
Logical Methods in Computer Science

Vol. 8 (1:21) 2012, pp. 1–26

www.lmcs-online.org

Submitted Nov. 9, 2010

Published Mar. 8, 2012

MODELING ADVERSARIES IN A LOGIC FOR SECURITY PROTOCOL

ANALYSIS

JOSEPH Y. HALPERN a AND RICCARDO PUCELLA b

a Cornell University, Ithaca, NY 14853
e-mail address: halpern@cs.cornell.edu

b Northeastern University, Boston, MA 02115
e-mail address: riccardo@ccs.neu.edu

Abstract. Logics for security protocol analysis require the formalization of an adversary
model that specifies the capabilities of adversaries. A common model is the Dolev-Yao
model, which considers only adversaries that can compose and replay messages, and deci-
pher them with known keys. The Dolev-Yao model is a useful abstraction, but it suffers
from some drawbacks: it cannot handle the adversary knowing protocol-specific informa-
tion, and it cannot handle probabilistic notions, such as the adversary attempting to guess
the keys. We show how we can analyze security protocols under different adversary models
by using a logic with a notion of algorithmic knowledge. Roughly speaking, adversaries are
assumed to use algorithms to compute their knowledge; adversary capabilities are captured
by suitable restrictions on the algorithms used. We show how we can model the standard
Dolev-Yao adversary in this setting, and how we can capture more general capabilities
including protocol-specific knowledge and guesses.

1. Introduction

Many formal methods for the analysis of security protocols rely on specialized logics to
rigorously prove properties of the protocols they study.1 Those logics provide constructs
for expressing the basic notions involved in security protocols, such as secrecy, recency, and
message composition, as well as providing means (either implicitly or explicitly) for de-
scribing the evolution of the knowledge or belief of the principals as the protocol progresses.
Every such logic aims at proving security in the presence of hostile adversaries. To analyze
the effect of adversaries, a security logic specifies (again, either implicitly or explicitly) an
adversary model, that is, a description of the capabilities of adversaries. Almost all exist-
ing logics are based on a Dolev-Yao adversary model (Dolev and Yao, 1983). Succinctly, a

1998 ACM Subject Classification: D.4.6, F.4.1.
Key words and phrases: Protocol analysis, security, attacker models, Dolev-Yao model, epistemic logic,

algorithmic knowledge.
This work was done while the second author was at Cornell University.

1Here, we take a very general view of logic, to encompass formal methods where the specification lan-
guage is implicit, or where the properties to be checked are fixed, such as Casper (Lowe, 1998), Cryptyc
(Gordon and Jeffrey, 2003), or the NRL Protocol Analyzer (Meadows, 1996).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:21) 2012

c© J. Y. Halpern and R. Pucella
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. Y. HALPERN AND R. PUCELLA

Dolev-Yao adversary can compose messages, replay them, or decipher them if she knows
the right keys, but cannot otherwise “crack” encrypted messages.

The Dolev-Yao adversary is a useful abstraction, in that it allows reasoning about
protocols without worrying about the actual encryption scheme being used. It also has the
advantage of being restricted enough that interesting theorems can be proved with respect
to security. However, in many ways, the Dolev-Yao model is too restrictive. For example, it
does not consider the information an adversary may infer from properties of messages and
knowledge about the protocol that is being used. To give an extreme example, consider
what we will call the Duck-Duck-Goose protocol: an agent has an n-bit key and, according
to her protocol, sends the bits that make up its key one by one. Of course, after intercepting
these messages, an adversary will know the key. However, there is no way for security logics
based on a Dolev-Yao adversary to argue that, at this point, the adversary knows the key.
Another limitation of the Dolev-Yao adversary is that it does not easily capture probabilistic
arguments. After all, the adversary can always be lucky and just guess the appropriate key
to use, irrespective of the strength of the encryption scheme.

The importance of being able to reason about adversaries with capabilities beyond those
of a Dolev-Yao adversary is made clear when we look at the subtle interactions between
the cryptographic protocol and the encryption scheme. It is known that various protocols
that are secure with respect to a Dolev-Yao adversary can be broken when implemented
using encryption schemes with specific properties (Moore, 1988), such as encryption sys-
tems with encryption cycles (Abadi and Rogaway, 2002) and ones that use exclusive-or
(Ryan and Schneider, 1998). A more refined logic for reasoning about security protocols
will have to be able to handle adversaries more general than the Dolev-Yao adversary.

Because they effectively build in the adversary model, many formal methods for an-
alyzing protocols are not able to reason directly about the effect of running a protocol
against adversaries with properties other than those built in. Some formal methods al-
low much flexibility in their description of adversaries—for example, Casper (Lowe, 1998),
AVISPA (Viganò, 2005), ProVerif (Abadi and Blanchet, 2005)—but they are still bound
to the restrictions of the models underlying their respective analysis methods, generally
expressed in terms of an equational theory. The problem is even worse when it is not clear
exactly what assumptions are implicitly being made about the adversary. One obvious as-
sumption that needs to be made clear is whether the adversary is an insider in the system
or an outsider. Lowe’s (1995) well-known man-in-the-middle attack against the Needham-
Schroeder (1978) protocol highlights this issue. Until then, the Needham-Schroeder protocol
had been analyzed under the assumption that the adversary had complete control of the
network, and could inject intercept and inject arbitrary messages (up to the Dolev-Yao
capabilities) into the protocol runs. However, the adversary was always assumed to be an
outsider, not being able to directly interact with the protocol principals as himself. Lowe
showed that if the adversary is allowed to be an insider of the system, that is, appear to the
other principals as a bona fide protocol participant, then the Needham-Schroeder protocol
does not guarantee the authentication properties it is meant to guarantee.

In this paper, we introduce a logic for reasoning about security protocols that allows us
to model adversaries explicitly and naturally. The idea is to model the adversary in terms
of what the adversary knows. This approach has some significant advantages. Logics of
knowledge (Fagin et al., 1995) have been shown to provide powerful methods for reasoning
about trace-based executions of protocols. They can be given semantics that is tied directly
to protocol execution, thus avoiding problems of having to analyze an idealized form of the

MODELING ADVERSARIES 3

protocol, as is required, for example, in BAN logic (Burrows et al., 1990). A straightfor-
ward application of logics of knowledge allows us to conclude that in the Duck-Duck-Goose
protocol, the adversary knows the key. Logics of knowledge can also be extended with
probabilities (Fagin and Halpern, 1994; Halpern and Tuttle, 1993) so as to be able to deal
with probabilistic phenomena. Unfortunately, traditional logics of knowledge suffer from a
well-known problem known as the logical omniscience problem: an agent knows all tautolo-
gies and all the logical consequences of her knowledge. The reasoning that allows an agent
to infer properties of the protocol also allows an attacker to deduce properties that cannot
be computed by realistic attackers in any reasonable amount of time.

To avoid the logical omniscience problem, we use the notion of algorithmic knowledge
(Fagin et al., 1995, Chapter 10 and 11). Roughly speaking, we assume that agents (including
adversaries) have “knowledge algorithms” that they use to compute what they know. The
capabilities of the adversary are captured by its algorithm. Hence, Dolev-Yao capabilities
can be provided by using a knowledge algorithm that can only compose messages or attempt
to decipher using known keys. By changing the algorithm, we can extend the capabilities
of the adversary so that it can attempt to crack the encryption scheme by factoring (in the
case of RSA), using differential cryptanalysis (in the case of DES), or just by guessing keys,
along the lines of a model due to Lowe (2002). Moreover, our framework can also handle the
case of a principal sending the bits of its key, by providing the adversary’s algorithm with
a way to check whether this is indeed what is happening. By explicitly using algorithms,
we can therefore analyze the effect of bounding the resources of the adversary, and thus
make progress toward bridging the gap between the analysis of cryptographic protocols and
more computational accounts of cryptography. (See (Abadi and Rogaway, 2002) and the
references therein for a discussion on work bridging this gap.) Note that we need both
traditional knowledge and algorithmic knowledge in our analysis. Traditional knowledge
is used to model a principal’s beliefs about what can happen in the protocol; algorithmic
knowledge is used to model the adversary’s computational limitations (for example, the fact
that it cannot factor).

The focus of this work is on developing a general and expressive framework for modeling
and reasoning about security protocols, in which a wide class of adversaries can be repre-
sented naturally. In particular, we hope that the logic can provide a foundation for com-
parison and evaluation of formal methods that use different representation of adversaries.
Therefore, we emphasize the expressiveness and representability aspects of the framework,
rather than studying the kind of security properties that are useful in such a setting or
developing techniques for proving that properties hold in the framework. These are all rele-
vant questions that need to be pursued once the framework proves useful as a specification
language.

The rest of the paper is organized as follows. In Section 2, we define our model for pro-
tocol analysis based on the well-understood multiagent system framework, and in Section 3
we present a logic for reasoning about implicit and explicit knowledge. In Section 4, we show
how to model different adversaries from the literature. In Section 4.1, these adversaries are
passive, in that they eavesdrop on the communication but do not attempt to interact with
the principals of the system; in Section 4.2, we show how the framework can accommo-
date adversaries that actively interact with the principals by intercepting, forwarding, and
replacing messages. We discuss related work in Section 5.

4 J. Y. HALPERN AND R. PUCELLA

2. Modeling Security Protocols

In this section, we review the multiagent system framework of Fagin et al. (1995, Chapters
4 and 5), and show it can be tailored to represent security protocols.

