
Logical Methods in Computer Science

Vol. 7 (4:04) 2011, pp. 1–48

www.lmcs-online.org

Submitted Jan. 31, 2010

Published Nov. 23, 2011

CONTEXT-BOUNDED ANALYSIS FOR CONCURRENT PROGRAMS

WITH DYNAMIC CREATION OF THREADS

MOHAMED FAOUZI ATIG a, AHMED BOUAJJANI b, AND SHAZ QADEER c

a Uppsala University, Sweden
e-mail address: mohamed faouzi.atig@it.uu.se

b LIAFA, University Paris Diderot, France
e-mail address: abou@liafa.jussieu.fr

c Microsoft Research, Redmond, WA, USA
e-mail address: qadeer@microsoft.com

Abstract. Context-bounded analysis has been shown to be both efficient and effective
at finding bugs in concurrent programs. According to its original definition, context-
bounded analysis explores all behaviors of a concurrent program up to some fixed number
of context switches between threads. This definition is inadequate for programs that create
threads dynamically because bounding the number of context switches in a computation
also bounds the number of threads involved in the computation. In this paper, we propose
a more general definition of context-bounded analysis useful for programs with dynamic
thread creation. The idea is to bound the number of context switches for each thread
instead of bounding the number of switches of all threads. We consider several variants
based on this new definition, and we establish decidability and complexity results for the
analysis induced by them.

Introduction

The verification of multithreaded programs is a challenging problem both from the theoreti-
cal and the practical point of view. (We consider here programs with parallel threads which
may use local variables as well as shared (global) variables.) Assuming that the variables
of the program range over a finite domain (which can be obtained using some abstraction
on the manipulated data), there are several aspects in multithreaded programs which make
their analysis complex or even undecidable in general [Ram00].

Indeed, it is well known that for instance in the case where each thread can be modeled
as a finite-state system, the state space of the program grows exponentially w.r.t. the
number of threads, and the reachability problem is PSPACE-hard. Moreover, if threads are
modeled as pushdown systems, which corresponds to allowing unbounded depth (recursive)

1998 ACM Subject Classification: D.2.4, D.3.1, F.4.3, I.2.2.
Key words and phrases: Pushdown Systems, Program Verification, Reachability Analysis.
A shorter version of this paper has been published in the Proceedings of TACAS 2009, LNCS 5505.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (4:04) 2011

c© M.F. Atig, A. Bouajjani, and S. Qadeer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

procedure calls in the program, then the reachability problem becomes undecidable as soon
as two threads are considered.

Context-bounding has been proposed in [QR05] as a suitable technique for the analysis
of multithreaded programs. The idea is to consider only the computations of the program
that perform at most some fixed number of context switches between threads. (At each
point only one thread is active and can modify the global variables, and a context-switch
happens when the active thread terminates or is interrupted, and a pending one is ac-
tivated.) The state space which must be explored may still be unbounded in presence of
recursive procedure calls, but the context-bounded reachability problem is decidable even in
this case. In fact, context-bounding provides a very useful tradeoff between computational
complexity and verification coverage. This tradeoff is based on three important properties.
First, context-bounded verification can be performed more efficiently than unbounded veri-
fication. From the complexity-theoretic point of view, it can be seen that context-bounded
reachability is an NP-complete problem (even in the case of pushdown threads). Second,
many concurrency errors, such as data races and atomicity violations, are manifested in ex-
ecutions with few context switches [MQ07]. Finally, verifying all executions of a concurrent
program up to a context bound provides an intuitive and meaningful notion of coverage to
the programmer.

While the concept of context-bounding is adequate for multithreaded programs with
a (fixed) finite number of threads, the question we consider in this paper is whether this
concept is still adequate when dynamic creation of threads is considered.

Dynamic thread creation is useful for modeling several important aspects, e.g., (1)
unbounded number of concurrent executions of software modules such as file systems, device
drivers, non-blocking data structures etc., or (2) creation of asynchronous activity such as
forking a thread, queuing a closure to a threadpool with or without timers, callbacks, etc.
Both these sources are very important for modeling operating system components; they are
likely to become important even for application software as it becomes increasingly parallel
in order to harness the power of multi-core architectures.

We argue that the “classical” notion of context-bounding which has been used so far
in the existing work is actually too restrictive in this case. Indeed, bounding the number
of context switches in a computation also bounds the number of threads involved. In this
paper, we propose a more general definition of context-bounded analysis useful for programs
with dynamic thread creation. The idea is to bound the number of context switches for
each thread instead of bounding the number of switches of all threads. We consider several
variants based on this new definition, and we establish decidability and complexity results
for the analysis induced by them.

We introduce a notion of K-bounded computations where each of the involved threads
can be interrupted and resumed at most K times. In fact, we consider that when a thread
is created, the number of context switches it can perform is the one of its ancestor (at the
moment of the creation) minus 1. Notice that the number of context switches by all threads
in a computation is not bounded since the number of threads involved is not bounded.

In the case of finite-state threads, we prove that this problem is as hard as the coverabil-
ity problem for vector addition systems with states (or, Petri nets) (which is EXPSPACE-
complete). The reduction from our problem to the coverability problem of vector addition
systems with states is based on the simple idea of counting the number of pending threads
for different values of the global and local states, as well as of the number of switches that

3

these threads are allowed to perform. Conversely, we prove that the coverability prob-
lem of vector addition systems with states can be reduced to the 2-bounded reachability
problem. These results show that in the case of dynamic thread creation, considering the
notion of context-bounding for each individual thread makes the complexity jumps from NP-
completeness to EXPSPACE-completeness, even in the case of finite-state threads. Then,
an interesting question is whether it is possible to have a notion of context-bounding with
a lower complexity. We propose for that the notion of stratified context-bounding. The
idea is to consider computations where the scheduling of the threads is ordered according
to their number of allowed switches: First, threads of level K (the level means here the
number of allowed switches) are scheduled generating threads of level K − 1, then threads
of level K − 1 are scheduled, and so on. Again, notice that K-stratified computations
may have an unbounded number of context switches since it is possible to schedule an
unbounded number of threads at each level. This concept generalizes obviously the “clas-
sical” notion of context-bounding. We prove that, for finite-state threads, the K-stratified
context-bounded reachability problem is NP-complete (i.e., it matches the complexity of
the “classical” context-bounded reachability problem). The proof is by a reduction to the
satisfiability problem of existential Presburger formulas.

Then, we consider the case of dynamic creation of pushdown threads. We prove that,
surprisingly, the K-bounded reachability problem is in fact decidable, and that the same
holds also for the K-stratified context-bounded reachability problem. To establish these
results, we prove that these problems (for pushdown threads) can be reduced to their
corresponding problems for finite-state threads. This reduction is not trivial. The main
ideas behind the reduction are as follows: First, the K-bounded behaviors of each single
thread can be represented by a labeled pushdown system which (1) makes visible (as labels)
on its transitions the created threads, and (2) guesses points of interruption-resumption and
the corresponding values of the global states. (These guesses are also made visible on the
transitions.) Then, the main problem is to “synchronize” these labeled pushdown systems
so that their guesses can be validated. The key observation is that it is possible to abstract
these systems without loss of preciseness by finite-state systems. This is due to the fact that
we can consider that some of the generated threads can be lost (since they can be seen as
threads that are never activated), and therefore we can reason about the downward closure
of the languages of the labeled pushdown systems mentioned above (w.r.t. suitable sub-word
relation). This downward closure is in fact always regular and effectively constructible.

