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Abstract. For endofunctors of varieties preserving intersections, a new description of the
final coalgebra and the initial algebra is presented: the former consists of all well-pointed
coalgebras. These are the pointed coalgebras having no proper subobject and no proper
quotient. The initial algebra consists of all well-pointed coalgebras that are well-founded
in the sense of Osius [22] and Taylor [29]. And initial algebras are precisely the final
well-founded coalgebras. Finally, the initial iterative algebra consists of all finite well-
pointed coalgebras. Numerous examples are discussed e.g. automata, graphs, and labeled
transition systems.

1. Introduction

Initial algebras are known to be of primary interest in denotational semantics, where ab-
stract data types are often presented as initial algebras for an endofunctor H expressing the
type of the constructor operations of the data type. For example, finite binary trees are the
initial algebra for the functor HX = X×X+1 on sets. Analogously, final coalgebras for an
endofunctor H play an important role in the theory of systems developed by Rutten [23]: H
expresses the system type, i. e., which kind of one-step reactions states can exhibit (input,
output, state transitions etc.), and the coalgebras for H are precisely systems with a set of
states having reactions of type H. The elements of a final coalgebra represent the behavior
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of all states in all systems of type H, and the unique homomorphism from a system into
the final one assigns to every state its behavior. For example, deterministic automata with
input alphabet I are coalgebras for HX = XI ×{0, 1}, and the final coalgebra is the set of
all languages on I.

In this paper a unified description is presented for (a) initial algebras, (b) final coalge-
bras and (c) initial iterative algebras (in the automata example this is the set of all regular
languages on I). We also demonstrate that this new description provides a unifying view
of a number of important examples. We first work with set functors H preserving inter-
sections. This is an extremely mild requirement that most “everyday” set functors satisfy,
see Example 3.2. We prove that the final coalgebra for H can then be described as the
set of all well-pointed coalgebras, i.e., pointed coalgebras not having any proper subobject
and also not having any proper quotient. Moreover, the initial algebra can be described
as the set of all well-pointed coalgebras which are well-founded in the sense of Osius [22]
and Taylor [28, 29]. We then extend these results to all endofunctors of varieties preserving
intersections.

Before we mention the definition of well-founded coalgebra, recall that the notion of
well-foundedness of relations R ⊆ X ×X has several alternative forms:

(1) No proper subset Y of X has the property that if all R-successors of a given point x ∈ X
lie in Y , then x ∈ Y as well.

(2) There is no infinite path x0Rx1Rx2R · · · .
(3) There is a map rk from X to ordinals such that rk(x) > rk(y) whenever xRy.

For sets and relations as usual, these conditions are equivalent. The first of these is an
induction principle, and this is closest to what we are calling well-foundedness in this paper,
following Taylor. The equivalence of the first and the second requires Dependent Choice, a
weak form of the Axiom of Choice; in any case, our work in this area does not use this at
all. The last condition is close to a result which we will see, but note as well that even this
requires something special about sets, namely the Replacement Axiom.

The notion of well-foundedness of a coalgebra (A,α) generalizes condition (1) above.
It says that no proper subcoalgebra m : (A′, α′) →֒ (A,α) forms a pullback

A HAα
//

A′

A

� _

m

��

A′ HA′α′
// HA′

HA

� _

Hm

��

This concept was first studied by Osius [22] for graphs considered as coalgebras for the
power-set functor P: a graph is well-founded in the coalgebraic sense iff it is well-founded
in any of the equivalent senses above. Taylor [28, 29] introduced well-founded coalgebras
for general endofunctors, and he proved that for set functors preserving inverse images the
concepts of initial algebra and final well-founded coalgebra coincide.

Returning to our topic, we are going to prove that for every set functor H the con-
cepts of initial algebra and final well-founded coalgebra coincide; the step towards making
no assumptions on H is non-trivial. We also prove the same result for endofunctors of
locally finitely presentable categories preserving finite intersections. And if H preserves
(wide) intersections, we describe its final coalgebra and initial algebra using well-pointed
coalgebras.
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The last section takes a number of known important special cases: deterministic (Mealy
and Moore) automata, trees, labeled transition systems, non-well-founded sets, etc., and
demonstrates how well-pointed coalgebras work in each case. Here we describe, in every
example, besides the initial algebra and the final coalgebra, the initial iterative algebra [6]
(equivalently, final locally finite coalgebra, see [20, 10]) as the set of all finite well-pointed
coalgebras.

2. Well-founded coalgebras

In this section we recall the concept of well-founded coalgebra of Osius [22] and Taylor [28].
Our main result is that

initial algebra = final well-founded coalgebra

holds for all endofunctors of Set. (In the case where the endofunctor preserves inverse
images, this result can be found in [28].) For more general categories the result above holds
whenever the endofunctor preserves finite intersections.

2.1. Well-founded coalgebras in locally finitely presentable categories.

We make several assumptions on the base category A in our study.

Definition 2.1.

(1) A category A is locally finitely presentable (LFP) if
(a) A is complete;
(b) there is a set of finitely presentable objects whose closure under filtered colimits is

all of A .
(See [15] or [8] for more on LFP categories.)

(2) An object A of (any category) A is called simple if every strong epimorphism (see
Remark 2.6) with domain A is invertible. (In categories with (strong epi, mono)-
factorizations, see Remark 2.6, this is equivalent to saying that every morphism with
domain A is a monomorphism.)

Remark 2.2. The concept of simple object stems from general Algebra, where strong
epimorphisms are precisely the surjective homomorphisms, thus, an algebra is simple iff it
has no nontrivial congruence.

Assumption 2.3. Throughout this section our base category A is locally finitely pre-
sentable and has a simple initial object 0.

Examples 2.4. The categories of sets, graphs, posets, and semigroups are locally finitely
presentable. The initial objects of these categories are empty, hence simple. The LFP
category of rings has the initial object Z that is not simple.

Notation 2.5. For every endofunctor H denote by

CoalgH

the category of coalgebras α : A // HA and coalgebra homomorphisms.

Remark 2.6. There are some consequences of the LFP assumption that play an important
role in our development:
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1. A has (strong epi, mono)-factorizations, see [8, Proposition 1.16]. (Recall that an epimor-
phism e is called strong if it fulfils the diagonal fill-in property w. r. t. all monomorphisms,
i.e., fe = mg with m a monomorphism implies the existence of a unique factorization of
g through e.)

2. A is wellpowered, see [8, Remark 1.56]. This implies that for every object A the poset
Sub(A) of all subobjects of A is a complete lattice.

3. Monomorphisms are closed under filtered colimits (see [8, Proposition 1.62]). We also use
the fact (true in every category) that monomorphisms are closed under wide intersections
and inverse images.

Since subcoalgebras play a basic role in the whole paper, and quotients are important from
Section 3 onwards, we need to make clear what we mean by those. This is the aim of
Remark 2.7 and Terminology 2.8.

Remark 2.7. Assuming that H preserves monomorphisms, homomorphisms of coalge-
bras factorize into those carried by strong epimorphisms followed by those carried by
monomorphisms. Moreover, the two classes of homomorphisms form a factorization sys-
tem in CoalgH. Indeed, let h be a coalgebra homomorphism from the coalgebra (A,α) to
the coalgebra (B, β) and let h = m·e be a (strong epi, mono)-factorization in A , then the
diagonal fill-in property yields a coalgebra for which m and e are homomorphisms:

HA B

A

HA

α

��

A C
e // C

B

m

��

HC HB
Hm

//

HA

HC

He

��

HA BB

HB

β

��

C

HC

γ

��✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

The diagonal fill-in property in CoalgH follows easily, too.
We also point out that the monomorphisms of CoalgH need not be carried by mono-

morphisms in A .

Terminology 2.8. When we speak about subcoalgebras of a coalgebra (A,α) we mean
those represented (up to isomorphism) by homomorphisms m : (A′, α′) // (A,α) with
m a monomorphism in A . As usual, if m is not invertible, the subcoalgebra is said to be
proper. Quotients of (A,α) are represented by homomorphisms with domain (A,α) carried
by a strong epimorphism in A ; again, properness means they are not invertible.

Definition 2.9. A cartesian subcoalgebra of a coalgebra (A,α) is a subcoalgebra m :
(A′, α′) →֒ (A,α) forming a pullback

A HAα
//

A′

A

� _

m

��

A′ HA′α′
// HA′

HA

� _

Hm

��

A coalgebra is called well-founded if it has no proper cartesian subcoalgebra.
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Example 2.10.

(1) The concept of well-founded coalgebra was introduced originally by Osius [22] for the
power set functor P. Recall that coalgebras for P are simply graphs: given α :
A → PA, then α(x) is the set of neighbors of A in the graph. However, coalgebra
homomorphisms h : A → B are stronger than graph homomorphisms: h not only
preserves edges of A, but also for every edge h(a) → b in B there exists an edge a→ a′

in A with b = h(a′). Then a subcoalgebra of A is an (induced) subgraph A′ with the
property that every neighbor of a vertex of A′ lies in A′. The subgraph A′ is cartesian
iff it contains every vertex all of whose neighbors lie in A′.

The graph A is a well-founded coalgebra iff it has no infinite path. Indeed, the set
A′ of all vertices lying on no infinite path forms clearly a cartesian subcoalgebra. And
A is well-founded iff A = A′.

(2) Let A be a deterministic automaton considered as a coalgebra for HX = XI × {0, 1}.
A subcoalgebra A′ is cartesian iff it contains every state all whose successors (under
the inputs from I) lie in A′. This holds, in particular, for A′ = ∅. Thus, no nonempty
automaton is well-founded.

(3) Coalgebras for HX = X +1 are dynamical systems with deadlocks. A subcoalgebra A′

of a coalgebra A is cartesian iff A′ contains all deadlocks and every state whose next
state lies in A′. So a dynamical system is well-founded iff it has no infinite computation.

Proposition 2.11. Initial algebras are, as coalgebras, well-founded.

Remark. No assumptions on the base category are needed in the proof.

Proof. Let ϕ : HI → I be an initial algebra. Given a pullback

I HI
ϕ−1

//

B

I

m

��

B HB
β

// HB

HI

Hm

��

withmmonic, we prove thatm is invertible. It is clear that β is invertible (since ϕ−1 is), and
for the algebra β−1 : HB → B there exists an algebra homomorphism f : (I, ϕ) → (B, β−1).
Since m is also an algebra homomorphism, we conclude that mf is an endomorphism of the
initial algebra. Thus, mf = id, proving that m is invertible.

Remark 2.12. In contrast, final coalgebras are never well-founded, unless they coincide
with initial algebras.

To prove this, we are going to use the initial chain defined in [3]. This is the chain

H i0 (i ∈ Ord) and wij : H
i0 // Hj0 (i ≤ j) (2.1)

defined uniquely up to natural isomorphism by

H00 = 0 (initial object of A )

H i+10 = HH i0 and wi+1,j+1 = Hwi,j

and for limit ordinals i

H i0 = colim
j<i

Hj0 with colimit cocone wij (i < j).
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The chain is said to converge at i if the connecting map wi,i+1 : H
i0 // HH i0 is invertible.

The inverse then makes H i0 an initial algebra.

Proposition 2.13 ([32]). Let H preserve monomorphisms.

(1) Whenever there exists a fixed point of H, i.e. an object X ∼= HX, then H has an initial
algebra.

(2) If H has an initial algebra, then the initial chain converges.

Remark 2.14. This result was shown in Theorem II.4 of [32]. The proof uses 2. and 3. of
Remark 2.6. It is based on the fact that the isomorphism u : HX → X yields a cone
mi : H

i0 → X (i ∈ Ord) of the initial chain with all mi monic: m0 : 0 → X is unique and
mi+1 = u ·Hmi. Thus, the initial chain converges because it is a chain of subobjects of X.

Proposition 2.15. If H preserves monomorphisms, the only well-founded fixed points of
H are the initial algebras.

Proof. Let u : HX
∼
→ X be a fixed point such that u−1 : X → HX is a well-founded

coalgebra. Then we prove that (X,u) is an initial algebra. Let mi : H i0 → X be the
cone of Remark 2.14. We know that there exists an ordinal j such that mj and mj+1

represent the same subobject, thus, wj,j+1 : H i0 → H(H i0) is invertible. Consequently,

w−1
j,j+1 : H(H i0) → H i0 is an initial algebra.

The following square

Hj0
wj,j+1

//

mj

��

H(Hj0)

Hmj

��

X
u−1

// HX

commutes: by definition we have mj+1 = u ·Hmj and since mj = mj+1 ·wj,j+1 (due to the
compatibility of the mi’s) we conclude

mj = u ·Hmj · wj,j+1.

Since both horizontal arrows are invertible, the square above is a pullback. From the
well-foundednes of (X,u−1) we conclude that mj is invertible. Thus, the algebra (X,u) is

isomorphic to the initial algebra (Hj0, w−1
j,j+1) via mj . This proves that (X,u) is initial.

Corollary 2.16. If H preserves monomorphisms and has a well-founded final coalgebra,
then the initial algebra and final coalgebra coincide.

Example 2.17. This demonstrates that the assumption that H preserves monomorphisms
is essential. Consider the category Gra of graphs and graph morphisms (i.e., functions
preserving edges). All assumptions in 2.3 are fulfilled. The endofunctor

HX =

{

X + {t} (no edges) if X has no edges

1, terminal graph, else.

does not preserve monomorphisms. Its final coalgebra 1 = H1 is well-founded because
neither of the two proper subcoalgebras is cartesian. However, the initial algebra is carried
by an infinite graph without edges.
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Definition 2.18. Assume that H preserves monomorphisms. Then for every coalgebra
α : A // HA we denote by © the endofunction on Sub(A) (see Remark 2.6.2) assigning
to every subobject m : A′ // A the inverse image of Hm under α, i. e., we have a pullback
square:

A HAα
//

©A′

A

©m

��

©A′ HA′
α[m]

// HA′

HA

Hm

��

(2.2)

This function m ✤ // ©m is obviously order-preserving. By the Knaster-Tarski fixed
point theorem, it has a least fixed point.

Corollary 2.19. A coalgebra (A, a) is well-founded iff the least fixed point of © is all of
A.

Incidentally, the notation ©m comes from modal logic, especially the areas of temporal
logic where one reads ©φ as “φ is true in the next moment,” or “next time φ” for short.

Example 2.20. Recall our discussion of graphs from Example 2.10 (1). The pullback ©A′

of a subgraph A′ is the set of points in the graph A all of whose neighbors belong to A′.

Remark 2.21. As we mentioned in the introduction, the concept of well-founded coalgebra
was introduced by Taylor [28, 29]. Our formulation is a bit simpler. In [29, Definition 6.3.2]
he calls a coalgebra (A,α) well-founded if for every pair of monomorphisms m : U // A
and h : H // U such that h·m is the inverse image of Hm under α it follows that m is an
isomorphism. Thus, in lieu of fixed points of m 7−→ ©m he uses pre-fixed points.

In addition, our overall work has a methodological difference from Taylor’s that is worth
mentioning at this point. Taylor is giving a general account of recursion and induction, and
so he is concerned with general principles that underlie these phenomena. Indeed, he is
interested in settings like non-boolean toposes where classical reasoning is not necessarily
valid. On the other hand, in this paper we are studying initial algebras, final coalgebras,
and similar concepts, using standard classical mathematical reasoning. In particular, we
make free use of transfinite induction.

Notation 2.22.

