Logical Methods in Computer Science
Volume 16, Issue 4, 2020, pp. 15:1-15:16 Submitted Oct. 09, 2019
https://Imcs.episciences.org/ Published Dec. 15, 2020

TOWARDS RACES IN LINEAR LOGIC

WEN KOKKE*, J. GARRETT MORRIS®, AND PHILIP WADLER “

@ University of Edinburgh, Edinburgh, UK
e-mail address: {wen.kokke,wadler}@ed.ac.uk

b University of Kansas, Lawrence, KS, USA
e-mail address: garrett@ittc.ku.edu

ABSTRACT. Process calculi based in logic, such as nDILL and CP, provide a foundation
for deadlock-free concurrent programming, but exclude non-determinism and races. HCP
is a reformulation of CP which addresses a fundamental shortcoming: the fundamental
operator for parallel composition from the n-calculus does not correspond to any rule of
linear logic, and therefore not to any term construct in CP.

We introduce HCPnp, which extends HCP with a novel account of non-determinism.
Our approach draws on bounded linear logic to provide a strongly-typed account of
standard process calculus expressions of non-determinism. We show that our extension
is expressive enough to capture many uses of non-determinism in untyped calculi, such
as non-deterministic choice, while preserving HCP’s meta-theoretic properties, including
deadlock freedom.

1. INTRODUCTION

Consider the following scenario:

Ami and Boé are working from home one morning when they each get a

craving for a slice of cake. Being denizens of the web, they quickly find the

nearest store which does home deliveries. Unfortunately for them, they both

order their cake at the same store, which has only one slice left. After that,

all it can deliver is disappointment.
This is an example of a race condition. We can model this scenario in the n-calculus, where
®, M and %z are processes modelling Ami, Boé and the store, and * and {{ are channels
giving access to a slice of cake and disappointment, respectively. This process has two
possible outcomes: either Ami gets the cake, and Boé gets disappointment, or vice versa.

(z(y)-@ [l 2(2).@ || (L) (5¥) &)

I

*

(@{&/y} | @{§¥/z} [&) or (& @{i¥/v} | @{L/2})

Key words and phrases: m-calculus, linear logic, session types, non-determinism, deadlock freedom.

|EE| LOGICAL METHODS © W. Kokke, G. Morris, and P. Wadler
IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(4:15)2020 @ Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

15:2 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

While Ami or Boé may not like all of the outcomes, it is the store which is responsible for
implementing the online delivery service, and the store is happy with either outcome. Thus,
the above is an interaction we would like to be able to model.

Now consider another scenario, which takes place after Ami has already bought the
cake:

Boé is really disappointed when she finds out the cake has sold out. Ami,
always looking to make some money, offers to sell the slice to her for a profit.
Boé agrees to engage in a little bit of back-alley cake resale, but sadly there
is no trust between the two. Ami demands payment first. Boé would rather
get her slice of cake before she gives Ami the money.

This is an example of a deadlock. We can also model this scenario in the n-calculus, where
11 is a channel giving access to some adequate amount of money.

((2).y(2). @ [| y(w).x(m).@) =5~
The above process does not reduce. As both Ami and Boé would prefer the exchange to be
made, this interaction is desired by neither. Thus, the above is an interaction we would like
to exclude.

Session types [Hon93] statically guarantee that concurrent programs, such as those
above, respect communication protocols. Session-typed calculi with logical foundations,
such as tDILL [CP10] and CP [Wadl2], obtain deadlock freedom as a result of a close
correspondence with logic. These systems, however, also rule out non-determinism and race
conditions. In this paper, we demonstrate that logic-inspired type systems need not rule out
races.

We present HCPnp, an extension of HCP with a novel account of non-determinism and
races. Inspired by bounded linear logic [GSS92], we introduce a form of shared channels
in which the type of a shared channel tracks how many times it is reused. As in the
untyped n-calculus, sharing introduces the potential for non-determinism. We show that
our approach is sufficient to capture practical examples of races, such as an online store, as
well as other formal characterizations of non-determinism, such as non-deterministic choice.
However, HCPxp does not lose the meta-theoretical benefits of HCP: we show that it enjoys
termination and deadlock-freedom.

An important limitation of our work is that types in HCPyp explicitly count the
potential races on a channel. It works fine when there are two or three races, but not n for
an arbitary n. The latter case is obviously important, and we see the main value of our
work as a stepping stone to this more general case.

HCPxp is based on HCP [KMP18, KMP19]. HCP is a reformulation of CP which
addresses a fundamental shortcoming: the fundamental operator for parallel composition
from the n-calculus does not correspond to any rule of linear logic, and therefore not to any
term construct in CP.

This paper proceeds as follows. In section 2, we discuss recent approaches to non-
determinism in logic-inspired session-typed process calculi. In section 3, we introduce a
variant of CP and prove progress and preservation. In section 4, we introduce HCPnp. In
section 5, we discuss cuts with leftovers. In section 6, we discuss the relation to manifest
sharing [BP17]. Finally, in section 7, we conclude with a discussion of the work done in this
paper and potential avenues for future work.

