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Abstract. Kegelspitzen are mathematical structures coined by Keimel and Plotkin, in
order to encompass the structure of a convex set and the structure of a dcpo. In this paper,
we ask ourselves what are Kegelspitzen the model of. We adopt a categorical viewpoint and
show that Kegelspitzen model stochastic matrices onto a category of domains. Consequently,
Kegelspitzen form a denotational model of pPCF, an abstract functional programming
language for probabilistic computing. We conclude the present work with a discussion
of the interpretation of (probabilistic) recursive types, which are types for entities which
might contain other entities of the same type, such as lists and trees.

The interplay between convexity and order in the semantics of probabilistic programs
has been a highly-coveted field of research since the first research programs [21, 22] on
the semantics of probabilistic computing, a programming language paradigm which allows
probabilistic branching of programs and also updating of distributions.

Starting from an intuitive and minimalistic programming language perspective on Keimel
& Plotkin’s approach to probabilistic computations [24], the present work provides a new
take on the mathematical characterization of probabilistic programs and brings an important
building block to the study of the interactions between the concepts of convexity and
order within the theory of probabilistic computing, namely by defining Kegelspitzen as
mathematical structures which combine convex sets with dcpos.

We introduce Kegelspitzen as pointed dcpos with a compatible convex structure which
carries a clear probabilistic interpretation (see Section 1). We pursue in Section 2 with
a categorical study of Kegelspitzen, which was absent from Keimel & Plotkin’s original
work [24].

Now, recall that (sub)convex sets are sets equipped with a (sub)convex structure. After
defining the Lawvere theory L of convex sets and the Lawvere theory L≤1 of subconvex sets,
and establishing that those categories have all finite products (see Lemma 2.2), we show the
following theorem.

Theorem 2.4 (paraphrased). The category of Kegelspitzen and affine Scott-continuous
maps, i.e. Scott-continuous maps which preserve the convex structures, is equivalent to the
order-enriched category of models (i.e. finite product-preserving order-enriched functors)
of the Lawvere theory of subconvex sets into the category of pointed dcpos and strict Scott-
continuous maps.
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In a second step, we show that the category of Kegelspitzen and affine Scott-continuous
maps is monoidal closed (see Proposition 2.6), when equipped with the smash product
⊗⊥ [1, 3], i.e. the quotient of the cartesian product X × Y (of two pointed dcpos X and Y )
by the relation generated by the relation ∼ such that (x,⊥) ∼ (⊥, y) ∼ (⊥,⊥) for x ∈ X
and y ∈ Y . Moreover, we show that the category of Kegelspitzen and Scott-continuous maps
is cartesian closed (see Proposition 2.7).

Then in Section 3, we use the cartesian closed structure of the category of Kegelspitzen
and Scott-continuous maps to interpret a probabilistic extension called Probabilistic PCF
(or shortly, pPCF) of the language PCF [27]. In short, we extend PCF with terms coin(κ)
(where κ ∈ [0, 1] ∩Q is a probability) which reduce to the numeral 0 with probability κ and
the numeral 1 with probability 1− κ. Therefore, pPCF’s transition system is probabilistic:
reductions are weighted by probabilities, and deterministic reductions are weighted by the
probability 1.

We proceed to interpret types as Kegelspitzen and terms as Scott-continuous maps. In
particular, the type nat is denoted by the Kegelspitze of sub-distributions on the natural
numbers:

D∞≤1(N)
def
=

{
ϕ : N→ [0, 1]

∣∣∣∣∣ ∑
n∈N

ϕ(n) ≤ 1

}
We obtain the following soundness property.

Proposition 3.4 (paraphrased). The denotation under a context Γ of a term M (which
isn’t a value) is the sum of the denotations under the context Γ of the terms that M reduces
to.

This mathematical observation leads us to the following adequacy result.

Theorem 4.4 (paraphrased). The denotation of a closed term M of type nat maps every
natural number n to the probability that M reduces to the number n in pPCF’s leftmost
outermost strategy.

We conclude the present work with a proof that the category of Kegelspitzen and affine
Scott-continuous maps is algebraically compact for locally continuous endofunctors (see
Corollary 5.6), and as such a model of the language FPC, an extension of PCF with recursive
types [12]: this settles Kegelspitzen as an adequate categorical setting for denoting recursive
types.

The semantics of a probabilistic extension of PCF has notably been studied in a similar
setting in [16]. It is also worth mentioning that previous work proved that probabilistic
coherence spaces constitute a fully abstract model of pPCF (see e.g. [6, 7, 9, 10]). Moreover,
probabilistic coherence spaces give an interpretation of recursive types based on the relational
model1 of linear logic, i.e. based on the category Rel of sets and relations (see e.g. [9]).

Kegelspitzen offer an interesting categorical semantics within the scope of probabilistic
computing, especially as a step towards the study of the semantics for a higher-order quantum
programming language with recursive types but also as a subset of the probabilistic fragment
of a categorical model of a language for quantum circuits based on C*-algebras (see [28]).
Indeed, the category FdCC∗AlgCPU of finite-dimensional commutative C*-algebras and

1Recall that in the relational model of linear logic, all linear logic connectives are Scott continuous functions
on the class of sets ordered by inclusion.
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completely positive unital maps between them is equivalent to the Lawvere theory of convex
sets [15, Prop. 4.3].

1. An introduction to the theory of Kegelspitzen

In this section, we give a concise introduction to Kegelspitzen, introduced by Keimel &
Plotkin [24] as pointed dcpos with a compatible convex structure. The word Kegelspitze
(plural Kegelspitzen) is the german term for “cone tip”.

But first, let us recall the formal definition of a convex set.

Definition 1.1. A convex set (resp. subconvex set) is a set X together with an m-ary
function (−→r )X : Xm → X for each vector −→r = (r1 . . . rm) of non-negative real numbers with∑

i ri = 1 (resp.
∑

i ri ≤ 1), such that for each m× n matrix (si,j)i,j of non-negative real

numbers such that
∑

j si,j = 1, we have
∑

i ri.(
∑

j(si,j .xj)) =
∑

j((
∑

i(ri.si,j)).xj).

A homomorphism of (sub)convex sets is a function that preserves the algebraic structure.
Homomorphisms are often called affine maps. We write Conv (resp. Conv≤1) for the
category of convex sets (resp. subconvex sets) and affine maps between them.

A convex dcpo is a convex set equipped with a dcpo structure such that the functions
that constitute its convex structure are Scott-continuous. A simple example of a convex
dcpo is the unit interval [0, 1] of the reals. We will consider the category dConv of convex
dcpos and affine Scott-continuous maps, i.e. Scott-continuous functions which preserve the
algebraic structure. For two convex dcpos D1 and D2, the homset dConv(D1, D2) can be
seen as a dcpo (and is considered as such in this chapter) or as a convex set.

A pointed convex dcpo (or subconvex dcpo) is a convex set and a dcpo with a least
element that is a zero element for the convex structure. We will consider the category
dConv≤1 of pointed convex dcpos and affine strict Scott-continuous maps.

A Kegelspitze is a pointed convex dcpo X with a convex structure such that the scalar
multiplication · : [0, 1] ×X → X, defined by λ · x = x ⊕λ ⊥, is Scott-continuous in both
arguments. When the unit interval [0, 1] carries the Scott topology, the requirement is that
the scalar multiplication is continuous in the product topology of its domain. We will refer
to this assumption as the “Kegelspitzen condition”. The interested reader can consult [24]
for more details.

Alternatively, one can define a Kegelspitze as a pointed convex dcpo X with the following
properties:

• the function f : [0, 1]×X2 → X defined by f(λ, (x, y)) = x⊕λ y, where [0, 1] is endowed
with the usual Hausdorff topology, is continuous in both arguments;
• for every natural number n, the function θn,X : D∞≤1(n)×Xn → X defined by

((λi)i≤n, (xi)i≤n) 7→
∑
i

λi · xi

(where D∞≤1(n) ∼= {(q1, . . . , qn) ∈ [0, 1]n |
∑n

i=1 qi ≤ 1} carries the Scott topology) is
continuous in both arguments

A homomorphism of Kegelspitzen is an affine strict Scott-continuous map of Kegelspitzen.
Such homomorphisms are called affine Scott-continuous maps. Then, the category KS is the
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category of Kegelspitzen and affine Scott-continuous maps between them. For an historical
account of the different notions of Kegelspitzen, see [24, Remark 2.28].

