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Abstract. The classic algorithm of Bodlaender and Kloks [J. Algorithms, 1996] solves the
following problem in linear fixed-parameter time: given a tree decomposition of a graph of
(possibly suboptimal) width k, compute an optimum-width tree decomposition of the graph.
In this work, we prove that this problem can also be solved in mso in the following sense: for
every positive integer k, there is an mso transduction from tree decompositions of width k
to tree decompositions of optimum width. Together with our recent results [LICS 2016],
this implies that for every k there exists an mso transduction which inputs a graph of
treewidth k, and nondeterministically outputs its tree decomposition of optimum width.
We also show that mso transductions can be implemented in linear fixed-parameter time,
which enables us to derive the algorithmic result of Bodlaender and Kloks as a corollary of
our main result.

1. Introduction

Consider the following problem: given a tree decomposition of a graph of some width k,
possibly suboptimal, we would like to compute an optimum-width tree decomposition of the
graph. A classic algorithm of Bodlaender and Kloks [BK96] solves this problem in linear
fixed-parameter time complexity, where the input width k is the parameter.

Theorem 1.1 (Bodlaender and Kloks, [BK96]). There exists an algorithm that, given a
graph G on n vertices and its tree decomposition of width k, runs in time 2O(k3) · n and
returns a tree decomposition of G of optimum width.

The algorithm of Bodlaender and Kloks applies a dynamic programming procedure
that processes the input decomposition in a bottom-up manner. For every subtree, a set of
partial optimum-width decompositions is computed. The crucial ingredient is a combinatorial
analysis of partial decompositions which shows that only some small subset of them, of size
bounded only by a function of k, needs to be remembered for future computation.
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The central component of this analysis is the notion of typical sequences: a specific normal
form of integer sequences that is used to bound the complexity of partial decompositions useful
for extensions. This notion was independently introduced by Bodlander and Kloks [BK91] and
by Lagergren and Arnborg [LA91] (the latter called them non-redundant sequences). Typical
sequences have found applications in algorithms for computing other width measures, like
branchwidth [BT97], cutwidth [TSB05a, TSB05b], as well as pathwidth and branchwidth of
matroids [JKO16, JKO18]. Also, they were used in the context of finite-state recognizability
of properties of graphs of bounded treewidth [CL96], and for establishing upper bounds on
minor-minimal obstructions to having treewidth at most k [Lag98].

The algorithm of Bodlaender and Kloks is the key subroutine in Bodlaender’s linear-time
algorithm for computing the treewidth of a graph [Bod96]. We refer the reader to an article
of the second author [Pil20], which gives a high-level overview of the Bodlaender-Kloks
algorithm, and explains how it is applied in Bodlaender’s algorithm for treewidth. (Some
ideas in this exposition originate in the present article.)

Our results. The main result of this paper (Theorem 2.1) is that the problem of Bodlaender
and Kloks can be solved by an mso transduction, which is a way of describing nondeterministic
transformations of relational structures using monadic second-order logic. More precisely,
we show that for every k ∈ {0, 1, 2, . . .} there is an mso transduction that inputs a tree
decomposition of width k of a graph G, and outputs nondeterministically a tree decomposition
of G of optimum width.

As a corollary of our main result, we show (Corollary 2.2) that an mso transduction
can compute an optimum-width tree decomposition, even if the input is only the graph and
not a (possibly suboptimal) tree decomposition. This application is obtained by combining
the main result of this paper with Theorem 2.4 from [BP16], which says that for every
k ∈ {0, 1, 2, . . .} there is an mso transduction which inputs a graph of treewidth k and
outputs nondeterministically one of its tree decompositions of possibly suboptimal width at
most f(k), for some function f . In particular, we thus strengthen Theorem 2.4 of [BP16] by
making the output a decomposition of exactly the optimum width, instead of only bounded
by a function of the optimum.

Another corollary of our main result is of algorithmic nature. Namely, using known results
for computing answers to mso queries on structures of bounded treewidth [Bag06, FFG02], we
prove the following fact. For a fixed mso transduction I and input relational structure with
bounded treewidth, we can compute some output of I on the input structure (or conclude
that there is no output) in time linear in the sum of the sizes of the input and the output.
See Theorem 6.1 in Section 6 for a formal statement. By combining this meta-theorem with
our main result we can immediately recover the algorithmic result of Bodlaender and Kloks
(Theorem 1.1), though without explicit bounds on the dependence of the running time on k.

Proof techniques. The proof of our main result is divided into a few steps. First, we
prove a result called the Dealternation Lemma, which shows that there always exists an
optimum-width tree decomposition that has bounded “alternation” with respect to the input
suboptimal decomposition. Intuitively, small alternation is the key property allowing an
optimum-width tree decomposition to be captured by an mso transduction or by a dynamic
programming algorithm that works on the input suboptimal decomposition. This part of
the proof essentially corresponds to the machinery of typical sequences of Bodlaender and
Kloks. However, we find the approach via alternation more intuitive and combinatorially less
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complicated, and we hope that it will find applications for computing other width measures.
In fact, a similar approach has very recently been used by Giannopoulou et al. [GPR+19] in
a much simpler setting of cutwidth to give a new fixed-parameter algorithm for this graph
parameter.

Next, we derive a corollary of the Dealternation Lemma called the Conflict Lemma,
which directly prepares us to construct the mso transduction for the Bodlaender-Kloks
problem. The Conflict Lemma is stated in purely combinatorial terms, but intuitively it
shows that some optimum-width tree decomposition of the graph can be interpreted in
the given suboptimum-width tree decomposition using subtrees that cross each other in a
restricted fashion, guessable in mso. Finally, we formalize the intuition given by the Conflict
Lemma in mso, thus constructing the mso transduction promised in our main result.

2. Preliminaries and statement of the main result

Trees, forests and tree decompositions. Throughout this paper all graphs are undirected,
unless explicitly stated. A forest (which is sometimes called a rooted forest in other contexts)
is defined to be an acyclic graph, where every connected component has one designated node
called the root. This naturally imposes parent–child and ancestor–descendant relations in a
(rooted) forest. We use the usual tree terminology: root, leaf, child, parent, descendant and
ancestor. We assume that every node is its own descendant, to exclude staying in the same
node we use the name strict descendant ; likewise for ancestors. For forests we often use the
name node instead of vertex. A tree is the special case of a forest that is connected and thus
has one root. Two nodes in a forest are called siblings if they have a common parent, or if
they are both roots. Note that there is no order on siblings, unlike some models of unranked
forests where siblings are ordered from left to right.

A tree decomposition of a graph G is a pair t = (F, bag), where F is a rooted forest and
bag(·) is a function that associates bags to the nodes of F . A bag is a nonempty subset of
vertices of G. We require the following two properties: (T1) whenever uv is an edge of G,
then there exists a node of F whose bag contains both u and v; and (T2) for every vertex
u of G, the set of nodes of F whose bags contain u is nonempty and induces a connected
subtree in F . The width of a tree decomposition is its maximum bag size minus 1, and the
treewidth of a graph is the minimum width of its tree decomposition. An optimum-width tree
decomposition is one whose width is equal to the treewidth of the underlying graph. Note that
throughout this paper all tree decompositions will be rooted forests. This slightly diverges
from the literature where usually the shape of a tree decomposition is an unrooted tree.

For a tree decomposition t = (F, bag) of a graph G, and each node x of F , we define the
following vertex sets:
• The adhesion of x, denoted adh(x), is equal to bag(x) ∩ bag(x′), where x′ is the parent of
x in F . If x is a root of F , we define its adhesion to be empty.
• The margin of x, denoted mrg(x), is equal to bag(x) \ adh(x).
• The component of x, denoted cmp(x), is the union of the margins of all the descendants
of x (including x itself). Equivalently, it is the union of the bags of all the descendants of
x, minus the adhesion of x.

Whenever the tree decomposition t is not clear from the context, we specify it in the subscript,
i.e., we use operators bagt(·), adht(·), mrgt(·), and cmpt(·).
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Observe that, by property (T2) of a tree decomposition, for every vertex of G there is a
unique node whose bag contains u, but the bag of its parent (if exists) does not contain u. In
other words, there is a unique node whose margin contains u. Consequently, the margins of
the nodes of a tree decomposition form a partition of the vertex set of the underlying graph.

Relational structures and MSO. Define a vocabulary to be a finite set of relation names,
each with associated arity that is a nonnegative integer. A relational structure over the
vocabulary Σ consists of a set called the universe, and for each relation name in the vocabulary,
an associated relation of the same arity over the universe. To describe properties of relational
structures, we use logics, mainly monadic second-order logic (mso for short). This logic
allows quantification both over single elements of the universe and also over subsets of the
universe. For a precise definition of mso, see [CE12].

We use mso to describe properties of graphs and tree decompositions. To do this, we
need to model graphs and tree decompositions as relational structures. A graph is viewed as
a relational structure, where the universe is a disjoint union of the vertex set and the edge set
of a graph. There is a single binary incidence relation, which selects a pair (v, e) whenever
v is a vertex and e is an incident edge. The edges can be recovered as those elements of
the universe which appear on the second coordinate of the incidence relation; the vertices
can be recovered as the rest of the universe. For a tree decomposition of a graph G, the
universe of the corresponding structure consists of the disjoint union of: the vertex set of G,
the edge set of G, and the node set of the tree decomposition. There is the incidence relation
between vertices and edges, as for graphs, a binary descendant relation over the nodes of
the tree decomposition, and a binary bag relation which selects pairs (v, x) such that x is
a node of the tree decomposition whose bag contains vertex v of the graph. The nodes
of the decomposition can be recovered as those which are their own descendants, since we
assume that the descendant relation is reflexive. Note that thus, the representation of a tree
decomposition as a relational structure contains the underlying graph as a substructure.

MSO transductions. Suppose that Σ and Γ are vocabularies. Define a transduction with
input vocabulary Σ and output vocabulary Γ to be a set of pairs

(input structure over Σ, output structure over Γ)

that is invariant under isomorphism of relational structures. When talking about transduc-
tions on graphs or tree decompositions, we use the representations described in the previous
paragraph. Note that a transduction is a relation and not necessarily a function, thus it can
have many possible outputs for the same input. A transduction is called deterministic if it is
a partial function (up to isomorphism). For example, the subgraph relation is a transduction
from graphs to graphs, but it is not deterministic since a graph can have many subgraphs.
On the other hand, the transformation that inputs a tree decomposition and outputs its
underlying graph is a deterministic transduction.

We use mso transductions, which are a special case of transductions that can be defined
using the logic mso. The precise definition is in Section 5, but the main idea is that an
mso transduction is a finite composition of transductions of the following types: copy the
input a fixed number of times, nondeterministically color the universe of the input, and add
new predicates to the vocabulary with interpretations given by mso formulas over the input
vocabulary. The notion of transductions we use is borrowed from our previous work [BP16]
and differs syntactically from the common definition that can be found, for instance, in the
book of Courcelle and Engelfriet [CE12]. However, both definitions can be easily seen to



Vol. 18:1 OPTIMIZING TREE DECOMPOSITIONS IN MSO 26:5

be equivalent. We invite the reader to [CE12] for a broader discussion of the role of mso
transduction in the theory of formal languages for graphs.

The main result. We now state the main contribution of this paper, which is an mso
version of the algorithm of Bodlaender and Kloks.

Theorem 2.1. For every k ∈ {0, 1, 2, . . .} there is an mso transduction from tree decompo-
sitions to tree decompositions such that for every input tree decomposition t:

• if t has width at most k, then there is at least one output; and
• every output is an optimum-width tree decomposition of the underlying graph of t.

Let us stress that the transduction of Theorem 2.1 is not deterministic, that is, it
might have several outputs on the same input. Using Theorem 2.1, we prove that an mso
transduction can compute an optimum-width tree decomposition given only the graph.

Corollary 2.2. For every k ∈ {0, 1, 2, . . .} there is an mso transduction from graphs to tree
decompositions such that for every input graph G:

• if G has treewidth at most k, then there is at least one output; and
• every output is a tree decomposition of G of optimum width.

Proof. Theorem 2.4 of [BP16] says that for every k ∈ {0, 1, 2, . . .} there is an mso transduction
with exactly the properties stated in the statement, except that when the input has treewidth
k, then the output tree decompositions have width at most f(k), for some function f : N→ N.
By composing this transduction with the transduction given by Theorem 2.1, applied to
f(k), we obtain the claim.

We remark that all the arguments that we will use in the proof of Theorem 2.1 are
constructive, hence the mso transduction whose existence is asserted in Theorem 2.1 can
be computed given k as the input. The same holds also for the mso transduction given by
Theorem 2.4 of [BP16], even though this is not explicitly stated in this work. As a result, the
mso transduction of Corollary 2.2 can be also computed given k. In order not to obfuscate
the presentation with computability issues of secondary relevance and straightforward nature,
we choose to rely on the reader in verifying these claims.

Structure of the paper. Sections 3–5 are devoted to the proof of Theorem 2.1. First, in
Section 3 we formulate the Dealternation Lemma. Its proof is deferred to Section 7 in order
not to disturb the flow of the reasoning. Next, in Section 4 we prove the Conflict Lemma,
which is a corollary of the Dealternation Lemma. Finally, in Section 5 we introduce formally
mso transductions and use the combinatorial insight given by the Conflict Lemma to prove
Theorem 2.1. In Section 6 we show how mso transductions can be implemented in linear
fixed-parameter time on structure of bounded treewidth, and we discuss the corollaries of
combining this result with our mso transduction for the Bodlaender-Kloks problem. This
result relies on a normalization theorem for mso transductions, whose proof is deferred to
Section 8 due to its technicality. Finally, in Section 9 we give some concluding remarks.
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3. Dealternation

In this section we introduce the Dealternation Lemma, which intuitively says that for a
tree decomposition t of bounded, though possibly suboptimal width, there always exists an
optimum-width decomposition in which every subtree of t is broken into small number of
“pieces”. We begin by defining factors, which is our notion of “pieces” of a tree decomposition.