Remark (Variants of HCP). There are two variants of HCP: a version with delayed actions,
introduced by Kokke, Montesi, and Peressotti [KMP19], and a version without delayed actions,

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:3

introduced by Kokke, Montesi, and Peressotti [KMP18|. Delayed actions are not an essential
part of HCP, but significantly complicate the theory. Therefore, we base our work on the
vartant without delayed actions. For typographical simplicity, we will refer to the system
without delayed actions as HCP, instead of HCP~. Should we need to refer to the system
with delayed actions, we will use DHCP.

2. NON-DETERMINISM, LOGIC, AND SESSION TYPES

Recent work extended nDILL and CP with operators for non-deterministic behaviour [ALM16,
Cail4, CP17]. These extensions all implement an operator known as non-deterministic local
choice. (This operator is written as P + (), but should not be confused with input-guarded
choice from the n-calculus [MPW92].) Non-deterministic local choice can be summarised by
the following typing and reduction rules:

PHET QFT P+Q=P

P+Q FT P+Q=Q

Local choice introduces non-determinism explicitly, by listing all possible choices. This is
unlike the n-calculus, where non-determinism arises due to multiple processes communicating
on shared channels. We can easily implement local choice in the m-calculus, using a nullary
communication:

(0.0 | ()P | 2()-Q)

I

*
(Pz().Q) or (z().P|Q)
In this implementation, the process x:().0 will “unlock” either P or (), leaving the other
process deadlocked. Or we could use input-guarded choice:

(.0 (z().P + x().Q))
However, there are many non-deterministic processes in the n-calculus that are awkward to
encode using non-deterministic local choice. Let us recall our example:

(z(2).2({) & || (y). @ || 2(2).@)

I

>*
&l e{/y} | @{/2}) or (& @{§l/v} | @{L/z})
This non-deterministic interaction involves communication. If we wanted to write down a
process which exhibited the same behaviour using non-deterministic local choice, we would
have to write the following process:

(2(2).y(§4) & || 2(2)- @ || y(w). @) + (Y(£)-x () & || 2(2). @ [| y(w). @)

I

*
&l e{/y} | @{E/2}) or (& @{il/v} | @{L/2})
In essence, instead of modelling a non-deterministic interaction, we are enumerating the
resulting deterministic interactions. This means non-deterministic local choice cannot model
non-determinism in the way the n-calculus does. Enumerating all possible outcomes becomes
worse the more processes are involved in an interaction. Imagine the following scenario:

15:4 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

Three customers, Ami, Boé, and Cat, have a craving for cake. Should cake
be sold out, however, well... a doughnut will do. They prepare to order their
goods via an online store. Unfortunately, they all decide to use the same
shockingly under-stocked store, which has only one slice of cake, and a single
doughnut. After that, all it can deliver is disappointment.
We can model this scenario in the n-calculus, where ®, @, M, and %z are four processes
modelling Ami, Boé, Cat, and the store, and * , @, and { are three channels giving access
to a slice of cake, a so-so doughnut, and disappointment, respectively.

(2(). (@).2(i).Ba | 2(y).@ || o().@ || 2(w).0)

l

*

&l e{2/y} | @{a@/=} || A1/ w}) or (& (| @{L/y} | @{§E/2) || A{@®/w})
& | e{@/y} | @{/2} | B&{&/w}) or (& || @{@/y} || @{2/2} | A{§E/w})
& | @{i/y) | @{2/z) || {@/w}) or (& || @{i/v} | @{@/2} | R{L/w})

With the addition of one process, modelling Cat, we have increased the number of possible
outcomes enormously! In general, the number of outcomes for these types of scenarios
is n!, where n is the number of processes. This means that if we wish to translate any
non-deterministic process to one using non-deterministic local choice, we can expect a
factorial growth in the size of the term.

3. HYPERSEQUENT CLASSICAL PROCESSES

In this section, we introduce HCP [KMP18], the basis for our calculus HCPxp. The term
language for HCP is a variant of the n-calculus [MPW92]. In HCP, processes (P, @,
R) communicate using names (z, vy, z, ...). Each name is one of the two endpoints of
a bidirectional communication channel [Vas12]. A channel is formed by connecting two
endpoints using name restriction. This is in contrast to sections 1 and 2, where we used
names to represent channels.

Definition 3.1 (Terms).

P,Q,R == zty link
| 0 terminated process
| (vaa')P name restriction, “cut”
| (P Q) parallel composition, “mix”
| z[y].P output
| z(y).P input
| z[].P halt
| z().P wait
| x<inl.P select left choice
| x<inr.P select right choice
| x> {inl: P;inr: @} offer binary choice
| =z {} offer nullary choice

The variables x, vy, z, u, v, and w range over channel endpoints. Occasionally, we use a, b,
and c to range over free endpoints, ¢.e., those which are not connected to another endpoint.
The construct <>y links two endpoints [San96, Bor98], forwarding messages received on z

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:5

to y and vice versa. The construct (vaz’)P creates a new channel by connecting endpoints
x and 2/. By convention, we name dual endpoints using primes, e.g., © and /. However,
the primes are merely a naming convention, and do not denote co-names, e.g., = and 2’
are not inherently dual, only under a v-binder (vzz’). The construct P || () and composes
two processes. In z(y).P and z[y|.P, round brackets denote input, square brackets denote
output. We use bound output [San96], meaning that both input and output bind a new
name.
Terms in HCP are identified up to structural congruence.

