c, f, g] to be useful, we need to be able
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expl ore(Init, x) {
Let x=v—yp
¥ := {Trans[f],Order[f] | f € F}
S =S U{Nf],T=[f]|f € F}
C:={rcs(v)|ce Init, f € F}
C:=CUlInit
=1
forever {
¢’ .= BC(i,C)
/] Phase 1
foreach feF,ci#c.€C’
if SAYE PGOOUt[CS7Ce’ f]

Y =XU {OGOOUt[CS’Ce’f]}
/] Phase 2

foreach feFceC’
if YAYE PNOEXit [C, f]
YXi=XU {CNOEXit[C’ f]}
/1 Phase 3
foreach Cnogxitle, /1 €S, 9# f€F
if X AYE Pyewstartle: /9]
Y:=>XU {ONeWStal‘t[c’ fa g]}
if YAy
return SUCCESS
t:=1+1
}
}

Figure 10: An iterative algorithm for instantiating the @xi schemes. Each iteration consists of
three phases that augment the axiondset

to show that there are either no incomifigpaths or no outgoing-paths frome. Thus, we only try
to instantiate such an axiom when eiti&oexit[c, f] Or PnoExit[—¢, f] has been proven.

5.5. Implementation. The algorithm presented here was implemented usifgrd script and
the SPasstheorem prover [WGR96] and used successfully to verify ttele programs of Sec-
tion[5.1 and Section 5.6.

The method described above can be optimized. For instan€g, has already been added to
the axioms, we do not try to prou, again. These details are important in practice, but have bee
omitted for brevity.

When trying to prove the different premiseASsmay fail to terminate if the formula that it
is trying to prove is invalid. Thus, we limit the time thap&scan spend proving each formula. It
is possible that we will fail to acquire useful axioms thisywa

5.6. Further Examples. This section shows the code (Fig]11) and the complete spettiifin of
two additional examples: appending two linked lists, anel itiark phase of a simple mark and
sweep garbage collector.
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Figure 11: A simple Java-like implementation of (a) the airoation procedure for two singly-
linked lists; (b) the mark phase of a mark-and-sweep garbaliector.

5.6.1. Specification of appendThe specification of append (see Figl 11(a)) is given in[EXy.The
specification includes procedure’s pre-condition, a fiamnser of the procedure’s body effect, and
the procedure’s post-condition. The pre-condition (Eig(a)) states that the lists pointed to by
x andy are acyclic, unshared and disjoint. It also states there igatbage. The post condition
(Fig.[12(b)) states that after the procedure’s executiom)ist pointed to by’ is exactly the union
of the lists pointed to by andy. Also, the list is still acyclic and unshared. The transferns given
in Fig.[12(c). The result of the loop in the procedure’s boslgummarized as a formula defining
thelast variable. The only change tois the addition of an edge betwekrst andy

The coloring axioms needed to prove append are given in Big. 1

T. LEV-AMI, N. IMMERMAN, T. REPS, M. SAGIV, S. SRIVASTAVAAND G. YORSH

Node append(Node x, Node y) {

[0] Node | ast = x;
[1] if (last == null)

[ 2] return vy;

[3] while (last.next !'= null) {
[ 4] | ast = | ast. next;

[5] }

[6] |ast.next =vy;
[7] return x;

}

(@)

voi d mar k(NodeSet root, NodeSet nmarked) {
[ 0] Node x;
[1] if(!'root.isEmty()){
[ 2] NodeSet pendi ng = new NodeSet ();
[ 3] pendi ng. addAl | (root);
[ 4] mar ked. cl ear () ;
[ 5] whil e (!pending.isEmty()) {
[ 6] x = pendi ng. sel ect AndRenmove();
[ 7] mar ked. add( x) ;
[ 8] if (x.car !'= null &&
[ 9] I mar ked. cont ai ns(x. car))
[ 10] pendi ng. add( x. car);
[11] if (x.cdr !'= null &&
[12] I mar ked. cont ai ns(x. cdr))
[ 13] pendi ng. add( x. cdr);
¥
}
}

(b)
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pre & acyclic[n] A unshared[n] A
(a) uniquelz] A uniquely] A funcln] A
(Vo1 (V) V 21y (V) AVUTE (V) V 1y p(v)  (5.16)

post & acyclic|n’] A unshared[n'] A

uniquelx’] A uniquellast] A funcn’] A

(b) (Vv .1y (V) = (rzn(V) Virya(v))) A
Yor,vg .0 (v1,v2) < n(vy,v9) V (last(vi) A y(ve)) (5.17)
T is the conjunction of the following formulas:
Vo.r'(v) = x(v) (5.18)
(©) Volast(v) < rya(v) AVun(v, ) (5.19)
Ju.  last(v) (5.20)

Vor,ve.n' (v1,v9) = n(vi,ve) V (last(vy) Ay(vy))  (5.21)

Figure 12: Example specification of append procedure: (aggmditionpre, (b) postcondition
post, (¢) transformefl” (effect of the procedure body).