(a) Assume that H preserves monomorphisms. For every coalgebra α : A // HA denote
by

a∗ : A∗ // A (2.3)

the least fixed point of the function m ✤ // ©m of Definition 2.18. (Thus, (A,α) is
well-founded iff a∗ is invertible.) Since a∗ is a fixed point we have a coalgebra structure
α∗ : A∗ // HA∗ making a∗ a coalgebra homomorphism.

(b) For every coalgebra α : A // HA we define a chain of subobjects

a∗i : A
∗
i

// A (i ∈ Ord)
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of A in A by transfinite recursion: a∗0 : 0
// A is unique; given a∗i , define a

∗
i+1 by the

pullback

A HAα
//

A∗
i+1

A

a∗i+1

��

A∗
i+1 HA∗

i
// HA∗

i

HA

Ha∗i

��

and for limit ordinals i define a∗i : A
∗
i

// A to be the union of the chain of monomor-
phisms a∗j : A

∗
j

// A,

a∗i =
⋃

j<i

a∗j .

It is easy to prove by transfinite induction that all a∗i are monic (for i = 0 recall that 0 is
simple). Moreover, for every limit ordinal i the union above coincides with the colimit
of the chain, that is, the monomorphism a∗i : A

∗
i

// A is just the induced morphism
from the colimit of the chain to A, see Remark 2.6, point 3.

Remark 2.23. We observe that for all ordinals i ≤ j the connecting maps

A∗
i

A

a∗i
��
❄❄

❄❄
❄❄

❄❄
❄❄

❄
A∗
i A∗

j

a∗ij
// A∗

j

A

a∗j
��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

of the chain of Notation 2.22 form the following commutative diagram which can be used
as a definition of the maps a∗ij (via the universal property of pullbacks):

A HAα
//

A∗
j+1

A

a∗j+1

��

A∗
j+1 HA∗

jα[a∗j ]
// HA∗

j

HA

Ha∗j
��

A∗
j+1 HA∗

j
//

A∗
i+1

A∗
j+1

a∗i+1,j+1

��

A∗
i+1 HA∗

i

α[a∗i ] // HA∗
i

HA∗
j

Ha∗ij
��

A∗
i+1

A

a∗i+1

��

HA∗
i

HA

Ha∗i

��

(2.4)

Remark 2.24. This way, what we have is nothing else than the construction of the least
fixed point of m ✤ // ©m, see Remark 2.21, in the proof of the Knaster-Tarski Theorem
in [27]. Thus, a∗ =

⋃

i∈Ord
a∗i . However, since A has only a set of subobjects,

a∗ = a∗i0 for some ordinal i0. (2.5)

And for this ordinal i0, an easy verification shows that the coalgebra structure of A∗ above
is

α∗ = α[a∗i0 ] = α[a∗]. (2.6)

Henceforth, we call A∗ the smallest cartesian subcoalgebra of A.

From now on, whenever we use the notations ©m and a∗, we only do so when H
preserves monomorphisms.
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Example 2.25. On the category Gra consider the functor H of Example 2.17. It has
1 = H1 as its final coalgebra, and this coalgebra is well-founded. However, for α as id : 1

// H1 (the final coalgebra), there is no ordinal i such that a∗i = id1. This shows that
Notation 2.22 is meaningful only if we assume that H preserves monomorphisms.

Example 2.26. For every graph A considered as a coalgebra for P, A∗ is the subgraph
on all vertices of A from which no infinite path starts. Since m 7→ ©m is not necessarily
continuous, the ordinal i0 of (2.5) above can be arbitrarily large. Here is an example with
i0 = ω + 1:

•

•
##●

●●
●●

●●
●•

•++❲
❲❲❲❲❲

❲•
•33❣❣❣❣❣❣❣•

•;;✇✇✇✇✇✇✇✇ • •//

• •//

• •// • •//

• •//

• •//...

Proposition 2.27. If H preserves monomorphisms then well-founded coalgebras form a
full coreflective subcategory of Coalg H: For every coalgebra (A,α), the smallest cartesian
subcoalgebra (A∗, α∗) is its coreflection.

Remark. We thus prove that (A∗, α∗) is well-founded, and for every homomorphism
f : (B, β) // (A,α) with (B, β) well-founded there exists a unique homomorphism

f̄ : (B, β) // (A∗, α∗) with f = a∗·f̄ .

Proof. (i) (A∗, α∗) is clearly well-founded: From Definition 2.18 and Notation 2.22, we
know that (A∗, a∗) is the least fixed point of © : Sub(A) // Sub(A), that is, (A∗, α∗) is
the smallest cartesian subcoalgebra of (A,α). Then (A∗, α∗) cannot have proper cartesian
subcoalgebras since its cartesian subcoalgebras are cartesian subcoalgebras of (A,α).

(ii) Since a∗ is a monomorphism there is at most one coalgebra homomorphism f̄ : B
// A∗ with a∗·f̄ = f . Thus, we are finished if we show that f̄ exists. To this end, for all

ordinals i ≤ j, let a∗ij : A∗
i

// A∗
j be the connecting maps of the chain of Remark 2.23.

Analogously, use b∗ij : B
∗
i

// B∗
j for the chain of the subobjects b∗i : B∗

i
// B, whose

union is B∗ = B. We define the components of a natural transformation f̄i : B
∗
i

// A∗
i ,

i ∈ Ord, by transfinite recursion on ordinals i, satisfying

B A
f

//

B∗
i

B

b∗i
��

B∗
i A∗

i

f̄i
// A∗

i

A

a∗i
��

(2.7)
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Let f̄0 = id: 0 // 0. For isolated steps consider the diagram below:

A HAα
//

A∗
i+1

A

a∗i+1

��

A∗
i+1 HA∗

i

α[a∗i ] // HA∗
i

HA

Ha∗i
��

B∗
i+1 HB∗

i

β[b∗i ] //B∗
i+1

A∗
i+1

f̄i+1

$$❏
❏

❏
❏

❏
B∗
i+1

B

b∗i+1

��

HB∗
i

HA∗
i

Hf̄i

zztt
tt
tt
tt
tt
HB∗

i

HB

Hb∗i

��

B

A

f

::ttttttttttttt
B HB

β
// HB

HA
Hf

dd❏❏❏❏❏❏❏❏❏❏❏

(2.8)

The inner and outside squares commute by the definition of A∗
i+1 and B∗

i+1, respectively.
For the lower square we use that f is a coalgebra homomorphism, and the right-hand one
commutes by the induction hypothesis. The inner pullback induces the desired morphism
f̄i+1 and the commutativity of the left-hand square is that of (2.7) for i+ 1. Finally, for a
limit ordinal j let f̄j = colimi<j f̄i, in other words, f̄j is the unique morphism such that the
squares

B∗
i A∗

i
f̄i

//

B∗
j

B∗
i

OO

b∗i,j

B∗
j A∗

j

f̄j
// A∗

j

A∗
i

OO

a∗i,j (2.9)

commute for all i < j. It is easy to prove by transfinite induction that f̄j : B∗
j → A∗

j is
natural in j.

We need to verify that (2.7) commutes for f̄j. This is clear for j = 0 and for j isolated
this follows from the definition of f̄i+1. Let j be a limit ordinal. Then (2.7) commutes due
to the following diagram for every i < j:

B A
f

//

B∗
j

B

b∗j
��

B∗
j A∗

j

f̄j
// A∗

j

A

a∗j
��

B∗
j A∗

j
//

B∗
i

B∗
j

b∗i,j
��

B∗
i A∗

i

f̄i
// A∗

i

A∗
j

a∗i,j
��

B∗
i

B

b∗i

��

A∗
i

A

a∗i

��

(2.10)

To complete the proof consider any ordinal i such that B∗
i = B∗ = B and A∗

i = A∗ hold.
Then f̄ = f̄i : B // A∗ is a coalgebra homomorphism with a∗i ·f̄ = f by the commutativity
of the upper and left-hand parts of Diagram (2.8).
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For endofunctors preserving inverse images the following corollary is Exercise VI.16
in [29]:

Corollary 2.28. Assuming that H preserves monomorphisms, the subcategory of CoalgH
consisting of the well-founded coalgebras is closed under quotients and coproducts in CoalgH.

This follows from a general result on coreflective subcategories: the category CoalgH
has a (strong epi, mono)-factorization system (see Remark 2.6), and its full subcategory
of well-founded coalgebras is coreflective with monomorphic coreflections (see Proposi-
tion 2.27). Consequently, it is closed under quotients and colimits.

We also have the following fact which will be used in Section 3.

Lemma 2.29. If H preserves finite intersections, then every subcoalgebra of a well-founded
coalgebra is well-founded.

Proof. Given a subcoalgebra f : (B, β) // (A,α) we prove that the natural transformation
f̄i : B

∗
i

// A∗
i of (2.9) makes the squares in (2.7) pullbacks for every ordinal number i. The

base case i = 0 is clear. For the isolated step we use that a∗i+1 : A
∗
i+1

// A is the pullback
of Ha∗i along α. Thus, it suffices to show that b∗i+1 : Bi+1

// B is a pullback of Ha∗i along
α·f . But, since α·f = Hf ·β and since H preserves finite intersections (i.e., pullbacks of
monos along monos), the latter pullback can be obtained by pasting two pullback squares
as displayed below:

B∗
i+1

b∗i+1

��

β[b∗i ] // HB∗
i

Hb∗i
��

Hf̄i
// HA∗

i

Ha∗i
��

B
β

// HB
Hf

// HA

Now assume that (A,α) is well-founded, i. e., some a∗i is invertible. Then its pullback
b∗i along f is invertible, i. e., (B, β) is well-founded.

Remark 2.30. If H is a set functor which also preserves inverse images, a much stronger
result holds, as proved in [29, Corollary 6.3.6]: every coalgebra from which a homomorphism
into a well-founded coalgebra exists is well-founded.

Example 2.31. Without the assumption that H preserves finite intersections the lemma
above can fail to be true. On the category Gra of graphs the functor H of Example 2.17
has the well-founded coalgebra 1 = H1 which has the subcoalgebra

• � � // • • t

which is not well-founded: its subcoalgebra ∅ // {t} is cartesian.

2.2. Recursive coalgebras.

Here we recall the notion of recursive coalgebra in order to use it for our proof that initial
algebras are the same as final well-founded coalgebras. “Recursive” and “well-founded” are
closely related concepts. But whereas final recursive coalgebras are already known to be
initial algebras, see [12], for well-founded coalgebras this is new (and a bit more involved).
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Definition 2.32. A coalgebra α : A // HA is recursive if for every algebra β : HB
// B there exists a unique coalgebra-to-algebra homomorphism

B HBoo

β

A

B

h

��

A HA
α // HA

HB

Hh

��

This concept was introduced by Taylor under the name “coalgebra obeying the recursion
scheme”, the name recursive coalgebra stems from Capretta et al. [12].

Examples 2.33 (see [12]).

(1) 0 // H0 is a recursive coalgebra.
(2) If α : A // HA is recursive, then so is Hα : HA // HHA.
(3) A colimit of recursive coalgebras is recursive. Combining these results we see that in

the initial chain (2.1) all the coalgebras

wi,i+1 : H
i0 // HH i0

are recursive.

We are going to prove that for set functors, well-founded coalgebras are recursive.
Before we do this, let us discuss the converse. In general, recursive coalgebras need not be
well-founded, even for set functors. However for all set functors preserving inverse images
recursiveness is equivalent to well-foundedness, as shown by Taylor [28, 29].

Example 2.34 (see [5]). A recursive coalgebra need not be well-founded. Let H : Set
// Set be defined on objects by

HX = (X ×X \∆X) + {d}

where ∆X denotes the diagonal of X. For morphisms f : X // Y we take Hf(d) = d and

Hf(x1, x2) =

{

d if f(x1) = f(x2)

(fx1, fx2) else

This functor H preserves monomorphisms. The coalgebra A = {0, 1} with the structure α
constant to (0, 1) is recursive: given an algebra β : HB // B, the unique coalgebra-to-
algebra homomorphism h : {0, 1} // B is

h(0) = h(1) = β(d).

But A is not well-founded: ∅ is a cartesian subcoalgebra.

Theorem 2.35. If H preserves monomorphisms, then every well-founded coalgebra is re-
cursive.

For functors preserving inverse images this follows from [28, Theorem 6.3.13].

Proof. Let α : A // HA be well-founded. For every algebra e : HX // X we prove the
existence and uniqueness of a coalgebra-to-algebra homomorphism A // X. We use the
initial chain (H i0) of (2.1) and also the chain (A∗

i ) from Notation 2.22.
(1) Existence. We prove first that there is a unique natural transformation

fi : A
∗
i

// H i0 (i ∈ Ord)
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such that for all ordinals i we have

fi+1 =

(

A∗
i+1

α[a∗i ]−−−−→ HA∗
i

Hfi−−−→ H(H i0) = H i+10

)

. (2.11)

In fact, since both of the transfinite chains (A∗
i ) and (H i0) are defined by colimits on all

limit ordinals i, and f0 must be id∅, we only need to check the commutativity of the square

A∗
i+1 H i+10

fi+1

//

A∗
i

A∗
i+1

a∗i,i+1

��

A∗
i H i0

fi
// H i0

H i+10

wi,i+1

��

(2.12)

for every successor ordinal i. For this, the diagram below commutes by the induction
hypothesis (2.12) and by the commutativity of the upper inner square of (2.4) in Remark
2.23:

A∗
+i1

a∗i+1,i+2

��

α[a∗i ] // HA∗
i

Hfi
//

Ha∗i,i+1

��

H(H i0)

Hwi,i+1

��

ED��GF
fi+1

A∗
i+2 α[a∗i+1]

// HA∗
i+1 Hfi+1

// H(H i+10)BCOO@A
fi+2

Next, since the H i0 are recursive coalgebras (see Example 2.33) we have unique coalge-
bra-to-algebra homomorphisms into X. These form a natural transformation into the con-
stant functor with value X:

ri : H
i0 // X (i ∈ Ord).

Consequently, we obtain a natural transformation rifi : A
∗
i

// X which, for i such that
A∗
i = A∗

i+1 (thus, A = A∗
i ), yields

h = rifi : A // X .

Now consider the diagram below:

X HXoo
e

H i0

X

ri
��

H i0 H(H i0)
wi,i+1

// H(H i0)

HX

Hri
��

H i0 H(H i0)//

A∗
i = A∗

i+1

H i0

fi
��

A∗
i = A∗

i+1 HA∗
i

α[a∗i ] // HA∗
i

H(H i0)

Hfi
��

A∗
i = A∗

i+1

H(H i0)

fi+1

))❙❙
❙❙❙

❙❙❙
❙❙❙

A∗
i = A∗

i+1

X

h

��

HA∗
i

HX

Hh

��

The morphism at the top is α∗, by (2.6). The sides are the definition of h, the bottom
square is the definition of ri, and the upper right-hand triangle is the definition of fi+1.
The upper left-hand triangle is (2.12) since a∗i,i+1 = id. The overall outside of the figure
shows that h is a coalgebra-to-algebra homomorphism as desired.
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(2) Uniqueness. If h1, h2 : A // X are coalgebra-to-algebra homomorphisms, then we
prove h1 = h2 by showing that

h1·a
∗
i = h2·a

∗
i for all i ∈ Ord.

The case i = 0 is clear, in the isolated step use the commutative diagrams (with t = 1, 2):

X HXoo
e

A

X

ht

��

A HA
α // HA

HX

Hht

��

A HA//

A∗
i+1

A

a∗i+1

��

A∗
i+1 HA∗

i

α[a∗i ] // HA∗
i

HA

Ha∗i
��

and the limit steps follow from A∗
j = colimi<j A

∗
i for limit ordinals j.