Definition 3.2 (Structural congruence). The structural congruence = is the congruence
closure over terms which satisfies the following additional axioms:

SC-ReEsComM (vaa!)(vyy') P
SC-REsSExT (vaa!)(P | Q)

vy (va!) P
P (vax)Q ifx,2’ ¢ P

SC-LINKSWAP x>y = Yy
SC-ParComMm P || Q =Q| P
SC-PAarAssoc P || (Q||R) = (P Q)| R
SC-PARNIL P[0 =P
SC-RESNIL (vzx')0 =0

Channels in HCP are typed using a session type system which is a conservative extension
of linear logic.

Definition 3.3 (Types).

A,B,C == A® B independent channels | 1 unit for ®
| A® B interdependent channels | L unit for g
| A@® B internal choice | O unit for &
| A& B external choice | T unit for &

Duality plays a crucial role in both linear logic and session types. In HCP, the two
endpoints of a channel are assigned dual types. This ensures that, for instance, whenever a
process sends across a channel, the process on the other end of that channel is waiting to
receive. Each type A has a dual, written A", Duality (-*) is an involutive function on types.

Definition 3.4 (Duality).
(Ao Bt = AteBt 1t =1 (A9B)t =AteBt 1+ =1
(Ao Bt = At&Bt 0t =T (A&B)t = AteBt T+ =0

Environments associate channels with types. Names in environments must be unique,
and environments ' and A can only be combined (I', A) if en(I') N en(A) = &, where cn(1)
denotes the set of channel names in I'.

Definition 3.5 (Environments). I') A, © i=x21: A ... 2, A,

HCP registers parallelism using hyper-environments. A hyper-environment is a multiset
of environments. While names within environments must be unique, names may be shared
between multiple environments in a hyper-environment. We write G || to combine two
hyper-environments.

Definition 3.6 (Hyper-environments). G, H = @ | G || I’

Typing judgements associate processes with collections of typed channels.

15:6 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

Definition 3.7 (Typing judgements). A typing judgement P + Iy || ... || I',, denotes that
the process P consists of n independent, but potentially entangled processes, each of which
communicates according to its own protocol I';. Typing judgements can be constructed
using the inference rules below.

Structural rules
PFG|T,z:A| A2 At

Ax
ey Foxi Ay AL (vza)P F G| T,A cur
PFGg QFH

H-Mix —— H.

PIQF GIH X gF g MM
Logical rules
PFrTy:Al|Az:B PFTy:Ax:B (%)
[y P F T, Ajz: A® B z(y).P - T z: A9 B
PFO PET
L
z[].P F z:1 1 z().P F Ta: L (L)

PFT xz:A PFT,z:B
r<inl.P + I'z: A B (&1) r<dinr.P - Ia: A B
PrETIT x:A QF I x:B
xz>{inl: P;inr: Q} F I''z: A& B (&)
(no rule for 0) o {} F D,z T (T)

(©2)

Alternative syntax. In (1), the only well-typed continuation P is the terminated process
0. We could use an alternative formulation of the rule, which combines (1) and H-MIX.
However, as H-MiXg is used on its own, and not just in combination with (1), we chose
the present formulation to avoid having multiple different representations of the terminated
process in the language.

Reductions relate processes with their reduced forms.

Definition 3.8 (Reduction). Reductions are described by the smallest relation = on
process terms closed under the rules below:

E-LINk (vaa!)(wra ||) = P{w/2'}
BSeND (vaa')(zly] P || /(). R) — (var)ow)(P | R)
B-Crose. (v)(o[) P || 7()-Q) — PO
E-SEL; (vza’)(x <inl.P || 2’ >{inl: Q;inr: R}) = (vz2/)(P | Q)
E-SEL; (vaa)(z<inr.P | 2'>{inl: Q;inr: R}) = (vaz’)(P | R)
P= P P= P
(Ve P — (vad)P’ E-LIFTRES PlO— P Q E-LIFTPAR
P=e 6123::1%/ =L E-LirTSC

We define unbound output in terms of bound output and link [LM15]:
2(y).P £ alz].(yoz | P)

/').Q)
(Pl {y/y'})

P+T,2:B (vra')(x (2/> P | f//(

1
w(y).P kT 2:A® B,y: AL = (voa')

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:7

3.1. Example. HCP uses hyper-sequents to structure communication, and it is this structure
which rules out deadlocked interactions. Let us go back to our example of a deadlocked
interaction from section 1. If we want to type this interaction in HCP, we run into a problem:
to connect = and y, and z and w, such that we get a deadlock, we need to construct the
following term:
(vaa')(vyy) (@ () y(2). @ || ¥ (v).a' (). @).