Since we intend to use Kegelspitzen as a categorical model for higher-order probabilistic
computation, it seems natural to check whether it is a monoidal closed category suitable for
the interpretation of recursive types. A step towards this goal requires to give a categorical
account of Kegelspitzen, as models of the Lawvere theory of subconvex sets in the category
of pointed dcpos and strict Scott-continuous maps.

2. A categorical account of convexity and order

In this section, we will formally justify the definition of Kegelspitzen by proving that they
are models of the order-enriched Lawvere theory of subconvex sets in the category Dcpo⊥!

of pointed dcpos and strict Scott-continuous maps. But first, let us recall the preliminary
notions involved in our categorical construction of Kegelspitzen.

Definition 2.1 [19]. The monadD∞ (resp. the monadD∞≤1) is the infinitary (sub)probabilistic
discrete distribution monad on the category Set. It is defined as follows on sets:

D∞(X) =

{
ϕ : X → [0, 1]

∣∣∣∣∣ ∑
x

ϕ(x) = 1

}

D∞≤1(X) =

{
ϕ : X → [0, 1]

∣∣∣∣∣ ∑
x

ϕ(x) ≤ 1

}
In particular, when X is a finite set of cardinality n ∈ N, identified with the n-element set
noted n:

D∞(n) =

{
(xk)1≤k≤n ∈ [0, 1]n

∣∣∣∣∣ ∑
k

xk = 1

}

D∞≤1(n) =

{
(xk)1≤k≤n ∈ [0, 1]n

∣∣∣∣∣ ∑
k

xk ≤ 1

}
For every function f : X → Y , the function D∞(≤1)(f) : D∞(≤1)(X)→ D∞(≤1)(Y ) is defined by:

ϕ 7→

y 7→ ∑
x∈f−1(y)

ϕ(x) =
∑

x:f(x)=y

ϕ(x)


The unit η : IdX ⇒ D∞(≤1) and the multiplication µ : D∞(≤1)D

∞
(≤1) ⇒ D

∞
(≤1) are given for every

set X by the following:

ηX : X → D∞(≤1)X µX : D∞(≤1)D
∞
(≤1)X → D

∞
(≤1)X

x 7→ δx Φ 7→

x 7→ ∑
ϕ∈D∞

(≤1)
X

Φ(ϕ) · ϕ(x)


where δx is the Dirac notation for x ∈ X, i.e. for every y ∈ X, δx(y) = 1 if x = y and
δx(y) = 0 if x 6= y.
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Recall that a Lawvere theory is a small category T with (finite) products such that every
object is identified with a natural number n ∈ N and that a model of a Lawvere theory T is
a product-preserving functor T→ Set [25]. More generally, a model of a Lawvere theory T
into a monoidal category V is a tensor-preserving functor T→ V.

In what follows, we want to construct the categories L and L≤1 to be the Lawvere
theories of the equational theories of convex sets and subconvex sets respectively. We define
L (resp. L≤1) as the opposite category of free D∞-algebras (resp. free D∞≤1-algebras) on

finitely many generators. The category L (resp. L≤1) is the category with natural numbers
as objects together with arrows n→ m seen as probabilistic transition matrices m→ D∞(n)
(resp. sub-probabilistic transition matrices m → D∞≤1(n)), i.e. as stochastic matrices of
size m× n, i.e. m× n matrices with positive entries such that each column sums up to 1
(resp. sums up to a value below or equal to 1). In the language of monads, this means that L
(resp. L≤1) is the category KlN(D∞)op (resp. KlN(D∞≤1)op), i.e. the opposite category of the

Kleisli category of the monad D∞ (resp. D∞≤1) with objects restricted to natural numbers n
seen as finite sets of cardinality n.

This view of distribution monads via Lawvere theories has been explored by various
authors (see e.g. [5,14,15,18]). We prove that L and L≤1 have all finite coproducts, adopting
the view of Kleisli maps as stochastic matrices, where the Kleisli composition corresponds in
this context to matrix multiplication. This approach is also present in [14].

Lemma 2.2. The categories L and L≤1 have all finite products.

Proof. We show that the Lawvere theories L and L≤1 have all finite products (with addition
as product) by showing that the Kleisli categories KlN(D∞) and KlN(D∞≤1) have all finite

coproducts (with addition as coproduct).
For every natural number n ∈ N, there is exactly one stochastic matrix of size n × 0

and therefore 0 is an initial object for KlN(D∞(≤1)).

Identity maps are defined to be ηn : n → D∞(≤1)(n). We call the corresponding n × n
stochastic matrix 1n and consider the inclusion maps κ1 : n1 → n1 +n2 and κ2 : n2 → n1 +n2

as the stochastic matrices K1 =
(

1n1
0n2

)
and K2 =

(
0n1
1n2

)
.

Now, consider a pair of stochastic matrices A1 and A2, with corresponding maps
f1 : n1 → p and f2 : n2 → p (with n1, n2, p ∈ N).

To satisfy the universal property of the coproduct, we must construct a unique map
f : n1 + n2 → p such that the equation fi = f ◦ κ2 holds for i ∈ {1, 2}. Then, we observe
that the stochastic matrix A = (A1 A2 ) is the unique stochastic matrix whose multiplication
by Ki gives Ai (for i ∈ {1, 2}) and therefore, we define f to be the Kleisli map corresponding
to the stochastic matrix A.

Then, the coproduct f1 + f2 : n1 + n2 → p1 + p2 of two Kleisli maps f1 : n1 → p1 and

f2 : n2 → p2 is defined as the diagonal A1 +A2
def
=
(
A1 0
0 A2

)
of their corresponding stochastic

maps A1 and A2. It follows that L and L≤1 are Lawvere theories, since they are strict
monoidal categories when one consider + : L(≤1) × L(≤1) → L(≤1) as tensor product, with
the natural number 0 as unit.

Recall that the category Dcpo⊥! of pointed dcpos and strict Scott-continuous maps is
monoidal closed when equipped with the smash product defined in the introduction. Now,
observe that the Lawvere theory L≤1 is a small Dcpo⊥!-category: for every pair (n,m) of
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natural numbers, the homset

L≤1(n,m)
def
= D∞≤1(n)m

is a dcpo as a finite product of dcpos. Indeed, the set D∞≤1(X) is known to be a dcpo when

equipped with the pointwise order [17]:

ϕ ≤ ψ ⇐⇒ ∀x.ϕ(x) ≤ ψ(x)

In fact, one can observe that the coproduct functor + : L(≤1) × L(≤1) → L(≤1) is a Dcpo⊥!-
enriched functor, turning the category L≤1 into a small symmetric monoidal Dcpo⊥!-enriched
category (L≤1,+, 0).

In what follows, we make use of the following notions.

Definition 2.3. An endofunctor F on a Dcpo⊥!-enriched category C is locally continuous,
locally monotone, and locally strict if

FX,Y : C(X,Y )→ C(FX,FY )

is Scott-continuous, monotone, and strict, respectively.

It turns out that Kegelspitzen are models of this Lawvere theory L≤1, as explained in
the following theorem. In essence, this theorem represents Kegelspitzen as domain-theoretic
stochastic matrices.

Theorem 2.4. The category KS of Kegelspitzen and affine Scott-continuous maps is equiv-
alent to the category [L≤1,Dcpo⊥!]× of models of the Dcpo⊥!-enriched Lawvere theory L≤1

of subconvex sets, i.e. the category of finite product-preserving locally strict Scott-continuous
functors L≤1 → Dcpo⊥! and natural transformations between them.

Proof. Recall that Kegelspitzen can be equivalently defined as dcpos X with Scott-continuous
maps Xn → X and a product (xi)1≤i≤n ∈ Xn as the convex sum

∑
i ri · xi ∈ X for

r ∈ L≤1(n, 1), one can define a functor Φ : KS→ [L≤1,Dcpo⊥!]× which acts as follows on
objects:

Φ(X)(n) = Xn (n ∈ N)

Φ(X)(r : n→ 1)((xi)i) =
∑
i

ri · xi

So any Kegelspitze X can be identified with a (finite) product-preserving functor
Φ(X) : L≤1 → Dcpo⊥!, i.e. a model of the Lawvere theory L in the category Dcpo⊥!,
defined as follows. For n ∈ N, Φ(X)(n) = Xn ∈ Dcpo⊥!.