Example 2.36. There is a P-algebra (B, β) such that for all P-coalgebras (A,α), if (A,α)
is not well-founded, then there are at least two coalgebra-to-algebra homomorphisms h : A

// B.
We take B = {0, 1, 2}, with β : PB // B defined as follows:

β(x) =







0 if x = ∅ or x = {0}
1 else if 1 ∈ x
2 if 2 ∈ x and 1 /∈ x

If (A,α) is any coalgebra which is not well-founded, we show that there are at least two
coalgebra-to-algebra homomorphisms h : A // B. We can take

h1(x) =

{
0 if there are no infinite sequences x = x0 → x1 → x2 · · ·
1 if there is an infinite sequence x = x0 → x1 → x2 · · ·

and also h2 defined the same way, but using 2 as a value instead of 1. The verification that
h1 and h2 are coalgebra-to-algebra homomorphisms hinges on two facts: first, h(x) = 0 iff
there is no infinite sequence starting from x; and second, if hi(x) 6= 0, then there is some
y ∈ α(x) such that hi(y) 6= 0 as well.

For endofunctors preserving inverse images the following theorem is Corollary 9.9 of [28].
As we mentioned in the introduction, it is non-trivial to relax the assumption on the endo-
functor, and so our proof is different from Taylor’s. As a result we obtain in Theorem 2.46
below that for a set endofunctor no assumptions are needed.

Remark 2.37. The concepts “initial algebra” and “final recursive coalgebra” coincide for
all endofunctors, as proved by Capretta et al. [12]. This is not true in general for well-
foundedness in lieu of recursiveness, see Example 2.39 below. But it is true if H preserves
finite intersections:

Theorem 2.38. If H preserves finite intersections, then

initial algebra = final well-founded coalgebra

That is, an algebra ϕ : HI // I is initial iff ϕ−1 : I // HI is the final well-founded
coalgebra.
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Proof. Recall that since H preserves finite intersections, i.e., pullbacks of monomorphisms,
it preserves monomorphisms (since m is monic iff the pullback of m along itself is formed
by identity morphisms).

(a) Let I be an initial algebra. By Remark 2.37, I is a final recursive coalgebra. Also,
I is well-founded by Proposition 2.11. Thus by Theorem 2.35, it is a final well-founded
coalgebra.

(b) Let ψ : I // HI be a final well-founded coalgebra.
(b1) Factorize ψ = m·e where e is a strong epimorphism and m a monomorphism

(Remark 2.6). By diagonal fill-in

HI HHI
Hψ

//

I ′

HI

m

��

I ′ HI ′
ψ′

//❴❴❴❴❴❴❴ HI ′

HHI

Hm

��

I ′ HI ′//❴❴❴❴❴❴❴

I

I ′

e

��

I HI
ψ

// HI

HI ′

He

��

we obtain a quotient (I ′, ψ′) which, by Corollary 2.28, is well-founded. Consequently, a
coalgebra homomorphism f : (I ′, ψ′) // (I, ψ) exists. Then fe is an endomorphism of the
final well-founded coalgebra, hence, fe = idI . This proves that e is an isomorphism, in
other words

ψ is a monomorphism.

(b2) The coalgebra (HI,Hψ) is well-founded. Indeed, consider a cartesian subcoalge-
bra (A′, a′)

I HI
ψ

//❴❴❴❴❴❴❴❴

J

I

m′

��
✤

✤

✤J A′ψ′
//❴❴❴❴❴❴❴❴ A′

HI
��

HI HHI
Hψ

//

A′

HI

m

��

A′ HA′a′ // HA′

HHI

Hm

��

Form the intersection J of m and ψ. Since H preserves this intersection, it follows that m
and Hm′ represent the same subobject of HI, thus, we have

u : A′ // HJ, with m = Hm′·u.

This yields a cartesian subcoalgebra

I HI
ψ

//

J

I

m′

��

J A′ψ′
// A′ HJ

u // HJ

HI

Hm′

��

and since (I, ψ) is well-founded, we conclude thatm′ is invertible. Consequently,m = Hm′·u
is invertible.
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(b3) ψ is invertible. Indeed, we have, by (b2), a homomorphism h : (HI,Hψ) //

(I, ψ):

I HI
ψ

//

HI

I

h

��

HI HHI
Hψ

// HHI

HI

Hh

��

HI HHI//

I

HI

ψ

��

I HI
ψ

// HI

HHI

Hψ

��

Then h·ψ is an endomorphism of (I, ψ), thus, h·ψ = id. And the lower square yields
ψ·h = H(h·ψ) = id, whence I ∼= HI,

(b4) By Proposition 2.13, the initial chain converges, and w−1
i,i+1 : HH

i0 // H i0 is

an initial algebra for some ordinal i. Moreover, wi,i+1 : H
i0 // HH i0 is by (a) a final

well-founded coalgebra, thus, isomorphic to ψ : I // HI. Therefore (I, ψ−1) is isomorphic
to the initial algebra above.

Example 2.39.

(a) For the identity functor on the category of rings the initial algebra is Z and the terminal
well-founded coalgebra is 1. This shows the importance of our assumption that the base
category have a simple initial object.

(b) Also the assumption that H preserves finite intersections is important: The endofunctor
H ofGra in Example 2.17 has 1 as its final well-founded coalgebra, and its initial algebra
is infinite.

Remark 2.40. Although we have previously worked with monomorphisms only, the whole
theory can be developed for a general class M of monomorphisms in the base category A .
We need to assume that

(a) A is M -wellpowered,
(b) M is closed under inverse images, and
(c) M is constructive in the sense of [32].

The last point means that M is closed under composition, and for every chain of monomor-
phisms in M , (i) a colimit exists and is formed by monomorphisms in M , and (ii) the
factorization morphism of every cocone of monomorphisms in M is again a monomorphism
in M . This in particular states that the initial object has the property that all morphisms
0 → X lie in M .

We then can define M -well-founded coalgebra as one that has no proper cartesian
subcoalgebra carried by an M -monomorphism.

All results above hold in this generality. In Theorem 2.35 we must assume that H
preserves M , that is, if m lies in M then so does Hm. In Theorem 2.38 we need to assume
that H preserves M and finite intersections of M -monomorphisms.

Example 2.41. All LFP categories with simple initial object satisfy all the assumptions
of 2.3 for

M = strong monomorphisms,

see [8, Propositions 1.61 and 1.62].
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Example 2.42. Here we compare well-foundedness w.r.t to monomorpisms to that w.r.t.
strong monomorphisms. Take again the category Gra of graphs and graph morphisms and
H be the following endofunctor: The nodes of HA are all finite independent sets a ⊆ A
(i.e., no edge lies in a) plus a new node t. The coalgebra structure is the constant map to
{t}, i.e., the only edges of HA connect every node to t (t is a loop). For a graph morphism
f : A // B, we take Hf : HA // HB to be

Hf(a) =

{

f [a] if f [a] is independent in B

t otherwise

This functor clearly preserves strong monomorphisms (but not monomorphisms).
By Theorem 2.38, the initial algebra for H is the same as its final M -well-founded

coalgebra. This is
I = I0 ∪ {t}

where I0 = Pf I0 is the initial algebra of the finite power set functor on Set, taken as a
discrete graph, and the coalgebra structure is the constant to {t}.

In contrast, I is not well-founded (w. r. t. all monomorphisms). Here is the reason. Let
J be the same as I, except that we drop all edges between t and the elements of I0. (We
keep just the loop at t.) Then HJ = HI = I. The inclusion i : J // I is of course monic,
and Hi = idHI . It is easy to check that this inclusion is a coalgebra morphism, and indeed
this subcoalgebra is clearly cartesian. This verifies that I is not well-founded.

2.3. Initial algebras of set functors.

The main result of this section is that for all endofunctors H of Set the equality

initial algebra = final well-founded coalgebra (2.13)

holds, i. e., for the particular case of our given LFP category being A = Set one can lift
the assumption that H preserves finite intersections in Theorem 2.38.

Proposition 2.43 (Trnková [31]). For every endofunctor H of Set there exists an endo-
functor H̄ preserving finite intersections and identical with H on all nonempty sets (and
nonempty functions).

Remark 2.44. The functor H̄ is unique up to natural isomorphism. We call it the Trnková
closure of H. Let us recall how Trnková defined H̄:

Denote by C01 the set functor ∅ ✤ // ∅ and X ✤ // 1 for all X 6= ∅. Define H̄ as H on
all nonempty sets, and put

H̄∅ = {τ ; τ : C01
// H a natural transformation}.

(To check that we have a set here and not a proper class, note that each τ : C0,1
// H

is determined by τ1 : 1 // H1. For a nonempty set A, if k : 1 // A is arbitrary,
τA = Hk ◦ τ1.) Given a nonempty set X, H̄ assigns to the empty map qX : ∅ // X the
map

H̄qX : τ ✤ // τX for every τ : C01
// H,

where τX : 1 // HX is simply an element of HX.
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Observe that there exists a map u : H∅ // H̄∅ such that for every set A 6= ∅ the
triangle

H∅

HA = H̄A

HqA
""❊

❊❊
❊❊

❊❊
❊❊

H∅ H̄∅
u // H̄∅

HA = H̄A

H̄qA||②②
②②
②②
②②
②

(2.14)

commutes. Indeed, for each element x ∈ H∅, let the natural transformation u(x) : C01
// H have components u(x)A = HqA(x) for all A 6= ∅. Then

H̄qA(u(x)) = (u(x))A = HqA(x).

Lemma 2.45. Let (A, a) be a well-founded H-coalgebra with A 6= ∅, so that (A, a) is also
an H̄-coalgebra. Then ∅ is not the carrier of any cartesian H̄-subcoalgebra of (A, a).

Proof. Assume towards a contradiction that qH̄∅ : ∅ // H̄∅ were a cartesian subcoalgebra
of (A, a). We claim that the square below is a pullback:

A HAa
//

∅

A

qA

��

∅ H∅
qH∅

// H∅

HA

HqA

��

(2.15)

We show that there are no y ∈ A and x ∈ H∅ such that that a(y) = HqA(x). For
assume that y and x exist with these properties. Then by (2.14), H̄qA(u(x)) = a(y). This
contradicts our assumption that (∅, qH̄∅) is a cartesian subcoalgebra of (A, a). Thus, y and
x do not exist as assumed, and hence, the square in (2.15) is indeed a pullback. Therefore
qA is an isomorphism. But A 6= ∅, and this is a contradiction.

Theorem 2.46. For every endofunctor on Set we have:

initial algebra = final well-founded coalgebra.

Proof. Given H, we know from Theorem 2.38 that the statement holds for the Trnková
closure H̄. From this we are going to prove it for H.

(a) If ϕ : HI // I is an initial algebra, we prove that ϕ−1 : I // HI is a final
well-founded coalgebra.

This is clear when H∅ = ∅. In this case I = ∅. And the only (hence, the final) well-
founded coalgebra is the empty one: if a : A // HA is well-founded, then the following
cartesian subcoalgebra

A HAa
//

∅

A

qA

��

∅ ∅
id // ∅

HA

HqA

��

(2.16)

demonstrates that qA is an isomorphism, so A = ∅.
Thus we assume H∅ 6= ∅. Then H̄∅ 6= ∅ via u in (2.14) above. The H̄-algebra ϕ : H̄I
// I is initial because every H̄-algebra is nonempty, hence, it also is an H-algebra.

And the unique homomorphism from I w.r.t. H is also a homomorphism w.r.t. H̄. By
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Theorem 2.38, ϕ−1 : I // H̄I is a final well-founded H̄-coalgebra. Let us now verify that
it is also well-founded w.r.t. H. Consider a cartesian subcoalgebra

I HI
ϕ−1

//

A′

I

m

��

A′ HA′a′ // HA′

HI

Hm

��

(2.17)

We claim that A′ cannot be empty. For if it were, then since HA′ = H∅ 6= ∅, we take any
x ∈ HA′ and consider x and (ϕ ·Hm)(x). By the pullback property, there is some y ∈ A′

so that a′(y) = x. This contradicts A′ = ∅.
As a result, HA′ = H̄A′, and Hm = H̄m. So (2.17) is a cartesian subcoalgebra for H̄.

Thus m is invertible, as desired.
At this point we know that ϕ−1 : I // HI is a well-founded H-coalgebra; we conclude

with the verification that ϕ−1 is final among these. This follows from the observation that
every nonempty well-founded H-coalgebra a : A // HA is also well-founded w.r.t. H̄.
Indeed, consider a cartesian subcoalgebra

A H̄Aa
//

A′

A

m

��

A′ H̄A′a′ // H̄A′

H̄A

H̄m

��

(2.18)

By Lemma 2.45, A′ 6= ∅. Thus H̄m = Hm and we conclude that m is invertible.
(b) If ψ : I // HI is a final well-founded coalgebra, we prove that ψ is invertible and

ψ−1 : HI // I is an initial algebra. Unfortunately, we cannot use the converse implication
of what we have just proved (every nonempty well-founded H̄-coalgebra is also well-founded
w.r.t. H) since this is false in general (see Example 2.47 below). We can assume H∅ 6= ∅,
since the case H∅ = ∅ is trivial.

Consider first the coalgebra
b : H̄∅ // HH̄∅

defined by
b(τ) = τH̄∅ for all τ : C01

// H.

Let us show that this coalgebra is well-founded for H. Consider a cartesian subcoalgebra

H̄∅ HH̄∅
b

//

A′

H̄∅

m

��

A′ HA′a′ // HA′

HH̄∅

Hm

��

(2.19)

It is our task to prove that m is surjective (thus, invertible). First, assume that A′ 6= ∅.
Given τ : C01

// H in H̄∅, the element τA′ of HA′ fulfils

b(τ) = τH̄∅ = Hm(τA′)

by the naturality of τ and the fact that C01m = id1. Thus, there exists an element of A′

that m maps to τ . Our second case is when A′ = ∅. We show that this case leads to a
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contradiction. Observe that m = qH̄∅ : ∅ // H̄∅, and let x ∈ H∅, so that u(x) ∈ H̄∅, see
(2.14), and we have

b(u(x)) = (u(x))H̄∅ = HqH̄∅(x).

Thus x and u(x) are mapped to the same element of HH̄∅ by Hm and b, respectively,
contradicting the assumption that ∅ is a pullback in (2.19) above.

The first point of this coalgebra (H̄∅, b) is that its well-foundedness and non-emptiness
implies that the final well-founded H-coalgebra (I, ψ) must also be nonempty. Thus (I, ψ)
is also a coalgebra for H̄. Let us prove that it is well-founded w.r.t. H̄. Given a cartesian
subcoalgebra

I H̄I
ψ

//

A′

I

m

��

A′ H̄A′a′ // H̄A′

H̄I

H̄m

��

by Lemma 2.45, A′ 6= ∅. So H̄m = Hm, hence m is invertible.
We next prove that (I, ψ) is the final well-founded H̄-coalgebra. Let a : A // H̄A be

a nonempty well-founded H̄-coalgebra. We prove that the coproduct

(A, a) + (H̄∅, b) in CoalgH

is a well-founded H-coalgebra. This will conclude the proof: we have a unique homo-
morphism from that coproduct into (I, ψ) in CoalgH, hence, a unique homomorphism
from (A, a) to (I, ψ). Now in oder to prove that the coproduct above is a well-founded H-
coalgebra we first use that every nonempty well-founded coalgebra forH is also well-founded
for H̄, thus, both of the summands above are well-founded H̄-coalgebras. Since coproducts
of coalgebras are formed on the level of sets, the two categories CoalgH and Coalg H̄ have
the same formation of coproduct of nonempty coalgebras. Let

(A, a) + (H̄∅, b) = (A+ H̄∅, c)

be a coproduct in Coalg H̄, then this coalgebra is well-founded w.r.t. H̄ by Corollary 2.28.
To prove that it is also well-founded w.r.t. H, we only need to consider the empty subcoal-
gebra: we must prove that the square

A+ H̄∅ H(A+ H̄∅)c
//

∅

A+ H̄∅

m

��

∅ H∅
a′ // H∅

H(A+ H̄∅)

Hm

��

is not a pullback. Indeed, choose an element x ∈ H∅ and put τ = u(x) (see (2.14)). Then
m = qA+H̄∅ implies

Hm(x) = τA+H̄∅.