However, there is no typing derivation for this term. We can construct a typing derivation
down to the sequent below, but we cannot introduce both name restrictions: the CuT
rule eliminates a hypersequent separator, which ensures that it only ever connects two
independent processes, but the sequent below only has one.

2(2)4(2). @ ||/ (w).o' (). @+,

3.2. Metatheory. HCP enjoys subject reduction, termination, and progress [KMP18].
Lemma 3.9 (Preservation for =). If P=(Q, then P - G iff Q + §.

Proof. By induction on the derivation of P = ().]
Theorem 3.10 (Preservation). If P + G and P = @, then Q + G.

Proof. By induction on the derivation of P = ().]

Definition 3.11 (Actions). A process P acts on = whenever z is free in the outermost term
constructor of P, e.g., x[y|.P acts on x but not on y, and x<>y acts on both x and y. A
process P is an action if it acts on some channel .

Definition 3.12 (Canonical forms). A process P is in canonical form if
P=(veya) ... (venxl) (P | -+ | Poyms1),

such that: no process F; is a cut or a mix; no process F; is a link acting on a bound channel
x; or x/; and no two processes F; and P; are acting on dual endpoints z; and 2 of the same
channel.

Lemma 3.13. If a well-typed process P is in canonical form, then it is blocked on an
external communication, i.e., P = (vaa) ... (vap,2))) (P | -+ | Pytyr) such that at least
one process P; acts on a free name.

Proof. We have P = (vaya)) ... (ve,z) (P || ... || Putm+1), such that no P; is a cut or a
link acting on a bound channel, and no two processes /; and P; are acting on the endpoints
of the same channel. The prefix of cuts and mixes introduces n channels. Each application
of cut requires an application of mix, so the prefix introduces n +m + 1 processes. Therefore,
at least m + 1 of the processes P; must be acting on a free channel, i.e., blocked on an
external communication.]

Theorem 3.14 (Progress). If P + G, then either P is in canonical form, or there ezists a
process () such that P = Q).

15:8 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

Proof. We consider the maximum prefix of cuts and mixes of P such that
P=(vez)) ... (vepz)) (P - || Potmat),

and no P, is a cut. If any process P; is a link, we reduce by («). If any two processes P,
and P; are acting on dual endpoints z; and 2 of the same channel, we rewrite by = and
reduce by the appropriate S-rule. Otherwise, P is in canonical form. []

Theorem 3.15 (Termination). If P + G, then there are no infinite =>-reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However, each of these
cuts is smaller, measured in the size of the cut formula. Furthermore, each instance of the
structural congruence preserves the size of the cut. Therefore, there cannot be an infinite
=—-reduction sequence. []

3.3. Erratum for HCP. The typing rules for HCP presented here are more restrictive
than those in earlier publications [KMP18]. Progress does not hold for the earlier version.
For instance, the following process is stuck, yet typeable:

_o0ro
y[].0 F y:1 xevz ol 201
z[].y[].0 F z:1] y:1 y(xerz B oo Ly L 2:1
z[].y[]0 | yO).xz b oz ||y:1 || Liy: L, 2:1
(vy)(z[].y]].0 || y().z>2) F z:1 || z: L, 2:1
() (vy)(@[.y[].0 [y().x2) = 2:1

The earlier typing rules failed to guarantee a crucial property: each typing environment
should correspond to one top-level action. The rules presented in this paper fixes the problem
by disallowing hyper-environments in logical rules.

The move from channel names to endpoint names is not essential to the fix, but
significantly streamlines the presentation. Otherwise, the type system must guarantee that
each channel name occurs at most twice in the hypersequent, and if twice, then with dual
types. Using endpoint names, it is sufficient to require that all names be distinct.

4. SHARED CHANNELS AND NON-DETERMINISM

In this section, we will discuss our main contribution: an extension of HCP which allows
for races while still excluding deadlocks. We have seen in section 3.1 how HCP excludes
deadlocks, but how exactly does HCP exclude races? Let us return to our example in
n-calculus from section 1, to the interaction between Ami, Boé and the store.

(z(2).2(§6) & | (y). @ || 2(2).@)

I

*
& | @{&/y} | @{§e/z}) or (& @{¥/y) || @{£/2))
Races occur when more than two processes attempt to communicate simultaneously over
the same channel. However, the CUT rule of HCP requires that exactly two processes
communicate over each channel:

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:9

PFG|T,z:A| A2 :AL
(vzz)P + G| T,A
We could attempt to write down a protocol for our example, stating that the store has a
pair of channels x,y : @ with which it communicates with Ami and Boé, taking & to be
the type of interactions in which cake may be obtained, i.e. of both * and {{, and state
that the store communicates with Ami and Boé over a channel of type & 2 &. However,
this only models interactions such as the following:

eFTy@® @AFAc@

Cut

- T —— H-Mix
(@@ FlLy@ [Az:@ (@) -0,y 828 (%)
vy (@@ FTAz:@ 2@ YO BrE
-MIx
L@@ 0 FTAve cel o ere
UT

(vz2')(z[y].(@ || @) | '(y") &) - I, A, ©
In this interaction, Ami will get whatever the store decides to send on x, and Boé will get
whatever the store decides to send on y. This means that this interactions gives the choice of
who receives what to the store. This is not an accurate model of our original example, where
the choice of who receives the cake is non-deterministic and depends on factors outside of
any of the participants’ control!