Related work. In the last few years, several implementations and algorithmic improve-
ments have been proposed for context-bounded verification [BESS05, MQ07, SES08, LTKR08,
LR08, LMP09]. For instance, context-bounded verification has been implemented in explicit-
state model checkers such as CHESS [MQ07] and SPIN [ZJ08]; it has also been implemented
in symbolic model checkers such as SLAM [QW04], jMoped [SES08], and in [LR08]. In this
paper, we propose more general definitions of context-bounded analysis useful for programs
with dynamic thread creation.

Several models based on rewriting systems or networks of pushdown systems have
been considered to model multithreaded programs [LS98, EP00, SS00, Mo02, BT03, BT05].
While these models allow to model dynamic thread creation, they only allow communication
between processes in a very restrictive way.

4 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

In [BMOT05], a model based on networks of pushdown systems called CDPN was
proposed. While this model allows dynamic creation of processes, it allows only a restricted
form of synchronization where a process has the right to read only the control states of its
immediate children (i.e., the processes it has created).

A symbolic algorithm for over-approximating reachability in Boolean programs with
unboundedly many threads was given in [CKS06, CKS07]. Our approach complements
these techniques since they are able to prove that a safety property of interest holds. While
our work is useful for effectively detecting bad behaviors of the analyzed programs.

A recent paper proposes an algorithm for the verification problem for parametrized
concurrent programs with procedural calls under a k-round-robin schedule [LMP10]. Our
work is more powerful than this framework as long as the data domain is bounded.

1. Preliminary definitions and notations

In this section, we introduce some basic definitions and notations that will be used in the
rest of the paper.

1.1. Integers, functions, and vectors.

Integers. Let Z be the set of integers and N be the set of positive integers (or natural
numbers). For every i, j ∈ Z such that i ≤ j, we use [i, j] and [i, j[to denote respectively
the sets {k ∈ Z | i ≤ k ≤ j} and {k ∈ Z | i ≤ k < j}.

Functions. Let A and B be two sets. We denote by [A→ B] the set of all functions from A
to B. If f, g are two functions from A to N, then we write g ≤ f if and only if g(a) ≤ f(a)
for all a ∈ A. We use f + g (resp. f − g if g ≤ f) to denote the function from A to N

defined as follows: (f + g)(a) = f(a) + g(a) (resp. (f − g)(a) = f(a)− g(a)) for all a ∈ A.

For every subset C ⊆ A, we use Id
C
A to denote the function from A to N defined as follows:

Id
C
A(a) =

{

1 if a ∈ C
0 if a ∈ (A \ C)

(1.1)

In particular, Id∅A denotes the function that maps any element of A to 0.

Vectors. Let n be a natural number and A be a set. An n-dim vector v over A is an element
of An. For every i ∈ [1, n], we denote by v[i] ∈ A the ith component of v. Given j ∈ [1, n]
and a ∈ A, we denote by v[j ←֓ a] the n-dim vector v′ over A such that v′[j] = a and
v′[k] = v[k] for all k ∈ [1, n] and k 6= j.

Vectors of integers. The order relation ≤ between integers is generalized in a pointwise
manner to vectors of integers. We write 0n to denote the n-dim vector v over Z such that
v[i] = 0 for all i ∈ [1, n]. We trivially extend the addition and subtraction operations over
integers to vectors of integers.

5

1.2. Words and languages. Given a finite set Σ called an alphabet and whose elements
are called letters or symbols, a word u over Σ is either a finite sequence of letters in Σ or
the empty word ǫ. The length of u is denoted by |u|. (We assume that |ǫ| = 0.) For every
a ∈ Σ, we use |u|a to denote the number of occurrences of a in u. For every j ∈ [1, |u|], we
use u(j) to denote the jth letter of u.

A language L over Σ is a (possibly infinite) set of words over Σ. We adopt the widespread
notations Σ∗ and Σ+ to represent respectively the languages containing all words and all
non-empty words over Σ. We use also Σǫ to denote the set Σ ∪ {ǫ}.

We denote by �⊆ Σ∗×Σ∗ the subword relation defined as follows: For every u, v ∈ Σ∗,
u � v if and only if: (1) u = ǫ, or (2) there are i1, i2 . . . , i|u| ∈ [1, |v|] such that i1 < i2 <
· · · < i|u| and u(j) = v(ij) for all j ∈ [1, |u|]. Given a language L ⊆ Σ∗, the downward
closure of L is the language L ↓= {u ∈ Σ∗ | ∃v ∈ L, u � v}.

Let Θ be a subset of Σ. Given a word u ∈ Σ∗, we denote by u|Θ the projection of u over
Θ, i.e., the word obtained from u by erasing all the symbols that are not in Θ. This definition
is extended to languages as follows: If L is a language over Σ, then L|Θ = {u|Θ | u ∈ L}.

The Parikh image of a word u ∈ Σ∗ is a function from Σ to N such that: For every
a ∈ Σ, Parikh(u)(a) = |u|a. Accordingly, the Parikh image of a language L ⊆ Σ∗, written
Parikh(L), is the set of Parikh images of u ∈ L.

Let Σ1 and Σ2 be two alphabets. A homomorphism h is a function from Σ∗
1 to Σ∗

2 such
that h(ǫ) = ǫ and h(uv) = h(u)h(v) for all u, v ∈ Σ∗

1. By definition, the homomorphism h is
completely characterized by the function fh : Σ1 → Σ∗

2 s.t. for any a ∈ Σ1, fh(a) = h(a).

1.3. Transition systems. A transition system is a triplet T = (C,Σ,→) where: (1) C is
a (possibly infinite) set of configurations (also called states), (2) Σ is a finite set of labels
(or actions), and (3) →⊆ C × Σǫ × C is a transition relation.

Given two configurations c, c′ ∈ C and an action a ∈ Σ, we write c a−→T c′ if (c, a, c′) ∈→.
A finite run ρ of T from c to c′ is a finite sequence c0a1c1a2 · · · ancn, for some n ≥ 1, such

that: (1) c0 = c and cn = c′, and (2) ci
ai+1−−−→T ci+1 for all i ∈ [0, n[. In this case, we say

that ρ has length n and is labelled by the word a1a2 · · · an.
Let u ∈ Σ∗ be an input word. We write c

u
==⇒
n

T c′ if one of the following two cases holds:

(1) n = 0, c = c′, and u = ǫ, and (2) there is a run ρ of length n from c to c′ labelled

by u. We also write c
u

==⇒∗
T c′ to denote that c

u
==⇒
n

T c′ for some n ≥ 0. Finally, for every

C1, C2 ⊆ C, we have TracesT (C1, C2) = {u ∈ Σ∗ | ∃(c1, c2) ∈ C1 × C2 , c1
u

==⇒∗
T c2}.

1.4. Finite state automata. A finite state automaton (FSA for short) is a quintuple
A = (Q,Σ,∆, I, F) where: (1) Q is the finite non-empty set of states, (2) Σ is the finite set
of input symbols (called also the input alphabet), (3) ∆ ⊆ (Q × Σǫ × Q) is the transition
relation, (4) I ⊆ Q is the set of initial states, and (5) F ⊆ Q is the set of final states. We
use q a−→A q′ to denote that (q, a, q′) is in ∆ .

The size of A, denoted by |A|, is defined by (|Q|+ |Σ|). We denote by T (A) = (Q,Σ,∆)
the transition system associated toA. The language accepted (or recognized) byA is defined
as follows L(A) = TracesT (A)(I, F).