2.1. Multiagent Systems. The multiagent systems framework provides a model for knowl-
edge that has the advantage of also providing a discipline for modeling executions of pro-
tocols. A multiagent system consists of n agents, each of which is in some local state at a
given point in time. We assume that an agent’s local state encapsulates all the information
to which the agent has access. In the security setting, the local state of an agent might
include some initial information regarding keys, the messages she has sent and received, and
perhaps the reading of a clock. In a poker game, a player’s local state might consist of the
cards he currently holds, the bets made by other players, any other cards he has seen, and
any information he may have about the strategies of the other players (for example, Bob
may know that Alice likes to bluff, while Charlie tends to bet conservatively). The basic
framework makes no assumptions about the precise nature of the local state.

We can then view the whole system as being in some global state, which is a tuple
consisting of each agent’s local state, together with the state of the environment, where the
environment consists of everything that is relevant to the system that is not contained in
the state of the agents. Thus, a global state has the form (se, s1, . . . , sn), where se is the
state of the environment and si is agent i’s state, for i = 1, . . . , n. The actual form of the
agents’ local states and the environment’s state depends on the application.

A system is not a static entity. To capture its dynamic aspects, we define a run to be
a function from time to global states. Intuitively, a run is a complete description of what
happens over time in one possible execution of the system. A point is a pair (r,m) consisting
of a run r and a time m. For simplicity, we take time to range over the natural numbers
in the remainder of this discussion. At a point (r,m), the system is in some global state
r(m). If r(m) = (se, s1, . . . , sn), then we take ri(m) to be si, agent i’s local state at the
point (r,m). We formally define a system R to consist of a set of runs (or executions). It is
relatively straightforward to model security protocols as systems. Note that the adversary
in a security protocol can be modeled as just another agent. The adversary’s information
at a point in a run can be modeled by his local state.

2.2. Specializing to Security. The multiagent systems framework is quite general. We
have a particular application in mind, namely reasoning about security protocols, espe-
cially authentication protocols. We now specialize the framework in a way appropriate for
reasoning about security protocols.

Since the vast majority of security protocols studied in the literature are message-
based, a natural class of multiagent systems to consider is that of message passing systems
(Fagin et al., 1995). Let M be a fixed set of messages. A history for agent i (over M)
is a sequence of elements of the form send(j,m) and recv(m), where m ∈ M. We think of
send(j,m) as representing the event “message m is sent to j” and recv(m) as representing
the event “message m is received.”. (We also allow events corresponding to internal actions;
for the purpose of this paper, the internal actions we care about concern adversaries eaves-
dropping or intercepting messages—we return to those in Section 4.) Intuitively, i’s history
at (r,m) consists of i’s initial state, which we take to be the empty sequence, followed by
the sequence describing i’s actions up to time m. If i performs no actions in round m, then

MODELING ADVERSARIES 5

her history at (r,m) is the same as her history at (r,m − 1). In such a message-passing
system, we speak of send(j,m) and recv(m) as events. For an agent i, let ri(m) be agent i’s
history in (r,m). We say that an event e occurs in i’s history in round m+ 1 of run r if e
is in (the sequence) ri(m+ 1) but not in ri(m).

In a message-passing system, the agent’s local state at any point is her history. Of
course, if h is the history of agent i at the point (r,m), then we want it to be the case
that h describes what happened in r up to time m from i’s point of view. To do this, we
need to impose some consistency conditions on global states. In particular, we want to
ensure that message histories do not shrink over time, and that every message received in
round m corresponds to a message that was sent at some earlier round.

Given a set M of messages, we define a message-passing system (over M) to be a
system satisfying the following constraints at all points (r,m) for each agent i:

MP1. ri(m) is a history overM.
MP2. For every event recv(m) in ri(m) there exists a corresponding event send(i,m) in

rj(m).
MP3. ri(0) is the empty sequence and ri(m+ 1) is either identical to ri(m) or the result

of appending one event to ri(m).

MP1 says that an agent’s local state is her history, MP2 guarantees that every message
received at round m corresponds to one that was sent earlier, and MP3 guarantees that
histories do not shrink. We note that there is no guarantee that messages are not delivered
twice, or that they are delivered at all.

A security system is a message passing system where the message space has a structure
suitable for the interpretation of security protocols. Therefore, a security system assumes a
set P of plaintexts, as well as a set K of keys. An encryption scheme C over P and K is the
closureM of P and K under a key inverse operation inv : K → K, a concatenation operation
conc :M×M →M, decomposition operators first :M→M and second :M→M, an
encryption operation encr :M×K →M, and a decryption operation decr :M×K →M,
subject to the constraints:

first(conc(m1,m2)) = m1

second(conc(m1,m2)) = m2

decr (encr(m, k), inv (k)) = m.

In other words, decrypting an encrypted message with the inverse of the key used to encrypt
the message yields the original message. (For simplicity, we restrict ourselves to nonprob-
abilistic encryption schemes in this paper.) We often write k−1 for inv(k), m1 · m2 for
conc(m1,m2), and {|m|}k for encr(m, k). There is no difficulty in adding more operations
to the encryption schemes, for instance, to model hashes, signatures, the ability to take
the exclusive-or of two terms, or the ability to compose two keys together to create a new
key. We make no assumption in the general case as to the properties of encryption. Thus,
for instance, most concrete encryption schemes allow collisions, that is, {|m1|}k1 = {|m2|}k2
without m1 = m2 and k1 = k2. (In contrast, most security protocol analyses assume that
there are no properties of encryption schemes beyond those specified above; this is part of
the Dolev-Yao adversary model, which we examine in more detail in Section 4.1.1.)

Define 4 onM as the smallest relation satisfying the following constraints:

(1) m 4 m

(2) if m 4 m1, then m 4 m1 ·m2

6 J. Y. HALPERN AND R. PUCELLA

(3) if m 4 m2, then m 4 m1 ·m2

(4) if m 4 m1, then m 4 {|m1|}k.

Intuitively, m1 4 m2 if m1 could be used in the construction of m2, or, equivalently, if m1

can be considered part of message m2, under any of the possible ways of decomposing m2.
For example, if m = {|m1|}k = {|m2|}k, then both m1 4 m and m2 4 m. If we want to
establish that m1 4 m2 for a given m1 and m2, then we have to recursively look at all the
possible ways in which m2 can constructed to see if m1 can possibly be used to construct m2.
Clearly, if encryption does not result in collisions, there is a single way in which m2 can be
taken apart. If the cryptosystem under consideration supports others operations (e.g., an
exclusive-or operation, or operations that to combine keys to create new keys), additional
constraints must be added to the 4 relation to account for those operations.

To analyze a particular security protocol, we first derive the multiagent system corre-
sponding to the protocol, using the approach of Fagin et al. (1995, Chapter 5). Intuitively,
this multiagent system contains a run for every possible execution of the protocol, for in-
stance, for every possible key used by the principals, subject to the restrictions above (such
as MP1–MP3).

Formally, a protocol for agent i is a function from her local state to the set of actions
that she can perform at that state. For ease of exposition, the only actions we consider
here are those of sending messages (although we could easily incorporate other actions,
such as choosing keys, or tossing coins to randomize protocols). A joint protocol P =
(Pe, P1, . . . , Pn), consisting of a protocol for each of the agents (including a protocol for the
environment), associates with each global state a set of possible joint actions (i.e., tuples
of actions) in the obvious way. Joint actions transform global states. To capture their
effect, we associate with every joint action a a function τ(a) from global states to global
states. This function captures, for instance, the fact that a message sent by an agent will
be received by another agent, and so on. Given a context consisting of a set of initial global
states, an interpretation τ for the joint actions, and a protocol Pe for the environment,
we can generate a system corresponding to the joint protocol P in a straightforward way.
Intuitively, the system consists of all the runs r that could have been generated by the joint
protocol P , that is, for all m, r(m+ 1) is the result of applying τ(a) to r(m), where a is a
joint action that could have been performed according to the joint protocol P to r(m).2

This way of generating systems from protocols is quite general. For instance, multiple
protocol sessions can be modeled by using an action specifically for starting a new session
of the protocol, in combination with protocol action being tagged by the session to which
the action applies. More generally, most existing approaches to describing systems can be
modeled using these kinds of protocols—it is a simple matter, for example, to take a process
calculus expression and derive a protocol in our framework that generates the same system
as the original process calculus expression. (Of course, process calculi come equipped with
reasoning techniques that cannot be easily captured in our framework, but we are concerned
with the ability to represent systems here.)

2 It is also possible to represent a protocol in other ways, such as in terms of strand spaces (Thayer et al.,
1999). Whichever representation is used, it should be possible to get a system corresponding to the protocol.
For example, Halpern and Pucella (2003) show how to get a system from a strand space representation. For
the purposes of this paper, the precise mechanism used to derive the multiagent system is not central,
although it is an important issue for the development of formal tools for analyzing protocols.

MODELING ADVERSARIES 7

3. A Logic for Security Properties

The aim is to be able to reason about properties of security systems as defined in the
last section, including properties involving the knowledge of agents in the system. To
formalize this type of reasoning, we first need a language. The logic of algorithmic knowledge
(Fagin et al., 1995, Chapters 10 and 11) provides such a framework. It extends the classical
logic of knowledge by adding algorithmic knowledge operators.

