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Abstract. Psi-calculi is a parametric framework for process calculi similar to popular
pi-calculus extensions such as the explicit fusion calculus, the applied pi-calculus and the spi
calculus. Mechanised proofs of standard algebraic and congruence properties of bisimilarity
apply to all calculi within the framework.

A limitation of psi-calculi is that communication channels must be symmetric and
transitive. In this paper, we give a new operational semantics to psi-calculi that allows us
to lift these restrictions and simplify some of the proofs. The key technical innovation is
to annotate transitions with a provenance—a description of the scope and channel they
originate from.

We give mechanised proofs that our extension is conservative, and that the standard
algebraic and congruence properties of strong and weak bisimilarity are maintained. We
show correspondence with a reduction semantics and barbed bisimulation. We show how
a pi-calculus with preorders that was previously beyond the scope of psi-calculi can be
captured, and how to encode mixed choice under very strong quality criteria.

1. Introduction

This paper is mainly concerned with channel connectivity, by which we mean the relationship
that describes which input channels are connected to which output channels in a setting with
message-passing concurrency. In the pi-calculus [MPW92], channel connectivity is syntactic
identity: in the process

a(x).P | b y.Q
where one parallel component is waiting to receive on channel a and the other is waiting to
send on channel b, interaction is possible only if a = b.

Variants of the pi-calculus may have more interesting channel connnectivity. The explicit
fusion calculus pi-F [GW00] extends the pi-calculus with a primitive for fusing names; once
fused, they are treated as being for all purposes one and the same. Channel connectivity is
then given by the equivalence closure of the name fusions. For example, if we extend the
above example with the fusion (a = b)

a(x).P | b y.Q | (a = b)
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then communication is possible. Other examples may be found in e.g. calculi for wireless
communication [NH06], where channel connectivity can be used to directly model the
network’s topology.

Psi-calculi [BJPV11] is a family of applied process calculi, where standard meta-
theoretical results, such as the algebraic laws and congruence properties of bisimulation,
have been established once and for all through mechanised proofs [BPW16] for all members
of the family. Psi-calculi generalises e.g. the pi-calculus and the explicit fusion calculus in
several ways. In place of atomic names it allows channels and messages to be taken from
an (almost) freely chosen term language. In place of fusions, it admits the formulas of an
(almost) freely chosen logic as first-class processes. Channel connectivity is determined
by judgements of said logic, with one restriction: the connectivity thus induced must be
symmetric and transitive.

The main contribution of the present paper is a new way to define the semantics of
psi-calculi that lets us lift this restriction, without sacrificing any of the algebraic laws
and compositionality properties. It is worth noting that this was previously believed to be
impossible: Bengtson et al. [BJPV11, p. 14] even offer counterexamples to the effect that
without symmetry and transitivity, scope extension is unsound. However, a close reading
reveals that these counterexamples apply only to their particular choice of labelled semantics,
and do not rule out the possibility that the counterexamples could be invalidated by a
rephrasing of the labelled semantics such as ours.

The price we pay for this increased generality is more complicated transition labels:
we decorate input and output labels with a provenance that keeps track of which prefix a
transition originates from. The idea is that if I am an input label and you are an output
label, we can communicate if my subject is your provenance, and vice versa. This is offset
by other simplifications of the semantics and associated proofs that provenances enable.

Contributions. This paper makes the following specific technical contributions:

• We define a new semantics of psi-calculi that lifts the requirement that channel connec-
tivity must be symmetric and transitive, using the novel technical device of provenances.
(Section 2)
• We prove that strong and weak bisimulation is a congruence and satisfies the usual

algebraic laws such as scope extension. Interestingly, provenances can be ignored for the
purpose of bisimulation. These proofs are machine-checked in Nominal Isabelle [Urb08].
(Section 3.1)
• We prove, again using Nominal Isabelle, that this paper’s developments constitute a

conservative extension of the original psi-calculi. (Section 3.5)
• To further validate our semantics, we define a reduction semantics and strong barbed

congruence, and show that they agree with their labelled counterparts. (Section 3.5)
• We capture a pi-calculus with preorders by Hirschkoff et al. [HMS13], that was previously

beyond the scope of psi-calculi because of its non-transitive channel connectivity. The
bisimilarity we obtain turns out to coincide with that of Hirschkoff et al. (Section 4.1)
• We exploit non-transitive connectivity to show that mixed choice is a derived operator

of psi-calculi in a very strong sense: its encoding is fully abstract and satisfies strong
operational correspondence. (Section 4.2)

This paper is an extended version of [ÅP19a]. In this version, we have extended many
of the meta-theoretical results and the associated Isabelle formalisation from strong to
weak bisimulation (Section 3.2). We have also added a discussion of the aforementioned
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counterexamples by Bengtson et al. [BJPV11] (Section 3.4), and a more thorough motivation
of the design decisions we have made when introducing provenances (Section 3.3). Moreover,
the other sections have been edited for detail and clarity. We have opted against including
the full proofs; the interested reader is referred to the associated technical report [ÅP19b]
and Isabelle formalisation. Isabelle proofs are available online.1

2. Definitions

This section introduces core definitions such as syntax and semantics. Many definitions
are shared with the original presentation of psi-calculi, so this section also functions as a
recapitulation of [BJPV11]. We will highlight the places where the two differ. For readers
who desire a gentler introduction to psi-calculi than the present paper offers, we recommend
[Joh10].

Psi-calculi is built on the theory of nominal sets [GP02], which allows us to reason
formally up to alpha-equivalence without committing to any particular syntax of the term
language. We assume a countable set of names N ranged over by a, b, c, . . . , x, y, z. A
nominal set is a set equipped with a permutation action ·; intuitively, if X ∈ X and X is a
nominal set, then (x y) ·X, which denotes X with all occurrences of the name x swapped
for y and vice versa, is also an element of X. n(X) (the support of X) is, intuitively, the
set of names such that swapping them changes X. We write a#X (“a is fresh in X) for
a /∈ n(X). We overload # to sequences of names: ã#X means that for each ai in ã, ai#X.
Similarly, a#X,Y abbreviates a#X ∧ a#Y . A nominal set X has finite support if for every
X ∈ X, n(X) is finite. A function symbol f is equivariant if p · f(x) = f(p · x), where p is a
sequence of permutations (x y); this generalises to n-ary function symbols in the obvious way.
Whenever we define inductive syntax with names, it is implicitly quotiented by permutation
of bound names, so e.g. (νx)a〈x〉 = (νy)a〈y〉 if x, y#a.

Psi-calculi is parameterised on an arbitrary term language and a logic of environmental
assertions:

Definition 2.1 (Parameters). A psi-calculus is a 7-tuple (T,A,C,`,⊗,1, .→) with three
finitely supported nominal sets:

(1) T, the terms, ranged over by M,N,K,L, T ;
(2) A, the assertions, ranged over by Ψ; and
(3) C, the conditions, ranged over by ϕ.

We assume each of the above is equipped with a substitution function [ := ] that substitutes
(sequences of) terms for names. The remaining three parameters are equivariant function
symbols written in infix:

` : A×C⇒ bool (entailment)
⊗ : A×A⇒ A (composition)
1 : A (unit)
.→ : T×T⇒ C (channel connectivity)

Intuitively, M
.→ K means the prefix M can send a message to the prefix K. The substitution

functions must satisfy certain natural criteria wrt. their treatment of names; see [BJPV11]

for the details. We use σ to range over substitutions [x̃ := T̃ ]. A substitution [x̃ := T̃ ] is

1https://github.com/IlmariReissumies/newpsi

https://github.com/IlmariReissumies/newpsi
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well-formed if |x̃| = |T̃ | and x̃ are pairwise distinct. Unless otherwise specified, we only
consider well-formed substitutions.

Definition 2.2 (Static equivalence). Two assertions Ψ,Ψ′ are statically equivalent, written
Ψ ' Ψ′, if ∀ϕ. Ψ ` ϕ ⇔ Ψ′ ` ϕ.

Definition 2.3 (Valid parameters). A psi-calculus is valid if (A/',⊗,1) form an abelian
monoid.

Note that since the abelian monoid is closed, static equivalence is preserved by com-
position. Henceforth we will only consider valid psi-calculi. The original presentation of
psi-calculi had

.↔ for channel equivalence in place of our
.→, and required that channel

equivalence be symmetric (formally, Ψ `M .↔ K iff Ψ ` K .↔M) and transitive.

Definition 2.4 (Process syntax). The processes (or agents) P, ranged over by P,Q,R, are
inductively defined by the grammar

P := 0 (nil)
LΨM (assertion)
M N.P (output)
M(λx̃)N.P (input)

case ϕ̃ : P̃ (case)
P | Q (parallel composition)
(νx)P (restriction)
!P (replication)

A process is assertion-guarded if all assertions occur underneath an input or output prefix.

We require that in !P , P is guarded; that in case ϕ̃ : P̃ , all P̃ are guarded; and that in
M(λx̃)N .P it holds that x̃ ⊆ n(N). We will use PG, QG to range over assertion-guarded
processes. A process P is prefix-guarded if its outermost operator is an input or output
prefix.