We also have τ ∈ H̄∅ and the coproduct injection v : H̄∅ // A + H̄∅ fulfils c·v = Hv·b
(due to the formation of coproducts in Coalg H̄). Therefore

c
(
v(τ)

)
= Hv

(
b(τ)

)
= Hv(τH̄∅) = τA+H̄∅ = Hm(x).

Since we presented elements of A + H̄∅ and H∅ that are mapped to the same element by
c and Hm, respectively, the square above is not a pullback. This finishes the proof that
(I, ψ) is a final well-founded H̄-coalgebra.
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By Theorem 2.38 we conclude that ψ is invertible and (I, ψ−1) is an initial H̄-algebra.
It is also an initial H-algebra: due to H∅ 6= ∅ 6= H̄∅, the two functors have the same
categories of algebras.

Example 2.47. Let H = C01 + C1 be the constant functor of value 2 except ∅ 7→ 1.
The functor H̄ in the proof above is the constant functor with value 1 + 1, expressed, say
as {a, b}. Here

H∅ = {b} and HA = {a, b} for A 6= ∅.

The coalgebra
{a} � � // {a, b}

is obviously well-founded w.r.t. H̄ but not w.r.t. H since we have the pullback:

{a} {a, b}� � //

∅

{a}

q{a}

��

∅ H∅ = {b}// H∅ = {b}

{a, b}

Hq{a}

��

2.4. The canonical graph and well-foundedness.

Definition 2.48. Let H be a set functor preserving (wide) intersections. For every coalge-
bra a : A // HA define the canonical graph on A: the neighbors of x ∈ A are precisely
those elements of A which lie in the least subset m : M � � // A with a(x) ∈ Hm[HM ].

Remark 2.49. (a) Gumm observed in [17] that if H preserves intersections we obtain a
“subnatural” transformation from it to the power-set functor P by defining functions

τA : HA // PA, τA(x) = the least subset m : M � � // A with x ∈ Hm[HM ].

The naturality squares do not commute in general, but for every monomorphism m : A′

� � // A we have a commutative square

HA PAτA
//

HA′

HA

Hm

��

HA′ PA′
τA′

// PA′

PA

Pm

��

which even is a pullback. The canonical graph of a coalgebra a : A // HA is simply the
graph τA·a : A // PA.

(b) Recall that a graph is well-founded iff it has no infinite directed paths. This also
fully characterizes well-foundedness of H-coalgebras:

Proposition 2.50. If a set functor preserves intersections, then a coalgebra is well-founded
iff its canonical graph is well-founded.

Remark. For functors H preserving inverse images this fact is proved by Taylor [29, Re-
mark 6.3.4]. Our proof is essentially the same.
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Proof. Let a : A // HA be a well-founded coalgebra. Given a subgraph (A′, a′) of the
associated graph (A, τ ·a) forming a pullback

A HAa
// HA PAτA

//

A′ PA′a′ //A′

A

m

��

PA′

PA

Pm

��

we are to prove that m is invertible. Use the pullback of Remark 2.49:

A HAa
//

A′

A

m

��

A′ HA′a′′ // HA′

HA

Hm

��

HA PAτA
//

HA′

HA

HA′ PA′
τA′

// PA′

PA

Pm

��

(2.20)

We get a unique a′′ : A′ // HA′ with a′ = τA′ ·a′′, and (A′, a′′) is a subcoalgebra of (A, a).
Moreover, in the diagram above the outside square and the right-hand one are both pull-
backs, thus, the left-hand square is also a pullback. Consequently, m is invertible since
(A, a) is well-founded.

Conversely, if the graph (A, τA·a) is well-founded, we are prove that if the left-hand
square of (2.20) is a pullback then m is invertible. Indeed, in that case, by composition,
the outside square is a pullback for the subcoalgebra (A′, τA′ ·a′′) of (A, τA·a). Thus, since
the last coalgebra is well-founded, m is invertible.

2.5. Initial algebras for functors on vector spaces.

For every field K, the category VecK of vector spaces over K also has the property that the
equality (2.13) holds for all endofunctors. This follows from the next lemma whose proof is
a variation of Trnková’s proof of Proposition 2.43 (cf. [31]):

Lemma 2.51. In VecK , finite intersections of monomorphisms are absolute, i.e., preserved
by every functor with domain VecK .

Corollary 2.52. For every endofunctor of VecK we have

initial algebra = final well-founded coalgebra.

Remark 2.53. The existence of an initial algebra is equivalent to the existence of a space
X ∼= HX, see Proposition 2.13.

3. Well-pointed coalgebras

3.1. Simple coalgebras.

We arrive at the centerpiece of this paper, characterizations of the initial algebra, final
coalgebra, and initial iterative algebra for endofunctors preserving intersections. Recall from
Section 2 that subcoalgebras are represented by homomorphisms carried by monomorphisms
in A , and quotient coalgebras by homomorphisms carried by strong epimorphisms in A .
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Here we prove that an endofunctor preserving monomorphisms has a final coalgebra
iff it has only a set of simple coalgebras (up to isomorphism). For concrete categories and
endofunctors preserving intersections we prove a stronger result: the final coalgebra consists
of all well-pointed coalgebras which are those pointed coalgebras with no proper quotient
and no proper subobject. And a much sharper result is obtained if the base category is
an equational class of algebras. Numerous examples of this type of description of final
coalgebras are presented in Section 4.

Assumption 3.1. Throughout this section A denotes a cocomplete, wellpowered and
cowellpowered category. And H : A // A is an endofunctor.

Additionally, in a number of results below we assume that H preserves (wide) intersec-
tions, i.e., multiple pullbacks of monomorphisms.

Examples 3.2. In the case where A =Set the assumption that H preserves intersections
is an extremely mild condition: examples include

(a) the power-set functor, all polynomial functors, the finite distribution functor,
(b) products, coproducts, quotients, and subfunctors of functors preserving intersections,

and
(c) “almost” all finitary functors: if H is finitary then H̄ in Theorem 2.46 preserves inter-

sections, see Lemma 2.45.
(d) An example of an important set functor not preserving intersections is the continuation

monad X 7→ R(RX) for a fixed set R.

Remark 3.3.

(a) We are working with factorizations of morphisms as strong epimorphisms followed by
monomorphisms, see Remark 2.6. Recall from [4] that every cocomplete and cowellpow-
ered category has such factorizations.

(b) We use Terminology 2.8 and recall from Remark 2.7 that quotients and subcoalgebras
form a factorization system in CoalgH whenever H preserves monomorphisms. In this
case, a coalgebra (A, a) is simple (see Definition 2.1) iff every homomorphism from it is
a subcoalgebra.

Notation 3.4. From now on we will write

νH and µH

for the final coalgebra and initial algebra for H, respectively, whenever they exist.

Examples 3.5.

(1) If H has a final coalgebra νH, then νH is simple. Indeed, the terminal object of every
category is (clearly) simple.

(2) If a set functor H has an initial algebra, then the corresponding coalgebra is simple
(see Theorem 2.46). More generally, let A be an LFP category with a simple initial
object. If H preserves finite intersections and has an inital algebra µH, then µH is (as
a coalgebra) simple. Indeed, by Theorem 2.38, µH is a final well-founded coalgebra.
Since well-founded coalgebras are closed under quotients (see Lemma 2.28), it follows
that µH is simple (in CoalgH).

(3) A deterministic automaton considered as a coalgebra of

HX = XI × {0, 1} (I = the set of inputs)
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is simple iff it is observable. That is, every pair of distinct states accept distinct lan-
guages.

(4) A graph, considered as a coalgebra for P, is simple iff it has pairwise non-bisimilar
vertices.

Observation 3.6. Simple coalgebras form an ordered class (up to isomorphism), i.e., be-
tween two simple coalgebras there exists at most one homomorphism.

Indeed, given a parallel pair h1, h2 : (A, a) // (B, b), their coequalizer is a quotient of
(B, b), hence it is invertible and we conclude h1 = h2.

Proposition 3.7 (Gumm [16]). Every coalgebra has a unique simple quotient represented
by the wide pushout

e(A,a) : (A, a) // (Ā, ā)

of all quotients. If H preserves monomorphisms, this is the reflection of (A, a) in the full
subcategory of all simple coalgebras.

Gumm worked with A = Set, but his argument extends without problems: for every
coalgebra homomorphism f : (A, a) // (B, b) there exists a unique coalgebra homomor-
phism f̄ : (Ā, ā) // (B̄, b̄) with f̄ · e(A,a) = e(B,b) · f by the universal property of wide
pushouts.

Corollary 3.8. Every subcoalgebra of a simple coalgebra is simple.

Indeed, every full (strong epi)-reflective subcategory is closed under subobjects.

Theorem 3.9. For every endofunctor H the existence of νH implies that H has only a
set of simple coalgebras (up to isomorphism). If H preserves monomorphisms, the converse
implication also holds.

Remark. Moreover, if (Ai, ai), i ∈ I, is a set of representatives of all simple coalgebras,
then νH is the simple quotient of their coproduct:

νH = (Ā, ā) where (A, a) =
∐

i∈I

(Ai, ai).

The theorem is a consequence of Freyd’s Adjoint Functor Theorem. We include a (short)
proof for the convenience of the reader.

Proof. (1) Let H have a set (Ai, ai), i ∈ I, of representative simple coalgebras. Proposi-
tion 3.7 implies that this set is weakly final: for every coalgebra (B, b) choose i ∈ I with
(B̄, b̄) ≃ (Ai, ai) and obtain a homomorphism (B, b) // (Ai, ai). Consequently, the co-
product (A, a) above is a weakly final object, hence, so is its quotient (Ā, ā). For every
parallel pair of morphisms with codomain (Ā, ā) their coequalizer is invertible (since the
codomain is simple, see Remark 3.3). Hence, (Ā, ā) is final.

(2) Let νH exist. Then for every simple coalgebra the unique homomorphism into νH
is monic. Therefore, since A is wellpowered by assumption, H has only a set of simple
coalgebras up to isomorphism.
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Example 3.10. If H does not preserve monomorphisms, then it can have both a final
coalgebra and a proper class of simple coalgebras which are pairwise non-isomorphic.

On the category Gra of graphs and graph morphisms define an endofunctor, based on
the power-set functor P, as follows:

HX =

{
PX (no edges) if X has no edges
1 else

For morphisms between graphs without edges put Hf = Pf . Then 1 = H1 is the final
coalgebra.

Now P as an endofunctor of Set has, since no final coalgebra exists, a proper class
of simple, pairwise non-isomorphic coalgebras ai : Ai // PAi (i ∈ I). Consider Ai as a
graph without edges, then (Ai, ai) is a coalgebra for H. And this coalgebra is simple because
if a coalgebra homomorphism e : (Ai, ai) // (B, b) is carried by a strong epimorphism
e : Ai // B of Gra, then the fact that Ai has no edge implies that neither has B. Then e
is a homomorphism in CoalgP which implies that it is invertible (in Set, hence, in Gra).
Thus, we obtain a proper class of simple H-coalgebras (Ai, ai).

3.2. Well-pointed coalgebras.

Remark 3.11. In the rest of Section 3 we assume that the base category A is concrete,
i.e., a faithful functor

U : A // Set

is given. We require that U

(a) preserves intersections,
(b) is fibre-small, i.e., for every set X there exists up to isomorphism only a set of objects

A ∈ A with UA = X, and
(c) is uniquely transportable, i.e., for every object A and every bijection b : UA // X in

Set there exists a unique object Ā with UĀ = X and A ≃ Ā where the isomorphism is
carried by b.

Condition (c) is harmless: every concrete category is equivalent to a uniquely transportable
one, see [4, Proposition 5.36]. Also (a) and (b) are conditions fulfilled by all “everyday”
concrete categories: usually U is the hom-functor of an object G which is a generator, and
then (a) and (b) hold. More generally:

Example 3.12.

(1) Let Gi (i ∈ I) be a generating set of A , i.e., for every parallel pair f1, f2 : A // B of
distinct morphisms there exists i ∈ I and h : Gi // A with f1 · h 6= f2 · h. Then the
functor

U =
∐

i∈I

A (Gi,−) : A // Set

is faithful, fibre-small, and preserves intersections. Indeed, faithfulness is equivalent to
{Gi : i ∈ I} forming a generating set. Each A (Gi,−) preserves limits, and connected
limits commute with coprodutcs in Set, thus, U preserves connected limits. Fibre-
smallness follows from A being cocomplete and cowellpowered: for every object A the
canonical morphism

e :
∐

i∈I

A (Gi, A) •Gi // A
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where − • Gi denotes copowers of Gi (and the f -component of e is f for every f ∈
A (Gi, A)) is an epimorphism. This is also equivalent to {Gi : i ∈ I} forming a generat-
ing set. For every set X all objects A with UA = X are thus quotients of

∐

i∈I Xi •Gi
where Xi ⊆ X. Since A is cowellpowered, all these quotients form a set of objects up
to isomorphism.

(2) Every LFP category A is concrete as described in the previous point when one chooses
as generating set any set of representatives of all finitely presentable objects up to
isomorphism.

Definition 3.13. By a pointed coalgebra is meant a triple (A, a, x) consisting of a
coalgebra a : A // HA and an element x of UA. The category

CoalgpH

of pointed coalgebras has as morphisms from (A, a, x) to (B, b, y) those coalgebra homo-
morphisms f : (A, a) // (B, b) which preserve the point:

UA UB
Uf

//

1

UA

x

||②②
②②
②②
②②
②②

1

UB

y

""❊
❊❊

❊❊
❊❊

❊❊
❊

Remark 3.14. As for CoalgH, the quotients of a pointed coalgebra (A, a, x) are precisely
the morphisms with this domain carried by strong epimorphisms of A . And subcoalgebras
are precisely the morphisms with codomain (A, a, x) carried by monomorphisms of A .
Moreover, Remark 2.7 immediately extends to CoalgpH.

Definition 3.15. A well-pointed coalgebra is a pointed coalgebra with no proper quo-
tient and no proper subobject.

Remark.

(a) To say that a pointed coalgebra (A, a, x) has no proper subobject means precisely that x
generates the coalgebra (A, a): whenever a subcoalgebra m : (B, b) // (A, a) contains
x (in the image of Um) then m is invertible. We call such coalgebras reachable. Thus:

well-pointed = simple + reachable.

(b) It is easy to see that if f : (A, a, x) // (B, b, y) is a morphism of pointed coalgebras,
and if (A, a) is simple and (B, b, y) is reachable, then f is an isomorphism.