Factors and factorizations. Intuitively, a factor is a set of nodes in a forest that respects
the tree structure. We define three kinds of factors: tree factors, forest factors, and context
factors. A tree factor in a forest is a set of nodes obtained by taking all (not necessarily
strict) descendants of some node, which is called the root of the tree factor. Define a forest
factor to be a nonempty union of tree factors whose roots are siblings. These roots are called
the roots of the forest factor. In particular, a tree factor is also a forest factor, with one root.

X

roots of the forest factor

outside the forest factor

non-roots of the forest factor

XY

root of the context factor

appendices of the context factor

outside the context factor

non-roots of the context factor

a forest factor a context factor

A context factor is the difference X − Y for a tree factor X and a forest factor Y , where
the root of X is a strict ancestor of every root of Y . For a context factor X − Y , its root
is defined to be the root of X, while the roots of Y are called the appendices. Note that a
context factor always contains a unique node that is the parent of all its appendices.

Forest factors and context factors will be jointly called factors. The following lemma
can be proved by a straightforward case study, and hence we leave its proof to the reader.

Lemma 3.1. The union of two intersecting factors in the same forest is also a factor.

For a subset U of nodes of a forest, a U -factor is a factor that is entirely contained in U .
A factorization of U is a partition of U into U -factors. A U -factor is maximal if no other
U -factor contains it as a strict subset.

Lemma 3.2. Suppose U is a subset of nodes of a forest. Then the maximal U -factors form
a factorization of U .

Proof. Every node of U is contained in some factor, e.g., a singleton factor (which has forest
or context type depending on whether the node is a leaf or not). Thus, every node of U
is also contained in some maximal U -factor. On the other hand, two different maximal
U -factors must be disjoint, since otherwise by Lemma 3.1, their union would also be a
U -factor, contradicting maximality.

The set of all maximal U -factors will be called the maximal factorization of U , and
will be denoted by fact(U). We specify the forest in the subscript whenever it is not clear
from the context. Lemma 3.2 asserts that fact(U) is indeed a factorization of U . Note that
the maximal factorization of U is the coarsest in the following sense: in every factorization
of U , each of its factors is contained in some factor of fact(U). In particular, the maximal
factorization has the smallest number of factors among all factorizations of U .
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In the sequel, we will need the following simple result about relation between the
maximal factorizations of a set and of its complement. Its proof is a part of the proof of the
Dealternation Lemma, and can be found in Section 7.2 (see Lemma 7.4 there).

Lemma 3.3. Suppose (U,W ) is a partition of the node set of a rooted forest F , and let k be
the number of factors in the maximal factorization of W . Then the maximal factorization of
U has at most k + 1 forest factors and at most 2k − 1 context factors.

Elimination forests. The general definition of a tree decomposition is flexible and allows
for multiple combinatorial adjustments. Here, we will rely on a normalized form that we
call elimination forests, which are essentially tree decompositions where all the margins have
size exactly 1. The definition of treewidth via elimination forests resembles the definition of
pathwidth via the so-called vertex separation number [Kin92].

Definition 3.4. Suppose G is a graph. An elimination forest of G is a rooted forest F on
the same vertex set as G such that G is contained in the ancestor-descendant closure of F ;
that is, whenever uv is an edge of G, then u is an ancestor of v in F or vice versa.

Elimination forests are used to define the graph parameter treedepth, which is equal to
the minimum depth of an elimination forest of a graph. To define treewidth, we need to take
a different measure than just the depth, as explained next.

Suppose F is an elimination forest of G. Endow F with the following bag function bag(·).
For any vertex u of G, assign to u the bag bag(u) consisting of u and all the ancestors of u
in F that have a neighbor among the descendants of u in F . The following claim follows by
verifying the definition of a tree decomposition; we leave the easy proof to the reader.

Claim 3.5. If F is an elimination forest of G and bag(·) is defined as above, then (F, bag)
is a tree decomposition of G. Further, for every vertex u of G, the margin of u in (F, bag)
is {u}.

The tree decomposition (F, bag) defined above is said to be induced by the elimination
forest F . Observe that if t = (F, bag) is induced by F , then for any vertex u, the component
of u in t consists of all the descendants of u in F .

Figure 1: Construction of the induced tree decomposition from an elimination forest. The
graph edges are depicted in black, the child-parent relation of the forest is depicted
as dashed grey lines.
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One can reformulate the construction given above as follows. First, put every vertex u
into its bag bag(u). Then, examine every neighbor v of u, and if v is a descendant of u in F ,
then add u to every bag on the path from v to u in F . Thus, every vertex u is “smeared”
onto a subtree of F , where u is the root of this subtree and its leaves correspond to those
neighbors of u that are also its descendants in F . This construction is depicted in Figure 1.

The width of an elimination forest is simply the width of the tree decomposition induced
by it. Consequently, the width of an elimination forest is never smaller than the treewidth of
a graph. The next result shows that in fact there is always an elimination forest of optimum
width. The proof follows by a simple surgery on an optimum-width tree decomposition, and
can be found in Section 7.3 (see Lemma 7.6 there).

Lemma 3.6. For every graph G there exists an elimination forest of G whose width is equal
to the treewidth of G.

Dealternation Lemma. We are finally ready to state the Dealternation Lemma.

Lemma 3.7 (Dealternation Lemma). There exist functions f(k) ∈ O(k3) and g(k) ∈ O(k4)
such that the following holds. Suppose that t is a tree decomposition of a graph G of width k.
Then there exists an optimum-width elimination forest F of G such that:
(D1) for every node x of t, the maximal factorization factF (cmpt(x)) has at most f(k)

factors;
(D2) for every node x of t, there are at most g(k) children of x in the set

{ y : y is a node of t with at least one context factor in factF (cmpt(y)) }.

Note that in the statement of the Dealternation Lemma, the vertex set of G is at the same
time the node set of the forest F . Thus, factF (cmpt(x)) denotes the maximal factorization
of cmpt(x), treated as a subset of nodes of F .

The proof of the Dealternation Lemma uses essentially the same core ideas as the
correctness proof of the algorithm of Bodlaender and Kloks [BK96]. We include our proof
for several reasons. First, unlike in [BK96], in our setting we cannot assume that t has
binary branching, as is the case in [BK96]. In fact, condition (D2) is superfluous when t has
binary branching. Second, our formulation of the Dealternation Lemma highlights the key
combinatorial property, which is expressed as the existence of a single elimination forest F
that behaves nicely with respect to the input decomposition t. This property is somehow
implicit [BK96], where the existence of nicely-behaved optimum-width tree decompositions is
argued along performing dynamic programming. For this reason, we find the new formulation
more explanatory and potentially interesting on its own.

For now we take the Dealternation Lemma for granted and we proceed with the proof of
Theorem 2.1. The proof of the Dealternation Lemma can be found in Section 7.

4. Using the Dealternation Lemma

In this section we use the Dealternation Lemma to show that an optimum-width elimination
forest of a graph can be interpreted in a suboptimum-width tree decomposition. For this,
we need to develop a better understanding of the combinatorial insight provided by the
Dealternation Lemma, which is expressed via an auxiliary graph, called the conflict graph.

Suppose G is a graph, t is a tree decomposition of G of width k, and F is an elimination
forest of G. Let φ be the mapping that sends each vertex u of G to the unique node of t
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that contains u in its margin. For a vertex u of G, we define the stain of u, denoted Su,
which is a subgraph of the underlying forest of t, as follows. For every child v of u in F , find
the unique path in t between φ(u) and φ(v). Then stain Su consists of the node φ(u) and
the union of these paths. Note that if u is a leaf of F , then the stain Su consists only of
the node φ(u). Define the conflict graph H(t, F ) as follows. The vertices of H(t, F ) are the
vertices of G, and vertices u and v are adjacent in H(t, F ) if and only their stains Su and Sv
have a node in common. The main result of this section can be formulated as follows.

Lemma 4.1 (Conflict Lemma). There is a function h(k) ∈ O(k7) such that if t and F are
as in the Dealternation Lemma, then their conflict graph H(t, F ) admits a proper coloring
with h(k) colors.

Recall here that a proper coloring of a graph is a coloring of its vertex set such that no
two adjacent vertices receive the same color. The rest of this section is devoted to the proof
of the Conflict Lemma. From now on, we assume that G, t, F are as in the Dealternation
Lemma, and we denote H = H(t, F ).

Observe that the conflict graph H is an intersection graph of a family of subtrees of a
forest (here, a subtree of a forest F is simply a connected subgraph of F ). It is well-known
(see, e.g., [Gol04]) that this property precisely characterizes the class of chordal graphs
(graphs with no induced cycle of length larger than 3), so H is chordal. Chordal graphs
are known to be perfect (again see, e.g., [Gol04]), hence the chromatic number of a chordal
graph (the minimum number of colors needed in a proper coloring) is equal to the size of the
largest clique in it. On the other hand, subtrees of a forest are known to satisfy the so-called
Helly property: whenever F is some family of subtrees such that the subtrees in F pairwise
intersect, then in fact there is a node of the forest that belongs to all the subtrees in F . This
means that the largest clique in an intersection graph of a family of subtrees of a forest can
be obtained by taking all the subtrees that contain some fixed node. Therefore, to prove the
Conflict Lemma it is sufficient to prove the following claim.

Claim 4.2. There exists a function h(k) ∈ O(k7) such that every node of t belongs to at
most h(k) of the stains {Su : u ∈ V (G)}.

In the remainder of this section we prove Claim 4.2. Fix any node x of t, and let
y1, y2, . . . , yp be its children in t. Consider the following partition of the vertex set of G:

Π = (cmpt(y1), cmpt(y2), . . . , cmpt(yp),mrgt(x), V (G) \ cmpt(x))

Define a factorization Φ of the whole node set of F as follows: for each set X from the
partition Π, take its maximal factorization factF (X), and define Φ to be the union of these
maximal factorizations. Thus, Φ is a factorization that refines the partition Π. Since the
number of children yi is unbounded, we cannot expect that Φ has a small number of factors,
but at least it has a small number of context factors.

Claim 4.3. Factorization Φ contains at most g(k) · f(k) + 2f(k) + k context factors, where
f and g are as in the Dealternation Lemma.

Proof. By the Dealternation Lemma, each of the sets cmpt(y1), . . . , cmpt(yp), cmpt(x) has at
most f(k) factors in its maximal factorization in F . Moreover, only at most g(k) of the sets
cmpt(y1), . . . , cmpt(yp) can have a context factor in their maximal factorizations. Hence, the
maximal factorizations of sets cmpt(y1), . . . , cmpt(yp) introduce at most g(k) · f(k) context
factors to the factorization Π. Since the maximal factorization of cmpt(x) has at most f(k)
factors as well, by Lemma 3.3 we deduce that the maximal factorization of V (G) \ cmpt(x)
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has at most 2f(k)− 1 context factors. Finally, the cardinality of mrgt(x) is at most k + 1,
so in particular its maximal factorization has at most k + 1 factors in total. Summing up
all these upper bounds, we conclude that Φ has at most g(k) · f(k) + 2f(k) + k context
factors. y

With Claim 4.3 in hand, we complete now the proof of Claim 4.2. Take any vertex u
such that x belongs to the stain Su. This means that either

(i) u belongs to the margin of x, or
(ii) u does not belong to the margin of x, but u has a child v in F such that the unique

path in t between φ(u) and φ(v) passes through x.
The number of vertices u satisfying (i) is bounded by the size of the margin of x, which is
at most k + 1, hence we focus on vertices u that satisfy (ii). Observe that condition (ii) in
particular means that u and v belong to different parts of partition Π, so also to different
factors of the factorization Φ. Since u is the parent of v in F , this means that the unique
factor of Φ that contains u must be a context factor, and u must be the parent of its
appendices. Consequently, the number of vertices u satisfying (ii) is upper bounded by the
number of context factors in factorization Φ, which is at most g(k) · f(k) + 2f(k) + k by
Claim 4.3. We conclude that the number of stains Su containing x is at most

h(k) := g(k) · f(k) + 2f(k) + 2k + 1;

in particular h(k) ∈ O(k7). This concludes the proof of Claim 4.2, so also the proof of the
Conflict Lemma is complete.

5. Constructing the transduction

We now use the understanding gathered in the previous sections to give an mso transduction
that takes a tree decomposition of a graph of suboptimum width, and produces an optimum-
width tree decomposition. First, we need to precisely define mso transductions.

MSO transductions. Formally, an mso transduction is any transduction that can be
obtained by composing a finite number of transductions of the following kinds. Note that
kind 1 is a partial function, kinds 2, 3, 4 are functions, and kind 5 is a relation.
(1) Filtering. For every mso sentence ϕ over the input vocabulary there is transduction

that filters out structures where ϕ is satisfied. Formally, the transduction is the partial
identity whose domain consists of the structures that satisfy the sentence. The input
and output vocabularies are the same.

(2) Universe restriction. For every mso formula ϕ(x) over the input vocabulary with
one free first-order variable there is a transduction, which restricts the universe to
those elements that satisfy ϕ. The input and output vocabularies are the same, the
interpretation of each relation in the output structure is defined as the restriction of its
interpretation in the input structure to tuples of elements that remain in the universe.

