
Logical Methods in Computer Science
Volume 18, Issue 3, 2022, pp. 3:1–3:67
https://lmcs.episciences.org/

Submitted Dec. 14, 2020
Published Aug. 02, 2022

MODULES OVER MONADS AND OPERATIONAL SEMANTICS

(EXPANDED VERSION)

ANDRÉ HIRSCHOWITZ 𝑎, TOM HIRSCHOWITZ 𝑏, AND AMBROISE LAFONT 𝑐

𝑎Univ. Côte d’Azur, CNRS, LJAD, 06103, France

𝑏Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France

𝑐UNSW, Sydney, Australia

Abstract. This paper is a contribution to the search for efficient and high-level math-
ematical tools to specify and reason about (abstract) programming languages or calculi.
Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus
covering new applications such as 𝜆𝜇-calculus, 𝜋-calculus, Positive GSOS specifications,
differential 𝜆-calculus, and the simply-typed, call-by-value 𝜆-calculus. Moreover, we design
a suitable notion of signature for transition monads.

1. Introduction

The search for a mathematical notion of programming language goes back at least to Turi
and Plotkin [TP97], who coined the name “Mathematical Operational Semantics”, and
explained how known classes of well-behaved rules for structural operational semantics,
such as GSOS [BIM95], can be categorically understood and specified via bialgebras and
distributive laws. Their initial framework did not cover variable binding, and several authors
have proposed variants which do [FT01, FS06, Sta08], treating examples like the 𝜋-calculus.
However, none of these approaches covers higher-order languages like the 𝜆-calculus.

In recent work, following previous work on modules over monads for syntax with
binding [HM07, AHLM19] (see also [Ahr16]), Ahrens et al. [AHLM20] introduce reduction
monads, and show how they cover several standard variants of the 𝜆-calculus. Furthermore,
as expected in similar contexts, they propose a mechanism for specifying reduction monads
by suitable signatures.

Our starting point is the fact that already the call-by-value 𝜆-calculus does not form
a reduction monad. Indeed, in this calculus, variables are placeholders for values but not
for general 𝜆-terms; in other words, reduction, although it involves general terms, is stable
under substitution by values only. In the present work, we generalise reduction monads to

Key words and phrases: operational semantics; category theory.
An extended abstract of this paper appeared in FSCD ’20 [HHL20]. The present version incorporates

several improvements and additions, listed at the end of §1.
We thank the anonymous reviewers for their careful reading and constructive comments.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(3:3)2022
© A. Hirschowitz, T. Hirschowitz, and A. Lafont
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-2523-1481
https://orcid.org/0000-0002-7220-4067
https://orcid.org/0000-0002-9299-641X
http://creativecommons.org/about/licenses

3:2 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

what we call transition monads. The main new ingredients of our generalisation are as
follows.

• We now have two kinds of terms, called placetakers and states: variables are placeholders
for our placetakers, while transitions relate states. Typically, in the call-by-value, small-step
𝜆-calculus, placetakers are values, while states are general terms.
• We also have a set of types for placetakers, and a possibly different set of types for
transitions and states: transitions of a given type relate states of this type. Typically, in
the simply-typed, call-by-value 𝜆-calculus, both sets of types coincide and are given by
simple types; while in pure 𝜆𝜇-calculus, we have two placetaker types, one for programs
and one for stacks, and three transition types, respectively for programs, stacks, and
commands.
• We in fact have two possibly different kinds of states for each transition type, source
states and target states, so that a transition of a given type now relates a source state to
a target state of this type. Typically, in the untyped, call-by-value, big-step 𝜆-calculus,
source states (of the unique transition type) are general terms, while target states are
values.
• Our variables form a (variable!) family of sets indexed by the placetaker types. To such a
variables family 𝑋, a transition monad assigns
– an object 𝑇 (𝑋) (‘of placetakers with free variables in 𝑋’), which is again a family of

sets indexed by the placetaker types, and
– two state objects 𝑆1(𝑇 (𝑋)) and 𝑆2(𝑇 (𝑋)) (‘of source (resp. target) states with free

variables in 𝑋’), which are families of sets indexed by transition types; here 𝑆1 and 𝑆2
are two functors producing state objects out of placetaker objects.

Roughly speaking (see §3), a transition monad consists of three components:

• a placetaker monad 𝑇 ,
• two state functors 𝑆1, 𝑆2,
• a transition structure consisting of a 𝑇-module 𝑅 and two 𝑇-module morphisms

src : 𝑅 → 𝑆1𝑇 and tgt : 𝑅 → 𝑆2𝑇 ,

where 𝑇-modules [HM07] are objects equipped with substitution by elements of 𝑇 . We view
the transition structure (𝑅, src, tgt) as an object of the slice category 𝑇 -Mod 𝑓 /𝑆1𝑇 × 𝑆2𝑇 of
(finitary) 𝑇-modules over 𝑆1𝑇 × 𝑆2𝑇 .

Reduction monads [AHLM20] correspond to the untyped case with 𝑆1 = 𝑆2 = IdSet.
There, reduction monads are identified with suitable relative monads [ACU15], and we
provide a similar identification for transition monads (see Proposition 3.6).

We present our series of examples of transition monads in §4: 𝜆𝜇-calculus, simply-typed
𝜆-calculus (in its call-by-value, big-step variant), 𝜋-calculus (as an unlabelled transition
system), positive GSOS systems, and differential 𝜆-calculus.

After defining transition monads, we embark on a second part of the paper, devoted to
offering the operational semanticist some hopefully convenient tools for defining programming
languages (as transition monads).

Specifically, we propose an approach to the specification of transition monads via
signatures, which follows the spirit of Initial Algebra Semantics [GTW78]. This approach
is thus categorical in nature, hence we have to upgrade our sets of transition monads into
categories, say TransMnd(P,S), one for each pair (P,S) of sets of placetaker types and

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:3

transition types (see Definition §5.13). For these categories, we propose what we call a
register: for a category C, a register consists of

(1) a set Sig of signatures,
(2) a semantics map È−É assigning to each signature 𝑆 in Sig a category 𝑆 -alg of algebras,

or models, together with a forgetful 1 functor 𝑈 : 𝑆 -alg→ C, and
(3) a validity proof of the fact that for each 𝑆, the category 𝑆 -alg has an initial object.

Remark 1.1. This definition is written in type-theoretic style, in the sense that the validity
proof is treated as a proper mathematical object. The reader working in a standard, set-
theoretical logical setting should of course understand this as an additional condition that
registers must satisfy.

A register for C yields a “decoding” map spec sending 𝑆 to spec (𝑆) := 𝑈 (0), where 0 here
denotes the initial object in 𝑆 -alg. The efficiency of a register for a category lies in the fact
that it allows the expert to easily formalise the informal specification they have in mind for
the relevant object. We illustrate in §11 the expressiveness of our register RegTransMndP,S

for transition monads by designing signatures for our examples of §4. For Positive GSOS
systems, we even go further by defining a specific register, in which each individual system
is more easily specified.

Our register for transition monads is built out from three intermediate registers, corre-
sponding to the three components listed above:

• a register RegMnd 𝑓 (SetP) for monads in the category SetP,

• a register Reg[SetP, SetS] 𝑓 for functors SetP → SetS, and
• a register RegTransStructP,S(𝑇, 𝑆1, 𝑆2) for transition structures over (𝑇, 𝑆1, 𝑆2).
And as could be expected, a signature for a transition monad in our register RegTransMndP,S

is a record consisting of

• a signature of RegMnd 𝑓 (SetP) specifying the placetaker monad 𝑇 ,

• two signatures of Reg[SetP, SetS] 𝑓 specifying the state functors 𝑆1 and 𝑆2, and
• a signature of RegTransStructP,S(𝑇, 𝑆1, 𝑆2) specifying the transition structure.

Here, a crucial feature is that the involved register in the last field of this record
depends on the objects specified by previous fields. This contrasts with the approach taken
in [AHLM20], where the corresponding field cannot be expressed in terms of the specified
placetaker monad, and must instead be parametric in the models of previous fields. Our
choice allows more signatures, and we take advantage of this subtle fact in our treatment
(see §11.5) of Ehrhard and Regnier’s differential 𝜆-calculus [ER03]. Let us mention that the
counterpart for this advantage is that the recursion principle induced by our initial semantics
is significantly weaker than could be expected (see Remark 5.14 and §12).

Our signatures for functors and monads incorporate equations similar to those of
equational systems: a signature without equations specifies a kind of free object, and adding
equations specifies a kind of quotient of this free object, obtained by somehow forcing the
added equations to hold. Such a quotienting procedure has already been achieved in a fairly
general (and elaborate) way by Fiore and Hur [FH09]. Under mild additional hypotheses on
the ambient category and on equations, we obtain a compact “free+quotient” description of
our initial models (Theorems 7.18 and 8.23).

This description roughly goes as follows: we consider a signature augmented with one
formal operation for each equation, which yields a new set of terms, say augmented terms.

1Here “algebra” and “forgetful” have no technical meaning and are chosen by analogy.

3:4 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

By interpreting the new operations as prescribed by each side of the equations, we obtain
two translations, say 𝐿 and 𝑅, from augmented terms to plain terms. The initial model
is then obtained by identifying any two plain terms of the form 𝐿 (𝑎) and 𝑅(𝑎), for some
augmented term 𝑎.

This description is a crucial ingredient of our treatment of the differential 𝜆-calculus: as
already mentioned, the type of the third field of its signature depends in particular on the
monad specified by the first field, and the construction of the signature for this third field
relies on our explicit description for that monad (see the proof of Lemma 11.6).

Along the elaboration of our registers, we strive to offer the operational semanticist
intuitive notation for defining signatures. They may thus specify programming languages as
transition monads by the following procedure:

• Fix sets P and S of placetaker and transition types.
• Pick a signature of RegMnd 𝑓 (SetP) for specifying the placetaker monad 𝑇 , by operations
and equations (e.g., using Notation 7.12).
• Choose two signatures of Reg[SetP, SetS] 𝑓 for specifying the state functors 𝑆1 and 𝑆2,
again by operations and equations (e.g., using Notation 8.18).
• Choose a signature of RegTransStructP,S(𝑇, 𝑆1, 𝑆2) for specifying the transition structure,
e.g., by giving some rules using the notation of §6.4.

Plan. In §2, we present our notations and give some categorical preliminaries. In §3 we
define transition monads and in §4, we present our selected examples (in the traditional
way). Then, in §5, we introduce registers and define our register for transition monads,
deferring the precise definition of its components to the next sections. We then introduce our
registers for transition structures (§6), monads (§7), and functors (§8), stating the announced
explicit descriptions of initial algebras along the way. Proofs are dealt with in §9 and §10.
In §11, we then revisit all examples from §4, specifying them through signatures of our
registers RegTransMndP,S for transition monads. Finally, we conclude in §12 by summing
up our contributions, assessing the scope of our registers RegTransMndP,S, and giving some
perspectives.

Remark 1.2. The reader only interested in using our framework may safely skip §9 and §10.

Related work. As mentioned above, our work refines a recent work [AHLM20], allowing
to cover many new applications with a very similar approach. This approach differs from
the bialgebraic one introduced long ago by Plotkin and Turi [TP97]: the positive difference
is that it covers higher-order languages like the 𝜆-calculus, while a negative difference is that
it does not recover congruence of bisimilarity.

Regarding syntax with variable binding, we model it using monads, following a standard
approach going back to Bellegarde and Hook [BH94] (but see also [AR99, HM10, AHLM19]).
Because the monad-based approach is essentially equivalent to the presheaf-based one [FPT99,
Fio08], we anticipate that our whole framework could be straightforwardly adapted to
presheaf models. We are more cautious about nominal sets [GP99], mainly because we would
need a better understanding of the status of substitution in the latter approach (see, e.g.,
Power [Pow07]).

Furthermore, our main register for monads (§7) is a simply-typed refinement of a
known one [AHLM19], close in spirit to [Ahr16]. Its validity proof relies on another, new

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:5

register (§9), which combines two standard registers from the literature, respectively based
on equational systems [FH09] and pointed strong endofunctors [FPT99]. We could in fact
define a register based on equational systems, and use it directly for specifying monads.
Moreover, our explicit description of initial models applies in particular to equational systems
(Theorem 10.14).

Concerning our registers for slice categories, we suspect that they could be understood
in terms of polynomial functors [Koc09], which were recently used in a similar context by
Arkor and Fiore [AF20].

We are aware of a few notions of signatures for languages with variable binding equipped
with some notion of evaluation (or transition) [Ham03, Ham04, Hir13, Ahr16]. They essen-
tially model rewriting, which implies that transitions are closed under arbitrary contexts.
Such approaches cannot cover languages like the 𝜋-calculus, in which transitions may not
occur under inputs or outputs.

As is well-known, evaluation is a directed variant of equality, and transition proofs are a
directed form of identity proofs. For this reason, notions of signatures for dependently-typed
languages like type theory may provide an alternative approach to the specification of
operational semantics systems. Examples of such notions of signatures include Fiore’s
simple dependently-sorted signatures [Fio08], Altenkirch et al.’s categorical semantics of
inductive-inductive definitions [AMFS11], and Garner’s combinatorial approach [Gar15].

Finally, let us mention that a preliminary version of the present work appears in the
third author’s PhD thesis [Laf19, Chapter 6].

Differences with conference version. Here is a list of significant differences w.r.t. the
conference version, beyond more detailed proofs.

• Most importantly, we provide an explicit description of the initial algebras of signatures
involving equations, in §10.
• We also correct a few errors, notably:
– We had omitted the congruence rules for reduction in 𝜆𝜇-calculus and differential
𝜆-calculus.

– We had omitted the syntactic equation 𝐷 (𝐷𝑒 · 𝑓) · 𝑔 ≡ 𝐷 (𝐷𝑒 · 𝑔) · 𝑓 from our definition
of differential 𝜆-calculus.

– Again about differential 𝜆-calculus, we had also erroneously claimed that the method
we used for defining unary multiterm substitution applies to partial differentiation. We
now rely on the explicit descriptions of §10 for both operations.

• Finally, we include a few minor improvements, e.g.:
– We design an abstract version of the original register for slice module categories. In

passing, the new version is slightly more expressive.
– We design a new register combining the features of equational systems and pointed

strong endofunctors into monoidal equational systems (§9.3).
– We provide an alternative way in which to organise the 𝜋-calculus as a transition monad.

2. Notations and categorical preliminaries

In this section, we fix some notation, and recall a few categorical notions. We advise the
reader to skip it, except perhaps for §2.1, and get back to it when needed. In §2.1, we
fix some basic notation. In §2.2, we recall some well-known results about locally finitely

3:6 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

presentable categories. Then, in §2.3, we introduce a notion of convenient monoidal category.
This is important for us because we will use finitary monads a lot, and these are monoids
for the composition monoidal structure on the category of finitary endofunctors. We show
in particular that this composition monoidal structure is convenient. We go on in §2.4 by
recalling the standard notion of module over a monoid in a monoidal category, and introduce
a notion of parametric module, roughly a module definable for all monoids. We then recall a
slightly more general definition of (parametric) modules in the particular case of modules over
monads (i.e., when the base category is a functor category). In §2.5, after briefly recalling
Beck’s monadicity theorem, we state one of its useful (folklore) consequences, a “cancellation”
property for monadic functors. In §2.6, we recall the well-known correspondence between
finitary monadic functors and finitary monads. Finally, in §2.7, we recall the important fact
that equalisers of (finitary) monadic functors are computed as in CAT.

2.1. Basic notation. In the following, Set denotes the category of sets, and CAT denotes
the (very large) category of locally small categories. We often implicitly view natural
numbers 𝑛 as intervals {1, . . . , 𝑛} in N, so that, e.g., 2 ∈ 3, 2 ⊆ 3, and so on. Furthermore, in
any category with binary products, we denote by 〈 𝑓 , 𝑔〉 : 𝐶 → 𝐴 × 𝐵 the pairing induced by
any morphisms 𝑓 : 𝐶 → 𝐴 and 𝑔 : 𝐶 → 𝐵. Similarly, when it makes sense, the copairing of
𝑓 : 𝐴→ 𝐶 and 𝑔 : 𝐵→ 𝐶 is denoted by [𝑓 , 𝑔] : 𝐴 + 𝐵→ 𝐶. Initial objects are denoted by 0.
Given an endofunctor 𝐹, the category of algebras 𝐹𝑥 → 𝑥 is denoted by 𝐹 -alg. When 𝐹 is a
monad, the notation 𝐹 -alg rather refers to its category of algebras in the sense of monads,
that is, morphisms 𝐹𝑥 → 𝑥 satisfying the three standard axioms. Finally, given an object
𝑐 of a category 𝐶, we denote the slice (resp. coslice) category over (resp. under) 𝑐 by 𝐶/𝑐
(resp. 𝑐/𝐶).

2.2. Locally finitely presentable categories and finitary functors. We heavily rely
on the theory of locally finitely presentable categories [AR94]. Very briefly, recall that
filtered categories are a categorical generalisation of directed posets.

Definition 2.1. A category is filtered when

• it is not empty,
• for any two objects 𝐶 and 𝐷, there is an object 𝐸 and arrows 𝐶 → 𝐸 and 𝐷 → 𝐸, and
furthermore,
• any two parallel arrows 𝐶 ⇒ 𝐷 are coequalised by some morphism 𝐷 → 𝐸 .

A filtered colimit is a colimit of some functor from some small filtered category.

Definition 2.2. An object of a category is finitely presentable iff its covariant hom-
functor preserves filtered colimits.

Definition 2.3 [AR94, Definition 1.9]. A locally small category is locally finitely pre-
sentable iff it is cocomplete and every object is a filtered colimit of objects from a fixed set
of finitely presentable generators.

Example 2.4 [AR94, Example 1.12]. Any presheaf category is locally finitely presentable.

Proposition 2.5 [AR94, Corollary 1.28]. Any locally finitely presentable category is com-
plete.

In this context, functors that preserve filtered colimits are important. They are called
finitary.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:7

Definition 2.6. Let [C,D] 𝑓 denote the category of finitary functors C → D for any
categories C and D.

Proposition 2.7. If C and D are locally finitely presentable, then so is [C,D] 𝑓 .

Proof. See [KP93, Section 4] for the more general enriched case.

2.3. Convenient monoidal categories. We sometimes work in a monoidal category sat-
isfying some additional properties. We call such monoidal categories convenient.

Definition 2.8. A monoidal category is convenient when

• it is locally finitely presentable;
• the tensor preserves filtered colimits on the right and all colimits on the left.

Proposition 2.9. Any category [C,C] 𝑓 of finitary endofunctors on a locally finitely pre-
sentable category C is convenient for the composition monoidal structure.

Proof. By Proposition 2.7, any category of finitary endofunctors on a locally finitely pre-
sentable category is locally finitely presentable. Furthermore, since colimits are computed
pointwise in functor categories whenever the codomain category is cocomplete [Mac98, §V.4],
we have (colim𝑖 𝐺𝑖) ◦ 𝐹 � colim𝑖 (𝐺𝑖 ◦ 𝐹) for any diagram 𝐺 and object 𝐹, thus the composi-
tion tensor product preserves all colimits on the left. Finally, by definition of finitariness,
the considered functors preserve filtered colimits, hence for any such diagram 𝐺 and object
𝐹 we have 𝐹 ◦ colim𝑖 𝐺𝑖 � colim𝑖 (𝐹 ◦ 𝐺𝑖) as desired.

Example 2.10. In particular, all categories of the form [SetP, SetP] 𝑓 that we will consider
below (where P is a set) are convenient for the composition monoidal structure.

2.4. (Parametric) modules over monoids and monads.

2.4.1. (Parametric) modules over monoids. Let us fix a monoidal category C. We first recall
the standard notions of monoid and (right) module over a monoid in a monoidal category,
and then introduce the notion of parametric module, inspired by [HM07].

Definition 2.11. Let Mon(C) denote the category of monoids, in any monoidal category
C [Mac98, VII.3].

Definition 2.12. Given a monoid (𝑋, 𝑒𝑋 , 𝑚𝑋) in C, a (right) 𝑋-module is an object 𝑀
equipped with a morphism 𝑎 : 𝑀 ⊗ 𝑋 → 𝑀 making the following diagrams commute

𝑀 ⊗ 𝐼 𝑀 ⊗ 𝑋

𝑀

𝑀 ⊗𝑒𝑋

𝑎𝜌𝑀

(𝑀 ⊗ 𝑋) ⊗ 𝑋 𝑀 ⊗ (𝑋 ⊗ 𝑋)

𝑀 ⊗ 𝑋 𝑀 ⊗ 𝑋

𝑀

𝛼𝑀,𝑋,𝑋

𝑀 ⊗𝑚𝑋

𝑎

𝑎⊗𝑋

𝑎

(the axioms for the dual case of left modules are given in [Sea13, §3.2]). We denote by
𝑋 -Mod the category of 𝑋-modules, with action-preserving morphisms between them.

3:8 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Remark 2.13. The coherence conditions amount to equipping 𝑀 with algebra structure
for the monad − ⊗ 𝑋 induced by 𝑋.

A parametric module will assign a module to any monoid. In order to formally define
this, let us introduce the following category, which collects all categories of the form 𝑋 -Mod.

Definition 2.14. Let Mod(C) denote the category

• whose objects are pairs (𝑋, 𝑀) where 𝑋 is a monoid and 𝑀 is an 𝑋-module, and
• whose morphisms (𝑋, 𝑀) → (𝑌, 𝑁) are pairs (𝑓 , 𝑔) of a monoid morphism 𝑓 : 𝑋 → 𝑌 and
a morphism 𝑔 : 𝑀 → 𝑁 in C such that the following diagram commutes.

𝑀 ⊗ 𝑋 𝑁 ⊗ 𝑌

𝑀 𝑁

𝑔⊗ 𝑓

𝑔

Let UMod : Mod(C) →Mon(C) denote the forgetful functor.

Definition 2.15. A parametric module over C is a section of the forgetful functor
UMod : Mod(C) → Mon(C), i.e., a functor 𝑆 : Mon(C) → Mod(C) such that UMod ◦ 𝑆 =

idMon(C) .

In other words, a parametric module functorially assigns to each monoid a module over
it.

Example 2.16. If C has products, then we can define the parametric module mapping any
monoid 𝑋 to the 𝑋-module 𝑋 × 𝑋. It will become clear in §7 how this parametric module
can be viewed as the arity of a binary operation, with C = [Set, Set] 𝑓 .

Example 2.17. Any endofunctor 𝑇 on Mon(C) equipped with a natural transformation
𝜂 : Id → 𝑇 induces a parametric module 𝑇monmod mapping any monoid 𝑀 to 𝑇 (𝑀), with
action given by

𝑇 (𝑀) ⊗ 𝑀
𝑇 (𝑀) ⊗𝜂𝑀−−−−−−−−−→ 𝑇 (𝑀) ⊗ 𝑇 (𝑀) → 𝑇 (𝑀),

where the second morphism is the multiplication of 𝑇 (𝑀) ∈ Mon(C). This construction
applies in particular for any monad on Mon(C).

Definition 2.18. A parametric module morphism 𝑀 → 𝑁 over C is a natural transfor-
mation 𝛼 : 𝑀 → 𝑁 between underlying functors Mon(C) →Mod(C), such that UMod◦𝛼 = id.

Remark 2.19. Concretely, the components of a natural transformation 𝛼 : 𝑀 → 𝑁 at any
monoid 𝑋 ∈ Mon(C) are pairs of a monoid morphism 𝑓 : 𝑋 → 𝑋 and a suitable natural
transformation 𝑔 : 𝑀 (𝑋) → 𝑁 (𝑋). The condition UMod ◦ 𝛼 = id unfolds to 𝑓 = id𝑋 for all 𝑋.

2.4.2. (Parametric) modules over monads. The previous definitions of (parametric) modules
specialise to the case where C = [E,E] 𝑓 (for the composition monoidal structure). Then,
monoids are finitary monads. However, because in this case C is an endofunctor category,
there is a slightly more general, “relative”, or “heterogeneous” notion of module [HM07]
which will be important for us. Let us recall it now.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:9

Definition 2.20. Given a monad 𝑇 on C and a category D, a D-valued 𝑇-module is a
finitary functor 𝑀 : C→ D equipped with a right 𝑇-action 𝑀 ◦ 𝑇 → 𝑀 satisfying coherence
conditions analogous to those of Definition 2.12. A morphism of 𝑇-modules is similarly a
natural transformation commuting with action. We denote by 𝑇 -Mod 𝑓 (D) the category of
𝑇-modules and morphisms between them.

Remark 2.21. D-valued 𝑇-modules are algebras for the monad − ◦ 𝑇 on [C,D] 𝑓 . When
D = C, these are the same as 𝑇-modules in [C,C] 𝑓 in the sense of Definition 2.12.

Notation 2.22. Given any monad 𝑇 on C, and functor 𝐹 : C→ D, we sometimes implicitly
equip the functor 𝐹𝑇 with its canonical 𝑇-module structure. This module is free on 𝐹, in
the sense that for any 𝑇-module 𝑀 and natural transformation 𝛼 : 𝐹 → 𝑀, there is a unique
𝑇-module morphism �̃� : 𝐹𝑇 → 𝑀 making the following diagram commute.

𝐹 𝐹𝑇

𝑀

𝐹𝜂𝑇

𝛼 �̃�

Of course, �̃� is merely the composite 𝐹𝑇
𝛼𝑇−−→ 𝑀𝑇 → 𝑀.

Let us briefly show how to exploit the variability of D.

Definition 2.23. For any 𝑝 in a set P, and any monad 𝑇 on SetP, the functor 𝑇𝑝 : Set
P → Set

mapping any 𝑋 ∈ SetP to 𝑇 (𝑋) (𝑝) is a 𝑇-module, with action given by

𝜇𝑋,𝑝 : 𝑇 (𝑇 (𝑋)) (𝑝) → 𝑇 (𝑋) (𝑝),
at any 𝑋 ∈ SetP.

Here is another example construction of 𝑇-module, which is useful for specifying syntax
with variable binding.

Definition 2.24. For any sequence 𝑝1, . . . , 𝑝𝑛 in a set P, for any monad 𝑇 on SetP and
D-valued 𝑇-module 𝑀, we denote by 𝑀 (𝑝1,..., 𝑝𝑛) the D-valued 𝑇-module defined by

𝑀 (𝑝1,..., 𝑝𝑛) (𝑋) = 𝑀 (𝑋 + y𝑝1 + . . . + y𝑝𝑛),
where y : P→ SetP is the embedding defined by y𝑝 (𝑞) = 1 if 𝑝 = 𝑞 and ∅ otherwise. If P is

a singleton, we abbreviate this to 𝑀 (𝑛) .

Let us now recall parametric modules over monads (called signatures in [AHLM18]).

Definition 2.25. Given categories C and D, let Mod(C,D), or Mod(D) when C is clear
from context, denote the category

• whose objects are pairs (𝑇, 𝑀) of a finitary monad 𝑇 on C and a finitary 𝑇-module
𝑀 : C→ D,
• and whose morphisms (𝑇, 𝑀) → (𝑈, 𝑁) are pairs (𝛼, 𝛽) of a monad morphism 𝛼 : 𝑇 → 𝑈

and a natural transformation 𝛽 : 𝑀 → 𝑁 commuting with action, in the sense that the
following square commutes.

𝑀 ◦ 𝑇 𝑁 ◦𝑈

𝑀 𝑁

𝛽◦𝛼

𝛽

3:10 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

The first projection yields a forgetful functor p : Mod(D) →Mnd 𝑓 .

Definition 2.26. A (D-valued) parametric module is a section of p, or in other words a
functor 𝑠 : Mnd 𝑓 →Mod(D) such that p ◦ 𝑠 = idMnd 𝑓

.
A parametric module morphism 𝑀 → 𝑁 is a natural transformation 𝛼 : 𝑀 → 𝑁

between underlying functors such that p ◦ 𝛼 = id.

Terminology 2.27. In the following, C = SetP, and parametric modules are implicitly
Set-valued by default.

Example 2.28. Let us start by a few basic constructions of parametric modules:

• we denote by Θ the SetP-valued parametric module mapping a monad 𝑇 to itself, as a
module over itself;
• for any 𝑝1, . . . , 𝑝𝑛 ∈ P and D-valued parametric module 𝑀, let 𝑀 (𝑝1,..., 𝑝𝑛) associate to
each monad 𝑇 the 𝑇-module 𝑀 (𝑇) (𝑝1,..., 𝑝𝑛) as in §2.4, i.e., 𝑀 (𝑝1,..., 𝑝𝑛) (𝑇) (𝑋) = 𝑀 (𝑇) (𝑋 +
y𝑝1 + . . . + y𝑝𝑛); when P = 1, we merely count the 𝑝𝑖’s and write 𝑀 (𝑛) ;
• for any finitary functor 𝐹 : D→ E and D-valued parametric module 𝑀, the E-parametric
module 𝐹 ◦ 𝑀 maps any monad 𝑇 to the 𝑇-module 𝐹 ◦ 𝑀 (𝑇); as particular cases:
– when D has a terminal object, the terminal D-valued parametric module 1 = 1 ◦Θ maps

any monad 𝑇 to the constant 𝑇-module 1;
– for any 𝑝 ∈ P and SetP-valued parametric module 𝑀, we denote by 𝑀𝑝 the Set-valued

parametric module mapping any monad 𝑇 to the 𝑇-module 𝑋 ↦→ 𝑀 (𝑋)𝑝;
– in particular, for any 𝑝 ∈ P, the Set-valued parametric module Θ𝑝 maps a monad 𝑇 on

SetP to the module 𝑋 ↦→ 𝑇 (𝑋)𝑝;
– given a finite family (𝑀𝑖)𝑖∈𝐼 of Set-valued parametric modules, let

∏
𝑖 𝑀𝑖 associate to

any monad 𝑇 the 𝑇-module
∏
𝑖 𝑀𝑖 (𝑇).