A function r : n → 1 is a n-ary operation definable in the Lawvere theory L≤1 of
subconvex sets, and as such it induces a function fr : Xn → X, defined by

fr(x1, . . . , xn) =
∑
i

ri · xi

which is Scott-continuous in each argument sinceX is taken to be a Kegelspitze. Consequently,
the function fr : Xn → X is taken to be Φ(X)(r) : Φ(X)(n)→ Φ(X)(1).

Then the mapping Φ can be turned into a functor Φ : KS→ [L≤1,Dcpo⊥!]× which acts
as follows on maps: an affine Scott-continuous map f : X → Y is associated to a natural
family of strict Scott-continuous maps Φ(f) : Φ(X)⇒ Φ(Y ), where Φ(f)n : Xn → Y n is the
strict Scott-continuous map

fn : (xi)1≤i≤n 7→ (f(xi))1≤i≤n
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for every n ∈ N.
The faithfulness of the functor Φ is entailed by its construction:

∀f, g ∈ KS(X,Y ).(Φ(f) = Φ(g) =⇒ f = Φ(f)1 = Φ(g)1 = g)

Additionally, we are required to prove that the functor Φ is full. Consider a natural
transformation α : Φ(X)⇒ Φ(Y ) for some Kegelspitzen X and Y . In what follows we show
that there is an affine strict Scott-continuous map f such that α = Φ(f).

By construction, the strict Scott-continuous map f
def
= α1 : X → Y induces the whole

natural transformation α, i.e. αn = fn for every n ∈ N. Indeed, from the commuting square

n

δi

��

Xn αn //

Φ(X)(δi)

��

Y n

Φ(Y )(δi)

��

1 X
f
// Y

where 1 ≤ i ≤ n and δi is the Dirac notation introduced in Definition 2.1, we deduce that
for every 1 ≤ i ≤ n and for x = (x1, . . . , xn) ∈ Xn,

f(xi) = f(Φ(X)(δi)(x)) = Φ(Y )(δi)(αn(x)) = (αn(x))i

Moreover, the strict Scott-continuous map α1 : X → Y is affine, i.e. is a morphism in KS:
this is entailed by the commuting square

n

r

��

Xn αn //

Φ(X)(r)

��

Y n

Φ(Y )(r)

��

1 X
α1 // Y

where r ∈ L≤1(n, 1), which means that

∀x = (x1, . . . , xn) ∈ Xn.α1(
∑
i

ri · xi) =
∑
i

ri · (αn(x))i

i.e.
∀x = (x1, . . . , xn) ∈ Xn.α1(

∑
i

ri · xi) =
∑
i

ri · α1(xi)

This concludes our proof that the functor Φ is full, since αn = fn = Φ(f)(n) for every
n ∈ N, and therefore α = Φ(f). The full and faithful functor Φ turns out to be essentially
surjective, and therefore an equivalence: a model F : L≤1 → Dcpo⊥! is equivalent to
the model Φ(X), where X is the Kegelspitze formed by the dcpo F (1) together with the
Scott-continuous convex structure F (L(n, 1)).

It is worth noting that using a similar reasoning, one can show that the category
Conv of convex sets and affine maps is equivalent to the category [L,Set]× of models of
the Lawvere theory L of convex sets, and that the category dConv of convex dcpos and
Scott-continuous affine maps is equivalent to the category [L,Dcpo]× of models of the
Lawvere theory L of convex sets in the category Dcpo of dcpos and Scott-continuous maps.
Those observations along with Theorem 2.4 can be seen as instances of the standard result
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(see e.g. [19]) that the Eilenberg Moore category EM(T ) of a monad T is equivalent to the
category [KlN(T )op,Set]×, since we have the following chain of equivalences

Conv≤1
∼= EM(D∞≤1) ∼= [KlN(D∞≤1)op,Set]×

∼= [L,Set]×

A similar categorical construction can be obtained for cones, here defined as R+ semi-
rings, which also have their order-theoretic counterparts.

Definition 2.5. An ordered cone C is a cone equipped with a partial order ≤ such that
addition and scalar multiplication are monotone. That is, a ≤ b implies that a+ c ≤ b+ c
and r · a ≤ r · b, for every a, b, c ∈ C and every r ∈ R+.

An ordered cone A is a d-cone (resp. a b-cone) when its order is directed-complete
(resp. bounded directed-complete), and its addition + : A×A→ A and its scalar multiplica-
tion · : [0, 1]×A→ A are Scott-continuous maps. We write dCone (resp. bCone) for the
category of d-cones and (resp. b-cones) with Scott-continuous maps.

We refer the interested reader to [24] for a thorough study of those domain-theoretic
structures.

In this setting, the Lawvere theory of cones LCone is defined with the multiset monad
M on the semiring R+ which acts as follows on objects

M(X) =
{
ϕ : X → R+

∣∣ supp(ϕ) finite
}

where supp(ϕ) = { x ∈ X | ϕ(x) 6= 0 }
In other words, the Lawvere theory of cones LCone is the category of natural numbers
together with functions n→ m seen as Kleisli maps m→M(n), i.e. LCone is the opposite
category KlN(M)op of the restricted Kleisli category of the multiset monad M. Replaying
every step of our reasoning with the multiset monad instead of the distribution monad leaves
us with the following equivalences:

dCone ∼= [LCone,Dcpo]× bCone ∼= [LCone,BDcpo]×

In other words, d-cones are models of the Lawvere theory of cones in the category of dcpos
and Scott-continuous maps, while b-cones are models of the Lawvere theory of cones in the
category of bdcpos [1] and Scott-continuous maps.

Last but not least: the isomorphism between the categories KS and [L≤1,Dcpo⊥!]×
establishes a formal relation between the category KS and the category Dcpo⊥!, which is
known to be symmetric monoidal closed when equipped with the smash product ⊗⊥, with
its internal hom KS(−,−) as exponential (see e.g. [23, Section 1.3]).

Proposition 2.6. The category KS is monoidal closed with respect to the smash product
⊗⊥ and the internal hom functor KS(−,−)

Proof. As the smash product of two pointed (convex) dcpos, the smash product of two
Kegelspitzen is a pointed convex dcpo whose convex structure is defined as follows: a convex

sum in the set X ⊗⊥ Y is given by
∑

i≤n,j≤m λiγj(xi, yj)
def
= (

∑
i≤n λixi,

∑
j≤m γjyj) with

vectors ~λ = (λ1, . . . , λn) and ~γ = (γ1, . . . , γm) of non-negative real numbers (respectively
associated to (xi)i and (yj)j) such that

∑
1≤i≤n λi = 1 and

∑
1≤j≤n γj = 1, and therefore∑

i,j λiγj = 1.

Now, we observe that for every pair (X,Y ) of Kegelspitzen, the set KS(X,Y ) is convex
when equipped with a convex structure defined pointwise on the convex structure of the
Kegelspitze Y . The least upper bound

∨
i fi of a directed set {fi}i∈I of strict Scott-continuous

functions between Kegelspitzen is also strict Scott-continuous. It remains to show that
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when every fi (i ∈ I) is affine, so does
∨
i fi since Y is a Kegelspitzen and therefore

θn,Y : D∞≤1(n)× Y → Y is affine in both coordinates:

(
∨
i

fi)(
∑

1≤j≤n
rj · xj) =

∨
i

(fi(
∑
j

rj · xj))

=
∨
i

(
∑

rj · fi(xj))

=
∨
i

θn,Y ((rj)j≤n, (fi(xj))j≤n)

= θn,X((rj)j≤n, (
∨
i

(fi(xj)))j≤n)

=
∑
j

rj · (
∨
i

fi)(xj)

for every convex sum
∑

1≤j≤n rj · xj in the Kegelspitze X.

Therefore, KS(X,Y ) is a pointed convex dcpo, which satisfies the Kegelspitzen condition
since Y does:

∀λ ∈ [0, 1].∀x ∈ X. (λ · (
∨
i

fi))(x) = λ · ((
∨
i

fi)(x)) = λ · (
∨
i

fi(x))

=
∨
i

λ · fi(x) =
∨
i

(λ · fi)(x)

= (
∨
i

(λ · fi))(x)

Moreover, the strict Scott-continuous evaluation map evX,Y : KS(X,Y ) ⊗⊥ X → Y ,
given by the monoidal closed structure of Dcpo⊥! [23, Section 1.3], is affine:

evX,Y

 ∑
i≤n,j≤m

λiγj · (fi, xj)

 = evX,Y

∑
i

λi · fi,
∑
j

γj · xj


=
∑
i

λi · fi(
∑
j

γj · xj)

=
∑
i,j

λiγj · (fi(xj))

=
∑
i,j

λiγj · (evX,Y (fi, xj))

for every convex sum
∑

i≤n,j≤m λiγj(fi, xj) in the Kegelspitzen KS(X,Y )⊗⊥ X.