Modelling racy behaviour, such as that in our example, is essential to describing the
interactions that take place in realistic concurrent systems. We would like to extend
HCP to allow such races in a way which mirrors the way in which the n-calculus handles
non-determinism. Let us return to our example:

(z(2).2 () & | z(y).@ | 2(2).@)
In this interaction, we see that the channel x is only used as a way to connect the various
clients, Ami and Boé, to the store. The real communication, sending the slice of cake and
disappointment, takes places on the channels * ¢, y and z. Inspired by this, we add two
new constructs to the term language of HCP for sending and receiving on a shared channel.
These actions are marked with a * to distinguish them from ordinary sending and receiving.

Definition 4.1 (Terms). We extend theorem 3.1 as follows:
P,Q,R:= ...
| xx[y].P client creation

| xz(y).P server interaction

As before, round brackets denote input, square brackets denote output. Note that
*x[y].P, much like z[y|. P, is a bound output: both client creation and server interaction
bind a new name. The structural congruence, which identifies certain terms, is the same as
theorem 3.2.

In any non-deadlock interaction between a server and some clients, there must be ezactly
as many clients as there are server interactions. Therefore, we add two new dual types for
client pools and servers, which track how many clients or server interactions they represent.

Definition 4.2 (Types). We extend theorem 3.3 as follows:

A, B,C == .
| !1,A pool of n clients
| 7,A nserver interactions

15:10 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

The types !, A and 7, A" are dual. (The subscripts must be identical, i.e., !, A is not
dual to 7,, A" if n # m.) Duality remains an involutive function.

We have to add typing rules to associate our new client and server interactions with
their types. The definition for environments will remain unchanged, but we will extend
the definition for the typing judgement. To determine the new typing rules, we essentially
answer the question “What typing constructs do we need to complete the following proof?”

eI & @FAY S8 @ ZHbFO:® e

(vea')((xz[z]. @ || xx[2'].@) || *2'(w) x2'(w').Bg) F T, A, 0
The constructs z|y|.P and *z(y).P introduce a single client or server action, respectively—
hence, channels of type || and 7;. However, when we cut, we want to cut on both interactions

simultaneously. We need rules for the contraction of shared channel names.

4.1. Clients and Pooling. A client pool represents a number of independent processes,
each wanting to interact with the same server. Examples of such a pool include Ami and
Boé from our example, customers for online stores in general, and any number of processes
which interact with a single, centralised server.

We introduce two new rules: one to construct clients, and one to pool them together.
The first rule, (!1), interacts over a channel as a client. It does this by receiving a channel y
over a shared channel x. The channel 7 is the channel across which the actual interaction
will eventually take place. The second rule, CoNTy, allows us to contract shared channel
names with the same type. When used together with H-MiX, this allows us to pool clients
together.

PFTIy:A) PrGTz: 1A A: A

wz[y].P F T,z:hA Y Pla/d/} F G[D,A, 2 A

Using these rules, we can derive the left-hand side of our proof by marking Ami and Boé as
clients, and pooling them together.

CONT;

®FI e (1) (QI—A,Z":@L)
-1 -1
*xx[z]. @ F rz: @t ~x'[Z].@ + Ax: @t
(2@ |] @) F Do @ A L@t
R ; (= , T 188 , i1 &8 CoNT,

(xz]2]. @ || *z[2/|.@) F T, A, z:l,@"

4.2. Servers and Sequencing. Dual to a pool of n clients in parallel is a server with n
actions in sequence. Our interpretation of a server is a process which offers some number of
interdependent interactions of the same type. Examples include the store from our example,
which gives out slices of cake and disappointment, online stores in general, and any central
server which interacts with some number of client processes.

We introduce two new rules to construct servers. The first rule, (1), marks a interaction
over some channel as a server interaction. It does this by sending a channel y over a shared
channel . The channel y is the channel across which the actual interaction will take place.
The second rule, CONT>, allows us to merge two (possibly interleaved) sequences of server
interactions. This allows us to construct a server which has multiple interactions of the same
type, across the same shared channel.

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:11

PrFTy:A) PrG|T,z:7,A2:7,A

*x(y).P + T z:71A & Plz/2"} b G| T, z: 7 4nA

Using these rules, we can derive the right-hand side of our proof, by marking each of the
store’s interactions as server interactions, and then contracting them.

CONT?

ZFow@uw: &)
A L T
xy(w)xy' (W) Bg F O,y 118,y 1@
} - ConNT?
*xy(w)xzx(w').8 F O,y: 7.8

Thus, we complete the typing derivation of our example.