NoEXit[ry ,,, 7] GoOut[last,y,n']
NewStart[r, ,,n,n’'| NewStartr, ,,n’, n]
NewStart[r, ,,,n,n'] NewStart[r, ,,,n’,n]

Figure 13: The instances of coloring axioms used in provimgead.

5.6.2. Specification of the mark phasénother example proven is the mark phase of a mark-and-
sweep sequential garbage collector, shown in [Eig. 11(b)e &tample goes beyond the reverse
example in that it manipulates a general graph and not justkad list. Furthermore, as far as
we know, ESC/Java [FLL02] was not able prove its correctness because it could ot ghat
unreachable elements were not marked. Note that the axiededdo prove this property MoEXit,
which we have shown to be beyond the power of Nelson’s axiaeatain.

The loop invariant ofrar k is given in Fig[1#(a). The first disjunct of the formula hotdgy in
the first iteration, when only the nodes in root are pendirdyrasthing is marked. The second holds
from the second iteration on. Here, the nodes in root are edaok pending (they start as pending,
and the only way to stop being pending is to become markedhdde is both marked and pending
(because the procedure checks if the node is marked befdiegail to pending). All nodes that
are marked or pending are reachable from the root set (wengthronly the root nodes as pending,
and after that only nodes that are neighbors of pending noeesme pending; furthermore, only
pending nodes may become marked). There are no edges behaderd nodes and nodes that are
neither marked nor pending (because when we mark a node wallaitil neighbors to pending,
unless they are marked already). Our method succeededvimgritne loop invariant in Fid. 14(a)
using only the positive axioms.

The post-condition ofrar k is given in Fig.[ 1#(b). To prove it, we had to use the fact that
there are no edges between marked and unmarked nodesdieeatik no pending nodes at the end



24 T. LEV-AMI, N. IMMERMAN, T. REPS, M. SAGIV, S. SRIVASTAVAAND G. YORSH

((Vv.root(v) <« pending(v)) A (5.22)
(Mv. = marked(v))) (5.23)
V
(@) ((Vv.root(v) — marked(v)V pending(v)) A (5.24)
(Vv . —pending(v) VvV —marked(v)) A (5.25)
(Vv.pending(v) V marked(v) — Troot,f(v)) A (5.26)
(Y1, ve .marked(v1) A —marked(ve) A —pending(vs)
—  ~f(v1,12))) (5.27)
(b) Vo .marked(v) < Troot, (V) (5.28)

Figure 14: Example specification of mark procedure: (a) Dop invariant of mark, (b) The post-
condition of mark.

of the loop). Thus, we instantiate the axioMoEXxit[marked, f], and this is enough to prove the
post-condition.

6. APPLICABILITY OF THE COLORING AXIOMS

The coloring axioms are applicable to a wide variety of vesifion problems. To demonstrate
this, we describe the reasoning done by the TVLA system amdihoan be simulated using the
coloring axioms. TVLA is based on the theory of abstractriptetation [CC79] and specifically on
canonical abstraction [SRWO02]. TVLA has been successiidhd to analyze a large verity of small
but intricate heap manipulating programs (see €.qg., [LABOARSO7]), including the verification
of several algorithms (see e.d., [LARSWO00, LRS06]). Furiiee, the axioms described in this
paper have been used to integra®aSs as the reasoning engine behind the TVLA system. The
integrated system is used to perform backward analysis&mimanipulating programs as described
in [LASRO7].

In [SRWOQ2], logical structures are used to represent thereda stores of the program, and
FO(TC) is used to specify the concrete transformers. Tlogiges great flexibility in what program-
ming-language constructs the method can handle. For tip@geiof this section, we assume that the
vocabulary used is fixed and always contains equality. Euribre, we assume that the transformer
cannot change the universe of the concrete store. Allatatinl deallocation can be easily modeled
by using a designated unary predicate that holds for theatla heap cells. Similarly, we assume
that the universe of the concrete store is non-empty. Atisstares are represented as firfite
valued logical structures. We shall explain the meaning stfactureS by describing the formula
~(.S) to which it corresponds.