Finally, the curryfied form Λ(f) : X → KS(Y,Z) : x 7→ f(x,−) of an affine strict
Scott-continuous map f : X ⊗⊥ Y → Z is also strict Scott-continuous [23, Section 1.3] and
affine, since one can verify that for every convex sum

∑
i ri · xi ∈ X and every y ∈ Y ,

Λ(f)(
∑
i

ri · xi)(y) =
∑
i

ri · Λ(f)(xi)(y)
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This concludes our proof that we have, for every triplet (X,Y, Z) of Kegelspitzen, the
following bijective correspondence in KS:

f : X ⊗⊥ Y → Z
========================

Λ(f) : X → KS(Y,Z)

for which the equation evX,Y ◦ (Λ(f)⊗⊥ idX) = f holds.

From the observation that every full subcategory of the cartesian closed category
Dcpo which contains the singleton dcpo, the cartesian product × and the exponential

→def
= Dcpo(−,−) is itself cartesian closed [23], we obtain the following proposition.

Proposition 2.7. The category KSScott of Kegelspitzen and Scott-continuous maps is
cartesian closed.

Note that in the category KSScott, maps between Kegelspitzen are not necessarily affine,
and in particular do not necessarily preserve least elements.

3. Interpreting pPCF

In this section, we consider a probabilistic extension of PCF [27], named pPCF2, whose
types and terms are defined as follows:

Types: t, u, . . . ::= nat | t→ u

Terms: M,N, . . . ::= n | x | succ(M) | if(M,P, z ·Q) | λxt.M | (M)N | coin(κ) | fix(M)

where n ∈ N, x, y, . . . are symbols for variables and κ ∈ [0, 1] ∩ Q is a probability. We
associate those grammars to the following typing rules.

Γ, x : t ` x : t

Γ, x : t `M : u

Γ ` λxt.M : t→ u

Γ `M : t→ u Γ ` N : t

Γ ` (M)N : u

Γ `M : t→ t

Γ ` fix(M) : t

Γ ` n : nat

Γ `M : nat

Γ ` succ(M) : nat

κ ∈ [0, 1] ∩Q

Γ ` coin(κ) : nat
Γ `M : nat Γ ` P : t Γ, z : nat ` Q : t

Γ ` if(M,P, z ·Q) : t

The associated reduction transition is probabilistic: terms coin(κ) reduce to 0 with
probability κ and to 1 with probability 1−κ. This construction is associated to the following
reduction rules.

coin(κ)
κ−→ 0 coin(κ)

1−κ−−→ 1

M
κ−→ N

succ(M)
κ−→ succ(N)

We write →d for deterministic reductions, i.e. probabilistic reductions
κ−→ with κ = 1.

The deterministic reduction →d allows us to reuse standard reduction rules, that is:

M →d N

M
1−→ N

fix(M)→d (M)fix(M) succ(n)→d n+ 1

2The presentation of this language essentially follows the work of Ehrhard et al., see e.g. [8]



Vol. 16:4 CONVEXITY AND ORDER IN PFPC 10:11

Context rules are given as follows:

(λxt.M)N →d M [x 7→ N ]
M

κ−→ N

(M)P
κ−→ (N)P

Note that such context rules means that the probabilistic reduction
κ−→ is a weak-head

reduction: the leftmost outermost redex is reduced first, and there is no reduction under
abstraction. 3

We amend the traditional if-then-else instruction if(M,P,Q) in order to prevent the loss
of the value n obtained from the evaluation of the term M : when M reduces to 0, one can
evaluate P knowing that n = 0 but when M reduces to n+ 1 (n ∈ N), it is necessary to
associate a variable z = n in order for the term Q to reuse the value of n. This leads to
conditional constructions if(M,P, z ·Q) associated to the following reduction rules which
adopt a call-by-value strategy on the ground type nat, in the sense that the term M : nat is
evaluated first, and the resulting value is used for conditional branching.

if(0, P, z ·Q)→d P if(n+ 1, P, z ·Q)→d Q[z 7→ n]

M
κ−→ N

if(M,P, z ·Q)
κ−→ if(N,P, z ·Q)

By construction, for every judgement Γ ` M : t, the judgement Γ ` M ′ : t holds

whenever M
κ−→M ′ holds.

Lemma 3.1 (Substitution Lemma). Suppose that Γ, x : u ` M : t and Γ ` P : u. If
M →d M

′ then M [x 7→ P ]→d M
′[x 7→ P ].

Proof. This lemma can be proven by induction on terms. Terms which apply a term to
another are the non-trivial cases of this proof.

Consider a term M = (N)L, when N isn’t an abstraction and reduces to another term
N ′. Then, the reduction N →d N

′ implies that there is a reduction

M = (N)L→d (N ′)L

and since M →d M
′ by hypothesis, we have that M ′ = (N ′)L.

First, let us observe that N cannot be a variable since N →d N
′. Now, assuming that

Γ ` P : u, one can deduce that N [x 7→ P ] is not an abstraction since N isn’t, and finally by
induction hypothesis, N [x 7→ P ]→d N

′[x 7→ P ] and therefore:

((N)L)[x 7→ P ] = (N [x 7→ P ])L[x 7→ P ]→d (N ′[x 7→ P ])L[x 7→ P ] = ((N ′)L)[x 7→ P ]

This extension of PCF allows to define the predecessor of a term M by:

pred(M)
def
= λxnat. if(x, 0, z · z)

Moreover, probabilistic combinations of terms M : t and N : t under the probability κ are
given by the term:

M ⊕κ N
def
= if(coin(κ),M,N)

3This approach is consistent with the presentation of pPCF in [8].
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The language allows a manipulation of (first-order) probabilistic data (of type nat) through a
let construction which corresponds to a probabilistic programming perspective to sampling:

letx = M inN
def
= if(M,N [x 7→ 0], z ·N [x 7→ succ(z)])

It is possible to give an interpretation to this language in the cartesian closed category
KSScott of Kegelspitzen and Scott-continuous maps. In short, types t can be interpreted
as Kegelspitzen [[t]], contexts Γ = (x1 : t1, . . . , xn : tn) as Kegelspitzen [[t1]]× · · · × [[tn]], and
terms Γ ` M : t as Scott-continuous maps [[Γ ` M : t]] : [[Γ]] → [[t]], with the following
denotations:

[[nat]] = D∞≤1(N) and [[t→ u]] = [[t]]→ [[u]]
def
= Dcpo([[t]], [[u]])

In what follows, functions ϕ : N→ [0, 1] in D∞≤1(N) are written as sequences (ϕ(n))n∈N. In

particular, since closed terms `M : nat are interpreted by functions [[`M : nat]] : N→ [0, 1]
in D∞≤1(N), we write [[M : nat]]n for [[`M : nat]](n).

[[Γ ` xi : ti]] = πi : ρ 7→ ρi [[Γ ` 0 : nat]](ρ) = (1, 0, · · · )
[[Γ ` coin(κ) : nat]](ρ) = κ · [[Γ ` 0]](ρ) + (1− κ) · [[Γ ` 1]](ρ)

[[Γ ` succ(M) : nat]](ρ) = (0, u0, u1, · · · ) where u = [[Γ `M : nat]](ρ)

[[Γ ` if(M,P, z ·Q) : t]](ρ) = v0u+
∑
i≥1

viu
′
i

where v = [[Γ `M : nat]](ρ), u = [[Γ ` P : t]](ρ), and for i ≥ 1,

u′i = [[Γ, z : nat ` Q : t]](ρ, ei−1) = [[Γ ` Q[z 7→ i− 1] : t]]

(with ei defined to be the “non-probabilistic” integer i with weight 1 for i and weight 0 for
each j 6= i).