In the paper, we will at times use two distinct viewpoints on our signatures for monads.
One, more user-friendly, is based on Set-valued, or heterogeneous, parametric modules.
The other, more efficient for stating the explicit description of initial algebras, is based on
SetP-valued, or homogeneous, modules. The two viewpoints are related by a P-indexed
family of adjunctions, which we now recall. For all 𝑟 ∈ P, there is an adjunction

[SetP, Set] 𝑓 ⊥ [SetP, SetP] 𝑓 ,
(−) ·y𝑟

(−)𝑟
where

• y𝑟 : Set
P denotes the family with a single element, sitting over 𝑟 ∈ P, and

• the left adjoint maps any 𝐹 : SetP → Set to the endofunctor (𝑋 ∈ SetP) ↦→ 𝐹 (𝑋) · y𝑟 , i.e.,
(𝐹 (𝑋) · y𝑟) (𝑟) = 𝐹 (𝑋) and (𝐹 (𝑋) · y𝑟) (𝑝) = ∅ when 𝑝 ≠ 𝑟.

Indeed, we have a natural isomorphism

𝐹 (𝑋) · y𝑟 → 𝐺 (𝑋)

𝐹 (𝑋) → 𝐺 (𝑋) (𝑟)
============================= ·

Proposition 2.29. These adjunctions lift to a P-indexed family of adjunctions

Mod(SetP, Set) ⊥ Mod(SetP, SetP).
(−) ·y𝑟

(−)𝑟

(2.1)

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:11

Proof. Straightforward.

2.5. Creation of (co)limits and monadic functors. In this section, we recall Beck’s
monadicity theorem [Mac98, Theorem VI.7.1], and state a “cancellation” property for
monadic functors. First, we need to recall creation of (co)limits, monadic functors, and
absolute (co)limits. We will see in §10 that the main technical notion for our explicit
descriptions of initial algebras is creation of (co)limits, so let us briefly recall the basics.

Definition 2.30 [Mac98, §V.1]. Given a small category E, a functor 𝐹 : C → D creates
(co)limits of shape E if for any functor 𝐽 : E→ C, if 𝐹𝐽 has a (co)limit, then the (co)limiting
(co)cone uniquely lifts to C, and the lifting is again (co)limiting.

A typical example is:

Proposition 2.31 [Mac98, Exercise VI.2.2]. For any monad 𝑇 on a category C, the forgetful
functor 𝑈 : 𝑇 -alg→ C creates limits.

We also have the following well-known result:

Proposition 2.32. For any monad 𝑇 on a category C, the forgetful functor 𝑈 : 𝑇 -alg→ C
creates colimits of a given shape whenever 𝑇 preserves them. More concretely, if 𝑇 preserves
all colimits of functors with some domain D, then 𝑈 creates them.

Proof. This is a straightforward consequence of [Bor94a, Proposition 4.3.2].

Lemma 2.33. For any category E and functor 𝐹 : C→ D with D cocomplete, if 𝐹 creates
colimits of shape E, then 𝐹 preserves them.

Proof. Consider any colimiting cocone, say 𝜆 : 𝐽 → 𝐶 of a functor 𝐽 : E→ C. We want to show
that 𝐹𝜆 is colimiting. By cocompleteness of D, 𝐹𝐽 has a colimiting cocone, say 𝛾 : 𝐹𝐽 → 𝐷.
By creation of colimits, 𝛾 has a unique lifting 𝛾′ : 𝐹 → 𝐶 ′ to C, which is colimiting. Because
colimiting cocones are uniquely isomorphic, there is a unique isomorphism 𝜆 � 𝛾′. Finally,
functors preserve isomorphisms, so we have 𝐹𝜆 � 𝐹𝛾′ = 𝛾. But 𝛾 is colimiting, hence so is
𝐹𝜆, as desired.

Corollary 2.34. For any monad 𝑇 on a cocomplete category C, and for any category D,
the following are equivalent

(i) the forgetful functor 𝑈 : 𝑇 -alg→ C preserves all colimits of shape D,
(ii) the monad 𝑇 preserves all colimits of shape D, and
(iii) the forgetful functor 𝑈 : 𝑇 -alg→ C creates all colimits of shape D.

Proof. For (i) ⇒ (ii), the left adjoint 𝐿 to 𝑈 is cocontinuous, so 𝑇 = 𝑈𝐿 preserves all such
colimits by composition. Furthermore, (ii) ⇒ (iii) follows readily from Proposition 2.32.
Finally, Lemma 2.33 proves (iii) ⇒ (i).

Definition 2.35. A functor 𝑈 : E → B is monadic if E is isomorphic to a category of
algebras 𝑇 -alg for some monad 𝑇 on B, and furthermore, the following diagram commutes.

E 𝑇 -alg

B

�

𝑈

3:12 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Remark 2.36. This notion of monadicity is quite strict. Some authors prefer a relaxed
version where isomorphism is replaced with equivalence.

Definition 2.37. A (co)limit is absolute if it is preserved by all functors.

Example 2.38. A split coequaliser is a coequaliser

𝐴 𝐵 𝐶,
𝑓

𝑔

𝑒

such that

• 𝑒 has a section 𝑠 : 𝐶 → 𝐵,
• 𝑓 has a section 𝑡 : 𝐵→ 𝐴 with
• 𝑔 ◦ 𝑡 = 𝑠 ◦ 𝑒.
Such a coequaliser is absolute [Mac98, Corollary VI.6].

On the other hand, the initial object ∅ in Set, viewed as the colimit of the unique functor
from the empty category, is not absolute, since it is not preserved by the constant terminal
endofunctor on Set.

Theorem 2.39 Beck’s monadicity theorem [Mac98, Theorem VI.7].
A functor 𝑈 : E→ B is monadic iff

• it has a left adjoint, and
• it creates coequalisers for those parallel pairs 𝑓 , 𝑔 : 𝐸1 ⇒ 𝐸2 for which (𝑈 (𝑓),𝑈 (𝑔)) has
an absolute coequaliser in B.

We will use the following consequence.

Proposition 2.40. Given a commuting triangle of functors

A B

C

𝐻

𝐹 𝐺

between cocomplete categories, if 𝐹 and 𝐺 are monadic, then so is 𝐻.
If furthermore 𝐹 and 𝐺 are finitary, then so is 𝐻.

Proof. For monadicity, Borceux [Bor94a, Corollary 4.5.7] gives a proof in the weakly monadic
case (see Remark 2.36). This is a straightforward adaptation. Finitariness follows from the
next lemma.

Lemma 2.41. Given a commuting triangle of functors as in Proposition 2.40, if 𝐹 is finitary
and 𝐺 creates filtered colimits, then 𝐻 is finitary.

Proof. Given a colimiting cocone 𝑐 : 𝐽 → 𝐴 for a filtered diagram 𝐽 : D→ A, this cocone is
preserved by 𝐹 and created by 𝐺. So 𝐹 (𝑐) is colimiting, and has a unique antecedent by 𝐺,
which is again colimiting. But 𝐻 (𝑐) is an antecedent, hence has to be the antecedent, and
so is colimiting as desired.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:13

2.6. Monads vs. monadic functors. In this section, we recall the equivalence between
(finitary) monadic functors and (finitary) monads.

Let us fix a locally finitely presentable category C.

Definition 2.42. Let Mnd(C) denote the category of monads on C. When C is clear from
context, we sometimes abbreviate this to just Mnd.

Furthermore, let Mnd 𝑓 (C) denote the full subcategory of finitary monads on C.

Definition 2.43. Let Monadic/C denote the full subcategory of CAT/C spanning (strictly)
monadic functors.

Furthermore, let Monadic 𝑓 /C denote the full subcategory spanning (strictly) monadic
functors that are finitary, or equivalently (by Corollary 2.34), whose underlying monad is
finitary.

Let us readily make the following observation.

Lemma 2.44. The functor underlying any morphism in Monadic 𝑓 /C is itself monadic.

Proof. By Proposition 2.40.

In fact, a lot of our understanding of Monadic 𝑓 /C will follow from the following
equivalence.

Proposition 2.45. The functor

(−) -alg : Mnd(C)op →Monadic/C
mapping any monad 𝑇 to the forgetful functor 𝑇 -alg→ C is an equivalence.

Proof. The functor is essentially surjective by definition of monadic functors. It is also full
and faithful by [Bar70, Proposition 5.3].

Corollary 2.46. Let C be cocomplete. The equivalence

(−) -alg : Mnd(C)op →Monadic/C
of Proposition 2.45 lifts to a functor

(−) -alg : Mnd 𝑓 (C)op →Monadic 𝑓 /C,
which is again an equivalence.

Proof. For any finitary monad 𝑇 , the forgetful functor is finitary by Corollary 2.34, which
proves that the functor lifts as claimed. Furthermore, the lifted functor is clearly fully
faithful. Finally, it is essentially surjective because if a monadic functor is finitary, then so
is the induced monad, again by Corollary 2.34.

2.7. Limits of finitary monadic functors. In this section, we recall a well-known result
about limits of (finitary) monadic functors, namely that they are computed as in CAT:

Proposition 2.47. The forgetful functor Monadic 𝑓 /C→ CAT/C creates limits.

The rest of this section will be devoted to the proof, but first let us record the following.

3:14 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Corollary 2.48. The forgetful functor Monadic 𝑓 /C → CAT creates equalisers. More
precisely, given monadic functors 𝐹1 : D1 → C and 𝐹2 : D2 → C and functors 𝐺1, 𝐺2 : D1 →
D2 such that 𝐹2 ◦ 𝐺𝑖 = 𝐹1, if A → D1 is the equaliser of 𝐺1 and 𝐺2 in CAT, then the
composite A → D1 → C is finitary monadic and underlies the equaliser of 𝐺1 and 𝐺2 in
Monadic 𝑓 /C.

Proof. This follows straightforwardly from Proposition 2.47 and the fact that the forgetful
functor from any slice category to the base category creates equalisers (see the proof
of [Bor94b, Proposition 2.16.3]).

Returning to the proof of Proposition 2.47, let us start with the following two lemmas.

Lemma 2.49. Finitary monads over any locally finitely presentable category form a locally
finitely presentable category.

Proof sketch (see [Lac97]). Let C be locally presentable. Then C 𝑓 is small, so [C 𝑓 ,C] is
again locally presentable. Now, finitary monads on C are equivalently monoids for the
composition tensor product in [C 𝑓 ,C], hence also algebras for a finitary monad on a locally
presentable category, which allows us to conclude by the following lemma.

Lemma 2.50. The category of algebras for a finitary monad on any locally finitely presentable
category is again locally finitely presentable.

Proof. This is [AR94, Remark 2.78] with 𝜆 = 𝜔.

We now need to recall three standard definitions, and prove two more lemmas.

Definition 2.51. A functor 𝐹 : C→ D is conservative iff, for any morphism 𝑓 : 𝐶 → 𝐶 ′

in C such that 𝐹 (𝑓) is an isomorphism, so is 𝑓 .

Definition 2.52. A functor 𝐹 : C→ D is amnestic iff, for any isomorphism 𝑖 : 𝐶 → 𝐶 ′ in
C such that 𝐹 (𝐶) = 𝐹 (𝐶 ′) and 𝐹 (𝑖) = id, we have 𝐶 = 𝐶 ′ and 𝑖 = id.

Lemma 2.53. For any conservative and amnestic functor 𝐹 : C→ D and morphism 𝑓 in
C, if 𝐹 (𝑓) is an identity, then so is 𝑓 .

Proof. By conservativeness, 𝑓 is an isomorphism. But then by amnesia 𝑓 is an identity.

Definition 2.54. A functor 𝐹 : C→ D is an iso-fibration iff, for any isomorphism of the
form 𝑖 : 𝐷 → 𝐹 (𝐶), there exists an isomorphism 𝑗 : 𝐶 ′→ 𝐶 such that 𝐹 (𝑗) = 𝑖.

Lemma 2.55. Any continuous, conservative, amnestic iso-fibration from a complete category
creates limits.

Proof. Consider any continuous, amnestic iso-fibration F : C→ D with C complete, and any
functor 𝐽 : X → C such that 𝐹𝐽 has a limiting cone, say 𝛿 : 𝐷 → 𝐹𝐽. Then, because C is
complete, 𝐽 also has a limiting cone, say 𝛾 : 𝐶 → 𝐽. Because 𝐹 is continuous, 𝐹 (𝛾) : 𝐹 (𝐶) →
𝐹𝐽 is again limiting, hence we get an isomorphism 𝑖 : 𝐷 → 𝐹 (𝐶) of cones over 𝐹𝐽. Because
𝐹 is an iso-fibration, we then lift 𝑖 to an isomorphism 𝑗 : 𝐶 ′ → 𝐶 in C such that 𝐹 (𝑗) = 𝑖.
The cone 𝛾 𝑗 : 𝐶 ′ → 𝐽 is thus limiting, and an antecedent of 𝛿. It thus remains to show
that it is the only antecedent of 𝛿. Let thus 𝛾′′ : 𝐶 ′′→ 𝐽 be any antecedent of 𝛿. Because
𝛾 𝑗 is limiting, there exists a unique cone morphism 𝑚 : 𝐶 ′′→ 𝐶 ′. But now 𝐹 (𝑚) is a cone
endomorphism 𝛿→ 𝛿, hence 𝐹 (𝑚) = id. By Lemma 2.53, we then get 𝐶 ′′ = 𝐶 ′ and 𝑚 = 𝑖𝑑,
thus proving that 𝛾′′ = 𝛾 𝑗 as desired.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:15

At last, we have:

Proof of Proposition 2.47. By Corollary 2.46, Monadic 𝑓 /C is equivalent toMnd 𝑓 (C)op . But
the latter is complete as the opposite of Mnd 𝑓 (C), which is locally finitely presentable by
Lemma 2.49. Thus, Monadic 𝑓 /C is complete.

Moreover, the forgetful functor Monadic 𝑓 /C → CAT/C is continuous. Indeed, it is
equivalent (in CAT→) to the composite

Mnd 𝑓 (C)op ↩→Mnd(C)op → CAT/C,
whose first component is continuous by [Bla76, Proposition 5.6], while the second is by [Kel80,
Proposition 26.3].

Finally, the forgetful functor Monadic 𝑓 /C → CAT/C is a conservative, amnestic iso-
fibration:

• it is conservative and amnestic as a full subcategory embedding, and
• an iso-fibration because the subcategory in question is replete (otherwise said, monadic
functors are closed under isomorphisms).

The result thus follows by Lemma 2.55.

3. Transition monads

In this section, we introduce the main new mathematical notion of the paper: transition
monads. In §3.1 we give an informal description and in §3.2, we give our formal definition.
In §3.3, we provide an equivalent definition based on the notion of relative monad. Finally,
in §3.4, we sketch a proof-irrelevant variant of transition monads.

3.1. Overview of transition monads.

Placetakers and states
In standard 𝜆-calculus, we have terms, variables are placeholders for terms, and tran-

sitions relate a source term to a target term. In a general transition monad we still have
variables and transitions, but placetakers for variables and endpoints of transitions can be of
a different nature, which we phrase as follows: variables are placeholders for placetakers,
while transitions relate a source state with a target state.

The categories for placetakers and for states
In standard 𝜆-calculi, we have a set T of types for terms (and variables); for instance in

the untyped version, T is a singleton. Accordingly, terms form a monad on the category
SetT. In a general transition monad we have a set P of placetaker types, and placetakers
form a monad on the category SetP; similarly, we have a set S of transition types, and the
family of possible states (depending on a given family of variables) forms an object in SetS.
For example, for the simply-typed 𝜆-calculus, P = S is the set of simple types.

The object of variables
In our view of the untyped 𝜆-calculus, there is a (variable!) set of variables and everything

is parametric in this ‘variables set’. Similarly, in a general transition monad 𝑅, there is a
‘variables object’ 𝑉 in SetP and everything is functorial in this variables object. In particular,
we have a placetaker object 𝑇𝑅 (𝑉) in SetP and a source (resp. target) state object in SetS,
both depending upon the variables object.

3:16 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

The state functors 𝑆1 and 𝑆2
While in the 𝜆-calculus, states are the same as placetakers, in a general transition monad,

they may differ, and more precisely both state objects are derived from the placetaker object
by applying the state functors 𝑆1, 𝑆2 : Set

P → SetS.

The transition structure
In standard 𝜆-calculi, there is a (typed!) set of transitions, which yields a graph on the set

of terms. That is to say, if 𝑉 is the variables object, and 𝐿𝐶 (𝑉) the placetaker object, there is
a transition object Trans (𝑉) equipped with two maps src𝑉 , tgt𝑉 : Trans (𝑉) → 𝐿𝐶 (𝑉). Note
that we consider ‘proof-relevant’ transitions here, in the sense that two different transitions
may have the same source and target (see 3.4 for the proof-irrelevant variant).

In a general transition monad 𝑅, we still have a transition object Trans𝑅 (𝑉), which
now lives in SetS, together with state objects 𝑆1(𝑇𝑅 (𝑉)) and 𝑆2(𝑇𝑅 (𝑉)), so that the pairing
〈src𝑉 , 𝑡𝑟𝑔𝑉 〉 forms a morphism Trans𝑅 (𝑉) → 𝑆1(𝑇𝑅 (𝑉)) × 𝑆2(𝑇𝑅 (𝑉)).

One main feature of transition monads is that transitions are closed under substitution.
Technically, this is realised by taking the transition object Trans𝑅 (𝑉) to be a 𝑇𝑅-module,
and that the morphism Trans𝑅 (𝑉) → 𝑆1(𝑇𝑅 (𝑉)) × 𝑆2(𝑇𝑅 (𝑉)) to be a 𝑇𝑅-module morphism.

3.2. The definition of transition monad. Here is our formal definition:

Definition 3.1. Given two sets P and S, a transition monad over (P,S) consists of
• a finitary monad 𝑇 on SetP, called the placetaker monad,
• two finitary functors 𝑆1, 𝑆2 : Set

P → SetS, called state functors, and

• a transition structure 𝑅
〈src,tgt 〉
−−−−−−−→ 𝑆1𝑇 × 𝑆2𝑇 consisting of

– a finitary 𝑇-module 𝑅 : SetP → SetS, called the transition module,
– a source 𝑇-module morphism src : 𝑅 → 𝑆1𝑇 , recalling from Notation 2.22 that 𝑆1𝑇 is

the free 𝑇-module on 𝑆1,
– a target 𝑇-module morphism tgt : 𝑅 → 𝑆2𝑇 .

Definition 3.2. For any sets P and S, finitary monad 𝑇 over SetP, and finitary functors
𝑆1, 𝑆2 : Set

P → SetS, we let TransStructP,S(𝑇, 𝑆1, 𝑆2) denote the class of transition structures
over 𝑇 , 𝑆1, and 𝑆2.

Furthermore, let TransMndP,S denote the coproduct
∑
𝑇 ,𝑆1,𝑆2

TransStructP,S(𝑇, 𝑆1, 𝑆2).

In Definition §5.13, we will upgrade these classes into categories with the same names.

3.3. Transition monads as relative monads. In our definition of transition monad, we
have required the two state modules to take the form 𝑆1𝑇 and 𝑆2𝑇 , but this is not essential
in our development. Moreover, it probably leaves some relevant examples out of reach. We
think in particular about the standard presentation of the 𝜋-calculus as a labelled transition
system. Our original reason for this design choice was purely aesthetic: it ensures that
our transition monads are relative monads, as were the reduction monads introduced
in [AHLM20] (in particular the untyped 𝜆-calculus). These were monads relative to the
‘discrete graph’ functor from sets to graphs, and in our extended context, we have to replace
graphs by 𝑆-graphs. Let us provide more detail.

Let us first recall [ACU15] that, given any functor 𝐽 : C→ D, a monad relative to 𝐽,
or 𝐽-relative monad, consists of

• an object mapping 𝑇 : ob(C) → ob(D), together with

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:17

• morphisms 𝜂𝑋 : 𝐽 (𝑋) → 𝑇 (𝑋), and
• for each morphism 𝑓 : 𝐽 (𝑋) → 𝑇 (𝑌), an extension 𝑓★ : 𝑇 (𝑋) → 𝑇 (𝑌),
satisfying coherence conditions. Any 𝐽-relative monad 𝑇 has an underlying functor C→ D,
and is said finitary when this functor is. Note that a monad is nothing but a 𝐽-relative
monad, for 𝐽 the identity endofunctor.

Now we define 𝑆-graphs:

Definition 3.3. For any pair 𝑆 = (𝑆1, 𝑆2) of functors SetP → SetS, an 𝑆-graph over an
object 𝑉 ∈ SetP consists of

• an object 𝐸 (of edges) in SetS, and
• a morphism 𝜕 : 𝐸 → 𝑆1(𝑉) × 𝑆2(𝑉).
Accordingly, an 𝑆-graph consists of an object 𝑉 ∈ SetP and an 𝑆-graph over 𝑉 .

We can now say that in a general transition monad, transitions form an 𝑆-graph over
the placetaker object (the whole thing depending upon the variables object...). Before
proceeding, we must introduce the category of 𝑆-graphs: a morphism 𝐺 → 𝐺 ′ consists of
a morphism for vertices 𝑓 : 𝑉𝐺 → 𝑉𝐺′ together with a morphism for edges 𝑔 : 𝐸𝐺 → 𝐸𝐺′

making the following diagram commute.

𝐸𝐺 𝐸𝐺′

𝑆1(𝑉𝐺) × 𝑆2(𝑉𝐺) 𝑆1(𝑉𝐺′) × 𝑆2(𝑉𝐺′)

𝑔

𝜕𝐺

𝑆1 (𝑓)×𝑆2 (𝑓)

𝜕𝐺′

Proposition 3.4. For any pair 𝑆 = (𝑆1, 𝑆2) of functors SetP → SetS, 𝑆-graphs form a
category 𝑆-Gph.

The proof is a straightforward verification.
We will consider monads relative to the following functors:

Definition 3.5. For any pair 𝑆 = (𝑆1, 𝑆2) of functors SetP → SetS, the discrete 𝑆-graph
functor 𝐽𝑆 : Set

P → 𝑆-Gph maps any 𝑉 ∈ SetP to the 𝑆-graph over 𝑉 with no edges.

Now we are ready to deliver our characterisation of transition monads as relative monads:

Proposition 3.6. Given finitary functors 𝑆1, 𝑆2 : Set
P → SetS, transition monads with

state functors 𝑆1 and 𝑆2 are exactly monads relative to the discrete 𝑆-graph functor for
𝑆 = (𝑆1, 𝑆2), such that the induced functor SetP → 𝑆-Gph is finitary.

The proof consists merely in unfolding the definitions. Since we do not use this result,
we do not give further details.

3.4. The proof-irrelevant variant. Although we have chosen a “proof-relevant” notion
of transition monad, we can sketch a presentation of a “proof-irrelevant” variant.

Definition 3.7. Let ITransStructP,S(𝑇, 𝑆1, 𝑆2) denote the subset of TransStructP,S(𝑇, 𝑆1, 𝑆2)
consisting of transition monads 〈src, tgt〉 : 𝑅 → 𝑆1𝑇 × 𝑆2𝑇 such that 〈src, tgt〉 is a pointwise
inclusion.

3:18 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Remark 3.8. We have a natural retraction

TransStructP,S(𝑇, 𝑆1, 𝑆2) � ITransStructP,S(𝑇, 𝑆1, 𝑆2),
which maps a transition structure 𝜕 : 𝑅 → 𝑆1𝑇 × 𝑆2𝑇 to the monomorphism 𝑅 ↩→ 𝑆1𝑇 × 𝑆2𝑇
obtained from the (strong epi)-mono factorisation; this factorisation exists [AR94, Proposi-
tion 1.61] since the category of finitary Set-valued 𝑇-modules is a presheaf category [Ahr15,
Definition 2.71]. In Proposition 6.19, we will upgrade this retraction into a coreflection of
categories.

4. Examples of transition monads

In this section, we present very informally the announced examples of transition monads.
This presentation should eventually be compared to the one via signatures given in §11.

4.1. The call-by-value, simply-typed, big-step 𝝀-calculus. The notion of transition
monad accounts for many different variants of the 𝜆-calculus. Let us detail the case of the
simply-typed, call-by-value, big-step 𝜆-calculus. Most often, big-step semantics describes
evaluation of closed terms. Here we consider a variant describing the evaluation of open
terms [PR99, Las98]. In this setting, the main subtlety lies in the fact that variables are
only placeholders for values.

We fix some set of base types, ranged over by 𝜄 and define successively types, values and
terms, typing contexts, well-typed terms, and transitions, as follows.

Definition 4.1. The set P of types, ranged over by 𝐴, 𝐵, is defined inductively by

𝐴, 𝐵 F 𝜄 | 𝐴→ 𝐵.

Definition 4.2. For any set, say 𝑋, of variables, we then define values, ranged over by 𝑣,
𝑤, and general terms, ranged over by 𝑒, 𝑓 in a mutually inductive way as follows.

𝑣, 𝑤 F 𝑥 | 𝜆𝑥.𝑒
𝑒, 𝑓 F 𝑣 | 𝑒 𝑓

Here, 𝑥 ranges over 𝑋, and Terms are considered equivalent modulo 𝛼-conversion. Further-
more, one may define capture-avoiding substitution, as usual.

Definition 4.3. A typing context is a type-indexed family of sets, i.e., an object of SetP.
For any Γ ∈ SetP, 𝐴 ∈ P, and 𝑥 ∉ Γ𝐴, we let Γ, 𝑥 : 𝐴 denote Γ augmented with 𝑥 over 𝐴.

Remark 4.4. The extended context Γ, 𝑥 : 𝐴 is isomorphic to Γ + y𝐴, where y denotes the
Yoneda embedding P ↩→ SetP, viewing P as a discrete category. Indeed, because P is discrete,
y𝐴(𝐵) is empty when 𝐴 ≠ 𝐵, and y𝐴(𝐴) is a singleton. Thus Γ + y𝐴 is Γ, plus one element of
type 𝐴.

Definition 4.5. Well-typed terms are inductively defined by the following rules.

Γ ` 𝑥 : 𝐴
(𝑥 ∈ Γ𝐴)

Γ, 𝑥 : 𝐴 ` 𝑒 : 𝐵
Γ ` 𝜆𝑥.𝑒 : 𝐴→ 𝐵

Γ ` 𝑒 : 𝐴→ 𝐵 Γ ` 𝑓 : 𝐴
Γ ` 𝑒 𝑓 : 𝐵

Definition 4.6. Transitions are inductively defined by the following rules.

𝑣 ⇓ 𝑣
𝑒1 ⇓ 𝜆𝑥.𝑒3 𝑒2 ⇓ 𝑤 𝑒3 [𝑥 ↦→ 𝑤] ⇓ 𝑣

𝑒1 𝑒2 ⇓ 𝑣

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:19

This calculus forms a transition monad as follows.

Placetakers and transition types As foreshadowed by the notation, because variables
and values are indexed by (simple) types, we take P = S to be the set of types.

Placetaker monad The placetaker monad 𝑇 over SetP is given by well-typed values: given
any Γ ∈ SetP, the placetaker object 𝑇 (Γ) ∈ SetP assigns to each type 𝐴 the set 𝑇 (Γ)𝐴 of value
typing derivations, i.e., the set of typing derivations with conclusion of the form Γ ` 𝑣 : 𝐴.
State functors In big-step semantics, transitions relate terms to values. Hence, we are
seeking state functors 𝑆1, 𝑆2 : Set

P → SetP such that 𝑆1(𝑇 (Γ))𝐴 is the set of typing derivations
of type 𝐴 with free variables in Γ, and 𝑆2(𝑇 (Γ))𝐴 is the subset of value typing derivations
therein. For 𝑆2, we should clearly take the identity functor since 𝑇 consists of all value typing
derivations. For 𝑆1, we first observe that 𝜆-terms can be described as application binary
trees whose leaves are values (internal nodes being typed applications). More formally,
let 𝑆1(Γ)𝐴 denotes the set of typing derivations with conclusion of the form Γ `𝑆1 𝑏 : 𝐴
inductively generated by the following rules.

𝑥 ∈ Γ𝐴
Γ `𝑆1 𝑥 : 𝐴

Γ `𝑆1 𝑏 : 𝐴→ 𝐵 Γ `𝑆1 𝑏′ : 𝐴
Γ `𝑆1 𝑏 𝑏′ : 𝐵

·

If Γ is a typing context, 𝑆1(𝑇 (Γ)) is indeed the set of general typing derivations with variables
in Γ.