The syntax of the logic LKX

n for algorithmic knowledge is straightforward. Starting with
a set Φ0 of primitive propositions, which we can think of as describing basic facts about the
system, such as “the key is k” or “agent A sent the message m to B”, formulas of LKX

n (Φ0)
are formed by closing off under negation, conjunction, and the modal operators K1, . . ., Kn

and X1, . . . ,Xn.
The formula Kiϕ is read as “agent i (implicitly) knows the fact ϕ”, while Xiϕ is read

as “agent i explicitly knows fact ϕ”. In fact, we will read Xiϕ as “agent i can compute fact
ϕ”. This reading will be made precise when we discuss the semantics of the logic. As usual,
we take ϕ ∨ ψ to be an abbreviation for ¬(¬ϕ ∧ ¬ψ) and ϕ⇒ ψ to be an abbreviation for
¬ϕ ∨ ψ.

The standard models for this logic are based on the idea of possible worlds and Kripke
structures (Kripke, 1963). Formally, a Kripke structure M is a tuple (S, π,K1, . . . ,Kn),
where S is a set of states or possible worlds, π is an interpretation which associates with
each state in S a truth assignment to the primitive propositions (i.e., π(s)(p) ∈ {true, false}
for each state s ∈ S and each primitive proposition p), and Ki is an equivalence relation
on S (recall that an equivalence relation is a binary relation which is reflexive, symmetric,
and transitive). Ki is agent i’s possibility relation. Intuitively, (s, t) ∈ Ki if agent i cannot
distinguish state s from state t (so that if s is the actual state of the world, agent i would
consider t a possible state of the world).

A system can be viewed as a Kripke structure, once we add a function π telling us
how to assign truth values to the primitive propositions. An interpreted system I consists
of a pair (R, π), where R is a system and π is an interpretation for the propositions in Φ
that assigns truth values to the primitive propositions at the global states. Thus, for every
p ∈ Φ and global state s that arises in R, we have π(s)(p) ∈ {true, false}. Of course, π
also induces an interpretation over the points of R; simply take π(r,m) to be π(r(m)). We
refer to the points of the system R as points of the interpreted system I.

The interpreted system I = (R, π) can be made into a Kripke structure by taking the
possible worlds to be the points of R, and by defining Ki so that ((r,m), (r′,m′)) ∈ Ki if
ri(m) = r′i(m

′). Clearly Ki is an equivalence relation on points. Intuitively, agent i considers
a point (r′,m′) possible at a point (r,m) if i has the same local state at both points. Thus,
the agents’ knowledge is completely determined by their local states.

To account for Xi, we provide each agent with a knowledge algorithm that he uses
to compute his knowledge. We will refer to Xiϕ as algorithmic knowledge. An interpreted
algorithmic knowledge system has the form (R, π, A1, . . . , An), where (R, π) is an interpreted
system and Ai is the knowledge algorithm of agent i. In local state ℓ, the agent computes
whether he knows ϕ by applying the knowledge algorithm A to input (ϕ, ℓ). The output
is either “Yes”, in which case the agent knows ϕ to be true, “No”, in which case the
agent does not know ϕ to be true, or “?”, which intuitively says that the algorithm has
insufficient resources to compute the answer. It is the last clause that allows us to deal with
resource-bounded reasoners.

8 J. Y. HALPERN AND R. PUCELLA

We define what it means for a formula ϕ to be true (or satisfied) at a point (r,m) in
an interpreted system I, written (I, r,m) |= ϕ, inductively as follows:

(I, r,m) |= p if π(r,m)(p) = true

(I, r,m) |= ¬ϕ if (I, r,m) 6|= ϕ
(I, r,m) |= ϕ ∧ ψ if (I, r,m) |= ϕ and (I, r,m) |= ψ
(I, r,m) |= Kiϕ if (I, r′,m′) |= ϕ for all (r′,m′) such that ri(m) = r′i(m

′)
(I, r,m) |= Xiϕ if Ai(ϕ, ri(m)) = “Yes”.

The first clause shows how we use the π to define the semantics of the primitive propositions.
The next two clauses, which define the semantics of ¬ and ∧, are the standard clauses from
propositional logic. The fourth clause is designed to capture the intuition that agent i knows
ϕ exactly if ϕ is true in all the worlds that i thinks are possible. The last clause captures
the fact that explicit knowledge is determined using the knowledge algorithm of the agent.

As we pointed out, we think of Ki as representing implicit knowledge, facts that the
agent implicitly knows, given its information, while Xi represents explicit knowledge, facts
whose truth the agent can compute explicitly. As is well known, implicit knowledge suffers
from the logical omniscience problem; agents implicitly know all valid formulas and agents
implicitly know all the logical consequences of their knowledge (that is, (Kϕ∧Ki(ϕ⇒ ψ))⇒
Kiψ is valid). Explicit knowledge does not have that problem. Note that, as defined, there
is no necessary connection between Xiϕ and Kiϕ. An algorithm could very well claim that
agent i knows ϕ (i.e., output “Yes”) whenever it chooses to, including at points where Kiϕ
does not hold. Although algorithms that make mistakes are common, we are often interested
in knowledge algorithms that are correct. A knowledge algorithm is sound for agent i in
the system I if for all points (r,m) of I and formulas ϕ, A(ϕ, ri(m)) = “Yes” implies
(I, r,m) |= Kiϕ, and A(ϕ, ri(m)) = “No” implies (I, r,m) |= ¬Kiϕ. Thus, a knowledge
algorithm is sound if its answers are always correct.3

To reason about security protocols, we use the following set ΦS

0 of primitive propositions:

• sendi(j,m): agent i sent message m to agent j;
• recvi(m): agent i received message m;
• hasi(m): agent i has message m.

Intuitively, sendi(j,m) is true when agent i has sent message m at some point, intended for
agent j, and recvi(m) is true when agent i has received message m at some point. Agent i
has a submessage m1 at a point (r,m), written hasi(m1), if there exists a message m2 ∈ M
such that recv(m2) is in ri(m), the local state of agent i, and m1 4 m2. Note that the
hasi predicate is not constrained by encryption. If hasi({|m|}k) holds, then so does hasi(m),
whether or not agent i knows the decryption key k−1. Intuitively, the hasi predicate is true
of messages that the agent considers (possible) part of the messages she has received, as
captured by the 4 relation.

An interpreted algorithmic knowledge security system is simply an interpreted algorith-
mic knowledge system I = (R, π, A1, . . . , An), where R is a security system, the set Φ0 of
primitive propositions includes ΦS

0, and π is an acceptable interpretation, that is, it gives
the following fixed interpretation to the primitive propositions in ΦS

0:

• π(r,m)(sendi(j,m)) = true if and only if send(j,m) ∈ ri(m)
• π(r,m)(recvi(m)) = true if and only if recv(m) ∈ ri(m)

3Note that for the purpose of this paper, there is no need for us to distinguish between “No” and “?”—
none of our algorithms ever return “No’. We do keep the distinction, however, as well as the definition of
soundness in cases the algorithm returns “No”, for consistency with existing uses of algorithmic knowledge.

MODELING ADVERSARIES 9

• π(r,m)(hasi(m)) = true if and only if there exists m′ such that m 4 m′ and recv(m′) ∈
ri(m).

This language can easily express the type of confidentiality (or secrecy) properties that
we focus on here. Intuitively, we want to guarantee that throughout a protocol interaction,
the adversary does not know a particular message. Confidentiality properties are stated
naturally in terms of knowledge, for example, “agent 1 knows that the key k is a key known
only to agent 2 and herself”. Confidentiality properties are well studied, and central to most
of the approaches to reasoning about security protocols.4 Higher-level security properties,
such as authentication properties, can often be established via confidentiality properties.
See (Syverson and Cervesato, 2001) for more details.

To illustrate some of the issues involved, consider an authentication protocol such as
the Needham-Schroeder-Lowe protocol (Lowe, 1995). A simplified version of the protocol
is characterized by the following message exchange between two agents A and B:

A→ B : {|nA, A|}kB
B → A : {|nA, nB , B|}kA
A→ B : {|nB |}kB .

An authentication property of this protocol can be expressed informally as follows: under
suitable assumptions on the keys known to the adversary and the fact that B is running his
part of the protocol, A knows that nA and nB are kept confidential between her and B.5

From this, she knows that she is interacting with B, because she has received a message
containing nA, which only B could have produced. Similarly, A also knows that when B
receives her message, B will know that he is interacting with A, because only A knows the
nonce nB which is part of the last message. Similar reasoning can be applied to B. This
argument relies on the confidentiality of the nonces na and nb. It is tempting to capture
this fact by stating that no agent i other than A and B knows hasi(nA) or hasi(nB). (We
must write this as Kihasi(nA) or Kihasi(nB) because we cannot express directly the idea
of knowing a message—an agent can only know if they have received a message, or if a
message is a possible component of a message they have received.)

Unfortunately, because the implicit knowledge operator suffers from logical omniscience,
such a statement does not capture the intent of confidentiality. At every point where an ad-
versary a intercepts a message {|nA, nB, B|}kA ,Kahasa(nA) is true (since nA 4 {|nA, nB , B|}kA),
and hence the adversary knows that he has seen the nonce nA, irrespective of whether he
knows the decryption key corresponding to kA). This shows that the standard interpreta-
tion of knowledge expressed via the implicit knowledge operator does not capture important
aspects of reasoning about security. The adversary having the implicit knowledge that nA
is part of the message does not suffice, in general, for the adversary to explicitly know that
nA is part of the message. Intuitively, the adversary may not have the capabilities to realize
he has seen nA.