The individuals of a&3-valued logical structure are called abstract nodes. Weansauxiliary
unary predicate for each abstract node to capture the denuoeles that are mapped to it. For an

abstract structure with univerdewodes, ..., node,}, let {aq,...a,} be the corresponding unary
predicates.
For eachk-ary predicatep in the vocabulary, each-tuple (nodeq, ..., nodeg) in the abstract

structure (called an abstract tuple) can have one of thewolg truth valuego0, 1, %} as follows:
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e The truth valud means that the predicgtainiversally holds for all of the concrete tuples mapped
to this abstract tuple, i.e.,

Yo, ..., v .al(vl) VAN /\ak(vk) —>p(2}1,. .. ,'Uk) (6.1)

e The truth valued means that the predicateuniversally does not hold, for all of the concrete
tuples mapped to this abstract tuple, i.e.,

Yui,..., v . al(vl) Ao ANag(vg) — —p(or, ..., U) (6.2)

e The truth valueé— means that we have no information about this abstract tapkéthus the value
of the predicate is not restricted.

We use a designated set of unary predicates calbetraction predicateso control the dis-
tinctions among concrete nodes that can be made in an absEatent, which also places a bound
on the size of abstract elements. For each abstract node, A; denotes the set of abstraction
predicates for whiclhode; has the truth value, and A; denotes the set of abstraction predicates
for which node; has the truth valu@. Every pairnode;, node; of different abstract nodes either
A;NA; #DorA;NA; # (. Inaddition, we require that the abstract nodes in the stracepresent
all the concrete nodes, i.&/y. \/, a;(v). Thus, the abstract nodes form a bounded partition of the
concrete nodes. Finally, each node must represent at leastomcrete node, i.elp . a;(v).

The vocabulary may contain additional predicates catledved predicateswhich are ex-
plicitly defined from other predicates using a formula in FOJ. These derived predicates help
the precision of the analysis by recording correlations aagitured by the universal information.
Some of the unary derived predicates may also be abstrgutsalicates, and thus can induce finer-
granularity abstract nodes.

We say thatS; C S, if there is a total mappingn between the abstract nodes $f and
the abstract nodes ¢ such thatS, represents all of the concrete stores thiarepresents when
considering each abstract node S as a union of the abstract nodes$if mapped to it bym.
Formally,5(S1) A ¥, — 7(S2) where

U = /\ Yo a;(v) — a;(v)
node; € Sq
m(node;) = node;

The order is extended to sets using the induced Hoare orderXiS C XS, if for each element
S1 € XS; there exists an elemelst, € XS, such thatS; C S5).

In the original TVLA implementation [LASCO] the abstracatisformer is computed by a three
step process:

e First, a heuristic is used to perform case splits by refinirgpartition induced by the abstraction
predicates. This process is calleacus

e Second, the formulas comprising the concrete transformeansed to conservatively approximate
the effect of the concrete transformer on all the represememory states. Update formulas are
either handwritten or derived using finite differencing [RS].

¢ Third, a constraint solver calledoerceis used to improve the precision of the abstract element
by taking advantage of the inter-dependencies betweenrtdicptes dictated by the defining
formulas of the derived predicates and constraints of thgramming language semantics.

Most of the logical reasoning performed by TVLA is first ordenature. The transitive-closure
reasoning is comprised of three parts:
(1) The update formulas for derived predicates based ositianclosure use first-order formulas
to update the transitive-closure relation, as explaineseictior 6.11..
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(2) The Coerce procedure relates the definition of the edgtiae with its transitive closure by
performingKleene evaluatiorfsee below).

(3) Handwritten axioms are given to Coerce to allow add#ldransitive-closure reasoning. They
are usually written once and for all per data-structureyaeal by the system.