Transition module Finally, the transition module maps any Γ ∈ SetP to the family, over
all 𝐴 ∈ P, of transition proofs of some 𝑒 ⇓ 𝑣 with 𝑒 ∈ 𝑆1(𝑇 (Γ))𝐴 and 𝑣 ∈ 𝑇 (Γ)𝐴. Such
transition proofs are stable under value substitution, so we obtain a transition monad.

Remark 4.7. Transition proofs are not stable under general substitution. E.g., the following
proof

𝜆𝑥.𝑥 ⇓ 𝜆𝑥.𝑥 𝑦 ⇓ 𝑦 𝑦 ⇓ 𝑦
(𝜆𝑥.𝑥) 𝑦 ⇓ 𝑦

of (𝜆𝑥.𝑥) 𝑦 ⇓ 𝑦 becomes invalid if we replace 𝑦 with any non-value term 𝑒. Indeed, 𝑒 ⇓ 𝑒 does
not hold. And in fact, the conclusion itself becomes invalid: we cannot have (𝜆𝑥.𝑥) 𝑒 ⇓ 𝑒
since evaluation results are all values.

4.2. The 𝝀𝝁-calculus. The 𝜆𝜇-calculus, introduced by Herbelin [Her95], models the com-
putational contents of cut elimination in the sequent calculus. Following Vaux’s presenta-
tion [Vau07, §2.4.4], its grammar is given by

Commands
𝑐 F 〈𝑒 |𝜋〉

Programs
𝑒 F 𝑥 | 𝜇𝛼.𝑐 | 𝜆𝑥.𝑒

Stacks
𝜋 F 𝛼 | 𝑒 · 𝜋,

where 𝑥 and 𝛼 range over two disjoint sets of variables, called stack and program variables,
respectively. Both constructions 𝜇 and 𝜆 bind their variable in the body. Reduction is
generated by the following two basic transition rules concerning commands:

〈𝜇𝛼.𝑐 |𝜋〉 → 𝑐[𝛼 ↦→ 𝜋] 〈𝜆𝑥.𝑒 |𝑒′ · 𝜋〉 → 〈𝑒[𝑥 ↦→ 𝑒′] |𝜋〉.
Reduction may occur “everywhere”, so it involves programs and stacks as well.

Let us show how this gives rise to a transition monad.

3:20 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Placetaker types In the transition rules above, we see that placetakers may be programs
or stacks. So, we take two placetaker types: P := 2 = {p, s}. A variables object is an element
of SetP, that is, a pair of sets: the first one gives the available free program variables, and
the second one the available free stack variables.

Placetaker monad The syntax may be viewed as a monad 𝑇 : SetP → SetP: given a
variables object 𝑋 = (𝑋p, 𝑋s) ∈ SetP, the placetaker object (𝑇 (𝑋)p, 𝑇 (𝑋)s) ∈ SetP consists of
the sets of program and stack terms with free variables in 𝑋, up to bound variable renaming.
As usual, monad multiplication is given by capture-avoiding substitution.

Transition types and state functors As mentioned above, transitions involve programs
and stacks as well as commands. Thus, we take three transition types: S = 3 = {c, p, s}.
Furthermore, commands are pairs of a program and a stack, so that, setting 𝑆1(𝐴) = 𝑆2(𝐴) =
(𝐴p × 𝐴s, 𝐴p, 𝐴s), we get 𝑆𝑖 (𝑇 (𝑋)) = (𝑇 (𝑋)p × 𝑇 (𝑋)s, 𝑇 (𝑋)p, 𝑇 (𝑋)s) for 𝑖 = 1, 2, as desired.

Transition module Finally, transitions with free variables in 𝑋 form a triple of graphs
with vertices respectively in 𝑇 (𝑋)p × 𝑇 (𝑋)s (the set of commands taking free variables in 𝑋),
𝑇 (𝑋)p, and 𝑇 (𝑋)s. This family is natural in 𝑋 and commutes with substitution, hence forms
a 𝑇-module morphism, which completes our transition monad.

4.3. The 𝝅-calculus. For an example involving equations on placetakers, let us recall the
following standard presentation of (a simple variant of) the 𝜋-calculus [SW01]. The syntax
for processes is given by

𝑃,𝑄 F 𝑥 | 0 | (𝑃 |𝑄) | 𝜈𝑎.𝑃 | 𝑎〈𝑏〉.𝑃 | 𝑎(𝑏).𝑃,
where 𝑥 ranges over process variables, 𝑎 and 𝑏 range over channel names, and 𝑏 is bound
in 𝜈𝑏.𝑃 and 𝑎(𝑏).𝑃. Processes are identified when related by the smallest context-closed
equivalence relation ≡ satisfying

0|𝑃 ≡ 𝑃 𝑃 |𝑄 ≡ 𝑄 |𝑃 𝑃 | (𝑄 |𝑅) ≡ (𝑃 |𝑄) |𝑅 (𝜈𝑎.𝑃) |𝑄 ≡ 𝜈𝑎.(𝑃 |𝑄),
where in the last equation 𝑎 should not occur free in 𝑄. Transitions are then given by the
following rules.

𝑎〈𝑏〉.𝑃 |𝑎(𝑐).𝑄 −→ 𝑃 | (𝑄 [𝑐 ↦→ 𝑏])
𝑃 −→ 𝑄

𝑃 |𝑅 −→ 𝑄 |𝑅
𝑃 −→ 𝑄

𝜈𝑎.𝑃 −→ 𝜈𝑎.𝑄

Remark 4.8. Please note that there are no context rules for inputs or outputs, so that
nothing happens under them.

The 𝜋-calculus gives rise to a transition monad as follows.

Placetaker types We consider two placetaker types, one for channels and one for processes.
Hence, P = 2 = {c, p}.
Placetaker monad Then, the syntax may be viewed as a monad 𝑇 : SetP → SetP: given
a variables object 𝑋 = (𝑋c, 𝑋p) ∈ SetP, the placetaker object 𝑇 (𝑋) = (𝑋c, 𝑇 (𝑋)p) ∈ SetP

consists of the sets of channels and processes with free variables in 𝑋 (modulo ≡). Note that
𝑇 (𝑋)c = 𝑋c as there is no operation on channels.

Transition type and state functors Transitions relate processes, so we take S = 1 and
𝑆1(𝑋) = 𝑆2(𝑋) = 𝑋p.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:21

Transition module Transitions are generated by the above three rules, and obviously
stable under substitution. We thus obtain a transition monad.

Let us now describe a second way of organising the 𝜋-calculus as a transition monad, this
time over a single placetaker type. For this, we consider the same calculus, albeit without
process variables, so that the syntax becomes

𝑃,𝑄 : : = 0 | (𝑃 |𝑄) | 𝜈𝑎.𝑃 | 𝑎〈𝑏〉.𝑃 | 𝑎(𝑏).𝑃.

Placetaker In this variant of the 𝜋-calculus, all that needs substitution is channels, so we
set P = 1.

Placetaker monad Since the syntax contains no channel constructor, the placetaker
monad is merely the identity monad.

Transition types and state functors However, since transitions relate processes, we
need to fit the syntax into the state functors. We thus take S = 1 and 𝑆1(𝑋) = 𝑆2(𝑋) to be
the set of processes with free channels in 𝑋.

Transition module Transitions are generated as above, and stable under channel renaming,
hence again form a transition monad.

Remark 4.9. Neither of our presentations would work in the presence of the mismatch
operator [SW01, p13], which breaks stability of reduction under renaming.

4.4. Positive GSOS systems. An example involving labelled transitions is given by
Positive GSOS systems [BIM95, p246]. They specify labelled transition systems, in which

transitions have the shape 𝑒
𝑎−→ 𝑓 , where 𝑎 is drawn from some fixed set A of labels. Let us

further fix a set 𝑂 of operations with arities in N and an infinite set of variables, ranged
over by 𝑥, 𝑦,...

Definition 4.10. A Positive GSOS rule has the shape

. . . 𝑥𝑖
𝑎𝑖, 𝑗−−−→ 𝑦𝑖, 𝑗 . . . (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛𝑖)

op(𝑥1, . . . , 𝑥𝑛)
𝑐−→ 𝑒

, (4.1)

where

• op ∈ 𝑂 is an operation with arity 𝑛,
• for all 𝑖 ∈ 𝑛, 𝑛𝑖 is a natural number,
• the variables 𝑥𝑖 and 𝑦𝑖, 𝑗 are all distinct, and
• 𝑒 is an expression potentially depending on all the variables.

A Positive GSOS system is a set of Positive GSOS rules.

The semantics of a Positive GSOS rule is that of a “rule scheme”, in the following sense.

Definition 4.11. The labelled transition relation generated by a Positive GSOS system
is the smallest A-labelled transition system on expressions generated by 𝑂, such that for

all rules (4.1), and expressions 𝑒1, . . . , 𝑒𝑛 and 𝑒𝑖,1, . . . , 𝑒𝑖,𝑛𝑖 for all 𝑖 ∈ 𝑛, if 𝑒𝑖
𝑎𝑖, 𝑗−−−→ 𝑒𝑖, 𝑗 for all

𝑖 ∈ 𝑛 and 𝑗 ∈ 𝑛𝑖, then

op(𝑒1, . . . , 𝑒𝑛)
𝑐−→ 𝑒[. . . , 𝑥𝑖 ↦→ 𝑒𝑖 , . . . , 𝑦𝑖, 𝑗 ↦→ 𝑒𝑖, 𝑗 , . . .] .

3:22 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Otherwise said, each rule scheme (4.1) induces a rule

. . . 𝑒𝑖
𝑎𝑖, 𝑗−−−→ 𝑒𝑖, 𝑗 . . . (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛𝑖)

op(𝑒1, . . . , 𝑒𝑛)
𝑐−→ 𝑒[. . . , 𝑥𝑖 ↦→ 𝑒𝑖 , . . . , 𝑦𝑖, 𝑗 ↦→ 𝑒𝑖, 𝑗 , . . .]

·

Remark 4.12. The general notion of GSOS system includes negative rules, which means

rules that may have premises of the shape 𝑥𝑖 /𝑎 . Their semantics is significantly more
involved, so we leave their integration as an open problem.

Each Positive GSOS system yields a transition monad as follows.

Placetaker and transition types We take P = 1, because we are in an untyped setting,
and S = 1 because states are terms.

Placetaker monad The selected family of operations (or rather arities) specifies the term
monad 𝑇 .

State functors In order to take labels into account, we take 𝑆1(𝑋) = 𝑋 and 𝑆2(𝑋) = A× 𝑋.
Transitions thus form a set over 𝑋 × (A × 𝑋) as desired.

Remark 4.13. We could as well take 𝑆1(𝑋) = A × 𝑋 and 𝑆2(𝑋) = 𝑋, as ultimately only the
product 𝑆1(𝑋) × 𝑆2(𝑋) matters.

Transition structure As before, we take as transitions the set of all proofs generated by
the rules, which is indeed stable under substitution by construction.

4.5. The differential 𝝀-calculus. Let us finally sketch how differential 𝜆-calculus [ER03]
provides a further example with 𝑆1 ≠ 𝑆2. Following Vaux [Vau07, §6], its syntax may be
defined by

𝑒, 𝑓 , 𝑔 F 𝑥 | 𝜆𝑥.𝑒 | 𝑒〈𝑈〉 | 𝐷𝑒 · 𝑓 (terms)
𝑈,𝑉 F 0 | 𝑒 +𝑈 (multiterms),

where terms and multiterms are considered equivalent up to the following equations.

𝑒 + 𝑒′ +𝑈 = 𝑒′ + 𝑒 +𝑈 𝐷 (𝐷𝑒 · 𝑓) · 𝑔 = 𝐷 (𝐷𝑒 · 𝑔) · 𝑓 .

The definition of transitions is based on two auxiliary constructions:

(1) Unary multiterm substitution 𝑒[𝑥 ↦→ 𝑈] of a multiterm 𝑈 for a variable 𝑥 in a term
𝑒, which returns a multiterm (not to be confused with unary monadic substitution,
which handles the particular case where 𝑈 is a mere singleton).

(2) Partial derivative 𝜕𝑒
𝜕𝑥
· 𝑈 of a term 𝑒 w.r.t. a term variable 𝑥 along a multiterm 𝑈.

This again returns a multiterm.

Both are defined by induction on 𝑒 (see [Vau07, Definition 6.3 and 6.4]).
We may now define the transition relation as the smallest context-closed relation

satisfying the rules below.

(𝜆𝑥.𝑒)〈𝑈〉 → 𝑒[𝑥 ↦→ 𝑈] 𝐷 (𝜆𝑥.𝑒) · 𝑓 → 𝜆𝑥.

(
𝜕𝑒

𝜕𝑥
· 𝑓

)

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:23

The compact formulation of the second rule relies on the abbreviation 𝜆𝑥.(𝑒1 + . . . + 𝑒𝑛) :=
𝜆𝑥.𝑒1 + . . . + 𝜆𝑥.𝑒𝑛.

Let us now sketch how this forms a transition monad.

Placetaker monad Terms induce a monad 𝑇 on Set, which we take as the placetaker
monad (hence P = 1).

State functors Transitions relate terms to multiterms, hence S = 1, 𝑆1 is the identity, and
𝑆2 = ! is the functor mapping any set 𝑋 to the set of (finite) multisets over 𝑋.

Transition structure Transitions are stable under substitution by terms, hence we again
have a transition monad.

5. Signatures for transition monads

In the previous section, we have shown that several significant (abstract) programming
languages may be organised as transition monads. We are now interested in specifying such
languages by signatures. We first introduce registers, as announced in the introduction, and
then our register for transition monads.

5.1. Signatures registers. In this section, we introduce signatures registers, which are a
formalisation of the notion of signature, at least in the context of initial algebra semantics.

The idea is that each signature 𝑆 over a fixed category C should give rise to a particular
category 𝑆 -alg, equipped with a “forgetful” functor to C, the specified object spec (𝑆) being
the carrier of the initial object of 𝑆 -alg:

Definition 5.1. An abstract signature over a category C consists of a category E with an
initial object, equipped with a functor E→ C. We denote by SemSigC the class of abstract
signatures over C.

Notation 5.2. We denote the components of any abstract signature 𝑆 over a category C by
𝑆 -alg and U𝑆, so that 𝑆 is precisely U𝑆 : 𝑆 -alg→ C. Accordingly, we call objects of 𝑆 -alg
𝑆-algebras, or models of 𝑆.

Definition 5.3. A register R for a given category C consists of

• a class SigR of signatures, and
• a semantics map È−ÉR : SigR → SemSigC.

Terminology 5.4. We say that any 𝑆 ∈ SigR is a signature for spec (𝑆) := U𝑆 (0) (0 here
denotes the initial object in 𝑆 -alg), or alternatively that 𝑆 specifies spec (𝑆). Finally, when
we define our registers below, we first introduce signatures and associate a functor E→ C to
each signature. It then remains to prove that E has an initial object: as mentioned in §1, we
call such proofs validity proofs.

Most of our registers will be monadic in the following sense.

Definition 5.5. A register R is monadic when the abstract signature E→ C associated
to any signature in SigR is finitary and monadic.

Remark 5.6. Strictly speaking, we should call this “finitary monadic”. We omit the
“finitary” for readability.

3:24 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Notation 5.7. When a register is monadic, we denote by 𝑆★ the monad induced by any
signature 𝑆, in the sense that we have an isomorphism 𝑆 -alg � 𝑆★ -alg of categories over C
(i.e., which commutes with forgetful functors). In such cases we have

𝑆★(0C) � spec (𝑆) = U𝑆 (0𝑆 -alg).

Let us now introduce a simple notion of morphism between registers.

Definition 5.8. A compilation from a register 𝑅1 on a category C to a register 𝑅2 on the
same category is a map 𝑐 : Sig𝑅1 → Sig𝑅2 preserving the semantics up to isomorphism, in
the sense that for any Σ ∈ Sig𝑅1 , there is an isomorphism ÈΣÉ𝑅1 � È𝑐(Σ)É𝑅2 as objects of
CAT/C. We say that 𝑅1 is a subregister of 𝑅2 if there exists a compilation of 𝑅1 to 𝑅2.

Let us finish this subsection by recasting a well-known fact as the definition of a register.
The well-known fact is the following.

Proposition 5.9 [Rei77, p62]. For any finitary endofunctor 𝐹 on a cocomplete category C,
the forgetful functor 𝐹 -alg→ C is monadic, and the left adjoint maps any object 𝐶 ∈ C to the
initial algebra 𝐹∗(𝐶) of the functor 𝐴 ↦→ 𝐶 + 𝐹 (𝐴), i.e., the least fixed point 𝜇𝐴.(𝐶 + 𝐹 (𝐴)),
with 𝐹-algebra structure given by

𝐹 (𝐹∗(𝐶)) ↩→ 𝐶 + 𝐹 (𝐹∗(𝐶)) � 𝐹∗(𝐶).
And here comes the register:

Definition 5.10. For a given cocomplete category C, we define the monadic register EFC,
called the endofunctor register, as follows.

Signatures: A signature is a finitary endofunctor on C.
Semantics: The abstract signature associated to any finitary endofunctor 𝐹 is the forgetful

functor 𝑈𝐹 : 𝐹 -alg→ C.

Validity proof: By Proposition 5.9.

Remark 5.11. Let 𝐹 be any finitary endofunctor on a cocomplete category C. Please
note the difference between 𝐹★(0) and 𝐹∗(0): 𝐹★(0) denotes the object specified by 𝐹 qua
signature of EFC, while 𝐹

∗(0) denotes the (carrier of the) initial 𝐹-algebra. In this case, of
course, the denotations coincide, but this will no longer be the case, for instance, in §7.3.
There, 𝐹★(0) will denote the initial 𝐹-monoid, while 𝐹∗(0) will still denote the initial
𝐹-algebra.

Let us conclude by naming all registers defined by compilation into EFC.

Definition 5.12. We call endofunctorial all subregisters of EFC.

5.2. A register for transition monads. Our goal is to define a register for transition
monads. Thus, we should at least organise them into a category in the first place:

Definition 5.13. For any sets P and S, finitary monad 𝑇 over SetP, and finitary functors
𝑆1, 𝑆2 : Set

P → SetS, let

TransStructP,S(𝑇, 𝑆1, 𝑆2) = 𝑇 -Mod 𝑓 (SetS)/𝑆1𝑇 × 𝑆2𝑇
denote the slice of the category of finitary, SetS-valued 𝑇-modules over 𝑆1𝑇 × 𝑆2𝑇 .

And for any sets P and S, we let TransMndP,S :=
∑
𝑇 ,𝑆1,𝑆2

TransStructP,S(𝑇, 𝑆1, 𝑆2).

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:25

Remark 5.14. Reduction monads [AHLM20] correspond to the case when 𝑆1 = 𝑆2 = Id,
with P = S = 1, but contrary to the present work, morphisms there can live between reduction
monads with different underlying monads. We don’t need such morphisms in the present
work because we enforce that models of a signature share the same underlying monad. This
allows for a simpler notion of signature, at the cost of reducing the scope of the recursion
principle.

In the coming sections, we will introduce

• a register RegMnd 𝑓 (SetP) for finitary monads on the category SetP,

• a register Reg[SetP, SetS] 𝑓 for finitary functors SetP → SetS, and
• for any finitary monad 𝑇 and functors 𝑆1 and 𝑆2, a register RegTransStructP,S(𝑇, 𝑆1, 𝑆2)
for transition structures over 𝑇 , 𝑆1, and 𝑆2.

Assuming this is done, we may already give our register for transition monads:

Definition 5.15. We define the register RegTransMndP,S for the category TransMndP,S

as follows.

Signatures: A signature, which we call a transition signature, consists of
• a signature Σ of RegMnd 𝑓 (SetP), specifying a finitary monad 𝑇 on SetP,

• signatures Σ1 and Σ2 of Reg[SetP, SetS] 𝑓 , specifying functors 𝑆1, 𝑆2 : Set
P → SetS,

and
• a signature ΣTrans of RegTransStructP,S(𝑇, 𝑆1, 𝑆2).

Semantics: The abstract signature associated to a signature (Σ,Σ1,Σ2,ΣTrans) is

ΣTrans -alg
UΣTrans−−−−−−→ TransStructP,S(𝑇, 𝑆1, 𝑆2) ↩→ TransMndP,S.

Validity proof: We need to prove that ΣTrans -alg has an initial object; but this follows
from RegTransStructP,S(𝑇, 𝑆1, 𝑆2) being a register, which will be proved below.

It remains to introduce the registers RegMnd 𝑓 (SetP) for monads, Reg[SetP, SetS] 𝑓
for functors, and RegTransStructP,S(𝑇, 𝑆1, 𝑆2) for transition structures. The most novel is
clearly the latter. It is furthermore independent from the others, so we introduce it first.

For the reader’s convenience, we list our registers in Figure 1, together with corresponding
categories.

6. Registers for transition structures

In this section, we define the register RegTransStructP,S(𝑇, 𝑆1, 𝑆2) for transition structures
on fixed 𝑇, 𝑆1, 𝑆2. Since these are SetS-valued 𝑇-modules over 𝑆1𝑇 × 𝑆2𝑇 , this register should
specify objects of the slice category 𝑇 -Mod 𝑓 (SetS)/𝑆1𝑇 × 𝑆2𝑇 . We will in fact design a
register for more general slice categories C/𝑋, where C is a locally finitely presentable
category and 𝑋 an object of C. The desired register RegTransStructP,S(𝑇, 𝑆1, 𝑆2) will then
be obtained as an instance by taking C = 𝑇 -Mod 𝑓 and 𝑋 = 𝑆1𝑇 × 𝑆2𝑇 .

In §6.1, we first present a basic register Reg0(C/𝑋) that would work for the untyped case
without variable binding. Then, in §6.2, we extend Reg0(C/𝑋) to a more powerful register
Reg1(C/𝑋) that deals with variable binding. Observing that this register is slightly heavy
to use in the typed setting, we design a more convenient variant, called Reg(C/𝑋). Finally,
in §6.4, we focus on instances of this register to categories of the form C = 𝑇 -Mod 𝑓 /(𝑆1𝑇 ×
𝑆2𝑇). In this case, we introduce special notation, which allows us to write signatures

3:26 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Main Register Signatures Base category Where

RegTransMndP,S Transition signature TransMndP,S 5.15
RegITransMndP,S idem ITransMndP,S 6.21

RegTransStructP,S(𝑇, 𝑆1, 𝑆2) Families of rules TransStructP,S(𝑇, 𝑆1, 𝑆2) 6.14
RegMnd 𝑓 (SetP) Eq. modular signatures Mnd 𝑓 (SetP) 7.11
Reg[SetP, SetS] 𝑓 Eq. facet-based signatures [SetP, SetS] 𝑓 8.16

Auxiliary Register Signatures Base category Where

R∗ Families of sig’s of R Same as R 6.13
RegTransStruct0P,S(𝑇, 𝑆1, 𝑆2) Rules TransStructP,S(𝑇, 𝑆1, 𝑆2) 6.12

Reg0(C/𝑋) Abstract simple rules C/𝑋 6.2
Reg1(C/𝑋) Abstract medium rules C/𝑋 6.5
Reg(C/𝑋) Abstract rules C/𝑋 6.9

RegMnd0
𝑓
(SetP) Modular signatures Mnd 𝑓 (SetP) 7.6

Reg0 [SetP, SetS] 𝑓 Facet-Based signatures [SetP, SetS] 𝑓 8.12

General Register Signatures Base category Where

EFC Finitary endofunctors C 5.10
ESC Equational systems C 9.11

PSEFC Pointed strong endos Mon(C) 9.22
MESC Monoidal eq. systems Mon(C) 9.29

For R∗, R is assumed to be an endofunctorial register (Definition 5.12).

Figure 1: Registers

essentially as in usual operational semantics literature. Finally, in §6.5, we derive a register
for the proof-irrelevant variant of transition monads.

6.1. Small register for slice categories. In this section, we introduce a first, limited
register for slice categories.

Example 6.1. Let P denote the set of simple types over a given set of basic types, as in §4.1,
and consider the arity for application, i.e., the endofunctor Σapp : Set

P → SetP defined by

Σapp(𝑋) (𝐴) =
∑︁
𝐵

𝑋 (𝐵→ 𝐴) × 𝑋 (𝐵).

Across the equivalence SetP ' Set/P, one way of presenting this endofunctor, which is
perhaps closer to the syntactic inference rule for application, is as the span

P2 〈arr, 𝜋2 〉←−−−−−− P2 𝜋1−−→ P,

where arr(𝐴, 𝐵) = (𝐵→ 𝐴). Indeed, Σapp(𝑋) corresponds to
• taking the product of 𝑋 → P with itself in the arrow category,
• pulling back along 〈arr, 𝜋2〉, and
• postcomposing with 𝜋1.

To see this, let us observe that after pulling back, we obtain a family 𝑋 ′ over P2 such that
𝑋 ′(𝐴, 𝐵) = 𝑋 (𝐵→ 𝐴) × 𝑋 (𝐵). Postcomposing, we take the disjoint union over 𝐵 as desired.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:27

Generalising from this example, we obtain the following “small” register.

Definition 6.2. For any locally finitely presentable category C and object 𝑋 ∈ C, we define
the endofunctorial register Reg0(C/𝑋) for the slice category C/𝑋 as follows.

Signatures: A signature consists of:
• a metavariable object 𝑉 ;

• a list of premise morphisms (𝑉 𝑠𝑖−→ 𝑋)𝑖∈𝑛 denoted by 𝑉
®𝑠−→ 𝑋𝑛;

• a conclusion morphism 𝑉
𝑡−→ 𝑋.

Semantics: A model of a signature (𝑋𝑛 ®𝑠←− 𝑉 𝑡−→ 𝑋) is an algebra for the endofunctor

mapping any 𝑌
𝑝
−→ 𝑋 to 𝑌 ′→ 𝑉

𝑡−→ 𝑋, where 𝑌 ′→ 𝑉 denotes the following pullback.

𝑌 ′ 𝑌𝑛

𝑉 𝑋𝑛
®𝑠

𝑝𝑛

Morphisms of models are morphisms of algebras.

Validity proof: All we have to show is that the induced endofunctor is finitary. But this
functor is a composite of three functors

C/𝑋
(−)𝑛/𝑋
−−−−−−→ C/𝑋𝑛 ®𝑠

∗
−→ C/𝑉 𝑡!−→ C/𝑋,

where

• (−)𝑛/𝑋 denotes 𝑛-fold self-product in the arrow category,
• ®𝑠∗ denotes pullback along ®𝑠, and
• 𝑡! denotes postcomposition with 𝑡.

The last two functors, as left adjoints, are cocontinuous, hence finitary. Finally, the forgetful
functor C/𝑋𝑛 → C creates colimits, so it suffices to show that the composite functor

C/𝑋
(−)𝑛/𝑋
−−−−−−→ C/𝑋𝑛 → C is finitary. But this in turn is the composite of C/𝑋 → C

(−)𝑛
−−−→ C.

Because the first component creates, hence preserves all colimits, it suffices to show that (−)𝑛
is finitary, which holds since filtered colimits commute with finite limits in locally finitely
presentable categories [AR94, Proposition 1.59].

Example 6.3. Let P = 1 so that SetP � Set, and 𝑇 denote the monad for pure 𝜆-calculus
syntax. Taking C = 𝑇 -Mod 𝑓 (Set) and 𝑋 the product module 𝑇2 = 𝑇 ×𝑇 , let us consider the
left congruence rule for application

𝑀 −→ 𝑁

𝑀 𝑃 −→ 𝑁 𝑃

as a signature of Reg0(C/𝑋). For this, we take

• as metavariable module 𝑉 = 𝑇3,
• a single premise given by 〈𝜋1, 𝜋2〉 : 𝑇3 → 𝑇2, and
• as conclusion the morphism 𝑡 : 𝑇3 → 𝑇2 mapping any (𝑀, 𝑁, 𝑃) to (𝑀 𝑃, 𝑁 𝑃).
Let us now see what it means for a module morphism 𝑅 → 𝑇2 to be a model. In this case,
the pullback along 〈𝜋1, 𝜋2〉 yields 𝑅 × 𝑇 , and so a model structure amounts to a morphism
𝑅 × 𝑇 → 𝑅 making the following square commute.

3:28 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

𝑅 × 𝑇 𝑅

𝑇2 × 𝑇 𝑇2
𝑡

Unfolding the definition, such a map associates to any transition 𝑟 ∈ 𝑅(𝑋) over (𝑀, 𝑁) ∈
𝑇2(𝑋) and term 𝑃 ∈ 𝑇 (𝑋) a transition over 𝑡 (𝑀, 𝑁, 𝑃) = (𝑀 𝑃, 𝑁 𝑃), as desired.

6.2. Binding register for slice categories. In this section, we observe that the register
Reg0(C/𝑋) is not expressive enough in the presence of variable binding, hence we refine it.