(c) In the case where A = Set and H = P, reachability of a pointed graph means
that every vertex can be reached from the chosen one. Suppose H is an arbitrary set
functor preserving intersections. Then reachability of coalgebras can be translated to
reachability of its canonical graph, see Definition 2.48:

Lemma 3.16. Let H be a set functor preserving intersections. Then a pointed coalge-
bra (A, a, x) is reachable iff its pointed canonical graph is, i.e., every vertex can be reached
from x by a directed path.
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Proof. Recall τA : HA // PA from Remark 2.49. Take a subcoalgebra (A′, a′) contain-
ing x:

1 Ax
//

A′

1

::

x′

t
t
t
t
t
t
t
A′

A

m

��

A HAa
//

A′

A
��

A′ HA′a′ // HA′

HA

Hm

��

HA PAτA
//

HA′

HA

HA′ PA′
τA′

// PA′

PA

Pm

��

Then A′ is a subcoalgebra of the canonical graph (A, τA·a) (as a pointed coalgebra of P).
And vice versa: if m : A′ // A is a subobject of the pointed canonical graph then, since
the square in Remark 2.49 is a pullback, we have a unique structure a′ : A′ // HA′ of a
subobject of (A, a, x). Therefore, (A, a, x) is reachable w.r.t. H iff (A, τA·a, x) is reachable
w.r.t. P.

Examples 3.17.

(a) A deterministic automaton with a given initial state is a pointed coalgebra for HX =
XI×{0, 1}. Reachability means that every state can be reached (in finitely many steps)
from the initial state. The usual terminology is that reachability and observability (see
Example 3.5 (3)) together are called minimality. Thus, well-pointed coalgebras are
precisely the minimal automata.

(b) For the power-set functor the pointed coalgebras are the pointed graphs. Well-pointed
means reachable and simple (Example 3.5 (4)). See Subsection 4.6 for more details.

Notation 3.18. If H preserves intersections, then there is a canonical process of turning
an arbitrary pointed coalgebra (A, a, x) into a well-pointed one: form the simple quotient
(see Proposition 3.7) pointed by Ue(A,a)·x : 1 // UĀ, then form the least subcoalgebra
containing that point:

1 UAx
// UA UĀ

Ue(A,a)

//1

UĀ0

x0

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

UĀ0

UĀ

Um

��

Ā HĀ
ā

//

Ā0

Ā

m

��

Ā0 HĀ0
ā0 // HĀ0

HĀ

Hm

��

Then (Ā0, ā0, x0) is well-pointed by Corollary 3.8. We denote the well-pointed coalgebra
(Ā0, ā0, x0) (unique up to isomorphism ) by

wp(A, a, x)

and call it the well-pointed modification of (A, a, x).

Example 3.19. For deterministic automata our process A ✤ // Ā0 above means that we
first merge the states that are observably equivalent and then discard the states that are not
reachable. A more efficient way is first discarding the unreachable states and then merging
observably equivalent pairs. Both ways are possible if our functor preserves inverse images:

Remark 3.20. Let H and U preserve inverse images. Then a quotient of a reachable
pointed coalgebra is reachable. Indeed, given such a quotient e and its subcoalgebra m
containing the given point x, form the inverse image m′ of m along e, and apply U to this
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pullback:

UĀ0 UĀ
Um

//

UA′

UĀ0

Ue′

��

UA′ UA
Um′

// UA

UĀ

Ue

��

1

UA

x

99rrrrrrrrrr
1

UA′
ee▲
▲
▲
▲
▲
1

UĀ0

x0yyrrr
rrr

rrr

Since H preserves inverse images, m′ : A′ // A is a subcoalgebra of A, and, since U
preserves inverse images too, the universal property of pullbacks implies that A′ contains
the given point x. Consequently, m′ is invertible, thus, m·e′ is strongly epic, therefore m is
invertible.

Thus, we have an alternative procedure of forming well-pointed coalgebras from pointed
ones, (A, a, x): first form the least pointed subcoalgebra (A0, a0, x). Then form the simple
quotient of (A0, a0).

Notation 3.21. The collection of all well-pointed coalgebras up to isomorphism is denoted
by T . For every coalgebra a : A // HA we have a function

a+ : UA // T defined by a+(x) = wp(A, a, x).

(Notice that the well-pointed modification wp(A, a, x) is unique up to isomorphism. Thus
we have precisely one choice in T .)

Lemma 3.22. Let H preserve monomorphisms. For every coalgebra homomorphism h :
(A, a) // (B, b) the triangle

UA

T

a+

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
UA UB

Uh // UB

T

b+

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

commutes.

Proof. (a) Assume that both coalgebras above are simple. In particular, h is a monomor-
phism by simplicity of (A, a). For every element x ∈ UA we know that a+(x) is the
subcoalgebra m : (A0, a0) // (A, a) generated by x. Therefore h ·m : (A0, a0) // (B, b)
is a subcoalgebra of (B, b, Uh(x)), and since (A0, a0, x0), with Um(x0) = x, is well-pointed,
we conclude that it is isomorphic to b+(Uh(x)). Now T contains just one representative of
every well-pointed coalgebra up to isomorphism, consequently, b+(Uh(x)) = a+(x).

(b) If the two coalgebras are arbitrary, form the reflection h̄ of h (see Proposition 3.7):

(Ā, ā) (B̄, b̄)
h̄

//

(A, a)

(Ā, ā)

e(A,a)

��

(A, a) (B, b)
h // (B, b)

(B̄, b̄)

e(B,b)

��

Then for every element x ∈ UA we have that a+(x) is the subcoalgebra of (Ā, ā) generated
by x̄ = Ue(A,a)(x), thus a

+(x) = ā+(x̄); analogously for b+(Uh(x)). By applying (a) to h̄

in lieu of h we conclude a+(x) = ā+(x̄) = b̄+(Uh̄(x̄)) = b+(Uh(x)).
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Lemma 3.23. If (A, a) is a simple coalgebra, then a+ : UA // T is injective.

Proof. Suppose that wp(A, a, x1) = wp(A, a, x2). Let mi : (Ai, ai, x
i
0)

// (A, a, xi) denote
the smallest subcoalgebra containing xi (i = 1, 2) which is isomorphic to wp(A, a, xi). Let

u : (A1, a1, x
1
0)

// (A2, a2, x
2
0)

be an isomorphism. Then since (A, a) is simple, we have m1 = m2 · u due to Observation
3.6. From Uu(x10) = x20 we get

x2 = Um2(x
2
0) = U(m2u)(x

1
0) = Um1(x

1
0) = x1.

3.3. Final coalgebras.

We remind the reader that in this section, we assume that the endofunctor H preserves
intersections.

Theorem 3.24. H has a final coalgebra iff it has only a set of well-pointed coalgebras up
to isomorphism. Moreover, a set T of representatives of well-pointed coalgebras carries the
final coalgebra:

U(νH) = T.

Remark 3.25. The final coalgebra for H is, as we will also prove, characterized up to
isomorphism as a coalgebra τ̄ : T̄ // HT̄ with two properties: UT̄ = T , and for every
coalgebra (A, a) the function a+ : UA // T carries a coalgebra homomorphism from (A, a)
to (T̄ , τ̄ ).

Proof. The necessity follows from Theorem 3.9. For the sufficiency, fix a set T of representa-
tive well-pointed coalgebras. We also use Theorem 3.9 to show that H has a final coalgebra.
Indeed, if (A, a) is a simple coalgebra, then by Lemma 3.23, UA has cardinality at most
cardT . Since A is small-fibred and uniquely transportable, it has up to isomorphism of A

only a set of objects whose underlying sets have cardinality at most cardT . Consequently,
H has up to isomorphism of CoalgH only a set of simple coalgebras: given an object A
with A (A,HA) of cardinality α, there are at most α pairwise non-isomorphic coalgebras
b : B // HB with A ∼= B in A .

Given the coalgebra structure

τ : νH // H(νH)

of the final coalgebra, we now prove that the map τ+ : U(νH) // T is a bijection. Indeed,
τ+ is monic due to the simplicity of νH (see Example 3.5 (1)) and Lemma 3.23. To check the
surjectivity, let a+(x) ∈ T , where (A, a) is a coalgebra and x ∈ UA. Then by Lemma 3.22,
a+(x) = τ+(Uh(x)), where h : A // νH is the coalgebra homomorphism. This shows
that the image of τ+ contains a+(x).

Since A is uniquely transportable, there exists a unique object T̄ of A and a unique
isomorphism i : νH // T̄ with τ+ = Ui. Define a coalgebra τ̄ : T̄ // HT̄ so that i is
a coalgebra isomorphism: τ̄ = Hi · τ · i−1. The coalgebra (T̄ , τ̄) is final because for every
coalgebra (A, a) we have a unique coalgebra homomorphism a∗ : (A, a) // (νH, τ), hence
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a unique coalgebra homomorphism i · a∗ : (A, a) // (T̄ , τ̄ ):

T̄ H(T̄ )
τ̄

//

νH

T̄

i

��

νH H(νH)// H(νH)

H(T̄ )

Hi
��

νH H(νH)τ
//

A

νH

a∗

��

A HA
a // HA

H(νH)

Ha∗

��

i−1

OO

We conclude with the verification of Remark 3.25. First we show that τ̄+ = id. To
see this apply Lemma 3.22 to i in order to get τ+ = τ̄+ · Ui. But since τ+ = Ui, we get
Ui = τ̄+ · Ui, hence τ̄+ = id because Ui is an isomorphism.

To see that a+ = U(i · a∗), we use Lemma 3.22 again:

a+ = τ̄+ · U(i · a∗) = id · U(i · a∗) = U(i · a∗).

For the uniqueness, suppose that (T ′, τ ′ : T ′ // HT ′) also fulfils UT ′ = T and for all
coalgebras (A, a), the map a+ : UA // T is U(b) for some coalgebra homomorphism
b : (A, a) // (T ′, τ ′). We apply this with (A, a) = (T̄ , τ̄), and so id = τ̄+ : T // T is Uf
for some coalgebra morphism f : (T̄ , τ̄) // (T ′, τ ′). However, by unique transportability,
there is some isomorphism g : T̄ // T ′ such that Ug = id. And by faithfulness, f = g.
Thus the coalgebras (T̄ , τ̄ ) and (T ′, τ ′) are isomorphic.

Example 3.26. Let H be a set functor preserving intersections. If T is a set of represen-
tatives of all well-pointed coalgebras, then T is a final coalgebra. Its coalgebra structure
assigns to every member (A, a, x) of T the following member of HT :

1
x // A

a // HA
Ha+ // HT. (3.1)

See Section 4 for numerous concrete examples.

Example 3.27. If H does not preserve intersections the theorem can fail: the functor in
Example 3.10 has a proper class of well-pointed coalgebras.

Example 3.28. For the set functor

HX = XI × {0, 1}

presenting deterministic automata the well-pointed coalgebras are precisely the minimal
(i.e., reachable and observable = simple) automata. Since every language L ⊆ I∗ is accepted
by a minimal automaton, unique up to isomorphism, we get the more usual description of
the final coalgebra

ν X .XI × {0, 1} = all minimal automata
∼= PI∗ (all languages).

Remark 3.29. Actually every set functor H has a final coalgebra, but this can be a proper
class. More precisely, H has an extension H∗ to the category of classes and functions unique
up to a natural isomorphism, and νH∗ exists, see [7].

Corollary 3.30. For every set functor H preserving intersections a class of representative
well-pointed H-coalgebras with the coalgebra structure given by the formula (3.1) is a final
coalgebra for H∗.
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The proof is completely analogous to that of Theorem 3.24.

Example 3.31. The final coalgebra of the power set functor is the class of all well-pointed
graphs (up to isomorphism).

Construction 3.32. Now let A be a variety of algebras determined by a set E of equa-
tions, for a fixed signature Σ. Given a set T representing all well-pointed coalgebras up to
isomorphism, we turn it into a final coalgebra of H as follows.

(a) T as a Σ-algebra. For every n-ary symbol σ ∈ Σ define σT : T n // T as follows:
Given an n-tuple of elements (Ai, ai, xi) of T form a coproduct

A =
∐

i<n

Ai in A

and obtain a coproduct (A, a) =
∐

i<n(Ai, ai) inCoalgH together with elements x̂i ∈ A
corresponding to xi ∈ Ai. For the element

y = σA(x̂i)i<n of A

we define the result of σT as the well-pointed modification of (A, a, y):

σT (Ai, ai, xi)i<n = wp(A, a, y). (3.2)

(b) T will be proved to satisfy all equations in E, i.e., T is an object of A . And all a+ in
Notation 3.21 are Σ-homomorphisms. (See Lemma 3.33.)

(c) T as a coalgebra. We have a function

τ : T // HT

defined precisely as in Example 3.26:

τ(A, a, x) = Ha+(a(x))

We prove that τ is a Σ-homomorphism. (See Proposition 3.34.)
(d) We derive that (T, τ) is a final coalgebra for H.

Lemma 3.33. The Σ-algebra T lies in A and for every coalgebra (A, a) we have a Σ-
homomorphism a+ : A // T .

Proof. Recall the final coalgebra (T̄ , τ̄ ) from the proof of Theorem 3.24 whose underlying

set is T . All we need to prove is that the operations σT̄ of the Σ-algebra T̄ are given
by the formula (3.2) above. Indeed, given a well-pointed coalgebra (Ai, ai, xi) we have
a+i (xi) = (Ai, ai, xi). Let us apply Lemma 3.22 to the coproduct injection vi : (Ai, ai)

// (A, a): since a+i = a+ · vi and x̂i = vi(xi), we conclude

(Ai, ai, xi) = a+i (xi) = a+(x̂i).

Since a+ : A // T̄ is (by Remark 3.25) a Σ-homomorphism, we obtain

σT̄ ((Ai, ai, xi)i<n) = σT̄
(
(a+(x̂i))i<n

)
= a+(σA((x̂i)i<n)) = a+(y) = wp(A, a, y)

as required.
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Proposition 3.34. The function τ(A, a, x) = Ha+(a(x)) is a Σ-homomorphism from T to
HT , and the coalgebra (T, τ) is final.

Proof. For the final coalgebraτ̄ : T̄ // HT̄ of the proof of Theorem 3.24 we already know
that T = T̄ . It remains to prove that τ̄ = τ . For every element (A, a, x) of T we have
a+(x) = (A, a, x) and, since a+ : (A, a) // (T, τ̄) is by Remark 3.25 a coalgebra homo-
morphism,

τ̄(A, a, x) = τ̄(a+(x)) = Ha+(a(x)) = τ(A, a, x).

Remark 3.35.

(a) Generalizing deterministic automata, see Example 3.28, every pointed coalgebra (A, a, x)
can be viewed as a realization of the corresponding element t = a+(x) of the terminal
coalgebra of H. The well-pointed coalgebras are the minimal realizations of t. Then
every element of νH has a minimal realization, unique up-to isomorphism.

(b) If the algebra A above is finite, then minimality is equivalent to state-minimality:
(b1) Every realization of t has cardinality at least that of A, and
(b2) if it has the same cardinality as A, it is isomorphic to (A, a, x).
This follows from the fact that every well-pointed coalgebra (A, a, x) is, as we have seen
above, isomorphic to the subcoalgebra of νH generated by a+(x).

(c) For non-deterministic automata we obtain minimization w.r.t. bisimilarity (i.e. w.r.t.
to the branching behavior) but this is not minimization in the classical sense. The
reason is that the terminal coalgebra of the corresponding functor (PfX)I × {0, 1} is
not the set of all languages over I.

Example 3.36. In the variety Bool of boolean algebras consider the functor HX = XI×2
where 2 is the 2-element boolean algebra. Its coalgebras are deterministic automata with a
boolean algebra structure on the states such that (1) final states form an ultrafilter, and (2)
transitions preserve the boolean operations. The terminal coalgebra is the boolean algebra
of all well-pointed coalgebras, and this is isomorphic to the boolean algebra of all languages
over I.