Restriction, replication and parallel composition are standard. We lift restriction
to sequences of names by letting (νã)P abbreviate (νa0)(νa1) . . . (νai)P ; in particular,
(νε)P = P . M N.P is a process ready to send the message N on channel M , and then
continue as P . Similarly, M(λx̃)N.P is a process ready to receive a message on channel
M that matches the pattern (λx̃)N . We sometimes write M N to stand for M N.0, and
similarly for input. We elide the object N when it is unimportant.

The process LΨM asserts a fact Ψ about the environment. Intuitively, LΨM | P means that
P executes in an environment where all conditions entailed by Ψ hold. P may itself contain
assertions that add or retract conditions. Environments can evolve dynamically: as a process

reduces, assertions may become unguarded and thus added to the environment. case ϕ̃ : P̃
is a process that may act as any Pi whose guard ϕi is entailed by the environment. For
a discussion of why replication and case must be assertion-guarded we refer to [BJPV11,
JBPV10]. We use [] to denote composition of case statements, so e.g. case ϕ : P [] ϕ′ : Q
desugars to case ϕ,ϕ′ : P,Q.

The assertion environment of a process is described by its frame:
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Definition 2.5 (Frames). The frame of P , written F(P ) = (νb̃P )ΨP where b̃P bind into
ΨP , is defined as

F(LΨM) = (νε)Ψ
F(P | Q) = F(P )⊗F(Q)
F((νx)P ) = (νx)F(P )
F(P ) = 1 otherwise

where name-binding and composition of frames is defined as (νx)(νb̃P )ΨP = (νx, b̃P )ΨP ,

and, if b̃P#b̃Q,ΨQ and b̃Q#ΨP ,

(νb̃P )ΨP ⊗ (νb̃Q)ΨQ = (νb̃P , b̃Q)(ΨP ⊗ΨQ)

where ν binds stronger than ⊗. We overload Ψ to denote the frame (νε)Ψ.

We extend entailment to frames as follows: F(P ) ` ϕ holds if, for some b̃P ,ΨP such

that F(P ) = (νb̃P )ΨP and b̃P#ϕ, ΨP ` ϕ. The freshness side-condition b̃P#ϕ is important
because it allows assertions to be used for representing local state. By default, the asser-
tion environment is effectively a form of global non-monotonic state, which is not always
appropriate for modelling distributed processes. With ν-binding we can recover locality by
writing e.g. (νx)(Lx = MM | P ) for a process P with a local variable x.

The notion of provenance is the main novelty of our semantics. It is the key technical
device used to make our semantics compositional:

Definition 2.6 (Provenances). The provenances Π, ranged over by π, are either ⊥ or of
form (νx̃; ỹ)M , where M is a term, and x̃, ỹ bind into M .

We write M for (νε; ε)M . When x̃, ỹ#x̃′, ỹ′ and x̃#ỹ, we interpret the expression

(νx̃; ỹ)(νx̃′; ỹ′)M as (νx̃ x̃′; ỹ ỹ′)M . Furthermore, we equate (νx̃; ỹ)⊥ and ⊥. Let π ↓ denote
the result of moving all binders from the outermost binding sequence to the innermost; that
is, (νx̃; ỹ)M↓ = (νε; x̃, ỹ)M . Similarly, π ↓ z̃ denotes the result of inserting z̃ at the end of
the outermost binding sequence: formally, (νx̃; ỹ)M ↓ z̃ = (νx̃, z̃; ỹ)M .

Intuitively, a provenance describes the origin of an input or output transition. For
example, if an output transition is annotated with (νx̃; ỹ)M , the sender is an output prefix
with subject M that occurs underneath the ν-binders x̃, ỹ. For technical reasons, these
binders are partitioned into two distinct sequences. The intention is that x̃ are the frame
binders, while ỹ contains binders that occur underneath case and replication; these are not
part of the frame, but may nonetheless bind into M . We prefer to keep them separate
because the x̃ binders are used for deriving ` judgements, but ỹ are not (cf. Definition 2.5).

Definition 2.7 (Labels). The labels L, ranged over by α, β, are:

M (νx̃)N (output)
M N (input)
τ (silent)

The bound names of α, written bn(α), is x̃ if α = M (νx̃)N and ε otherwise. The subject
of α, written subj(α), is M if α = M (νx̃)N or α = M N . Analogously, the object of α,
written obj(α), is N if α = M (νx̃)N or α = M N .

While the provenance describes the origin of a transition, a label describes how it can
interact. For example, a transition labelled with M N indicates readiness to receive a
message N from an output prefix with subject M .
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In
Ψ ` K .→M

Ψ � M(λỹ)N .P
K N [ỹ:=L̃]−−−−−−→

M
P [ỹ := L̃]

Out
Ψ `M .→ K

Ψ � M N .P
KN−−→
M

P

ParL
ΨQ ⊗Ψ � P

α−→
π

P ′

Ψ � P | Q α−−−→
π↓b̃Q

P ′ | Q
bn(α)#Q ParR

ΨP ⊗Ψ � Q
α−→
π

Q′

Ψ � P | Q α−−−−→
(νb̃P )π

P | Q′
bn(α)#P

Com

ΨQ ⊗Ψ � P
M(νã)N−−−−−−→
(νb̃P ;x̃)K

P ′ ΨP ⊗Ψ � Q
K N−−−−−−→

(νb̃Q;ỹ)M
Q′

Ψ � P | Q τ−→
⊥

(νã)(P ′ | Q′)
ã#Q

Case
Ψ � Pi

α−→
π

P ′ Ψ ` ϕi

Ψ � case ϕ̃ : P̃
α−→
π↓

P ′
Scope

Ψ � P
α−→
π

P ′

Ψ � (νb)P
α−−−→

(νb)π
(νb)P ′

b#α,Ψ

Open
Ψ � P

M(νã)N−−−−−→
π

P ′

Ψ � (νb)P
M(νã∪{b})N−−−−−−−−→

(νb)π
P ′

b#ã,Ψ,M
b ∈ n(N) Rep

Ψ � P | !P α−→
π

P ′

Ψ� !P
α−→
π↓

P ′

Table 1: Structured operational semantics. A symmetric version of Com is elided. In the

rule Com we assume that F(P ) = (νb̃P )ΨP and F(Q) = (νb̃Q)ΨQ where b̃P is

fresh for Ψ and Q, x̃ is fresh for Ψ,ΨQ, P , and b̃Q, ỹ are similarly fresh. In rule

ParL we assume that F(Q) = (νb̃Q)ΨQ where b̃Q is fresh for Ψ, P, π and α. ParR
has the same freshness conditions but with the roles of P,Q swapped. In Open
the expression ã ∪ {b} means the sequence ã with b inserted anywhere.

Definition 2.8 (Operational semantics). The transition relation −→ ⊆ A×P×L×Π×P is

inductively defined by the rules in Table 1. We write Ψ � P
α−→
π

P ′ for (Ψ, P, α, π, P ′) ∈ −→.

In transitions, bn(α) binds into obj(α) and P ′.

Note that to avoid clutter, the freshness conditions for some of the rules are stated in
the caption of Table 1.

The operational semantics differs from [BJPV11] mainly by the inclusion of provenances:
anything underneath the transition arrows is novel.

The Out rule states that in an environment where M is connected to K, the prefix
M N may send a message N from M to K. The In rule is dual to Out, but also features
pattern-matching. If the message is an instance of the pattern, as witnessed by a substitution,
that substitution is applied to the continuation P .

In the Com rule, we see how provenances are used to determine when two processes
can interact. Specifically, a communication between P and Q can be derived if P can send
a message to M using prefix K, and if Q can receive a message from K using prefix M .
Because names occurring in M and K may be local to P and Q respectively, we must be
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careful not to conflate the local names of one with the other; this is why the provenance
records all binding names that occur above M,K in the process syntax. Note that even
though we identify frames and provenances up to alpha, the Com rule uses syntactically

identical binding sequences b̃P , b̃Q in two roles: as frame binders F(P ) = (νb̃P )ΨP , and as
the outermost provenance binders. By thus insisting that these binding sequences are chosen
to coincide, we ensure that the K on Q’s label really is the same as the K in P ’s provenance.

It is instructive to compare our Com rule with the original:

Com-Old

ΨQ ⊗Ψ � P
M (νã)N−−−−−→ P ′

ΨP ⊗Ψ � Q
K N−−−→ Q′ Ψ⊗ΨP ⊗ΨQ `M

.↔ K

Ψ � P | Q τ−→ (νã)(P ′ | Q′)
ã#Q

where F(P ) = (νb̃P )ΨP and F(Q) = (νb̃Q)ΨQ and b̃P#Ψ, b̃Q, Q,M,P and b̃Q#Ψ, b̃Q, Q,K, P .
Here we have no way of knowing if M and K are able to synchronise other than making
a channel equivalence judgement. Hence any derivation involving Com-Old makes three
channel equivalence judgements: once each in In, Out and Com-Old. With Com we only
make one — or more accurately, we make the exact same judgement twice, in In resp. Out.
Eliminating the redundant judgements is crucial: the reason Com-Old needs associativity
and commutativity is to stitch these three judgements together, particularly when one end
of a communication is swapped for a bisimilar process that allows the same interaction via
different prefixes.

Note also that Com has fewer freshness side-conditions. A particularly unintuitive

aspect of Com-Old is that it requires b̃P#M and b̃Q#K, but not b̃P#K and b̃Q#M : we
would expect that all bound names can be chosen to be distinct from all free names, but
adding the missing freshness conditions makes scope extension unsound [Joh10, pp. 56-57].