A more reasonable interpretation of confidentiality in this setting is ¬Xahasa(nA): the
adversary does not explicitly know (i.e., cannot compute or derive) whether he has seen the
nonce nA. Most logics of security, instead of relying on a notion of knowledge, introduce

4A general definition of secrecy in terms of knowledge is presented by Halpern and O’Neill (2002) in the
context of information flow, a setting that does not take into account cryptography.

5It may be more reasonable to talk about belief rather than knowledge that nA and nB are kept confi-
dential. For simplicity, we talk about knowledge in this paper. Since most representations of belief suffer
from logical omniscience, what we say applies to belief as well as knowledge.

10 J. Y. HALPERN AND R. PUCELLA

special primitives to capture the fact that the adversary can see a message m encrypted
with key k only if he has access to the key k. Doing this hardwires the capabilities of the
adversary into the semantics of the logic. Changing these capabilities requires changing
the semantics. In our case, we simply need to supply the appropriate knowledge algorithm
to the adversary, capturing his capabilities. In the following section, we examine in more
detail the kind of knowledge algorithms that correspond to interesting capabilities.

4. Modeling Adversaries

As we showed in the last two sections, interpreted algorithmic knowledge security systems
can be used to provide a foundation for representing security protocols, and support a
logic for writing properties based on knowledge, both traditional (implicit) and algorithmic
(explicit). For the purposes of analyzing security protocols, we use traditional knowledge to
model a principal’s beliefs about what can happen in the protocol, while we use algorithmic
knowledge to model the adversary’s capabilities, possibly resource-bounded. To interpret
algorithmic knowledge, we rely on a knowledge algorithm for each agent in the system.
We use the adversary’s knowledge algorithm to capture the adversary’s ability to draw
conclusions from what he has seen. In this section, we show how we can capture different
capabilities for the adversary in a natural way in this framework. We first show how to
capture the standard model of adversary due to Dolev and Yao. We then show how to
account for the adversary in the Duck-Duck-Goose protocol, and the adversary considered
by Lowe (2002) that can perform self-validating guesses.

We start by considering passive (or eavesdropping) adversaries, which simply record
every message exchanged by the principals; in Section 4.2, we consider active adversaries.
For simplicity, we assume a single adversary per system; our results extend to the general
case immediately, but the notation becomes cumbersome.

Adversaries generally have the ability to eavesdrop on all communications, and in the
case of active adversaries, to furthermore intercept messages and forward them at will. To
model both the eavesdropping of a message and its interception, we assume an internal
action intercept(m) meant to capture the fact that an adversary has intercepted message
m. Because messages may or may not be delivered to their final destination, this models
both eavesdropping—in which case the message does in fact get received by its intended
recipient—and actual interception—in which case the message does not get received by its
intended recipient. Because an intercepted message is available to an agent in its local
state, we adapt the notion of an acceptable interpretation from Section 3 to allow intercept
messages to be used for determining which messages an agent has:

• π(r,m)(hasi(m)) = true if and only if there exists m′ such that m 4 m′ and either
recv(m′) ∈ ri(m) or intercept(m′) ∈ ri(m).

4.1. Passive Adversaries. Passive adversaries can be modeled formally as follows. An
interpreted algorithmic knowledge security system with passive adversary a (a ∈ {1, . . . , n})
is an interpreted algorithmic knowledge security system I = (R, π, A1, . . . , An) satisfying the
following constraints at all points (r,m):

P1. ra(m) consists only of intercept(m) events.
P2. For all j and events send(j,m) in rj(m), there exists an event intercept(m) in ra(m).

MODELING ADVERSARIES 11

P3. For every intercept(m) in ra(m), there is a corresponding send(j,m) in ri(m) for
some i.

P4. For all i and every send(j,m) in ri(m), j 6= a.

P1 captures the passivity of the adversary—he can only intercept messages, not send any; P2
says that every message sent by a principal is basically copied to the adversary’s local state,
while P3 says that only messages sent by principals appear in the adversary’s local state;
P4 ensures that a passive adversary is not an agent to which other agents may intentionally
send messages to (i.e., the adversary is an outsider in the system). We next consider various
knowledge algorithms for the adversary.

4.1.1. The Dolev-Yao Adversary. Consider the standard Dolev-Yao adversary (Dolev and Yao,
1983). This model is a combination of assumptions on the encryption scheme used and the
capabilities of the adversaries. Specifically, the encryption scheme is seen as the free algebra
generated by P and K over operations · and {||}. Perhaps the easiest way to formalize this
is to view the setM as the set of expressions generated by the grammar

m ::= p | k | {|m|}k | m ·m

(with p ∈ P and k ∈ K). We assume that there are no collisions; messages always have a
unique decomposition. The only way that {|m|}k = {|m′|}k′ is if m = m′ and k = k′. We also
make the standard assumption that concatenation and encryption have enough redundancy
to recognize that a term is in fact a concatenation m1 ·m2 or an encryption {|m|}k.

The classical Dolev-Yao model can be formalized by a relationH ⊢DY m between a setH
of messages and a message m. (Our formalization is equivalent to many other formalizations
of Dolev-Yao in the literature, and is similar in spirit to that of Paulson (1998).) Intuitively,
H ⊢DY m means that an adversary can “extract” message m from a set of received messages
and keys H, using the allowable operations. The derivation is defined using the following
inference rules:

m ∈ H
H ⊢DY m

H ⊢DY {|m|}k H ⊢DY k−1

H ⊢DY m

H ⊢DY m1 ·m2

H ⊢DY m1

H ⊢DY m1 ·m2

H ⊢DY m2
.

This presentation of the Dolev-Yao capabilities is restricted, because it only allows an adver-
sary to deconstruct messages, and not to construct them. In many situations with passive
adversaries—that is, adversaries that cannot inject new messages into the system—this is
not a significant restriction. It is easy to extend the relation to allow for the construction
of new messages using concatenation and encrytion. (Of course, extending the relation in
such a way would require a corresponding modification to the knowledge algorithm below.)

In our framework, to capture the capabilities of a Dolev-Yao adversary, we specify how
the adversary can explicitly know that she has a message, by defining a knowledge algorithm
A
DY

i for adversary i. Recall that a knowledge algorithm for agent i takes as input a formula
and agent i’s local state (which we are assuming contains the messages received by i). The
most interesting case in the definition of ADY

i is when the formula is hasi(m). To compute
A
DY

i (hasi(m), ℓ), the algorithm simply checks, for every message m′ received by the adversary,
whether m is a submessage of m′, according to the keys that are known to the adversary.
We assume that the adversary’s initial state consists of the set of keys initially known by
the adversary. This will typically contain, in a public-key cryptography setting, the public
keys of all the agents. We use initkeys(ℓ) to denote the set of initial keys known by agent i
in local state ℓ. (Recall that a local state for agent i is the sequence of events pertaining to

12 J. Y. HALPERN AND R. PUCELLA

partof (m,m′,K) : if m = m′ then
return true
if m′ is {|m1|}k and k−1 ∈ K then
return partof (m,m1,K)
if m′ is m1 ·m2 then
return partof (m,m1,K) ∨ submsg(m,m2 ,K)
return false

getkeys(m,K) : if m ∈ K then
return {m}
if m′ is {|m1|}k and k−1 ∈ K then
return getkeys(m1,K)
if m′ is m1 ·m2 then
return getkeys(m1,K) ∪ getkeys(m2,K)
return {}

keysof (ℓ) : K ← initkeys(ℓ)
loop until no change in K
K ←

⋃

recv(m)∈ℓ

getkeys(m,K)

return K

Figure 1: Dolev-Yao knowledge algorithm auxiliary functions

agent i, including any initial information in the run, in this case, the keys initially known.)
The function partof , which can take apart messages created by concatenation, or decrypt
messages as long as the adversary knows the decryption key, is used to check whether m is
a submessage of m′. ADY

i (hasi(m), ℓ) is defined as follows:

if m ∈ initkeys(ℓ) then return “Yes”
K ← keysof (ℓ)
for each recv(m′) and intercept(m′) in ℓ
if partof (m,m′,K) then
return “Yes”
return “?”.

The auxiliary functions used by the algorithm are given in Figure 1. In particular, the
function partof captures the 4 relation.

In the Dolev-Yao model, an adversary cannot explicitly compute anything interesting
about what other messages agents have. Hence, for other primitives, including hasj(m)
for j 6= i, ADY

i returns “?”. For formulas of the form Kjϕ and Xjϕ, A
DY

i also returns “?”.
For Boolean combinations of formulas, ADY

i returns the corresponding Boolean combination
(where the negation of “?” is “?”, the conjunction of “No” and “?” is “No”, and the
conjunction of “Yes” and “?” is “?”) of the answer for each hasi(m) query.

The following result shows that an adversary using A
DY

i recognizes (i.e., returns “Yes”
to) hasi(m) in state ℓ if and only if m is one of the messages that can be derived (according

MODELING ADVERSARIES 13

to ⊢DY) from the messages received in that state together with the keys initially known,
Moreover, if a hasi(m) formula is derived at the point (r,m), then hasi(m) is actually true
at (r,m) (so that ADY

i is sound).
Proposition 4.1. Let I = (R, π, A1, . . . , An) be an interpreted algorithmic knowledge se-
curity system where Ai = A

DY

i . Then

(I, r,m) |= Xi(hasi(m)) if and only if

{m′ : recv(m′) ∈ ri(m)} ∪ {m′ : intercept(m′) ∈ ri(m)} ∪ initkeys(ℓ) ⊢DY m.

Moreover, if (I, r,m) |= Xi(hasi(m)) then (I, r,m) |= hasi(m).