Example 6.4. Let P = 1 so that SetP � Set, and 𝑇 denote the monad for pure 𝜆-calculus
syntax. Taking C = 𝑇 -Mod 𝑓 and 𝑋 = 𝑇2 as in Example 6.3, let us consider the 𝜉-rule

𝑀 → 𝑁

𝜆𝑥.𝑀 → 𝜆𝑥.𝑁
·

The natural metavariable module for this is 𝑇 (1) ×𝑇 (1) , because 𝑀 and 𝑁 have an additional,
fresh variable, and the natural premise would be the identity map thereon. However, the
register Reg0(C/𝑋) only allows premises to target powers of 𝑋.

In order to rectify the situation, we refine Reg0(C/𝑋) to obtain the following more
general register.

Definition 6.5. For any locally finitely presentable category C and object 𝑋 ∈ C, we define
the endofunctorial register Reg1(C/𝑋) for the slice category C/𝑋 as follows.

Signatures: A signature consists of:
• a metavariable object 𝑉 ;

• a list of premise morphisms (𝑉 𝑠𝑖−→ 𝐹𝑖𝑋)𝑖∈𝑛, where each 𝐹𝑖 is a finitary endofunctor

on C, denoted by 𝑉
®𝑠−→∏

𝑖 𝐹𝑖𝑋;

• a conclusion morphism 𝑉
𝑡−→ 𝑋.

Semantics: A model of a signature (∏𝑖 𝐹𝑖𝑋
®𝑠←− 𝑉 𝑡−→ 𝑋) is an algebra for the functor

mapping 𝑌
𝑝
−→ 𝑋 to 𝑌 ′→ 𝑉

𝑡−→ 𝑋, where 𝑌 ′ denotes the pullback

𝑌 ′
∏
𝑖 𝐹𝑖 (𝑌)

𝑉
∏
𝑖 𝐹𝑖 (𝑋)®𝑠

∏
𝑖 𝐹𝑖 (𝑝)

Validity proof: Similar to Definition 6.2, with the following composite endofunctor.

C/𝑋
(∏𝑖 𝐹𝑖 (−))/𝑋−−−−−−−−−−−→ C/∏𝑖𝐹𝑖 (𝑋)

®𝑠∗−→ C/𝑉 𝑡!−→ C/𝑋

Example 6.6. Let us now treat the 𝜉-rule, rectifying Example 6.4.

• We first take as metavariable module 𝑉 := 𝑇 (1) × 𝑇 (1) , as planned.
• We then take as unique premise the identity on 𝑉 . For this we should justify that 𝑉 does
have the desired form 𝐹 (𝑇2). This is the case with 𝐹 (𝑀) = 𝑀 (1) since (𝑇2) (1) = (𝑇 (1))2.
• Finally, we take as conclusion 𝑉 := 𝑇 (1) × 𝑇 (1) 𝜆×𝜆−−−→ 𝑇 × 𝑇 .

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:29

Remark 6.7. We may generalise this register to permit a conclusion between terms with
additional free variables, by having the conclusion morphism target 𝑅𝑋 rather than 𝑋, for
some finitary right adjoint functor 𝑅. For example, exploiting the adjunction −(1) ` − × 𝑇 in
the category of 𝑇-modules [AHLM18, Proposition 13], the application of untyped 𝜆-calculus
can be viewed as an operation app𝑎𝑙𝑡 : 𝑇 → 𝑇 (1) . Anticipating on §6.4, the corresponding
modified 𝛽-rule is

app𝑎𝑙𝑡 (𝑎𝑏𝑠(𝑡)) { 𝑡
·

The point here is that for any set 𝑋 and 𝑡 ∈ 𝑇 (1) (𝑋), both terms app𝑎𝑙𝑡 (𝑎𝑏𝑠(𝑡)) and 𝑡 lie in
𝑇 (1) (𝑋).

6.3. Typed variant. In this section, we observe that the medium register Reg1(C/𝑋) is
slightly inconvenient in a typed setting, and propose our last register Reg(C/𝑋) for slice
categories.

Example 6.8. As in §4.1, let P denote the set of simple types over a given set of ground types
and 𝑇 : SetP → SetP denote the monad for simply-typed 𝜆-calculus values. Furthermore,
let us recall the first state functor 𝑆1 : Set

P → SetP: 𝑆1(𝑋) is the set of typed application
binary trees with leaves in 𝑋. Let us consider the 𝛽-rule

𝑒1 ⇓ 𝜆(𝑒3) 𝑒2 ⇓ 𝑤 𝑒3 [𝑤] ⇓ 𝑣
𝑒1 𝑒2 ⇓ 𝑣

·

Implicitly, this is in fact a family of rules indexed over all pairs (𝐴, 𝐵) ∈ P2 of types. For
any such (𝐴, 𝐵), we have 𝑒1 ∈ 𝑆1𝑇 (𝑋)𝐴→𝐵, 𝑒2 ∈ 𝑆2𝑇 (𝑋)𝐴, and 𝑒1 𝑒2 ∈ 𝑆1𝑇 (𝑋)𝐵. But these
are all Set-valued modules, while the transition module 𝑅 → 𝑆1𝑇 × 𝑆2𝑇 is SetP-valued.

In order to work with Set-valued modules, we now want to introduce a refinement of the
register Reg1(C/𝑋). Let us first sketch on this example how it should look like. First of all,
because 𝑒1 𝑒2 and 𝑣 have type 𝐵, we would like to replace the SetP-valued module 𝑆1𝑇 × 𝑆2𝑇
with the Set-valued (𝑆1𝑇 × 𝑆2𝑇)𝐵. We would then use as metavariable module the product

𝑉 = (𝑆1𝑇)𝐴→𝐵 × (𝑆1𝑇)𝐴 × (𝑆1𝑇) (𝐴)𝐵 × 𝑇𝐵 × 𝑇𝐴,
whose elements are tuples (𝑒1, 𝑒2, 𝑒3, 𝑣, 𝑤) as in the rule. The conclusion of our rule should
then consist of a morphism 𝑉 → (𝑆1𝑇×𝑆2𝑇)𝐵, and similarly for the premises (see Example 6.11
below). The crucial ingredient here is the functor (−)𝐵 : 𝑇 -Mod 𝑓 (SetS) → 𝑇 -Mod 𝑓 (Set).
Furthermore, in order to prove the existence of an initial model, it is important that this
functor has a left adjoint (−) · y𝐵, as in Proposition 2.29.

Abstracting over this situation, we are led to:

Definition 6.9. For any locally finitely presentable category C and object 𝑋 ∈ C, we define
the endofunctorial register Reg(C/𝑋) for the slice category C/𝑋 as follows.

Signatures: A signature, called a rule, consists of:
• a category D and a right adjoint 𝐸 : C→ D;
• a metavariable object 𝑉 ∈ D;

• a list of premise morphisms (𝑉 𝑠𝑖−→ 𝐹𝑖𝑋)𝑖∈𝑛, where each 𝐹𝑖 : C → D is a finitary

functor, denoted by 𝑉
®𝑠−→∏

𝑖 𝐹𝑖𝑋;

• a conclusion morphism 𝑉
𝑡−→ 𝐸 (𝑋).

3:30 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Semantics: Let us consider any signature 𝑆, consisting of 𝐸 : C → D, with left adjoint

𝐽 : D → C, and morphisms (∏𝑖 𝐹𝑖𝑋
®𝑠←− 𝑉

𝑡−→ 𝐸 (𝑋)). Then, 𝑆 induces a functor

Σ𝑆 : C/𝑋 → D/𝐸 (𝑋) mapping any 𝑌
𝑝
−→ 𝑋 to 𝑌 ′ → 𝑉

𝑡−→ 𝐸 (𝑋), where 𝑌 ′ denotes the
following pullback.

𝑌 ′
∏
𝑖 𝐹𝑖 (𝑌)

𝑉
∏
𝑖 𝐹𝑖 (𝑋)®𝑠

∏
𝑖 𝐹𝑖 (𝑝)

Composing with the composite

D/𝐸 (𝑋)
(̃−)
−−→ 𝐽/𝑋 → C/𝑋, (6.1)

where the first functor denotes transposition, we obtain an endofunctor Σ̃𝑆, and define
the abstract signature associated to 𝑆 to be the forgetful functor

Σ̃𝑆 -alg→ C/𝑋.

Remark 6.10. Equivalently, a model is a morphism 𝑝 : 𝑌 → 𝑋 equipped with a map 𝑘

making the following triangle commute,

𝑌 ′ 𝐸 (𝑌)

𝐸 (𝑋)

𝑘

Σ𝑆 (𝑌 ,𝑝) 𝐸 (𝑝)

and a morphism of models (𝑌, 𝑝) → (𝑍, 𝑞) is a morphism 𝑓 in C/𝑋 making the following
square commute.

𝑌 ′ 𝐸 (𝑌)

𝑍 ′ 𝐸 (𝑍)

𝑘𝑌

𝑓 ′

𝑘𝑍

𝐸 (𝑓)

Validity proof: The endofunctor Σ̃𝑆 is obtained by composing Σ𝑆 with (6.1), so it suffices
to show that both of these functors are finitary.

The composite (6.1) is in fact cocontinuous, because colimits in slice categories are
computed on domains, and, on domains, (6.1) acts like the left adjoint 𝐽.

Let us now consider the functor Σ𝑆. It is a composite of three functors, so it suffices to
show that each of these functors is finitary. The last two, pullback along ®𝑠 and postcom-
position with 𝑡, have right adjoints, hence are even cocontinuous. Finally, the first functor

C/𝑋 → D/∏𝑖 𝐹𝑖 (𝑋), mapping any 𝑌
𝑝
−→ 𝑋 to

∏
𝑖 𝐹𝑖 (𝑌)

∏
𝑖 𝐹𝑖 (𝑝)−−−−−−−→∏

𝑖 𝐹𝑖 (𝑋) is finitary because
colimits in slice categories are computed on domains, and, on domains, this functor acts like
𝑌 ↦→∏

𝑖 𝐹𝑖 (𝑌), which is a finite product of finitary functors – and filtered colimits commute
with finite products in locally finitely presentable categories.

Example 6.11. Let us now treat the big-step 𝛽-rule, finishing Example 6.8. For any types
𝐴 and 𝐵, we define the following rule:

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:31

• we take D = 𝑇 -Mod 𝑓 (Set) and 𝐸 : 𝑇 -Mod 𝑓 (SetS) → 𝑇 -Mod 𝑓 (Set) to be pointwise
evaluation at 𝐵, which is indeed right adjoint to (−) · y𝐵 (Proposition 2.29);

• we further take 𝑉 := (𝑆1𝑇)𝐴→𝐵 × (𝑆1𝑇)𝐴 × (𝑆1𝑇) (𝐴)𝐵 × 𝑇𝐵 × 𝑇𝐴 as metavariable object;

• we have three premises 𝑉 → 𝑆1𝑇 × 𝑆2𝑇 , which, at any 𝑋 ∈ SetP, respectively map any
(𝑒1, 𝑒2, 𝑒2, 𝑤, 𝑣) ∈ 𝑉 (𝑋) to:
– (𝑒1, 𝜆𝐴,𝐵 (𝑒3)),
– (𝑒2, 𝑤), and
– (𝑒3 [𝑤], 𝑣);
• the conclusion maps any such (𝑒1, 𝑒2, 𝑒2, 𝑤, 𝑣) ∈ 𝑉 (𝑋) to (app𝐴,𝐵 (𝑒1, 𝑒2), 𝑣).
Using the notation of §6.4 below, this will look much like the standard, syntactic rule.

Definition 6.12. Let RegTransStruct0P,S(𝑇, 𝑆1, 𝑆2) = Reg(𝑇 -Mod 𝑓 (SetS)/𝑆1𝑇 × 𝑆2𝑇).

Finally, we would like signatures to consist of families of rules. For this, we use the
following generic construction of registers.

Definition 6.13. For any endofunctorial register R for a category with coproducts, we
denote by R∗ the endofunctorial register whose signatures are families of signatures in SigR,
and whose semantics maps any family to the coproduct of associated endofunctors.

We may at last define our register for the category TransStructP,S(𝑇, 𝑆1, 𝑆2) of transition
structures, which we recall is by definition the slice category 𝑇 -Mod 𝑓 (SetS)/𝑆1𝑇 × 𝑆2𝑇 . For
this, we take as signatures all families of signatures in RegTransStruct0P,S(𝑇, 𝑆1, 𝑆2):

Definition 6.14. Let RegTransStructP,S(𝑇, 𝑆1, 𝑆2) = RegTransStruct0P,S(𝑇, 𝑆1, 𝑆2)
∗.

6.4. A format for displaying signatures in rule-based registers. In all of our exam-
ples of signatures in RegTransStruct0P,S(𝑇, 𝑆1, 𝑆2), the metavariable object 𝑉 is a functor to

Set, so the premises and conclusion are set-maps (which are in fact module morphisms). In
this case, we adopt the following notational conventions.

• For each premise or conclusion 𝑉 → 𝑊

𝑥 ↦→ 𝑒

of a rule, we write 𝑥 : 𝑉 ` 𝑒 : 𝑊 .

• Furthermore, we organise the premises and conclusion as usual:

𝑥 : 𝑉 ` 𝑒1 : 𝑊1 . . . 𝑥 : 𝑉 ` 𝑒𝑛 : 𝑊𝑛
𝑥 : 𝑉 ` 𝑒 : 𝑊

,

or just
𝑒1 . . . 𝑒𝑛

𝑒
when the rest may be inferred from context.

Moreover, in our examples 𝑀 = 𝑆1𝑇 × 𝑆2𝑇 , so each element 𝑒 is in fact a pair (𝐿, 𝑅),
which we generally denote with an arrow, e.g., by 𝐿 { 𝑅, 𝐿 → 𝑅,....

Example 6.15. The big-step 𝛽-rule from Example 6.11 reads as follows.

𝑒1 { 𝜆𝐴,𝐵 (𝑒3) 𝑒2 { 𝑤 𝑒3 [𝑤] { 𝑣

app𝐴,𝐵 (𝑒1, 𝑒2) { 𝑣

Remark 6.16. The module 𝑉 is often a product and thus 𝑥 is a tuple.

3:32 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Remark 6.17 [AHLM20]. In practice, there are several choices for building the transition
rule out of such a schematic presentation, depending on the order of metavariables. This
order is irrelevant: all interpretations yield isomorphic semantics, in the obvious sense.

Remark 6.18. This format could be generalised to any metavariable object, by using the
internal language of categories.

6.5. Proof-irrelevant variant. In this section, we introduce a register for the proof-
irrelevant variant of transition monads. The idea is very simple: we keep the same signatures
as in the proof-relevant setting, and interpret each signature in a proof-irrelevant way. This
is done by constructing a functor from proof-relevant transition monads to proof-irrelevant
ones.

Proposition 6.19. Let ITransStructP,S(𝑇, 𝑆1, 𝑆2) denote the full subcategory of transition
structures 〈src, tgt〉 : 𝑅 → 𝑆1𝑇 × 𝑆2𝑇 such that 〈src, tgt〉 is a pointwise inclusion. Then,
the embedding 𝑈𝑇 ,𝑆1,𝑆2 : ITransStructP,S(𝑇, 𝑆1, 𝑆2) ↩→ TransStructP,S(𝑇, 𝑆1, 𝑆2) is reflective.
Consequently, letting ITransMndP,S :=

∑
𝑇 ,𝑆1,𝑆2

ITransStructP,S(𝑇, 𝑆1, 𝑆2), the induced em-
bedding ITransMndP,S ↩→ TransMndP,S is also reflective.

Proof. Refining Remark 3.8, by [Ahr15, Definition 2.71], the category of finitary 𝑇-modules
is a category of presheaves on a small category. Thus, by [Bor94b, Example 4.3.10.g], all
epimorphisms are strong. Furthermore, by [Bor94b, Proposition 4.4.3], it admits (strong
epi)-mono factorisations.

Using this, we define the left adjoint

𝐿 : TransStructP,S(𝑇, 𝑆1, 𝑆2) → ITransStructP,S(𝑇, 𝑆1, 𝑆2)
to map a transition structure 𝜕 : 𝑅 → 𝑆1𝑇 × 𝑆2𝑇 to the monomorphism 𝑅 ↩→ 𝑆1𝑇 × 𝑆2𝑇
obtained from the (strong epi)-mono factorisation of 𝜕. Then, the natural bijection

TransStructP,S(𝑇, 𝑆1, 𝑆2) (𝑅1,𝑈𝑅2) ' ITransStructP,S(𝑇, 𝑆1, 𝑆2) (𝐿𝑅1, 𝑅2)
follows from the lifting property of strong epimorphisms.

Let us now introduce the relevant register. For this, we first observe that postcomposition
with a functor 𝐹 : C→ D turns a register for C into one for D.

Definition 6.20 (Post-composition register). For any functor 𝐹 : C→ D and register R on
C, let 𝐹!(R) denote the register for D with Sig𝐹! (R) = SigR and È𝑠É𝐹! (R) = 𝐹 ◦ È𝑠ÉR.

Definition 6.21. The register RegITransMndP,S is defined as 𝐹!(RegTransMndP,S), where
𝐹 : TransMndP,S → ITransMndP,S denotes the reflection.

7. Registers for monads

In this section and the next, we design the missing registers, respectively for monads and
state functors. The registers are mostly adapted from existing constructions and results in
the literature [AHLM19, FPT99, Fio08, FH09]. The novelty here lies in our new explicit
description of initial algebras.

The basic idea for specifying operations in our register for monads is that the arity of
an operation consists of

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:33

• an “input” (Set-valued) parametric module, in the sense of §2.4.2, together with
• an “output” placetaker type 𝑝 ∈ P.

The role of parametric modules lies in specifying how capture-avoiding substitution should
interact with operations. A similar role is played in [FPT99, Fio08] by “pointed strong”
endofunctors; we explain the connection in §9.2.

In §7.1, we construct a first register RegMnd0
𝑓
(SetP), which only allows to specify

operations. We then deal with equations in §7.2. Finally, we characterise initial algebras
in §7.3. All proofs are deferred to §10.

7.1. The register RegMnd0
𝑓
(SetP) for specifying operations. This section is devoted

to defining the monadic register RegMnd0
𝑓
(SetP).

Signatures will rely on parametric modules, but these need to be restricted in order to
ensure existence of an initial algebra (and even monadicity).

Proposition 7.1. For any set P, 𝑝1, . . . , 𝑝𝑛 ∈ P, and finitary functor 𝐹 : SetP → Set,
the assignment 𝑇, 𝑋 ↦→ 𝐹 (𝑇 (𝑋 + ∑𝑖∈𝑛 y𝑝𝑖)) defines a parametric module denoted by (𝐹 ◦
Θ) (𝑝1,..., 𝑝𝑛) .

Proof. By Example 2.28.

Definition 7.2. A parametric module is elementary if it is isomorphic to some finite
product of parametric modules of the shape (𝐹 ◦ Θ) (𝑝1,..., 𝑝𝑛) .

Example 7.3. Typically, taking 𝐹 (𝑋) = 𝑋 (𝑝), any finite product of parametric modules of

the shape Θ
(𝑝1,..., 𝑝𝑛)
𝑝 , for some 𝑝, 𝑝1, . . . , 𝑝𝑛 ∈ P, is elementary.

Example 7.4. Recall that the idea of our register is that an operation will be specified by
two parametric modules, one for the source and another (very simple) for the target. Let us
give the parametric modules for a few operations from our examples.

Language Operation Source Target

Pure 𝜆𝜇 Push 𝑒 · 𝜋 Θp × Θs Θs

Pure 𝜆𝜇 Abstraction 𝜆𝑥.𝑒 Θ
(p)
p Θp

𝜋-calculus Input 𝑎(𝑏).𝑃 Θc × Θ(c)p Θp

In the above table, p, s, and c are placetaker types, and the subscripts on Θ refer to the
notation 𝑀𝑝 introduced in Example 2.28. Thus, e.g., (Θp × Θs) (𝑇) (𝑋) = 𝑇 (𝑋)p × 𝑇 (𝑋)s.

Definition 7.5. Given any set P, a modular signature is a family of pairs (𝑑, 𝑝) where
• 𝑑 is an elementary parametric module, and
• 𝑝 ∈ P.

Given any modular signature 𝑆 = (𝑑𝑖 , 𝑝𝑖)𝑖∈𝐼 , an 𝑆-algebra is a finitary monad 𝑇 equipped
with 𝑇-module morphisms 𝑑𝑖 (𝑇) → 𝑇𝑝𝑖 for all 𝑖 ∈ 𝐼. An 𝑆-algebra morphism is a monad

morphism commuting with these morphisms. We denote by 𝑆 -alg → Mnd 𝑓 (SetP) the
forgetful functor.

Definition 7.6. We define the monadic register RegMnd0
𝑓
(SetP) for Mnd 𝑓 (SetP) as follows,

for any set P.

3:34 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Signatures: A signature is a modular signature.
Semantics: The abstract signature associated to any signature 𝑆 is the forgetful functor

𝑆 -alg→Mnd 𝑓 (SetP).

Validity proof: By Corollary 10.21 below.

7.2. The register RegMnd 𝑓 (SetP). We now define our register RegMnd 𝑓 (SetP), where a

signature will consist of a signature of RegMnd0
𝑓
(SetP), plus a family of “equations”. An

equation is essentially a pair of “derived operations” with a common “arity”. The arity
consists of an input arity, which intuitively models the metavariables of the equation, and
an output arity, which models the output type. The input arity will be an elementary
parametric module 𝑑, and the output arity will be a placetaker type 𝑝 ∈ P. For a family
of equations, the arity thus is a family of such pairs (𝑑, 𝑝) i.e., a modular signature. An
equation will then consist of two derived operations with the same arity, in the following
sense.

Definition 7.7. Given any modular signatures 𝑆 and 𝑆′, an 𝑆-derived operation of arity
𝑆′ is a functor 𝐿 : 𝑆 -alg → 𝑆′ -alg over Mnd 𝑓 (SetP), i.e., making the following triangle
commute.

𝑆 -alg 𝑆′ -alg

Mnd 𝑓 (SetP)

𝐿

We call operations of 𝑆 basic, by contrast with the derived operations of 𝑆′.
More concretely, we may introduce derived operations in two stages, as follows:

• an 𝑆-module morphism 𝑀 → 𝑁 between parametric modules 𝑀 and 𝑁 is a natural
family of morphisms (𝛼𝑇 : 𝑀 (𝑇) −→ 𝑁 (𝑇))𝑇 ∈𝑆 -alg, such that 𝛼𝑇 is a 𝑇-module morphism,
for each 𝑆-algebra 𝑇 ;
• letting 𝑆′ = (𝑉 𝑗 , 𝑞 𝑗) 𝑗∈𝐽 , an 𝑆-derived operation 𝐿 of arity 𝑆′ is a family of parametric
module morphisms 𝑉 𝑗 → Θ𝑞 𝑗

, for all 𝑗 ∈ 𝐽.

Remark 7.8. Concretely, an 𝑆-derived operation 𝐿 of arity 𝑆′ associates to each 𝑆-algebra
𝑇 a family of 𝑇-module morphisms 𝑉 𝑗 (𝑇) → 𝑇𝑞 𝑗

, naturally in 𝑇 .
Equivalently, by Proposition 2.29, an 𝑆-derived operation of arity 𝑆′ associates to each

𝑇 a single, SetP-valued 𝑇-module morphism H𝑆′ (𝑇) → 𝑇 , where H𝑆′ (𝑇) :=
∑
𝑗∈𝐽 𝑉 𝑗 (𝑇) · y𝑞 𝑗

.

Example 7.9. Consider associativity of parallel composition in the 𝜋-calculus, 𝑃 | (𝑄 |𝑅) ≡
(𝑃 |𝑄) |𝑅: the metavariables are 𝑃, 𝑄, and 𝑅. The corresponding input arity is Θ3

p, and the
output arity is p. Recalling §4.3, and anticipating on §11.3 below, the basic signature 𝑆
contains in particular an operation par : Θ2

p → Θp for parallel composition, and the derived

operations for associativity respectively map any algebra (𝑇, par𝑇 : 𝑇2
p → 𝑇p, . . .) to

𝑇3
p

par×𝑇p−−−−−−→ 𝑇2
p

par
−−→ 𝑇p and 𝑇3

p

𝑇p×par−−−−−→ 𝑇2
p

par
−−→ 𝑇p.

Returning to the general case, we now define our notion of signature for monads.

Definition 7.10. An equational modular signature consists of

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:35

• a modular signature 𝑆 called the modular signature for operations, or the operations
modular signature,
• a modular signature 𝑆′ called the modular signature for equations, or the equations
modular signature, together with
• a pair of 𝑆-derived operations of arity 𝑆′.

For any equational modular signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), an 𝐸-algebra is an 𝑆-algebra 𝑇 such
that the 𝑆′-algebra structures 𝐿 (𝑇) and 𝑅(𝑇) coincide, i.e., 𝐿 (𝑇) = 𝑅(𝑇). A morphism of
𝐸-algebras is a morphism of 𝑆-algebras. We let 𝐸 -alg denote the category of 𝐸-algebras and
morphisms between them.

Let us at last define our register.

Definition 7.11. We define the monadic register RegMnd 𝑓 (SetP) for Mnd 𝑓 (SetP) as
follows, for any set P.

Signatures: A signature is an equational modular signature.
Semantics: The abstract signature associated to any equational modular signature 𝐸 is

the forgetful functor 𝐸 -alg→Mnd 𝑓 (SetP).
Validity proof: This is Corollary 10.24(i) below.

Let us conclude this subsection by introducing some convenient notation for specifying
equations.

Notation 7.12 (Format for equations). We write any equational modular signature whose
equations modular signature is a singleton 𝑆′ = (𝑉, 𝑝), say with derived operations given by

𝑉 → Θ2
𝑝

𝑥 ↦→ (𝐿, 𝑅),
as

𝑥 : 𝑉 ` 𝐿 ≡ 𝑅 : Θ𝑝
(leaving the operations modular signature implicit), or even just 𝐿 ≡ 𝑅 when the rest may
be inferred.

Furthermore, given any common (implicit) operations modular signature 𝑆, any family
(𝑥 : 𝑉𝑖 ` 𝐿𝑖 ≡ 𝑅𝑖 : Θ𝑝𝑖)𝑖∈𝐼 will accordingly denote the equational modular signature

• whose equations modular signature is 𝑆′ = (𝑉𝑖 , 𝑝𝑖)𝑖∈𝐼 , and
• whose 𝑆-derived operations of arity 𝑆′ are given at any 𝑆-algebra 𝑇 by the morphisms
𝐿𝑖 (𝑇) : 𝑉𝑖 (𝑇) → 𝑇𝑝𝑖 and 𝑅𝑖 (𝑇) : 𝑉𝑖 (𝑇) → 𝑇𝑝𝑖 , for each 𝑖 ∈ 𝐼.

Example 7.13. We write associativity from Example 7.9 as just

par(𝑃, par(𝑄, 𝑅)) ≡ par(par(𝑃,𝑄), 𝑅).
In this case, the argument 𝑥 is the triple (𝑃,𝑄, 𝑅).

7.3. Explicit description of initial algebras. In this final subsection, we provide an
explicit description of the initial 𝐸-algebra, for any equational modular signature 𝐸. We
first deal with the case without equations, recalling the standard identification of the initial
𝑆-algebra as a free algebra for a suitable endofunctor. In the presence of equations, we then
characterise the initial 𝐸-algebra as a coequaliser of free algebras.

In order to compute the initial algebra for a modular signature 𝑆, we first observe that
the induced homogeneous parametric module H𝑆 in fact comes from an endofunctor.

3:36 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Definition 7.14. For any modular signature 𝑆, we define its associated endofunctor Σ𝑆
on [SetP, SetP] 𝑓 as follows.

• For any elementary 𝑑 = (𝐹 ◦ Θ) (𝑝1,..., 𝑝𝑛) and 𝑟 ∈ P, let

Σ(𝑑,𝑟) (𝑃) = (𝐹 ◦ 𝑃) (𝑝1,..., 𝑝𝑛) · y𝑟 .
• For a family 𝑆 = (𝑑𝑖 , 𝑟𝑖), let Σ𝑆 =

∑
𝑖∈𝐼 Σ(𝑑𝑖 ,𝑟𝑖) .

Explicitly, we have for any (𝑑, 𝑟):
Σ(𝑑,𝑟) (𝑃) (𝑋) := (𝐹 (𝑃(𝑋 +

∑
𝑖 y𝑝𝑖))) · y𝑟 .

In perhaps more elementary terms, we have

Σ(𝑑,𝑟) (𝑃) (𝑋) (𝑟) = 𝐹 (𝑃(𝑋 +∑𝑖 y𝑝𝑖))
Σ(𝑑,𝑟) (𝑃) (𝑋) (𝑟 ′) = ∅ for 𝑟 ′ ≠ 𝑟.

By construction, we have:

Proposition 7.15. For any modular signature 𝑆, the following square commute,

Mnd 𝑓 (SetP) Mod(SetP, SetP)

[SetP, SetP] 𝑓 [SetP, SetP] 𝑓

H𝑆

Σ𝑆

where the right-hand functor maps any pair (𝑇, 𝑀) to 𝑀.