Definition 4.3 (Typing judgements). We extend theorem 3.7 as follows:
PFIy A | PFEIy A o
IR o ()
*xxlyl.P F T x: 1A *x(y).P + T x: 71 A
PEG|T,z: A A2 LA PrGlTx:7,A2:7,A
CONT; CONT?

Plz/2'} F G| T,Az: ! hnA " P{x/2d'} B G| T,z 740 A

4.3. Running Clients and Servers. Finally, we need to extend the reduction rules to
allow for the reduction of client and server processes. The reduction rule we add is a variant
of E-SEND.

Definition 4.4 (Reduction). We extend theorem 3.8 as follows:
E-REQUEST (vaz’)((ealyl.P || +2'(y).Q) | B) = (vaa’)((vyy)(P || Q) || R)

The difference between E-REQUEST and E-SEND is that the former allows reduction to
happen in the presence of an unrelated process I, which is passed along unchanged. This is
necessary, as there may be other clients waiting to interact with the server on the shared
channel x, which cannot be moved out of scope of the name restriction (vx). When there is
no unrelated process R, i.e., when there is only a single client, we can rewrite by SC-PARNIL
before and after applying E-REQUEST.

So where does the non-determinism in HCPnp come from? Let us say we have a term
of the following form:

(vaa) (Gelyr] Py -+ [xzlyn] Po) 152" (91)- - %2’ () Q)

As parallel composition is commutative and associative, we can rewrite this term to pair any
client in the pool with the server before applying E-REQUEST. Thus, like in the n-calculus,
the non-determinism is introduced by the structural congruence.

Does this mean that, for an arbitrary client pool P in (vazy)(P || xy(w).QQ), every client
in that pool is competing for the server interaction on 27 Not necessarily, as some portion of
the clients can be blocked on an external communication. For instance, in the term below,
clients *x[z,+1]. Pyt ... *x[zy]. Py, are blocked on a communication on the external channel
a:

’()'(*ZE[?/HH]-PILH H T | *ZI;[?/mypm))

(ym/)((| (kz[y1]. P || - | *2[yn]. Pp)
| %2 (Y1) - x2’ (Y,)-Q)

15:12 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

If we reduce this term, then only the clients xx[z1].P; ... *z|z,|. P, will be assigned server
interactions, and we end up with the following canonical form:

(vza')(a().(xz[yn+1]-Potr || -+ [%2 [Ym] - Prn)
| %2 (Y1) x2 (Y7) Q)
This matches our intuition and the behaviour of the n-calculus. For instance, we can now
encode our example, where Ami and Boé both send a request for cake to the store, and the
store sends back either a cake or nothing:

*af]a(y). @ || (@{&/y} | @{§e/2} || &)
(vzx') | *x[z].z(2).@ | =" or
! (). (£) ' (w5) w5 (§F) Ea (@{¥¥/y} | @{£/2} | &)

The encoding presented above is slightly more complex than necessary: after the store
receives a request as), it could simply perform the cake interaction over that channel, and
similarly for z/,. However, we include these actions for clarity.

Alternative syntax. If we choose to reuse the terms z[y|. P and z(y). P for shared channels,
we could replace E-SEND with E-REQUEST, using the latter rule for both cases.

4.4. Metatheory. HCPyp enjoys subject reduction, termination, and progress.

Lemma 4.5 (Preservation for =). If P=(Q and P + G, then) + G.

Proof. By induction on the derivation of P = Q).]
Theorem 4.6 (Preservation). If P + G and P = Q, then) F §.

Proof. By induction on the derivation of P = ().]

Definition 4.7 (Actions). A process P acts on = whenever z is free in the outermost term
constructor of P, e.g., xx(y).P acts on 2 but not on y, and <>y acts on both z and y. A
process P is an action if it acts on some channel .

Definition 4.8 (Canonical forms). A process P is in canonical form if
P=(veya) ... (vanxl)) (P | -+ | Pogymest),

such that: no process I; is a cut or a mix; no process I; is a link acting on a bound channel
z; or x/; and no two processes P; and P; are acting on dual endpoints z; and 2 of the same
channel.

Lemma 4.9. If a well-typed process P is in canonical form, then it is blocked on an
external communication, i.e., P = (vaa) ... (vep,2)) (P | -+ | Pyty1) such that at least
one process P; acts on a free name.

Proof. We have P = (vay2)) ... (vap,z))(Py || ... || Posm+1), such that no P; is a cut or a
link acting on a bound channel, and no two processes P, and F; are acting on the same
bound channel with dual actions. The prefix of cuts and mixes introduces n channels. Each
application of cut requires an application of mix, so the prefix introduces n +m + 1 processes.
Each application of CONT) requires an application of mix, so there are at most m clients
acting on the same bound channel. Therefore, at least one of the processes P, must be
acting on a free channel, i.e., blocked on an external communication. []

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:13

Theorem 4.10 (Progress). If P + G, then either P is in canonical form, or there exists a
process () such that P = ().