With Com, it becomes clear why: because b̃Q binds into M .
All the other rules can fire independently of what the provenance of the premise is.

They manipulate the provenance, but only for bookkeeping purposes: in order for the Com

rule to be sound, we maintain the invariant that if Ψ � P
α−→
π

P ′, the outer binders of π are

precisely the binders of F(P ). Otherwise, the rules are exactly the same as in the original
psi-calculi.

The reader may notice a curious asymmetry between the treatment of provenance
binders in the ParL and ParR rules. This is to ensure that the order of the provenance
binders coincides with the order of the frame binders, and in the frame F(P | Q), the binders
of P occur syntactically outside the binders of Q (cf. Definition 2.5).

Example 2.9. To illustrate how subjects and provenances interact, we consider a psi-
calculus where terms are names, assertions are (finite) sets of names, composition is union,
and channel connectivity is defined as follows:

Ψ ` x .→ y iff x, y ∈ Ψ

The intuition here is that there exists a single, shared communication medium through
which all communication happens. Processes are allowed to declare aliases for this shared
medium by adding them to the assertion environment.

Consider the following processes, where LxM abbreviates L{x}M and x 6= y:
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P = (νx)(x | LxM) Q = (νy)(y | LyM)
Here P and Q are sending and receiving, respectively, via locally scoped aliases of the shared
communication medium. This example has been used previously [BJPV11], to illustrate
why the original psi-calculi needs channel equivalence in all three of the In, Out and Com
rules. Up to scope extension P | Q is equivalent to

(νx, y)(x | LxM | y | LyM)
in which a communication between x and y is clearly possible, because x and y are connected
in the environment {x, y}. Hence a communication must also be possible in P | Q. But the
two processes share no free names that can be used as communication subjects; P cannot
do an output action with subject x because x is bound, and similarly, Q cannot do an input
with subject y. The only available option is for each of P and Q to derive transitions labelled
with the other’s prefix:

Scope

Par-L

Out
{x, y} ` x .→ y

{x, y} � x
y−→
x

0

{y} � x | LxM y−→
x

0 | LxM

{y} � P
y−−−→

(νx)x
(νx)(0 | LxM)

Scope

Par-L

In
{x, y} ` x .→ y

{x, y} � y
x−→
y

0

{x} � y | LyM x−→
y

0 | LyM

{x} � Q
x−−−→

(νy)y
(νy)(0 | LyM)

In the original psi-calculi—where the exact same input and output transitions can be
derived, but without the provenance annotations—it is clear that without the extra channel
equivalence check in the Com-Old rule, we could not derive a communication between P
and Q.

With our provenance semantics the Com rule applies immediately. Note that we have
F(P ) = (νx){x} and F(Q) = (νy){y}, and that P ’s transition matches Q’s provenance and
vice versa:

Com

{y} � P
y−−−→

(νx)x
(νx)(0 | LxM) {x} � Q

x−−−→
(νy)y

(νy)(0 | LyM)

{} � P | Q τ−→
⊥

(νx)(0 | LxM) | (νy)(0 | LyM)

Example 2.10. This example is intended to illustrate how and why we maintain the
invariant that frame and provenance binders coincide, and why it matters that they coincide
in the Com rule. To this end, we will consider the process P | Q, where P and Q are defined
as follows

P = (νx)((νy)LΨP M | !(νz)x z) Q = (νab)(a(λc)c.R | b(λc)c.S | LΨQM)

and where the composition ΨP ⊗ΨQ entails the connectivity judgements x
.→ a and y

.→ b,
but not x

.→ b or y
.→ a. We also assume x, y#ΨQ and a, b#ΨP . Concretely, this can be

realised by e.g. extending the setup from Example 2.9 to use a pair of sets instead of a single
set, and letting connectivity be membership in the same set.

Let us focus on how we can derive a communication between the subjects x and a.
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We have that F(P ) = (νxy)ΨP and F(Q) = (νab)ΨQ. In the environment ΨP , we have
the following derivation of an input transition from Q:

Scope ×2

Par-L

In
ΨP ⊗ΨQ ` x

.→ a

ΨP ⊗ΨQ � a(λc)c.R
x z−−→
a

R[c :=z]

ΨP � a(λc)c.R | b(λc)c.S | LΨQM
x z−−→
a

R[c :=z] | b(λc)c.S | LΨQM

ΨP � Q
x z−−−−−→

(νa,b;ε)a
(νab)(R[c :=z] | b(λc)c.S | LΨQM)

The corresponding output transition in Q is derived as follows:

Scope

Par-R

Rep

Par-L

Open

Out
ΨP ⊗ΨQ ` x

.→ a

ΨP ⊗ΨQ � x z
az−→
x

0

ΨP ⊗ΨQ � (νz)x z
a(νz)z−−−−→
(νz;ε)x

0

ΨP ⊗ΨQ � (νz)x z | !(νz)x z a(νz)z−−−−→
(νz;ε)x

0 | !(νz)x z

ΨP ⊗ΨQ� !(νz)x z
a(νz)z−−−−→
(νε;z)x

0 | !(νz)x z

ΨQ � (νy)LΨP M | !(νz)x z a(νz)z−−−−→
(νy;z)x

(νy)LΨP M | 0 | !(νz)x z

ΨQ � P
a(νz)z−−−−−→

(νx,y;z)x
(νx)((νy)LΨP M | 0 | !(νz)x z)

In the derivation above, notice how the provenance evolves throughout the derivation to
maintain the correspondence between the outer provenance binders and the frame binders.
Two rule applications are particularly noteworthy. First, the Rep rule pushes z from the
outer binders to the inner binders, because binders underneath the replication operator are
not considered part of the frame (cf. Definition 2.5). Second, the Par-R rule adds y, the
frame binder of the leftmost parallel component, to the outer binders.

Because both derivations have matching provenances and subjects, and the frame binders
and provenance binders used are the same, the Com rule allows a derivation as follows:

Com

ΨQ � P
a(νz)z−−−−−→

(νx,y;z)x
. . . ΨP � Q

x z−−−−−→
(νa,b;ε)a

. . .

1 � P | Q τ−→
⊥

(νz)(. . . | . . . )

In order for this rule to be sound, it is important that the frame binders of F(P ), and the
provenance binders of the transition from P , have the same ordering. To see this, suppose
we have a version of the Com rule which allows transitions to be derived when frame and
provenance binders are equal up to reordering. Call this alternative rule Com’. We will now
argue that Com’ is unsound, because we lose the ability to distinguish synchronisations
between x and a from synchronisations between x and b.
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First, note that since we identify frames up to alpha, we have F(P ) = (νyx)((x y) ·ΨP ).
By equivariance of ` and

.→ we have

((x y) ·ΨP )⊗ΨQ ` x
.→ b ((x y) ·ΨP )⊗ΨQ ` y

.→ a

In this permuted frame, we can derive an input where b receives from x:

(x y) ·ΨP � Q
x z−−−−−→

(νa,b;ε)b
(νab)(a(λc)c.R | S[c :=z] | LΨQM)

Since we identify provenances up to alpha, we also have

(x y) ·ΨP � Q
x z−−−−−→

(νb,a;ε)a
(νab)(a(λc)c.R | S[c :=z] | LΨQM)

Using this transition, and the same derivation of a transition from P as above, we can
now apply Com’ to derive a synchronisation between x and b, despite the fact that x and b
are not connected:

Com’

ΨQ � P
a(νz)z−−−−−→

(νx,y;z)x
. . . (x y) ·ΨP � Q

x z−−−−−→
(νb,a;ε)a

. . .

1 � P | Q τ−→
⊥

(νz)(. . . | . . . )

If we push all binders in P | Q to the top level, no such derivation is possible. Thus
scope extension fails to hold with Com’.

With Com, the existence of this alternative transition from Q is unproblematic: it
cannot synchronise with any transition from P unless that transition too uses the permuted
frame.

With the same counterexample, we can also see why it is important that the provenance
retains all of the frame binders, even the vacuous ones: the provenances (νx)x and (νy)y
are equal, so the provenance would contain no information about which prefix the transition
originates from.

3. Meta-theory

In this section, we will derive the standard algebraic and congruence laws of strong and
weak bisimulation, develop an alternative formulation of strong bisimulation in terms of
a reduction relation and barbed congruence, and show that our extension of psi-calculi is
conservative.

3.1. Strong bisimulation. We write Ψ � P
α−→ P ′ as shorthand for ∃π. Ψ � P

α−→
π

P ′.

Bisimulation is then defined exactly as in the original psi-calculi:

Definition 3.1 (Strong bisimulation). A symmetric relation R ⊆ A ×P ×P is a strong
bisimulation iff for every (Ψ, P,Q) ∈ R
(1) Ψ⊗F(P ) ' Ψ⊗F(Q) (static equivalence)
(2) ∀Ψ′.(Ψ⊗Ψ′, P,Q) ∈ R (extension of arbitrary assertion)

(3) If Ψ � P
α−→ P ′ and bn(α)#Ψ, Q, then there exists Q′ such that Ψ � Q

α−→ Q′ and
(Ψ, P ′, Q′) ∈ R (simulation)
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We let bisimilarity
.∼ be the largest bisimulation. We write P

.∼Ψ Q to mean (Ψ, P,Q) ∈
.∼, and P

.∼ Q for P
.∼1 Q.