Proof. Let K = keysof (ri(m)). We must show that ADY

i (hasi(m), ri(m)) = “Yes” if and only
if K∪{m′ : recv(m′) ∈ ri(m)}∪{m′ : intercept(m′) ∈ ri(m)} ⊢DY m. It is immediate from the
description of ADY

i and ⊢DY that this is true if m ∈ initkeys(ri(m)). If m /∈ initkeys(ri(m)),
then A

DY

i (hasi(m), ri(m)) = “Yes” if and only if partof (m,m′,K) = true for some m′ such
that recv(m′) ∈ ri(m) or intercept(m′) ∈ ri(m). Next observe that partof (m,m′,K) = true
if and only if K ∪ {m′} ⊢DY m: the “if” direction follows by a simple induction on the
length of the derivation; the “only if” direction follows by a straightforward induction on
the structure of m. Finally, observe that if M is a set of messages, then K ∪M ⊢DY m if
and only if K ∪ {m′} ⊢DY m for some m′ ∈ M . The “if” direction is trivial. The “only
if” direction follows by induction on the number of times the rule “from m′ ∈ H infer
H ⊢DY m′” is used to derive some m′ ∈ M . If it is never used, then it is easy to see that
K ⊢DY m′. If it is used more than once, and the last occurrence is used to derive m′, then
it is easy to see that K ∪ {m′} ⊢DY m′ (the derivation just starts from the last use of this
rule). The desired result is now immediate.

In particular, if we have an interpreted algorithmic knowledge security system with a
passive adversary a such that Aa = A

DY

a , then Proposition 4.1 captures the knowledge of a
passive Dolev-Yao adversary.

4.1.2. The Duck-Duck-Goose Adversary. The key advantage of our framework is that we
can easily change the capabilities of the adversary beyond those prescribed by the Dolev-
Yao model. For example, we can capture the fact that if the adversary knows the protocol,
she can derive more information than she could otherwise. For instance, in the Duck-Duck-
Goose example, assume that the adversary maintains in her local state a list of all the bits
received corresponding to the key of the principal. We can write the algorithm so that if the
adversary’s local state contains all the bits of the key of the principal, then the adversary
can decode messages that have been encrypted with that key. Specifically, assume that key
k is being sent in the Duck-Duck-Goose example. Then for an adversary i, hasi(k) will be
false until all the bits of the key have been received. This translates immediately into the
following algorithm A

DDG

i :

if all the bits recorded in ℓ form k then
return “Yes” else return “?”.

A
DDG

i handles other formulas in the same way as ADY

i .
Of course, nothing keeps us from combining algorithms, so that we can imagine an

adversary intercepting both messages and key bits, and using an algorithm Ai that is a

14 J. Y. HALPERN AND R. PUCELLA

combination of the Dolev-Yao algorithm and the Duck-Duck-Goose algorithm; Ai(ϕ, ℓ) is
defined as follows:

if ADY

i (ϕ, ℓ) = “Yes” then
return “Yes”
else return A

DDG

i (ϕ, ℓ).

This assumes that the adversary knows the protocol, and hence knows when the key bits
are being sent. The algorithm above captures this protocol-specific knowledge.

To see why this adversary is not completely trivial, note that the obvious way of trying
to capture this kind of adversary in a Dolev-Yao model, where we allow operations for
combining keys to form new keys, fails in that the resulting adversary is too powerful. If we
assume that keys are formed out of bits, and we allow a bit-concatenation operation that
lets the adversary create keys out of bits, then a Dolev-Yao adversary with such extended
operations, as soon as they have received bits 1 and 0, would be able to construct any
possible key, and therefore such an adversary would be able to decrypt any encrypted
message.

4.1.3. The Lowe Adversary. For a more realistic example of an adversary model that goes
beyond Dolev-Yao, consider the following adversary model introduced by Lowe (2002) to
analyze protocols subject to guessing attacks. The intuition is that some protocols provide
for a way to “validate” the guesses of an adversary. For a simple example of this, here is a
simple challenge-based authentication protocol:

A→ S : A
S → A : ns
A→ S : {|ns|}pa .

Intuitively, A tells the server S that she wants to authenticate herself. S replies with a
challenge ns. A sends back to S the challenge encrypted with her password pa. Presumably,
S knows the password, and can verify that she gets {|ns|}pa . Unfortunately, an adversary
can overhear both ns and {|ns|}pa , and can “guess” a value g for pa and verify his guess by
checking if {|ns|}g = {|ns|}pa . The key feature of this kind of attack is that the guessing (and
the validation) can be performed offline, based only on the intercepted messages.

To account for this capability of adversaries is actually fairly complicated. We present
a slight variation of Lowe’s description, mostly to make it notationally consistent with the
rest of the section; we refer the reader to Lowe (2002) for a discussion of the design choices.

Lowe’s model relies on a basic one-step reduction function, S ⊲l m, saying that the
messages in S can be used to derive the message m. Its definition is reminiscent of ⊢DY ,
except that it represents a single step of derivation. Note that the derivation relation ⊲l is
“tagged” by the kind of derivation performed (l).

{m, k} ⊲enc {|m|}k

{{|m|}k, k
−1}⊲dec m

{m1 ·m2}⊲fst m1

{m1 ·m2}⊲snd m2.

Lowe also includes a reduction to derive m1 · m2 from m1 and m2. We do not add this
reduction to simplify the presentation. It is straightforward to extend our approach to deal
with it.

MODELING ADVERSARIES 15

Given a setH of messages, and a sequence t of one-step reductions, we define inductively
the set [H]t of messages obtained from the one-step reductions given in t:

[H]〈〉 = H

[H]〈S⊲lm〉·t =

{

[H ∪ {m}]t if S ⊆ H

undefined otherwise.

Here, 〈〉 denotes the empty trace, and t1 · t2 denotes trace concatenation. A trace t is said
to be monotone if, intuitively, it does not perform any one-step reduction that “undoes” a
previous one-step reduction. For example, the reduction {m, k}⊲{|m|}k undoes the reduction
{{|m|}k, k

−1}⊲m. (See Lowe (2002) for more details on undoing reductions.)
We say that a set H of messages validates a guess m if H contains enough information

to verify that m is indeed a good guess. Intuitively, this happens if a value v (called a
validator) can be derived from the messages in H ∪ {m} in a way that uses the guess m,
and either that (a) validator v can be derived in a different way from H ∪ {m}, (b) the
validator v is already in H ∪ {m}, or (c) the validator v is a key whose inverse is derivable
from H ∪ {m}. For example, in the protocol exchange at the beginning of this section, the
adversary sees the messages H = {ns, {|ns|}pa}, and we can check that H validates the guess
m = pa: clearly, {ns,m} ⊲enc {|ns|}pa , and {|ns|}pa ∈ H ∪ {m}. In this case, the validator
{|ns|}pa is already present in H ∪ {m}. For other examples of validation, we again refer to
Lowe (2002).

We can now define the relation H ⊢L m that says that m can be derived from H by a
Lowe adversary. Intuitively, H ⊢L m if m can be derived by Dolev-Yao reductions, or m can
be guessed and validated by the adversary, and hence susceptible to an attack. Formally,
H ⊢L m if and only if H ⊢DY m or there exists a monotone trace t, a set S, and a “validator”
v such that

(1) [H ∪ {m}]t is defined;
(2) S ⊲l v is in t;
(3) there is no trace t′ such that S ⊆ [H]t′ ; and
(4) either:

(a) there exists (S′, l′) 6= (S, l) with S′ ⊲l′ v in t
(b) v ∈ H ∪ {m} or
(c) v ∈ K and v−1 ∈ [H ∪ {m}]t.

It is not hard to verify that this formalization captures the intuition about validation given
earlier. Specifically, condition (1) says that the trace t is well-formed, condition (2) says
that the validator v is derived from H ∪ {m}, condition (3) says that deriving the validator
v depends on the guess m, and condition (4) specifies when a validator v validates a guess
m, as given earlier.

We would now like to define a knowledge algorithm A
L

i to capture the capabilities of
the Lowe adversary. Again, the only case of real interest is what AL

i does on input hasi(m).
A
L

i (hasi(m), ℓ) is defined as follows:

if ADY

i (hasi(m), ℓ) = “Yes” then
return “Yes”
if guess(m, ℓ) then
return “Yes”
return “?”.

16 J. Y. HALPERN AND R. PUCELLA

guess(m, ℓ) : H ← reduce({m′ : recv(m′) ∈ ℓ or intercept(m′) ∈ ℓ} ∪ initkeys(ℓ)) ∪ {m}
reds ← {}
loop until reductions(H)− reds is empty
(S, l, v)← pick an element of reductions(H)− reds
if ∃(S′, l′, v) ∈ reds s.t. S′ 6= S and l′ 6= l then
return “Yes”
if v ∈ H then
return “Yes”
if v ∈ K and v−1 ∈ H then
return “Yes”
reds ← reds ∪ {(S, l, v)}
H ← H ∪ {v}
return “No”

reduce(H) : loop until no change in H
r ← reductions(H)
for each (S, l, v) in r
H ← H ∪ {v}
return H

reductions(H) : reds ← {}
for each m1 ·m2 in H
reds ← {({m}, fst,m1), ({m}, snd,m2)}
for each m1,m2 in H
if m2 ∈ K and sub({|m1|}m2

,H) then
reds ← {({m1,m2}, enc, {|m1|}m2

)}
if m1 is {|m′|}k and m2 is k−1 then
reds ← {({m1,m2}, dec,m

′)}
return reds

sub(m,H) : if H = {m} then
return true

if H = {m1 ·m2} then
return sub(m, {m1}) ∨ sub(m, {m2})
if H = {{|m′|}k} then
return sub(m, {m′})
if |H| > 1 and H = {m′} ∪H ′ then
return sub(m, {m′}) ∨ sub(m,H ′)
return false

Figure 2: Lowe knowledge algorithm auxiliary functions

The auxiliary functions used by the algorithm are given in Figure 2. (We have not concerned
ourselves with matters of efficiency in the description of AL

i ; again, see Lowe (2002) for a
discussion of implementation issues.)