It is well known that the class of languages accepted by finite state automata (the class
of rational (or regular) languages) is effectively closed under union, intersection, homomor-
phism, and projection operations [HU79].

6 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

1.5. Pushdown automata. A pushdown automaton (PDA for short) is a 7-tuple P =
(P,Σ,Γ,∆, p0, γ0, F) where:

• P is the finite non-empty set of states,
• Σ is the finite set of input symbols (called also the input alphabet),
• Γ is the finite set of stack symbols (called also the stack alphabet),
• ∆ ⊆

(

(P × Γ)× Σǫ × (P × Γ≤2)
)

is the transition relation (where Γ≤2 = Γǫ ∪ Γ2).
• p0 ∈ P is the initial state,
• γ0 ∈ Γ is the initial stack symbol, and
• F ⊆ P is the set of final states.

The size of P, denoted by |P|, is defined as (|P | + |Σ|+ |Γ|). We use 〈p, γ〉 a−→P〈p
′, u〉

to denote that ((p, γ), a, (p′, u)) is in ∆.
A configuration of P is a pair (p,w) where p ∈ P and w ∈ Γ∗. The set of all config-

urations of P is denoted by Conf (P). The transition system associated to P, denoted by
T (P), is given by the tuple (Conf (P),Σ,→) where → is the smallest transition relation
such that: if 〈p, γ〉 a−→P〈p

′, u〉, then (p, γw) a−→T (P) (p
′, uw) for all w ∈ Γ∗. The language of

P is defined as follows L(P) = TracesT (P)({(p0, γ0)}, F × Γ∗).
It is well known that the class of context-free languages (i.e., accepted by pushdown

automata) are closed under concatenation, union, Kleene star, homomorphism, projection,
and intersection with a rational language. However, context-free languages are not closed
under complement and intersection [HU79].

Let us recall now that the downward closure of a context-free language, with respect
to the subword relation, is effectively a rational language.

Theorem 1.1 ([Cou91]). If P is a PDA, then, it is possible to construct, in time and space
exponential in |P|, a finite state automaton A such that L(A) = L(P) ↓ and the size of |A|
is exponential in |P| in the worst case.

We can prove that the exponential blow-up in Theorem 1.1 can not be avoided. This
is due to the fact that pushdown automata are more succinct than finite state automata.
To show that, let us consider the following pushdown automaton P = ({p0, p1, p2}, {a},
{⊥, γ0, . . . , γn},∆, p0,⊥, {p2}) where n ∈ N and ∆ is the transition relation composed from
the following transitions:

(1) 〈p0,⊥〉
ǫ−→P〈p1, γ0⊥〉,

(2) for every i ∈ [0, n[, 〈p1, γi〉
ǫ−→〈p1, γi+1γi+1〉,

(3) 〈p1, γn〉
a−→P〈p1, ǫ〉, and

(4) 〈p1,⊥〉
ǫ−→P〈p2, ǫ〉.

It is easy to observe that L(P) = {a2
n

} and therefore the minimal finite state automaton
A recognizing L(P) ↓ has at least 2n states whereas the size of P is (n+ 5).

2. Dynamic network of concurrent pushdown systems

In this section, we introduce dynamic network of concurrent pushdown systems. Intuitively,
a dynamic network of concurrent pushdown systems M models dynamic multithreaded
programs with (potentially) recursive procedure calls. Threads are modeled as pushdown
processes which may spawn new threads (or processes). Each thread may have its local
variables and has also access to global variables. The values of local variables are modeled
using the stack alphabet Γ, whereas the values of the global variables are modeled using a

7

finite non-empty set of states Q. Transitions of the form 〈q, γ〉−→M〈q
′, u〉 ⊲ ǫ correspond to

standard transitions of pushdown systems (popping γ and then pushing u while changing
the state from q to q′). Transitions of the form 〈q, γ〉−→M〈q

′, u〉 ⊲ γ′ correspond to standard
transitions of pushdown systems with a creation of a thread whose initial stack content is
γ′ ∈ Γ. Transitions of the form 〈q, γ〉 7→M 〈q

′, u〉 correspond to interrupt the execution of
the active thread after the performing the standard pushdown operations, and transitions
of the form q 7→M q′ ⊳ γ correspond to start/resume the execution of a pending thread
with topmost stack symbol γ′ ∈ Γ after changing the state from q to q′.

2.1. Syntax.

Definition 2.1 (DCPS). A dynamic network of concurrent pushdown system (DCPS for
short) is a tupleM = (Q,Γ,∆, q0, γ0) where:

• Q is the finite non-empty set of states,
• Γ is a finite set of stack symbols (called also stack alphabet),
• ∆ = ∆cr ∪∆in ∪∆rs where:
− ∆cr ⊆

(

(Q× Γ)× (Q× Γ≤2)× Γǫ

)

is a finite set of (creation) transitions.

− ∆in ⊆
(

(Q× Γ)× (Q× Γ≤2)
)

is a finite set of (interruption) transitions.

− ∆rs ⊆
(

Q× Γ×Q
)

is a finite set of (resumption) transitions.
• q0 is the initial state, and
• γ0 is the initial stack symbol.

In the rest of the paper, we adopt the following notations: (1) 〈q, γ〉−→M〈q
′, u〉 ⊲ α to

denote that
(

(q, γ), (q′, u), α
)

∈ ∆cr, (2) 〈q, γ〉 7→M 〈q
′, u〉 to denote that

(

(q, γ), (q′, u)
)

∈

∆in, and (3) q 7→M q′ ⊳ γ to denote that
(

q, γ, q′
)

∈ ∆rs. The size of M is given by
|M| = |Q|+ |Γ|.

When unbounded recursion is not considered, threads can be modeled as finite state
processes instead of pushdown systems. This corresponds to the special case where, for all
((q, γ), (q′, u), α) ∈ ∆cr and ((q, γ), (q′, u)) ∈ ∆in, the pushed word u is of length at most 1.

Definition 2.2 (DCFS). A dynamic concurrent finite-state systems (DCFS for short) is a
DCPS M = (Q,Γ,∆, q0, γ0) where, for all ((q, γ), (q′, u), α) ∈ ∆ and ((q, γ), (q′, u)) ∈ ∆,
we have |u| ≤ 1.

2.2. Semantics.

Definition 2.3 (Local configurations of a DCPS). Let M = (Q,Γ,∆, q0, γ0) be a DCPS.
A local configuration of a thread of M is a pair (w, i) where w ∈ Γ∗ is its call stack and
i ∈ N is its switch number. Let Loc(M) denote the set of local configurations ofM.

Intuitively, the switch number of a thread is the number of interruptions/resumptions
together with the switch number of its creator (at the moment of the creation) plus one.

Definition 2.4 (Configurations of a DCPS). Let M = (Q,Γ,∆, q0, γ0) be a DCPS. A
configuration c of a M is an element of Q × (Loc(M) ∪ {⊥}) × [Loc(M) → N]. We use
Conf (M) to denote the set of all configurations ofM.

8 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

A configuration of the form (q, (w, i),Val) (resp. (q,⊥,Val)) of M means that: (1)
q ∈ Q is the value of the global store, (2) (w, i) is the local configuration of the active thread
(resp. there is no active thread), and (3) Val : Loc(M) → N is a function that associates
for each (w′, i′) ∈ Loc(M), the number of pending threads with local configuration (w′, i′).