(3) MSO interpretation. This kind of transduction changes the vocabulary of the structure
while keeping the universe intact. For every relation name R of the output vocabulary,
there is an mso formula ϕR(x1, . . . , xk) over the input vocabulary which has as many
free first-order variables as the arity of R. The output structure is obtained from the
input structure by keeping the same universe, and interpreting each relation R of the
output vocabulary as the set of those tuples (x1, . . . , xk) that satisfy ϕR.
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(4) Copying. For k ∈ {1, 2, . . .}, define k-copying to be the transduction which inputs a
structure and outputs a structure consisting of k disjoint copies of the input. Precisely,
the output universe consists of k copies of the input universe. The output vocabulary
is the input vocabulary enriched with a binary predicate copy that selects copies of
the same element, and unary predicates layer1, layer2, . . . , layerk which select elements
belonging to the first, second, etc. copies of the universe. In the output structure, a
relation name R of the input vocabulary is interpreted as the set of all those tuples over
the output structure, where the original elements of the copies were in relation R in the
input structure.

(5) Coloring. We add a new unary predicate to the input structure. Precisely, the universe
as well as the interpretations of all relation names of the input vocabulary stay intact, but
the output vocabulary has one more unary predicate. For every possible interpretation
of this unary predicate, there is a different output with this interpretation implemented.

We remark that the above definition is easily equivalent to the one used in [BP16], where
filtering, universe restriction, and mso interpretation are merged into one kind of a transduc-
tion.

Proving the main result. We are finally ready to prove our main result, Theorem 2.1. The
proof is broken down into several steps. The first, main step shows that an mso transduction
can output optimum-width elimination forests. Here, an elimination forest of a graph G
is encoded by enriching the relational structure encoding G with a single binary relation
interpreted as the child relation of F . Note that the definition of an elimination forest is
mso-expressible: there is an mso sentence that checks whether the additional relation indeed
encodes an elimination forest of the graph.

Lemma 5.1. For every k ∈ {0, 1, 2, . . .}, there is an mso transduction from tree decomposi-
tions to elimination forests such that for every input tree decomposition t:
• every output is an elimination forest of the underlying graph of t; and
• if t has width at most k, then there is at least one output that is an elimination forest of
optimum width.

Proof. Observe that the verification whether the width of t is at most k can be expressed by
an mso sentence, so we can first use filtering to filter out any input tree decomposition t
whose width is larger than k; for such decompositions, the transduction produces no output.
Let G be the underlying graph of t, and let φ be the mapping that sends each vertex u of G
to the unique node of t whose margin contains u. By the Conflict Lemma, there exists some
elimination forest F of G of optimum width such that the conflict graph H(t, F ) admits
some proper coloring λ with h(k) colors. The constructed mso transduction attempts at
guessing and interpreting F as follows.

First, using coloring and filtering, we guess the coloring λ, represented as a partition of
the vertex set of G. Then, again using coloring and filtering, for every vertex u of G we guess
whether u is a root of F , and if not, then we guess the color under λ of the parent of u in F .

Next, for every color c used in λ, we guess the forest

Mc :=
⋃

u∈λ−1(c)

Su,

where Su is the stain of u in t, defined as in Section 4 for the elimination forest F . Note
that the stains {Su : u ∈ λ−1(c)} are pairwise disjoint, because λ is a proper coloring of



26:12 M. Bojańczyk and M. Pilipczuk Vol. 18:1

the conflict graph H(t, F ). Thus, the connected components of Mc are exactly these stains.
Observe also that Mc is a subgraph of the decomposition t, so we can emulate guessing Mc

in an mso transduction working over t by guessing the subset of those nodes of t, for which
the edge of t connecting the node and its parent belongs to Mc.

Having done all these guesses, we can interpret the child relation of F using an mso
predicate as follows. Fix a pair of vertices u and v, and let c be the guessed color of u
under λ. Then one can readily check that u is the parent of v in F if and only if the following
conditions are satisfied:
• we have guessed that v is not a root of F ,
• we have guessed that the color of the parent of v in F is c, and
• u is the unique vertex of color c such that φ(u) belongs to the same connected component
of Mc as φ(v).

It can be easily seen that these conditions can be expressed by an mso formula with two free
variables u and v.

Finally, we filter out all the wrong guesses by verifying, using an mso sentence, whether
the interpreted child relation on the vertices of G indeed forms a rooted forest, and whether
this forest is an elimination forest of G. Obviously, the elimination forest F was obtained for
at least one of the guesses, and survives this filtering. At the end, we remove the nodes of
decomposition t from the structure using universe restriction.

Next, we need to construct the induced tree decomposition out of an elimination forest.

Lemma 5.2. There is an mso transduction from elimination forests to tree decompositions
that on each input elimination forest has exactly one output, which is the tree decomposition
induced by the input.

Proof. We copy the vertex set of the graph two times, and declare the second copies to be the
nodes of the constructed tree decomposition. Using the child relation of the input elimination
forest, we can interpret in mso the descendant relation in the forest of the decomposition.
Finally, the bag relation in the induced tree decomposition, as defined in Section 3, can be
easily interpreted using an mso formula.

Finally, so far the transduction can output tree decompositions of suboptimal width,
which should be filtered out. For this, we need the following mso-expressible predicate.

Lemma 5.3. For every k ∈ {0, 1, 2, . . .}, there is an mso-sentence over tree decompositions
that holds if and only if the given tree decomposition has width at most k and its width is
optimum for the underlying graph.

Proof. Let t be the given tree decomposition of a graph G. Obviously, we can verify using
an mso sentence whether the width of t is at most k. To check that the width of t is
optimum, we could use the fact that graphs of treewidth k are characterized by a finite list
of forbidden minors, but we choose to apply the following different strategy. Let Rk be the
mso transduction that is the composition of the transductions of Lemmas 5.1 (for parameter
k) and 5.2. Provided the input tree decomposition t has width at most k, transduction Rk
outputs some set of tree decompositions of G among which one has optimum width. Hence, t
has optimum width if and only if the output Rk(t) does not contain any tree decomposition
of width smaller than t.

The Backwards Translation Theorem for mso transductions [CE12] (see also [BP16])
states that whenever I is an mso transduction and ψ is an mso sentence over the output
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vocabulary, then the set of structures on which I outputs at least one structure satisfying
ψ, is mso-definable over the input vocabulary. Hence, for every p < k, there exists an mso
sentence ϕp that verifies whether Rk(t) outputs at least one tree decomposition of width at
most p. Therefore, we can check whether t has optimum width by making a disjunction over
all ` with 0 ≤ ` ≤ k of the sentences stating that t has width exactly ` and Rk(t) does not
output any tree decomposition of width less than `.

Theorem 2.1 now follows by composing the mso transductions given by Lemmas 5.1
and 5.2, and at the end applying filtering using the predicate given by Lemma 5.3.

6. Implementing mso transductions in FPT time

In this section we prove that mso transductions on relational structures of bounded treewidth
can be implemented in linear fixed-parameter time. To state this result formally, we first
need to introduce some definitions regarding measuring the input and output size of the
algorithm.

In the following, by the size of an mso transduction I, denoted ‖I‖, we mean the sum
of sizes of its atomic transductions. Here, the size of a copying step is the number of copies
it produces, the size of a coloring step is 1, and the size of a transduction of any other type
is the total size of mso formulas involved in its description.

By the treewidth of a relational structure we mean the treewidth of its Gaifman graph;
that is, a graph whose vertices are elements of the structure, and two elements are adjacent
if and only if they appear together in some tuple of some relation. The size of a relational
structure A = (U,R1, R2, . . . , Rc), where U is the universe and Ri is a relation of arity ri,
for i = 1, . . . , c, is defined as

‖A‖ = |U |+
c∑
i=1

ri · |Ri|.

We say that an algorithm that receives a structure A on input implements I on A if it either
correctly concludes that I(A) is empty, or outputs an arbitrary structure belonging to I(A).

We may now formally state the algorithmic result for mso transductions..

Theorem 6.1. There is an algorithm that, given an mso transduction I and a relational
structure A over the input vocabulary of I, implements I on A in time f(‖I‖, w) · (n+m),
where n and w are the size and the treewidth of the input structure, respectively, m is the
size of the output structure (or 0 if I(A) is empty), and f is a computable function.

The cornerstone of the proof of Theorem 6.1 is a normalization theorem for mso
transductions: every mso transduction can be written in a simple normal form that allows
for algorithmic treatment. To describe this form, it will be useful to introduce another type
of an mso transduction, which is a special case of interpretation. By a renaming we mean an
interpretation step that only renames symbols from the signature, possibly dropping some of
them. Precisely, if the input vocabulary is Σ and the output vocabulary is Γ, then there is
an injective function ρ : Γ→ Σ such each symbol R ∈ Γ, say of arity r, is interpreted by the
formula φR(x1, . . . , xr) = ρ(R)(x1, . . . , xr). We can now state the normalization theorem.

Theorem 6.2 (Normal form for mso transductions). Suppose I is an mso transduction.
Then I may be represented in the form

I = Irename ◦ Irestrict ◦ Iinterprete ◦ Icopy ◦ Ifilter ◦ Icolor,
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where the above are mso transductions as follows:
• Icolor is a finite sequence of coloring steps;
• Ifiltering is a single filtering step;
• Icopy is a single copying step;
• Iinterprete is a single interpretation step;
• Irestrict is a single universe restriction step;
• Irename is a single renaming step.
Moreover, there is an algorithm that, given I, computes the normal form as above.

The proof of Theorem 6.2 roughly proceeds as follows. We write the given mso trans-
duction as a sequence of atomic transductions, each being a coloring, filtering, copying,
interpretation, or universe restriction step. Then, we give a number of swapping and merging
rules that enable us to swap these transductions while modifying them slightly. It is shown
that by applying the rules exhaustively, we eventually arrive at the claimed normal form.
While basically all the rules are straightforward, their full verification takes some effort. We
give the proof of Theorem 6.2 in Section 8 for completeness, while for now let us take it for
granted and proceed with the proof of Theorem 6.1.

Proof of Theorem 6.1. By Theorem 6.2, we can assume that I is in the normal form

I = Irename ◦ Irestrict ◦ Iinterprete ◦ Icopy ◦ Ifilter ◦ Icolor.

Suppose further that Icolor is a sequence of coloring steps that introduce new unary predicates
X1, X2, . . . , Xc, for some constant c, while Icopy copies the universe ` times, for some
constant `. The proof will follow from the following two claims. In the following we use f for
an arbitrary computable function, possibly different in each context.

Claim 6.3. One can in time f(‖I‖, w) · n determine a sequence of subsets X1, . . . , Xc of
elements of A such that filtering Ifilter preserves A enriched with X1, X2, . . . , Xc as unary
predicates, or correctly conclude that such a sequence does not exist.

Claim 6.4. Given A enriched with unary predicates X1, X2, . . . , Xc, one can in time
f(‖I‖, w) · (n + m) compute the output of Irename ◦ Irestrict ◦ Iinterprete ◦ Icopy on this
structure, where m is the size of the output.

Note here that in Claim 6.4, the transduction Irename ◦ Irestrict ◦ Iinterprete ◦ Icopy uses
neither copying nor filtering, hence every input structure is mapped to exactly one output
structure.

Observe that the proof follows trivially from combining Claims 6.3 and 6.4 as follows.
First, using the algorithm of Claims 6.3 one tries to compute any sequence of element subsets
X1, X2, . . . , Xc for which the filtering step Ifilter passes. If this cannot be done, then I(A) is
empty, and this conclusion can be reported. Otherwise, we plug the obtained sequence to
the algorithm of Claim 6.4, thus computing an arbitrary structure from I(A).

We now prove Claims 6.3 and 6.4 in order. For this, we use the following results
on answering mso queries on structures of bounded treewidth. Suppose we are given a
relational structure A with tw(A) = w. Suppose further that ϕ(X1, . . . , Xc, x1, . . . , xd)
is an mso formula over the vocabulary of A, where Xi are monadic variable and xi are
first-order variables. A tuple ȳ = (A1, . . . , Ac, a1, . . . , ad) is an answer to the mso query
ϕ if A |= ϕ(A1, . . . , Ac, a1, . . . , ad). Flum et al. [FFG02] gave an algorithm that in time
f(w, ‖ϕ‖) · (n+m) outputs all the answers to ϕ on A, where n is the size of the universe of
A, m is the total size of the output, and f is a computable function. Later, Bagan [Bag06]
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gave an enumeration algorithm for solving mso queries on structures of bounded treewidth:
this algorithm uses f(w, ‖ϕ‖) · n preprocessing time, and then reports answers to the query
with delay between two consecutive reports bounded by f(w, ‖ϕ‖) · |ȳ|, where |ȳ| is the size
of the next answer. A different proof of this result, but for queries using only first-order
variables, was later given by Kazana and Segoufin [KS13].

In the sequel, f always denotes some computable function, possibly different in each
context.