Proof. We consider the maximum prefix of cuts and mixes of P such that
P=(voah) ... (vznal) (P ... || Potmas1),

and no F; is a cut. If any process P; is a link, we reduce by («). If any two processes P;
and P; are acting dual endpoints z; and 2 of the same channel, we rewrite by = and reduce
by the appropriate S-rule. Otherwise, P is in canonical form. []

Theorem 4.11 (Termination). If P + G, then there are no infinite =>-reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However, each of these
cuts is smaller, measured in the size of the cut formula. Furthermore, each instance of the
structural congruence preserves the size of the cut. Therefore, there cannot be an infinite
=—>-reduction sequence. []

4.5. HCPnp and Non-deterministic Local Choice. In section 2, we discussed the
non-deterministic local choice operator, which is used in several extensions of tDILL and
CP [ALM16, Cail4, CP17]. This operator is admissible in HCPxp. We can derive the
non-deterministic choice P + () by constructing the following term:
(vax")((*z[y].y <inl.y[].0
| xx[z].z <inr.z[].0)
| ! (y).xa (2).y >
{inl: (vww')(z'>{inl: 2/().w[].0; inr : 2/().w[].0} || w'().P)
sinr o (vww’) (2> {inl : 2/().w][].0; inr : 2/().w([].0} || w'().Q) })

This term is a cut between two processes.

e On the left-hand side, we have a pool of two processes, xz[y].y < inl.y[|.0 and xz[z].z < inr.z[].0.
Each makes a choice: the first sends inl, and the second sends inr.

e On the right-hand side, we have a server with both P and (). This server has two channels
on which a choice is offered, v/ and 2. The choice on v/ selects between P and (). The
choice on 2’ does not affect the outcome of the process at all. Instead, it is discarded.

When these clients and the server are put together, the choices offered by the server will be
non-deterministically lined up with the clients which make choices, and either P or) will
run.

While there is a certain amount of overhead involved in this encoding, it scales linearly
in terms of the number of processes. The reverse—encoding the non-determinism present in
HCPyp using non-deterministic local choice—scales exponentially, see, e.g., the examples in
section 2.

5. CUuTs WITH LEFTOVERS

So far, our account of a non-determinism in client/server interactions only allows for
interactions between equal numbers of clients and server interactions. A natural question
is whether or not we can deal with the scenario in which there are more client than server
interactions or vice versa, i.e., whether or not the following rules are derivable:

15:14 W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

F F-, !n, } ,,,,A F A$?nAL - F, !71,*4 H A? ?n f mAL
FT,A, LA FT,A,?2,AL
These rules are derivable using a link. For instance, we can derive the rule for the case in
which there are more clients than servers as follows:

QF Ag:7,At 2 ew b o, AN w A

- H-Mix
Q| 2"w) F Aa 2, A || 2" A we), A ConT
|
PFT ozl A Q|| ' w) F A2 AN w: L, A '
H-Mix

3 v g s Ve n4m P ‘-‘)nerl , Wiy,
PI@Izew) b Ta:lhmAl A 2 At w:l, A
(v)(P || (Q || '+w)) F T, A w:!, A

Cut

6. RELATION TO MANIFEST SHARING

In section 2, we mentioned related work which extends nDILL and CP with non-deterministic
local choice [ALM16, Cail4, CP17], and contrasted these approaches with ours. In this
section, we will contrast our work with the more recent work on manifest sharing [BP17].

Manifest sharing extends the session-typed language SILL with two connectives, TfA
and L? A, which represent the places in a protocol where a shared resource is aquired and
released, respectively. In the resulting language, SILLg, we can define a type for, e.g., shared
queues (using the notation for types introduced in this paper):

quene A =17 (AL 2 |7 (queue A)) & ((A® L)% |7 (queue A))

The type queue A types a shared channel which, after we aqcuire exclusive access, gives us
the choice between enqueuing a value (A") and releasing the queue, or dequeuing a value if
there is any (A @ L) and releasing the queue.

The language SILLg is much more expressive than HCPyp, as it has support for both
shared channels and recursion. In fact, Balzer, Pfenning, and Toninho [BPT18] show
that SILLg is expressive enough to embed the untyped asynchronous rn-calculus. This
expressiveness comes with a cost, as SILLg processes are not guaranteed to be deadlock free,
though recent work addresses this issue [BTP19].

Despite the difference in expressiveness, there are some similarities between HCPnp and
SILLg. In the former, shared channels represent (length-indexed) streams of interactions
of the same type. In the latter, it is necessary for type preservation that shared channels
are always released at the same type at which they were acquired, meaning that shared
channels also represent (possibly infinite) streams of interactions of the same type. In fact,
in HCPnp, the type for queues (with n interactions) can be written as !, (A & (A @ 1)).

One key difference between HCPnp and SILLg is that in SILLg a server must finish
interacting with one client before interacting with another, whereas in HCPyp the server
may interact with multiple clients simultaneously.

7. Di1scussiION AND FUTURE WORK

We presented HCPynp, an extension of HCP which permits non-deterministic communication
without losing the strong connection to logic. We gave proofs for preservation, progress,
and termination for the term reduction system of HCPnp. We showed that we can define
non-deterministic local choice in HCPyp.