As before, we can check the correctness and soundness of the algorithm:

MODELING ADVERSARIES 17

Proposition 4.2. Let I = (R, π, A1, . . . , An) be an interpreted algorithmic knowledge se-
curity system where Ai = A

L

i . Then

(I, r,m) |= Xi(hasi(m)) if and only if

{m′ : recv(m′) ∈ ri(m)} ∪ {m′ : intercept(m′) ∈ ri(m)} ∪ initkeys(ℓ) ⊢L m.

Moreover, if (I, r,m) |= Xi(hasi(m)) then (I, r,m) |= hasi(m).

Proof. LetK = keysof (ri(m)). The proof is similar in spirit to that of Proposition 4.1, using
the fact that if m 6∈ initkeys(ri(m)) and K ∪ {m′ | recv(m′) ∈ ri(m)} ∪ {m′ | intercept(m′) ∈
ri(m)} 6⊢DY m, then guess(m, ri(m)) = “Yes” if and only ifK∪{m′ | recv(m′) ∈ ri(m)}∪{m′ |
intercept(m′) ∈ ri(m)} ⊢L m. The proof of this fact is essentially given by Lowe (2002),
the algorithm A

L

i being a direct translation of the CSP process implementing the Lowe
adversary. Again, soundness with respect to hasi(m) follows easily.

4.2. Active Adversaries. Up to now we have considered passive adversaries, which can
intercept messages exchanged by protocol participants, but cannot actively participate in
the protocol. Passive adversaries are often appropriate when the concern is confidentiality
of messages. However, there are many attacks on security protocols that do not neces-
sarily involve a breach of confidentiality. For instance, some authentication properties are
concerned with ensuring that no adversary can pass himself off as another principal. This
presumes that the adversary is able to interact with other principals. Even when it comes
to confidentiality, there are clearly attacks that an active adversary can make that cannot
be made by a passive adversary.

To analyze active adversaries, we need to consider what messages they can send. This,
in turn depends on their capabilities, which we already have captured using knowledge
algorithms. Formally, at a local state ℓ, an adversary using knowledge algorithm Ai can
construct the messages in the set C(ℓ), defined to be the closure under conc and encr of
the set {m | Ai(hasi(m), ℓ) = “Yes”} of messages that adversary i has. For more complex
cryptosystems, the construction and destruction of messages to determine which can in fact
be created by the adversary will be more complex—Paulson (1998), for instance, defines a
general approach based on two operations, analysis and synthesis, interleaved to generate all
possible messages that an adversary can construct. This technique can be readily adapted
to our framework.

Once we consider active adversaries, we must consider whether they are insiders or
outsiders. Intuitively, an insider is an adversary that other agents know about, and can
initiate interactions with. (Insider adversaries are sometimes called corrupt principals or
dishonest principals.) As we mentioned in the introduction, the difference between insiders
and outsiders was highlighted by Lowe’s (1995) man-in-the-middle attack of the Needham-
Schroeder protocol.

An interpreted algorithmic knowledge security system with active (insider) adversary a
(a ∈ {1, . . . , n}) is an interpreted algorithmic knowledge security system I = (R, π, A1, . . . , An)
satisfying the following constraints at all points (r,m).

A1. For every intercept(m) ∈ ra(m), there is a corresponding send(j,m) in ri(m) for
some i, j.

A2. For every send(j,m) ∈ ra(m), we have m ∈ C(ra(m)).

18 J. Y. HALPERN AND R. PUCELLA

A1 says that every message sent by the agents can be intercepted by the adversary and end
up in the adversary’s local state, and every intercepted message in the adversary’s local
state is a message that has been sent by an agent. A2 says that every message sent by the
adversary must have been constructed out of the messages in his local state according to
his capabilities. (Note that the adversary can forge the “send” field of the messages.)

To accommodate outsider adversaries, it suffices to add the restriction that no message
is sent directly to the adversary. Formally, an interpreted algorithmic knowledge security
system with active (outsider) adversary a (a ∈ {1, . . . , n}) is an interpreted algorithmic
knowledge security system I = (R, π, A1, . . . , An) with an active insider adversary a such
that for all points (r,m) and for all agents i, the following additional constraint is satisfied.

A3. For every send(j,m) ∈ ri(m), j 6= a.

5. Related Work

The issues we raise in this paper are certainly not new, and have been addressed, up to
a point, in the literature. In this section, we review this literature, and discuss where we
stand with respect to other approaches that have attempted to tackle some of the same
problems.

As we mentioned in the introduction, the Dolev-Yao adversary is the most widespread
adversary in the literature. Part of its attraction is its tractability, making it possible to
develop formal systems to automatically check for safety with respect to such adversaries
(Millen et al., 1987; Mitchell et al., 1997; Paulson, 1998; Lowe, 1998; Meadows, 1996). The
idea of moving beyond the Dolev-Yao adversary is not new. As we pointed out in Sec-
tion 4.1.3, Lowe (2002) developed an adversary that can encode some amount of off-line
guessing; we showed in Section 4.1.3 that we could capture such an adversary in our frame-
work. More recent techniques for detecting off-line guessing attacks (Corin et al., 2005;
Baudet, 2005) can also be similarly modeled. Other approaches have the possibility of
extending the adversary model. For instance, the framework of Paulson (1998), Clarke,
Jha and Morrero (1998), and Lowe (1998) describe the adversary via a set of derivation
rules, which could be modified by adding new derivation rules. We could certainly capture
these adversaries by appropriately modifying our ADY

i knowledge algorithm. (Pucella (2006)
studies the properties of algorithmic knowledge given by derivation rules in more depth.)
However, these other approaches do not seem to have the flexibility of our approach in
terms of capturing adversaries. Not all adversaries can be conveniently described in terms
of derivation rules.

There are other approaches that weaken the Dolev-Yao adversary assumptions by either
taking concrete encryption schemes into account, or at least adding new algebraic identities
to the algebra of messages. Bieber (1990) does not assume that the encryption scheme is
a free algebra, following an idea due to Merritt and Wolper (1985). Even et al. (1985)
analyze ping-pong protocols under RSA, taking the actual encryption scheme into account.
The applied π-calculus of Abadi and Fournet (2001) permits the definition of an equational
theory over the messages exchanged between processes, weakening some of the encryption
scheme assumptions when the applied π-calculus is used to analyze security protocols. Since
the encryption scheme used in our framework is a simple parameter to the logic, there is
no difficulty in modifying our logic to reason about a particular encryption scheme, and
hence we can capture these approaches in our framework. However, again, it seems that

MODELING ADVERSARIES 19

our approach is more flexible than these other approaches; not all adversaries can be defined
simply by starting with a Dolev-Yao adversary and adding identities.

Recent tools for formal analysis of security protocols in the symbolic setting have
moved to a general way of describing adversaries based on specifying the cryptosystem
(including the adversary’s abilities) using an equational theory. This can be used to
model the Dolev-Yao adversary, but also can move beyond. AVISPA (Viganò, 2005) and
ProVerif (Abadi and Blanchet, 2005) are representative of that class of analysis tools. It is
clear that relying on equational theories leads to the possibility of modeling very refined ad-
versaries, but there are restrictions. For instance, the equational theories used in the analysis
must be decidable, in the sense that there must exist an algorithm for determining whether
two terms in the cryptosystem are equal with respect to the equational theory. Much of
the recent research has focused on identifying large decidable classes of equational theories
based on some identifiable characteristic structure of those theories (Abadi and Cortier,
2004, 2005; Chevalier and Rusinowitch, 2006). Clearly, we can model decidable equational
theories in our setting by simply implementing the algorithm witnessing the decidability,
and in that sense we benefit from the promising work on the subject. But we can also
naturally support approximation algorithms for undecidable theories in a completely trans-
parent way, and therefore we are not restricted in the same way. On the other hand, we
do not seek to support automated tools, but rather to provide an expressive framework for
modeling and specifying security protocols.

Another class of formal approaches to security protocol analysis has recently been prov-
ing popular, the class of approaches based on computational cryptography (Goldreich, 2001).
These approaches take seriously the view that messages are strings of bits, and that adver-
saries are efficient Turing machines, generally, randomized polynomial-time algorithms. A
protocol satisfies a security property in this setting if it satisfies it in the presence of an arbi-
trary adversary taken from a given class of algorithms. Thus, this corresponds to modeling
a security protocol in the presence not of a single adversary, but rather a family of adver-
saries. Early work by Datta et al. (2005) and more recently the development of automated
tools such as CryptoVerif (Blanchet, 2008) has shown the applicability of the approach to
protocol analysis.6 Our framework is amenable to supporting multiple adversaries via a
simple extension: rather than having a single global knowledge algorithm, we can make the
knowledge algorithm part of the local state of the adversary—this is in fact the original
and most general presentation of algorithmic knowledge (Halpern et al., 1994). With the
knowledge algorithm now part of the local state, we can model protocol execution in the
presence of a class of adversaries, each represented by its knowledge algorithm. The system
generated by protocol P in the presence of a class of adversaries ADVs is the union of the
runs of P executed under each adversary A ∈ ADVs. The initial states of the system are
the initial states of P under each adversary. Intuitively, each run of the system corresponds
to a possible execution of protocol P under some nondeterministically chosen adversary in
ADVs. In the case of computational cryptography models, the knowledge algorithms can
simply represent all possible polynomial-time algorithms. Such an approach to modeling
systems under different adversaries is along the lines of the model developed by Halpern
and Tuttle (1993).