Proof of Claim 6.3. Let ψ be the mso formula used in the filtering step Ifilter, which works
over the input structure A enriched with sets X1, . . . , Xc. That is, the filtering step passes
only if the sets X1, . . . , Xc guessed by Icolor satisfy A, X1, . . . , Xc |= ψ. Interpret ψ as an
mso query on t with free monadic variables X1, . . . , Xc. Run the algorithm of Bagan [Bag06]
on it to enumerate only the first answer, or to conclude that there are no answers; either
of these outcomes may be then reported. The preprocessing step takes time f(‖ψ‖, w) · n,
whereas the construction of the first answer also takes time f(‖ψ‖, w) ·n, since the size of the
answer is trivially bounded by cn. Since ‖ψ‖ ≤ ‖I‖, the claimed running time follows. y

Proof of Claim 6.4. First, the step Icopy can be just performed in time f(‖I‖, w) · n, since `
is a constant bounded in terms of ‖I‖. Observe here that since tw(A) ≤ w, the treewidth of
the structure output by Icopy is bounded by `(w+ 1). This follows by replacing, in every bag
of an optimum-width tree decomposition of the Gaifman graph of A, each element of the
original structure with its ` copies in A′, the structure output by Icopy. Next, we implement
Irename ◦ Irestrict ◦ Iinterprete on A′ in time f(‖I‖, w) · (n+m) in one shot.

Take, any relation R of the output vocabulary, say of arity r, and let R′ be the relation
from which R originates in the renaming step Irename. Let ϕR′(x1, . . . , xr) be the formula
used in Iinterprete to interprete R′, and let ϕ(u) be the formula used in Irestrict to restrict
the universe. Moreover, let ϕ′(u) be a formula constructed from ϕ(u) by replacing every
relation atom Q(x1, . . . , xq) by its interpretation ϕQ(x1, . . . , xq) under Iinterprete. Consider
the formula

αR(x1, . . . , xr) = ϕR′(x1, . . . , xr) ∧
r∧
i=1

ϕ′(xi).

Observe that αR(x1, . . . , xr) in the structure A′ selects exactly those tuples (x1, . . . , xr) that
satisfy R(x1, . . . , xr) in the output structure.

Hence, given the structure A′, we implement Irename ◦ Irestrict ◦ Iinterprete as follows.
First, ϕ′(u) can be regarded as an mso query with one free first-order variable over A′;
obviously, the number of answers to this query is bounded by the size of the universe of A′,
which is `n. Hence the algorithm of Flum et al. [FFG02] can output all the answers to this
query, which are exactly the elements that are preserved in the universe by Irestrict, in time
f(‖ψ‖, `(w+ 1)) ·h(‖I‖) ·n, which is bounded by g(‖I‖, w) ·n for some computable g. Thus,
we have computed the universe of the output structure.

To compute the relations in the output structure, for every relation R of the output vocab-
ulary, say of arity r, apply the algorithm of Flum et al. [FFG02] for the query αR(x1, . . . , xr)
on A′. Thus we compute the set of tuples selected by R in the output structure in time
f(‖I‖, `(w + 1)) · (h(‖I‖) · n+mR), where mR is the size of relation R in the output. By
summing this bound through all relations of the output vocabulary, we obtain a running
time of the form g(‖I‖, w) · (n+m) for some computable g, where m is the output size. y

As argued before, the proof of Theorem follows from Claims 6.3 and 6.4.
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An observant reader might wonder why in the proof of Theorem 6.1 we actually needed the
normal form provided by Theorem 6.2, as it would be natural to just implement consecutive
atomic transductions comprising the input transduction I one by one, each in linear time.
There are two reasons for this. First, every coloring step introduces a large number of possible
intermediate outputs, and it can happen that only few of them eventually lead to producing
an output of the whole transduction I, due to later filtering steps. At the moment of applying
a coloring step it is difficult to determine which intermediate outputs will eventually get
filtered out; the normal form facilitates this verification through Claim 6.3. Second, applying
atomic transductions comprising I one by one and computing each intermediate output
means that the running time is linear in the maximum size among the intermediate outputs.
This can be much larger than the maximum among the sizes of the input and the final output,
which is the measure promised in Theorem 6.1. The normal form helps here in compressing
a possibly long sequence of atomic transductions into a sequence manageable in its entirety.

We now show how the result of Bodlaender and Kloks [BK96] may be obtained as a
direct corollary of our meta-results.

Corollary 6.5. For every k ∈ {0, 1, 2, . . .} there exists a linear-time algorithm that, given a
graph G and its tree decomposition of width k, returns a tree decomposition of G of optimum
width.

Proof. Let A be the relational structure representing G together with the input tree decom-
position t of G of width at most k. It can be easily seen that the Gaifman graph of A has
treewidth at most 2k + 3, and its tree decomposition of such width can be constructed from
t in linear time. To obtain a tree decomposition of G of optimum width, it suffices to apply
the algorithm of Theorem 6.1 to A and the transduction given by Theorem 2.1. For the
running time bound, observe that the size of the output is bounded linearly in the size of the
input.

As we argued in Section 2, our proof of Theorem 2.1 is actually constructive: given k,
one can compute the transduction given by Theorem 2.1 for this value. Thus, we can infer a
slightly stronger uniform variant of Corollary 6.5, where k is also given in the input and the
algorithm works in linear fixed-parameter time, that is, in time f(k) · n for some computable
f , where n is the size of the input. While the uniformity of the algorithm follows from our
arguments in this way, we unfortunately do not see an easy way to recover upper bounds on
the running time similar to those in Theorem 1.1 using our approach.

A careful reader may have observed that our claim of recovering the algorithm of
Bodlaender and Kloks [BK96] via meta-tools might seem like cheating. Namely, the algorithms
of Flum et al. [FFG02] and of Bagan [Bag06], which are invoked in the algorithm of
Theorem 6.1, actually use the linear-time algorithm of Bodlaender [Bod96] to compute a tree
decomposition of the given structure. This algorithm, on the other hand, uses the algorithm
of Bodlaender and Kloks [BK96] as a subroutine, thus creating a cycle of dependencies. This
issue is, however, not really problematic. Namely, the algorithms of [FFG02, Bag06] use
the linear-time algorithm of Bodlaender [Bod96] only as an opening step, to compute a tree
decomposition that will be used in further computations. In our setting, we have a tree
decomposition of the input structure in our hand, so there is no need of performing this
step. Thus, we indeed obtain a new implementation of the algorithm of Bodlaender and
Kloks [BK96].
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Note, however, that this vicious cycle of dependencies would persist if we tried to
combine Theorem 6.1 with the transduction of Corollary 2.2 in order to obtain a new
implementation of the linear-time algorithm of Bodlaender [Bod96]. This is because in
the setting of Corollary 2.2, there is no tree decomposition given on the input. Therefore,
we do not obtain a new implementation of the algorithm of Bodlaender [Bod96] via our
meta-techniques. We see, however, a potential for our tools to be useful in computing
other types of tree-like decompositions of graphs; we discuss this matter in more details in
Section 9.

7. Proof of the Dealternation Lemma

In this section we prove the Dealternation Lemma (Lemma 3.7), as well as some auxiliary
simple facts whose proofs were omitted in Section 3. We begin with introducing some
auxiliary tools on dealternation in words, as well as we give a few useful properties of
maximal factorizations; in particular we prove Lemma 3.3. Then, we move to elimination
forests: we prove Lemma 3.6, and we investigate a normalized form of elimination forests
that we call reduced. Finally, we complete the proof of the Dealternation Lemma using the
gathered tools. We first show how the Dealternation Lemma follows from an auxiliary result,
called Local Dealternation Lemma, which can be thought of as one “fixing step”. Then we
conclude by proving the Local Dealternation Lemma.

7.1. Words and alternation. We now give some auxiliary combinatorial tools on reshuffling
on a word over alphabet {−,+} in order to reduce its “alternation”, while preserving some
extremal properties. These results hold the essence of the technique of typical sequences,
used by Bodlaender and Kloks in [BK96].

Fix the alphabet Σ = {−,+}. For a word w ∈ Σ?, we define:
• the sum of w, denoted sum(w), is the number of + in w, minus the number of − in w;
• the prefix maximum of w, denoted pmax(w), is the maximum of sum(u) for u ranging over
the prefixes of w;
• the prefix minimum of w, denoted pmin(w), is the minimum of sum(u) for u ranging over
the prefixes of w.

Suppose a word w ∈ Σ? has every position colored with some color drawn from some set of
colors; in such a case, we will talk about a colored word. A block in a colored word w is a
maximal set of consecutive letters colored with the same color.

We say that a colored word w′ is a block-shuffle of w if w′ can be obtained from w
by permuting its letters (and keeping their colors) in such a manner that (i) within each
color, the order of the letters remains the same as in w, and (ii) every block of w remains
contiguous in w′. Note that (ii) is equivalent to saying that every block of w, after applying
the permutation, is contained in a block of w′. It is clear that if w1 is a block-shuffle of w2,
which in turn is a block-shuffle of w3, then w1 is a block-shuffle of w3.

Informally, the main result of this section can be stated as follows: provided a colored
word w has bounded prefix maximum, and prefix minima within colors are also not too small,
then there exists a block-shuffle of w that achieves a small number of blocks of each color.
The formal statement follows.

Lemma 7.1. Suppose w ∈ Σ? is colored with two colors. Suppose further that pmax(w) ≤ a
for some nonnegative integer a, and if u is a word derived from w by restricting it to all the
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Figure 2: Left panel: A bichromatic word with sum 1, prefix maximum 2, and prefix minimum
−1. The number of blocks is 5. Right panel: The word after swapping the second
and the third block, indicated by blue and red box, respectively. Note that this
swapping operation satisfies the prerequisites of Claim 7.2, and consequently the
prefix maximum of the word does not increase.

letters of one of the colors, then pmin(u) ≥ −b, for some nonnegative integer b. Then there
exists a block-shuffle w′ of w such that also pmax(w′) ≤ a, but w′ has at most a/2 + 2b+ 1
blocks in each of the colors.

Proof. Let us factorize w as
w = w1w2 . . . wn,

where wi, for i = 1, 2, . . . , n, are the blocks of w. Thus, odd-numbered blocks are colored with
one color, while the even-numbered blocks are colored with the second color. By considering
swapping two consecutive blocks, we observe the following fact; the proof is a straightforward
check.

Claim 7.2. Suppose that for some i, 1 ≤ i < n, we have that sum(wi) ≥ 0 and sum(wi+1) ≤ 0.
If w′ is obtained from w by swapping blocks wi and wi+1, then w′ is a block-shuffle of w
with pmax(w′) ≤ pmax(w).

Starting with the original word w, we apply the operation of Claim 7.2 exhaustively, up
to the point when it cannot be applied anymore, or we obtain a word with exactly two blocks.
Note that this procedure ends after a finite number of steps, as each swap strictly reduces
the total number of blocks in the word (here we use the fact that we stop the procedure
one a word with two blocks is obtained). Let w′ be the word obtained at the end of this
procedure. If w′ has one block of each color, then we are done. Otherwise, suppose w′ is
such that the operation of Claim 7.2 cannot be applied to w′. Then we have that w′ is a
block-shuffle of w and pmax(w′) ≤ pmax(w).

Let us factorize w′ as
w′ = w′1w

′
2 . . . w

′
n′ ,

where w′i are the blocks of w′. Let I ⊆ {1, 2, . . . , n′} be the set of those positions i, for
which sum(wi) ≥ 0. Since the operation of Claim 7.2 is not applicable to w′, we infer that
I is a suffix of {1, 2, . . . , n′}, that is, there is a position j such that I = {j, . . . , n′}. By the
definition of I, we have sum(w′i) < 0 for all i < j. Therefore, among blocks w′i for i < j there
can be at most b blocks of each color; otherwise, restricting w′ (equivalently w) to letters of
this color would yield a word with prefix minimum lower than −b. Hence there can be at
most 2b blocks before block wj , and moreover we must have sum(w′1w

′
2 . . . w

′
j−1) ≥ −2b. On

the other hand, for all i > j we have that sum(wi) > 0, because otherwise the operation of
Claim 7.2 would be applicable to blocks w′i−1 and w′i (recall that j < i implies that i− 1 ∈ I,
which means that sum(wi−1) ≥ 0). Hence there cannot be more than a+2b blocks after block
wj , because then we would have that pmax(w′) > a, contradicting pmax(w′) ≤ pmax(w) ≤ a.
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We conclude that w′ has at most a+ 4b+ 1 blocks in total, so at most a/2 + 2b+ 1 blocks in
each of the colors, as requested.

7.2. Factorizations: additional properties. In the following, we will use the fact that for
any subset of nodes U in a rooted forest, the numbers of factors in the maximal factorizations
of U and of the complement of U are related to each other. We begin with the case when
the complement of U is small.

Lemma 7.3. Suppose (X,U) is a partition of the node set of a rooted forest F . Then the
maximal factorization of U has at most |X|+ 1 forest factors and at most 2|X| − 1 context
factors.

Proof. For a forest factor A in factorization fact(U), let p(A) be the parent of the roots of A,
or ⊥ if the roots of A are root nodes. Observe that whenever p(A) is not equal to ⊥, then it
must be a node that belongs to X. Indeed, otherwise A∪{p(A)} would be a U -factor: either
a forest factor if all the children of p(A) are in A, or a context factor if some do not belong
to A. This would contradict the maximality of A. Moreover, the function p is injective, since
if we had p(A) = p(A′) for different maximal U -factors A,A′ that are forest factors, then
A ∪A′ would be also a U -factor, yielding that A = A ∪A′ = A′ by the maximality of A and
A′. We conclude that p injectively maps the forest factors of fact(U) into X ∪ {⊥}, hence
there are at most |X|+ 1 forest factors in fact(U).