To compare the transitive-closure reasoning of TVLA anddbkring axioms presented in
this paper, we concentrate on programs that manipulatdydinged lists and trees, although the
basic argument holds for other data-structures analyzéd/hA as well. The handwritten axioms
used by TVLA for these cases are all covered by the axiomgibescin Sectiori 3]2. The issue
of update formulas is covered in detail in Secfiod 6.1. A itledadescription of Kleene evaluation
is beyond the scope of this paper and can be found in [SRWO0ORene evaluation of transitive
closure is equivalent to applying transitivity to infer theistence of paths, and finding a subset of
the partition that has no outgoing edges to infer the absehpaths. The latter is equivalent to
applying theNoEXxit axiom on the formula that defines the appropriate partition.

6.1. Precise Update. Maintenance of transitive closure through updates in tlteetying relation
is required for the verification of heap-manipulating peogs. In general, it is not possible to
update transitive closure for arbitrary change using @rder-logic formulas. Instead, we limit
the discussion to unit changes (i.e., the addition or reinmiva single edge). Work in descriptive
dynamic complexity[[P197, Hes03] and database theory [[p§&8s first-order update formulas to
unit changes in several classes of graphs, including fomatigraphs and acyclic graphs.

We demonstrate the applicability of the proposed axiommseseby showing how they can be
used to prove the precise update formula for unit changesvieral classes of graphs.

6.1.1. Edge addition.We refer to the edge relation before the updatezland the edge relation
after the update by'. Adding an edge from to ¢ can be formulated as

Yor,vg. € (v1,v2) < (e(vi,v2) V (s(v1) At(v2))).
The precise update formula for this change is
Jus, vy . 8(vs) A t(vy) AV, vg . e (v, v2) — (ee(v1,v2) V (ete(v1,vs) A ege(vy, v2)))

We have used Brssto prove the validity of this update formula using the colgioans de-
scribed in this paper. The basic colors needed-asei.e., forward reachability from the target of
the new edge, and, -, i.e., backward reachability from the source of the new eddes axioms
instantiated in the proof are given in Table 6(a).

6.1.2. Edge removal.There is no known precise formula for updating the transitlosure of a
general graph. For general acyclic graphs, Dong and_Su [P§98& a precise update formula
that is beyond the scope of this work. For functional graptesse([Hes03] gives precise update
formulas based on either an auxiliary binary relation, ousiyng a ternary relation to describe paths
in the graph that pass through each node. Without thesd@ulliit is not possible to give precise
update formulas in the presence of cyclicity.

When limiting the discussion to acyclic graphs in which bedw any two nodes there is at most
one path (such as acyclic functional graphs and trees) dssiple to give a simple precise update
formula. As before, let be the source of the edge to be removed ahd the target of the edge.
The formula for removing an edge is

Yor, vy . € (v1,v2) < (e(vi,v2) A=(s(v1) At(ve))).
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mng:zx&:ue if ]<_ e, el NewStart[true, ¢, e NewStart[true, ¢/, €]
NewStart[—r,, /\7‘87i7e /el NewStartlr., e, ] NewStart[r; ., e, ¢
NeWStart[ﬁrte y e] € NewStart]r, =, e, €] NewsStart[r, <, e, ]
NewStart/-r P ¥ NewStart{-ry ., e, '] NewStart[-ry ., e, €]
NoExit[-r, <. ¢/] NewStar—r, 7, e, €] NewStart[-r, <, e, €

e NOEXIt[ Tser € ] NOEX|t[_|7“t87€]
NOEXIt[T‘t,e, d )

@) (b) )

Table 6: Axioms instantiated for the proof of the preciseatpdormula of: (a) adding an edge to
a general graph, (b) removing an edge from an acyclic funatigraph, and (c) removing
an edge from a tree.

The precise update formula for this change is

Jug, vy - 8(vs) A t(vy) AV, ve . ef.(v1,v2) — (ewe(v1,v2) A (e (v, vs) A ere(ve, v2))).
We have used Bassto prove the validity of this update formula for the case ofddic func-

tional graphs and the case of trees. As in edge additignandr, < are used as the basic colors.
The axioms instantiated in the proof are given in Table 6(io) Bable_6(c).

7. RELATED WORK

Shape Analysis. This work was motivated by our experience with TVLA [LASORW0Z],
which is a generic system for abstract interpretation [(JCTHe TVLA system is more automatic
than the methods described in this paper since it does nobreluser-supplied loop invariants.
However, the techniques presented in the present papeotaeatiplly more precise due to the use
of full first-order reasoning. It can be shown that N@Exit scheme allows us to infer reachability at
least as precisely as evaluation rules¥afalued logic with Kleene semantics. In the future, we hope
to develop an efficient non-interactive theorem prover #mbys the benefits of both approaches.
An interesting observation is that the colors needed in @amples to prove the formula are the
same unary predicates used by TVLA to define its abstracfidnms similarity may, in the future,
help us find better ways to automatically instantiate thelreqd axioms. In particular, inductive
logic programming has recently been used to learn formolasée in TVLA abstractions [LRS05],
which holds out the possibility of applying similar methddgurther automate the approach of the
present paper.