For every regular language L the unique minimal realization A (i.e. the corresponding
well-pointed H-coalgebra) is finite, but possibly larger than the minimal automaton in Set.
However, by restricting ourselves to the atoms of the boolean algebra A, one obtains a
nondeterministic automaton which Brzozowski and Tamm [11] call the átomaton for L and
which in some cases is the state-minimal nondeterministic realization of L (in the classical
sense in Set).

3.4. Initial algebras.

Assumption 3.37. In the rest of this section A denotes an LFP category with a simple
initial object, and H an endofunctor preserving intersections.

Just as the final coalgebra νH for a set functor H consists of all well-pointed coalgebras
(up to isomorphism), we now prove that the initial algebra µH consists of all well-founded,
well-pointed coalgebras. In more detail: the well-founded coalgebras in νH form a subcoal-
gebra, and we prove that this is a final well-founded coalgebra which by Theorem 2.38 is
µH. In Section 4 we then present numerous examples of initial algebras described in this
manner.
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Notation 3.38. Recall the concept of well-founded coalgebra from Section 2. The collection
of all well-founded, well-pointed coalgebras (up to isomorphism) is denoted by I. For every
well-founded coalgebra a : A // HA we have a function

a+ :
⋃

A // I

assigning to every element x : 1 //
⋃
A the well-founded, well-pointed coalgebra of Nota-

tion 3.18:
a+(x) = (Ā0, ā0, x0).

Indeed, (Ā0, ā0) is well-founded due to Corollary 2.28 and Lemma 2.29.

Remark 3.39. Observe that for a pointed coalgebra to be well-founded and well-pointed
two types of proper subcoalgebras are prohibited: the cartesian ones, and those containing
the chosen point.

Theorem 3.40. H has an initial algebra iff it has only a set of well-founded, well-pointed
coalgebras up to isomorphism. Moreover a set I of representatives of well-founded, well-
pointed coalgebras carries the initial algebra:

⋃
(µH) = I.

Proof. (1) If H has an initial algebra µH, then by Theorem 2.38 this is a final well-founded
coalgebra. Every well-founded, well-pointed coalgebra, being in particular simple, is a sub-
coalgebra of µH, since the unique homomorphism into µH is carried by a monomorphism.
Consequently, I is a set.

(2) Let H have a set I of representatives of well-founded, well-pointed coalgebras. I
carries a canonical coalgebra structure

ψ̄ : I // HI.

As in Theorem 3.24, this structure assigns to every member (A, a, x) of I the following
element of

⋃
HI:

1
x //

⋃

A

⋃
a

//
⋃

HA

⋃
Ha+

//
⋃

HI.

We prove below that this is a final well-founded coalgebra. Thus, by Theorem 2.38, I is an
initial algebra w.r.t. the inverse of ψ̄.

The proof that for every well-founded coalgebra (A, a) the map a+ :
⋃
A // I carries

a unique coalgebra homomorphism into ψ̄ : I // H(I) is completely analogous to the proof
of Theorem 3.24. Just recall that subcoalgebras and quotients of a well-founded coalgebra
are all well-founded (by Corollary 2.28 and Lemma 2.29).

It remains to prove that (I, ψ̄) is a well-founded coalgebra. To this end notice that for
every well-pointed, well-founded coalgebra (A, a, x) in I we have that

a+(x) = (A, a, x).

Now take the coproduct (in CoalgH) of all (A, a) for which there is an x ∈ A such that
(A, a, x) lies in I. This coproduct is a well-founded coalgebra by Corollary 2.28, and, as
we have just seen, the unique induced homomorphism from this coproduct into (I, ψ̄) is
epimorphic, whence I is a quotient coalgebra of the coproduct. Thus, another application
of Corollary 2.28 shows that (I, ψ̄) is a well-founded coalgebra as desired.



34 J. ADÁMEK, S. MILIUS, L. S. MOSS, AND L. SOUSA

Example 3.41. The initial algebra for HX = XI × {0, 1}, and more generally, for any
set functor H with H∅ = ∅, is empty. No non-empty coalgebra is well-founded (due to the
cartesian subcoalgebra ∅) and thus no pointed coalgebra is well-founded.

Remark 3.42. Analogously to Corollary 3.30, every set functor H has a, possibly large,
initial algebra. That is, the extension H∗ of H to classes always has an initial algebra:

µH∗ = all well-founded, well-pointed algebras

(up to isomorphism). This is a subcoalgebra of νH of Remark 3.29. And as an algebra
for H∗ it is initial:

Corollary 3.43. For every intersection preserving set functor H the large coalgebra µH∗

is the final well-founded coalgebra for H∗. Thus, the large initial algebra is µH∗ w.r.t. the
inverse of ψ̄.

The first statement follows from the Small Subcoalgebra Lemma of [2] and the fact
that subcoalgebras of well-founded coalgebras are well-founded (Corollary 3.8). The second
statement is proved precisely as Theorem 2.38.

Example 3.44. The initial algebra for P consists of all well-founded, well-pointed graphs.

Remark 3.45. The above theorem generalizes to endofunctors of finitary varieties having
a simple initial object (and thus satisfying Assumptions 2.3). Let H be an endofunctor
preserving intersections. Given a set I representing well-founded, well-pointed coalgebras,
we turn I into a coalgebra of H as in Construction 3.32, using the fact that (by Proposition
2.27) well-founded coalgebras are closed under coproducts. The rest of the proof is, due to
Theorem 2.38, completely analogous to Proposition 3.34.

3.5. Initial iterative algebras.

In this subsection, we study another subcoalgebra of the final coalgebra for a set functor:
all finite well-pointed coalgebras. We prove that this is the initial iterative algebra (also
known as the rational fixed point). Before doing so we recall what completely iterative and
iterative algebras are. Once again, there is no problem in generalizing the results below
to locally finitely presentable base categories with a simple initial object and which are
concrete via a given U : A // Set.

Remark 3.46. We know, from Theorem 2.38 and 3.40, that µH has a double role: an initial
algebra and a final well-founded coalgebra. Also νH has a double role. Recall from [19]
that an algebra a : HA // A is completely iterative if for every (equation) morphism e : X

// HX + A there exists a unique solution, i.e., a unique morphism e† : X // A such
that the square below commutes:

HX +A HA+A
He†+A

//

X

HX +A

e

��

X A
e† // A

HA+A

OO

[a,A]

Theorem 3.47 (see [19]). For every endofunctor

final coalgebra = initial completely iterative algebra.
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Remark 3.48. (a) Let H be a finitary set functor, i.e., every element x ∈ HA lies, for some
finite subset m : A′ // A, in the image of Hm. Then an algebra a : HA // A is called
iterative provided that for every equation morphism e : X // HX+A with X finite, there
exists a unique solution e† : X // A.

This concept was studied for classical Σ-algebras by Nelson [21] and Tiurin [30], and
for H-algebras in general in [6].

(b) Form the colimit C, in Set, of the diagram of all finite coalgebras a : A // HA
with the colimit cocone a+ : A // C. Then there exists a unique morphism c : C // HC
with c·a+ = Ha+·a. It was proved in [6] that c is invertible and the resulting algebra is the
initial iterative algebra for H.

Example 3.49 (see [6]). (a) The initial iterative algebra of HX = XI × {0, 1} consists of
all finite minimal automata. This is isomorphic to its description as all regular languages.

(b) The initial iterative algebra of the finite power-set functor consists of all finite
well-pointed graphs. See Section 4 for a description using rational trees.

Definition 3.50 (see [20]). A coalgebra is called locally finite if every element lies in a
finite subcoalgebra.

Theorem 3.51 (see [20]). Let H be a finitary set functor. Then

initial iterative algebra = final locally finite coalgebra.

Moreover, the final locally finite coalgebra is the colimit of all finite coalgebras in CoalgH.

Remark 3.52. We prove below that given a finitary set functor, the set of all finite well-
pointed coalgebras forms the initial iterative algebra. For this result we do not need to
assume (unlike the rest of this section) that the functor preserves intersections. This can
be deduced from the following

Lemma 3.53. For every finitary set functor H the Trnková closure H̄ (see Remark 2.44)
preserves (wide) intersections.

Proof. The functor H̄ of Proposition 2.43 is obviously also finitary. It preserves finite
intersections, and we deduce that it preserves all intersections. Given subobjects mi : Ai

// B (i ∈ I) with an intersection m : A // B, let x ∈ H̄B lie in the image of each Hmi;
we are to prove that x lies in the image of H̄m. Choose a subset n : C // B of the smallest
(finite) cardinality with x lying in the image of H̄n. Since H̄ preserves the intersection of
n and mi, the minimality of C guarantees that n ⊆ mi (for every i ∈ I). Thus, n ⊆ m,
proving that x lies in the image of H̄m.

Notation 3.54. For every finitary set functor denote by

̺H

the set of all finite well-pointed coalgebras up to isomorphism.
Given a finite coalgebra a : A // HA we again define a function

a+ : A // ̺H

by assigning to every element x : 1 // A the well-pointed coalgebra of Notation 3.18:

a+(x) = wp(A, a, x).

This is well-defined due to Corollary 2.28 and Lemma 2.29 since H and H̄ have the same
pointed coalgebras.
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Theorem 3.55. Every finitary set functor H has the initial iterative algebra ̺H.

Remark. ̺H has the canonical coalgebra structure

ψ∗ : ̺H // H(̺H).

It assigns, analogously to (3.1), to every element (A, a, x) of ̺H the following element
of H(̺H):

1
x // A

a // HA
Ha+ // H(̺H).

We prove below that this is the final locally finite coalgebra. Thus, ̺H is the initial iterative
algebra w.r.t. the inverse of ψ∗, by Theorem 3.51.

Proof. Analogously to the proof of Theorem 3.24 one verifies that the morphisms

a+ : (A, a) // (̺H,ψ∗) (A finite)

are coalgebra homomorphisms forming a cocone. By Remark 3.48(b) it remains to prove
that this is a colimit in CoalgH. We verify that all a+’s form a colimit cocone in Set.
That is:

(i) Every element of ̺H has the form a+(x) for some finite coalgebra (A, a) and some
x ∈ A. Indeed, for every element (A, a, x) of ̺H we have a+(x) = (A, a, x).

(ii) Whenever
a+(x) = b+(y)

holds for two finite coalgebras (A, a) and (B, b) and for elements x ∈ A, y ∈ B
(turning them into pointed coalgebras), there exists a zig-zag of homomorphisms of
finite pointed coalgebras connecting (A, a, x) with (B, b, y). For that recall a+(x) =
(Ā0, ā0, x0) in the notation 3.18. Here is the desired zig-zag:

(A, a, x)

(Ā, ā, e(A,a)·x)

e(A,a)
$$❏

❏❏
❏❏

❏❏
❏❏

❏
(A, a, x) (Ā0, ā0, x0)(Ā0, ā0, x0)

(Ā, ā, e(A,a)·x)

m(A,a)
zztt
tt
tt
tt
tt
(Ā0, ā0, x0)

(B̄, b̄, e(B,b)·y)

e(B,b)
$$❏

❏❏
❏❏

❏❏
❏❏

❏
(Ā0, ā0, x0) (B, b, y)(B, b, y)

(B̄, b̄, e(B,b)·y)

m(B,b)
zztt
tt
tt
tt
tt

Remark 3.56. For non-finitary set functors H the set ̺H also carries the structure above
of a coalgebra. But this is in general not a fixed point of H. For example, the functor
HX = XN + 1 has the final coalgebra consisting of all countably branching trees. And
̺H is the set of all rational trees, i.e., those having only finitely many subtrees (up to
isomorphism), see Example 4.28. This is a subcoalgebra of the final coalgebra, but not a
fixed point of H.

Remark 3.57. Theorem 3.55 generalizes immediately to varieties of algebras that are
locally finite, i.e. free algebras on finitely many variables are finite (for example, boolean
algebras or semilattices).

Let H be a finitary endofunctor preserving intersections. The set

ρH = all finite well-pointed coalgebras

forms a subcoalgebra of the coalgebra of Construction 3.32. This is the initial iterative
algebra for H. (The proof is entirely analogous to that of Proposition 3.34, based on
Theorem 3.51 and the fact that a finite coproduct of finite coalgebras is finite.)
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4. Examples of well-pointed coalgebras

For a number of important set functors H we are going to apply the results of Section 3
and compare them to the well-known description of the three fixed points of interest: the
final coalgebra, the initial algebra, and the initial iterative algebra (= final locally finite
coalgebra). The last one is also called the rational fixed point of H. Throughout this
section pointed coalgebras are considered up to (point-preserving) isomorphism. Recall
that

νH = all well-pointed coalgebras

µH = all well-founded, well-pointed coalgebras

and if H is a finitary functor

̺H = all finite well-pointed coalgebras.

We are using various types of labeled trees throughout this section. Trees, too, are consid-
ered up to (label-preserving) isomorphism. Unless explicitly stated, trees are ordered, i.e.,
a linear ordering on the children of every node is always given.

In all our examples the endofunctors H used preserves intersections and weak pullbacks.
Recall from Rutten [23] that this implies that

(a) congruences on a coalgebra A are precisely the kernel equivalences of homomorphisms
f : A // B, and

(b) for every coalgebra the largest congruence is precisely the bisimilarity equivalence.

Also recall from Remark 3.20 that, for these functors, every pointed coalgebra yields a
well-pointed one by first forming the “reachable part” and then the simple coreflection.

In pictures of pointed coalgebras the choice of the point q0 is depicted by
� � // q08?9>:=;<

4.1. Moore automata.

Given a set I of inputs and a set J of outputs, a Moore automaton on a set Q (of states) is
given by a next-state function δ : Q× I // Q curried as

curry δ : Q // QI

an output function
out: Q // J

and an initial state q0 ∈ Q. The first two items form a coalgebra for

HX = XI × J,

thus we work with pointed coalgebras for this functor, with q0 as the chosen point. The
behavior of an automaton is the function

β : I∗ // J

which to every input word w ∈ I∗ assigns the output of the state reached from q0 by
applying the inputs in w. A function β : I∗ // J is called regular if the set of all functions
β(w−) : I∗ // J for w ∈ I∗ is finite.
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Lemma 4.1. The largest congruence on a Moore automaton merges states q and q′ iff by
applying an arbitrary finite sequence of inputs to each of them, we obtain states with the
same output.

This is well-known and easy to prove. Automata satisfying this condition are called
simple. Another well-known fact is the following

Theorem 4.2. For every function β : I∗ // J there exists a reachable and simple Moore
automaton with the behavior β. This automaton is unique up to isomorphism. It is finite
iff β is regular.

Corollary 4.3. For Moore automata, HX = XI × J , we have

νH ∼= JI
∗
, all functions β : I∗ // J ;

̺H ∼= all regular functions β : I∗ // J ;
µH = ∅.

The coalgebra structure of νH (and ̺H) assigns to every β : I∗ // J the pair in (νH)I×J
consisting of the function i ✤ // β(i−) for i ∈ I and the element β(ε) of J .

Indeed, the isomorphism between νH, the set of all reachable and simple automata,
and JI

∗
is given by the theorem above. And the structure map of Example 3.26 is easily seen

to correspond to the map above, taking β to (i ✤ // β(i−), β(ε)). Also the isomorphism
of ̺H and all regular functions follows from the theorem above; from Theorem 3.55 we
know that ̺H is a subcoalgebra of νH.

Finally, µH = ∅ since no well-pointed coalgebra (A, a) is well-founded due to the
cartesian subcoalgebra

A AI × Ja
//

∅

A

m

��

∅ H∅ = ∅
id // H∅ = ∅

AI × J

Hm

��

Example 4.4. If J = {0, 1} we get νH = PI∗ and ̺H = regular languages, see Examples
3.28 and 3.49 (a).