Given a configuration c = (q, η,Val) ∈ Conf (M), let State(c) = q, Active(c) = η, and

Idle(c) = Val . We use cinitM = (q0,⊥, Id
{(γ0,0)}
Loc(M)) to denote the initial configuration ofM.

Definition 2.5 (Transition system of a DCPS). LetM = (Q,Γ,∆, q0, γ0) be a DCPS. The
transition system associated withM is given by T (M) = (Conf (M),Σ,→) where Σ = ∆
and → is the smallest relation such that:

• if t = 〈q, γ〉−→M〈q
′, u〉 ⊲ α, then (q, (γw, i),Val) t−→T (M)(q

′, (uw, i),Val ′) for all w ∈ Γ∗,

i ∈ N, and Val ,Val ′ ∈ [Loc(M)→ N] such that:

− If α ∈ Γ, then Val ′ = Val + Id
{(α,i+1)}
Loc(M) .

− If α = ǫ, then Val ′ = Val .

• if t = 〈q, γ〉 7→M 〈q′, u〉, then (q, (γw, i),Val) t−→T (M)(q
′,⊥,Val + Id

{(uw,i+1)}
Loc(M)) for all

w ∈ Γ∗, i ∈ N, and Val ∈ [Loc(M)→ N].

• if t = q 7→M q′ ⊳ γ, then (q,⊥,Val + Id
{(γw,i)}
Loc(M))

t−→T (M)(q
′, (γw, i),Val) for all w ∈ Γ∗,

i ∈ N, and Val ∈ [Loc(M)→ N].

where for every sets A and C such that C ⊆ A, IdCA denotes the function from A to N such

that IdCA = 1 if a ∈ C and Id
C
A(a) = 0 if a ∈ (A \ C) (see Equation. 1.1).

The transition (q, (γw, i),Val) t−→T (M)(q
′, (uw, i),Val ′), with t = 〈q, γ〉−→M〈q

′, u〉 ⊲ α,
corresponds to the execution of pushdown operation (pop or push) with the possibility of a
creation of a new thread (if α ∈ Γ) which is added to the set of pending threads. The created

thread gets the switch number i + 1. The transition (q, (γw, i),Val) t−→T (M)(q
′,⊥,Val ′),

with t = 〈q, γ〉 7→M 〈q′, u〉, corresponds to interrupt the execution of the current active
thread after performing the pushdown operation: The local configuration (uw, i) of the
active thread is added to the set of the idle threads after incrementing its switch number.

The transition (q,⊥,Val) t−→T (M)(q
′, (γw, i),Val ′), with t = q 7→M q′ ⊳ γ, corresponds to

start/resume (from the state q′) the execution of a pending thread with local configuration
(γw, i).

2.3. Bounded semantics. Let M = (Q,Γ,∆, q0, γ0) be a DCPS. For every I ⊆ N, let
Conf I(M) denote the set of configurations of M such that c ∈ Conf I(M) if and only if
Active(c) ∈ Γ∗ × I. In the following, we restrict the behavior of T (M) to the set of runs
where the switch numbers of the active threads are always in I.

Definition 2.6 (Bounded transition system of a DCPS). For every I ⊆ N, TI(M) denotes

the transition system (Conf (M),∆,→I) where: For every c, c′ ∈ Conf (M), c t−→TI(M) c
′ if

and only if: (1) c t−→T (M) c
′, and (2) c ∈ Conf I(M) or c′ ∈ Conf I(M).

9

2.4. Reachability problems. Let M = (Q,Γ,∆, q0, γ0) be a DCPS. We consider the
following three notions of reachability:

Definition 2.7 (The state reachability problem). A state q ∈ Q is reachable byM if and

only if there are c ∈ Conf (M) and τ ∈ ∆∗ such that cinitM
τ

==⇒∗
T (M) c, Active(c) = ⊥, and

State(c) = q. The state reachability (SR for short) problem forM consists in deciding, for
a given set F ⊆ Q, whether there is a state q ∈ F such that q is reachable byM.

Notice that we consider, in the definition of the state reachability problem, that the set
of reachable configurations that we are interested in are those with no active thread. This
is only for the sake of simplicity and does not constitute at all a restriction. Indeed, we
can show that the problem of checking whether there are c ∈ Conf (M) and τ ∈ ∆∗ such

that cinitM
τ

==⇒∗
T (M) c and State(c) ∈ F can be reduced to the state reachability problem for a

DCPSM′ = (Q,Γ,∆′, q0, γ0) built up fromM by adding to ∆ some transition rules that
interrupt the execution of the active thread when the current state is in F .

Definition 2.8 (The k-bounded state reachability problem). Let k ∈ N. A state q ∈ Q
is k-bounded reachable by M if and only if there are c ∈ Conf (M) and τ ∈ ∆∗ such

that cinitM
τ

==⇒∗
T[0,k](M) c, Active(c) = ⊥, and State(c) = q. The k-bounded state reachability

(BSR[k] for short) problem forM consists in deciding, for a given set F ⊆ Q, whether there
is a state q ∈ F such that q is k-bounded reachable byM.

Observe that, in BSR[k] problem, a bound k+1 is imposed on the number of switches
(interruptions/resumptions) performed by each thread (together with the switch number of
its ancestor (at the moment of its creation) plus one). However, due to dynamic creation
of threads, bounding the number of switches of each thread does not bound the number
of switches in the whole computation of the system (since an arbitrary large number of
threads can be involved in these computations).

Definition 2.9 (The k-stratified state reachability problem). Let k ∈ N. A state q ∈ Q is
k-stratified reachable by M if and only if there are τ0, τ1, . . . , τk ∈ ∆∗, and c1, . . . , ck+1 ∈
Conf (M) such that State(ck+1) = q, Active(ck+1) = ⊥, and we have:

cinitM
τ0==⇒∗

T{0}(M) c1
τ1==⇒∗

T{1}(M) · · ·
τk−1
===⇒∗

T{k−1}(M) ck
τk==⇒∗

T{k}(M) ck+1

The k-stratified state reachability (SSR[k] for short) problem for M consists in deciding,
for a given F ⊆ Q, whether there is a state q ∈ F s.t. q is k-stratified reachable byM.

In the SSR[k] problem, a special kind of k-bounded computations (called stratified
computations) are considered: In such a computation, threads are scheduled according to
their increasing switch number (from 0 to k): First, threads with switch number 0 are
scheduled generating threads with switch number 1, then threads with switch number 1 are
scheduled generating threads with switch number 2, and so on.

Observe that even in the case of stratified computations, an arbitrarily large number of
context switches may occur along a computation due to dynamic creation of threads. Very
particular stratified computations are those where the whole number of context switches is
bounded [QR05].

10 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

3. The SR problem and the BSR[k] problem for DCFSs

In the following, we show that the SR problem and the BSR[k] problem for dynamic net-
works of concurrent finite-state systems are as hard as the coverability problem for vector
addition systems with states (which is EXPSPACE-complete).

Theorem 3.1. The SR problem and the BSR[k] problem, with k ≥ 2, for DCFSs are
EXPSPACE-complete.

Next, we recall some basic definitions and notations about vector addition systems
with states (or equivalently, Petri nets). Then, this proof of Theorem 3.1 is structured as
follows: First, we show that the BSR[k] problem for DCFSs is polynomially reducible to
the SR problem for DCFSs (Proposition 3.4). Then, we show that the SR problem for
DCFSs is polynomially reducible to the coverability problem for VASSs (Proposition 3.6).
Finally, we prove that the coverability problem for VASSs is polynomially reducible to the
BSR[2] problem for DCFSs (Proposition 3.8). As an immediate consequence of these results
and Theorem 3.2, we obtain that the SR problem and the BSR[k] problem for DCFSs are
EXPSPACE-complete.