Let us now turn to the explicit description of the initial 𝑆-algebra. The mathematical
contents essentially date back to [FPT99].

Proposition 7.16. For any modular signature 𝑆, the forgetful functor 𝑆 -alg→Mnd 𝑓 (SetP)
is monadic, and furthermore the free Σ𝑆-algebra Σ∗

𝑆
(id) on the identity has a canonical 𝑆-

algebra structure, which is initial.

Proof. This is Corollary 10.21 below.

We now seek an explicit description of the initial 𝐸-algebra, for any equational modular
signature 𝐸 .

Definition 7.17. Let 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅) denote any equational modular signature, with
𝑆 = (𝑉𝑖 , 𝑝𝑖)𝑖∈𝐼 and 𝑆′ = (𝑊 𝑗 , 𝑞 𝑗) 𝑗∈𝐽 .
• Let 𝑆 + 𝑆′ denote the “disjoint union”, i.e., the modular signature (𝑈𝑘 , 𝑟𝑘)𝑘∈𝐾 , where
– 𝐾 = 𝐼 + 𝐽,
– (𝑈𝑘 , 𝑟𝑘) is
∗ (𝑉𝑖 , 𝑝𝑖) if 𝑘 = 𝑖𝑛1(𝑖) and
∗ (𝑊 𝑗 , 𝑞 𝑗) if 𝑘 = 𝑖𝑛2(𝑗).

• The 𝑆′-algebra structures given by 𝐿 (spec (𝑆)) and 𝑅(spec (𝑆)) on spec (𝑆), together with
its canonical 𝑆-algebra structure, yield two (𝑆 + 𝑆′)-algebra structures. By initiality of
spec (𝑆 + 𝑆′), we thus obtain two (𝑆 + 𝑆′)-algebra morphisms

�̌�, 𝑅 : spec (𝑆 + 𝑆′) → spec (𝑆), (7.1)

or equivalently, by Proposition 7.16,

�̌�, 𝑅 : (Σ𝑆 + Σ𝑆′)∗(id) → Σ∗𝑆 (id). (7.2)

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:37

Theorem 7.18. For any equational modular signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), the coequaliser of
the pair �̌�, 𝑅 : (Σ𝑆 + Σ𝑆′)∗(id) → Σ∗

𝑆
(id) in [SetP, SetP] 𝑓 admits a unique 𝑆-algebra structure

such that the coequalising morphism is an 𝑆-algebra morphism. Furthermore, this structure
is in fact an 𝐸-algebra structure. Finally, it makes the coequaliser into an initial 𝐸-algebra.

Proof. By Corollary 10.24 below.

Remark 7.19.

• The coequaliser may be computed as a pointwise quotient of Σ∗
𝑆
(id), as follows. As ex-

plained by Hamana [Ham04], Σ∗
𝑆
(id) may be defined as a term language, each Σ∗

𝑆
(id) (𝑋) (𝑝)

being the set of terms of type 𝑝, with free variables of each type 𝑞 ∈ P in 𝑋 (𝑞) — as
in §4.1, the pair (𝑋, 𝑝) may be thought of as a sequent 𝑋 ` 𝑝. Now, coequalisers (as all
limits and colimits) are pointwise in functor categories [Mac98, §V.4], so for any 𝑋 ∈ SetP

and 𝑝 ∈ P, spec (𝐸) (𝑋) (𝑝) is the coequaliser of

(Σ𝑆 + Σ𝑆′)∗(id) (𝑋) (𝑝) → Σ∗𝑆 (id) (𝑋) (𝑝)
in Set. And this is well known to be the quotient of Σ∗

𝑆
(id) (𝑋) (𝑝) by the smallest

equivalence relation identifying all �̌�𝑋,𝑝 (𝑒) with 𝑅𝑋,𝑝 (𝑒), for all 𝑒 ∈ (Σ𝑆 + Σ𝑆′)∗(id) (𝑋) (𝑝).
Intuitively, following Hamana again, (Σ𝑆 + Σ𝑆′)∗(id) is an extension of the term language
Σ∗
𝑆
(id) with operations, say 𝑜 𝑗 , with arities (𝑉 𝑗 , 𝑞 𝑗), for all 𝑗 (where 𝑆′ = (𝑉 𝑗 , 𝑞 𝑗) 𝑗∈𝐽 as

before), and �̌� and 𝑅 inductively translate this language to Σ∗
𝑆
(id) by interpreting 𝑜 𝑗 using

𝐿 𝑗 (Σ∗𝑆 (id)) and 𝑅 𝑗 (Σ
∗
𝑆
(id)), respectively.

• We could consider computing the coequaliser of a simpler parallel pair

spec (𝑆′) → spec (𝑆), (7.3)

constructed similarly. Let us show on a simple example that this does not compute the
desired functor. The intuition is that this coequaliser identifies terms modulo a relation
which is not a congruence.

Let P = 1, and 𝑆 consist of a single, binary operation, i.e., 𝑆 = {(Θ2, ★)}. Thus, an 𝑆-
algebra is merely a monad on sets, equipped with a binary 𝑇-module morphism 𝑏 : 𝑇2 → 𝑇 .
Furthermore, let 𝑆′ consist of a single, ternary operation 𝑡. Finally, for any 𝑆-algebra
(𝑇, 𝑏), let 𝐿 (𝑇) and 𝑅(𝑇) denote the 𝑇-module morphisms

𝑇3 𝑏×𝑇−−−→ 𝑇2 𝑏−→ 𝑇 𝑇3 𝑇 ×𝑏−−−→ 𝑇2 𝑏−→ 𝑇.

By Proposition 7.16, for any set 𝑋, spec (𝑆) (𝑋) consists of binary trees with leaves in 𝑋.
Similarly, spec (𝑆′) (𝑋) consists of ternary trees with leaves in 𝑋. Now, the parallel pair (7.3)
maps ternary trees to binary trees, replacing any ternary node (𝑡1, 𝑡2, 𝑡3), respectively with
((𝑡1, 𝑡2), 𝑡3) and (𝑡1, (𝑡2, 𝑡3)). Thus, e.g., assuming 𝑥 ∈ 𝑋, the binary trees (((𝑥, 𝑥), 𝑥), 𝑥)
and ((𝑥, (𝑥, 𝑥)), 𝑥), having an even number of leaves, are not in the image of the parallel
pair, hence are not identified in the coequaliser.
• A perhaps higher-level understanding of this, which will be developped in §10, is as follows.
The derived operations induce monad morphisms (𝑆′)★→ 𝑆★, of which the desired monad
𝐸★ is the coequaliser in Mnd 𝑓 (SetP). However, coequalisers of monads are generally not
pointwise [AMBL12]. Fortunately, reflexive coequalisers are, so the desired monad may
be computed as the pointwise coequaliser of the obvious parallel pair 𝑆★ + (𝑆′)★ → 𝑆★.
Finally, roughly because (−)★ is a left adjoint in this case, we have 𝑆★ + (𝑆′)★ � (𝑆 + 𝑆′)★,
which directly leads to our formula.

3:38 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

8. Registers for (state) functors

In this section, we define a register Reg[SetP, SetS] 𝑓 , which is a variant of RegMnd 𝑓 (SetP)
for the case of state functors. Operations, equations, and models will be defined exactly as
for monads, and a signature in Reg[SetP, SetS] 𝑓 will again consist of families of operations
and equations, the only difference being that instead of parametric modules, we will use
facets. We start by presenting the auxiliary notion of facets, which is a simple variant of the
parametric modules of §7. Next, we introduce a register Reg0 [SetP, SetS] 𝑓 for operations,

and then a refinement Reg[SetP, SetS] 𝑓 with equations. Again, validity proofs are deferred
to §10.

8.1. Facets. We start in this section by introducing facets. Let us first explain how they
naturally come up in the case of call-by-value, simply-typed 𝜆-calculus. We have seen
in §4.1 that the source state functor 𝑆1 for call-by-value, simply-typed 𝜆-calculus consists of
application binary trees. The goal now is to design a register for specifying such a functor
𝑆1. Intuitively, it has two (type-indexed families of) operations:

• a first operation for injecting values into application binary trees, of type 𝑋𝐴→ 𝑆1(𝑋)𝐴
for all 𝑋 ∈ SetP and 𝐴 ∈ P, and
• a second operation for application, of type 𝑆1(𝑋)𝐴→𝐵 × 𝑆1(𝑋)𝐴→ 𝑆1(𝑋)𝐵, for all 𝑋 ∈ SetP

and 𝐴, 𝐵 ∈ P.

The type for application is really similar to what we had in §7: for any type 𝐴 ∈ P, denoting
by Θ𝐴 : [SetP, SetP] → [SetP, Set] the functor defined by

Θ𝐴(𝑆) (𝑋) = 𝑆(𝑋)𝐴,
application of a function of type 𝐴→ 𝐵 has arity

Θ𝐴→𝐵 × Θ𝐴→ Θ𝐵 .

The type for value injection does not make any sense in the context of modules over monads,
because the functor 𝑀 (𝑇) (𝑋) = 𝑋𝐴 does not form a module. But here in the context of state
functors, we may well define I𝐴 : [SetP, SetP] → [SetP, Set] by

I𝐴(𝑆) (𝑋) = 𝑋𝐴,
for any 𝐴 ∈ P.

Such functors Θ𝐴 and I𝐴 are examples of facets, which we now introduce more formally.

Definition 8.1. For any categories C and D, a facet for [C,D] 𝑓 is a finitary functor
[C,D] 𝑓 → [C, Set] 𝑓 .

Let Facet(C,D) := [[C,D] 𝑓 , [C, Set] 𝑓] 𝑓 denote the category of facets.

Notation 8.2. We abbreviate Facet(SetP, SetS) to Facet(P,S), for readability.

Definition 8.3. Here are a few basic constructions of facets, the first three in the general
case, and the next three for [SetP, SetS] 𝑓 .
• Any functor 𝐹 : D→ Set induces a facet Φ𝐹 defined by Φ𝐹 (𝑃) = 𝐹 ◦ 𝑃.
• Similarly, any functor 𝐺 : C→ Set induces a facet Ψ𝐺 defined by Ψ𝐺 (𝑃) (𝐶) = 𝐺 (𝐶).
• For any facets 𝐹 and 𝐺, the product 𝐹 × 𝐺 in the (functor) category of facets is again a
facet.
• For any 𝑝 ∈ P, let Θ𝑝 = Φev𝑝

.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:39

• For any 𝑠 ∈ S, let I𝑠 = Ψev𝑠 .
• For any facet 𝐹 for [SetP, SetS] and 𝑝1, . . . , 𝑝𝑛 ∈ P, let

𝐹 (𝑝1,..., 𝑝𝑛) (𝑃) (𝑋) = 𝐹 (𝑃(𝑋 + y𝑝1 + . . . + y𝑝𝑛)).

Remark 8.4. Let Θ denote the identity endofunctor on [SetP, SetS] 𝑓 , and
I : [SetP, SetS] 𝑓 → [SetP, SetP] 𝑓

the constant functor mapping anything to the identity endofunctor. Post-composing with
evaluation at any 𝑝 ∈ P, resp. 𝑠 ∈ S, we recover the facets I𝑝 and Θ𝑠.

Remark 8.5. The notation Θ introduced above for the identity endofunctor is compatible
with the one denoting the parametric module mapping a monad 𝑇 on SetP to 𝑇 as a module
over itself (Example 2.28) in the sense that, for example, the functor underlying the module
𝑇 coincides with the functor underlying the monad 𝑇 .

Example 8.6. The arities for application binary trees will be given by I𝐴 → Θ𝐴 and
Θ𝐴→𝐵 × Θ𝐴→ Θ𝐵, for all types 𝐴 and 𝐵.

8.2. The register Reg0 [SetP, SetS] 𝑓 for specifying operations. In order to adapt the

notion of signature for operations from RegMnd0
𝑓
(SetP), we merely need to adapt the notion

of elementariness, which becomes the following:

Definition 8.7. A facet for [SetP, SetS] 𝑓 is elementary if it is isomorphic to some finite

product of facets of the shape (𝐻 ◦ 〈I,Θ〉) (𝑝1,..., 𝑝𝑛) for some 𝑝1, . . . , 𝑝𝑛 ∈ P and finitary
functor 𝐻 : SetP × SetS → Set.

Remark 8.8. The notation (𝐻 ◦ 〈I,Θ〉) (𝑝1,..., 𝑝𝑛) deserves some explanation. We have
I : [SetP, SetS] → [SetP, SetP] and Θ : [SetP, SetS] → [SetP, SetS], and we mean

(𝐻 ◦ 〈I,Θ〉) (𝑝1,..., 𝑝𝑛) (𝑃) (𝐶) := 𝐻 (𝐶, 𝑃(𝐶)).

Example 8.9. Typically, any product of facets of the shape I(𝑝1,..., 𝑝𝑛)𝑝 or Θ
(𝑝1,..., 𝑝𝑛)
𝑠 , for

some 𝑝, 𝑝1, . . . , 𝑝𝑛 ∈ P and 𝑠 ∈ S, is elementary.

Definition 8.10. A facet-based signature is a family of pairs (𝑑, 𝑠) consisting of an
elementary facet 𝑑 and a transition type 𝑠 ∈ S.

Definition 8.11. For any facet-based signature 𝑆 = (𝑑𝑖 , 𝑠𝑖)𝑖∈𝐼 , an 𝑆-algebra is a finitary
functor 𝐹 : SetP → SetS, equipped with natural transformations 𝑑𝑖 (𝐹) → Θ𝑠𝑖 (𝐹) for all 𝑖 ∈ 𝐼.
A morphism of 𝑆-algebras is a natural transformation commuting with these morphisms.
Let 𝑆 -alg denote the category of 𝑆-algebras, and 𝑈𝑆 : 𝑆 -alg → [SetP, SetS] 𝑓 the forgetful
functor.

Definition 8.12. For any sets P and S, we define the monadic register Reg0 [SetP, SetS] 𝑓
as follows.

Signatures: A signature is a facet-based signature.
Semantics: The abstract signature associated to any facet-based signature 𝑆 is the forgetful

functor 𝑆 -alg→ [SetP, SetS] 𝑓 .

Validity proof: By Proposition 10.25 below.

3:40 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

8.3. The register Reg[SetP, SetS] 𝑓 .

Definition 8.13. Given any facet-based signatures 𝑆 and 𝑆′, an 𝑆-derived operation
of arity 𝑆′ is a functor 𝐿 : 𝑆 -alg → 𝑆′ -alg over [SetP, SetS] 𝑓 , i.e., making the following
triangle commute.

𝑆 -alg 𝑆′ -alg

[SetP, SetS] 𝑓

𝐿

We call basic the operations of 𝑆, by contrast with the derived operations of 𝑆′.
More concretely, as in Definition 7.7, we may introduce derived operations in two stages,

as follows:

• an 𝑆-facet morphism 𝑀 → 𝑁 between facets 𝑀 and 𝑁 is a natural family of natural
transformations (𝛼𝐹 : 𝑀 (𝐹) −→ 𝑁 (𝐹))𝐹 ∈𝑆 -alg;
• letting 𝑆′ = (𝑉 𝑗 , 𝑞 𝑗) 𝑗∈𝐽 , an 𝑆-derived operation 𝐿 of arity 𝑆′ is a family of 𝑆-facet morphisms
𝑉 𝑗 → Θ𝑞 𝑗

, for all 𝑗 ∈ 𝐽.

Remark 8.14. Concretely, an 𝑆-derived operation 𝐿 of arity 𝑆′ associates to each 𝑆-algebra
𝐹 a family of 𝑆-facet morphisms 𝑉 𝑗 (𝐹) → 𝐹𝑞 𝑗

, naturally in 𝐹.

Definition 8.15. An equational facet-based signature consists of

• a facet-based signature 𝑆 called the operations facet-based signature,
• a facet-based signature 𝑆′ called the equations facet-based signature, and
• a pair of 𝑆-derived operations of arity 𝑆′.

For any equational facet-based signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), an 𝐸-algebra is an 𝑆-algebra 𝐹
such that the 𝑆′-algebra structures 𝐿 (𝐹) and 𝑅(𝐹) coincide, i.e., 𝐿 (𝐹) = 𝑅(𝐹). A morphism
of 𝐸-algebras is a morphism of 𝑆-algebras. We let 𝐸 -alg denote the category of 𝐸-algebras
and morphisms between them.

Definition 8.16. For any sets P and S, we define the monadic register Reg[SetP, SetS] 𝑓
for [SetP, SetS] 𝑓 as follows.

Signatures: A signature is an equational facet-based signature.
Semantics: The abstract signature associated to any equational facet-based signature 𝐸 is

the forgetful functor 𝐸 -alg→ [SetP, SetS] 𝑓 .

Validity proof: By Corollary 10.28 below.

Remark 8.17. Any finitary functor 𝐹 admits a trivial signature consisting of the family
((𝐹𝑠 ◦ I) → Θ𝑠)𝑠∈S of operations, which does not prevent other signatures from being more
convenient (see the case of Example 8.6). Here are a few examples from §4:

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:41

Language State functor Trivial signature

𝜆𝜇
𝑆1(𝑋) = 𝑆2(𝑋)
= (𝑋p × 𝑋s, 𝑋p, 𝑋s)

〈−|−〉 : Ip × Is → Θc

𝜂p : Ip → Θp

𝜂s : Is → Θs

𝜋 𝑆1(𝑋) = 𝑆2(𝑋) = 𝑋p Ip → Θ

Call-by-value, simply-typed 𝜆 𝑆2(𝑋) = 𝑋 𝜂𝑡 : I𝑡 → Θ𝑡 (for all 𝑡)

Positive GSOS specifications 𝑆1(𝑋) = 𝑋 I→ Θ

𝑆2(𝑋) = A × 𝑋 A × I→ Θ

Notation 8.18. In examples, we will present equational facet-based signatures as families
of equations. For this, we will use Notation 7.12, which extends to facet-based equations.
E.g., Example 7.13 applies verbatim for associativity of multiset union in the target state
functor for differential 𝜆-calculus.

8.4. Explicit description of initial algebras. In this section, we state monadicity of
the register Reg[SetP, SetS] 𝑓 of equational facet-based signatures, and give our explicit
description of initial algebras. We first deal with facet-based signatures 𝑆, identifying the
initial 𝑆-algebra as a free algebra for a suitable endofunctor. We then characterise the initial
𝐸-algebra as a coequaliser of free algebras, for any equational facet-based signature 𝐸 .

Definition 8.19. For any facet-based signature 𝑆, we define its associated endofunctor
Σ𝑆 on [SetP, SetS] 𝑓 as follows.

• For any elementary 𝑑 = (𝐹 ◦ 〈I,Θ〉) (𝑝1,..., 𝑝𝑛) and 𝑠 ∈ S, let

Σ(𝑑,𝑠) (𝑃) = (𝐹 ◦ 〈id, 𝑃〉) (𝑝1,..., 𝑝𝑛) · y𝑠.
• For a family 𝑆 = (𝑑𝑖 , 𝑠𝑖), let Σ𝑆 :=

∑
𝑖∈𝐼 Σ(𝑑𝑖 ,𝑠𝑖) .

Remark 8.20. Explicitly, we have for any (𝑑, 𝑠):
Σ(𝑑,𝑠) (𝑃) (𝑋) := (𝐹 (𝑋 +

∑
𝑖 y𝑝𝑖 , 𝑃(𝑋 +

∑
𝑖 y𝑝𝑖))) · y𝑠.

Proposition 8.21. For any facet-based signature 𝑆, the forgetful functor 𝑈𝑆 : 𝑆 -alg →
[SetP, SetS] 𝑓 is monadic. Furthermore, the free 𝑆-algebra on a functor 𝐹 ∈ [SetP, SetS] 𝑓 is
the free Σ𝑆-algebra Σ∗

𝑆
(𝐹), as characterised in Proposition 5.9.

Proof. A direct consequence of Proposition 10.25 below.

We now want to characterise the initial 𝐸-algebra, for any equational facet-based
signature 𝐸 . The development closely follows §7.3.

Definition 8.22. Let 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅) denote any equational facet-based signature, with
𝑆 = (𝑉𝑖 , 𝑝𝑖)𝑖∈𝐼 and 𝑆′ = (𝑊 𝑗 , 𝑞 𝑗) 𝑗∈𝐽 .
• Let 𝑆 + 𝑆′ denote the “disjoint union”, i.e., the facet-based signature (𝑈𝑘 , 𝑟𝑘)𝑘∈𝐾 , where
– 𝐾 = 𝐼 + 𝐽,
– (𝑈𝑘 , 𝑟𝑘) is
∗ (𝑉𝑖 , 𝑝𝑖) if 𝑘 = 𝑖𝑛1(𝑖) and
∗ (𝑊 𝑗 , 𝑞 𝑗) if 𝑘 = 𝑖𝑛2(𝑗).

3:42 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

• The 𝑆′-algebra structures given by 𝐿 (spec (𝑆)) and 𝑅(spec (𝑆)) on spec (𝑆), together with
its canonical 𝑆-algebra structure, yield two (𝑆 + 𝑆′)-algebra structures. By initiality of
spec (𝑆 + 𝑆′), we thus obtain two (𝑆 + 𝑆′)-algebra morphisms

�̌�, 𝑅 : spec (𝑆 + 𝑆′) → spec (𝑆). (8.1)

Theorem 8.23. For any equational facet-based signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), the coequaliser
of the pair �̌�, 𝑅 : spec (𝑆 + 𝑆′) → spec (𝑆) in [SetP, SetS] 𝑓 admits a unique 𝑆-algebra structure
such that the coequalising morphism is an 𝑆-algebra morphism. Furthermore, this structure
is in fact an 𝐸-algebra structure. Finally, it makes the coequaliser into an initial 𝐸-algebra.

9. General registers

We have now introduced all the needed registers for our register RegTransMndP,S of Def-
inition 5.15 to make sense, including two registers featuring equations, respectively for
monads (Definition 7.11) and functors (Definition 8.16). In this section, in preparation for
the missing validity proofs and the announced explicit descriptions of initial algebras, we
introduce a fundamental register featuring equations, for a general category, ESC, whose
signatures are Fiore and Hur’s equational systems [FH09]. In order to deal more specifically
with monads, we then introduce a second register, PSEFC, based on Fiore, Plotkin, and
Turi’s pointed strong endofunctors, which incorporates variable binding and substitution.
We then “merge” both registers into a single register MESC, suited for syntax with variable
binding, substitution, and equations. Proofs are again deferred to §10.

9.1. Equational systems. A general device for constructing monadic functors is Fiore
and Hur’s equational systems [FH09]. In this section, we view equational systems on a
category C as the signatures of a register ESC for C, called the equational register, which
refines with equations the endofunctorial register EFC (see Definition 5.10).

Briefly, an equational system consists of two parts:

• an endofunctor Σ on C, which intuitively specifies operations,
• and equations.

We present them in a slightly non-standard way, and make the link with the original in
Propositions 9.5 and 9.8 below.

Definition 9.1. For any endofunctor Γ and monad 𝑇 on a category C, a functorial 𝑇-term
of arity Γ is a natural transformation Γ→ 𝑇 .

Example 9.2. Let us consider the finitary endofunctor Σ on sets defined by Σ(𝑋) = 𝑋2, so
that Σ∗(𝑋) denotes the set of binary trees with leaves in 𝑋, as generated by the following
grammar,

𝑒, 𝑓 F 𝑥 | op(𝑒, 𝑓)
where 𝑥 ranges over 𝑋. Since Σ-algebras are sets equipped with a binary operation, a
natural equation to impose on them is associativity. Taking Γ(𝑋) = 𝑋3, the relevant
functorial Σ∗-terms 𝐿 and 𝑅 of arity Γ are defined by 𝐿 (𝑥1, 𝑥2, 𝑥3) = op(op(𝑥1, 𝑥2), 𝑥3), and
𝑅(𝑥1, 𝑥2, 𝑥3) = op(𝑥1, op(𝑥2, 𝑥3)).

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:43

Example 9.3. We will do this right in Example 9.26 below, but for illustrative purposes, let
us describe a failed attempt at specifying pure 𝜆-terms modulo 𝛽 by an equational system.
We first take C = [Set, Set] 𝑓 to consist of finitary endofunctors on sets, and Σ(𝑋) (𝑛) =
𝑛 + 𝑋 (𝑛)2 + 𝑋 (𝑛 + 1). The first summand models variables, the second application, and the
third, abstraction. Indeed, any algebra 𝑋 comes equipped with maps app𝑛 : 𝑋 (𝑛)2 → 𝑋 (𝑛)
and 𝜆𝑛 : 𝑋 (𝑛 + 1) → 𝑋 (𝑛), for all 𝑛. The first member of the 𝛽-equation, app𝑛 (𝜆𝑛 (𝑒), 𝑓),
would be modelled by setting Γ(𝑋) (𝑛) = 𝑋 (𝑛+1)×𝑋 (𝑛) and taking the natural transformation
Γ→ Σ∗ mapping any (𝑒, 𝑓) ∈ 𝑋 (𝑛 + 1) × 𝑋 (𝑛) to app𝑛 (𝜆𝑛 (𝑒), 𝑓) (omitting the monad unit
𝜂 : id→ Σ∗). This works fine, but we have neglected to build substitution into the model,
so we cannot define the right-hand side of 𝛽. This will be rectified in Example 9.26, after
observing that (part of) Σ is in fact pointed strong in Example 9.15.

The following should now look natural.

Definition 9.4. An equational system E = (C : Γ ` 𝐿 = 𝑅 : Σ) consists of
• a locally finitely presentable category C,
• finitary endofunctors Σ and Γ, together with
• functorial Σ∗-terms 𝐿 and 𝑅 of arity Γ.

This differs slightly from Fiore and Hur’s [FH09] definition, so let us readily bridge the
gap.

Proposition 9.5. Given any finitary endofunctors Σ and Γ on a locally finitely presentable
category C, there are natural isomorphisms (in Σ and Γ) between

(i) functorial Σ∗-terms of arity Γ, i.e., natural transformations Γ→ Σ∗,
(ii) monad morphisms Γ∗ → Σ∗,
(iii) functors Σ -alg→ Γ -alg over C,
(iv) monad morphisms (Σ+Γ)∗ → Σ∗ with section the canonical morphism Σ∗ → (Σ+Γ)∗,
(v) functors Σ -alg → (Σ + Γ) -alg over C which are sections of the canonical functor
(Σ + Γ) -alg→ Σ -alg, and

(vi) natural transformations Γ ◦𝑈Σ → 𝑈Σ.

Proof.

• (i) ⇔ (ii) This is precisely the universal property of Γ∗.
• (ii) ⇔ (iii) This is precisely Corollary 2.46.
• (ii) ⇔ (iv) By (Σ +Γ)∗ � Σ∗ +Γ∗, which holds (in Mnd 𝑓 (C)) because (−)∗ is a left adjoint,
hence preserves coproducts.
• (iii)⇔ (v) By (Σ+Γ) -alg � Σ -alg×CΓ -alg, with the canonical functor (Σ+Γ) -alg→ Σ -alg
as left projection.
• (iii) ⇔ (vi) By merely unfolding definitions.

Remark 9.6. The expert will have noticed that Fiore and Hur’s equational systems use (iii),
in a slightly more general setting: they do not assume C to be locally finitely presentable,
nor Σ and Γ to be finitary.

Let us now define the models of an equational system.

Definition 9.7. For any equational system E = (C : Γ ` 𝐿 = 𝑅 : Σ), an E-algebra is a
Σ-algebra 𝑋 whose induced Σ∗-algebra structure coequalises

𝐿𝑋 , 𝑅𝑋 : Γ(𝑋) ⇒ Σ∗(𝑋).

3:44 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Let E -alg denote the category of E-algebras, with Σ-algebra morphisms between them, and
let 𝑈E : E -alg→ C denote the forgetful functor.

Let us readily transfer this definition across the various correspondences of Proposi-
tion 9.5.

Proposition 9.8. For any equational system E = (C : Γ ` 𝐿 = 𝑅 : Σ) and Σ∗-algebra
𝑎 : Σ∗(𝑋) → 𝑋, the following are equivalent:

(a) 𝑎 coequalises 𝐿𝑋 , 𝑅𝑋 : Γ(𝑋) → Σ∗(𝑋),
(b) 𝑎 coequalises the corresponding morphisms Γ∗(𝑋) → Σ∗(𝑋),
(c) the induced Σ-algebra structure Σ(𝑋) → 𝑋 belongs to the equaliser of the corresponding

functors Σ -alg→ Γ -alg over C,
(d) 𝑎 coequalises the corresponding morphisms (Σ + Γ)∗(𝑋) → Σ∗(𝑋),
(e) the induced Σ-algebra structure Σ(𝑋) → 𝑋 belongs to the equaliser of the corresponding

functors Σ -alg→ (Σ + Γ) -alg over C,
(f) the corresponding natural transformations Γ ◦𝑈Σ → 𝑈Σ have the same components

at the induced Σ-algebra structure Σ(𝑋) → 𝑋.

Proof.