Clause 3 is the same as for pi-calculus bisimulation. Clause 1 requires that two bisimilar
processes expose statically equivalent assertion environments. Clause 2 states that if two
processes are bisimilar in an environment, they must be bisimilar in every extension of that
environment. Without this clause, bisimulation is not preserved by parallel composition.

This definition might raise some red flags for the experienced concurrency theorist. We
allow the matching transition from Q to have any provenance, irrespective of what P ’s
provenance is. Hence the Com rule uses information that is ignored for the purposes of
bisimulation, which in most cases would result in a bisimilarity that is not preserved by the
parallel operator.

Before showing that bisimilarity is nonetheless compositional, we will argue that bisim-
ilarity would be too strong if Clause 4 required transitions with matching provenances.
Consider two distinct terms M,N that are connected to the same channels; that is, for all
Ψ,K we have Ψ `M .→ K iff Ψ ` N .→ K. We would expect M.0 and N .0 to be bisimilar
because they offer the same interaction possibilities. With our definition, they are. But
if bisimulation cared about provenance they would be distinguished, because transitions
originating from M.0 will have provenance M while those from N .0 will have N .

The key intuition is that what matters is not which provenance a transition has, but
which channels the provenance is connected to. The latter is preserved by Clause 3, as this
key technical lemma hints at:

Lemma 3.2. (Find connected provenance)

(1) If Ψ � P
M N−−−→
π

P ′ and C is a finitely supported nominal set, then there exists

b̃P ,ΨP , x̃,K such that F(P ) = (νb̃P )ΨP and π = (νb̃P ; x̃)K and b̃P#Ψ, P,M,N, P ′, C, x̃
and x̃#Ψ, P,N, P ′, C and Ψ⊗ΨP `M

.→ K.
(2) A similar property for output transitions (elided).

Proof. Formally proven in Isabelle, by a routine induction.

In words, the provenance of a transition is always connected to its subject, and the frame
binders can always be chosen sufficiently fresh for any context. This simplifies the proof that
bisimilarity is preserved by parallel: in the original psi-calculi, one of the more challenging
aspects of this proof is finding sufficiently fresh subjects to use in the Com-Old rule,
and then using associativity and symmetry to connect them (cf. [BJPV11, Lemma 5.11]).
By Lemma 3.2 we already have a sufficiently fresh subject: our communication partner’s
provenance.

Theorem 3.3 (Congruence properties of strong bisimulation).

(1) P
.∼Ψ Q ⇒ P | R .∼Ψ Q | R

(2) P
.∼Ψ Q ⇒ (νx)P

.∼Ψ (νx)Q if x#Ψ
(3) PG

.∼Ψ QG ⇒ !PG
.∼Ψ !QG

(4) ∀i.Pi
.∼Ψ Qi ⇒ case ϕ̃ : P̃

.∼Ψ case ϕ̃ : Q̃ if P̃ , Q̃ are assertion-guarded
(5) P

.∼Ψ Q ⇒ M N.P
.∼Ψ M N.Q

Proof. Formally proven in Isabelle. All proofs are by coinduction. The most interesting
cases are parallel and replication, where Lemma 3.2 features prominently. We briefly outline
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a Com subcase of the replication case, where the candidate relation is

{(Ψ, R | !P,R | !Q).P
.∼Ψ Q ∧ P,Q are assertion guarded}

Suppose P
.∼ Q and that !P derives a τ transition from communication between two unfolded

copies of P , with input subject M and output subject K. We need to mimic the same
communication between two copies of Q, but after using P

.∼Ψ Q to obtain a matching
input transition, the subject M is not useful to derive a communication since it is P ’s
provenance, not Q’s. However, we can obtain eligible subjects M ′,K ′ by repeatedly applying
Lemma 3.2.

In Theorem 3.3.4, Pi is the i:th element of P̃ , and similarly for Qi. The index variable i

ranges over the length of the sequences ϕ̃, P̃ , Q̃, which we assume are equal.

Theorem 3.4 (Algebraic laws of strong bisimulation).

(1) P
.∼Ψ P | 0

(2) P | (Q | R)
.∼Ψ (P | Q) | R

(3) P | Q .∼Ψ Q | P
(4) (νa)0

.∼Ψ 0
(5) P | (νa)Q

.∼Ψ (νa)(P | Q) if a#P
(6) M N.(νa)P

.∼Ψ (νa)M N.P if a#M,N
(7) M(λx̃)N.(νa)P

.∼Ψ (νa)M(λx̃)N.P if a#x̃,M,N
(8) !P

.∼Ψ P | !P
(9) case ϕ̃ : (̃νa)P

.∼Ψ (νa)case ϕ̃ : P̃ if a#ϕ̃
(10) (νa)(νb)P

.∼Ψ (νb)(νa)P

Proof. Formally proven in Isabelle. All proofs are by coinduction.

Note that bisimilarity is not preserved by input, for the same reasons as the pi-calculus.
As in the pi-calculus, we can define bisimulation congruence as the substitution closure of
bisimilarity, and thus obtain a true congruence which satisfies all the algebraic laws above.
We have verified this in Nominal Isabelle, following [BJPV11].

3.2. Weak bisimulation. We have also proved the standard algebraic and congruence
properties of weak bisimulation. The results in this section were established for the original
psi-calculi by Johansson et al. [JBPV10]; our contribution is to lift them to psi-calculi
without channel symmetry and transitivity. As for strong bisimulation, it turns out that
we may disregard provenances for the purposes of weak bisimulation, so we can reuse the
original definitions verbatim.

The definition of weak bisimulation is technically complicated in psi-calculi because of
the delicate interplay between assertions and reductions. For example, in the pi-calculus
weak bisimulation equates P and τ.P , but in psi-calculi this equation cannot be admitted:
P may contain top-level assertions that disable interaction possibilities in parallel processes.
Hence there may be situations where an observable action originating from Q is available in
Q | τ.P (where P has not yet disabled it) but unavailable in Q | P .

For a comprehensive motivation of the definitions, we refer to Johansson et al. [JBPV10];
below we restate the pertinent definitions for completeness.

Definition 3.5 (Weak transitions). Ψ � P ==⇒ P ′ means that either P = P ′ or there

exists P ′′ such that Ψ � P
τ−→ P ′′ and Ψ � P ′′ ==⇒ P ′. We write Ψ � P

α
==⇒ P ′
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to mean that there exists P ′′, P ′′′ such that Ψ � P ==⇒ P ′′ and Ψ � P ′′
α−→ P ′′′ and

Ψ � P ′′′ ==⇒ P ′.

Definition 3.6. P statically implies Q in the environment Ψ, written P ≤Ψ Q, if

∀ϕ. Ψ⊗F(P ) ` ϕ ⇒ Ψ⊗F(Q) ` ϕ
If Ψ = 1 we may write P ≤ Q.

Definition 3.7 (Weak bisimulation). A weak bisimulation R is a ternary relation between
assertions and pairs of agents such that R(Ψ, P,Q) implies all of

(1) Weak static implication:

∀Ψ′∃Q′′, Q′.
Ψ � Q ==⇒ Q′′ ∧ P ≤Ψ Q′′ ∧
Ψ⊗Ψ′ � Q′′ ==⇒ Q′ ∧ R(Ψ⊗Ψ′, P,Q′)

(2) Symmetry: R(Ψ, Q, P )
(3) Extension of arbitrary assertion:
∀Ψ′. R(Ψ⊗Ψ′, P,Q)

(4) Weak simulation: for all α, P ′ such that bn(α)#Ψ, Q and Ψ � P
α−→ P ′ it holds

if α = τ : ∃Q′. Ψ � Q ==⇒ Q′ ∧ R(Ψ, P ′, Q′)
if α 6= τ : ∀Ψ′∃Q′′, Q′′′.

Ψ � Q ==⇒ Q′′′ ∧ P ≤Ψ Q′′′ ∧
Ψ � Q′′′

α−→ Q′′ ∧
∃Q′. Ψ⊗Ψ′ � Q′′ ==⇒ Q′ ∧ R(Ψ⊗Ψ′, P ′, Q′)

We define P
.
≈Ψ Q to mean that there exists a weak bisimulation R such that R(Ψ, P,Q)

and write P
.
≈ Q for P

.
≈1 Q.

Weak bisimulation thus defined includes strong bisimulation, and thus satisfies all the
usual structural laws. It is not preserved by case and input, for the same reasons as + and
input do not preserve weak bisimulation in the pi-calculus. We employ the standard solution
to obtain a congruence: all initial τ steps must be simulated by at least one τ step, and we
furthermore close the relation under all substitutions.

Definition 3.8 (Weak congruence). P and Q are weakly τ -bisimilar, written Ψ � P
.
≈
tau

Q,

if P
.
≈Ψ Q and the following holds: for all P ′ such that Ψ � P

τ−→ P ′ there exists Q′ such

that Ψ � Q
τ

==⇒ Q′ ∧ P ′
.
≈Ψ Q′, and similarly with the roles of P and Q exchanged. We

define P ≈ Q to mean that for all Ψ, and for all well-formed substitution sequences σ̃, it
holds that Ψ � Pσ̃

.
≈
tau

Qσ̃.