3.1. Vector addition systems with states. A vector addition system with states (VASS
for short) is a tuple V = (n,Q,Σ, δ, q0,u0) where:

• n ∈ N is the dimension,
• Q is the finite non-empty set of states,
• Σ is the finite set of actions (or labels),
• δ : Q× Σ→ Q× ([−1, 1])n is the displacement function,
• q0 ∈ Q is the initial state, and
• u0 is the initial n-dim vector over N such that 0 ≤ u0(i) ≤ 1 for all i ∈ [1, n].

The size of V, denoted by |V |, is defined as (n + |Q| + |Σ|). A configuration of V is a
pair (q,u) where q ∈ Q and u ∈ N

n. Given a configuration c = (q,u), we let State(c) = q
and Val(c) = u. The set of all configurations of V is denoted by Conf (V).

The transition system associated to V, denoted by T (V), is given by (Conf (V),Σ,→),
where → is the smallest transition relation satisfying the following condition: For every
q1, q2 ∈ Q and u1,u2 ∈ N

n, (q1,u1)
a−→T (V)(q2,u2) if and only if δ((q1, a)) = (q2,u2 − u1).

A state q ∈ Q is reachable by V if and only if there are w ∈ Σ∗ and c ∈ Conf (V)

such that (q0,u0)
w

==⇒∗
T (V) c and State(c) = q. The coverability problem for V consists in

deciding, for a given set F ⊆ Q, whether there is q ∈ F such that q is reachable by V.

Theorem 3.2 ([Lip76, Rac78]). The coverability problem for vector addition systems with
states is EXPSPACE-complete.

3.2. From the BSR[k] problem for DCFSs to the SR problem for DCFSs. In the
following, we show that, for every k ∈ N, the BSR[k] for DCFSs is polynomially reducible to
the SR problem for DCFSs. Intuitively, given a DCFSM = (Q,Γ,∆, q0, γ0) and a natural
number k, we construct a DCFS M′ that records for each thread its switch number and
can execute only threads with recorded switch number less than k. Formally, the DCFS
M′ = (Q′,Γ′,∆′, q′0, γ

′
0) is defined as follows:

• Q′ = Q is a finite set of states,

11

• Γ′ = Γǫ × [0, k + 1] is a finite set of stack symbols. A stack symbol (α, i) corresponds to
a thread with stack content α and switch number i.
• ∆′ is the smallest transition relation satisfying the following conditions:
− For every i ∈ [0, k] and 〈q, γ〉−→M〈q

′, u〉 ⊲ ǫ, then 〈q, (γ, i)〉−→M′〈q′, (u, i)〉 ⊲ ǫ.
− For every i ∈ [0, k] and 〈q, γ〉−→M〈q

′, u〉 ⊲ α for some stack symbol α ∈ Γ, then
〈q, (γ, i)〉−→M′〈q′, (u, i)〉 ⊲ (α, i + 1).

− For every i ∈ [0, k] and 〈q, γ〉 7→M 〈q′, u〉, then 〈q, (γ, i)〉 7→M′ 〈q′, (u, i + 1)〉.
− For every i ∈ [0, k] and q 7→M q′ ⊳ γ, then q 7→M′ q′ ⊳ (γ, i).
• q′0 = q0 is the initial state, and
• γ′0 = (γ0, 0) is the initial stack symbol.

Observe that the size of the DCFSM′ is polynomial in the size of M. Moreover, the
relation betweenM andM′ is given by the following lemma:

Lemma 3.3. Let q ∈ Q. q is k-bounded reachable byM iff q is reachable by M′.

The proof of Lemma 3.3 is done by induction on the length of the runs and is given in
Appendix A.

As an immediate consequence of Lemma 3.3, we obtain the following result:

Proposition 3.4. Let k ≥ 1. The BSR[k] problem for DCFSs is polynomially reducible to
the SR problem for DCFSs.

3.3. From the SR problem for DCFSs to the coverability problem for VASSs.

In the following, we show that the SR problem for DCFSs is polynomially reducible to
the coverability problem for VASSs. For a given DCFS M = (Q,Γ,∆, q0, γ0), with Γ =
{γ0, . . . , γn}, we can construct a VASS V = (m,P,Σ, δ, p0,u0) which has the following
structure:

• m = n + 2 is the dimension of V. It is easy to observe that the dimension of V is equal
to |Γǫ| which is the number of all possible stack contents of threads ofM.
• P = (Q × (Γǫ ∪ {⊥})) ∪ {phalt} is the set of states of V (with phalt /∈ Q). A state of the
form (q, w) ∈ Q×Γǫ (resp. (q,⊥)) of V means that the state ofM is q and that the stack
content of the active thread is w (resp. there is no active thread). The state phalt is used
in order to interrupt the simulation ofM by V.
• Σ = ∆ is the input alphabet of V.
• δ : P × Σ → P × ([−1, 1])m is the transition function of V defined as follows: For every
p ∈ P and t ∈ Σ, we have:
− δ(p, t) = (p′,0m) if there are q, q′ ∈ Q, γ ∈ Γ, and u ∈ Γǫ such that t = 〈q, γ〉−→M

〈q′, u〉 ⊲ ǫ, p = (q, γ), and p′ = (q′, u). This corresponds to the simulation of a
transition rule ofM without thread creation.

− δ(p, t) = (p′,0m[i ←֓ 1]) if i ∈ [1,m[and there are q, q′ ∈ Q, γ ∈ Γ, and u ∈ Γǫ such
that t = 〈q, γ〉−→M 〈q

′, u〉 ⊲ γi−1, p = (q, γ), and p′ = (q′, u). This corresponds to the
simulation of a transition rule ofM with thread creation.

− δ(p, t) = (p′,0m[j ←֓ 1]) if j ∈ [1,m], and there are q, q′ ∈ Q, γ ∈ Γ, and u ∈ Γǫ such
that t = 〈q, γ〉 7→M 〈q′, u〉, p = (q, γ), p′ = (q′,⊥), u = ǫ if j = m, and u = γj−1

if j < m. This corresponds to the interruption of the execution of the current active
thread.

12 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

− δ(p, t) = (p′,0m[i ←֓ −1]) if i ∈ [1,m[, and there are q, q′ ∈ Q, such that t = q 7→M

q′ ⊳ γi−1, p = (q,⊥), and p′ = (q′, γi−1). This corresponds to the execution of a
pending thread with topmost stack symbol γi−1.

− δ(p, t) = (phalt,0
m) otherwise. This indicates the end of the simulation of M by V

whenever the transition t can not be applied from the state p.
• u0 = (1, 0, . . . , 0). This corresponds to the initial pending thread ofM (i.e., initially M
has one pending thread with local configuration (γ0, 0)).
• p0 = (q0,⊥) is the initial state of V. This corresponds to the initial state q0 ofM.

Observe that the size of V is polynomial in the size of M. Moreover, the relation
betweenM and V is given by the following lemma:

Lemma 3.5. Let q ∈ Q. q is reachable byM if and only if (q,⊥) is reachable by V.

The proof of Lemma 3.5 is done by induction on the length of the runs and is given in
Appendix B.

As an immediate consequence of Lemma 3.5, we obtain the following result:

Proposition 3.6. The SR problem for DCFSs is polynomially reducible to the coverability
problem for VASSs.