4.2. Mealy automata.

For Mealy automata the next-state function has the form δ : Q×I // Q×J and in curried
form this is a coalgebra for

HX = (X × J)I .

Given a state q of a Mealy automaton Q, its response function fq is the function fq : I
ω

// Jω assigning to an infinite word of input symbols the infinite word of output sym-
bols (delayed by one time unit) consisting of the outputs given by the transitions (as the
computations of the inputs are performed, starting in q). Observe that fq is a causal func-
tion, i. e., for every infinite word w the n-th component of fq(w) depends only on the first
n components of w.

Remark 4.5. Given a causal function f : Iω // Jω the property above with n = 0 tells
us that the component 0 of f(w) only depends on w0. We thus obtain a derived function

f0 : I // J



WELL-POINTED COALGEBRAS 39

with f(iw) = f0(i)w′ (for convenient w′) for all w ∈ Iω.

Lemma 4.6. For every Mealy automaton the largest congruence merges precisely the pairs
of states with the same response function.

Proof. Let Q be a Mealy automaton, then the equivalence q ∼ q′ iff fq = fq′ is obviously a
congruence. We have a structure of a Mealy automaton δ̄ on Q/∼ derived from that of Q:
Given a state [q] ∈ Q/∼ and an input i ∈ I, the pair δ(q, i) = (q′, j) yields δ̄([q], i) = ([q′], j).
It is easy to verify that the canonical map c : Q // Q/∼ is a coalgebra homomorphism
c : (Q, δ, q0) // (Q/∼, δ̄, [q0]). Conversely, every congruence is contained in ∼ because
given a coalgebra homomorphism h : Q // Q̄ then for every state q ∈ Q we have fq = fh(q).
Thus, the kernel congruence of h is contained in ∼.

Corollary 4.7. The well-pointed Mealy automata are precisely those with an initial state q0
such that the automaton is

(a) reachable: every state can be reached from q0, and
(b) simple: different states have different response functions.

The automata satisfying (a) and (b) together are called “minimal”. The following
theorem can be found in Eilenberg [13, Theorem XII.4.1]:

Theorem 4.8. For every causal function f there exists a unique well-pointed coalgebra
whose initial state has the response function f .

Remark 4.9. Eilenberg also proves that a minimal Mealy automaton is finite iff f has the
property that the set of all functions f(w−) where w ∈ I∗ is finite. Let us call such causal
functions regular.

Corollary 4.10. For Mealy automata, HX = (X × J)I , we have

νH ∼= all causal functions from Iω to Jω

̺H ∼= all regular causal functions

µH = ∅.

The coalgebra structure of νH (and that of ̺H) assigns to every causal function f : Iω

// Jω the map
I // νH × J, i ✤ //

(
f(i−), f0(i)

)

for f0 : I // J in Remark 4.5.

Indeed, the first two statements follow from the theorem above, and the last one follows
again from H∅ = ∅. The description of the final coalgebra is due to Rutten [24]. Eilenberg
works with functions f : I∗ // J∗ preserving length and prefixes, but it is immediate that
these are just another way of coding all causal functions between infinite streams.

Remark 4.11. An alternative description of the final coalgebra for HX = (X × J)I is:

νH ∼= JI
+
, all functions β : I+ // J .

Here and below, I+ is the set of finite non-empty words on the set I. The coalgebra structure
assigns to every β the mapping from I to νH × J given by

i ✤ //
(
β(i−), β(i)

)
for i ∈ I.
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Indeed, this coalgebra is isomorphic to that of all causal functions f : Iω // Jω: to
every function β : I+ // J assign the causal function

f(i0i1i2 . . . ) = (β(i0), β(i0i1), β(i0i1i2), . . .).

4.3. Streams.

Consider the coalgebras for
HX = X × I + 1.

Rutten [23] interprets them as dynamical systems with outputs in I and with terminating
states (where no next state is given). Every state q yields a stream, finite or infinite, over I
by starting in q and traversing the dynamical system as long as possible. We call it the
response of q. It is an element of Iω + I∗.

Lemma 4.12. For a dynamical system the largest congruence merges two states iff they
yield the same response.

Proof. Let ∼ be the equivalence from the statement of the lemma. Then we have an obvious
dynamic system on Q/∼, thus, ∼ is a congruence. Every coalgebra homomorphism h : Q

// Q̄ fulfils: the response of q and h(q) is always the same. Therefore, ∼ is the largest
congruence.

Corollary 4.13. A well-pointed coalgebra is a dynamical system with an initial state q0
such that the system is

(a) reachable: every state can be reached from q0, and
(b) simple: different states yield different responses.

Example 4.14.

(a) For every word s1 . . . sn in I∗ we have a well-founded dynamic system

q08?9>:=;< 8?9>:=;<s1 //� � // 8?9>:=;< s2 // . . . 8?9>:=;<sn //

(b) For every eventually periodic stream in Iω,

w = uvω for u, v ∈ I∗,

we have a pointed dynamical system

q08?9>:=;< // // . . . //
UU

ee
pp

22 ))

...
� � //

︸ ︷︷ ︸

u







v

If we choose, for the given stream w, the words u and v of minimum lengths, then this
system is well-pointed.

The following was already proved by Arbib and Manes [18, Theorem 10.2.5].

Corollary 4.15. For HX = X × I + 1 we have

νH ∼= I∗ + Iω, all finite and infinite streams,
̺H ∼= all finite and eventually periodic streams,
µH ∼= I∗, all finite streams.



WELL-POINTED COALGEBRAS 41

The coalgebra structure assigns to every nonempty stream w the pair

(tailw,headw) in νH × I

and to the empty stream the right-hand summand of H(νH) = νH × I + 1.

Indeed, the description of νH follows from Corollary 4.13 since by forming the response
of q0 we get a bijection between well-pointed coalgebras and streams in I∗ + Iω. For the
description of ̺H observe that a well-pointed system yields a finite or eventually periodic
response iff it has finitely many states. The point in our statement is that µH follows from
the observation that a dynamical system is well-founded iff every run of a state is finite.
Indeed, given a coalgebra a : A // A × I + 1, form the subset m : A′ // A of all states
with finite runs. We obtain a cartesian subcoalgebra

A A× I + 1a
//

A′

A

m

A′ A′ × I + 1
a′ // A′ × I + 1

A× I + 1

m×I+1

A

_�

��

A× I + 1

_�

��

Thus, well-founded, well-pointed coalgebras are precisely those of Example 4.14(a).

4.4. Binary trees.

Coalgebras for the functor
HX = X ×X + 1

are given, as observed by Rutten [23], by a set Q of states which are either terminating or
have precisely two next states according to a binary input, say {l, r}. Every state q ∈ Q
yields an ordered binary tree Tq (i.e, nodes that are not leaves have a left-hand child and
a right-hand one) by tree expansion: the root is q and a node is either a leaf, if it is a
terminating state, or has the two next states as children (left-hand for input l, right-hand
for input r). Binary trees are considered up to isomorphism.

Lemma 4.16. For every system the largest congruence merges precisely the pairs of states
having the same tree expansion.

Proof. Let ∼ be the equivalence with q ∼ q′ iff Tq = Tq′ . There is an obvious structure of
a coalgebra on Q/∼ showing that ∼ is a congruence. For every coalgebra homomorphism
h : Q // Q̄ the tree expansion of q ∈ Q is always the same as the tree expansion of h(q)
in Q̄. Thus ∼ is the largest congruence.

Corollary 4.17. A well-pointed system is a system with an initial state q0 which is

(a) reachable: every state can be reached from q0, and
(b) simple: different states have different tree expansions.

Moreover, tree expansion is a bijection between well-pointed coalgebras and binary trees
(see Proposition 4.25 below). For instance, the dynamical system

•
l,r

##

•

•

l

{{✇✇
✇✇
✇✇
✇✇

•

•

r

##●
●●

●●
●●

●

• •
l //•

r

��

� � //
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defines the tree

✔✔
✔✔ ✯✯
✯✯

✔✔
✔✔ ✯✯
✯✯

✔✔
✔✔ ✯✯
✯✯

✔✔
✔✔ ✯✯
✯✯✎✎

✎✎ ✴✴
✴✴

✎✎
✎✎ ✴✴
✴✴⑧⑧

⑧⑧
⑧

❄❄
❄❄

❄sss
sss

s
❑❑❑

❑❑❑
❑

✎✎
✎✎

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

✎✎
✎✎

✎✎
✎✎

...
. . .

Observe that this tree has only 4 subtrees (up to isomorphism): this follows from the fact
that the dynamical systems has 4 states. In general, the finite dynamical systems correspond
to the rational trees, i.e., trees having (up to isomorphism) only finitely many subtrees. This
description is due to Ginali [14].

Corollary 4.18. For the functor HX = X ×X + 1 we have

νH ∼= all binary trees,

̺H ∼= all rational binary trees,

µH ∼= all finite binary trees.

The coalgebra structure is, in each case, the inverse of tree tupling: it assigns to the root-
only tree the right-hand summand of νH × νH + 1 and to any other tree the pair of its
maximum subtrees.

Indeed, we only need to explain the last item µH. Given a coalgebra a : A // A×A+1,
let m : A′ � � // A be the set of all states defining a finite subtree. This is a cartesian
subcoalgebra

A A×A+ 1a
//

A′

A

m

A′ A′ ×A′ + 1
a′ // A′ ×A′ + 1

A×A+ 1

m×m+id

A

_�

��

A×A+ 1

_�

��

i.e., this square is a pullback: whenever a state q ∈ A has both next states in A′ or whenever
q is final, then q ∈ A′. Thus, if A is well-founded, then A = A′. The converse implication is
easy: recall the subsets A∗

i of Notation 2.22. Here A∗
i is the set of all states whose binary

tree has depth at most i. Thus, if A = Ai for some i, the initial state defines a tree of depth
at most i.

4.5. Σ-Algebras and Σ-coalgebras.

All the examples above (and a number of other interesting cases) are subsumed in the
following general case. Let Σ be a signature, i.e., a set of operation symbols with given
arities ar(s) of symbols s ∈ Σ; the arity is a natural number. The classical Σ-algebras are
the algebras for the corresponding polynomial functor

HΣX =
∐

σ∈Σ

Xar(σ).

Coalgebras for HΣ are called Σ-coalgebras.
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Example 4.19. Let I be a set of cardinality n. Deterministic automata HX = XI ×
{0, 1} = XI +XI are given by two n-ary operations. Streams, HX = X × I + 1, are given
by n unary operations and a constant. Binary trees HX = X × X + 1 are given by one
binary operation and one constant.

Definition 4.20. A Σ-tree is an ordered tree with nodes labeled in Σ so that every node
with n children has a label of arity n. We consider Σ-trees up to isomorphism.

Observe that every Σ-tree T is a coalgebra: the function a : T // HΣT takes every
node x labelled by a symbol σ ∈ Σ (of arity n) to the n-tuple (xi)i<n of its children, an
element of the σ-summand T n of HΣT .

In general a Σ-coalgebra a : Q // HΣQ can be viewed as a system with a state set Q
labeled in Σ:

ā : Q // Σ

and such that every state q ∈ Q with n-ary label has “next states” forming an n-tuple

a∗(q) ∈ Qn.

Indeed, to give a function a : Q // HΣQmeans precisely to given a pair (ā, a∗) of functions
as above.

Definition 4.21. Let a : Q // HΣQ be a Σ-coalgebra.

(a) A computation of length n is a word i0 · · · in−1 in N
∗ for which there are states q0, · · · , qn

in Q with

qk+1 = the ik-component of a∗(qk) (k = 0, . . . , n− 1).

(b) The tree expansion of a state q is the Σ-tree

Tq

of all computations with initial state q. The label of a computation is ā(qn), where qn is
its last state. And the children are all one-step extensions of that computation, i.e., all
words i0 . . . in−1j with j < ar(ā(qn)).

Lemma 4.22. The greatest congruence on a Σ-coalgebra merges precisely the pairs of states
with the same tree expansion.

Proof. Let (Q, ā, a∗) be a Σ-coalgebra and put q ∼ q′ iff Tq = Tq′ . Then we have a coalgebra
structure on Q/∼: the label of [q] is ā(q), independent of the representative. The next-state
n-tuple is ([qi])i<n where a∗(q) = (qi). It is easy to see that this is independent of the choice
of representatives. And the quotient map is a coalgebra homomorphism from Q to Q/∼.
Thus, ∼ is a congruence.

To prove that Σ is the largest congruence, observe that given a coalgebra homomorphism
h : Q // Q′, then for every state q ∈ Q we have Tq = Th(q). Indeed, an isomorphism i : Tq

// Th(q) is easy to define by induction on the depth of nodes of Tq.
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Corollary 4.23. Well-pointed Σ-coalgebras are the Σ-coalgebras with an initial state q0
which are

(a) reachable: every state can be reached from q0 by a computation, and
(b) simple: different states have different tree expansions.

Example 4.24. For every Σ-tree T the equivalence on the nodes of T given by

x ∼ y iff Tx ∼= Ty, (4.1)

where Tx is the subtree of T rooted at node x, is a congruence. And T/∼ carries an obvious
structure of a Σ-coalgebra. Let [r] be the congruence class of the root, then the pointed
Σ-coalgebra (T/∼, [r]) is well-pointed.

Indeed, this pointed coalgebra is reachable: given a node q of T let i0 · · · in−1 be the
unique path from r to q, then i0 · · · in−1 is a computation in T/∼ with initial state [r] and
terminal state [qn].

The simplicity of T/∼ follows from Lemma 4.22 and the observation that the tree
expansion of a state [q] of T/∼ is the subtree Tq of T .

These are all well-pointed Σ-coalgebras:

Proposition 4.25. Every well-pointed coalgebra is isomorphic to (T/∼, [r]) for a unique
Σ-tree T .

Proof. It is well-known that the coalgebra τ : B // HΣB of all Σ-labeled trees where τ is
given by

τ̄(T ) = label of the root of T , and

τ∗(T ) = (Ti)i<n,

where Ti is the i-th maximum subtree is final. Indeed, for every coalgebra (Q, a) the unique
coalgebra homomorphism h : Q // B is given by tree expansion (see Definition 4.21):
h(q) = Tq.

Now from Theorem 3.24 we have the final coalgebra νHΣ of all well-pointed coalgebras.
The tree expansion map h : νHΣ

// B is then an isomorphism. The inverse h−1 takes
a tree T to the coalgebra (T/∼, [r]) above: this is immediate from the fact that the tree
expansion of [r] in T/∼ is T .

Proposition 4.26. A Σ-coalgebra is well-founded iff all its tree-expansions are well-foun-

ded Σ-trees, i.e., Σ-trees with no infinite path.

Proof. Given a Σ-coalgebra A let m : A′ � � // A be the subset of all states q ∈ A with
Tq well-founded. This is, obviously, a subcoalgebra. And it is cartesian

A HΣAa
//

A′

A

m

A′ HΣA
′a′ // HΣA
′

HΣA

HΣm

A

_�

��

HΣA

_�

��

Indeed, if a state q has the property that all components of a∗ lies in A′, the q lies in A′.
Thus A is well-founded iff A = A′.
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Definition 4.27 (see [14]). A Σ-tree is called rational if it has up to isomorphism only
finitely many subtrees.

Example 4.28. Given a finite Σ-coalgebra, all tree expansions of its states are rational.
Indeed, if Q = {q1, . . . , qn} is the state set, then every subtree of Tqi (given by a

computation with initial state qi) has the form Tqj : take qj to be the terminal state of the
computation.