Vol. 16:4 TOWARDS RACES IN LINEAR LOGIC 15:15

Our formalism so far has only captured servers that provide for a fixed number of clients.
More realistically, we would want to define servers that provide for arbitrary numbers
of clients. This poses two problems: how would we define arbitrarily-interacting stateful
processes, and how would we extend the typing discipline of HCPnp to account for them
without losing its static guarantees.

One approach to defining server processes would be to combine HCPyp with structural
recursion and corecursion, following the uCP extension of Lindley and Morris [LM16]. Their
approach can express processes which produce streams of A channels. Such a process would
expose a channel with the co-recursive type v X.A % (1 & X). Given such a process, it is
possible to produce a channel of type A2 A® - - @ A for any number of As, allowing us to
satisfy the type 7, A for an arbitrary n.

We would also need to extend the typing discipline to capture arbitrary use of shared
channels. One approach would be to introduce resource variables and quantification. Follow-
ing this approach, in addition to having types 7, A and !, A for concrete n, we would also
have types 7, A and !, A for resource variables . These variables would be introduced by
quantifiers VoA and JrA. Defining terms corresponding to Va A, and its relationship with
structured recursion, presents an interesting area of further work.

Our account of HCP did not include the exponentials 7 A and ! A. The type ! A denotes
arbitrarily many independent instances of A, while the type 7 A denotes a concrete (if
unspecified) number of potentially-dependent instances of A. Existing interpretations of
linear logic as session types have taken ! A to denote A-servers, while 7 A denotes A-clients.
However, the analogy is imperfect: while we expect servers to provide arbitrarily many
instances of their behaviour, we also expect those instances to be interdependent.

With quantification over resource variables, we can give precise accounts of both CP’s
exponentials and idealised servers and clients. CP exponentials could be embedded into
this framework using the definitions ! A ::= Vn!, A and 7A ::= 9n7, A. We would also have
types that precisely matched our intuitions for server and client behavior: an A server
is of type Vn7, A, as it serves an unbounded number of requests with the requests being
interdependent, while a collection of A clients is of type dn!,, A, as we have a specific number
of clients with each client being independent.

REFERENCES

[ALM16] Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency. In Sam Lindley,
Conor McBride, Phil Trinder, and Don Sannella, editors, A List of Successes That Can Change the
World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, 2016.

[Bor98] Michele Boreale. On the expressiveness of internal mobility in name-passing calculi. Theoretical
Computer Science, 195(2):205-226, 3 1998.

[BP17] Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of the
ACM on Programming Languages, 1(ICFP):1-29, August 2017.

[BPT18] Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A Universal Session Type for Untyped
Asynchronous Communication. In Sven Schewe and Lijun Zhang, editors, 29th International Con-
ference on Concurrency Theory (CONCUR 2018), volume 118 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 30:1-30:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[BTP19] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom for shared
session types. In Programming Languages and Systems, pages 611-639. Springer International
Publishing, 2019.

15:16

[Caild]

[CP10]

[CP17]

[GSS92]
[Hon93)]
[KMP18]
[KMP19]
[LM15]

[LM16]

[MPW92]
[San96]

[Vas12]
[Wad12]

W. KOKKE, G. MORRIS, AND P. WADLER Vol. 16:4

Luis Caires. Types and logic, concurrency and non-determinism. In Martin Abadi, Philippa
Gardner, Andy Gordon, and Radu Mardare, editors, Essays for the Luca Cardelli Fest. Microsoft
Research, 9 2014.

Luis Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions, pages 222-236.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

Luifs Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In Programming
Languages and Systems — 26th European Symposium on Programming, ESOP 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings. Springer, 4 2017.

Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular approach
to polynomial-time computability. Theor. Comput. Sci., 97(1):1-66, April 1992.

Kohei Honda. Types for dyadic interaction. In CONCUR'93, pages 509-523. Springer Nature,
1993.

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Taking linear logic apart. In Workshop on
Linearity & TLLA at FloC’18, July 2018.

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: A fully-abstract
semantics for classical processes. PACMPL, 3(POPL), January 2019.

Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In Programming
Languages and Systems, pages 560-584. Springer Nature, 2015.

Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 434-447, New York, NY, USA, 2016. ACM.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Information
and Computation, 100(1):41-77, September 1992.

Davide Sangiorgi. n-calculus, internal mobility, and agent-passing calculi. Theoretical Computer
Science, 167(1-2):235-274, 1996.

Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52-70, 2012.

Philip Wadler. Propositions as sessions. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 273-286, New York, NY, USA, 2012.
ACM.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Non-determinism, Logic, and Session Types
	3. Hypersequent Classical Processes
	3.1. Example
	3.2. Metatheory
	3.3. Erratum for HCP

	4. Shared Channels and Non-determinism
	4.1. Clients and Pooling
	4.2. Servers and Sequencing
	4.3. Running Clients and Servers
	4.4. Metatheory
	4.5. HCPND and Non-deterministic Local Choice

	5. Cuts with Leftovers
	6. Relation to Manifest Sharing
	7. Discussion and Future Work
	References