6An orthogonal line of research investigates the relationship between computational cryptography and
the extent to which it can be soundly approximated by more symbolic approaches (Backes et al., 2003;
Micciancio and Warinschi, 2004). We do not address this question here.

20 J. Y. HALPERN AND R. PUCELLA

On a related note, the work of Abadi and Rogaway (2002), building on previous work
by Bellare and Rogaway (1993), compare the results obtained by a Dolev-Yao adversary
with those obtained by a more computational view of cryptography. They show that, under
various conditions, the former is sound with respect to the latter, that is, terms that are
assumed indistinguishable in the Dolev-Yao model remain indistinguishable under a concrete
encryption scheme. It would be interesting to see the extent to which their analysis can be
recast in our setting, which, as we argued, can capture both the Dolev-Yao adversary and
more concrete adversaries.

The use of a security-protocol logic based on knowledge or belief is not new. Sev-
eral formal logics for analysis of security protocols that involve knowledge and belief have
been introduced, going back to BAN logic (Burrows et al., 1990), such as (Bieber, 1990;
Gong et al., 1990; Syverson, 1990; Abadi and Tuttle, 1991; Stubblebine and Wright, 1996;
Wedel and Kessler, 1996; Accorsi et al., 2001). The main problem with some of those ap-
proaches is that semantics of the logic (to the extent that one is provided) is typically not
tied to protocol executions or attacks. As a result, protocols are analyzed in an idealized
form, and this idealization is itself error-prone and difficult to formalize (Mao, 1995).7 While
some of these approaches have a well-defined semantics and do not rely on idealization (e.g.,
(Bieber, 1990; Accorsi et al., 2001)), they are still restricted to (a version of) the Dolev-Yao
adversary. In contrast, our framework goes beyond Dolev-Yao, as we have seen, and our
semantics is directly tied to protocol execution. Other approaches have notions of knowl-
edge that can be interpreted as a form of algorithmic knowledge ((Durgin et al., 2003), for
instance), but the interpretation of knowledge is fixed in the semantics of the logic. One
limitation that our logic shares with other logics for security protocol analysis based on
multiagent systems is that we can only reason about a fixed finite number of agents partic-
ipating in the protocol. This is in contrast to approaches such as process calculi that can
implicitly deal with an arbitrary number of agents.

The problem of logical omniscience in logics of knowledge is well known, and the lit-
erature describes numerous approaches to try to circumvent it. (See (Fagin et al., 1995,
Chapter 10 and 11) for an overview.) In the context of security, this takes the form of using
different semantics for knowledge, either by introducing hiding operators that hide part of
the local state for the purpose of indistinguishability or by using notions such as aware-
ness (Fagin and Halpern, 1988) to capture an intruder’s inability to decrypt (Accorsi et al.,
2001).8 We now describe these two approaches in more detail.

The hiding approach is used in many knowledge-based frameworks as a way to define an
essentially standard semantics for knowledge not subject to logical omniscience, at least as
far as cryptography is concerned. Abadi and Tuttle (1991), for instance, map all messages
that the agent cannot decrypt to a fixed symbol �; the semantics of knowledge is modified
so that s and s′ are indistinguishable to agent i when the local state of agent i in s and s′ is
the same after applying the mapping described above. Syverson and van Oorschot (1994)
use a variant: rather than mapping all messages that an agent cannot decrypt to the same

7While more recent logical approaches (e.g., (Clarke et al., 1998; Durgin et al., 2003)) do not suffer from
an idealization phase and are more tied to protocol execution, they also do not attempt to capture knowledge
and belief in any general way.

8A notion of algorithmic knowledge was defined by Moses (1988) and used by Halpern, Moses and Tuttle
(1988) to analyze zero-knowledge protocols. Although related to algorithmic knowledge as defined here,
Moses’ approach does not use an explicit algorithm. Rather, it checks whether these exists an algorithm of
a certain class (for example, a polynomial-time algorithm) that could compute such knowledge.

MODELING ADVERSARIES 21

symbol�, they use a distinct symbol �x for each distinct term x of the free algebra modeling
encrypted messages, and take states containing these symbols to be indistinguishable if they
are the same up to permutation of the set of symbols �x. Thus, an adversary may still
do comparisons of encrypted messages without attempting to decrypt them. Hutter and
Schairer (2004) use this approach in their definition of information flow in the presence
of symbolic cryptography, and Garcia et al. (2005) use it in their definition of anonymity
in the presence of symbolic cryptography.9 This approach deals with logical omniscience
for encrypted messages: when the adversary receives a message m encrypted with a key
that he does not know, the adversary does not know that he has m if there exists another
state where he has received a different message m′ encrypted with a key he does not know.
However, the adversary can still perform arbitrary computations with the data that he
does know. Therefore, this approach does not directly capture computational limitations,
something algorithmic knowledge takes into account.

Awareness is a more syntactical approach. Roughly speaking, the semantics for aware-
ness can specify for every point a set of formulas of which an agent is aware. For instance,
an agent may be aware of a formula without being aware of its subformulas. A general prob-
lem with awareness is determining the set of formulas of which an agent is aware at any
point. One interpretation of algorithmic knowledge is that it characterizes what formulas
an agent is aware of: those for which the algorithm says “Yes”. In that sense, we subsume
approaches based on awareness by providing them with an intuition. We should note that
not every use of awareness in the security protocol analysis literature is motivated by the
desire to model more general adversaries. Accorsi et al. (2001), for instance, describe a
logic for reasoning about beliefs of agents participating in a protocol, much in the way that
BAN logic is used to reason about beliefs of agents participating in a protocol. To deal with
the logical omniscience problem, Accorsi et al. use awareness to restrict the set of facts
that an agent can believe. Thus, an agent may be aware of which agent sent a message if
she shares a secret with the sender of the message, and not be aware of that fact otherwise.
This makes the thrust of their work different from ours.

6. Conclusion

We have presented a framework for security analysis using algorithmic knowledge. The
knowledge algorithm can be tailored to account for both the capabilities of the adversary
and the specifics of the protocol under consideration. Of course, it is always possible
to take a security logic and extend it in an ad hoc way to reason about adversary with
different capabilities. Our approach has a number of advantages over ad hoc approaches.
In particular, it is a general framework (we simply need to change the algorithm used by
the adversary to change its capabilities, or add adversaries with different capabilities), and
it permits reasoning about protocol-specific issues (for example, it can capture situations
such as an agent sending the bits of her key).

Another advantage of our approach is that it naturally extends to the probabilistic
setting. For instance, we can easily handle probabilistic protocols by considering multiagent
systems with a probability distribution on the runs (see (Halpern and Tuttle, 1993)). We
can also deal with knowledge algorithms that are probabilistic, although there are some

9A variant of this apprach is developed by Cohen and Dam (2005) to deal with logical omniscience in a
first-order interpretation of BAN logic. Rather than using a symbol � to model that a message is encrypted
with an unknown key, they identify messages in different states encrypted using an unknown key.

22 J. Y. HALPERN AND R. PUCELLA

additional subtleties that arise, since the semantics for Xi given here assumes that the
knowledge algorithm is deterministic. In a companion paper (Halpern and Pucella, 2005),
we extend our approach to deal with probabilistic algorithmic knowledge, which lets us
reason about a Dolev-Yao adversary that attempts to guess keys subject to a distribution.
We hope to use this approach to capture probabilistic adversaries of the kind studied by
Lincoln et al. (1998).

The goal of this paper was to introduce a general framework for handling different
adversary models in a natural way, not specifically to devise new attacks or adversary
capabilities. In fact, finding new attacks or defining new adversaries are difficult tasks
orthogonal to the problem of using the framework. One potential application for the frame-
work would be to formalize and compare within the same knowledge-based framework new
attacks that are introduced by the community. We gave a concrete example of this with
the “guess-and-confirm” attacks of Lowe (2002).

It is fair to ask at this point what we can gain by using this framework. For one thing,
we believe that the ability of the framework to describe the capabilities of the adversary will
make it possible to specify the properties of security protocols more precisely. In particu-
lar, we can now express security properties directly in terms of knowledge, which has the
advantage of matching fairly well the informal specification of many properties, and we can
give a clear algorithmic semantics to knowledge based on the capabilities of the adversary.
More complex security properties can be expressed by extending the logic with additional
operators such as temporal operators, extensions that are all well understood (Fagin et al.,
1995). Of course, not all security properties can be conveniently expressed with our logic.
Properties such as computational indistinguishability (Goldwasser and Micali, 1984), which
is not a property of single executions but of sets of executions, or observational equivalence
(Milner, 1980), which requires not only the protocol to be analyzed but also an idealized
version of the protocol that is obviously correct, cannot be expressed directly in the logic.
It would be of interest to study the sort of extensions required to capture those properties,
and others.