• (a) ⇔ (c) Each functor Σ -alg → Γ -alg corresponding to 𝐾 ∈ {𝐿, 𝑅} maps the induced

Σ-algebra to Γ(𝑋) 𝐾−→ Σ∗(𝑋) 𝑎−→ 𝑋, so both sides unfold to the same thing.
• (b) ⇒ (a) Follows from the fact that precomposing the induced morphisms Γ∗ → Σ∗ by
Γ→ Γ∗ yields the original 𝐿 and 𝑅 by construction.
• (c) ⇒ (b) This holds because (b) is equivalent to equality of induced Γ∗-algebra structures,
which is further equivalent to equality of induced Γ-algebra structures.

The rest follows similarly.

Remark 9.9. The equivalence of (a) and (c) entails that our notion of algebra coincides
with Fiore and Hur’s (apart from the differences noted in Remark 9.6).

Remark 9.10. Families (𝑡𝑖 = 𝑢𝑖)𝑖 of equations are covered by taking the coproduct of all
involved endofunctors, say Γ𝑖, and the pointwise copairing of functorial terms.

Definition 9.11. For a given locally finitely presentable category C, we define the monadic
register ESC, called the equational register, as follows.

Signatures: A signature is an equational system.
Semantics: The abstract signature associated to any signature E is the forgetful functor

E -alg→ C.

Validity proof: By Theorem 10.14 below.

Example 9.12. Given a cocomplete category C, the endofunctor register EFC is a subregister
of ESC, by mapping any finitary endofunctor Σ to the (finitary) equational system given by
taking Γ = 0, and the unique 𝐿 and 𝑅.

9.2. The register PSEFC for monoids. In the previous subsection, we reviewed a fun-
damental register available for general locally finitely presentable categories. Here, we
review another fundamental register called PSEFC, available for the category of monoids
in a convenient monoidal category. This register is essentially due to Fiore, Plotkin, and

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:45

Turi [FPT99]. Signatures in the register PSEFC will be pointed strong endofunctors on the
monoidal category C.

The point of the register PSEFC is to specify monads. In fact, monads may be specified
by the previous register, ESC, but at the cost of including in the signature

• operations for the monad multiplication and unit, and
• equations for associativity and unitality.

Instead, the register PSEFC will directly specify monoids in any (sufficiently nice) monoidal
category C, hence be more economical. This in particular covers the case of finitary monads
on a locally finitely presentable category.

Let us first describe the announced monadic abstract signature. We start by recalling
what a pointed strong endofunctor is, and showing how it yields a parametric module (in
the sense of Definition 2.15) on C.

Pointed strong endofunctors

Definition 9.13. A pointed strong endofunctor on a monoidal category (C, ⊗, 𝐼) is
an endofunctor Σ equipped with a pointed strength, i.e., a natural transformation with
components

𝑠𝑡𝑋,𝑌 : Σ(𝑋) ⊗ 𝑌 → Σ(𝑋 ⊗ 𝑌)
between functors C × 𝐼/C→ C, making the following diagrams commute (pointed objects
𝑒𝑌 : 𝐼 → 𝑌 are denoted by their codomains 𝑌 for readability),

(Σ(𝑋) ⊗ 𝑌) ⊗ 𝑍 Σ(𝑋) ⊗ (𝑌 ⊗ 𝑍)

Σ(𝑋 ⊗ 𝑌) ⊗ 𝑍 Σ((𝑋 ⊗ 𝑌) ⊗ 𝑍) Σ(𝑋 ⊗ (𝑌 ⊗ 𝑍))

𝛼Σ(𝑋) ,𝑌 ,𝑍

𝑠𝑡𝑋,𝑌 ⊗𝑍

𝑠𝑡𝑋⊗𝑌 ,𝑍 Σ(𝛼𝑋,𝑌 ,𝑍)

𝑠𝑡𝑋,𝑌 ¤⊗𝑍

Σ(𝑋) Σ(𝑋) ⊗ 𝐼

Σ(𝑋 ⊗ 𝐼)

𝜌Σ(𝑋)

Σ(𝜌𝑋) 𝑠𝑡𝑋, ¤𝐼

where 𝐼/C inherits monoidal structure (¤𝐼, ¤⊗, . . .) from C in the obvious way [Web04].

Remark 9.14. There is a simpler notion of strong endofunctor, which also involves a
natural transformation 𝑠𝑡𝑋,𝑌 : Σ(𝑋) ⊗ 𝑌 → Σ(𝑋 ⊗ 𝑌), although with 𝑌 not pointed. Strong
endofunctors embed into pointed strong endofunctors, which are thus more general. The
generalisation is necessary to cover variable binding, as shown by the following example.

Example 9.15. For defining 𝜆-calculus syntax, we take C := [Set, Set] 𝑓 to be the category
of finitary endofunctors on sets with the composition tensor product, and Σ(𝑋) (𝑛) =

𝑋 (𝑛)2 + 𝑋 (𝑛 + 1) (using the equivalence [Set, Set] 𝑓 ' [Set 𝑓 , Set], where Set 𝑓 is the full
category spanning finite ordinals). The tensor product is defined on [Set 𝑓 , Set] by the coend
formula [Mac98, §IX.6]

(𝑋 ⊗ 𝑌) (𝑛) =
∫ 𝑚

𝑋 (𝑚) × 𝑌 (𝑛)𝑚,

which is in one-to-one correspondence with 𝑋 (𝑌 (𝑛)). Elements of (𝑋 ⊗𝑌) (𝑛) may be thought
of as explicit substitutions 𝑥(𝜎), with 𝑥 ∈ 𝑋 (𝑚) and 𝜎 : 𝑚 → 𝑌 (𝑛), considered equivalent up

3:46 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

to standard equations, compactly summarised by (𝑓 · 𝑥)(𝜎) = 𝑥(𝜎 ◦ 𝑓), for all 𝑓 : 𝑚 → 𝑝,
𝑥 ∈ 𝑋 (𝑚) and 𝑦 : 𝑝 → 𝑌 (𝑛), where 𝑓 · 𝑥 is shorthand for 𝑋 (𝑓) (𝑥).

A monoid structure on any 𝑋 ∈ C thus amounts to

• a substitution operation 𝑋 ⊗ 𝑋 → 𝑋 mapping any such explicit substitution 𝑥(𝜎) ∈
(𝑋 ⊗ 𝑋) (𝑛) to some proper substitution, which we denote by 𝑥 [𝜎] ∈ 𝑋 (𝑛),
• together with a morphism 𝐼 → 𝑋, which, because 𝐼 (𝑛) = id(𝑛) = 𝑛, amounts to identifying
available variables within each 𝑋 (𝑛).

These data are required to satisfy the usual associativity and unitality conditions, which
amount to standard substitution lemmas.

Returning to pointed strengths (𝑠𝑡𝑋,𝑌)𝑛 : Σ(𝑋) (𝑌 (𝑛)) → Σ(𝑋 (𝑌 (𝑛))), intuitively, they
describe the behaviour of substitution w.r.t. application and abstraction. E.g., for application,
we define it to map (𝑖𝑛1(𝑥1, 𝑥2))(𝜎) to 𝑖𝑛1(𝑥1(𝜎), 𝑥2(𝜎)), which will ensure the usual equation
(𝑒1𝑒2) [𝜎] = 𝑒1 [𝜎]𝑒2 [𝜎]. Abstraction is the point where pointedness of 𝑠𝑡 comes into
play. Indeed, supposing that 𝑌 is equipped with a point 𝑒𝑌 : 𝐼 → 𝑌 , we may define
𝜎↑ : 𝑚 + 1→ 𝑌 (𝑛 + 1) by copairing of

𝑚
𝜎−→ 𝑌 (𝑛)

𝑌 (𝑖𝑛1)−−−−−→ 𝑌 (𝑛 + 1) and 1
(𝑒𝑌)1−−−−→ 𝑌 (1)

𝑌 (𝑖𝑛2)−−−−−→ 𝑌 (𝑛 + 1).
We use this in defining the pointed strength to map any 𝑖𝑛2(𝑥)(𝜎), where 𝑥 ∈ 𝑋 (𝑚 + 1) and
𝜎 : 𝑚 → 𝑌 (𝑛), to 𝑖𝑛2(𝑥(𝜎↑)). This will ensure the usual equation 𝜆(𝑒) [𝜎] = 𝜆(𝑒[𝜎↑]).

The parametric module Σstmod Let us now show how every pointed strong endofunctor
induces a parametric module.

Definition 9.16. We define the parametric module Σstmod on C as assigning to any monoid
𝑋 ∈ C, the object Σ(𝑋), equipped with the action given by the composite

Σ(𝑋) ⊗ 𝑋 → Σ(𝑋 ⊗ 𝑋) → Σ(𝑋).

The verification that this assignment indeed defines a parametric module is straightfor-
ward.

The category Σ -Mon of models We now introduce Σ-monoids. These are exactly the
classical Σ-monoids, which we present from a point of view better suited to our purpose.
They are monoids equipped with a “compatible” algebra structure:

Definition 9.17. A Σ-monoid is a monoid 𝑋, equipped with an 𝑋-module morphism
𝜈𝑋 : Σ

stmod (𝑋) → 𝑋. A Σ-monoid morphism is a monoid morphism 𝑓 : 𝑋 → 𝑌 making the
following square commute.

Σstmod (𝑋) Σstmod (𝑌)

𝑋 𝑌

Σstmod (𝑓)

𝜈𝑋

𝑓

𝜈𝑌

We let Σ -Mon denote the category of Σ-monoids and morphisms between them, while
𝑈Σ : Σ -Mon→Mon(C) denotes the obvious forgetful functor.

Let us first prove that this agrees with the standard definition.

Proposition 9.18. The category Σ -Mon is isomorphic over Mon(C) to the following cate-
gory.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:47

• Objects are monoids 𝑋 equipped with Σ-algebra structure 𝜈𝑋 : Σ(𝑋) → 𝑋 making the
diagram

Σ(𝑋) ⊗ 𝑋 Σ(𝑋 ⊗ 𝑋) Σ(𝑋)

𝑋 ⊗ 𝑋 𝑋

𝑠𝑡𝑋,𝑋

𝜈𝑋 ⊗𝑋

Σ(𝑚𝑋)

𝑚𝑋

𝜈𝑋 (9.1)

commute.
• Morphisms are morphisms in C which are both monoid and Σ-algebra morphisms.

Proof. By definition of Σstmod , it is equivalent for a morphism Σ(𝑋) → 𝑋 to be an 𝑋-module
morphism, and for the condition (9.1) to hold.

Let us finally check that we have defined an abstract signature.

Theorem 9.19. For any finitary, pointed strong endofunctor on a convenient monoidal
category C, the category Σ -Mon and the forgetful functor 𝑈Σ : Σ -Mon → Mon(C) form a
monadic abstract signature. In fact, the forgetful functor 𝑈Σ : Σ -Mon→Mon(C) is finitary
monadic.

Proof. We have a commuting triangle

Σ -Mon Mon(C)

C,

𝑈Σ

UΣ -Mon UMon(C)

where, by [FH09, §7.2], UΣ -Mon and UMon(C) are both monadic, the corresponding monads
being finitary (noting that Mon(C) � 0 -Mon). By [AR94, Remark 2.78] with 𝜆 = 𝜔, it
follows that all three categories are locally finitely presentable, hence in particular cocomplete.
The result thus follows by Proposition 2.40 and Lemma 2.41.

We now want to recall a standard characterisation of the monad induced by the monadic
functor 𝑈Σ -Mon, but before that let us fix some notation.

Notation 9.20. Let us refine Notation 5.7 and Remark 5.11. For a pointed strong endo-
functor Σ on a convenient monoidal category C, Σ★(0) might be read as different objects of
C, according to whether Σ is viewed as a finitary endofunctor or a finitary pointed strong
endofunctor. Since Σ-monoids are also monadic over monoids, it might even be understood
as a monoid in C. We choose the following convention:

• Σ★ denotes the “free Σ-monoid” monad C,
• Σ~ denotes the “free Σ-monoid” monad on Mon(C),
• Σ∗ denotes the “free Σ-algebra” monad on C.

Proposition 9.21. For any pointed strong endofunctor Σ on a convenient monoidal category
C, the monad Σ★ induced by the right adjoint functor Σ -Mon → Mon(C) → C maps any
object 𝐶 ∈ C to 𝜇𝐴.(𝐼 + Σ(𝐴) + 𝐶 ⊗ 𝐴). As a consequence of Proposition 5.9, the carrier
Σ★(0) of the initial Σ-monoid is then isomorphic to Σ∗(𝐼).

Proof. This is more or less known since [FPT99, FH09, FS17], see [BHL20, Theorem 2.15]
for an explicit, complete, yet slightly more general statement.

3:48 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Let us finally define our register for monoids.

Definition 9.22. For any convenient monoidal category C, the monadic register PSEFC

for the category Mon(C) of monoids in C is defined as follows.

Signatures: A signature is a finitary, pointed strong endofunctor on C.
Semantics: The abstract signature associated to any signature Σ is the forgetful functor

Σ -Mon→Mon(C).

Validity proof: By Theorem 9.19.

9.3. Monoidal equational systems. In this section, we combine the registers ESC and
PSEFC of the two previous sections, yielding a new register MESC obtained from PSEFC by
‘adding monoidal equations’.

Definition 9.23. Given finitary, pointed strong endofunctors Σ and Γ on a convenient
monoidal category C, a monoidal functorial Σ~-term of arity Γ is a parametric module
morphism Γstmod → (Σ~)monmod , where we recall Γstmod from Definition 9.16 and (Σ~)monmod

from Notation 9.20 and Example 2.17.

Definition 9.24. A monoidal equational system E = (C : Γ ` 𝐿 =⊗ 𝑅 : Σ) consists of
• a convenient monoidal category C,
• two pointed strong endofunctors Σ and Γ on C, and
• a parallel pair 𝐿, 𝑅 : Γstmod ⇒ (Σ~)monmod of monoidal functorial Σ~-terms, which we call
a monoidal equation.

Proposition 9.25. Given any locally finitely presentable category C, there are natural
isomorphisms (in Σ and Γ) between

(i) monoidal functorial Σ~-terms of arity Γ, or in other words parametric module
morphisms Γstmod → (Σ~)monmod (Definition 2.26),

(ii) morphisms Γ~ → Σ~ of monads on Mon(C),
(iii) functors Σ -Mon→ Γ -Mon over Mon(C),
(iv) morphisms (Σ+Γ)~ → Σ~ of monads on Mon(C), with section the canonical morphism

Σ~ → (Σ + Γ)~,
(v) functors Σ -Mon → (Σ + Γ) -Mon over Mon(C) which are sections of the forgetful

functor (Σ + Γ) -Mon→ Σ -Mon, and
(vi) natural transformations

Mon

Σ -Mon Mod.

Mon

𝑈Σ

𝑈Σ

Γstmod

(−)monmod

Proof. Both equivalences (ii) ⇔ (iii) and (iv) ⇔ (v) follow directly from Proposition 2.45
because by definition we have Σ~ -alg � Σ -Mon, and similarly for Γ and Σ + Γ. Furthermore,
(vi) ⇔ (iii) and (iii) ⇔ (v) both follow by mere definition unfolding. This leaves us with
proving that the first point agrees with one of the others.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:49

For this, we exhibit a natural isomorphism

𝑇 -alg→ Γ -Mon (over Mon(C))

Γstmod → 𝑇monmod
===

for any monad 𝑇 on Mon(C). The result thus follows by taking 𝑇 = Σ~.

• Given any 𝐿 : 𝑇 -alg → Γ -Mon over Mon(C), consider the morphism 𝐿↓ : Γstmod →
𝑇monmod defined at any monoid 𝑀 by

Γ(𝑀)
Γ(𝜂𝑀)−−−−−→ Γ(𝑇 (𝑀))

𝐿 (𝑇 (𝑀))
−−−−−−−→ 𝑇 (𝑀).

This indeed defines a morphism of the claimed type, by a simple diagram chasing, and
furthermore this assignment is clearly natural in Γ and 𝑇 .
• Conversely, given any 𝛼 : Γstmod → 𝑇monmod , let 𝛼↑ : 𝑇 -alg→ Γ -Mon map any 𝑇-algebra
structure 𝑎 : 𝑇 (𝑀) → 𝑀 on a monoid 𝑀 to the Γ-algebra structure

Γ(𝑀) 𝛼𝑀−−−→ 𝑇 (𝑀) 𝑎−→ 𝑀.

Again, a simple diagram chase shows that this Γ-algebra structure satisfies the coherence
law of Γ-monoids.

These two maps are easily checked to be mutually inverse, thus proving the claim.

Example 9.26. Recall from Example 9.15 the pointed strong endofunctor Σ(𝑋) (𝑛) =

𝑋 (𝑛)2 + 𝑋 (𝑛 + 1) for pure 𝜆-calculus on [Set, Set] 𝑓 . As promised, let us now use this to
complete the aborted treatment of the 𝛽-equation in Example 9.26. This is made possible
by working directly at the level of monoids (which we think of as objects equipped with
substitution). We again take Γ(𝑋) (𝑛) = 𝑋 (𝑛+1) × 𝑋 (𝑛), and define 𝐿 and 𝑅 at any Σ-monoid
𝑇 to map any (𝑓 , 𝑒) ∈ 𝑇 (𝑛 + 1) × 𝑇 (𝑛) to 𝜆(𝑓) 𝑒 and 𝑓 [𝑒] respectively, where 𝑓 [𝑒] denotes
the result of substituting 𝑒 for the (𝑛 + 1)th variable of 𝑓 . More precisely, 𝑓 [𝑒] = 𝜇 ◦𝑇𝑢𝑒 (𝑓),
where 𝑢𝑒 : 𝑛 + 1→ 𝑇𝑛 is [𝜂, 𝑒].

Let us now turn to defining algebras for a monoidal equational system.

Definition 9.27. For any monoidal equational system E = (C : Γ ` 𝐿 =⊗ 𝑅 : Σ), an E-
algebra is a Σ-monoid 𝑋 whose Σ~ (𝑋)-algebra structure coequalises 𝐿𝑋 , 𝑅𝑋 : Γ

stmod (𝑋) ⇒
(Σ~)monmod (𝑋). An E-algebra morphism is a morphism between underlying Σ~-algebras
(a.k.a. Σ-monoids). We let 𝑈E : E -alg→Mon(C) denote the forgetful functor.

Mimicking Proposition 9.8, we now transfer this definition across the various correspon-
dences of Proposition 9.25.

Proposition 9.28. For any monoidal equational system E = (C : Γ ` 𝐿 =⊗ 𝑅 : Σ) and
Σ~-algebra 𝑎 : Σ~ (𝑋) → 𝑋, the following are equivalent:

(a) 𝑎 coequalises 𝐿𝑋 , 𝑅𝑋 : Γ
stmod (𝑋) → (Σ~)monmod (𝑋),

(b) 𝑎 coequalises the corresponding morphisms Γ~ (𝑋) → Σ~ (𝑋),
(c) the induced Σ-monoid structure Σstmod (𝑋) → 𝑋 belongs to the equaliser of the

corresponding functors Σ -Mon→ Γ -Mon,
(d) the induced Σ-monoid structure Σstmod (𝑋) → 𝑋 belongs to the equaliser of the induced

functors Σ -Mon→ Γ -alg,
(e) 𝑎 coequalises the corresponding morphisms (Σ + Γ)~ (𝑋) → Σ~ (𝑋),
(f) the induced Σstmod -algebra structure Σstmod (𝑋) → 𝑋 belongs to the equaliser of the

corresponding functors Σ -Mon→ (Σ + Γ) -Mon,

3:50 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

(g) the corresponding natural transformations Γstmod ◦𝑈Σ → (−)monmod ◦𝑈Σ have the
same components at the induced Σ-algebra structure Σstmod (𝑋) → 𝑋.

Proof.

• (a) ⇔ (c) The corresponding functors Σ -Mon→ Γ -Mon map the induced Σstmod -algebra

to Γstmod (𝑋) 𝐾−→ (Σ~)monmod (𝑋) 𝑎−→ 𝑋, for 𝐾 = 𝐿, 𝑅, so both sides unfold to the same
thing.
• (c) ⇔ (d) is clear.
• (b) ⇒ (a) Follows from the fact that precomposing the induced morphisms

(Γ~)monmod → (Σ~)monmod

by Γstmod → (Γ~)monmod yields the original 𝐿 and 𝑅 by construction.
• (d) ⇒ (b) This holds because (b) is equivalent to equality of induced Γ~-algebra structures,
which is further equivalent to equality of induced Γ-algebra structures.

The rest follows easily.

Definition 9.29. For a given convenient monoidal category C, we define the monadic
register MESC, called the monoidal equational register, as follows.

Signatures: A signature is a monoidal equational system.
Semantics: The abstract signature associated to a signature E is the forgetful functor

E -alg→Mon(C).

Validity proof: By Theorem 10.16 below.

10. Computing initial algebras in the presence of equations

In this section, we establish the announced explicit descriptions of initial algebras, thereby
proving that the registers introduced in §7 and §8 are valid. For this, we in passing also
prove the validity of the registers from §9, and establish useful explicit descriptions of initial
algebras for them too. In order, we characterise the underlying monad and initial algebra
for suitable signatures in our registers featuring equations, namely the registers

• ESC of equational systems (Definition 9.11),
• MESC of monoidal equational systems (Definition 9.29),
• RegMnd 𝑓 (SetP) of equational modular signatures (Definition 7.11), and

• Reg0 [SetP, SetS] 𝑓 of equational facet-based signatures (Definition 8.12).

But before doing this, in §10.1, we study a well-known [ARV10] refinement of finitariness,
which we call friendliness, and prove the main foundational result about it. In §10.2–10.5,
we then exploit this to characterise underlying monads and initial algebras for the announced
registers.

10.1. Reflexive coequalisers of friendly monoids. Let us start from the announced
result on monads (Theorem 7.18). The monads generated by our register RegMnd 𝑓 (SetP)
with equations are, almost by definition, coequalisers in Mnd 𝑓 (SetP). We have announced in

Theorem 7.18 that their underlying functors are coequalisers in [SetP, SetP] 𝑓 . Technically,
the goal is thus to delineate sufficient conditions for monad coequalisers 𝑇E ⇒ 𝑇D � 𝑇 ′ to
be computed pointwise, in the sense that each 𝑇E(𝑋) ⇒ 𝑇D(𝑋) � 𝑇 ′(𝑋) is a coequaliser,
and the monad structure is entirely determined by the family (𝑇 ′(𝑋))𝑋 ∈SetP (see [Mac98,

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:51

§V.3]). Roughly, this will work if both monads 𝑇E and 𝑇D preserve reflexive coequalisers.
Because (finitary) monads are monoids in the category of (finitary) endofunctors, we can in
fact generalise the result to monoids in a suitable category (see Proposition 10.17 below).
Preservation of reflexive coequalisers plays a fundamental role in the study of algebraic
theories [ARV10]. As we will use it a lot, let us give it a name.

Definition 10.1.

• A reflexive pair of morphisms is a pair 𝑓 , 𝑔 : 𝑋 → 𝑌 of parallel morphisms, sharing a
common section 𝑠, i.e., 𝑠 : 𝑌 → 𝑋 such that 𝑓 𝑠 = id𝑌 = 𝑔𝑠.
• A reflexive coequaliser is a coequaliser of a reflexive pair.
• A functor is friendly when it is finitary and preserves reflexive coequalisers.

Remark 10.2. By [ARV10, Theorem 7.7], when the considered categories are cocomplete,
this is equivalent to preserving all sifted colimits.

Definition 10.3. An object 𝑋 of a monoidal category is ⊗-friendly (pronounced “tensor-
friendly”) when the functor 𝑋 ⊗ − is friendly.

Proposition 10.4. For any locally finitely presentable category C, a finitary endofunctor
on C is friendly iff it is ⊗-friendly as an object of [C,C] 𝑓 (viewed as monoidal for the
composition tensor product).

Proof. Colimits of functors are computed pointwise [Mac98, §V.4].

Notation 10.5. By the proposition, in all of our use cases, ⊗-friendliness and friendliness
are synonymous, hence we use the latter for simplicity.

Definition 10.6. A monoidal category is friendly when it is convenient and all objects
are friendly.

Example 10.7.

• The composition monoidal structure on finitary endofunctors on any locally finitely
presentable category is convenient, though not friendly in general. By Proposition 10.4,
the friendly objects are precisely the endofunctors preserving reflexive coequalisers.
• On categories of the form SetP for some set P, though, by [ARV10, Corollary 6.30], all
finitary endofunctors are friendly, hence [SetP, SetP] 𝑓 is friendly.

Proposition 10.8. For any convenient monoidal category C, the forgetful functor

Mon(C) → C

creates reflexive coequalisers of friendly objects. More concretely, given a reflexive pair
𝑋 ⇒ 𝑌 of monoid morphisms, if 𝑋 and 𝑌 are friendly, then the coequaliser in C lifts uniquely
to a cocone of monoids, which is again a coequaliser.

Proof. Monoids are the algebras of the “free monoid” monad, which we denote by (−)★
in this proof. Furthermore, a forgetful functor from monad algebras always creates those
colimits that the monad preserves (Proposition 2.32). It thus suffices to show that (−)★
preserves reflexive coequalisers of friendly objects.

Let thus 𝑋1 ⇒ 𝑋2 � 𝑍 denote a reflexive coequaliser, with 𝑋1 and 𝑋2 friendly.

3:52 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Let us first show that 𝑍 is again friendly. For this, we consider any reflexive coequaliser
𝐴1 ⇒ 𝐴2 � 𝐶. Then, we have:

𝑍 ⊗ 𝐶 = (colim𝑖 𝑋𝑖) ⊗ (colim 𝑗 𝐴 𝑗)
� colim𝑖 (𝑋𝑖 ⊗ (colim 𝑗 𝐴 𝑗)) (C is convenient)
� colim𝑖 colim 𝑗 (𝑋𝑖 ⊗ 𝐴 𝑗) (each 𝑋𝑖 is friendly)
� colim 𝑗 colim𝑖 (𝑋𝑖 ⊗ 𝐴 𝑗) (by interchange of colimits)
� colim 𝑗 ((colim𝑖 𝑋𝑖) ⊗ 𝐴 𝑗) (C is convenient)
= colim 𝑗 (𝑍 ⊗ 𝐴 𝑗),

as desired.
Furthermore, by Proposition 9.21 (with Σ = 0), 𝑍★ is the initial algebra of the endofunctor

𝐻𝑍 = 𝐼+𝑍 ⊗−. Morevoer, 𝐻𝑍 is the coequaliser of 𝐻𝑋1 ⇒ 𝐻𝑋2 , i.e., (𝐼+𝑋1⊗−) ⇒ (𝐼+𝑋2⊗−).
We then prove by induction that 𝐻𝑛

𝑋1
(0) ⇒ 𝐻𝑛

𝑋2
(0) � 𝐻𝑛

𝑍
(0) is again a (reflexive)

coequaliser, for all 𝑛 ∈ N.

• The base case is trivial.
• Assuming that 𝐻𝑛

𝑋1
(0) ⇒ 𝐻𝑛

𝑋2
(0) � 𝐻𝑛

𝑍
(0) is a coequaliser, we consider the following

diagram.

𝐻𝑋1 (𝐻𝑛𝑋1
(0)) 𝐻𝑋1 (𝐻𝑛𝑋2

(0)) 𝐻𝑋1 (𝐻𝑛Z (0))

𝐻𝑋2 (𝐻𝑛𝑋1
(0)) 𝐻𝑋2 (𝐻𝑛𝑋2

(0)) 𝐻𝑋2 (𝐻𝑛Z (0))

𝐻Z(𝐻𝑛𝑋1
(0)) 𝐻Z(𝐻𝑛𝑋2

(0)) 𝐻Z(𝐻𝑛Z (0))

By construction all columns are reflexive coequalisers, and by friendliness so are all rows.
By [BW05, Lemma 8.4.2], the diagonal is thus again a (reflexive) coequaliser.

Finally, by interchange of colimits, we obtain that 𝑋★1 ⇒ 𝑋★2 � 𝑍★ is also a coequaliser, as
desired.

Corollary 10.9. Reflexive coequalisers of friendly monads on a finitely presentable category
C are computed pointwise.

Similarly, reflexive coequalisers of finitary monads on a category of the form SetP for
some set P, are computed pointwise.

Proof. The first point follows directly from the proposition. For the second, we additionally
use the fact that [SetP, SetP] 𝑓 is friendly (Example 10.7).

10.2. Initial algebras for equational systems. In this section, we want to apply the
previous corollary to characterise the induced monad and initial algebra for equational
systems. For this, we should show that the monads 𝑇D and 𝑇E underlying the relevant
parallel pair D⇒ E in Monadic 𝑓 /C are indeed friendly. What helps us here is that these
monads are free on a friendly endofunctor, as we now show. We again state this in the
abstract context of a convenient monoidal category.