For a context factor B in factorization fact(U), let r(B) be the parent of the appendices
of B. Clearly, since r(B) ∈ B, function r is injective. We prove that for a context factor
B, either r(B) has a child that belongs to X, or there are at least two different children of
r(B) that have nodes of X as descendants. Suppose the contrary. This implies that either
all the descendants of r(B) belong to U , or all the descendants of r(B) that are contained in
X actually belong to the tree factor at the same child u of r(B), which moreover belongs to
U . In the first case we observe that by adding all the descendants of r(B) to B we obtain a
tree factor that is a U -factor, which contradicts the maximality of B. In the second case
we observe that by adding to B all the descendants of r(B) apart from strict descendants
of u (in particular we add u) we obtain a context factor that is a U -factor, which again
contradicts the maximality of B.

Therefore, r injectively maps the context factors of fact(U) to the set consisting of
parents of vertices of X and lowest common ancestors of pairs of vertices of X. It is well
known that in a rooted forest, for any node subset X, the set of the lowest common ancestors
of pairs of vertices from X has size at most |X| − 1. Hence, r injectively maps the context
factors of fact(U) into a set of cardinality at most 2|X| − 1, thereby proving that the number
of context factors in fact(U) is at most 2|X| − 1.

Lemma 7.3 can be conveniently lifted to the setting where X can be large, but its
maximal factorization has a small number of factors.

Lemma 7.4 (Lemma 3.3, restated). Suppose (U,W ) is a partition of the node set of a rooted
forest F , and let k be the number of factors in the maximal factorization of W . Then the
maximal factorization of U has at most k+1 forest factors and at most 2k−1 context factors.

Proof. Define a rooted forest F ′ by identifying every maximal W -factor into a single vertex.
More precisely, for every maximal W -factor A that is a forest factor, replace it with a single
node xA. Make xA a child of the parent of the roots of A, or a root node if the roots
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of A were root nodes. Similarly, for every maximal W -factor B that is a context factor,
replace it with a single node xB. Make xB a child of the parent of the root of B, or a root
node if the root of B was a root node. Also, make every appendix of B a child of xB. Let
X = {xA : A ∈ fact(W )}, then |X| = k. It can be easily seen that every maximal U -factor
in F remains a maximal U -factor in F ′. Then the claim follows from Lemma 7.3 applied to
forest F ′ and the partition (X,U) of its node set.

Finally, we observe that removing a small number of vertices from a set does not change
the number of factors in its maximal factorization by much.

Lemma 7.5. Suppose F is a rooted forest and U ′ ⊆ U are two node subsets such that
|U \ U ′| ≤ `, for some nonnegative integer `. Then

|fact(U ′)| ≤ 9|fact(U)|+ 3`.

Proof. Let W = V (F )\U and W ′ = V (F )\U ′ be the complements of U and U ′, respectively.
By Lemma 7.4, we have that

|fact(W )| ≤ 3|fact(U)|.
Observe now that W ′ = W ∪ (U \ U ′), so there is a partition of W ′ into |fact(W )|+ |U \ U ′|
many W ′-factors: one can take the maximal factorization of W and add every vertex of
U \ U ′ as a singleton factor. Consequently, the maximal factorization of W ′ has at most this
many factors, hence

|fact(W ′)| ≤ |fact(W )|+ |U \ U ′| ≤ |fact(W )|+ `.

Finally, U ′ is the complement of W ′, so using Lemma 7.4 again we obtain that

|fact(U ′)| ≤ 3|fact(W ′)|.
By combining the three inequalities above we are done.

7.3. Elimination forests. We begin with proving Lemma 3.6, then we introduce reduced
elimination forests and investigate their properties.

Lemma 7.6 (Lemma 3.6, restated). For every graph G there exists an elimination forest of
G whose width is equal to the treewidth of G.

Proof. Let t be an optimum-width tree decomposition of G. Fix any linear order � on the
vertices of G. For every vertex u of G, let xu be the node of t whose margin contains u; since
margins form a partition of the vertex set, such a node exists and is unique. Define now a
structure of a rooted forest F on the vertex set of G as follows:
• For any u, v ∈ V (G), if xu is a strict ancestor of xv in t, then make u an ancestor of v
in F .
• For any u, v ∈ V (G), if xu = xv, then make u an ancestor of v in F if u � v, and make v
an ancestor of u otherwise.

First observe that the forest F defined above is an elimination forest of G. Indeed, for every
vertex u, all the nodes of t whose bags contain u are descendants of xu; this follows from the
definition of the margin. Hence, if uv is an edge of G, then the node whose bag contains u
and v must be both a descendant of xu and a descendant of xv. Consequently, xu and xv
must be bound by the ancestor-descendant relation.

Finally, we verify that the width of the tree decomposition t′ induced by F is no larger
than the width of t. To this end, we show that for every vertex u of G, the bag of u in t′
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is a subset of the bag of xu in t. Recall that the bag of u in t′ consists of u and all the
ancestors of u in F that have a neighbor among the descendants of u in F . Clearly, u itself
belongs to the bag of xu in t. Take then any vertex v that is an ancestor of u in F that is
adjacent to some w that is a descendant of u in F . Since v is an ancestor of u in F and w is
a descendant of u in F , it follows that xv is an ancestor of xu in t and xw is a descendant of
xu in t. The latter conclusion implies that all the nodes of t whose bags contain w, are in
fact descendants of xu. Observe that one of these bags must contain v as well, as vw is an
edge of G. Consequently, v is contained both in the bag of some descendant of xu, and in
the bag of some ancestor of xu, namely xv. This implies that v is contained in the bag of xu,
as claimed.

Reduced elimination forests. Intuitively, a reduced elimination forest is one that is
minimal in terms of the depth of the nodes.

Definition 7.7. An elimination forest F of a graph G is reduced if for every vertex u and
every its child v in F , u has a neighbor among the descendants of v.

The condition above was already considered in the context of treedepth [FGP15] and
trivially perfect graphs [DFPV15]. We now show that in Lemma 7.6 one can require that
the elimination forest is reduced.

Lemma 7.8. For every graph G there exists a reduced elimination forest of G whose width
is equal to the treewidth of G.

Proof. Lemma 7.6 asserts that there are some elimination forests of G that have width equal
to the treewidth of G. Among these elimination forests, pick one that minimizes the sum of
depth of all the vertices, and call it F . We claim that F is reduced.

Suppose, for the sake of contradiction, that some vertex u has a child v such that no
descendant of v is adjacent to u. Modify F by re-attaching v: make v a child of the parent
of u, instead of v, or make it into a root if v has no parent (is a root). Since we assumed
that the descendants of v are non-adjacent to u, it follows that the obtained forest F ′ is still
an elimination forest. Moreover, during the modification only some vertices ceased to be
the descendants of u, and otherwise the sets of ancestors and descendants of all the vertices
stayed the same. Consequently, in the construction of the induced tree decomposition from
F ′, every vertex will be assigned a bag that is a subset of the bag that was assigned to it
when F was considered. This implies that the width of F ′ is not larger than the width of F .
However, F ′ has strictly smaller sum of depths of all the nodes than F . This contradicts the
choice of F .

We now derive a simple, yet useful property of a reduced elimination forest.

Lemma 7.9. Suppose F is a reduced elimination forest of a graph G. Then for every tree
factor A in F , the subgraph G[A] is connected.

Proof. For the sake of contradiction, suppose A can be partitioned into nonempty subsets X
and Y such that there is no edge between X and Y in G. Since A is a tree factor in F , there
is at least one pair of vertices (u, v) such that u is the parent of v, while u and v belong to
the opposite sides of the partition (X,Y ). Choose (u, v) so that v is the deepest among pairs
with this property, and assume w.l.o.g. that u ∈ X and v ∈ Y . By the choice of (u, v), the
tree factor at v is entirely contained in Y . Hence no descendant of v is adjacent u, due to
u ∈ X. This is a contradiction with F being reduced.
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Finally, we derive two additional technical lemmas about reduced tree decompositions,
which will be needed to achieve property (D2) of the Dealternation Lemma.

Lemma 7.10. Suppose F is a reduced elimination forest of a graph G; let ` be the width
of F . Suppose further that X,A1, A2, . . . , Ap is a partition of the vertex set of G such that
there is no edge between Ai and Aj for i 6= j. Then any maximal (V (G) \X)-factor that is a
context factor, intersects at most `+ 1 among sets A1, A2, . . . , Ap.

Proof. Let t be the tree decomposition induced by F . Fix any maximal (V (G) \X)-factor B
that is a context factor, and assume B ∩Ai is nonempty for some i.

Let B′ ⊇ B be the tree factor whose root is the root of B. Since B is a maximal
(V (G) \X)-factor that is a context factor, we infer that B′ must contain at least one vertex
of X, because otherwise B′ would be a (V (G) \X)-factor that would be a strict superset
of B. By Lemma 7.9, G[B′] is connected. Observe that X ∩ B′ ⊆ B′ \ B, and hence sets
X ∩ B′ and Ai ∩ B are disjoint. Let P be a shortest path between X ∩ B′ and Ai ∩ B in
G[B′]. Denote the endpoints of P by u and v, where u ∈ Ai ∩B and v ∈ X ∩B′. As P was
chosen to be the shortest, no vertex of P apart from v belongs to X. Since all the neighbors
of vertices of Ai lie in Ai ∪X, and u belongs to Ai, we infer that all the vertices on P apart
from v belong to Ai.

Since P is connected, the set of those vertices whose bags in t contain any vertex of
P , induces a connected subtree of F . This subtree contains both a vertex in B, namely u,
and a vertex in B′ \B, namely v, and hence it contains the whole path in F between these
vertices. In particular the parent of the appendices of B is included in this subtree; denote
it by w. Summarizing, there is a vertex a on P that is included in the bag of w. Observe
that a cannot be equal to v. This is because v belongs to the forest factor B′ \B, so all the
nodes whose bags contain v also belong to this forest factor. Consequently, a is a vertex on
P that is different than v, so a ∈ Ai.

Since this reasoning can be performed for each i such that B ∩Ai is nonempty, for each
such index i we obtain a different vertex a that needs to be included in the bag of w. The
size of the bag of w is, however, bounded by ` + 1, so the same bound holds also for the
number of indices i as above.

Lemma 7.11. Suppose t is a tree decomposition of width k of a graph G and F is a reduced
elimination forest of G of width at most k, such that t and F satisfy condition (D1) of the
Dealternation Lemma (Lemma 3.7) for some function f(k) ∈ O(k3). Then for every node x
of t, there are at most g(k) children of x in the set

{y : y is a node of t with at least one context factor in factF (cmpt(y))},
where g(k) ∈ O(k4) is a function depending on f(k) only.

Proof. Fix any node x of t, and let y1, y2, . . . , yp be its children in t. Denote

Ai = cmpt(yi) for all i = 1, 2, . . . , p, and X = V (G) \
p⋃
i=1

Ai.

Since t is a tree decomposition of G, it follows that there is no edge between Ai and Aj for
any i 6= j, and hence the tuple (X,A1, A2, . . . , Ap) satisfies the prerequisites of Lemma 7.10.
Recall that F is reduced and has width at most k, so by Lemma 7.10 we conclude that for any
context factor B from the maximal factorization of factF (V (G) \X), at most k + 1 among
sets A1, A2, . . . , Ap intersect B. Note that V (G) \X = cmpt(x) \mrgt(x), so V (G) \X can
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be obtained from cmpt(x) by removing at most k + 1 vertices. The maximal factorization
of cmpt(x) in F has at most f(k) factors, so by Lemma 7.5 we have that the maximal
factorization of V (G) \X in F has at most 9 · f(k) + 3(k + 1) factors. Consequently, if we
take

g(k) = (9 · f(k) + 3(k + 1)) · (k + 1),

then at most g(k) among sets A1, A2, . . . , Ap can intersect any context factor in the maximal
factorization of V (G) \X. We claim that all the other sets Ai have only forest factors in
their maximal factorizations, which will conclude the proof.

Take any such Ai, that is, Ai intersects only forest factors of the maximal factorization of
V (G) \X. Let B be any tree factor in F that is contained in V (G) \X. Since F is reduced,
by Lemma 7.9 we have that G[B] is connected. There are no edges between Ai and Aj for
any j 6= i, so we conclude that B is either entirely contained or entirely disjoint with Ai.
Since Ai is disjoint with all the context factors of factF (V (G) \X), it follows that the set
Ai is closed under taking descendants in F . In particular, this implies that the maximal
factorization of Ai contains no context factors, as promised.

7.4. From Local to Global Dealternation Lemma. In this section we give a proof of
the Dealternation Lemma assuming its local counterpart, which will be formulated in a
moment. First, for convenience we introduce the appropriate notion of alternation for tree
decompositions.

Definition 7.12. Suppose t is a tree decompositions of a graph G, and F is an elimination
forest of G. The t-alternation of F is defined as the maximum among the nodes x of t, of the
number of maximal cmpt(x)-factors in F . In other words, the t-alternation of F is equal to:

max
x∈V (t)

|factF (cmpt(x))|.

Thus, to prove the Dealternation Lemma it suffices to show that there always exists an
optimum-width elimination forest F of G, such that the t-alternation of F is bounded by a
quadratic function of the width of t (that is, condition (D1) holds), and such that F also
satisfies condition (D2).

The idea for the proof is as follows. We take any reduced elimination forest F of G of
optimum width, and iteratively “correct” F so that its t-alternation becomes bounded. To
achieve this, we examine each node x of t and correct F so that the number of cmpt(x)-factors
in F is bounded by f(k), for some quadratic function f . For this, we devise a local correction
procedure, which we call the Local Dealternation Lemma; this procedure is applied iteratively
to all the nodes of t.