[[Γ ` fix(M) : t]](ρ) = fix([[Γ `M : t→ t]](ρ)) where fix(f) =
∨
n

fn(⊥)

[[Γ ` (M)N : t]](ρ) = f(x) where f = [[Γ `M : u→ t]](ρ), x = [[Γ ` N : u]](ρ)

[[Γ ` λxu.M : u→ t]](ρ)(x) = [[Γ, x : u `M : t]](ρ, x)

One of the interesting properties of this denotational semantics is that the interpretation
of a term can be expressed as a sum of the interpretations of the terms it reduces to.

Lemma 3.2 (Invariance of the interpretation). Suppose that the judgement Γ `M : t holds,
for some term M which isn’t a value (i.e. normal form). Then, the following equality holds

[[Γ `M : t]] =
∑

M
κ−→M ′

κ · [[Γ `M ′ : t]]

Proof. We first consider the case of judgements Γ ` M : t such that the term M reduce
through the deterministic reduction rules: if M →d M

′, then the interpretations of the terms
that we have just defined ensures that [[Γ `M ]] = [[Γ `M ′]]. For example, for the judgement
Γ ` (λxt.M)N : u (with x : t and N : t) such that (λxt.M)N →d M [x 7→ N ], we have

[[Γ ` (λxt.M)N : u]](ρ) = [[Γ, x : t ` N : u]](ρ, [[Γ ` N : t]](ρ)) = [[Γ `M [x 7→ N ]]](ρ)

It remains to show that the terms which reduce through probabilistic reduction rules
(with κ < 1) satisfy the invariance property. By the construction of our reduction system,
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such terms are of the form coin(κ), (M)P , if(M,P, z ·Q), or succ(M). We now show that
the invariance property is satisfied in those four cases.

First, let us observe that the interpretation of coin(κ) : nat under any context Γ can be
re-written as follows:

[[Γ ` coin(κ) : nat]](ρ) =
∑
M

κ−→n

κ · [[Γ ` n : nat]]

For the remaining three cases, we proceed by induction on judgements. Consider terms
succ(M) : nat and if(M,P, z ·Q) (where M 6= n for some n ∈ N, with P : t and Q : t), and
(N)P : t (with P : u) such that the judgements Γ ` M : nat and Γ ` N : u → t satisfy

the invariance property. From our operational semantics, we deduce that if succ(M)
κ−→ Q,

then Q is of the form succ(M ′) for some term M ′ : nat such that M
κ−→ M ′. Similarly, if

if(M,P, z ·Q)
κ−→ R then R is of the form if(M ′, P, z ·Q) for some term M ′ : nat such that

M
κ−→ M ′, and if (N)P

κ−→ Q then Q is of the form (N ′)P for some term N ′ : u → t such

that N
κ−→ N ′. And since by induction hypothesis, we have

[[Γ `M ]] =
∑

M
κ−→M ′

[[Γ `M ′ : nat]] and [[Γ ` N ]] =
∑

N
κ−→N ′

[[Γ ` N ′ : u→ t]]

then we have by the construction of our denotational semantics the following equalities:

[[Γ ` succ(M)]] =
∑

succ(M)
κ−→succ(M ′)

[[Γ ` succ(M ′) : nat]] =
∑

succ(M)
κ−→Q

[[Γ ` Q : nat]]

[[Γ ` if(M,P, z ·Q) : t]](ρ) =
∑

if(M,P,z·Q)
κ−→if(M ′,P,z·Q)

[[Γ ` if(M ′, P, z ·Q) : t]](ρ)

[[Γ ` (N)P : t]] =
∑

(N)P
κ−→(N ′)P

[[Γ ` (N ′)P : t]] =
∑

(N)P
κ−→Q

[[Γ ` Q : t]]

In line with similar approaches [6,10], the probabilities of the transitions of pPCF terms
can be organised as follows (see [8, Sec. 1.2]).

Definition 3.3 [8, Section 1.2]. In what follows, we write Λ for the set of all pPCF terms

and we say that a term M is weak-normal when there is no probabilistic reduction M
κ−→M ′.

The matrix of pPCF terms is the stochastic matrix Prob ∈ [0, 1]Λ×Λ defined by

ProbM,M ′ =


κ if M

κ−→M ′

1 if M = M ′ is weak-normal

0 otherwise

Using Definition 3.3, we formulate the following soundness property which is a restate-
ment of Lemma 3.2, which established the invariance of interpretation. In this context,

Proposition 3.4 (Soundness). Suppose that the judgement Γ `M : t holds, for some term
M which isn’t a value. Then, the following equality holds

[[Γ `M : t]] =
∑

M ′ term

ProbM,M ′ · [[Γ `M ′ : t]]

By applying repeatedly this lemma and considering the specific case of normal forms,
one obtains the following corollary.
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Corollary 3.5. Consider a closed type ` t. For Γ `M : t and k ∈ N, the following equality
holds

[[Γ `M : t]] =
∑

M ′ term

ProbkM,M ′ [[Γ `M ′ : t]].

where ProbkM,M ′ is the probability that the term M reduces to the term M ′ in k steps.
Then for every closed term `M : nat, we have the inequality

[[M : nat]]n ≥ Prob∞M,n where Prob∞M,n
def
= sup

k
(ProbkM,n)

i.e. where Prob∞M,n is the least upper bound of the probabilities that M reduced to n in finitely
many steps.

Proof. Applying Proposition 3.4, we have:

[[M : nat]]n =
∑
M ′:nat

ProbM,M ′ · [[M ′ : nat]]n ≥ Prob∞M,n · [[n]]n = Prob∞M,n ·1 = Prob∞M,n

4. Computational adequacy

In this section, we provide a computational adequacy result (for the type nat), that is we
prove the converse of the inequality expressed in Corollary 3.5, which is:

∀ `M : nat, [[M : nat]]n ≤ Prob∞M,n

The key to the proof of this inequality is to define a logical relation, taken from [6] but
inspired by the original article on the semantics of PCF [27].

Definition 4.1. For every type t, consider the relation /t ⊆ [[t]]×Λt between the denotation
[[t]] and the set Λt of all closed terms of type t, written with an infix notation and defined by
induction as follows:

x = (xn)n∈N /nat M ≡ ∀n.xn ≤ Prob∞M,n

f /u→tM ≡ ∀x.∀ ` P : u.(x /u P =⇒ f(x) /t (M)P )

Note that once again, we follow the convention of presenting elements of D∞≤1(N) as sequences

(xn)n∈N.

This logical relation has the following closure properties.

Lemma 4.2 (Closure properties of the logical relation). Consider `M : t

(1) If `M : t and M →d M
′, then x /tM holds if and only if x /tM

′ holds;
(2) 0 /tM holds;
(3) supn xn /t M holds for every increasing sequence (xn)n in [[t]] such that xn /t M for

n ∈ N;
(4) x0 · y + (

∑
i xi+1) · z /nat if(M,P, z · Q) holds for x, y, z ∈ [[nat]] and ` M : nat,` P :

nat,` Q : nat such that x /nat M,y /nat P, z /nat Q.

Proof. The closure property (2) follows from the fact that probabilities are positive numbers,
while the closure property (3) follows from the fact that Scott-continuous functions are
ordered pointwise.

As for the closure property (4), we first observe that if the term if(M,P, z ·Q) reduces
to n for some n ∈ N, then either M reduces to 0 and P reduces to n, or M reduces to n+ 1
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(for some n ∈ N) and Q reduces to n. Then, the closure property (4) is induced by the
following equation which is valid for every n ∈ N (see [6, Lemma 38]):

Prob∞if(M,P,z·Q),n = Prob∞M,0 ·Prob∞P,n +
∑
k≥0

Prob∞M,k+1 ·Prob∞Q,n

Now, we proceed by induction to obtain a proof of the closure property (1). When

t = nat, the property is straightforward from the observation that ProbkM ′,n = Probk+1
M,n.

Let us now consider the case in which t = u→ v.
Assume that f /tM . When M isn’t an abstraction, (M)P →d (M ′)P for every closed

term P of type u, and we can apply the definition of the logical relation:

∀ ` P : u, x ∈ [[u]], x /u P
f/tM
====⇒ f(x) /v (M)P

induction hypothesis
=============⇒ f(x) /v (M ′)P

When M is an abstraction λxu.N : v with x : u ` N : v, there is a term N ′ such that
N →d N

′. Then by the Substitution Lemma,

(M)P →d N [x 7→ P ]→d N
′[x 7→ P ]

and therefore we obtain f(x) /v N
′[x 7→ P ] by applying the induction hypothesis twice.