3.4. From the coverability problem for VASSs to the BSR[2] problem for DCFSs.

In the following, we prove that the coverability problem for VASSs is polynomially reducible
to the BSR[2] for DCFSs. Given a VASS V = (n,Q,Σ, δ, q0,u0), we construct a DCFSM
such that the coverability problem for V is reducible to the BSR[2] problem for M. We
assume w.l.o.g that for every q ∈ Q and a ∈ Σ, δ(q, a) ∈ Q×{u ∈ N

n |
∑n

i=1 abs(u[i]) ≤ 1}
and u0 = 0n. Intuitively, M has, for each i ∈ [1, n], a stack symbol γi such that the
number of pending threads with local configuration (γi, 2) denotes the current value of the
i-th counter of V. The systemM has also a special stack symbol γ′0 such that the pending
threads with local configuration (γ′0, 1) are used to create threads with local configuration
(γi, 2) where i ∈ [1, n] (which corresponds to the increment of the value of a counter of
V). We now sketch the behavior of M. First, M creates an arbitrary number of threads
with local configuration (γ′0, 1) from the initial configuration. Then, the simulation of a
rule δ(q, a) = (q′,u) depends on the value of the vector u: (1) If u = 0n, then M moves
its state from q to q′, (2) If u = 0n[i ←֓ 1] for some i ∈ [1, n], thenM uses a thread with
local configuration (γ′0, 1) to create a thread with local configuration (γi, 2) while moving
its state from q to q′, and (3) If u = 0n[i ←֓ −1] for some i ∈ [1, n], thenM transforms the
local configuration of a pending thread from (γi, 2) to (ǫ, 3). FormallyM = (P,Γ,∆, p0, γ0)
is built from V as follows:

• P = {p0} ∪Q is the set of states such that p0 /∈ Q. p0 is the initial state. A state q ∈ Q
represents the current state of V.
• Γ = {γ0, γ1, · · · , γn} ∪ {γ

′
0} is the finite set of stack symbols. The symbol γ0 represents

the initial stack symbol. The symbol γ′0 represents the stack content of auxiliary threads
that are “consumed” in order to simulate an operation of V. For every i ∈ [1, n], the
number of pending threads with stack content γi denotes the current value of the i-th
counter of V.
• ∆ is the smallest transition relation satisfying the following conditions:

13

− 〈p0, γ0〉−→M〈p0, γ0〉 ⊲ γ′0 and 〈p0, γ0〉 7→M 〈q0, ǫ〉. These transitions create an arbitrary
number of threads with local configuration (γ′0, 1) before moving the state from p0 to
q0.

− For every q ∈ Q, we have that q 7→M q ⊳ γ′0. This transition corresponds to start the
execution of a pending thread with stack content γ′0 to simulate an operation of V that
increments the value of a counter.

− For every q ∈ Q, we have that 〈q, γ′0〉 7→M 〈q, ǫ〉. This transition corresponds to the
interruption of the execution of the current active thread with stack content γ′0 in order
to permit the simulation byM of an operation of V that decrements a counter.

− For every q, q′ ∈ Q and a ∈ Σ, if δ(q, a) = (q′,0n), then 〈q, γ′0〉−→M〈q
′, γ′0〉 ⊲ ǫ. This

transition simulates an operation of V that moves the state from q to q′.
− For every q, q′ ∈ Q, a ∈ Σ, and each i ∈ [1, n], if δ(q, a) = (q′,0n[i ←֓ 1]), then
〈q, γ′0〉−→M〈q

′, γ′0〉 ⊲ γi. This transition simulates an operation that increments the
i-th counter of V. Notice that the switch number of the created thread with stack
content γi is 2 since the switch number of the active thread (with stack content γ′0) is
always equal to 1.

− For every q, q′ ∈ Q, a ∈ Σ, and i ∈ [1, n], if δ(q, a) = (q′,0n[i ←֓ −1]), then q 7→M q′ ⊳
γi, and 〈q

′, γi〉 7→M 〈q′, ǫ〉. These transitions simulate an operation that decrements
the value of the i-th counter of V.

Observe that the size ofM is polynomial in the size of V. Moreover, the relation between
V and M is given by the following lemma:

Lemma 3.7. Let q ∈ Q. q is reachable by V if and only if q is 2-bounded reachable byM.

The proof of Lemma 3.7 is done by induction on the length of the runs and is given in
Appendix C.

As an immediate consequence of Lemma 3.7, we obtain the following result:

Proposition 3.8. The coverability problem for VASSs is polynomially reducible to the
BSR[2] for DCFSs.

4. The SSR[k] problem for DCFSs

In this section, we consider the problem SSR[k] for k ∈ N. We show that the problem SSR[k]
for DCFSs is NP-complete. But before going into the details, let us recall the definition of
the existential Presburger arithmetic and some related results.

4.1. Existential Presburger arithmetic. Let V be a set of variables. We use x, y, . . . to
range over variables in V. The set of terms of the Presburger arithmetic is defined by:

t ::= 0 | 1 |x | t + t

Then, the class of existential formulae is defined as follows:

ϕ ::= t ≤ t |ϕ ∨ ϕ |ϕ ∧ ϕ | ∃x. ϕ

The length of a Presburger formula ϕ, denoted by |ϕ|, is the number of letters used
in writing ϕ. The notion of free variables for an existential Presburger formula is defined
as usual. We write FV (ϕ) ⊆ V to denote that the formula ϕ has FV (ϕ) as a set of

14 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

free variables. The semantics of existential Presburger formulae is defined in the standard
way. Given a function f from var (ϕ) to N, we write f |= ϕ if ϕ holds for f (in the
obvious sense) and, in this case, we say that f satisfies ϕ. We use [[ϕ]] to denote the set
{f ∈ [FV (ϕ)→ N] | f |= ϕ}.

An existential Presburger formula ϕ is satisfiable if and only if [[ϕ]] 6= ∅. The satisfiability
problem for ϕ consists in checking whether ϕ is satisfiable. It is well-known that the
satisfiability problem for existential Presburger formulae is NP-complete [VSS05].

Theorem 4.1. The satisfiability problem for existential Presburger formulae is NP-complete.

We recall that the Parikh image of a context-free language is definable by an existential
Presburger formula.

Theorem 4.2 ([SSMH04]). If P is a PDA with input alphabet Σ, then, it is possible to
construct, in time and space polynomial in |P|, an existential Presburger formula ϕ with
free variables Σ such that [[ϕ]] = Parikh(L(P)).

4.2. The SSR[k] problem for DCFSs is NP-complete. In this section, we mainly
prove the following result:

Theorem 4.3. For every k ∈ N, the problem SSR[k] for DCFSs is NP-complete.

The NP-hardness is proved by a reduction from the coverability problem of acyclic Petri
nets [Ste95] to SSR[k]. This is done by a simple adaptation of the construction given in
Section 3.4. The upper-bound is obtained by a reduction to the satisfiability problem for
existential Presburger formulae.

Let M = (Q,Γ,∆, q0, γ0) be a DCFS, k be a natural number, and F ⊆ Q be a set of
target states. To reduce the k-stratified state reachability problem forM to the satisfiability
problem of an existential formula ϕ, we proceed in two steps: First, we construct a bounded
stack pushdown automaton P that simulates the k-stratified computations of M without
taking into account the causality constraints. (The use of a pushdown automaton here is for
technical convenience. In principle, P can be encoded as a finite state automaton, but this
will make the construction cumbersome.) In fact, P assumes that there is an unbounded
number of pending threads for any local configurations in Γǫ× [0, k]. Intuitively P performs
the same pushdown operations as the ones specified by ∆ while making visible as transition
labels: (1) (γ, i,⊲) if the local configuration of the created (or the interrupted) thread is
(γ, i), (2) (γ, i,⊳) if the local configuration of the pending thread that has been activated
is (γ, i), and (3) (ǫ, i,−) if there no thread creation and the switch number of the current
active thread is i.