The following theorems have been formally proven in Nominal Isabelle:

Theorem 3.9.
.
≈
tau

satisfies all the algebraic laws of
.∼ established in Theorem 3.4.

Proof. Formally proven in Isabelle. The proof relies on the fact that
.∼ ⊆

.
≈, which we show

by coinduction, using
.∼ as a candidate relation.
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Theorem 3.10.
.
≈ satisfies all the congruence properties of

.∼ established in Theorem 3.3
except 3.3.4.

Proof. Formally proven in Isabelle, by coinduction.

Theorem 3.11. Weak congruence ≈ is a congruence wrt. all operators of psi-calculi.

Proof. Formally proven in Isabelle, using Theorem 3.10 where applicable.

3.3. Motivating the design. We have added provenance annotations to an operational
semantics that had no shortage of annotations and side-conditions to begin with. The end
result may strike the reader as somewhat unparsimonious. Previously, psi-calculi had one
label component—the channel subjects—for keeping track of connectivity. We now have
two; do we really need both? In this section, we will explore the consequences of removing
either channel subjects or provenances from the semantics. The short answer is that while
we can do without either one, the end result is not greater parsimony.

3.3.1. Do we need provenances? The fact that bisimilarity is compositional yet ignores prove-
nances suggests that the semantics could be reformulated without provenance annotations
on labels. To achieve this, what is needed is a side-condition S for the Com rule which,
given an input and an output with subjects M,K, determines if the input transition could
have been derived from prefix K, and vice versa:

ΨQ ⊗Ψ � P
M (νã)N−−−−−→ P ′ ΨP ⊗Ψ � Q

K N−−−→ Q′ S

Ψ � P | Q τ−→ (νã)(P ′ | Q′)
But we already have such an S: the semantics with provenances! So we can let

S = ΨQ ⊗Ψ � P
M(νã)N−−−−−−→
(νb̃P ;x̃)K

P ′ ∧ΨP ⊗Ψ � Q
K N−−−−−−→

(νb̃Q;ỹ)M
Q′

Of course, this definition is not satisfactory: the provenances are still there, just swept under
the carpet. Worse, we significantly complicate the definitions by effectively introducing a
stratified semantics. Thus the interesting question is not whether such an S exists (it does),
but whether S can be formulated in a way that is significantly simpler than the semantics
with provenances. The author believes the answer is negative: S is a property about the
roots of the proof trees used to derive the transitions from P and Q. The provenance records
just enough information about the proof trees to show that M and K are connected; with
no provenances, it is not clear how this information could be obtained without essentially
reconstructing the proof tree.

Another alternative is to use the proof tree itself as the transition label [BC88, DP92].
This makes the necessary information available, at the expense of making labels even more
complicated.
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3.3.2. Do we need channel subjects? While we have chosen to test for channel connectivity
in the In and Out rules, a semantics without channel subjects would defer the connectivity
check until the Com rule.2 Let us call the former approach early connectivity, and the latter
late connectivity. The rules for late connectivity—eliding freshness conditions for readability,
and using ! and ? to distinguish outputs from inputs—would be:

In-Late

Ψ � M(λỹ)N .P
?N [ỹ:=L̃]−−−−−→

M
P [ỹ := L̃]

Out-Late
Ψ � M N .P

!N−→
M

P

Com-Late

Ψ⊗ΨP ⊗ΨQ ` K
.→M

ΨQ ⊗Ψ � P
!(νã)N−−−−−−→

(νb̃P ;x̃)K
P ′ ΨP ⊗Ψ � Q

?N−−−−−−→
(νb̃Q;ỹ)M

Q′

Ψ � P | Q τ−→
⊥

(νã)(P ′ | Q′)
ã#Q

It is pleasant that this formulation allows the In-Late and Out-Late rules to have
no side-conditions. Save for the provenance bookkeeping, all questions of connectivity are
handled entirely in Com-Late, which results in a pleasing separation of concerns. This may
seem more parsimonious at first glance, but it introduces two issues that makes the trade-off
seem unfavourable: more complicated bisimulation and spurious transitions.

(1) More complicated bisimulation. Consider a psi-calculus where channel connectivity is
syntactic equality; that is, where Ψ ` M .→ K holds iff M = K. Fix M,K such that
M 6= K. Using bisimilarity as defined in Definition 3.1, we can show that M.0

.∼ K.0:
without subjects, these processes emit identical labels save for the provenance, which is
ignored by bisimulation. Hence bisimilarity fails to be preserved by the parallel operator:
consider these processes in parallel with a process that can receive on M . Then M.0
can communicate but K.0 cannot.

The takeaway is that with late connectivity, a compositional notion of bisimulation
needs to be more careful with which provenance the mimicking transition may use. The
intuition is that rather than admitting any provenance, we admit provenances that are
connected to the same channels. We conjecture that the necessary adaptation is:

Definition 3.12 (Late-connectivity bisimulation). A symmetric relation R ⊆ A×P×P
is a channel-free bisimulation iff for every (Ψ, P,Q) ∈ R
(a) Ψ⊗F(P ) ' Ψ⊗F(Q) (static equivalence)
(b) ∀Ψ′.(Ψ⊗Ψ′, P,Q) ∈ R (extension of arbitrary assertion)

(c) If Ψ � P
α−→
π

P ′ and bn(α)#Ψ, Q, then

(i) If α = τ then there exists Q′ such that Ψ � Q
τ−→
⊥

Q′ and (Ψ, P ′, Q′) ∈ R

(ii) For all M,K,N, x̃, b̃P ,ΨP , b̃Q,ΨQ such that α =?N and π = (νb̃P ; x̃)K and

F(P ) = (νb̃P )ΨP and F(Q) = (νb̃Q)ΨQ and b̃P , b̃Q#Ψ, P,Q,M, x̃ and x̃#Ψ

2This is similar to a design first proposed by Magnus Johansson in an unpublished draft. Johansson’s
design does not use provenances, but obtains a similar effect by including bound subjects and bound assertions
in labels. By partitioning provenance binders in two sequences, we can recover frame binders from labels and
thus found no need to include bound assertions.
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and Ψ ⊗ ΨP ` M
.→ K, then there exists ỹ, K ′, Q′ such that ỹ#Ψ and

Ψ⊗ΨQ `M
.→ K ′ and Ψ � Q

?N−−−−−−→
(νb̃Q;ỹ)K′

Q′ and (Ψ, P ′, Q′) ∈ R

(iii) (A similar clause for output transitions)

In words, for every channel M that the transition from P ’s provenance is connected
to, there must be a transition from Q with a provenance that is also connected to M .
Note that static equivalence is not sufficient to imply preservation of connectivity: the
conditions may be distinct, and even if equal may be obscured by the frame binders.

We find this definition of bisimulation intolerably ad-hoc and complicated.
(2) Spurious transitions. Consider the representation of the π-calculus in psi-calculi, where

T = N , and where channel connectivity is syntactic equality on names. This representa-
tion is in one-to-one transition correspondence with the standard presentation of the
π-calculus [Joh10], but if we use late connectivity, one-to-one transition correspondence
is lost. The pi-calculus process (νx)xy should not have any outgoing transitions, but
late connectivity semantics allows the derivation of a transition as follows:

Scope-Late

Out-Late
Ψ � xy

!y−→
x

0

Ψ � (νx)xy
!y−−−→

(νx)x
(νx)0

The existence of this transition is more of a blemish than a real problem. It cannot be
used to derive a communication because there exists no y such that x 6= y and x

.→ y. It
will be ignored by late-connectivity bisimulation (Definition 3.12) for the same reason, so
it remains true that (νx)xy

.∼ 0. Still, we maintain the view that a derivable transition
should signify the readiness of the process to engage in some behaviour. This transition
signifies nothing.

3.4. Revisiting the counterexamples. In the introduction, we mentioned that Bengtson
et al. [BJPV11] have counterexamples to the effect that without symmetry and transitivity,
scope extension is unsound. In this section we will revisit these counterexamples, with the
aim of convincing the reader that they do not apply to our developments in the present
paper.

We begin by quoting the counterexample used by Bengtson et al. to argue that scope
extension requires channel symmetry [BJPV11, p. 14]:

Consider any psi-calculus where Ψ1 and Ψ2 are such that Ψ1 ⊗Ψ2 ` a
.↔ b

and Ψ1 ⊗Ψ2 ` b
.↔ b. We shall argue that also Ψ1 ⊗Ψ2 ` b

.↔ a must hold,
otherwise scope extension does not hold. Consider the agent

(νa, b)(LΨ1M | LΨ2M | a .0 | b .0)

which has an internal communication τ using b as subjects in the premises
of the Com rule. If b#Ψ1 and a#Ψ2, by scope extension the agent should
behave as

(νa)(LΨ1M | a .0) | (νb)(LΨ2M | b .0)

and therefore this agent must also have a τ action. The left hand component
cannot do an a action, but in the environment of Ψ2 it can do a b action.
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Similarly, the right hand component cannot do a b action. The only possibility
is for it to do an a action, as in

Ψ1 � (νb)(LΨ2M | b .0)
a−→ · · ·

and this requires Ψ1 ⊗Ψ2 ` b
.↔ a.