Hence, since (M ′)P →d N
′[x 7→ P ], we have f(x) /v M

′(P ) by induction, which concludes
our proof that f /tM

′.
Conversely, assume f /tM

′. We focus on the case in which M is an abstraction λxu.N : v
with x : u ` N : v (since the case in which M isn’t an abstraction is again trivial). Then for
every closed term ` P : u and every x ∈ [[u]], we have f /t λx

u.N and therefore

f(x) /v (λx.N ′)P →d N
′[x 7→ P ]

therefore f(x) /vN
′[x 7→ P ] (again by the substitution lemma and the induction hypothesis).

Then, we have f(x) /v N [x 7→ P ] and by induction f(x) /v (M)P = (λxu.N)P since
(λxu.N)P →d N [x 7→ P ].

Using the closure properties of the logical relation, we prove the following lemma by
induction.

Lemma 4.3. Consider a judgment Γ `M : u where Γ ≡ (x1 : t1, . . . , xn : tn).
[[Γ `M : u]](ρ)/uM [P/x], every family P = {Pi}1≤i≤n of closed terms of type {ti}1≤i≤n

(i.e. ` Pi : ti) and every family x = {xi}1≤i≤n of variables of type t = {ti}1≤i≤n such that

[[Γ ` xi : ti]](ρ) /ti Pi.

Proof. We will reason by induction on terms.
Case M = xi: [[Γ ` xi : ti]](ρ) /ti Pi = xi[P/x]
Case M = l: there is only one transition path l→ l of probability 1 and length 0.
Case M = succ(N): straightforward induction.
Case M = if(N,L,R): follows from the closure property of the logical relation for if.
Case M = coin(κ): There is exactly one transition path to 0 with probability κ, and

one transition path to 1 with probability 1− κ. It follows that

Prob∞coin(κ),0 = κ and Prob∞coin(κ),1 = 1− κ
We write:

[[Γ ` coin(κ) : nat]](ρ) = Prob∞coin(κ),0 · [[Γ ` 0 : nat]](ρ) + Prob∞coin(κ),1 · [[Γ ` 1 : nat]](ρ)
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and therefore
[[Γ ` coin(κ) : nat]](ρ)(n) = Prob∞coin(κ),n

for every n ∈ N, i.e.

[[Γ ` coin(κ) : nat]](ρ) / coin(κ) = coin(κ)[x 7→ P ]

Case M = (N)L: straightforward induction, based on the definition of the logical
relation /t→u on the type t→ u.

Case M = λyt.N : t→ u: Given any element y ∈ [[t]] and any closed term Q of type t
such that y /t Q, we have that

[[Γ ` λy.N ]](ρ) = [[Γ, x : t ` N ]](ρ, x) /u N [P/x,Q/y]

by induction hypothesis. Then

[[Γ ` λx.N ]](ρ)(y) /u (λyt.N [P/x])Q

by the closure property of the logical relation for the deterministic reduction

(λyt.N [P/x])Q→d N [P/x,Q/y]

Case M = fix(N) with Γ ` N : u→ u: the function

f
def
= [[Γ ` N ]](ρ) : [[u]]→ [[u]]

is a Scott-continuous function such that

[[Γ `M ]](ρ) =
∨
k

fk(⊥)

Then, by the closure property of the logical relation for fixpoints, it suffices to prove by
induction on k that

fk(⊥) /u fix(N [P/x])

for every k ∈ N, knowing that the property already holds for k = 0.
Suppose that fk(⊥) /u fix(N ′), where N ′ = N [P/x], for some k ∈ N. By our induction

hypothesis (on terms),

f /u→u N
′ = N [P/x] and thus fk+1(⊥) /u N

′fix(N ′)

Finally, one can conclude that fk+1(⊥) /u N
′ by observing that fix(N ′)→d N

′fix(N ′)
and applying the closure property of the logical relation for deterministic transitions.

This lemma provides us an adequacy theorem.

Theorem 4.4 (Computational adequacy). For every closed term M of type nat,

[[M : nat]]n = Prob∞M,n

Proof. For every closed term `M : nat, we have proven previously that

[[M : nat]]n ≥ Prob∞M,n and thus [[M : nat]]n = Prob∞M,n

since by the adequacy lemma, [[M : nat]] /natM , i.e. [[M ]]n ≤ Prob∞M,n for every n ∈ N.
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We just provided a computationally adequate model for pPCF, alternative to probabilistic
coherence spaces (see e.g. [10]). Although the type nat has the same denotation in the
two semantics, the resemblance between the two semantical models is lost at higher types.
Although our adequacy theorem is formulated in a similar fashion as in [10], it is unclear
to us whether there exists an interesting categorical relation between Kegelspitzen and
probabilistic coherence spaces.

5. Interpreting recursive types

In this section, we discuss the interpretation of recursive types, taking as a basis their
formalization in the language FPC. Note that, unlike PCF, FPC is a linear language
(without contraction). Moreover, in spite of its lack of fixed-point operator (unlike PCF),
general recursion can be implemented in FPC and the language is Turing-complete (as is
PCF). We detail a presentation of FPC in Appendix A. But first, let us pause for a moment
and recall some categorical notions which are essential in the interpretation of languages
such as FPC, which cater for recursive types.

5.1. Involutory category theory. As a preliminary to the description of the denotation
of recursive types with Kegelspitzen, we recall briefly here Fiore’s “Doubling Trick” [11,
Section 6.3] (also mentioned in [26, Section 4.2.3]), an universal categorical construction which
allows to turn mixed-variance functors Cop ×C→ D into covariant functors Cop ×C→
Dop ×D. This property is required because the denotation of recursive types requires to
be able to find fixpoints, not only for covariant (endo)functors but also for mixed-variance
functors. Indeed, the arrow functor · → · : KSop ×KS→ KS is a mixed variance functor.

In what follows, the category |C| is short for Cop ×C. Additionally, in categories with
binary products ×, we write

f1
def
= π1 ◦ f : X → Y1 and f2

def
= π2 ◦ f : X → Y2

for the composite of the morphism f ∈ C(X,Y1 × Y2).

Definition 5.1 [12, Definition 4.6]. An involutory category is the pair (C, InvC) of a locally
small category C together with an involution functor InvC : C → Cop, i.e. a functor
InvC : C→ Cop such that (InvC)op ◦ InvC = IdC , the identify functor on the category C.

We write InvCat for the large cartesian category of involutory categories and homo-
morphisms

F : (C, InvC)→ (D, InvD)

defined as functors F : C→ D such that

F op ◦ InvC = InvD ◦ F

A canonical example is the pair (|C|,SwapC) where SwapC
def
= 〈Π2,Π1〉 (with Π1, Π2

projections given by the cartesian structure).

Definition 5.2. A functor F : |C| → |D| is symmetric if F : (|C|,SwapC)→ (|D|, SwapD)
is a morphism in InvCat, i.e.

F1(f, g) = F2(g, f) for maps f in the category Cop and g in the category C
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It turns out that mixed-variance functors induce symmetric functors, and every symmet-
ric functor arises in that way, following a result due to Fiore in [12, Section 4.4], re-proven
by McCusker in [26, Section 4.2.3].

Proposition 5.3. There is a one-to-one correspondence

F : |C| → D
============
|F | : |C| → |D|

between mixed variance functors F : |C| → D and symmetric functors |F | : |C| → |D|
defined by

|F |(A,B)
def
= (F (B,A), F (A,B)) |F |(f, g)

def
= (F (g, f), F (f, g))

In particular, for every Bénabou cosmos V, the functor |F | is V-enriched whenever the
categories |C| and D, and the functor F are V-enriched.

5.2. Algebraic compactness of the category of Kegelspitzen. One of the issues with
the inclusion of recursive types in a probabilistic language such as pPCF is that the cardinality
of [[t → u]] might be strictly larger than that of [[t]] in some cases, which might prevent
the existence of a fixpoint for t. Exploiting the presentation of the category KS as a
category of models of the Lawvere theory of subconvex sets, we re-use the notion of algebraic
compactness, which guarantees the existence of such fixpoints.

Recall that a category C is algebraically compact for a class L of endofunctors on C if
every endofunctor F in the class L has a canonical fixpoint µF , which is the initial F -algebra
and at the same time the inverse of the final F -coalgebra.