Then, we show that there is a k-stratified computation of M if and only if there is a
computation π of P that satisfies the following two conditions:

• The stratified condition: Threads in π are scheduled according to their increasing switch
number (from 0 to k).
• The flow condition: For every stack content γ ∈ Γ and switch number i ∈ [0, k], the
number of occurrences of (γ, i,⊲) in π is greater than the number of occurrences of
(γ, i,⊳) in π (i.e., the number of created (or interrupted) threads with local configuration
(γ, i) is greater than the number of threads with local configuration (γ, i) that has been
activated).

15

Since the set of traces that satisfies the stratified condition is a regular one, we can
construct a pushdown automaton P ′ (of bounded stack depth) that recognizes the set
of traces of P that satisfies the first condition. Therefore, we can use Theorem 4.2 to
construct an existential Presburger formula ϕ′ that characterizes the Parikh image of the
set of traces of P ′. On the other hand, the flow condition can be expressed as an existential
Presburger formula ϕ′′ over the set of variables {(γ, i,⊲) | γ ∈ Γ, i ∈ [0, k]} and {(γ, i,⊳) | γ ∈
Γ, i ∈ [0, k]}. Armed with these results, we can show that the k-stratified state reachability
problem forM is reducible to the satisfiability problem of the existential formula ϕ = ϕ′∧ϕ′′.

Let us give more details about the constructions described above.

From the DCFS M to the pushdown automaton P: The pushdown automaton
P = (P,Σ,ΓP ,∆P , p0, γP , FP) is built up fromM as follows:

• P = Q is the finite set of states. A state q represents the global state ofM.

• Σ =
⋃k

i=0 Σi is the finite set of input symbols where Σi = Σcr
i ∪ Σr

i ∪ Σl
i with Σcr

i =

Γǫ×{i+1}×{⊲}, Σr
i = Γ×{i}×{⊳}, and Σl

i = {(ǫ, i,−)} for all i ∈ [0, k]. A transition
labeled with (α, i,⊲) corresponds to a rule of M that: (1) creates a thread with local
configuration (α, i), or (2) interrupts the execution of the active thread with stack content
is α. A transition labeled with (α, i,⊳) corresponds to a rule ofM that activates a pending
thread with local configuration (α, i). A transition labeled with (ǫ, i,−) corresponds to
a rule ofM without thread creation and where the switch number of the current active
thread is i.
• ΓP = (Γǫ× [0, k])∪{⊥} is the finite set of stack symbols. Each symbol in ΓP corresponds
to the local configuration of the active thread ofM.
• ∆P is the smallest transition relation satisfying the following conditions:

− For every i ∈ [0, k] and 〈q, γ〉−→M〈q
′, u〉 ⊲ ǫ, 〈q, (γ, i)〉

(ǫ,i,−)
−−−−→P 〈q

′, (u, i)〉. This tran-
sition corresponds to the simulation of a transition ofM without thread creation.

− For every i ∈ [0, k] and 〈q, γ〉−→M〈q
′, u〉 ⊲ α with α ∈ Γ, 〈q, (γ, i)〉

(α,i+1,⊲)
−−−−−−−→P

〈q′, (u, i)〉. This corresponds to the simulation of a transition of M with thread cre-
ation.

− For every i ∈ [0, k] and 〈q, γ〉 7→M 〈q′, u〉, 〈q, (γ, i)〉
(u,i+1,⊲)
−−−−−−→P 〈q

′,⊥〉. This corre-
sponds to the interruption of the execution of the active thread ofM.

− For every i ∈ [0, k] and q 7→M q′ ⊳ γ, 〈q,⊥〉
(γ,i,⊳)
−−−−−→P 〈q

′, (γ, i)〉. This corresponds to
the activation of a pending thread ofM with local configuration (γ, i).

• p0 = q0 is the initial state.
• γP = ⊥ is the initial stack symbol.
• FP = F is the set of final states.

Observe that the size of the pushdown automaton P is polynomial in the size of the DCFS
M. Moreover, the depth of the stack of P is always bounded by one.

The relation between the DCFSM and the pushdown automaton P is established by
Lemma 4.4 which states that there is a state q ∈ F such that q is k-stratified reachable by
M if and only if there is a computation π of P that satisfies the stratified condition and
the flow condition.

Lemma 4.4. A state q ∈ F is k-stratified reachable by M if and only if there is σi ∈ Σ∗
i

for all i ∈ [0, k] such that:

• σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}), and

16 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

• |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ and i ∈ [0, k] where σ−1 = (γ0, 0,⊲).

The proof of Lemma 4.4 is done by induction and is given in the Appendix D.

From the PDA P to the existential Presburger formula ϕ: In the following, we
show that the problem of checking whether there is σi ∈ Σ∗

i for all i ∈ [0, k] such that
σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}) and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ
and i ∈ [0, k] with σ−1 = (γ0, 0,⊲) is polynomially reducible to the satisfiability problem
of an existential Presburger formula ϕ. This implies that the SSR[k] problem for M is
polynomially reducible to the satisfiability problem for ϕ (see Lemma 4.4).

Lemma 4.5. It is possible to construct an existential Presburger formula ϕ with [[ϕ]] 6= ∅ if
and only if there is σi ∈ Σ∗

i for all i ∈ [0, k] such that σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F×
{⊥}) and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ and i ∈ [0, k] with σ−1 = (γ0, 0,⊲).

Proof. Let P ′ be the pushdown automaton such that L(P ′) = TracesT (P)({(q0,⊥)}, F ×
{⊥}) ∩ (Σ∗

0 · Σ
∗
1 · · ·Σ

∗
k). Such pushdown automaton P ′ is effectively constructible from P

since the class of pushdown automata is closed under intersection with a regular language.
Now, we can use Theorem 4.2 to construct a Presburger formula ϕ′ with free variables Σ

such that [[ϕ]] = Parikh(L(P ′)). In addition, for every i ∈ [1, k], we construct an existential
Presburger formula ϕi with free variables Σ such that ϕi =

∧

γ∈Γ

(

(γ, i,⊳) ≤ (γ, i,⊲)
)

.

Let ϕ0 =
(
∧

γ∈Γ\{γ0}

(

(γ, 0,⊳) ≤ 0
))

∧
(

(γ0, 0,⊳) ≤ 1
)

and ϕ′′ =
∧k

i=0 ϕi.

Then, it is not hard to see that the existential Presburger formula ϕ = ϕ′ ∧ ϕ′′ is
satisfiable if and only if for every i ∈ [0, k], there are there are σi ∈ Σ∗

i for all i ∈ [0, k] such
that σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}) and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ
and i ∈ [0, k] with σ−1 = (γ0, 0,⊲).

As an immediate consequence of Theorem 4.1 and Lemma 4.5, we obtain the following
result:

Lemma 4.6. For every k ∈ N, the problem SSR[k] for DCFSs is in NP.