This counterexample is only valid because the authors were not careful about the orientation
of channel equivalence judgements in the operational rules—understandably so, because
they were designing a calculus with symmetric connectivity. To see this clearly, consider the
preconditions to the rules for input and output in the original psi-calculi:

In-Old
Ψ `M .↔ K

Ψ � M(λỹ)N.P
K N [ỹ:=L̃]−−−−−−−→ P [ỹ := L̃]

Out-Old
Ψ `M .↔ K

Ψ � M N.P
KN−−→ P

Note the inconsistency that in In-Old, the input channel occurs on the LHS of
.↔, whereas in

Out-Old the output channel occurs on the LHS. This of course makes no difference when
.↔

is symmetric, but for an asymmetric connectivity relation it is important to use it consistently,
with the input channel always going on the same side of

.↔. Simply reorienting the channel
equivalence judgement in In-Old suffices to make this counterexample inapplicable even to
the original psi-calculi. This should not be taken to mean that the original psi-calculi do
not require symmetry: we only mean to say that the reason for the symmetry requisite is
not clear from this counterexample.

For transitivity, Bengtson et al. give the following counterexample [BJPV11, p. 14]:

Let 1 entail a
.↔ a for all names a, and let Ψ be an assertion with support

{a, b, c} that additionally entails the two conditions a
.↔ b and b

.↔ c, but
not a

.↔ c, and thus does not satisfy transitivity of channel equivalence. If
Ψ entails no other conditions then (νb)Ψ ' 1, and we expect (νb)LΨM to be
interchangeable with L1M in all contexts. Consider the agent

a .0 | c .0 | (νb)LΨM

By scope extension it should behave precisely as

(νb)(a .0 | c .0 | LΨM)

This agent has a τ -transition since Ψ enables an interaction between the
components a .0 and c .0. But the agent

a .0 | c .0 | L1M

has no such transition. The conclusion is that (νb)Ψ must entail that the
components can communicate, i.e. that a

.↔ c, in other words Ψ ` a .↔ c.

The present author agrees with this reasoning, but reaches the exact opposite conclusion
about which process is at fault: the anomaly here is not that a .0 | c .0 | L1M cannot reduce,
but that (νb)(a .0 | c .0 | LΨM) can. If a and c are not channel equivalent, there should
not be a derivable communication between the channels a and c. The original psi-calculi
nonetheless admit the derivation
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Scope

Par

Com-Old

Out
Ψ ` a .↔ b

Ψ � a .0
b−→ · · ·

In
Ψ ` c .↔ c

Ψ � c .0
c−→ · · · Ψ ` b .↔ c

Ψ � a .0 | c .0 τ−→ · · ·

1 � a .0 | c .0 | LΨM τ−→ · · ·

1 � (νb)(a .0 | c .0 | LΨM) τ−→ · · ·
Notice how we use three different channel equivalence judgements to string together a

derivation via b, which both a and c are connected to. This is not a problem if transitivity
is intended, but leads to absurd derivations if the intention is to allow non-transitive
connectivity relations.

With the provenance semantics, the counterexample does not apply since no commu-
nication between a and c is possible: the only possibility is to apply the Com rule with
matching subjects and provenances. This requires a .0 to have an output transition with
subject c and c .0 to have an input transition with subject a, but such transitions cannot be
derived because a

.↔ c (in our notation a
.→ c) does not hold.

Finally, we observe that a slight variant of the counterexample for transitivity illustrates
the need for symmetry. This time, let Ψ be an assertion with support {a, b, c, d} that entails
the three conditions a

.↔ b and d
.↔ b and c

.↔ d and none other. The agent

a .0 | c .0 | 1
will have no transitions, but this agent will have a τ transition:

(νb, d)(a .0 | c .0 | LΨM)

We conclude by the same reasoning as above that Ψ ` a .↔ c must hold, or in other words,
that channel equivalence must satisfy the law

a
.↔ b ∧ d .↔ b ∧ c .↔ d⇒ a

.↔ c

This awkward-looking algebraic law is weaker than symmetry and transitivity, and together
with reflexivity it implies both. It may well be that this weaker law is sufficient for the
original psi-calculi to be compositional (assuming a channel equivalence reorientation in the
In-Old rule). However, we find it difficult to imagine a useful connectivity relation that
satisfies this law but is neither reflexive, transitive nor symmetric.

3.5. Validation. We have defined semantics and bisimulation, and showed that bisimilarity
satisfies the expected laws. But how do we know that they are the right semantics, and
the right bisimilarity? This section provides two answers to this question. First, we show
that our developments constitute a conservative extension of the original psi-calculi. Second,
we define a reduction semantics and barbed bisimulation that are in agreement with our
(labelled) semantics and (labelled) bisimilarity.

Let−→o and
.∼o denote semantics and bisimilarity as defined by Bengtson et al. [BJPV11],

i.e., without provenances and with the Com-Old rule discussed in Section 2. Along the
same lines, let

.
≈o and

.
≈
tauo

and ≈o denote weak bisimulation, weak τ -bisimilarity and weak

congruence as defined by Johansson et al. [JBPV10]. Then conservativity can be stated as
follows:
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Theorem 3.13 (Conservativity). When
.→ is symmetric and transitive we have

.∼o =
.∼ −→o = −→

.
≈o =

.
≈

.
≈
tauo

=
.
≈
tau

≈o = ≈

Proof. Formally proven in Isabelle. The bulk of the proof is to show that −→o = −→.

The⇐ direction is by induction on the derivation of the −→ judgement, using symmetry
to reorient the connectivity judgement in the In case. In the Com case, associativity and
Lemma 3.2 are used to reconstruct the missing channel equivalence judgement

The ⇒ direction is by induction on the −→o judgement, and is more involved; in
particular, the Com-Old case requires relabelling the transitions obtained from the induction
hypotheses with the provenance of the other.

Our reduction semantics departs from standard designs [BB90, Mil90] by relying on reduction
contexts [FH92] instead of structural rules, for two reasons. First, standard formulations
tend to include rules like these:

P −→ P ′

P | Q −→ P ′ | Q α.P +Q | α.R+ S −→ P | R
A parallel rule like the above would be unsound because Q might contain assertions that
retract some conditions needed to derive P ’s reduction. The reduction axiom assumes
prefix-guarded choice. We want our semantics to apply to the full calculus, without limiting
the syntax to prefix-guarded case statements.

But first, a few auxiliary definitions. The reduction contexts are the contexts in which
communicating processes may occur:

Definition 3.14 (Reduction contexts). The reduction contexts, ranged over by C, are
generated by the grammar

C := PG (process)
[ ] (hole)
C | C (parallel)

case ϕ̃ : P̃G [] ϕ′ : C [] ϕ̃′′ : Q̃G (case)

Let H(C) denote the number of holes in C. C[P̃G] denotes the process that results from

filling each hole of C with the corresponding element of P̃G, where holes are numbered from

left to right; if H(C) 6= |P̃G|, C[P̃G] is undefined.

We do not need restriction contexts—instead, we rely on structural rules to pull all
restrictions to the top level. To this end, we let structural congruence ≡ be the smallest
equivalence relation on processes derivable using Theorems 3.3 and 3.4. The conditions
conds(C) and parallel processes ppr(C) of a context C are, respectively, the conditions in C
that guard the holes, and the processes of C that are parallel to the holes:
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Struct
P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′
Scope

P −→ Q

(νa)P −→ (νa)Q

Ctxt
Ψ̃ `M .→ N K = L[x̃ := T̃ ] ∀ϕ ∈ conds(C). Ψ̃ ` ϕ

L̃ΨM | C[M K.P, N(λx̃)L.Q] −→ L̃ΨM | P | Q[x̃ := T̃ ] | ppr(C)

Table 2: Reduction semantics. Here Ψ̃ abbreviates the composition Ψ1 ⊗Ψ2 ⊗ . . . , and L̃ΨM
abbreviates the parallel composition LΨ1M | LΨ2M | . . .—for empty sequences they
are taken to be 1 and 0 respectively.

ppr(PG) = PG
ppr([ ]) = 0

ppr(C1 | C2) = ppr(C1) | ppr(C2)

ppr(case ϕ̃ : P̃G [] ϕ′ : C [] ϕ̃′′ : Q̃G) = ppr(C)

conds(PG) = ∅
conds([ ]) = ∅

conds(C1 | C2) = conds(C1) ∪ conds(C2)

conds(case ϕ̃ : P̃G [] ϕ′ : C [] ϕ̃′′ : Q̃G) = {ϕ′} ∪ conds(C)

Definition 3.15 (Reduction semantics). The reduction relation −→ ⊆ P × P is defined
inductively by the rules of Table 2.

In words, Ctxt states that if an input and output prefix occur in a reduction context,
we may derive a reduction if the following holds: the prefixes are connected in the current
assertion environment, the message matches the input pattern, and all conditions guarding
the prefixes are entailed by the environment. The ppr(C) in the reduct makes sure any
processes in parallel to the holes are preserved.