Proposition 10.10. In any convenient monoidal category, the free monoid on a friendly
object is again friendly.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:53

Proof. We in fact prove the more general result that if 𝑋 ∈ C preserves D-colimits for a
given category D, in the sense that 𝑋 ⊗ − preserves D-colimits, then so does 𝑋★ ⊗ −. By
Corollary 2.34, it is enough to show that the forgetful functor from the category of algebras
for the monad 𝑋★ ⊗ − creates D-colimits. But, by [Kel80, Proposition 23.2], this category
of algebras is isomorphic (over C) to the category of algebras for the endofunctor 𝑋 ⊗ −.
Thus, we are left with showing that the forgetful functor from this latter category creates
D-colimits, which follows from the next lemma.

The following is analogous to Proposition 2.32, with an endofunctor instead of a monad.

Lemma 10.11. Let 𝐹 be an endofunctor on a category C. Then, the forgetful functor
𝐹 -alg→ C creates any colimit that 𝐹 preserves. More specifically, given a category D such
that 𝐹 preserves colimits of all diagrams 𝐽 : D→ C, then the forgetful functor 𝐹 -alg→ C
creates colimits of all diagrams 𝐽 : D→ 𝐹 -alg.

Proof. Straightforward.

Corollary 10.12. The free monad on a friendly endofunctor on a finitely presentable
category is friendly.

We now want to apply Corollary 10.9 to prove a first free+quotient explicit description
of initial algebras for equational systems. The exact same technique will then be applied
to other registers in the following subsections, namely to monoidal equational systems,
equational modular signatures, and equational facet-based signatures.

Before giving the explicit description, we need to introduce the following.

Definition 10.13. For any functorial term 𝐾 : Γ→ Σ∗, let 𝐾 denote the monad morphism

(Σ + Γ)∗ � Σ∗ + Γ∗
[idΣ∗ ,𝐾 ′]−−−−−−−→ Σ∗,

where 𝐾 ′ : Γ∗ → Σ∗ denotes the monad morphism induced by 𝐾 by freeness of Γ∗.

We may now state:

Theorem 10.14. Let E = (C : Γ ` 𝐿 = 𝑅 : Σ) be any equational system. Then:

(i) The forgetful functor E -alg→ C is finitary monadic.
(ii) The finitary monad E∗ underlying the forgetful functor E -alg→ C is the coequaliser

(in Mnd 𝑓 (C)) of �̃�, 𝑅 : (Σ + Γ)∗ ⇒ Σ∗.

Furthermore, if Σ and Γ are friendly (which is in particular the case when C is [SetP, SetP] 𝑓
for some set P), we have:

(iii) The above coequaliser E∗ is created by the forgetful functor Mnd 𝑓 (C) → [C,C] 𝑓 ,
hence computed pointwise.

(iv) The initial E-algebra is the coequaliser of

�̃�0, 𝑅0 : (Σ + Γ)∗(0) ⇒ Σ∗(0),
with its canonical Σ-algebra structure.

Proof. We start by expressing the category E -alg as an equaliser in CAT.
For any functorial term 𝐾 : Γ→ Σ∗, let 𝐾 ′ : Σ -alg→ Γ -alg map any Σ-algbra 𝑎 : Σ(𝑋) →

𝑋 to the composite

Γ(𝑋) 𝐾𝑋−−→ Σ∗(𝑋) 𝑎−→ 𝑋,

3:54 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

where 𝑎 denotes the induced Σ∗-algebra structure on 𝑋.
The category E -alg is then the equaliser of the (generally non-reflexive) pair below left,

Σ -alg Γ -alg

𝐿′

𝑅′

Σ -alg (Σ + Γ) -alg
𝐿 -alg

𝑅 -alg

which already entails monadicity by Corollary 2.48. But it is also an equaliser of the
reflexive pair above right, which entails (ii) by Corollary 2.46. The rest then follows from
Corollary 10.9 using Corollary 10.12.

Example 10.15. Let us recall Example 9.2, where we introduced an equational system
whose algebras are sets equipped with an associative binary operation. Because we know
how to compute coequalisers in sets, the theorem says that the free algebra on any 𝑋 ∈ Set is
obtained by quotienting the free Σ-algebra Σ∗(𝑋) by following relation ∼. We first construct
the free (Σ + Γ)-algebra (Σ + Γ)∗(𝑋) on 𝑋, obtained by freely adding a binary operation and
a ternary operation, say 𝑓 , to 𝑋. We then define two maps 𝐿, 𝑅 : (Σ + Γ)∗(𝑋) → Σ∗(𝑋), by
recursively interpreting 𝑓 (𝑥, 𝑦, 𝑧) as (𝑥 + 𝑦) + 𝑧, resp. 𝑥 + (𝑦 + 𝑧). We finally define ∼ to be
the smallest equivalence relation such that 𝑥 ∼ 𝑦 whenever 𝑥 = 𝐿 (𝑧) and 𝑦 = 𝑅(𝑧) for some
𝑧 ∈ (Σ + Γ)∗(𝑋).

10.3. Initial algebras for monoidal equational systems. In this section, we characterise
the induced monad and initial algebra of monoidal equational systems, under mild additional
hypotheses.

Theorem 10.16. Let E = (C : Γ ` 𝐿 =⊗ 𝑅 : Σ) be any monoidal equational system. Then:

(i) The forgetful functor E -alg→Mon(C) is finitary monadic.
(ii) The finitary monad E★ induced by the forgetful functor E -alg→ C is the coequaliser

of 𝐿, 𝑅 : (Σ + Γ)★ ⇒ Σ★ in Mnd 𝑓 (C), where we recall that, for any finitary, pointed
strong endofunctor 𝐹, 𝐹★ denotes the “free 𝐹-monoid” monad on C.

If Σ and Γ are friendly, which is in particular the case when C is [SetP, SetP] 𝑓 for some set
P, then:

(iii) The above coequaliser E★ is created by the forgetful functor Mnd 𝑓 (C) → [C,C] 𝑓 ,
hence computed pointwise.

(iv) The initial E-algebra is the coequaliser of 𝐿0, 𝑅0 : (Σ + Γ)∗(id) ⇒ Σ∗(id), equipped
with its canonical Σ-monoid structure.

Proof. By Theorem 9.19, both forgetful functors Σ -Mon→ C and Γ -Mon→ C are finitary
monadic. Corollaries 2.46 and 2.48 thus directly entail (i) and (ii). The rest will follow from
Corollary 10.9 if we prove that both monads (Σ + Γ)★ and Σ★ are friendly. This is proved in
the next lemma.

Proposition 10.17. For any finitary, pointed strong endofunctor 𝐹 on a friendly monoidal
category C, if 𝐹 is friendly, then so is the “free 𝐹-monoid” monad 𝐹★.

Proof. This is a direct generalisation of the proof of Proposition 10.8 (which corresponds to
the case 𝐹 = 0), using the fact that the free 𝐹-monoid monad maps 𝑋 to the initial algebra
of 𝐴 ↦→ 𝐼 + 𝑋 ⊗ 𝐴 + 𝐹 (𝐴), as recalled in Proposition 9.21.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:55

10.4. Initial algebras for RegMnd 𝑓 (SetP). In this section, we characterise the underlying
monad and initial algebra of equational modular signatures, i.e., signatures of the register
RegMnd 𝑓 (SetP), filling in the missing bits from §7.3. We first deal with the register

RegMnd0
𝑓
(SetP) without equations, by compiling (in the sense of Definition 5.8) to the

register PSEF[SetP,SetP] 𝑓 of pointed strong endofunctors on [SetP, SetP] 𝑓 . We then tackle

the whole register RegMnd 𝑓 (SetP), using friendliness.
Let us first deal with the case without equations. Recalling from Definition 7.14 the

endofunctor Σ𝑆 on [SetP, SetP] 𝑓 induced by a modular signature 𝑆, the idea in this case is

that the assignment 𝑆 ↦→ Σ𝑆 may be viewed as mapping signatures of RegMnd0
𝑓
(SetP) to

signatures of PSEF[SetP,SetP] 𝑓 , i.e., pointed strong endofunctors. We first establish this by

equipping Σ𝑆 with a pointed strength, then use compilation to transport the problem, and
conclude.

Proposition 10.18. For any modular signature 𝑆, the endofunctor Σ𝑆 admits a pointed
strength given at any 𝑃 ∈ [SetP, SetP] 𝑓 , 𝑄 ∈ id/[SetP, SetP] 𝑓 , 𝑋 ∈ SetP, and operation of

arity (𝑑, 𝑝), say with 𝑑 = (𝐹 ◦Θ) (𝑝1,..., 𝑝𝑛) , by applying 𝐹 (𝑃(−)) · y𝑟 to the obvious morphism
𝑄(𝑋) +∑𝑖 y𝑝𝑖 → 𝑄(𝑋 +∑𝑖 y𝑝𝑖).
Proof. Straightforward.

Remark 10.19. In a bit more detail, letting 𝑆 = (𝑑𝑖 , 𝑝𝑖)𝑖∈𝐼 , we have Σ𝑆 =
∑
𝑖∈𝐼 Σ𝑑𝑖 , 𝑝𝑖 . The

pointed strength is defined as the coproduct (of morphisms)

(
∑︁
𝑖∈𝐼

Σ𝑑𝑖 , 𝑝𝑖) (𝑃) ◦𝑄 =
∑︁
𝑖∈𝐼
(Σ𝑑𝑖 , 𝑝𝑖 (𝑃) ◦𝑄)

∑
𝑖∈𝐼 𝑠𝑡

𝑖
𝑃,𝑄−−−−−−−−→

∑︁
𝑖∈𝐼

Σ𝑑𝑖 , 𝑝𝑖 (𝑃 ◦𝑄),

where for all 𝑖 ∈ 𝐼, say with 𝑑𝑖 � (𝐹 ◦Θ) (𝑞
𝑖
1,...,𝑞

𝑖
𝑛𝑖
) and 𝑝𝑖 ∈ P, 𝑠𝑡𝑖

𝑃,𝑄,𝑋
is the obvious morphism

𝐹 (𝑃(𝑄(𝑋) +
∑︁
𝑗∈𝑛𝑖

y𝑞𝑖
𝑗
)) · y𝑝𝑖 → 𝐹 (𝑃(𝑄(𝑋 +

∑︁
𝑗∈𝑛𝑖

y𝑞𝑖
𝑗
))) · y𝑝𝑖 .

Proposition 10.20. The assignment 𝑆 ↦→ Σ𝑆 defines a compilation

RegMnd0𝑓 (Set
P) → PSEF[SetP,SetP] 𝑓 .

More concretely, for any modular signature 𝑆 = (𝑑𝑖 , 𝑟𝑖)𝑖∈𝐼 , there exists an isomorphism

𝑆 -alg � Σ𝑆 -Mon

of categories over Mnd 𝑓 (SetP).

Proof. Any family of Set-valued module morphisms 𝜌𝑖 : 𝑑𝑖 (𝑋) → 𝑋𝑟𝑖 corresponds by the
adjunction of Proposition 2.29 to a family 𝜌𝑖 : 𝑑𝑖 (𝑋) · y𝑟𝑖 → 𝑋 of SetP-valued module
morphisms, hence by copairing to one compatible module morphism Σstmod

𝑆
(𝑋) → 𝑋 (recalling

Definition 9.16), and thus to Σ𝑆-monoid structure on 𝑋. This correspondence extends
straightforwardly to morphisms, hence defining the desired functor 𝑆 -alg→ Σ𝑆 -Mon over
Mnd 𝑓 (SetP). Since it is bijective, the functor is an isomorphism.

Corollary 10.21. For any modular signature 𝑆, the forgetful functor 𝑆 -alg→Mnd 𝑓 (SetP)
is monadic, and furthermore the free 𝑆-algebra on an endofunctor 𝑋 ∈ [SetP, SetP] 𝑓 is the
free Σ𝑆-monoid Σ★

𝑆
(𝑋), as characterised in Proposition 9.21.

In particular, Σ∗
𝑆
(id) has a canonical 𝑆-algebra structure, which is initial.

3:56 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

We now want to characterise the initial 𝐸-algebra, for any equational modular signature
𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), where we recall that 𝐿 and 𝑅 are functors 𝑆 -alg→ 𝑆′ -alg over Mnd 𝑓 (SetP).
Clearly:

Proposition 10.22. For any equational modular signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), 𝐸 -alg is the
equaliser in CAT of 𝐿 and 𝑅.

By Proposition 10.20, 𝐿 and 𝑅 induce functors 𝐿 ′, 𝑅′ : Σ𝑆 -Mon → Σ𝑆′ -Mon over
Mnd 𝑓 (SetP) making the following square commute serially.

𝑆 -alg 𝑆′ -alg

Σ𝑆 -Mon Σ𝑆′ -Mon

� �

𝐿

𝑅

𝐿′

𝑅′

By Corollary 2.46, 𝐿 ′ and 𝑅′ induce a reflexive parallel pair of monad morphisms

𝐿 ′′, 𝑅′′ : (Σ𝑆 + Σ𝑆′)★ ⇒ Σ★𝑆.

The tuple (Σ𝑆 ,Σ𝑆+𝑆′, 𝐿 ′′, 𝑅′′) forms a monoidal equational system E𝐸 , over the category
[SetP, SetP] 𝑓 , whose algebras are by construction isomorphic to 𝐸-algebras. This readily
entails:

Corollary 10.23. The assignment

𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅) ↦→ E𝐸 := (Σ𝑆′ ` 𝐿 ′′ =⊗ 𝑅′′ : Σ𝑆)

induces a compilation

RegMnd 𝑓 (SetP) →MES[SetP,SetP] 𝑓 .

More concretely, for any equational modular signature 𝐸, we have an isomorphism

𝐸 -alg � E𝐸 -Mon

of categories over Mnd 𝑓 (SetP).

As a result, we readily obtain by Theorem 10.16:

Corollary 10.24. Let 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅) be any equational modular signature. Then:

(i) The forgetful functor 𝐸 -alg→Mnd 𝑓 (SetP) is finitary monadic.
(ii) The finitary monad 𝐸★ underlying the forgetful functor

𝐸 -alg→ [SetP, SetP] 𝑓
is the reflexive coequaliser in Mnd 𝑓 ([SetP, SetP] 𝑓) of 𝐿 ′′, 𝑅′′ : (Σ𝑆 + Σ𝑆′)★ ⇒ Σ★

𝑆
.

(iii) The above coequaliser is created by the forgetful functor

Mnd 𝑓 ([SetP, SetP] 𝑓) → [[SetP, SetP] 𝑓 , [SetP, SetP] 𝑓] 𝑓 ,

hence computed pointwise.
(iv) The initial 𝐸-algebra is the coequaliser of (𝐿 ′′)0, (𝑅′′)0 : (Σ𝑆 + Σ𝑆′)∗(id) ⇒ Σ∗

𝑆
(id),

equipped with its canonical 𝑆-algebra structure.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:57

10.5. Initial algebras for Reg[SetP, SetS] 𝑓 . In this section, we prove monadicity of the

register Reg[SetP, SetS] 𝑓 of equational facet-based signatures, and characterise underlying
monads and initial algebras. For this, we proceed essentially as in the previous section, but
more simply since the intricacies related to Σ-monoids do not arise. We are thus able to
compile

• Reg0 [SetP, SetS] 𝑓 to the register EF[SetP,SetS] 𝑓 of endofunctors on [SetP, SetS] 𝑓 , and
• Reg[SetP, SetS] 𝑓 to the register ES[SetP,SetS] 𝑓 of equational systems over [SetP, SetS] 𝑓 .

Recalling from Definition 8.19 the endofunctor Σ𝑆 associated to any facet-based signature
𝑆, we have:

Proposition 10.25. The assignment 𝑆 ↦→ Σ𝑆 defines a compilation

Reg0 [SetP, SetS] 𝑓 → EF[SetP,SetS] 𝑓 .

More concretely, for any facet-based signature 𝑆 = (𝑑𝑖 , 𝑠𝑖)𝑖∈𝐼 , there exists an isomorphism

𝑆 -alg � Σ𝑆 -alg

of categories over [SetP, SetS] 𝑓 .

Proof. As in the proof of Proposition 10.20, by the adjunction

[SetP, SetS] 𝑓 ⊥ [SetP, Set] 𝑓 ,
(−) ·y𝑠

(−)𝑠

the facet morphisms 𝜌𝑖 : 𝑑𝑖 (𝑋) → 𝑋𝑠𝑖 correspond to natural transformations 𝜌𝑖 : 𝑑𝑖 (𝑋) ·y𝑠𝑖 →
𝑋, hence by copairing to Σ𝑆-algebra structure Σ𝑆 (𝑋) → 𝑋. This correspondence extends
straightforwardly to morphisms, hence defining the desired functor 𝑆 -alg → Σ𝑆 -alg over
[SetP, SetS] 𝑓 . Since it is bijective, the functor is an isomorphism.

We now want to show that, for any equational facet-based signature 𝐸, the forgetful
functor 𝐸 -alg→ [SetP, SetS] 𝑓 is monadic, and to explicitly characterise the corresponding
monad and initial algebra. For this, we can exhibit 𝐸 -alg as an equaliser of finitary monadic
functors over [SetP, SetS] 𝑓 and apply Corollary 2.48:

Proposition 10.26. For any equational facet-based signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), 𝐸 -alg is the
equaliser in CAT of 𝐿 and 𝑅.

Proof. Straightforward.

But in fact, perhaps more conveniently, we can also compile into equational systems.
By Proposition 10.25, 𝐿 and 𝑅 induce functors 𝐿 ′, 𝑅′ : Σ𝑆 -alg→ Σ𝑆′ -alg over [SetP, SetS] 𝑓
making the following square commute serially.

𝑆 -alg 𝑆′ -alg

Σ𝑆 -alg Σ𝑆′ -alg

� �

𝐿

𝑅

𝐿′

𝑅′

This readily entails:

3:58 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Corollary 10.27. The assignment

𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅) ↦→ E𝐸 := (Σ𝑆′ ` 𝐿 ′ = 𝑅′ : Σ𝑆)
induces a compilation

Reg[SetP, SetS] 𝑓 → ES[SetP,SetS] 𝑓 .

More concretely, for any equational facet-based signature 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅), we have isomor-
phisms

𝐸 -alg � E𝐸 -alg

of categories over [SetP, SetS] 𝑓 , and
𝐸★ � E★𝐸

of finitary monads thereupon.

As a result, we readily obtain by Theorem 10.14:

Corollary 10.28. Let 𝐸 = (𝑆, 𝑆′, 𝐿, 𝑅) be any equational facet-based signature. Then:

(i) The forgetful functor 𝐸 -alg→ [SetP, SetS] 𝑓 is finitary monadic.

(ii) The finitary monad 𝐸★ which underlies the forgetful functor 𝐸 -alg→ [SetP, SetS] 𝑓
is the reflexive coequaliser in Mnd 𝑓 ([SetP, SetS] 𝑓) of 𝐿 ′, 𝑅′ : (Σ𝑆 + Σ𝑆′)∗ ⇒ Σ∗

𝑆
.

(iii) The above coequaliser is created by the forgetful functor

Mnd 𝑓 ([SetP, SetS] 𝑓) → [[SetP, SetS] 𝑓 , [SetP, SetS] 𝑓] 𝑓 ,
hence computed pointwise.

(iv) The initial 𝐸-algebra is the coequaliser of (𝐿 ′)0, (𝑅′)0 : (Σ𝑆 + Σ𝑆′)∗(0) ⇒ Σ∗
𝑆
(0),

equipped with its canonical 𝑆-algebra structure.

11. Applications

In this section, we design a signature in RegTransMndP,S for each of the announced languages.
One exception is Positive GSOS systems: for them, we go further, by recasting them as the
signatures of a subregister of RegTransMndP,S.

11.1. The call-by-value, simply-typed, big-step 𝝀-calculus. Recall from §4.1, that
the simply-typed, call-by-value, big-step 𝜆-calculus forms a transition monad, where we take
P = S to be the set of types (generated from some fixed set of type constants). The monad
𝑇 over SetP is given by values, the source state functor 𝑆1 is given by application binary
trees, and the second state functor 𝑆2 is the identity.

Let us now design a signature for this transition monad. Let 𝐹 : SetP → SetS be
specified by the signature of Reg[SetP, SetS] 𝑓 consisting of two families of operations
app𝐴,𝐵 : Θ𝐴→𝐵 × Θ𝐴 → Θ𝐵 and val𝐴 : I𝐴 → Θ𝐴. Our signature for call-by-value, simply-
typed, big-step 𝜆-calculus is presented in the following table

Monad and

state functors

𝑇 𝑆1 𝑆2

𝜆𝐴,𝐵 : (𝐹𝐵 ◦ Θ) (𝐴) → Θ𝐴→𝐵 𝐹 Id

Rules
val𝐴(𝑣) { 𝑣

𝑒1 { 𝜆𝐴,𝐵 (𝑒3) 𝑒2 { 𝑤 𝑒3 [𝑤] { 𝑣

app𝐴,𝐵 (𝑒1, 𝑒2) { 𝑣

where

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:59

• −[−] : (𝑆1𝑇) (𝐴)𝐵 × 𝑇𝐴→ (𝑆1𝑇)𝐵 denotes the substitution morphism

𝑆1(𝑇 (𝑋 + y𝐴))𝐵 × 𝑇 (𝑋)𝐴 �
∑
𝑒′∈𝑇 (𝑋)𝐴 𝑆1(𝑇 (𝑋 + y𝐴))𝐵

↓ [𝑆1 (𝑇 [𝜂𝑇𝑋 ,𝑒′])𝐵]𝑒∈𝑇 (𝑋)𝐴
𝑆1(𝑇 (𝑇 (𝑋)))𝐵

↓ 𝑆1 (𝜇𝑇𝑋)𝐵
𝑆1(𝑇 (𝑋))𝐵,

with 𝑒′ : y𝐴→ 𝑇 (𝑋) corresponding to 𝑒′ ∈ 𝑇 (𝑋)𝐴 by Yoneda;
• 𝑆1 = 𝐹 and 𝑆2 = Id are specified by easy signatures as in Remark 8.17;
• the rules should be understood as families of rules indexed by suitable types.

In a bit more detail, the first rule is indexed by the type 𝐴 of 𝑣. The second one is indexed
by two types 𝐴 and 𝐵. There are five metavariables, 𝑒1, 𝑒2, 𝑒3, 𝑣, and 𝑤. We thus take

𝑉 := (𝑆1𝑇)𝐴→𝐵 × (𝑆1𝑇)𝐴 × (𝑆1𝑇) (𝐴)𝐵 × 𝑇𝐵 × 𝑇𝐴.

11.2. The 𝝀𝝁-calculus. Recall from §4.2 that the 𝜆𝜇-calculus [Her95, Vau07] forms a
transition monad with P = 2 = {p, s}, where p stands for “programs” and s for “stacks”. The
placetaker monad 𝑇 on SetP is given by programs and stacks. The set of transition types is
S = 3 = {c, p, s}, where c stands for “commands”, and both state functors 𝑆1, 𝑆2 : Set

P → SetS

are given by 𝑆1(𝐴) = 𝑆2(𝐴) = (𝐴p × 𝐴s, 𝐴p, 𝐴s). Let us repeat the grammar for the reader’s
convenience.

Commands
𝑐 F 〈𝑒 |𝜋〉

Programs
𝑒 F 𝑥 | 𝜇𝛼.𝑐 | 𝜆𝑥.𝑒

Stacks
𝜋 F 𝛼 | 𝑒 · 𝜋

Transitions are generated by the congruence rules and the following two rules

〈𝜇𝛼.𝑐 |𝜋〉 → 𝑐[𝛼 ↦→ 𝜋] 〈𝜆𝑥.𝑒 |𝑒′ · 𝜋〉 → 〈𝑒[𝑥 ↦→ 𝑒′] |𝜋〉.
Let us see how to specify this transition monad using our register.
We saw in Remark 8.17 that both state functors may be specified by operations

〈−|−〉 : Ip × Is → Θc 𝜂p : Ip → Θp 𝜂s : Is → Θs.

The monad, say 𝑇 , is specified by operations

𝜇 : Θ(s)p × Θ(s)s → Θp 𝜆 : Θ(p)p → Θp · : Θp × Θs → Θs,

with no equation.
The basic transition rules are almost as usual:

〈𝜇〈𝑒 |𝜋′〉|𝜋〉 { 〈𝑒[𝜋], 𝜋′[𝜋]〉 〈𝜆(𝑒) |𝑒′ · 𝜋〉 { 〈𝑒[𝑒′] |𝜋〉
·

Remark 11.1.

• The various substitution morphisms −[−] are defined analogously as in §11.1.
• The first rule has metavariable module 𝑉 := 𝑇 (s)p × 𝑇 (s)s × 𝑇s, the argument being (𝑒, 𝜋′, 𝜋).
• The second rule has 𝑉 := 𝑇 (p)p × 𝑇p × 𝑇s.

Let us finish by listing the various congruence rules.

3:60 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Commands:
𝑒 { 𝑒′

〈𝑒 |𝜋〉 { 〈𝑒′ |𝜋〉
𝜋 { 𝜋′

〈𝑒 |𝜋〉 { 〈𝑒 |𝜋′〉

Programs:
〈𝑒 |𝜋〉 { 〈𝑒′ |𝜋′〉
𝜇〈𝑒 |𝜋〉 { 𝜇〈𝑒′ |𝜋′〉

𝑒 { 𝑒′

𝜆(𝑒) { 𝜆(𝑒′)

Stacks:
𝑒 { 𝑒′

𝑒 · 𝜋 { 𝑒′ · 𝜋
𝜋 { 𝜋′

𝑒 · 𝜋 { 𝑒 · 𝜋′

11.3. The 𝝅-calculus. Recall from §4.3 that the 𝜋-calculus [SW01] also forms a transition
monad with P = 2 = {c, p} (c for “channels”, p for “processes”). The placetaker monad is
the identity on channels, and is defined on processes by the grammar

𝑃,𝑄 F 𝑥 | 0 | (𝑃 |𝑄) | 𝜈𝑎.𝑃 | 𝑎〈𝑏〉.𝑃 | 𝑎(𝑏).𝑃,
where 𝑎 and 𝑏 range over channel names, and 𝑏 is bound in 𝑎(𝑏).𝑃 and in 𝜈𝑏.𝑃. Processes
are identified when related by the smallest context-closed equivalence relation ≡ satisfying

0|𝑃 ≡ 𝑃 𝑃 |𝑄 ≡ 𝑄 |𝑃 𝑃 | (𝑄 |𝑅) ≡ (𝑃 |𝑄) |𝑅 (𝜈𝑎.𝑃) |𝑄 ≡ 𝜈𝑎.(𝑃 |𝑄),
where in the last equation 𝑎 should not occur free in 𝑄. Transitions are then given by the
following rules.

𝑎〈𝑏〉.𝑃 |𝑎(𝑐).𝑄 −→ 𝑃 | (𝑄 [𝑐 ↦→ 𝑏])
𝑃 −→ 𝑄

𝑃 |𝑅 −→ 𝑄 |𝑅
𝑃 −→ 𝑄

𝜈𝑎.𝑃 −→ 𝜈𝑎.𝑄

Let us recall that we denote any object 𝑋 ∈ SetP by 𝑋 = (𝑋c, 𝑋p), so that we have
𝑇 (𝑋) = (𝑋c, 𝑇 (𝑋)p) ∈ SetP. Furthermore, transitions relate processes, so we have S = 1 and
𝑆1(𝑋) = 𝑆2(𝑋) = 𝑋p.

Let us see how to specify this transition monad using our register. The state functor
has been specified in Remark 8.17, by a single operation 𝜂 : Ip → Θ. The placetaker monad
𝑇 is specified by operations

0: 1→ Θp | : Θp × Θp → Θp 𝜈 : Θ(c)p → Θp 𝑜𝑢𝑡 : Θ2
c × Θp → Θp 𝑖𝑛 : Θc × Θ(c)p → Θp

with equations

0|𝑃 ≡ 𝑃 𝑃 |𝑄 ≡ 𝑄 |𝑃 𝑃 | (𝑄 |𝑅) ≡ (𝑃 |𝑄) |𝑅 𝜈(𝑃) |𝑄 ≡ 𝜈(𝑃 |wc(𝑄)),
almost copied verbatim from the standard presentation above, where wc(𝑄) denotes the
action of 𝑇 (𝑋) → 𝑇 (𝑋 + yc) on 𝑄. Finally, the transition rules are as follows,

𝑜𝑢𝑡 (𝑎, 𝑏, 𝑃) |𝑖𝑛(𝑎, 𝑄) { 𝑃 | (𝑄 [𝑏])
𝑃 { 𝑄

𝑃 |𝑅 { 𝑄 |𝑅
𝑃 { 𝑄

𝜈(𝑃) { 𝜈(𝑄)
where 𝑄 [𝑏] denotes the action of

𝑇 (𝑋 + yc)p × 𝑇 (𝑋)c �
∑︁

𝑏∈𝑇 (𝑋)c

𝑇 (𝑋 + yc)p
[𝑇 [𝜂𝑇

𝑋
,𝑏]p]𝑏∈𝑇 (𝑋)c−−−−−−−−−−−−−−−−→ 𝑇 (𝑇 (𝑋))p

(𝜇𝑇
𝑋
)p

−−−−−→ 𝑇 (𝑋)p

on (𝑄, 𝑏), with 𝑏 : yc → 𝑇 (𝑋) corresponding to 𝑏 ∈ 𝑇 (𝑋)c by Yoneda.