Decidable Logics.Decidable logics can be employed to define properties oétirdata struc-
tures: Weak monadic second-order logic has been uséd in (EVM8S01] to define properties of
heap-allocated data structures, and to conduct Hoare-atyification using programmer-supplied
loop invariants in the PALE systerm [MS01]. A decidable logadled L,. (for “logic of reachability
expressions”) was defined in [BRS99].. is rich enough to express the shape descriptors studied
in [SRW98] and the path matrices introducedin [HEn90]. Mreent decidable logics include
Logic of Reachable Patterris [YR86] and a decision procedure for linked data structurescduat
handle singly linked lists [BR06].

The present paper does not develop decision proceduregstead suggests methods that can
be used in conjunction with existing theorem provers. This,techniques are incomplete and
the theorem provers need not terminate. However, our ligXiperience is that the extra flexibility
gained by the use of first-order logic with transitive clasigrpromising. For example, we can prove
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the correctness of imperative destructive list-reverpat#ied in a natural way and the correctness
of mark and sweep garbage collectors, which are beyond tpesaf Mona and_,..

Indeed, in[IRR"04b], we have tried to simulate existing data structuresgudecidable logics
and realized that this can be tricky because the programragineed to prove a specific simulation
invariant for a given program. Giving an inaccurate sinmalatnvariant causes the simulation to be
unsound. One of the advantages of the technique descrilibd present paper is that soundness is
guaranteed no matter which axioms are instantiated. Merethe simulation requirements are not
necessarily expressible in the decidable logic.

Other First-Order Axiomatizations of Linked Data Structur es. The closest approach to
ours that we are aware of was taken by Nelson as we describeciio®4. This also has some
follow-up work by Leino and Joshi [Lei98]. Our impressiomtiin their write-up is that Leino and
Joshi’s work can be pushed forward by using our coloring @sio

A more recent work by Lahiri and Qadeér [LQO6] uses first-om@omatization. This work
can be seen as a specialization of ours to the case of (cgutiigly linked lists.

Dynamic Maintenance of Transitive Closure.Another orthogonal but promising approach to
transitive closure is to maintain reachability relationsrementally as we make unit changes in the
data structure. It is known that in many cases, reachalsiitybe maintained by first-order formulas
[DS95,PI97] and even sometimes by quantifier-free formjid@s03]. Furthermore, in these cases,
it is often possible to automatically derive the first-ordedate formulas using finite differencing
[RSLO3].

8. CONCLUSION

This paper reports on our proposal of a new methodology forgustf-the-shelf first-order
theorem provers to reason about reachability in progranesh&Ve explored many of the theoretical
issues as well as presenting examples that, while stilirpirgry, suggest that this is indeed a viable
approach.

As mentioned earlier, proving the absence of paths is tHeulif part of proving formulas
with TC. The promise of our approach is that it is able to handle soomdlas effectively and
reasonably automatically, as shown by the fact that it caoessfully handle the programs described
in Sectior b and the success of the TVLA system, which usesasitransitive-closure reasoning.
Of course, much further work is needed including the follogvi

e Exploring other heuristics for identifying color classes.

e Exploring variations of the algorithm given in F[g.]10 fostantiating coloring axioms.

e Exploring the use of additional axiom schemes, such as tvileeoschemes from [Nel83], which
are likely to be useful when dealing with predicates thatpaial functions. Such predicates
arise in programs that manipulate singly-linked or doubiited lists—or, more generally, data
structures that are acyclic in one or more “dimensions” [FE2N(i.e., in which the iterated
application of a given field selector can never return to aipusly visited node).

¢ Additional work should be done on the theoretical powefof IND and related axiomatizations
of transitive closure. We conjecture, for example, that- IND is TC-complete for trees.

Acknowledgements. Thanks to Aharon Abadi and Roman Manevich for interestinggsstions.
Thanks to Viktor Kuncak for useful conversations includinig observation and proof of Proposi-
tion[4.4.
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