Note that even though an unrestricted parallel rule would be unsound in a psi-calculus
with non-monotonic composition, the following is valid as a derived rule:

P −→ P ′

P | QG −→ P ′ | QG

Theorem 3.16. P −→ P ′ iff there is P ′′ such that 1 � P
τ−→ P ′′ and P ′′ ≡ P ′

Proof. A full proof is available in the technical report [ÅP19b]. The ⇐ direction is by

induction on the derivation of P −→ P ′. The ⇒ direction is via reduction to normal form,
showing that for every process P there are x̃,Ψ, PG such that

P ≡ (νx̃)(L̃ΨM | PG)

For barbed bisimulation, we need to define what the observables are, and what contexts
an observer may use. We follow previous work by Johansson et al. [JBPV10] on weak barbed
bisimilarity for the original psi-calculi on both counts. First, we take the barbs to be the
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output labels a process can exhibit: we define P ↓M(νã)N (P exposes M(νã)N) to mean

∃P ′. 1 � P
M(νã)N−−−−−→ P ′. We write P ↓M for ∃ã, N.P ↓M(νã)N , and P ⇓α for P

τ−→
∗
↓α.

Second, we let observers use static contexts, i.e. ones built from parallel and restriction.

Definition 3.17 (Barbed bisimilarity). Barbed bisimilarity, written
.∼

barb
, is the largest

equivalence on processes such that P
.∼

barb
Q implies

(1) If P ↓M(νã)N and ã#Q then Q ↓M(νã)N (barb similarity)

(2) If P −→ P ′ then there exists Q′ such that Q −→ Q′ and P ′
.∼

barb
Q′ (reduction

simulation)
(3) (νã)(P | R)

.∼
barb

(νã)(Q | R) (closure under static contexts)

Our proof that barbed and labelled bisimilarity coincides only considers psi-calculi with
a certain minimum of sanity and expressiveness. This rules out some degenerate cases:
psi-calculi where there are messages that can be sent but not received,3, and psi-calculi
where no transitions whatsoever are possible.

Definition 3.18. A psi-calculus is observational if:

(1) For all P there are MP ,KP such that F(P ) `MP
.→ KP and not P ⇓Kp

.

(2) If N = (x̃ ỹ) ·M and ỹ#M and x̃, ỹ are distinct then M [x̃ := ỹ] = N .

The first clause means that no process can exhaust the set of barbs. Hence observing
contexts can signal success or failure without interference from the process under observation.
For example, in the pi-calculus MP ,KP can be any name x such that x#P . The second
clause states that for swapping of distinct names, substitution and permutation have the
same behaviour. Any standard definition of simultaneous substitution should satisfy this
requirement. These assumptions are present, explicitly or implicitly, in the work of Johansson
et al. [JBPV10]. Ours are given a slightly weaker formulation.

We can now state the main result of this section:

Theorem 3.19. In all observational psi-calculi, P
.∼

barb
Q iff P

.∼1 Q.

Proof. A full proof is available in the technical report [ÅP19b]. Soundness is by coinduction
on the definition of barbed bisimilarity, using

.∼1 as candidate relation, and using Theo-
rems 3.16 and 3.3, and the fact that ≡ is a strong bisimulation. Completeness is by showing
that {(Ψ, P,Q) : P | LΨM .∼

barb
Q | LΨM} is a bisimulation relation.

4. Expressiveness

In this section, we study two examples of the expressiveness gained by dropping symmetry
and transitivity.

3More precisely, we refer to messages that can occur as objects of output transitions, but not as the
objects of input transitions. This can happen in psi-calculi where the substitution function on terms is not
surjective, because the rule In requires the message to be the result of a substitution.
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4.1. Pi-calculus with preorders. Recall that pi-F [WG05] extends the pi-calculus with
name equalities (x = y) as first-class processes. Communication in pi-F gives rise to equalities
rather than substitutions, so e.g. xy.P | xz.Q reduces to y = z | P | Q: the input and
output objects are fused. Hirschkoff et al. [HMS13] observe that fusion and subtyping are
fundamentally incompatible, and propose a generalisation of pi-F called the pi-calculus with
preorders or πP to resolve the issue.

We are interested in πP because its channel connectivity is not transitive. The equalities
of pi-F are replaced with arcs a/b (“a is above b”) which act as one-way fusions: anything
that can be done with b can be done with a, but not the other way around. The effect of
a communication is to create an arc with the output subject above the input subject, so
x(y).P | x(z).Q reduces to (νyz)(z/y | P | Q). We write A ` x ≺ y to mean that x and y
are related by the reflexive and transitive closure of the set of arcs A. A is usually the set
of top-level arcs in the process under consideration, and will often be left implicit. Two
names x, y are considered joinable for the purposes of synchronisation if some name z is
above both of them: formally, we write xg y for ∃z.x ≺ z ∧ y ≺ z.

Hirschkoff et al. conclude by saying that “[it] could also be interesting to study the
representation of πP into Psi-calculi. This may not be immediate because the latter make
use of on an equivalence relation on channels, while the former uses a preorder” [HMS13,
p. 387]. Having lifted the constraint that channels form an equivalence relation, we happily
accept the challenge. We write ΨP for the psi-calculus we use to embed πP . We follow
the presentation of πP from [HMX15a, HMX15b], where the behavioural theory is most
developed.

Definition 4.1. The psi-calculus ΨP is defined with the following parameters:

T , N
C , {x ≺ y : x, y ∈ N} ∪ {xg y : x, y ∈ N}
A , Pfin({x ≺ y : x, y ∈ N})
1 , {}
⊗ , ∪
.→ , g
` , the relation denoted ` in [HMX15b].

The prefix operators of πP are different from those of psi-calculi: objects are always bound,
communication gives rise to an arc rather than a substitution, and a conditional silent prefix
[ϕ]τ.P is included. The full syntax, ignoring protected prefixes, is as follows:4

Definition 4.2 (Syntax of πP ).

P := a/b (arc)
Σi∈Iπi.Pi (prefix-guarded choice)
P | Q (parallel)
(νx)P (restriction)

π := a(x) (input)
a(y) (output)
[ϕ]τ (conditional silent prefix)

ϕ := x ≺ y
xg y

4We ignore protected prefixes because they are redundant, cf. Remark 1 of [HMX15a].
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Here I is a finite index set.

We can now define our encoding of πP prefixes:

Definition 4.3 (Encoding of prefixes). The encoding J K from πP to ΨP is homomorphic
on all operators except prefixes and arcs, where it is defined by

Ja/bK = Lb ≺ aM
Ja(y).P K = (νxy)(ax.(Lx ≺ yM | JP K) where x#y, P
Ja(y).P K = (νy)(a(λx)x.(Ly ≺ xM | JP K)) where x#y, P
J[ϕ]τ.P K = case ϕ : (νx)(x(λx)x.0 | xx.JP K) where x#P

For choice, we let JΣi∈IPiK = case ϕ̃ : J̃P K, where each ϕi is a condition that is always
entailed.5

This embedding of πP in psi-calculi comes with a notion of bisimilarity per Definition 3.1.
We show that it coincides with the labelled bisimilarity for πP (written ∼) introduced
in [HMX15a, HMX15b].

Theorem 4.4. P ∼ Q iff JP K .∼ JQK

Proof. A full proof is available in the technical report [ÅP19b]. We prove strong operational
correspondence by a tedious induction, then prove (respectively) that {(P,Q).JP K .∼1 JQK}
is a bisimulation, and that {(Ψ, JP K, JQK).P | Ψ ∼ Q | Ψ} is a bisimulation up to

.∼.

Thus our encoding validates the behavioural theory of πP by connecting it to our fully
mechanised proofs, while also showing that a substantially different design of the LTS yields
the same bisimilarity. We will briefly compare these designs. While we do rewriting of
subjects in the prefix rules, Hirschkoff et al. instead use relabelling rules like this one (mildly
edited to match our notation):

P
a(x)−−→ P ′ F(P ) ` a ≺ b

P
b(x)−−→ P ′

An advantage of this rule is that it allows input and output labels to be as simple as
pi-calculus labels. A comparative disadvantage is that it is not syntax-directed, and that
the LTS has more rules in total. Note that this rule would not be a viable alternative
to provenances in psi-calculi: since it can be applied more than once in a derivation, its
inclusion assumes that the channels form a preorder wrt. connectivity.

πP also has labels [ϕ]τ , meaning that a silent transition is allowed in environments
where ϕ is true. A rule for rewriting ϕ to a weaker condition, similar to the above rule for
subject rewriting, is included. Psi-calculi does not need this because the Par rules take the

assertion environment into account. πP transitions of kind P
[ϕ]τ−−→ P ′ correspond to ΨP

transitions of kind {ϕ} � P
τ−→ P ′.

Interestingly, the analogous full abstraction result fails to hold for the embedding of pi-F
in psi-calculi by Bengtson et al. [BJPV11], because outputs that emit distinct but fused
names are distinguished by psi-calculus bisimilarity. This issue does not arise here because
πP objects are always bound; however, we believe the encoding of Bengtson et al. can be

5Such a condition can either be added to the target language, or we can use e.g. a ≺ a at the cost of some
technical inconvenience. See the technical report for details.
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made fully abstract by encoding free output with bound output, exploiting the pi-F law
a y.Q ∼ a(x)(Q | x = y).

4.2. Mixed choice. This section will argue that because we allow non-transitive channel
connectivity, the case operator of psi-calculi becomes superfluous. The formal results here
will focus on encoding the special case of mixed choice. We will then briefly discuss how to
generalise these results to the full case operator.