Remark 11.2. The third rule has as metavariable module 𝑉 := (Θ(c)p)2.

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:61

Remark 11.3. The alternative presentation mentioned in §4.3 may be specified in a similar
way.

Remark 11.4. We have accounted for the presentation of the 𝜋-calculus through a reduction
relation, but there is an important, alternative presentation based on a labelled transition
system [SW01, Table 1.5 p38]. Let us explain why our framework cannot cover such a

presentation. The problem is that it includes an input transition 𝑎(𝑥).𝑃
𝑎 (𝑦)
−−−→ 𝑃[𝑥 ↦→ 𝑦] in

which 𝑦 may be fresh. Letting 𝑇 denote the monad for syntax as in §4.3, the correct way
to model the fresh case is to take as corresponding component of the target state functor

𝑆2 the 𝑇-module 𝑇 (c)p , whose elements are processes 𝑃 with a fresh variable. Because the

module 𝑇 (c)p is not of the shape 𝑆2 ◦𝑇 , this goes beyond the framework of transition monads.

11.4. A register for Positive GSOS systems. Finally, let us recall that Positive GSOS
rules have the shape

. . . 𝑥𝑖
𝑎𝑖, 𝑗−−−→ 𝑦𝑖, 𝑗 . . . (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛𝑖)

op(𝑥1, . . . , 𝑥𝑛)
𝑐−→ 𝑒

,

where the variables 𝑥𝑖 and 𝑦𝑖, 𝑗 are all distinct, op ∈ 𝑂 is an operation with arity 𝑛, and 𝑒 is
an expression potentially depending on all the variables.

We saw in §4.4 that each family of operations and rules yields a transition monad where

• P = 1, because we are in an untyped setting,
• S = 1 because states are terms,
• 𝑇 denotes the term monad,
• 𝑆1(𝑋) = 𝑋, and
• 𝑆2(𝑋) = A × 𝑋, where A denotes the set of labels.

Let us now define a register GSOS+ for specifying positive GSOS systems [BIM95].
This is a subregister of our register RegTransMndP,S, for untyped (P = S = 1) transition
monads. Let us recall that signatures in this register consist of tuples (Σ𝑇 ,Σ1,Σ2,ΣTrans),
where 𝑇 = spec (Σ𝑇), 𝑆1 = spec (Σ1), 𝑆2 = spec (Σ2), and ΣTrans is a signature in the register
RegTransStructP,S(𝑇, 𝑆1, 𝑆2).

In order to describe this subregister, we have to describe its class of signatures, and
then assign to each such signature a tuple (Σ𝑇 ,Σ1,Σ2,ΣTrans) as above.

A signature of the register GSOS+ consists of

• three sets 𝑂 (for operations), A (for labels), and 𝑅 (for rules),
• for each element 𝑜 of 𝑂, a number 𝑚𝑜 (the arity),
• for each rule,
– an operation 𝑜 ∈ 𝑂 (for the source of the conclusion),
– a label 𝑐 ∈ A (the label of the conclusion),
– for each 1 ≤ 𝑖 ≤ 𝑚𝑜,
∗ a number 𝑛𝑖 (the number of premises for this argument),
∗ for each 1 ≤ 𝑗 ≤ 𝑛𝑖 , an element 𝑎𝑖 𝑗 of A (for the label of the premise),

– a term 𝑒 in the syntax generated by 𝑂, potentially depending on 𝑚𝑜 +
∑
𝑖 𝑛𝑖 variables.

We now describe the tuple (Σ𝑇 ,Σ1,Σ2,ΣTrans) associated to a signature as above:

• the signatures for both state functors have been given in Remark 8.17: 𝑆1 is specified by
a single operation I→ Θ, while 𝑆2 is specified by a single operation A × I→ Θ;

3:62 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

• the signature for the underlying monad is the family (Θ𝑚𝑜 → Θ)𝑜∈𝑂 (following §7.1);
• finally, each Positive GSOS rule yields a rule

. . . 𝑒𝑖 { (𝑎𝑖, 𝑗 , 𝑒𝑖, 𝑗) . . . (𝑖 ∈ 𝑚𝑜, 𝑗 ∈ 𝑛𝑖)
𝑜(𝑒1, . . . , 𝑒𝑚𝑜

) { (𝑐, 𝐸)
in the corresponding signature ΣTrans (in the register RegTransStructP,S(𝑇, 𝑆1, 𝑆2)).

Remark 11.5. In a bit more detail:

• The metavariable module is 𝑉 = 𝑇𝑚𝑜+
∑

𝑖∈𝑚𝑜
𝑛𝑖 , of which a typical element is a tuple

𝑒 := ((𝑒𝑘)𝑘∈𝑚𝑜
, (𝑒𝑖, 𝑗)𝑖∈𝑚𝑜 , 𝑗∈𝑛𝑖) ∈ 𝑇𝑚𝑜+

∑
𝑖 𝑛𝑖 (𝑋).

• There are
∑
𝑖∈𝑚𝑜

𝑛𝑖 premises.
• The (𝑖, 𝑗)th premise maps any tuple 𝑒 to (𝑒𝑖 , (𝑎𝑖, 𝑗 , 𝑒𝑖, 𝑗)).
• The conclusion maps it to (𝑜(𝑒1, . . . , 𝑒𝑚𝑜

), (𝑐, 𝐸 (𝑒))), where 𝐸 : 𝑉 → 𝑇 is the target
expression viewed as a 𝑇-module morphism.

11.5. The differential 𝝀-calculus. Recall from §4.5 that the differential 𝜆-calculus syntax
is defined by

𝑒, 𝑓 , 𝑔 F 𝑥 | 𝜆𝑥.𝑒 | 𝑒〈𝑈〉 | 𝐷𝑒 · 𝑓 (terms)
𝑈,𝑉 F 0 | 𝑒 +𝑈 (multiterms),

where terms and multiterms are considered equivalent up to the following equations.

𝑒 + 𝑒′ +𝑈 = 𝑒′ + 𝑒 +𝑈 𝐷 (𝐷𝑒 · 𝑓) · 𝑔 = 𝐷 (𝐷𝑒 · 𝑔) · 𝑓
Based on unary multiterm substitution 𝑒[𝑥 ↦→ 𝑈] and partial derivation 𝜕𝑒

𝜕𝑥
· 𝑈, the

transition relation is defined as the smallest context-closed relation satisfying the rules below,

(𝜆𝑥.𝑒)〈𝑈〉 → 𝑒[𝑥 ↦→ 𝑈] 𝐷 (𝜆𝑥.𝑒) · 𝑓 → 𝜆𝑥.

(
𝜕𝑒

𝜕𝑥
· 𝑓

)
where 𝜆 is linearly extended to multiterms: 𝜆𝑥.(𝑒1 + . . .+ 𝑒𝑛) is notation for 𝜆𝑥.𝑒1 + . . .+𝜆𝑥.𝑒𝑛.

We saw that this all forms a transition monad with one placetaker type and one transition
type (P = S = 1).

Let us now design a signature specifying this transition monad. Such a signature consists
of signatures for the state functors and monad, together with a signature for the transition
module.

Signature for the placetaker monad Recalling that ! denote the finite multiset functor,
the monad 𝑇 of differential 𝜆-calculus is specified by the signature 𝑆 with operations

𝜆 : Θ(1) → Θ −〈−〉 : Θ × !Θ→ Θ 𝐷− · − : Θ × Θ→ Θ

and one equation:
𝐷 (𝐷𝑒 · 𝑓) · 𝑔 ≡ 𝐷 (𝐷𝑒 · 𝑔) · 𝑓 . (11.1)

By taking !Θ as type for the second argument of application, we directly identify multiterms
as finite multisets, which explains why we do not need any further equation for enforcing
order irrelevance of +.
Signature for the state functors Our state functors are 𝑆1 = Id and 𝑆2 = !, which are
specified by easy signatures in the sense of Remark 8.17.

Signature for transitions Specifying the transition rules requires the following lemma.

Lemma 11.6. There exist 𝑇-module morphisms

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:63

𝜎 : 𝑇 (1) × !𝑇 → !𝑇 and 𝛿 : 𝑇 (1) × !𝑇 → !𝑇 (1) ,

respectively called unary multiterm substitution and partial derivation, satisfying the
equations of [Vau07, Definition 6.3 and 6.4].

Proof sketch. By the explicit description of Corollary 10.24, 𝑇 is a quotient of the initial
Σ𝑆-monoid 𝑍 by Equation (11.1). We thus first define both operations from 𝑍 (1) by induction
following [Vau07, Definition 6.3 and 6.4], then check that both obtained morphisms coequalise
the relevant parallel pair to extend them to morphisms from 𝑇 (1) . Finally, we check
that both obtained morphisms are indeed module morphisms, which follows from [Vau07,
Lemma 6.10].

Now that both auxiliary operations 𝜎 and 𝛿 are defined, the main transition rules are

𝜆(𝑡)〈𝑈〉 { 𝜎(𝑡,𝑈) 𝐷 (𝜆(𝑡)) · 𝑢 { 𝜆(𝛿(𝑡, 𝑢))
,

where we implicitly coerce 𝜆 : 𝑇 (1) → 𝑇 into a morphism !𝑇 (1) → !𝑇 .
Furthermore, because reduction in the differential 𝜆-calculus is context-closed, we need

to include the following congruence rules, detailed in [Vau07, Definition 6.18]:

𝑡 { 𝑈

𝜆(𝑡) { 𝜆(𝑈)
𝑡 { 𝑈

𝐷𝑡 · 𝑠 { 𝐷𝑈 · 𝑠
𝑠 { 𝑈

𝐷𝑡 · 𝑠 { 𝐷𝑡 ·𝑈

𝑡 { 𝑈

𝑡〈𝑆〉 { 𝑈〈𝑆〉
𝑡 { 𝑈

𝑠〈𝑡 +𝑉〉 { 𝑠〈𝑈 +𝑉〉
where, as for 𝜆 above, we implicitly coerce some module morphisms to 𝑇 into module
morphisms to !𝑇 , also lifting some of their arguments from 𝑇 to !𝑇 , namely we use

𝐷 (−) · − : !𝑇 × !𝑇 → !𝑇
(∑𝑖 𝑒𝑖 ,∑ 𝑗 𝑓 𝑗) ↦→

∑
𝑖, 𝑗 𝐷𝑒𝑖 · 𝑓 𝑗

−〈−〉 : !𝑇 × !𝑇 → !𝑇
(∑𝑖 𝑒𝑖 ,∑ 𝑗 𝑓 𝑗) →

∑
𝑖 𝑒𝑖 〈

∑
𝑗 𝑓 𝑗〉

+ : !𝑇 × !𝑇 → !𝑇
(∑𝑖 𝑒𝑖 ,∑ 𝑗 𝑓 𝑗) →

∑
𝑖 𝑒𝑖 +

∑
𝑗 𝑓 𝑗 .

Remark 11.7.

• The first lifting is only used in cases where one of its arguments is a singleton multiset,
i.e., we need 𝐷𝑈 · 𝑡 and 𝐷𝑡 · 𝑢, but not 𝐷𝑈 · 𝑇 .
• In the second case, only the first argument needs lifting, i.e., we have (𝑒1 + . . . + 𝑒𝑛)〈𝑈〉 =
𝑒1〈𝑈〉 + . . . + 𝑒𝑛〈𝑈〉.
• The last lifting is in fact mere multiset union.

12. Conclusion and perspectives

We have introduced transition monads as a generalisation of reduction monads, and demon-
strated that they cover relevant new examples. We have introduced a register of signatures
for specifying them. Let us briefly assess the scope of our register for transition monads, or
more generally of the notion of transition monad itself.

All combinations of call-by-value vs. call-by-name, small-step vs. big-step, or simply-
typed vs. untyped variants of 𝜆-calculus should be handled smoothly.

3:64 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

Simple imperative languages like IMP [Win93, Chapter 2] may also be organised into
transition monads, at least in a trivial way since, in the absence of first-class functions,
reduction is generally defined on closed programs.

Languages whose transition rules involve some kind of evaluation contexts, such as
ML [Pie04, Chapter 10], 𝜆-calculi with let rec [AB02], or the substitution calculus [Acc19],
should also fit into the framework, although with a bit more work.

A first class of languages which clearly cannot be organised naturally as transition
monads is those whose transitions involve non-free modules, as noticed in Remark 11.4.
Extending the register Reg[SetP, SetS] 𝑓 of §8 to cover such examples seems at hand.

Another, more problematic class of languages is those with advanced type systems, e.g.,
polymorphic or dependent types. Covering such examples is one of our longer-term goals.

Another limitation of our approach is the weakness of the induced induction principle. As
discussed in §1, this is the price to pay for its simplicity. What is missing, in comparison with
previous work like [AHLM20], is a kind of Grothendieck construction for signatures/registers.
This works smoothly in most examples. However, in cases like the differential 𝜆-calculus, this
would require extending the definition of unary multiterm substitution and partial derivation
(Lemma 11.6) to all models of the syntax. And this appears to leave some design choices
open, which might be a reflection of the diversity of categorical semantics for differential
𝜆-calculus [BCS06, Fio07, Ehr18, HT20].

In the longer term, we plan to refine our register in a way ensuring that the generated
transition system satisfies important properties like congruence of useful behavioural equiva-
lences, confluence, or type soundness. In this direction, a result on congruence of applicative
bisimilarity for a simpler register has recently been obtained by Borthelle et al. [BHL20].

References

[AB02] Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Annals
of Pure and Applied Logic, 117(1-3):95–168, 2002. doi:10.1016/S0168-0072(01)00104-X.

[Acc19] Beniamino Accattoli. A fresh look at the lambda-calculus (invited talk). In Geuvers [Geu19],
pages 1:1–1:20. doi:10.4230/LIPIcs.FSCD.2019.1.

[ACU15] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.
Logical Methods in Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:3)2015.

[AF20] Nathanael Arkor and Marcelo Fiore. Algebraic models of simple type theories: A polynomial
approach. In Hermanns et al. [HZKM20], pages 88–101. doi:10.1145/3373718.3394771.

[AHLM18] Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. High-level signatures
and initial semantics. In Dan R. Ghica and Achim Jung, editors, Proc. 27th EACSL Annual
Conference on Computer Science Logic, volume 119 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.CSL.2018.4.

[AHLM19] Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular specification
of monads through higher-order presentations. In Geuvers [Geu19]. doi:10.4230/LIPIcs.FSCD.
2019.6.

[AHLM20] Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Reduction monads
and their signatures. PACMPL, 4(POPL):31:1–31:29, 2020. doi:10.1145/3371099.

[Ahr15] Benedikt Ahrens. Initiality for typed syntax and semantics. Journal of Formalized Reasoning,
8(2):1–155, 2015. doi:10.6092/issn.1972-5787/4712.

[Ahr16] Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical Structures
in Computer Science, 26:3–37, 2016. doi:10.1017/S0960129514000103.

[AMBL12] Jiŕı Adámek, Stefan Milius, Nathan J. Bowler, and Paul Blain Levy. Coproducts of monads
on set. In Proc. 29th Symposium on Logic in Computer Science, pages 45–54. IEEE, 2012.
doi:10.1109/LICS.2012.16.

https://doi.org/10.1016/S0168-0072(01)00104-X
https://doi.org/10.4230/LIPIcs.FSCD.2019.1
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.4230/LIPIcs.CSL.2018.4
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.1145/3371099
https://doi.org/10.6092/issn.1972-5787/4712
https://doi.org/10.1017/S0960129514000103
https://doi.org/10.1109/LICS.2012.16

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:65

[AMFS11] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton Setzer. A categorical
semantics for inductive-inductive definitions. In Andrea Corradini, Bartek Klin, and Corina
Ĉırstea, editors, Proc. 4th International Conference on Algebra and Coalgebra in Computer
Science, volume 6859 of Lecture Notes in Computer Science, pages 70–84. Springer, 2011. doi:
10.1007/978-3-642-22944-2_6.

[AR94] Jĭŕı Adámek and Jĭŕı Rosicky. Locally Presentable and Accessible Categories. Cambridge University
Press, 1994. doi:10.1017/CBO9780511600579.

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using generalized
inductive types. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors, Proc. 8th EACSL Annual
Conference on Computer Science Logic, volume 1683 of Lecture Notes in Computer Science, pages
453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

[ARV10] J. Adámek, J. Rosický, and E. M. Vitale. Algebraic Theories: A Categorical Introduction to
General Algebra. Cambridge Tracts in Mathematics. Cambridge University Press, 2010. doi:
10.1017/CBO9780511760754.

[Bar70] Michael Barr. Coequalizers and free triples. Mathematische Zeitschrift, 116:307–322, 1970.
[BCS06] Richard Blute, J. Robin B. Cockett, and Robert A. G. Seely. Differential categories. Mathematical

Structures in Computer Science, 16(6):1049–1083, 2006. doi:10.1017/S0960129506005676.
[BH94] Françoise Bellegarde and James Hook. Substitution: A formal methods case study using monads

and transformations. Science of Computer Programming, 23(2-3):287–311, 1994. doi:10.1016/
0167-6423(94)00022-0.

[BHL20] Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont. A cellular Howe theorem. In Hermanns
et al. [HZKM20], pages 273–286. doi:10.1145/3373718.3394738.

[BIM95] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of ACM, 42:232–268,
1995. doi:10.1145/200836.200876.

[Bla76] Robert Oswald Blackwell. Some existence theorems in the theory of doctrines. PhD thesis,
University of New South Wales, 1976.

[Bor94a] Francis Borceux. Handbook of Categorical Algebra, volume 2 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1994. doi:10.1017/CBO9780511525865.

[Bor94b] Francis Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1994. doi:10.1017/CBO9780511525858.

[BW05] Michael Barr and Charles Wells. Toposes, triples, and theories. Reprints in Theory and Applications
of Categories, 12, 2005. Originally published by: Springer, 1985.

[Ehr18] Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-
tiderivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018. doi:10.1017/
S0960129516000372.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1–3):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

[FH09] Marcelo Fiore and Chung-Kil Hur. On the construction of free algebras for equational systems.
Theoretical Computer Science, 410(18):1704–1729, 2009. doi:10.1016/j.tcs.2008.12.052.

[Fio07] Marcelo Fiore. Differential structure in models of multiplicative biadditive intuitionistic linear
logic. In Simona Ronchi Della Rocca, editor, Proc. 8th International Conference on Typed Lambda
Calculi and Applications, volume 4583 of Lecture Notes in Computer Science, pages 163–177.
Springer, 2007. doi:10.1007/978-3-540-73228-0_13.

[Fio08] Marcelo Fiore. Second-order and dependently-sorted abstract syntax. In Proc. 23rd Symposium
on Logic in Computer Science, pages 57–68. IEEE, 2008. doi:10.1109/LICS.2008.38.

[FPT99] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In Proc.
14th Symposium on Logic in Computer Science, pages 193–202. IEEE, 1999. doi:10.1109/LICS.
1999.782615.

[FS06] Marcelo Fiore and Sam Staton. A congruence rule format for name-passing process calculi from
mathematical structural operational semantics. In Proc. 21st Symposium on Logic in Computer
Science, pages 49–58. IEEE, 2006. doi:10.1109/LICS.2006.7.

[FS17] Marcelo Fiore and Philip Saville. List objects with algebraic structure. In Dale Miller, editor, Proc.
2nd International Conference on Formal Structures for Computation and Deduction, volume 84
of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.FSCD.2017.16.

https://doi.org/10.1007/978-3-642-22944-2_6
https://doi.org/10.1007/978-3-642-22944-2_6
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1017/CBO9780511760754
https://doi.org/10.1017/CBO9780511760754
https://doi.org/10.1017/S0960129506005676
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.1145/200836.200876
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1007/978-3-540-73228-0_13
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2006.7
https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.4230/LIPIcs.FSCD.2017.16

3:66 A. Hirschowitz, T. Hirschowitz, and A. Lafont Vol. 18:3

[FT01] Marcelo Fiore and Daniele Turi. Semantics of name and value passing. In Proc. 16th Symposium
on Logic in Computer Science, pages 93–104. IEEE, 2001. doi:10.1109/LICS.2001.932486.

[Gar15] Richard Garner. Combinatorial structure of type dependency. Journal of Pure and Applied
Algebra, 219(6):1885–1914, 2015. doi:10.1016/j.jpaa.2014.07.015.

[Geu19] Herman Geuvers, editor. Proc. 4th International Conference on Formal Structures for Computation
and Deduction, volume 131 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

[GP99] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders. In
Proc. 14th Symposium on Logic in Computer Science IEEE, 1999. doi:10.1007/s001650200016.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the specification,
correctness and implementation of abstract data types. In R. Yeh, editor, Current Trends in
Programming Methodology, IV: Data Structuring, pages 80–144. Prentice-Hall, 1978.

[Ham03] Makoto Hamana. Term rewriting with variable binding: An initial algebra approach. In Proc.
5th International Conference on Principles and Practice of Declarative Programming ACM, 2003.
doi:10.1145/888251.888266.

[Ham04] Makoto Hamana. Free Σ-monoids: A higher-order syntax with metavariables. In Wei-Ngan
Chin, editor, Proc. 2nd Asian Symposium on Programming Languages and Systems, volume
3302 of Lecture Notes in Computer Science, pages 348–363. Springer, 2004. doi:10.1007/

978-3-540-30477-7_23.
[Her95] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul

de lambda-termes et comme calcul de stratégies gagnantes. PhD thesis, Paris Diderot University,
France, 1995. URL: https://tel.archives-ouvertes.fr/tel-00382528.

[HHL20] André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over monads and operational
semantics. volume 167 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–
12:23. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSCD.2020.
12.

[Hir13] Tom Hirschowitz. Cartesian closed 2-categories and permutation equivalence in higher-order
rewriting. Logical Methods in Computer Science, 9(3), 2013. doi:10.2168/LMCS-9(3:10)2013.

[HM07] André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In WoLLIC,
volume 4576 of Lecture Notes in Computer Science, pages 218–237. Springer, 2007. doi:

10.1007/978-3-540-73445-1_16.
[HM10] André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Information

and Computation, 208(5):545–564, 2010. doi:10.1016/j.ic.2009.07.003.
[HT20] Martin Hyland and Christine Tasson. The linear-non-linear substitution 2-monad. In David I.

Spivak and Jamie Vicary, editors, Proceedings of the 3rd Annual International Applied Category
Theory Conference, volume 333 of Electronic Proceedings in Theoretical Computer Science, pages
215–229, 2020. doi:10.4204/EPTCS.333.15.

[HZKM20] Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors. Proc. 35th ACM/IEEE
Symposium on Logic in Computer Science ACM, 2020. doi:10.1145/3373718.

[Kel80] G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,
colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society, 22:1–83,
1980.

[Koc09] Joachim Kock. Notes on polynomial functors. Working notes, 2009. URL: http://mat.uab.es/

~kock/cat/polynomial.pdf.
[KP93] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers, and presentations

of finitary enriched monads. Journal of Pure and Applied Algebra, 89(1):163–179, 1993. doi:
10.1016/0022-4049(93)90092-8.

[Lac97] Stephen Lack. On the monadicity of finitary monads. Journal of Pure and Applied Algebra,
140:65–73, 1997. doi:10.1016/S0022-4049(99)00019-5.

[Laf19] Ambroise Lafont. Signatures and models for syntax and operational semantics in the presence of

variable binding. PhD thesis, École Nationale Superieure Mines – Telecom Atlantique Bretagne
Pays de la Loire – IMT Atlantique, 2019. arXiv:1910.09162.

[Las98] S. Lassen. Higher Order Operational Techniques in Semantics, chapter Relational reasoning about
contexts. Cambridge University Press, 1998.

https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1016/j.jpaa.2014.07.015
https://doi.org/10.1007/s001650200016
https://doi.org/10.1145/888251.888266
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.1007/978-3-540-30477-7_23
https://tel.archives-ouvertes.fr/tel-00382528
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.1007/978-3-540-73445-1_16
https://doi.org/10.1007/978-3-540-73445-1_16
https://doi.org/10.1016/j.ic.2009.07.003
https://doi.org/10.4204/EPTCS.333.15
https://doi.org/10.1145/3373718
http://mat.uab.es/~kock/cat/polynomial.pdf
http://mat.uab.es/~kock/cat/polynomial.pdf
https://doi.org/10.1016/0022-4049(93)90092-8
https://doi.org/10.1016/0022-4049(93)90092-8
https://doi.org/10.1016/S0022-4049(99)00019-5
http://arxiv.org/abs/1910.09162

Vol. 18:3 MODULES OVER MONADS AND OPERATIONAL SEMANTICS (EXPANDED VERSION) 3:67

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in
Mathematics. Springer, 2nd edition, 1998. doi:10.1007/978-1-4757-4721-8.

[Pie04] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT Press,
2004. doi:10.7551/mitpress/1104.001.0001.

[Pow07] John Power. Abstract syntax: Substitution and binders: Invited address. In Marcelo Fiore,
editor, Proceedings of the 23rd Conference on the Mathematical Foundations of Programming
Semantics, volume 173 of Electronic Notes in Theoretical Computer Science, pages 3–16, 2007.
doi:10.1016/j.entcs.2007.02.024.

[PR99] Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO - Theor. Inf. and
Applic., 33(6):507–534, 1999. doi:DOI:10.1051/ita:1999130.

[Rei77] Jan Reiterman. A left adjoint construction related to free triples. Journal of Pure and Applied
Algebra, 10:57–71, 1977. doi:10.1016/0022-4049(77)90028-7.

[Sea13] Gavin J. Seal. Tensors, monads and actions. Theory and Applications of Categories, 28(15):403–
434, 2013.

[Sta08] Sam Staton. General structural operational semantics through categorical logic. In Proc. 23rd
Symposium on Logic in Computer Science, pages 166–177. IEEE, 2008. doi:10.1109/LICS.2008.
43.

[SW01] Davide Sangiorgi and David Walker. The 𝜋-calculus - a theory of mobile processes. Cambridge
University Press, 2001.

[TP97] Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In Proc. 12th
Symposium on Logic in Computer Science, pages 280–291, 1997. doi:10.1109/LICS.1997.614955.

[Vau07] Lionel Vaux. 𝜆-calcul différentiel et logique classique : interactions calculatoires. PhD thesis,
Université Aix-Marseille 2, 2007.

[Web04] Mark Weber. Generic morphisms, parametric representations and weakly cartesian monads.
Theory and Applications of Categories, 13:191–234, 2004.

[Win93] Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation of
computing series. MIT Press, 1993.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.7551/mitpress/1104.001.0001
https://doi.org/10.1016/j.entcs.2007.02.024
https://doi.org/DOI: 10.1051/ita:1999130
https://doi.org/10.1016/0022-4049(77)90028-7
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1109/LICS.2008.43
https://doi.org/10.1109/LICS.1997.614955

	1. Introduction
	Plan
	Related work
	Differences with conference version

	2. Notations and categorical preliminaries
	2.1. Basic notation
	2.2. Locally finitely presentable categories and finitary functors
	2.3. Convenient monoidal categories
	2.4. (Parametric) modules over monoids and monads
	2.5. Creation of (co)limits and monadic functors
	2.6. Monads vs. monadic functors
	2.7. Limits of finitary monadic functors

	3. Transition monads
	3.1. Overview of transition monads
	3.2. The definition of transition monad
	3.3. Transition monads as relative monads
	3.4. The proof-irrelevant variant

	4. Examples of transition monads
	4.1. The call-by-value, simply-typed, big-step lambda-calculus
	4.2. The lambda-bar-mu-calculus
	4.3. The pi-calculus
	4.4. Positive GSOS systems
	4.5. The differential lambda-calculus

	5. Signatures for transition monads
	5.1. Signatures registers
	5.2. A register for transition monads

	6. Registers for transition structures
	6.1. Small register for slice categories
	6.2. Binding register for slice categories
	6.3. Typed variant
	6.4. A format for displaying signatures in rule-based registers
	6.5. Proof-irrelevant variant

	7. Registers for monads
	7.1. The register RegMnd0f(Set) for specifying operations
	7.2. The register RegMndf(Set)
	7.3. Explicit description of initial algebras

	8. Registers for (state) functors
	8.1. Facets
	8.2. The register Reg0[SetP,SetS]f for specifying operations
	8.3. The register Reg[SetP,SetS]f
	8.4. Explicit description of initial algebras

	9. General registers
	9.1. Equational systems
	9.2. The register PSEFC for monoids
	9.3. Monoidal equational systems

	10. Computing initial algebras in the presence of equations
	10.1. Reflexive coequalisers of friendly monoids
	10.2. Initial algebras for equational systems
	10.3. Initial algebras for monoidal equational systems
	10.4. Initial algebras for RegMndfSetP
	10.5. Initial algebras for Reg[SetP,SetS]f

	11. Applications
	11.1. The call-by-value, simply-typed, big-step lambda-calculus
	11.2. The lambda-bar-mu-calculus
	11.3. The pi-calculus
	11.4. A register for Positive GSOS systems
	11.5. The differential lambda-calculus

	12. Conclusion and perspectives
	References