Lemma 7.13 (Local Dealternation Lemma). There exists a function f(k) ∈ O(k3) such
that the following holds. Suppose G is a graph of treewidth at most k, and F is a reduced
elimination forest of G of optimum width. Suppose further that (U,X,W ) is a partition of
the vertex set of G such that |X| ≤ k + 1 and there is no edge between U and W . Then
there is a reduced elimination forest F ′ of G of optimum width with the following conditions
satisfied:
(LD1) There are at most f(k) maximal U -factors in F ′.
(LD2) For every U ′ ⊆ U , every U ′-factor in F is also a U ′-factor in F ′.
(LD3) For every W ′ ⊆W , every W ′-factor in F is also a W ′-factor in F ′.
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We remark that a statement formulating the essence of the Local Dealternation Lemma
can be found in the work of Courcelle and Lagergren [CL96, Theorem 6.3].

When applying the Local Dealternation Lemma to each component of t, we need to be
careful, as we have to make sure that one application that corrects cmpt(x)-factors for some
x, does not increase the number of cmpt(y)-factors for nodes y that were corrected before.
To achieve this, we shall apply the Local Dealternation Lemma in a bottom-up order on the
nodes of x. At the end, this ensures that property (D1) is satisfied. For property (D2), we
guarantee that all the intermediate, as well as the final elimination forest is reduced, and we
make use of Lemma 7.10. We now proceed to a formal reasoning, supposing that the Local
Dealternation Lemma holds.

Proof of Dealternation Lemma, using Local Dealternation Lemma. Since we know that t has
width at most k, we have that all adhesions in t have sizes not larger than k + 1. Let F0 be
any reduced elimination forest of G of optimum width, which exists by Lemma 7.8. Clearly,
as t has width k, the width of F0 is at most k.

Let � be an arbitrary linear order on the node set of t such that whenever a node x is a
strict descendant of a node y, then x comes before y in �. Let

V (t) = {x1 ≺ x2 ≺ . . . ≺ xm},

where m = |V (t)|. We process the nodes of t in the order �, inductively computing reduced
elimination forests F1, . . . , Fm, starting with F0. We keep the following invariant for every
i = 0, 1, . . . ,m: in decomposition Fi, the number of cmpt(xj)-factors is at most f(k) for
every j ≤ i, where f is the function given by the Local Dealternation Lemma. Thus, the
invariant is satisfied vacuously for i = 0. Observe that the reduced elimination forest Fm
obtained at the end of the construction has t-alternation bounded by f(k).

For i ≥ 1, construct decomposition Fi by applying the Local Dealternation Lemma to
the elimination forest Fi−1 and partition

(U,X,W ) := (cmpt(xi), adht(xi), V (G) \ (cmpt(xi) ∪ adht(xi)))

of the vertex set of G; the fact that this partition satisfies the prerequisites of the Local
Dealternation Lemma follows from the properties of the tree decomposition t. Clearly, by
condition (LD1), the number of maximal cmpt(xi)-factors in Fi is at most f(k). It remains
to prove the same conclusion for maximal cmpt(xj)-factors, for every j < i. Since xj ≺ xi,
we have that xj is not an ancestor of xi.

If xj is a descendant of xi, then cmpt(xj) ⊆ cmpt(xi) = U . By condition (LD2), every
cmpt(xj)-factor in Fi−1 is also an cmpt(xj)-factor in Fi, hence the number of maximal
cmpt(xj)-factors in Fi cannot be larger than the number of maximal cmpt(xj)-factors in
Fi−1, which is at most f(k) by induction.

If xj is not a descendant of xi, then since it is neither an ancestor, we obtain that
cmpt(xj) ⊆ V (G) \ (cmpt(xi) ∪ adht(xi)) = W . Again, by condition (LD3), every cmpt(xj)-
factor in Fi−1 is also an cmpt(xj)-factor in Fi, hence again the number of maximal cmpt(xj)-
factors in Fi cannot be larger than f(k) by induction.

Thus, we have found an elimination forest F = Fm of G such that: (i) F is reduced and
has optimum width, and (ii) the t-alternation of F is bounded by f(k). Hence, F satisfies
property (D1). Finally, note that property (D2) is also satisfied for F due to Lemma 7.11,
because F is reduced.



Vol. 18:1 OPTIMIZING TREE DECOMPOSITIONS IN MSO 26:25

7.5. Proof of the Local Dealternation Lemma. We are left with proving the Local
Dealternation Lemma. Let F be the given reduced elimination forest of G of optimum width.
Also, let s be the tree decomposition induced by F . Recall that the forest underlying s is
equal to F , while the bags are constructed as described in Section 3. Finally, let ` ≤ k be
the width of s, which is equal to the treewidth of G.

To ease the description, we color the vertices of G as follows: vertices of U are red, and
the vertices of W are blue. The vertices of X do not receive any color. When we say that
some set is monochromatic, we mean that all its members are red or all its members are blue.
In particular, a monochromatic set has no elements of X. Similarly, when we say that two
vertices have the same color, or are of different colors, we implicitly state that both of them
are assigned some color, so they belong to U ∪W .

The idea is to modify the forest F by performing local “surgery” on its shape, so that
at the end it satisfies condition (LD1). During the modification we will make sure that the
final decomposition will be reduced and will satisfy conditions (LD2) and (LD3). In order
not to obfuscate the description, we do not verify conditions (LD2) and (LD3) directly, as
their satisfaction follows immediately from the nature of the modification performed. More
precisely, the modification will satisfy the following invariants:
(I1) Whenever u is the parent of v, and u and v are of the same color, then u remains the

parent of v after the modification.
(I2) Whenever u and v are siblings, and the tree factors at u and v are monochromatic and

of the same color, then u and v remain siblings after the modification.
(I3) Whenever u ∈ U ∪W is a leaf, it remains a leaf after the modification.
It is easy to see that the satisfaction of these invariants ensures that conditions (LD2)
and (LD3) are preserved. We leave the verification of the invariants throughout the description
to the reader. Finally, the fact that the output elimination forest is reduced will be checked
explicitly.

The main idea is to examine each maximal (U ∪W )-factor in F , and reorganize it so
that it can be partitioned into a bounded number of U - and W -factors. The fact that F
is reduced implies that no reorganization is needed for forest factors: from Lemma 7.9 it
follows that every forest factor of factF (U ∪W ) can be partitioned into one U -factor and one
W -factor. For context factors of factF (U ∪W ), some rearrangement is, however, necessary.
For this, we will use the tools developed in Section 7.1.

We start by observing the following property that is implied by the fact that F is reduced.

Claim 7.14. Suppose u is a vertex such that the tree factor at u in F is entirely contained
in U ∪W . Then this tree factor is monochromatic. Moreover, if u has a parent v, then it
cannot happen that u and v have different colors.

Proof. Let A be the tree factor at u. Since there is no edge between U and W , there is also
no edge between U ∩A and W ∩A. However, G[A] is connected by Lemma 7.9. Hence either
U ∩A or W ∩A is empty, which establishes the first claim. For the second claim, observe
that otherwise the pair (v, u) would contradict the fact that F is reduced. y

We now examine factF (U ∪W ), the maximal factorization of U ∪W in F . Recall that
this partition of U ∪W consists of all maximal (U ∪W )-factors in F . Since |X| ≤ k + 1, by
Lemma 7.3 we obtain the following.

Claim 7.15. Factorization factF (U ∪W ) has at most k+ 2 forest factors and at most 2k+ 1
context factors.
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We now observe that Claim 7.14 already implies that the forest factors of factF (U ∪W )
are as required:

Claim 7.16. Let A be a maximal (U ∪W )-factor in F that is a forest factor. Then each of
A ∩ U and A ∩W is either empty or a forest factor in F .

Proof. By Claim 7.14, every tree factor contained in A is monochromatic. Consequently,
A ∩ U consists of all the tree factors at the red roots of A, thus it is either empty or a forest
factor. An analogous arguments applies to A ∩W . y

The context factors of factF (U ∪W ) may need reorganization. Fix some context factor
B from factF (U ∪W ). We now analyze the structure of B. The path from the root of B
to the parent of the appendices of B shall be called the spine of the context factor B; we
denote the spine by S. For a vertex v ∈ S, let Rv denote the set of those strict descendants
of v which belong to B, and for which v is their lowest ancestor on the spine. Note that Rv
may be empty, if no such descendant exists, and otherwise it is a forest factor with roots
being those children of v that are in B but are not on S. Let us observe the following.

Claim 7.17. For each vertex v ∈ S, every vertex of Rv has the same color as v.

Proof. Follows immediately from Claim 7.14. y

For v ∈ S, let Cv = {v} ∪ Rv. Observe that each such set Cv, for v ∈ S, is a context
factor in F , which is moreover monochromatic by Claim 7.17. Thus, each Cv is a U - or
W -factor, depending on the color of v.

A vertex v ∈ S shall be called important if either v is the deepest vertex on S (i.e., the
parent of the appendices of B), or adhs(v) \ adhs(v′) contains a vertex of X, where v′ is the
child of v on S. We note that there are not so many important vertices.

Claim 7.18. There are at most `+ 1 important vertices on S.

Proof. For each important vertex v ∈ S that is not the deepest vertex on S, select any
vertex xv that belongs both to X and to adhs(v) \ adhs(v′), where v′ is the child of v on
S. Observe that since B ∩X = ∅, it follows that xv is an ancestor of all the vertices of S.
Hence xv ∈ adhs(r), where r is the root of B. As |adhs(r)| ≤ ` and vertices xv are pairwise
different for different vertices v, it follows that the number of important vertices on S is at
most `+ 1 (where the +1 summand is contributed by the deepest vertex of S). y

We now consider a factorization FB of B into context factors defined as follows:
• For each important vertex v on S, put Cv into F as a separate context factor. These
context factors shall be called important.
• For each maximal subpath S′ of S that does not contain any important vertices, put the
context factor

⋃
v∈S′ Cv into F . These context factors shall be called regular.

By Claim 7.18, FB consists of at most ` + 1 important factors and at most ` + 1 regular
factors. The important factors of FB are monochromatic by Claim 7.17, but the same cannot
be said about the regular ones. Therefore, let us fix a regular factor B′ ∈ FB. That is,
B′ =

⋃
v∈S′ Cv for some maximal subpath S′ of S that does not contain any important

vertices. The path S′ shall be called the spine of B′.
Let us enumerate the vertices of S′ as v1, . . . , vm, where vi is an ancestor of vj for i ≤ j.

Further, let vm+1 be the child of vm on S (which exists due to considering the deepest vertex
of S to be important). For brevity, we will write Ri = Rvi and Ci = Cvi .
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For each i ∈ {1, 2, . . . ,m}, define
Qi = adhs(vi) \ adhs(vi+1).

Note that by the way s is constructed from F (see Section 3), Qi comprises all strict ancestors
of vi that do have a neighbor in Ci, but do not have any neighbors among the descendants
of vi+1. This implies the following.

Claim 7.19. For each i ∈ {1, 2, . . . ,m}, if vi ∈ U then Qi ⊆ U , and if vi ∈W then Qi ⊆W .

Proof. By symmetry, suppose vi ∈ U . Consider any x ∈ Qi and let w be any neighbor of x
in Ci. By Claim 7.17, we have w ∈ U . Since vi is not important, x /∈ X. Therefore we must
have x ∈ U , for otherwise wx would be an edge with one endpoint in U and the second in
W . y

For i = 1, 2, . . . ,m, let xi be the word over the alphabet Σ = {+,−} defined as follows:

xi = +(−)|Qi|.

That is, we first put one +, and then repeat − exactly |Qi| times. Color xi with the same
color as vi, and define a bichromatic word h as follows:

h = x1x2 . . . xm.

The idea is apply the block-shuffle given by Lemma 7.1 to h; this block-shuffle will naturally
induce a reorganization of B′ within F , as depicted on Figure 3. Thus, the number of
monochromatic blocks will be reduced, while the additional properties asserted by Lemma 7.1
will ensure that the width of the decomposition does not increase.

We proceed to the details, but first we need to examine the parameters of h needed to
apply Lemma 7.1.

Claim 7.20. For each i ∈ {1, 2, . . . ,m}, we have sum(xi) = |adhs(vi+1)| − |adhs(vi)|.

Proof. Observe that adhs(vi+1) ⊆ adhs(vi) ∪ {vi} and adhs(vi+1) \ adhs(vi) = {vi}, because
F is reduced. Therefore

sum(xi) = 1− |Qi|
= 1− |adhs(vi) \ adhs(vi+1)|
= 1− (|adhs(vi)| − |adhs(vi+1)|+ 1)

= |adhs(vi+1)| − |adhs(vi)|,
as claimed. y

Claim 7.21. If hred and hblue are formed by restricting h to red and blue letters, then

pmax(h) ≤ `+ 1− |adhs(v1)| and pmin(hred) ≥ −` and pmin(hblue) ≥ −`.

Proof. Observe since each subword xi contains only one +, we have that

pmax(h) ≤ 1 + max
i=0,1,2,...,m−1

sum(x1x2 . . . xi).

On the other hand, by Claim 7.20, for every i = 0, 1, . . . ,m we have that

sum(x1x2 . . . xi) = |adhs(vi+1)| − |adhs(v1)| ≤ `− |adhs(v1)|.
The first claimed inequality follows.

Consider now the word hred, which is defined as

hred = x′1x
′
2 . . . x

′
m,
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where x′i = xi if vi is red, and x′i = ε if vi is blue. Clearly, we have

pmin(hred) = min
i=0,1,...,m

sum(x′1x
′
2 . . . x

′
i).