To obtain the algebraic compactness of KS for locally continuous endofunctors, we rely
on the notion of colimits of ω-chains, and the following theorem.

Definition 5.4. An ω-chain in a category C is a sequence of the form ∆ = D0
α0−→ D1

α1−→ · · ·
Given an object D in a category C, a cocone µ : ∆→ D for the ω-chain ∆ is a sequence

of arrows (commonly referred to as embeddings) µn : Dn → D such that µn = µn+1 ◦ αn
holds for every n ≥ 0.

A colimit (or colimiting cocone) of the ω-chain ∆ is an initial cocone from ∆ to D, i.e. for
every cocone µ′ : ∆ → D′, there exists a unique map f : D → D′ such that f ◦ µn = µ′n
holds for every n ≥ 0.

Dually, we consider ωop-chains ∆op = D0
β0←− D1 ← · · · in a category, cones γ : ∆op ← D

and limits (or limiting cones) for an ωop-chain ∆op.

Theorem 5.5. For every small Dcpo⊥!-category C, the Dcpo⊥!-enriched category of locally
strict continuous functors C→ Dcpo⊥! and natural transformations between them (ordered
pointwise) is algebraically compact for the class of locally continuous endofunctors.

Proof. First we need to show that [C,Dcpo⊥!] has all colimits of ω-chains of embeddings.
Consider an endomorphism Ψ on the category [C,Dcpo⊥!]. Consider an ω-chain

∆ = (Fk, αk : Fk ⇒ Fk+1)k∈N in [C,Dcpo⊥!], where F0 is the zero functor of [C,Dcpo⊥!]
and α0 is the unique natural transformation from F0 to ΨF0, and Fk+1 = ΨFk, αk+1 = Ψαk
for k ∈ N. Then ∆ is a family of ω-chains ∆X = (Fk(X), αk[X] : Fk(X)→ Fk+1(X))k∈N in
Dcpo⊥! indexed by the objects of the small category C.
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For each X ∈ C, the corresponding ω-chain ∆X in Dcpo⊥! has a colimit, since Dcpo⊥!

has all colimits of ω-chains of embeddings. For each X ∈ C, we write µ[X] : ∆X → F (X)
for the cocone (of arrows µk[X] : Fk(X)→ F (X)) which is the colimit of the ω-chain ∆X .

We turn the mapping F : X 7→ F (X) into a functor F : C→ Dcpo⊥! by taking

F (f) = µ0[X ′] ◦ F0(f) ◦ µP0 [X]

for f ∈ C(X,X ′). The definition of F (f) for each f ∈ C(X,X ′) is such that for every k ∈ N,
the following diagram commutes:

Fk(X)

Fk(f)

��

µk[X]
// F (X)

µP0 [X]
//

F (f)

��

F0(X)

F0(f)

��

Fk(X
′)
µk[X′]

// F (X ′)
µP0 [X′]

// F0(X ′)

so that the equality F (f) = µk[X
′] ◦ Fk(f) ◦ µPk [X] holds for every k ∈ N.

Consider the family of cocones ∆X → F (X) (whose arrows are the embeddings µk[X] :
Fk(X) → F (X), k ∈ N) indexed by the objects of the category C. It is a cocone ∆ → F
whose arrows are embeddings µk : Fk ⇒ F , which are well-defined natural transformation
by construction of F . It follows that ∆→ F is the colimit of ∆ because for each X ∈ C,
∆X → F (X) is the colimit of ∆X .

Consider the category ω-CPO of ω-cpos, i.e. posets in which every countable chain has
a sup (which is the case for dcpos), and Scott-continuous maps between them. A category
which is Dcpo⊥!-enriched is also ω-CPO-enriched and a functor which preserves directed
sups preserves in particular countable directed sups. We know from [4, Theorem 5.4] that
every ω-CPO-enriched category which has colimits of ω-chains is algebraically compact for
the class of locally continuous endofunctors, and therefore so does [C,Dcpo⊥!].

Recall that the Lawvere theory L≤1 is a small Dcpo⊥!-category. Then, the fact that the
functor category [L≤1,Dcpo⊥!] is algebraically compact for locally continuous endofunctors
leads us to the following theorem.

Corollary 5.6. The category KS, as a category equivalent to the category [L≤1,Dcpo⊥!]×,
is algebraically compact for locally continuous endofunctors.

Proof. First, let us observe that every locally continuous endofunctor F on [L≤1,Dcpo⊥!]×
extends to a locally continuous endofunctor G on [L≤1,Dcpo⊥!] defined by G(X) = F (X)
when X : L≤1 → Dcpo⊥! is product-preserving, and G(X) = X otherwise.

Now, consider a chain of embeddings (Dn, αn : Dn ⇒ Dn+1)n formed of product-preser-
ving functors L≤1 → Dcpo⊥! and natural families of strict Scott-continuous maps, where

D0
def
= 1 : L≤1 → Dcpo⊥! and Dn+1

def
= G(Dn) = F (Dn) for n ∈ N

By Theorem 5.5, we know that the functor G has a fixpoint D : L≤1 → Dcpo⊥! given on
objects by

D(k) = {(xn)n ∈ ΠnDn(k) | ∀n ≥ 0, αPn (k)(xn+1) = xn}
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where every αPn : Dn+1 ⇒ Dn is part of an embedding projection pair
〈
αEn , α

P
n

〉
, with

αEn
def
= αn, as described in [12, § 5.2]. Since every functor Dn : L≤1 → Dcpo⊥! is product-

preserving, so is D: for natural numbers k and l, we have

D(k + l) = {(xn)n ∈ ΠnDn(k + l) | ∀n ≥ 0, αPn (k + l)(xn+1) = xn}
∼= {((yn)n, (zn)n) ∈ ΠnDn(k)⊗ΠnDn(l) | ∀n ≥ 0, (αPn (k)(yn+1) = yn

∧ αPn (l)(zn+1) = zn)}
∼= D(k)⊗D(l)

It follows that F (D) is equal to G(D), which is itself equivalent to D.

The denotational semantics of types introduced in Section 5.3 essentially relies on the

category |KS| def
= KSop ×KS. The algebraic compactness of |KS| can be obtained through

standard results of the literature [2, 4, 13], gathered in [12]:

• Algebraic compactness is a self-dual property: if the category C is algebraically compact
for locally continuous endofunctors, then so does its opposite category Cop.
• If the categories C and D are algebraically compact for locally continuous endofunctors,

then so does their product category C×D.

Corollary 5.7. The category |KS| is algebraically compact for locally continuous endofunc-
tors.

5.3. Kegelspitzen as a model of recursive types. As an algebraically compact cate-
gory, the category KS is a domain-theoretic model of recursive types. We recall here the
foundations of the semantics of recursive types, and refer the interested reader to Fiore’s
thesis [11] for a complete account of the axiomatization of computationally adequate models
of FPC4

Type judgements Θ ` t and judgements Θ | Γ `M : t (introduced in Appendix A) are
respectively denoted by symmetric locally Scott-continuous n-ary functors

[[Θ ` t]] : |KS|n → |KS|
and by natural transformations

[[Θ | Γ `M : t]] : [[Θ ` Γ]]⇒ [[Θ ` t]]
i.e. natural families of morphisms{

[[Θ | Γ `M : t]]X : [[Θ ` Γ]](X)→ [[Θ ` t]](X) | X ∈ |KS|n
}

in the category |KS|.
The denotation [[Θ ` Θi]] of the type judgement Θ ` Θi (with Θ typing context of

length n) is the i-th projection functor Π
|KS|n
i : |KS|n → |KS|. Moreover, the denotation

[[Θ ` µX.t]] of a typing judgement Θ ` µX.t involving a recursive type µX.t to be µ[[Θ, X ` t]],
the fixpoint of the functor [[Θ, X ` t]] : |KS|n+1 → |KS| by algebraic compactness.

4Note that the FPC defined in Appendix A is a linear calculus. In the typing rule for the application
(M)N , the terms M and N are given distinct contexts and therefore do not share variables. We motivate
this restriction by the fact that the category KS, in which we have chosen to interpret recursive types, is not
a cartesian closed category.
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Now, recall that for functors F,G : |C| → |D|, we have functors Π
|C|
2 F,Π

|C|
2 G : |C| → D,

and therefore a (mixed-variance) functor Π
|C|
2 F ⊗ Π

|C|
2 G : |C| → D, itself in one-to-one

correspondence with a symmetric functor |Π|C|2 F ⊗Π
|C|
2 G| : |C| → |D| by Proposition 5.3.