Choice, written P + Q, is a process that behaves as either P or Q. In psi-calculi
we consider P + Q to abbreviate case > : P [] > : Q for some condition > that is always
entailed. Mixed choice means that in P +Q, P and Q must be prefix-guarded. In particular,
mixed choice allows choice between an input and an output. There is a straightforward
generalisation to n-ary sums that, in order to simplify the presentation, we will not consider
here.

Fix a psi-calculus P = (T,A,C,`,⊗,1, .→) with mixed choice. This will be our source
language. For technical convenience we assume that P satisfies the equation 1σ = 1 for all
substitutions σ; see the associated technical report [ÅP19b] for a discussion on how this
assumption can be lifted. We will construct a target psi-calculus and an encoding such that
the target terms make no use of the case operator. The target language E(P) adds to T the
ability to tag a term M with a name x; we write Mx for the tagged term. We write αx for
tagging the subject of the prefix α with x. Tags are used to uniquely identify which choice
statement a prefix is a summand of. As the assertions of E(P) we use A× Pfin(N ), where
Pfin(N ) are the disabled tags.

Definition 4.5 (Target language). Let P = (T,A,C,`,⊗,1, .→) be a psi-calculus. Then
E(P) = (TE ,AE ,CE ,`E ,⊗E ,1E ,

.→E) is a psi-calculus whose components are as follows:

TE = T ] {Mx : x ∈ N ,M ∈ TE}
AE = A× Pfin(N )
CE = C ] {M .→ N : M,N ∈ T} ] N

(Ψ,N)⊗E (Ψ′,N′) = (Ψ⊗Ψ′,N ∪N′)
1E = (1, ∅)

(Ψ,N) `E ϕ if ϕ ∈ C and Ψ ` ϕ
(Ψ,N) `E x if x ∈ N and x ∈ N
(Ψ,N) `E Mx

.→ Ny if Ψ `M .→ N and x 6= y and x, y /∈ N
(Ψ,N) `E Mx

.→ N if Ψ `M .→ N and x /∈ N
(Ψ,N) `E M

.→ Nx if Ψ `M .→ N and x /∈ N

We assume that the target language is constrained by a sorting system as in [BGP+13]
that ensures only terms M ∈ T can ever occur as objects of communication, and in particular,

that for all substitutions [x̃ := T̃ ], T̃ ⊆ T. The purpose of this simplification is to avoid
having to consider input transitions such as

Ψ � M(λx̃)N.P
K Kx−−−→ P ′

that may result in substitutions where tagged terms must be substituted into source-language
terms or vice versa. It is possible to lift this assumption at the cost of significant technical
inconvenience [ÅP19b].



Vol. 16:4 PSI-CALCULI REVISITED: CONNECTIVITY AND COMPOSITIONALITY 16:25

The encoding J K from P to E(P) is homomorphic on all operators except assertion and
choice, where it is defined as follows:

JLΨMK = L(Ψ, ∅)M Jα.P + β.QK = (νx)(αx.(JP K | L(1, {x})M) | βx.(JQK | L(1, {x})M))
where x#α, β, P,Q. If we disregard the tag x, we see that the encoding simply offers up
both summands in parallel. This clearly allows all behaviours of α.P + β.Q, but there are
two additional behaviours we must prevent: (1) communication between the summands,
and (2) lingering summands firing after the other branch has already been taken. The
tagging mechanism prevents both, as a consequence of how we define channel equivalence
on tagged terms in E(P): tagged channels are connected if the underlying channel is
connected. To prevent (1), Definition 4.5 requires the tags of connected channels to be
different, and to prevent (2) the definition requires that the tags are not disabled. Note that
this channel connectivity is not transitive, not reflexive, and not monotonic wrt. assertion
composition—not even if the source language connectivity is.

Example 4.6. We illustrate the operational behaviour of the encoding for the process
R = α.P + β.Q. Its encoding is

JRK = (νx)(αx.(JP K | L(1, {x})M) | βx.(JQK | L(1, {x})M))
where x is a fresh name. Suppose α is an output prefix with subject M , and that channel

connectivity is reflexive. Then we can derive the transition R
α−→ P . The corresponding

derivation from JRK uses the connectivity judgement Mx
.→ M in the Out rule to derive

the following transition:

JRK α−→ (νx)(JP K | S)

where
S = L(1, {x})M | bx.(JQK | L(1, {x})M)

Since x is fresh in JP K, by scope extension we have (νx)(JP K | S)
.∼ JP K | (νx)S. Moreover,

we have (νx)S
.∼ 0. To see why, note first that (νx)S has no outgoing transitions: its only

prefix has the tag x, which is disabled by its top-level assertion L(1, {x})M. Second, note that
since this disabled tag is a local name, its disabling has no effect on the environment.

Theorem 4.7 (Correctness of choice encoding).

(1) If Ψ � P
α−→ P ′ then there is P ′′ such that (Ψ, ∅) � JP K α−→ P ′′ and P ′′

.∼(Ψ,∅) JP ′K.

(2) If (Ψ, ∅) � JP K α−→ P ′ then there is P ′′ such that Ψ � P
α⊥−−→ P ′′ and P ′

.∼(Ψ,∅) JP ′′K.

(3) P
.∼1 Q iff JP K .∼(1,∅) JQK.

Proof. A full proof is available in the technical report [ÅP19b]. Forward simulation is by

induction on the derivation of Ψ � P
α−→ P ′, backward simulation by structural induction

on P followed by inversion on the derivation of the transition from JP K. Full abstraction is
by showing that

{((Ψ,N), JP K, JQK) : P
.∼(Ψ Q}

and
{(Ψ, P,Q) : JP K .∼(Ψ,∅) JQK}

are bisimulation relations.
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Here α⊥ denotes the label α with all tags removed. It is immediate from Theorem 4.7 and the
definition of J K that our encoding also satisfies the other standard quality criteria [Gor10]:
it is compositional, it is name invariant, and it preserves and reflects barbs and divergence.

In the original psi-calculi, our target language is invalid because of its non-transitive
connectivity. However, if we restrict attention to separate choice (where either both sum-
mands are inputs or both summands are outputs), a slight modification of the scheme above
yields a correct encoding in the context of the original psi-calculi. With separate choice we
can drop the side-condition that tags of connected processes are distinct from Definition 4.5—
the only use of this side-condition is to prevent communication between summands, and
separate choice already prevents this by construction. With this modified definition of

.→E ,
we have that if

.→ is symmetric and transitive, then so is
.→E . Or in other words, if the

source language is expressible in the original psi-calculi then so is the target language.
These results generalise in a straightforward way to mixed case statements

case ϕ1 : α.P [] ϕ2 : β.Q

by additionally tagging terms with a condition, i.e. Mx,ϕ1 , that must be entailed in order
to derive connectivity judgements involving the term. The generalisation to free choice,
i.e. P +Q where P,Q can be anything, is more involved and sacrifices some compositionality.
The idea is to use sequences of tags, representing which branches of which (possibly nested)
case statements a prefix can be found in, and disallowing communication between prefixes
in distinct branches of the same case operator.

5. Conclusion and related work

We have seen how psi-calculi can be conservatively extended to allow asymmetric and
non-transitive communication topologies, sacrificing none of the bisimulation meta-theory.
This confers enough expressiveness to capture a pi-calculus with preorders, and makes mixed
choice a derived operator.

The work of Hirschkoff et al. [HMS13] is closely related in that it uses non-transitive
connectivity; see Section 4.1 for an extensive discussion.

Broadcast psi-calculi [BHJ+15] extend psi-calculi with broadcast communication in
addition to point-to-point communication. There, point-to-point channels must still be
symmetric and transitive, but for broadcast channels this condition is lifted, at the cost
of introducing other side-conditions on how names are used: broadcast prefixes must be
connected via intermediate broadcast channels which have no greater support than either
of the prefixes it connects, precluding language features such as name fusion. We believe
provenances could be used to define a version of broadcast psi-calculi that does not need
this side-condition.

Kouzapas et al. [KGG14] define a similar reduction context semantics for (broadcast)
psi-calculi. Their reduction contexts requires three kinds of numbered holes with complicated
side-conditions on how the holes may be filled; we have attempted to simplify the presentation
by having only one kind of hole. While (weak) barbed congruence for psi-calculi has been
studied before [JBPV10] (see Section 3.5), barbed congruence was defined in terms of the
labelled semantics rather than a reduction semantics, thus weakening its claim to independent
confirmation slightly.

There is a rich literature on choice encodings for the pi-calculus [Gor10, NP00, Pal97,
PN12, PNG13], with many separation and encodability results under different quality
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criteria for different flavours of choice. Encodings typically require complicated protocols
and tradeoffs between quality criteria. Thanks to the greater expressive power of psi-calculi,
our encoding is simpler and satisfies stronger quality criteria than any choice encoding for
the pi-calculus. Closest to ours is the choice encoding of CCS into the DiX calculus by
Busi and Gorrieri [BG94]. DiX introduces a primitive for annotating processes with conflict
sets, that are intended as a generalisation of choice. Processes with overlapping conflict sets
cannot interact, and when a process acts, every process with an overlapping conflict set is
killed. These conflict sets perform the same role in the encoding as our tags do. We believe
the tagging scheme used in our choice encoding also captures DiX-style conflict sets.
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