On the other hand, since word x′i is nonempty exactly when Ci is red, similarly as in
Claim 7.20 we obtain that

sum(x′i) = |adhs(vi+1) ∩ U | − |adhs(vi) ∩ U |.
Consequently, we have

sum(x′1x
′
2 . . . x

′
i) = |adhs(vi+1) ∩ U | − |adhs(vi) ∩ U | ≥ 0− ` = −`,

which implies the second claimed inequality. The proof for the third one is analogous. y

Thus, we can apply Lemma 7.1 to the word h, obtaining a word h′ with the following
properties.
• Word h′ is a block-shuffle of h, in particular every subword xi remains contiguous in h′.
• pmax(h′) ≤ pmax(h).
• The numbers of red and blue blocks in h′ are not larger than (5`+ 3)/2.
Now, based on h′, we construct the modified context factor in a natural manner. Let
π : {1, . . . ,m} → {1, . . . ,m} be a permutation such that

h′ = xπ(1)xπ(2) . . . xπ(m).

Then permute the context factors {Ci : i ∈ {1, 2, . . .m}} according to π; see Figure 3 for an
illustration.
• Make vπ(1) into a child of the node that was the parent of v1 in s; in case v1 was a root
node, vπ(1) becomes a root node.
• For each i = 2, 3, . . . ,m, make vπ(i+1) a child of vπ(i).
• Make vm+1 into a child of vπ(m).
Since there is no edge between red and blue vertices in G, and h′ is a block-shuffle of h,
this reorganization seems not to spoil the basic assumption that we are working with an
elimination forest. We now verify this formally.

Apply the reorganization defined above to every regular factor B′ belonging to the
factorization FB , for every context factor B ∈ factF (U ∪W ). Let F ′ be the obtained rooted
forest. We now verify the properties of F ′. For convenience, denote

F =
⋃

B∈factF (U∪W )

(the set of regular factors of FB) ,

thus F comprises all the factors B′ to which the reorganization is applied.

Claim 7.22. F ′ is an elimination forest of G.

Proof. Take any edge uv ∈ E(G). Since F is an elimination forest of G, we have that u and
v are bound by the ancestor-descendant relation in F ; say u is an ancestor of v. If u /∈

⋃
F

or v /∈
⋃
F , then u remains an ancestor of v in F ′, because the modification yielding F ′

is performed in each factor of F separately, while the vertices outside of
⋃
F stay intact.

Similarly, if u ∈ B′u ∈ F and v ∈ B′v ∈ F where B′u 6= B′v, then the relative positions of B′u
and B′v do not change during the reordering, and u remains an ancestor of v in F ′.

We are left with the case when u and v belong to the same factor B′ ∈ F . Note that in
particular u, v /∈ X. Since uv is an edge, it cannot be that u ∈ U and v ∈W or vice versa.
Assume then, without loss of generality, that u, v ∈ U , that is, both u and v are red. Let u′
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Figure 3: Reorganization of an example regular factor B′ with 7 vertices on the spine. The
context before the reorganization is on the left panel, after is on the right. The
applied permutation is π = (1, 4, 5, 2, 3, 6), and it leaves only two monochromatic
blocks in h′. Note that the last context C7 does not participate in the reorganization
and stays on its place.

and v′ be vertices on the spine of B′ such that u ∈ Cu′ and v ∈ Cv′ . Note that u′ and v′ are
both red. Further, since u is an ancestor of v in F , we either have u′ = v′, or u′ is a strict
ancestor of v′ in F and u = u′. In the former case, the ancestor-descendant relation within
Cu′ = Cv′ is left intact by the reorganization, so u remains an ancestor of v in F ′. In the
latter case, since the reorganization within B′ is performed by a block-shuffle, the relative
order of u′ = u and v′ on the spine does not change, so again u remains an ancestor of v
in F ′. y

Claim 7.23. F ′ is reduced.

Proof. Take any vertex u. Observe that if u does not lie on the spine of any factor of F ,
then u has exactly the same descendants in F and in F ′, which are moreover partitioned in
the same manner among the tree factors at the children of u. Hence, it remains to check
what happens if u lies on the spine of a factor B′ ∈ F .

Adopt the notation from the description of the reorganization of the factor B′, and
suppose u = vi for some i ∈ {1, 2, . . . ,m}. W.l.o.g. suppose u is red. Every tree factor
contained in Ri stays intact in F ′ and remains attached below u, so u has still a neighbor in
each of these tree factors. Therefore, the only tree factor at a child of u in F ′ that remains
to be checked is the tree factor at the child of u on the spine of B′. Since the reorganization
was obtained by a block-shuffle, the relative positions of red vertices along the spine remain
the same in F ′ as they were in F . Hence, this tree factor is obtained from the tree factor
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at vi+1 in F by adding and/or removing some blue vertices. Since F was reduced, u has a
neighbor w in the tree factor rooted at vi+1 in F . The neighbor w in particular cannot be
blue, because u is red. We infer that w remains in the tree factor at the child of vi on the
spine in F ′, which concludes the proof. y

Claim 7.24. The width of F ′ is not larger than the width of F .

Proof. Let s′ be the tree decomposition induced by F ′. Take any vertex v of G. If v /∈
⋃
F ,

then v has exactly the same ancestors and descendants in F as in F ′, hence it is assigned
exactly the same bag in the induced decompositions s and s′. Therefore, from now on assume
that v ∈ B′ for some B′ ∈ F . In particular v /∈ X, hence assume without loss of generality
that v ∈ U , i.e., v is red.

Adopt the notation from the description of the reorganization of the factor B′. Suppose
first that v does not lie on the spine of B′. In this case, the set of descendants of v does
not change during the reorganization, however v can get new ancestors on the spine of B′.
Observe, nevertheless, that all these new ancestors will be blue, because the reorganization
applied to the context factor B′ does not change the relative order of red vertices on the spine.
As all descendants of v are red (by Claim 7.17), we infer that none of the new ancestors of v
is included in the bag of v in s′. Consequently, the bag of v in s′ is a subset of the bag of v
in s.

Finally, we are left with the case when v belongs to the spine of B′, say v = vi for some
i ∈ {1, 2, . . . ,m}. First, we observe that for every j ∈ {1, 2, . . . ,m} it holds that

adhs(vj) \ adhs(vj+1) = adhs′(vj) \ adhs′(vπ(π−1(j)+1)).

This is because adhs(vj) \ adhs(vj+1) consists of strict ancestors of vj with the same color as
vj , which in particular do not belong to X (Claim 7.19), and B′ is reorganized through a
block shuffle. Since F and F ′ are reduced (Claim 7.23), we also have

adhs(vj+1) \ adhs(vj) = adhs′(vπ(π−1(j)+1)) \ adhs′(vj) = {vj}.
By Claim 7.20, this implies that

sum(xj) = |adhs(vj+1)| − |adhs(vj)| = |adhs′(vπ(π−1(j)+1))| − |adhs′(vj)|.
Therefore, we have

|bags′(vi)| = 1 + |adhs′(vi)| = 1 + |adhs′(vπ(1))|+ sum(xπ(1)xπ(2) . . . xπ(π−1(i)−1)). (7.1)

Observe that by construction we have

adhs(v1) = adhs′(vπ(1)). (7.2)

Moreover, by the definition of pmax(·), Lemma 7.1, and Claim 7.21, we have

1 + sum(xπ(1) . . . xπ(π−1(i)−1)) ≤ pmax(h′) ≤ pmax(h) ≤ `+ 1− |adhs(v1)|. (7.3)

Here, the additional +1 summand on the left hand side is obtained by including also the
first + symbol at the front of xi = xπ(π−1(i)). By combining (7.1) with (7.2) and (7.3), we
infer that |bags′(vi)| ≤ `+ 1, as requested. y

The whole construction was set up in order to make sure that after the reorganization,
the red vertices within each factor of F can be grouped into a small number of U -factors.
We now check this formally.

Claim 7.25. Let B′ ∈ F . Then the set B′ ∩ U can be partitioned into at most (5`+ 3)/2
sets that are U -factors in F ′.
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Proof. Let us adopt the notation from the description of the reorganization of the factor B′.
Take any monochromatic block xπ(i)xπ(i+1) . . . xπ(j) in h′. Observe that the corresponding
vertex set Cπ(i) ∪ Cπ(i+1) ∪ . . . ∪ Cπ(j) is a monochromatic context factor in F ′ of the same
color as the block. Consequently, since there are at most (5`+ 3)/2 maximal red blocks in
h′, the set B′ ∩ U can be partitioned into at most (5`+ 3)/2 U -factors in F ′. y

We now argue that the forest F ′ has all the required properties. By Claim 7.22, F ′ is
indeed an elimination forest of G, and by Claim 7.23 it is reduced. By Claim 7.24, the width
of F ′ is not larger than the width of F . We now bound the number of maximal U -factors in
F ′. Observe that for every forest factor A ∈ factF (U ∪W ), A ∩U is either empty or a forest
factor in F , which stays intact in F ′ (Claim 7.16). On the other hand, if B ∈ factF (U ∪W )
is a context factor, then FB contains at most ` + 1 important factors and at most ` + 1
regular factors (Claim 7.18). Each important factor of FB is monochromatic, while for each
regular factor B′ ∈ FB, the set B′ ∩ U can be partitioned into at most (5`+ 3)/2 U -factors
in F ′ (Claim 7.25). By Claim 7.15 and since ` ≤ k, we conclude that U can be partitioned
into at most

f(k) := (k + 2) + (2k + 1) · (k + 1) · (5k + 3)/2

U -factors in F ′. Since each U -factor is contained in some maximal U -factor, and maximal
U -factors in F ′ form a partition of U by Lemma 3.2, we infer that there are at most f(k)
maximal U -factors in F ′. This establishes condition (LD1). Finally, as we said before,
the satisfaction of conditions (LD2) and (LD3) follows easily from preserving invariants
(I1)–(I3), and we leave this verification to the reader. This concludes the proof of the Local
Dealternation Lemma.

8. Normal form for mso transductions

In this section we prove Theorem 6.2. Let us first discuss the proof strategy. Recall that an
mso transduction is a finite sequence of atomic steps, each being filtering, universe restriction,
interpretation, copying, or coloring. Hence, the idea is to show that one can appropriately
swap and merge these steps while modifying them slightly, so that the final normal form is
achieved. It will be trivial to implement the rules algorithmically, hence we focus only on
their description. As most of the rules are very simple, we keep the argumentation concise.

We start with merging rules: whenever two steps of the same type, apart from coloring,
appear consecutively in the sequence, then they can be merged into one step.

Claim 8.1. If I1 and I2 are two atomic transductions of the same kind, being either renaming,
copying, filtering, universe restriction, or interpretation, then I2 ◦ I1 can be expressed as a
single step of the same kind.

Proof. For copying and renaming the claim is trivial. For filtering, it suffices to take filtering
with mso sentence ψ1 ∧ ψ2, where ψ1 and ψ2 are sentences used in I1 and I2, respectively.
For universe restriction, suppose ϕ1(u) and ϕ2(u) are two mso formulas used in I1 and
I2, respectively. Then it suffices to take a universe restriction step using the formula
ϕ(u) = ϕ1(u) ∧ ϕ′2(u), where ϕ′2(·) is constructed from ϕ2(·) by restricting the universe to
the elements satisfying ϕ1(·), that is, adding a guard to each quantifier that restricts its
range to (sets of) elements satisfying ϕ1(·). Finally, for interpretation, it suffices to replace
each relation atom R(x1, . . . , xr) appearing in each mso formula used in I2, by the mso
fomula ϕR(x1, . . . , xr) used in I1 to define the interpretation of R. The formulas obtained in
this way define an interpretation that is equivalent to I2 ◦ I1. y
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Next, we give swapping rules that enable us to exchange pairs of consecutive transductions.
We first check that renaming steps can be swapped with any other step, thus they can be
always pushed to the left.

Claim 8.2. Suppose I1 is a renaming step and I2 is an atomic transduction that is not
renaming. Then I2 ◦ I1 = I ′1 ◦ I ′2, where I ′1 is a renaming step and I ′2 is an atomic step of
the same kind as I2.

Proof. If I2 is an interpretation step, then we can just apply Claim 8.1 to merge I1 and I2 into
a single interpretation step I ′2, and take I ′1 to be identity. For other kinds of transductions,
it is trivial to rewrite I2 in the vocabulary before renaming, thus obtaining I ′2, and we put
I ′1 = I1. y

Next, we show that the universe restriction steps can be pushed to the left by swapping.

Claim 8.3. Suppose I1 is a universe restriction step and I2 is an atomic transduction that
is not a universe restriction. Then I2 ◦ I1 = J ◦ I ′1 ◦ I ′2 for some J , I ′1 and I ′2, such that J
is a renaming step, I ′1 is a universe restriction step, and I ′2 is an atomic transduction of the
same kind as I2.

Proof. Let ϕ(·) be the formula used by I1 to restrict the universe. We proceed by case study,
depending on the kind of I2.

If I2 is a coloring step, then we can take I ′1 = I1, I ′2 = I2, and J to be identity, since
introducing the new color has no effect on the application of universe restriction.

If I2 is a filtering step, say using an mso sentence ψ, then we can take I ′1 = I1 and I ′2
to be filtering using ψ restricted to the elements satisfying ϕ(·). That is, we modify ψ by
adding a guard to each quantifier that restricts its range to (sets of) elements satisfying ϕ(·).
For J we can take the identity.