Of course, it may be the case that to prove correctness of a security protocol with respect
to certain types of adversaries (for example, polynomial-time bounded adversaries) we will
need to appeal to techniques developed in the cryptography community. However, we believe
that it may well be possible to extend current model-checking techniques to handle more
restricted adversaries (for example, Dolev-Yao extended with random guessing). This is a
topic that deserves further investigation. In any case, having a logic where we can specify
the abilities of adversaries is a necessary prerequisite to using model-checking techniques.

Acknowledgments. A preliminary version of this paper appeared in the Proceedings of
the Workshop on Formal Aspects of Security, LNCS 2629, pp. 115-132, 2002.

This research was inspired by discussions between the first author, Pat Lincoln, and
John Mitchell, on a wonderful hike in the Dolomites. We also thank Sabina Petride for useful
comments. Authors supported in part by NSF under grant CTC-0208535, by ONR under
grants N00014-00-1-03-41 and N00014-01-10-511, by the DoD Multidisciplinary University
Research Initiative (MURI) program administered by the ONR under grant N00014-01-1-
0795, and by AFOSR under grant F49620-02-1-0101.

MODELING ADVERSARIES 23

References

M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM, 52(1):102–146, 2005.

M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational theo-
ries. In Proc. 31st Colloquium on Automata, Languages, and Programming (ICALP’04),
volume 3142 of Lecture Notes in Computer Science, 2004.

M. Abadi and V. Cortier. Deciding knowledge in security protocols under (many more)
equational theories. In Proc. 18th IEEE Computer Security Foundations Workshop
(CSFW’05), pages 62–76. IEEE Computer Society Press, 2005.

M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th Annual ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, 2001.

M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In Proc. 10th ACM
Symposium on Principles of Distributed Computing (PODC’91), pages 201–216, 1991.

R. Accorsi, D. Basin, and L. Viganò. Towards an awareness-based semantics for security
protocol analysis. In Jean Goubault-Larrecq, editor, Proc. Workshop on Logical Aspects
of Cryptographic Protocol Verification, volume 55.1 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2001.

M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In Proc. 10th ACM Conference on Computer and Communications Security
(CCS’03), pages 220–230. ACM Press, 2003.

M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th
ACM Conference on Computer and Communications Security (CCS’05), pages 16–25.
ACM Press, 2005.

M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proc. 13th
Annual International Cryptology Conference (CRYPTO’93), volume 773 of Lecture Notes
in Computer Science, pages 232–249. Springer-Verlag, 1993.

P. Bieber. A logic of communication in hostile environment. In Proc. 3rd IEEE Computer
Security Foundations Workshop (CSFW’90), pages 14–22. IEEE Computer Society Press,
1990.

B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8(1):18–36, 1990.

Y. Chevalier and M. Rusinowitch. Hierarchical combination of intruder theories. In
Proc. 17th International Conference on Rewriting Techniques and Applications (RTA’06),
2006.

E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural deduction
style message derivation engine to verify security protocols. In Proc. IFIP Working
Conference on Programming Concepts and Methods (PROCOMET), 1998.

M. Cohen and M. Dam. Logical omniscience in the semantics of BAN logic. In Proc. Work-
shop on Foundations of Computer Security (FCS’05), 2005.

R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. In Proc. 2nd International Workshop on Security Issues with Petri

24 J. Y. HALPERN AND R. PUCELLA

Nets and other Computational Models (WISP’04), volume 121 of Electronic Notes in
Theoretical Computer Science, pages 47–63. Elsevier Science Publishers, 2005.

A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-
time semantics for a protocol security logic. In Proc. 32nd Colloquium on Automata,
Languages, and Programming (ICALP’05), pages 16–29, 2005.

D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

N. A. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving security
properties of protocols. Journal of Computer Security, 11(4):677–722, 2003.

S. Even, O. Goldreich, and A. Shamir. On the security of ping-pong protocols when imple-
mented using the RSA. In Proc. Conference on Advances in Cryptology (CRYPTO’85),
volume 218 of Lecture Notes in Computer Science, pages 58–72. Springer-Verlag, 1985.

R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. Artificial Intelligence,
34:39–76, 1988.

R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. Journal of the
ACM, 41(2):340–367, 1994.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT
Press, 1995.

F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity. In Proc. 3rd
ACM Workshop on Formal Methods in Security Engineering (FMSE 2005), pages 63–72.
ACM Press, 2005.

O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University
Press, 2001.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and Systems
Sciences, 28(2):270–299, 1984.

L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols.
In Proc. 1990 IEEE Symposium on Security and Privacy, pages 234–248. IEEE Computer
Society Press, 1990.

A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal of
Computer Security, 11(4):451–520, 2003.

J. Y. Halpern and K. O’Neill. Secrecy in multiagent systems. In Proc. 15th IEEE Computer
Security Foundations Workshop (CSFW’02), pages 32–46. IEEE Computer Society Press,
2002.

J. Y. Halpern and R. Pucella. On the relationship between strand spaces and multi-agent
systems. ACM Transactions on Information and System Security, 6(1):43–70, 2003.

J. Y. Halpern and R. Pucella. Probabilistic algorithmic knowledge. Logical Methods in
Computer Science, 1(3:1), 2005.

J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and adversaries. Journal of the
ACM, 40(4):917–962, 1993.

J. Y. Halpern, Y. Moses, and M. R. Tuttle. A knowledge-based analysis of zero knowledge.
In Proc. 20th Annual ACM Symposium on the Theory of Computing (STOC’88), pages
132–147, 1988.

J. Y. Halpern, Y. Moses, and M. Y. Vardi. Algorithmic knowledge. In Proc. 5th Conference
on Theoretical Aspects of Reasoning about Knowledge (TARK’94), pages 255–266. Morgan
Kaufmann, 1994.

D. Hutter and A. Schairer. Possibilistic information flow control in the presence of en-
crypted communication. In Proc. 9th European Symposium on Research in Computer

MODELING ADVERSARIES 25

Security (ESORICS’04), volume 3193 of Lecture Notes in Computer Science, pages 209–
224. Springer-Verlag, 2004.

S. Kripke. A semantical analysis of modal logic I: normal modal propositional calculi.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. In Proc. 5th ACM Conference on Computer and Communications
Security (CCS’98), pages 112–121, 1998.

G. Lowe. Analysing protocols subject to guessing attacks. In Proc. Workshop on Issues in
the Theory of Security (WITS’02), 2002.

G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Infor-
mation Processing Letters, 56:131–133, 1995.

G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of Computer
Security, 6:53–84, 1998.

W. Mao. An augmentation of BAN-like logics. In Proc. 8th IEEE Computer Security
Foundations Workshop (CSFW’95), pages 44–56. IEEE Computer Society Press, 1995.

C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming, 26
(2):113–131, 1996.

M. Merritt and P. Wolper. States of knowledge in cryptographic protocols. Unpublished
manuscript, 1985.

D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. Theory of Cryptography Conference (TCC’04), volume 2951 of
Lecture Notes in Computer Science, pages 133–151. Springer-Verlag, 2004.

J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol security analysis.
IEEE Transactions on Software Engineering, 13(2):274–288, 1987.

R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes in Computer
Science. Springer-Verlag, 1980.

J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using
Murϕ. In Proc. 1997 IEEE Symposium on Security and Privacy, pages 141–151. IEEE
Computer Society Press, 1997.

J. H. Moore. Protocol failures in cryptosystems. Proceedings of the IEEE, 76(5):594–602,
1988.

Y. Moses. Resource-bounded knowledge. In Proc. 2nd Conference on Theoretical Aspects
of Reasoning about Knowledge (TARK’88), pages 261–276. Morgan Kaufmann, 1988.

R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6(1/2):85–128, 1998.

R. Pucella. Deductive algorithmic knowledge. Journal of Logic and Computation, 16(2):
287–309, 2006.

P. Y. A. Ryan and S. A. Schneider. An attack on a recursive authentication protocol: A
cautionary tale. Information Processing Letters, 65(1):7–10, 1998.

S. Stubblebine and R. Wright. An authentication logic supporting synchronization, revo-
cation, and recency. In Proc. 3rd ACM Conference on Computer and Communications
Security (CCS’96). ACM Press, 1996.

P. Syverson. A logic for the analysis of cryptographic protocols. NRL Report 9305, Naval
Research Laboratory, 1990.

26 J. Y. HALPERN AND R. PUCELLA

P. Syverson and I. Cervesato. The logic of authentication protocols. In Proc. 1st Interna-
tional School on Foundations of Security Analysis and Design (FOSAD’00), volume 2171
of Lecture Notes in Computer Science, pages 63–137, 2001.

P. F. Syverson and P. C. van Oorschot. On unifying some cryptographic protocol logics.
In Proc. 1994 IEEE Symposium on Security and Privacy, pages 14–28. IEEE Computer
Society Press, 1994.

F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 7(2/3):191–230, 1999.

L. Viganò. Automated security protocol analysis with the AVISPA tool. In Proc. 21th Conf.
Mathematical Foundations of Programming Semantics (MFPS’05), volume 155 of Elec-
tronic Notes in Theoretical Computer Science, pages 61–86. Elsevier Science Publishers,
2005.

G. Wedel and V. Kessler. Formal semantics for authentication logics. In Proc. 4th European
Symposium on Research in Computer Security (ESORICS’96), volume 1146 of Lecture
Notes in Computer Science, pages 219–241. Springer-Verlag, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Modeling Security Protocols
	2.1. Multiagent Systems
	2.2. Specializing to Security

	3. A Logic for Security Properties
	4. Modeling Adversaries
	4.1. Passive Adversaries
	4.2. Active Adversaries

	5. Related Work
	6. Conclusion
	Acknowledgments

	References