Corollary 4.29. For every finitary signature Σ we have

νHΣ
∼= all Σ-trees,

̺HΣ
∼= all rational Σ-trees,

µHΣ
∼= all finite Σ-trees.

The coalgebra structure is in each case inverse to tree-tupling.

Indeed, the isomorphism between νHΣ and all Σ-trees is given by Proposition 4.25. And
the coalgebra structure of Remark 3.25 corresponds to the inverse of tree-tupling, i.e., it
assigns to a Σ-tree T with a∗(r) = (x1, . . . , xn) the n-tuple (Tx1 , . . . , Txn) in the σ-summand
of HΣ(νHΣ) where σ is the label of the root.

Finally, the isomorphism between ̺HΣ (all finite well-pointed coalgebras) and rational
Σ-trees follows from Proposition 4.25 and Example 4.28. The last item follows from König’s
Lemma: every well-founded finitely branching tree is finite.

Example 4.30. For the functor HX = X∗ we can use nonlabeled trees: we have

νH ∼= all finitely branching trees

̺H ∼= all rational finitely branching trees

µH ∼= all finite trees.

Indeed, let Σ be the signature with one n-ary operation for every n ∈ N. Then HΣX ∼=
X∗. And Σ-trees need no labeling, since operations already differ by arities.

4.6. Graphs.

Here we investigate coalgebras for the power-set functor P. In the rest of Section 4 all trees
are understood to be non-ordered. That is, a tree is a directed graph with a node (root)
from which every node can be reached by a unique path.

Recall the concept of a bisimulation between graphsX and Y : it is a relation R ⊆ X×Y
such that whenever x R y then every child of x is related to a child of y, and vice versa. Two
nodes of a graph X are called bisimilar if they are related by a bisimulation R ⊆ X ×X.

Lemma 4.31. The greatest congruence on a graph merges precisely the bisimilar pairs of
states.

This follows, since P preserves weak pullbacks, from general results of Rutten [23].

Corollary 4.32. A pointed graph (G, q0) is well-pointed iff it is

(a) reachable: every vertex can be reached from q0 by a directed path, and
(b) simple: all distinct pairs of states are non-bisimilar.



46 J. ADÁMEK, S. MILIUS, L. S. MOSS, AND L. SOUSA

Example 4.33. Aczel [1] introduced the canonical picture of a (well-founded) set X. It is
the graph with vertices all sets Y such that a sequence

Y = Y0 ∈ Y1 ∈ · · · ∈ Yn = X

of sets exists. The neighbors of a vertex Y are all of its elements. When pointed by X, this
is a well-pointed graph. Indeed, reachability is clear. And suppose R is a bisimulation and
Y R Y ′, then we prove Y = Y ′. Assuming the contrary, there exists Z0 ∈ Y with Z0 /∈ Y ′,
or vice versa. Since R is a bisimulation, from Z0 ∈ Y we deduce that Z ′

0 ∈ Y ′ exists with
Z0 R Z ′

0. Clearly Z0 6= Z ′
0. Thus, we substitute (Y, Y

′) by (Z0, Z
′
0) and obtain Z1 ∈ Z0 and

Z ′
1 ∈ Z ′

0 with Z1 R Z ′
1 but Z1 6= Z ′

1 etc. This is a contradiction to the well-foundedness of
X: we get an infinite sequence Zn with

· · · Z2 ∈ Z1 ∈ Z0 ∈ Y.

Here are some concrete examples of canonical pictures and their corresponding tree
expansions (cf. Remark 4.34 below):

Set: Canonical picture: Tree expansion

0 = ∅ •0� � // •0

1 = {0} 1� � // • •//
1 •

•

2 = {0, 1} 2� � // • •// • •//• •
(( •

•

•

•⑧⑧
⑧⑧ ❄❄
❄❄2

3 = {0, 1, 2} 3� � // • •// • •// • •//• •
((

• •55• •77
•

•

•

•⑧⑧
⑧⑧ ❄❄
❄❄

3 •

•⑧
⑧⑧
⑧ ❄❄
❄❄

ω
. . . • •// • •// • •//• •

$$
• •55• •77

•

•
��

•

•
��

•

•
��

•

•
{{

ω� � //

•

•

•

••

• •

•

•

•

•

•

⑧⑧
⑧⑧ ❄❄
❄❄

. . .
ω

•

•⑧⑧
⑧⑧ ❄❄
❄❄

⑧⑧
⑧⑧ ❄❄
❄❄⑧⑧

⑧⑧ ❄❄
❄❄

❧❧❧
❧❧❧ ❲❲❲❲❲

❲❲❲❲❲

Remark 4.34. Given a vertex q of a graph, its tree expansion is (similarly to the ordered
case, see Definition 4.21) the non-ordered tree

Tq

whose nodes are all finite directed paths from q.
The children of a node p are all one-step extensions of the path p. The root is q

(considered as the path of length 0).
For every pointed graph (G,x) the tree expansion is the tree Tx. In the previous example

we saw tree expansions of the given pointed graphs.

Definition 4.35 (Worrell [33]). By a tree-bisimulation between trees T1 and T2 is meant
a graph bisimulation R ⊆ T1 × T2 which
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(a) relates the roots,
(b) x1 R x2 implies that x1 and x2 are the roots or have related parents, and
(c) x1 R x2 implies that the depths of x1 and x2 are equal.

A tree T is called strongly extensional iff every tree bisimulation R ⊆ T × T is trivial:
R ⊆ ∆T .

Example 4.36. The tree expansion of a well-pointed graph (G, q0) is strongly extensional.
Indeed, given a tree bisimulation R ⊆ Tq0 ×Tq0, we obtain a graph bisimulation R̄ ⊆ G×G
consisting of all pairs (q1, q2) of vertices for which paths pi from q0 to qi exist, i = 1, 2, with
p1 R p2. Since G is simple, R̄ ⊆ ∆. Thus, for all pairs (p1, p2) of paths:

if p1 R p2 then the last vertices of p2 and p1 are equal.

We prove p1 R p2 implies p1 = p2 by induction on the maximum k of the lengths of p1
and p2. For k = 0 we have p1 = q0 = p2. For k + 1 we have p′1 R p′2 where p′i is the
trimming of pi by one edge (since R is a tree bisimulation). Then p′1 = p′2 implies p1 = p2
because the last vertices are equal.

Furthermore, there are no other extensional trees:

Proposition 4.37. Every strongly extensional tree is the tree expansion of a unique (up to
isomorphism) well-pointed graph.

Proof. Let T be a strongly extensional tree with root r, considered as a coalgebra for P.
(a) Existence. The coalgebra (T/∼, [r]) where ∼ merges bisimilar vertices of T is well-

pointed by Lemma 4.31. Its tree expansion T ′ = (T/∼)[r] is (isomorphic to) the given

tree T . Indeed, the relation R ⊆ T × T ′ of all pairs (x, p) where x is a node of T and p is
the equivalence class of the unique path from r to x is clearly a tree bisimulation. Since
P preserves weak pullbacks, it follows that the composite R ◦R−1 of R and R−1 is also a
tree bisimulation, see [23]. But T is strongly extensional, thus R ◦ R−1 ⊆ ∆. Also T ′ is
strongly extensional, see Example 4.36, thus R−1 ◦R ⊆ ∆. Since for every x there is a pair
(x, p) in R, we conclude that R is (the graph of) an isomorphism from T to T ′.

(b) Uniqueness: If well-pointed graphs (G, q0) and (G′, q′0) have isomorphic tree expan-
sions, then they are isomorphic. Arguing analogously to (a) we only need to find a graph
bisimulation R ⊆ G × G′ and use the simplicity of G and G′. For that, we just observe
that there is a graph bisimulation between (G, q0) and Tq0 : the relation R ⊆ G× Tq0 of all
pairs (q, p) where q ∈ G is the last vertex of the path p from q0 to q.

Corollary 4.38. νP = all strongly extensional trees.

We must be careful here: P has no fixed points. But recall the extension of set functors
to classes in Remark 3.29. For P this is the functor P∗X = {A;A is a set with A ⊆ X}.
Its (large) final coalgebra is the coalgebra of all (small) strongly extensional trees.

Notation 4.39. Let Pλ be the subfunctor of all subsets of cardinality less than λ. (Thus
Pω is the finite power-set functor.) Then by precisely the same argument as above one
proves

Corollary 4.40. For every cardinal λ,

νPλ = all λ-branching strongly extensional trees.
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This was proved for λ = ω by Worrell [33] and for general λ by Schwencke [26]. Our
proof is entirely different.

We know from Example 2.10(1) that the well-founded graphs are precisely the graphs
without an infinite directed path. Now strong extensionality can, in the case of well-founded
trees, be simplified to extensionality which says that for every node different children define
non-isomorphic subtrees. Thus we get

Corollary 4.41. µP = all well-founded, extensional trees;
µPλ = all λ-branching, well-founded, extensional trees.

Analogously to Example 4.28 the rational fixed point of the finite-powerset functor Pω

consists of all rational strongly extensional trees, i.e., those with finitely many subtrees up
to isomorphism:

Corollary 4.42. For the finite power-set functor Pω we have

νPω = all finitely branching, strongly extensional trees,

̺Pω = all finitely branching, rational, strongly extensional trees, and

µPω = all finite extensional trees.

4.7. Sets and non-well-founded sets.

We revisit µP and νP here from a set-theoretic perspective. Before coming to the non-
well-founded sets, let us observe that Example 4.33 has the following strengthening:

Lemma 4.43. Well-founded, well-pointed graphs are precisely the canonical pictures of
well-founded sets.

This follows from the standard fact from set theory that every well-pointed graph G
has a unique Mostowski collapse, also called a decoration in Aczel [1, see Introduction], i.e.,
coalgebra homomorphism d to the class Set of sets considered as a graph with ∈ as the
neighborhood relation. That is, d assigns to every vertex x a set d(x) as follows:

d(x) =
{
d(y); y ∈ G a neighbor of x

}
.

Observe that the kernel of d is clearly a congruence on G. Thus, given a well-pointed, well-
founded graph (G, q0), we know that d is monic. From that it follows that the canonical
picture of the set d(q0) is isomorphic to (G, q0).

Corollary 4.44. µP = the class of all sets.

This was proved by Rutten and Turi in [25]. The bijection between well-founded, well-
pointed graphs and sets (given by the canonical picture) takes the finite graphs to the
hereditarily finite sets, i.e., finite sets with finite elements which also have finite elements,
etc. More precisely: a set X is hereditarily finite if all sets in the canonical picture of X
are finite:

Corollary 4.45. µPω = all hereditarily finite sets.

In order to describe the final coalgebra for P in a similar set-theoretic manner, we
must move from the classical theory to the non-well-founded set theory of Aczel [1]. Non-
well-founded set theory is obtained by swapping the axiom of foundation, telling us that
(Set,∈) is well-founded, with the following

Anti-foundation axiom. Every graph has a unique decoration.
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Example 4.46. The decoration of a single loop is a set Ω such that Ω = {Ω}.

The coalgebra (Set,∈) where now Set is the class of all non-well-founded sets, is of
course final for P: the decoration of any graph G is the unique homomorphism d : G

// Set.

Corollary 4.47. In the non-well-founded set theory

νP = all sets.

Let us turn to the finite power-set functor Pω. Its final coalgebra consists of all sets
whose canonical picture is finitely branching. They are called 1-hereditarily finite, nota-
tion HF 1[∅], in the monograph of Barwise and Moss [9]. The rational fixed point of Pω

consists of all sets whose canonical picture is finite, they are called 1/2-hereditary in [9].

The collection of these sets is denoted by HF 1/2[∅]. For well-founded sets (with canonical
picture well-founded) the two collections coincide.

Corollary 4.48. In the non-well-founded set theory

νPω = HF 1[∅], the 1-hereditarily finite sets,

̺Pω = HF 1/2[∅], the 1/2-hereditarily finite sets, and
µPω = the well-founded, hereditarily finite sets.

4.8. Labeled transition systems.

Here we consider, for a set A of actions, labeled transition systems (LTS) as coalgebras
for P(−×A). A bisimulation between two labeled transition systems G and G′ is a relation
R ⊆ G×G′ such that

if x R x′ then for every transition x
a // x′ in G there exists

y′ ∈ G′ and a transition y
a // y′ with x′ R y′, and

vice versa.
States x, y of an LTS are called bisimilar if x R y for some bisimulation R ⊆ G×G.

Lemma 4.49. For every LTS the greatest congruence merges precisely the bisimilar pairs
of states.

This, again, follows from general results of Rutten [23] since P(−×A) preserves weak
pullbacks.

Corollary 4.50. An LTS together with an initial state q0 is well-pointed iff it is

(a) reachable: every state can be reached from q0 (by a sequence of actions), and
(b) simple: distinct states are non-bisimilar.

The tree expansion of a state q is a (non-ordered) tree with edges labeled in A, shortly,
an A-labeled tree. For A-labeled trees we modify Definition 4.35 and speak about tree
bisimulation if a bisimulation R ⊆ T1 × T2 also fulfils (a)–(c) of Definition 4.35. An A-
labeled tree T is strongly extensional iff every tree bisimulation R ⊆ T × T is trivial.

Proposition 4.51. Tree expansion is a bijection between well-pointed LTS and strongly
extensional A-labeled trees.

The proof is analogous to that of Proposition 4.37. Also the rest is analogous to the
case of P above:
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Corollary 4.52. νP(−×A) ∼= all strongly extensional A-labeled trees,
νPλ(−×A) ∼= all λ-branching, strongly extensional A-labeled trees.

Corollary 4.53. For the finitely branching LTS we have

νPω(−×A) ∼= all finitely branching, strongly extensional A-labeled trees,

̺Pω(−×A) ∼= all rational, finitely branching strongly extensional A-labeled trees,

µPω(−×A) ∼= all finite extensional A-labeled trees.

5. Conclusion

For functorsH satisfying the (mild) assumption of preservation of intersections we described
(a) the final coalgebra as the set of all well-pointed coalgebras, (b) the initial algebra as
the set of all well-pointed coalgebras that are well-founded, and (c) in the case where H is
finitary, the initial iterative algebra as the set of all finite well-pointed coalgebras. This is
based on the observation that given an element of a final coalgebra, the subcoalgebra it
generates has no proper subcoalgebras nor proper quotients—shortly, this subcoalgebra is
well-pointed. And different elements define non-isomorphic well-pointed subcoalgebras. We
then combined this with our result that for all set functors the initial algebra is precisely the
final well-founded coalgebra. (For set functors preserving inverse images this was proved by
Taylor [28].) More generally, for endofunctors of varieties preserving intersections we proved
that the final coalgebra is carried by the sets of all well-pointed coalgebras, and the initial
algebra is carried by the set of all well-founded, well-pointed coalgebras, and we presented
a concrete description. Numerous examples demonstrate that this view of final coalgebras
and initial algebras is useful in applications.

More generally, for functors preserving finite intersections the fact that initial algebras
coincide with final well-founded coalgebras was proved in locally finitely presentable cate-
gories. The description of the final coalgebra was formulated concretely only in varieties
of algebras. In future research we intend to generalize this result to a wider class of base
categories.
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[8] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, Cambridge University Press,

1994.
[9] J. Barwise and L. S. Moss, Vicious Circles, CSLI Publications, Stanford 1996.

[10] M. M. Bonsangue, S. Milius and A. Silva, Sound and complete axiomatizations of coalgebraic language
equivalence, available at http://arxiv.org/abs/1104.2803, 2011.

http://arxiv.org/abs/1104.2803


WELL-POINTED COALGEBRAS 51
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