If I2 is a copying step, then we can take I ′2 = I2 and J to be identity, and we define
I ′1 as follows. First, let ϕ′(u) be the sentence over the vocabulary after copying, obtained
from ϕ(u) by additionally requiring that u belongs to the first layer of copies and restricting
the range of each quantifier to the first layer. Then, I ′1 is universe restriction with the mso
predicate ϕ′′(u) saying that the unique element u′ that is a copy of u from the first layer
satisfies ϕ′(u′). Thus, ϕ′(·) works on the first layer in exactly the same manner as ϕ(·) worked
on the original universe, while ϕ′′(·) removes all copies of all elements that would be removed
by ϕ(·).

Finally, if I2 is an interpretation step, then we proceed as follows. As I ′2 we take I2

restricted to the elements that satisfy ϕ(·); that is, in every formula used in I2 we restrict
both the free variables and all quantifiers to elements satisfying ϕ(·). Moreover, I ′2 only
adds relations to the structure, interpreted via formulas modified as in the previous sentence,
while all relations of the original vocabulary are kept intact via identity interpretations.
Next, we take I ′1 = I1; note that thus I ′1 works on the original relations that were kept in
the structure. Finally, we add a renaming step J that removes the relations of the original
vocabulary and renames the other relations added by I ′2 to their final names. y

Next, we push the interpretation steps to the left by swapping.

Claim 8.4. Suppose I1 is an interpretation step and I2 is an atomic transduction, being
either coloring, filtering, or copying. Then I2 ◦ I1 = I ′1 ◦ I ′2, where I ′1 is an interpretation
step and I ′2 is an atomic transduction of the same kind as I2.
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Proof. We proceed by case study, depending on the kind of I2.
If I2 is a coloring step, then we can simply put I ′1 = I1 and I ′2 to be I2 enriched by

keeping the unary predicate introduced by I1 intact.
If I2 is a filtering step, say using an mso sentence ψ, then we can put I ′1 = I1 and

I2 to be a filtering using the sentence ψ′ obtained from ψ by replacing each relation atom
R(x1, . . . , xr) by its interpretation ϕR(x1, . . . , xr) under I1.

Finally, if I2 is a copying step, then we take I ′2 = I2 and I ′1 defined as follows. First, from
each formula ϕR(x1, . . . , xr) used by I1 construct a formula ϕ′R(x1, . . . , xr) by restricting all
free variables and ranges of all quantifiers to the first layer of copies. Then, in I ′2 to interpret
relation R use the formula ϕ′′R(x1, . . . , xr) which expresses the following: the unique elements
x′1, . . . , x

′
r that are the first-layer copies of x1, . . . , xr, respectively, satisfy ϕ′R(x′1, . . . , x

′
r). y

The next type to tackle is copying.

Claim 8.5. Suppose I1 is a copying step and I2 is an atomic transduction, being either
filtering or coloring. Then I2 ◦ I1 = J ◦I1 ◦ I ′2, where J is a single interpretation step, while
I ′2 is a single filtering step if I2 was filtering, and I ′2 is a finite sequence of coloring steps if
I2 was coloring.

Proof. Let I1 copy the universe ` times.
First, suppose I2 is a filtering step, say using an mso sentence ψ. Then we can take J

to be the identity, while I2 is filtering using a sentence ψ′ obtained from ψ by restricting the
ranges of all quantifiers to the first layer of copies.

Second, suppose I2 is a coloring step, say introducing a unary predicate X. Then we
take I ′2 to be a sequence of ` coloring steps as follows. The ith coloring step introduces a
unary predicate Xi. After performing the copying (transduction I1), we add an additional
interpretation step J that introduces the unary predicate X interpreted as follows: if u is
from the ith layer of copies, then u is declared to belong to X if and only if it belongs to
Xi; this can be easily expressed in mso. The auxiliary predicates X1, . . . , X` are dropped by
interpretation J . y

Finally, we are left with swapping coloring and filtering.

Claim 8.6. Suppose I1 is a filtering step and I2 is a coloring step. Then I2 ◦ I1 = I1 ◦ I2.

Proof. The filtering may just ignore the new predicate introduced by the coloring. y

We now show that using the merging and swapping rules described in the above claims,
we can reduce any sequence of atomic transductions to the normal form described in the
theorem statement.

First, observe that by iteratively using Claim 8.1 (for renaming) and Claim 8.2 we can
always move any renaming steps to the left of the current sequence of transductions, and
merge it there into a single renaming step.

Next, consider the universe restriction steps. Using Claim 8.1 (for universe restriction)
and Claim 8.3 we can iteratively move any universe restriction steps to the left and merge
them into one universe restriction step, placed immediately to the right of the final renaming
step. Any additional renaming steps obtained during this procedure can be again pushed to
the left as in the previous paragraph.

Thus, the remaining sequence has no universe restriction steps. Observe that now
all interpretation steps can be moved to the left using Claim 8.4, and merged into one



26:34 M. Bojańczyk and M. Pilipczuk Vol. 18:1

interpretation step using Claim 8.1 for interpretation. This step is placed immediately to the
right of the universe restriction step obtained in the previous paragraph.

We are left with a sequence consisting only of copying, filtering, and coloring steps. Apply
Claim 8.5 iteratively to move all copying steps to the left, and apply Claim 8.1 (for copying)
to merge them into a single copying step, placed immediately to the right of the interpretation
step obtained in the above paragraph. Any additional interpretation steps obtained during
this procedure can be pushed left as above, and merged into the interpretation step obtained
above. Note that this operation may blow up coloring steps into finite sequences of coloring
steps, but this is irrelevant for the pushing procedure.

Finally, we are left with filtering and coloring steps that can be sorted using Claim 8.6.
Then, filtering steps can be merged into one filtering step using Claim 8.1 (for filtering). We
have obtained the normal form as described in the theorem statement, hence we are done.

9. Conclusions

In this work we have constructed an mso transduction that, given a constant-width tree
decomposition of a graph, computes a tree decomposition of this graph of optimum width. As
we have shown, this transduction can be conveniently composed with the mso transduction
given in [BP16] to prove that given a graph of constant treewidth, some optimum-width tree
decomposition can be computed by means of an mso transduction.

One direct application of this result is a strengthening of the main result of [BP16].
There, we have proved that if a class of graphs of treewidth at most k is recognizable
(see [BP16] for omitted definitions), then it can be defined in mso with modular counting
predicates. The main technical component of this proof was Theorem 2.4, which states
that for every k there is an mso transduction from graphs to tree decompositions, which
given a graph of treewidth k outputs some its tree decomposition of width bounded by f(k),
for some doubly-exponential function f . Then the proof of the main result of [BP16] used
f(k)-recognizability, i.e., recognizability within the interface (sourced) graphs with at most
f(k) interfaces (sources). By replacing the usage of Theorem 2.4 of [BP16] with Corollary 2.2
of this paper, we deduce that only k-recognizability of a class of graphs of treewidth at
most k is sufficient to prove that it can be defined in mso with modular counting predicates.
However, this strengthening was already known: Courcelle and Lagergren [CL96] proved that
if a class of graphs of treewidth at most k is k-recognizable, then it is also k′-recognizable for
all k′ ≥ k. In fact, the proof technique of Courcelle and Lagergren essentially uses the same
technique as Bodlaender and Kloks [BK96] and as we do in this work; the main technical
component of [CL96] can be interpreted as a variant of our Local Dealternation Lemma.

In Section 6 we have seen that the algorithmic result of Bodlaender and Kloks [BK96]
can be derived from the existence of an mso transduction solving the same task and the fact
that mso transductions can be implemented efficiently on structures of bounded treewidth
(Theorem 6.1). We believe that this approach might be applicable to other structural
decompositions of graphs as well. More precisely, suppose that we have some notion of a
tree-like decomposition of a graph, where width-k decompositions can be interpreted in forests
labeled by an alphabet depending on k. Then, the analogue of the problem of Bodlaender
and Kloks would be as follows: given some (possibly suboptimal) decomposition of width
k, compute a decomposition of optimum width. Theorem 6.1 reduces this algorithmic task
to showing that some optimum-width decomposition can be constructed from the input
suboptimal one by means of an mso transduction. For this, however, we essentially only



Vol. 18:1 OPTIMIZING TREE DECOMPOSITIONS IN MSO 26:35

need to solve the combinatorial core: prove the analogues of Dealternation and Conflict
Lemmas. The tedious algorithmic layer of designing a dynamic programming procedure is
thus abstracted away thanks to Theorem 6.1, and we are left with a purely combinatorial
task.

Two concrete width measures of graphs for which we believe that this algorithmic
technique may be applicable are carvingwidth and tree-cutwidth. Both of them can be seen as
analogues of treewidth for edge cuts instead of vertex cuts. For a closely related parameter
cutwidth, Giannopoulou et al. [GPR+19] have very recently given a linear-time fixed-parameter
algorithm based on combining an analogue of the Bodlaender-Kloks algorithm [BK96] with
an analogue of the reduction scheme of Bodlaender [Bod96]. It is conceivable that a similar
approach can be applied to carvingwidth and tree-cutwidth, where the analogue of Bodlaender-
Kloks algorithm would be obtained via implementing the task by an mso transduction,
whereas for the reduction scheme one would use a similar scheme as in [GPR+19]. This
would yield linear-time fixed-parameter algorithms for computing optimum-width carving
and tree-cut decompositions. To the best of our knowledge, no such algorithm are known yet:
Giannopoulou et al. [GKRT19] gave a linear-time fixed-parameter algorithm to determine
the optimum value of the tree-cutwidth, which however does not provide a witnessing
decomposition, and we are not aware of analogous algorithmic developments for carvingwidth.
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References

[Bag06] Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear delay.
In Proceedings of the 20th International Workshop on Computer Science Logic, CSL 2006, volume
4207 of Lecture Notes in Computer Science, pages 167–181. Springer, 2006.

[BK91] Hans L. Bodlaender and Ton Kloks. Better algorithms for the pathwidth and treewidth of graphs.
In Proceedings of the 18th International Colloquium on Automata, Languages, and Programming,
ICALP 1991, volume 510 of Lecture Notes in Computer Science, pages 544–555. Springer, 1991.
doi:10.1007/3-540-54233-7\_162.

[BK96] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.

[BP16] Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of bounded
treewidth. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2016, pages 407–416. ACM, 2016.

[BP17] Mikołaj Bojańczyk and Michał Pilipczuk. Optimizing tree decompositions in MSO. In Proceedings
of the 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, volume 66 of
LIPIcs, pages 15:1–15:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2017.

[BT97] Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for branch-
width. In Proceedings of the 24th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 1997, volume 1256 of Lecture Notes in Computer Science, pages 627–637.
Springer, 1997.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic — A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

[CL96] Bruno Courcelle and Jens Lagergren. Equivalent definitions of recognizability for sets of graphs of
bounded tree-width. Mathematical Structures in Computer Science, 6(2):141–165, 1996.

https://doi.org/10.1007/3-540-54233-7_162


26:36 M. Bojańczyk and M. Pilipczuk Vol. 18:1

[DFPV15] Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Exploring the
subexponential complexity of completion problems. ACM Transactions on Computation Theory
(TOCT), 7(4):14:1–14:38, 2015. doi:10.1145/2799640.

[FFG02] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. Journal
of the ACM, 49(6):716–752, 2002.

[FGP15] Fedor V. Fomin, Archontia C. Giannopoulou, and Michał Pilipczuk. Computing tree-depth faster
than 2n. Algorithmica, 73(1):202–216, 2015.

[GKRT19] Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos.
Lean tree-cut decompositions: Obstructions and algorithms. In Proceedings of the 36th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2019, volume 126 of
LIPIcs, pages 32:1–32:14. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2019.

[Gol04] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of Annals
of Discrete Mathematics. North-Holland Publishing Co., 2004.

[GPR+19] Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos, and
Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. Algorithmica, 81(2):557–588,
2019. doi:10.1007/s00453-018-0424-7.

[JKO16] Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of matroids.
In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
pages 1695–1704. SIAM, 2016.

[JKO18] Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Finding branch-decompositions of matroids,
hypergraphs, and more. In Proceedings of the 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 80:1–80:14. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.80.

[Kin92] Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width. Information
Processing Letters, 42(6):345–350, 1992.

[KS13] Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees. ACM
Transactions on Computational Logic (TOCL), 14(4):25, 2013.

[LA91] Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite congruence.
In Proceedings of the 18th International Colloquium on Automata, Languages, and Programming,
ICALP 1991, volume 510 of Lecture Notes in Computer Science, pages 532–543. Springer, 1991.

[Lag98] Jens Lagergren. Upper bounds on the size of obstructions and intertwines. Journal of Combinatorial
Theory, Series B, 73(1):7–40, 1998. doi:10.1006/jctb.1997.1788.

[Pil20] Michał Pilipczuk. Computing tree decompositions. In Fedor V. Fomin, Stefan Kratsch, and
Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms — Essays Dedicated to Hans
L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer
Science, pages 189–213. Springer, 2020.

[TSB05a] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005.

[TSB05b] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms for
partial w-trees of bounded degree. Journal of Algorithms, 56(1):25–49, 2005.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

https://doi.org/10.1145/2799640
https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.4230/LIPIcs.ICALP.2018.80
https://doi.org/10.1006/jctb.1997.1788

	1. Introduction
	2. Preliminaries and statement of the main result
	3. Dealternation
	4. Using the Dealternation Lemma
	5. Constructing the transduction
	6. Implementing mso transductions in FPT time
	7. Proof of the Dealternation Lemma
	7.1. Words and alternation
	7.2. Factorizations: additional properties
	7.3. Elimination forests
	7.4. From Local to Global Dealternation Lemma
	7.5. Proof of the Local Dealternation Lemma

	8. Normal form for mso transductions
	9. Conclusions
	References