Then, the denotations of other type contexts is given as follows.

[[Θ ` t1 × t2]]
def
= |Π|KS|

2 [[Θ ` t1]]⊗⊥ Π
|KS|
2 [[Θ ` t2]]|

[[Θ ` t1 + t2]]
def
= |Π|KS|

2 [[Θ ` t1]]⊕Π
|KS|
2 [[Θ ` t2]]|

[[Θ ` t1 → t2]]
def
= |KS(Π

|KS|
1 [[Θ ` t1]],Π

|KS|
2 [[Θ ` t2]])|

where Π
|KS|
1 : |KS| → KSop and Π

|KS|
2 : |KS| → KS are the projections of the

cartesian product |KS|, ⊗⊥ : KS ×KS → KS is the smash product functor, KS(−,−) :
KSop ×KS→ KS is the homset functor (which acts as exponential object in the monoidal
closed structure (KS,⊗⊥,KS(−,−)) of Proposition 2.6). Note that function types are
interpreted as Scott-continuous functions in pPCF, while they are here interpreted as affine
(strict) Scott-continuous maps.

The functor ⊕ : KS ×KS → KS is the functor induced by the coproduct of convex
sets, discussed in a categorical setting in [20] and adapted for (pointed) convex dcpos
in [29, Section 3.1.2].

In detail, recall that the sum A+B of two convex sets, A and B, can be described as the
set A ]B ] (A×B × (0, 1)), where (0, 1) is the open unit interval. Its elements either come
directly from A, or from B, or are a non-trivial formal convex combination of elements from
A and B. With a slightly informal notation, we write (a,−, 0) instead of a, and (−, b, 1)
instead of b. Then define the convex structure as follows∑

i

ri.(ai, bi, λi)
def
= (
∑
i

ri(1− λi)
1−

∑
i riλi

.ai,
∑
i

riλi∑
i riλi

.bi, (
∑

i riλi))

taking the obvious convention where (
∑

i riλi) is 0 or 1. This has the universal property
of the coproduct in the category of convex sets. Therefore, if A and B are (sub)convex
dcpos then we define their skew sum A⊕B as the coproduct A+B of A and B as convex
sets, equipped with the partial order (a, b, λ) ≤ (a′, b′, µ) if a ≤ a′ and b ≤ b′ and λ ≤ µ. In
which case, A⊕B is a Kegelspitze when A and B are Kegelspitzen.

It is worth noting that this has a universal property similar to the universal property of
a coproduct, to the exception that there is an additional requirement that a ≤ b for a ∈ A,
b ∈ B. For example, we can freely add a bottom element to a convex dcpo A by taking the
skew sum (1⊕A). Moreover, the skew sum is not a symmetric operator, unlike its syntactic
counterpart (the sum type) in FPC, as the skew sum is constrained to account for the fact
that pFPC manipulates probability distributions.
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Appendix A. FPC

The functional programming language FPC [12] can be seen as a “PCF with recursive types”,
and has been heavily used in the denotational study of recursive types. A recursive type is
an inductively defined data type for terms which may contain type variables that are used in
fixed points. It is an important concept for high-level programming languages, which allows
the definition of data types such as the types for lists and trees, whose size can dynamically
grow. An example of recursive type in a ML-style functional programming language is

type nat = zero | succ nat

which corresponds to the natural numbers.
In recursive type theory, recursive types are written µX.t, where X is a type variable

which may appear in the type t. For example, the type nat is written µX.1 +X. Indeed,
the constructor zero is a type without arguments and therefore corresponds to the unit type
1, and succ takes as argument another term of type nat.

The syntax of FPC relies on two grammars, one for types and one for terms:

Types t, u ::= X | t+ u | t× u | t→ u | µX.t
Terms M,N,P ::= x | inlt,u(M) | inrt,u(M) | case(M,x ·N, y · P ) | (M)N

| (M,N) | λxσ.M | fst(M) | snd(M) | introµX.t(M) | elim(M)

where X is taken in the sort of type variables, and x is taken in the sort of variables. In
detail, we have sum types t+u, product types t×u, function types t→ u, and recursive types
µX.t, and corresponding primitives to manipulate instances of such types. In particular,
instructions such as introµX.t(M) and elim(M) allow respectively the introduction and the
elimination of recursive types, through a process that we now proceed to describe.

Firstly, we need to define the rules which describe well-formed types and expressions.
For that purpose, we introduce typing judgements Θ ` t, which indicate that the type t is a
well-formed type with respect to the typing context Θ. This means that the free variables
of the type t are in the list Θ of distinct type variables. Recall that a variable is called
free when it is not bound. In this setting, a type variable is free when it is not used as
a parameter of a recursive type. For example, the variable X is bound in µX.t for every
type t. A closed type is a well-formed type with no typing context, that is a type t such
that the typing judgement ` t holds. The substitution in a type t of every occurence of a
type variable X by a type t′ is written t[X 7→ t′]. Well-formed types of FPC are defined
inductively by the following rules:

Θ, X ` X
Θ, X ` t

Θ ` µX.t
Θ ` t Θ ` u

? ∈ {+,×,→}
Θ ` t ? u
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Similarly, one can define well-formed expressions inductively, using judgements Θ | Γ `
M : t which entails that the type t is well-formed under the typing context Θ (that is, the
typing judgement Θ ` t holds), and that the term M of type t is well-formed under the
context Γ, defined as a list of distinct variables, written as x : t. What follows is a set of
rules which allows to determine inductively which expressions are well-formed:

Θ | Γ `M : t[X 7→ µX.t]

Θ | Γ ` introµX.t(M) : µX.t

Θ | Γ `M : µX.t

Θ | Γ ` elim(M) : t[X 7→ µX.t]

Θ | Γ, x : t ` x : t

Θ | Γ, x : t `M : u

Θ | Γ ` λxt.M : t→ u

Θ | Γ `M : t→ u Θ | Γ′ ` N : t

Θ | Γ,Γ′ ` (M)N : u

Θ | Γ `M : t Θ ` u

Θ | Γ ` inlt,u(M) : t+ u

Θ | Γ `M : t Θ ` u

Θ | Γ ` inrt,u(M) : u+ t

Θ | Γ `M : t+ u Θ | Γ′, x : t ` N : v Θ | Γ′, y : u ` P : v

Θ | Γ,Γ′ ` case(M,x ·N, y · P ) : v

Now, we can define a program in FPC to be an expression M such that the judgement
`M : t holds for some type ` t, that is: M is a closed term of closed type. A context with a
hole is an expression C[−] with holes such that for every term M , C[M ] is the expression
obtained by replacing every hole by the term M . When the context C[−] is of type t, we
write C[−] : t.

Secondly, the grammars of FPC are associated with the following operational semantics,
which describes how programs are executed. But first, let’s recall what a reduction system
is.

Definition A.1. A reduction system is a pair (Λ,→) of a collection Λ of terms and a binary
relation →⊆ Λ× Λ on terms, which is called a reduction relation. The transitive reflexive
closure of a reduction relation → is denoted by →∗. And therefore, if the relation M → N
means that the term M reduces to the term N in one step, then the relation M →∗ N ′
means that the term M reduces to the term N in finitely many steps. A term M ∈ Λ is a
normal form (or value) if there is no term N ∈ Λ such that M →∗ N . One says that the
term M has a normal form if it reduces to a normal form in finitely many steps.

A reduction relation is confluent when for every triplet (M,N1, N2) of terms, the
following implication holds:

M →∗ N1 ∧M →∗ N2 =⇒ ∃M ′. N1 →∗ M ′ ∧N2 →∗ M ′

Additionally, a reduction relation is said to be strongly normalizing when every reduction
sequence M0 →M1 → · · · eventually terminates.

What follows is the operational semantics of the language FPC.

(λxα.M)N →M [N/x]
M →M ′

λx.M → λx.M ′

M →M ′, M not abstract

(M)N → (M ′)N

(where an abstract term is a term of the form λx.M for some variable x and some term M)
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M → N

inl(M)→ inl(N)

M → N

inr(M)→ inr(N)

M → inl(L)

case(M,x ·N, y · P )→ N [x 7→ L]

M → introµX.τ (N)

elim(M)→ N

M → inr(R)

case(M,x ·N, y · P )→ P [y 7→ R]
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