5. Reachability analysis for dynamic networks of concurrent pushdown

systems

In this section, we consider the case of DCPSs. It is well-known that the SR problem
is undecidable already for networks with two concurrent pushdown processes. We show
however that both problems BSR[k] and SSR[k] are decidable, for any given bound k ∈ N.
For that, we prove the following fact.

Theorem 5.1. For every k ∈ N, the problems BSR[k] and the SSR[k] for DCPS are expo-
nentially reducible to the corresponding problems for DCFS.

A corollary of Theorem 3.1, Theorem 4.3, and Theorem 5.1, we obtain the following
results:

Corollary 5.2. For every k ∈ N, the BSR[k] problem for DCPSs is in 2-EXPSPACE, and
the SSR[k] problem for DCPSs is in NEXPTIME.

17

The rest of this section is devoted to the proof of Theorem 5.1. Let us fix a DCPS
M = (Q,Γ,∆, q0, γ0). We show that it is possible to construct a DCFSMfs such that the
problems BSR[k] and SSR[k] forM can be reduced to their corresponding problems forMfs.
Let us present the main steps of this construction. For that, let us consider the problem
BSR[k], for some fixed k ∈ N. Then, let us concentrate on the computations of one thread,
and assume that this thread will be interrupted i times (with i ≤ k+1) during its execution
starting from some initial global state q and initial local state γ. The computations of
such a thread correspond to runs of a pushdown automaton, built out of M, which (1)
performs the same operations on the stack and the global state as the ones specified by ∆,
(2) makes visible as transition labels the local state (element of Γ) of spawned threads, and
(3) nondeterministically guesses jumps from a global state to another one corresponding
to the effect of context switches. These jumps are also made visible as transition labels
under the form of (q, α, q′) ∈ (Q× Γǫ ×Q) (meaning that the computation of the thread is
interrupted at the state q with stack content αw for some w ∈ Γ∗, and is resumed at the
state q′). In fact, if a thread fires a transition labeled by a symbol of the form (q, ǫ, q′) then
its execution will be definitely interrupted (i.e., the execution of this thread will never be
resumed again). The number of such jumps in each run is precisely i.

Then, the problem is to handle the composition of all the computations of the generated
threads and to make sure that the guesses made by each one of them (on their control state
jumps due to context switches) are correct. In fact, handling this composition is very a
hard task in general when threads are modeled as pushdown automata. To overcome this
difficulty, the key observation is that it is possible to assume without loss of preciseness
that some of the generated threads can be ignored (or lost). Indeed, these threads can
always be considered as threads which will never be scheduled. Therefore, the behaviors of
each thread can be modeled using a finite-state automaton which recognizes the downward
closure of the language of the pushdown automaton of a thread with respect to the subword
relation. We know by Theorem 1.1 that this automaton is effectively constructible. So, let
A(q,γ) be the automaton modeling the computations of threads starting from the state q
and initial stack content γ, and performing at most k+1 interruptions. We assume w.l.o.g
that A(q,γ) has no ǫ-transitions.

The next step is to synchronize the so-defined finite-state automata in order to represent
valid computations of the whole system. For that, we define a DCFSMfs which simulates
the composition of these automata as follows:

• A pending thread with stack content γ which has never been activated can be dispatched
byMfs at the moment of a context switch. For that,Mfs has a rule 〈q, γ〉−→Mfs

〈♯, s0〉 ⊲ ǫ
where s0 is the initial state of A(q,γ), for every possible starting q and every stack symbol
γ ∈ Γ. This rule allows to check that the control state is q, and to move the system to a
special state ♯ corresponding to the simulation of a phase without context switches.
• During the simulation, when a transition s

γ
−→A(q,γ)

s′, with γ ∈ Γ, is encountered, a new
thread is spawned by Mfs with initial stack content γ. This is done using a rule of the
form 〈♯, s〉−→Mfs

〈♯, s′〉 ⊲ γ. The new thread will stay pending untilMfs can dispatch it.

• Encountering a transition s
(q1,α,q2)−−−−−−→A(q,γ)

s′ means that the computation of the simulated

thread is interrupted at the global store q1 with stack content αw for some w ∈ Γ∗, and
will be resumed later when the global state will become q2 (due to the execution of some
other threads). Then,Mfs moves from its global state ♯ to the global state q1 so that the
control can be taken by another pending thread), and transforms the stack configuration

18 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

of the current thread (which may be interrupted) to (q2, (s
′, α)). This is done by a rule

of the form 〈♯, s〉 7→Mfs
〈q1, (q2, (s

′, α))〉.
• To simulate a transition q 7→M q′ ⊳ γ that starts/resumes the execution of a pending
thread with topmost stack symbol γ ∈ Γ, Mfs has the rules q 7→Mfs

q′ ⊳ γ and q 7→Mfs

q′ ⊳ (q′, (s, γ)). In this case, we observe that the only action that can be done by Mfs

after executing these rules is to activate some pending thread with topmost stack symbol
γ′ (either dispatched for the first time, or resumed after some interruption).

We have seen above howMfs dispatches pending threads for the first time. The resump-
tion of threads at state q′ is done by having rules of the form 〈q′, (q′, (s, γ))〉−→Mfs

〈♯, s〉 ⊲ ǫ.
Such a rule means that if a pending thread (q′, (s, γ)) exists, then it can be activated and
the simulation of its behaviors is resumed from the state s (at which it was stopped at
the last interruption).

Let us give in more details the construction described above.

5.1. Simulation of threads of M with finite-state automata. Next, we give the
construction of the finite state automaton A(q,γ) for some given q ∈ Q and γ ∈ Γ. For
that, we start by considering a pushdown automaton P(q,γ) simulating the behaviors of a
thread that starts its execution from the global state q and the initial stack configuration γ
after some number of jumps in the global state (representing guesses on the effect of context
switches). The spawned thread as well as the guesses on the global state jumps made during
the computation are made visible as transition labels.

Then, let P(q,γ) = (P,Σ,Γ,∆P , q, γ,Q) be the pushdown automaton where:

• P = Q ∪ (Q× Γ) is the finite set of states,
• Σ = Γ ∪ Σsw ∪ Σinr is the finite set of input symbols with Σsw = Q × Γ × Q and Σinr =
Q× {ǫ} ×Q,
• ∆P is the smallest transition relation such that:
− For every 〈q1, γ1〉−→M〈q2, u〉 ⊲ α, 〈q1, γ1〉

α−→P(q,γ)
〈q2, u〉. This rule simulates a push-

down operation on the active thread with the possibility of a thread creation.

− For every 〈q1, γ1〉 7→M 〈q2, u〉 and q′2 ∈ Q, 〈q1, γ1〉
(q2,ǫ,q′2)−−−−−−→P(q,γ)

〈q′2, u〉. This rule
corresponds to interrupt the execution of the active thread at the state q2. In addition,
the execution of this thread will never be resumed again.

− For every 〈q1, γ1〉 7→M 〈q2, u〉, q
′
2 ∈ Q, and γ′ ∈ Γ, 〈q1, γ1〉

(q2,γ′,q′2)−−−−−−→P(q,γ)
〈(q′2, γ

′), u〉

and 〈(q′2, γ
′), γ′〉 ǫ−→P(q,γ)

〈q′2, γ
′〉. This rule simulates the interruption of the execution

of the active thread at the state q2. In addition, the execution of this thread will be
resumed at the state q′2 with topmost stack symbol γ′.

Then, the set of behaviors represented by this pushdown automaton which correspond to
precisely i ≥ 1 context switches (or interruptions) is given by the following language:

L′
((q,γ),i) = L(P(q,γ)) ∩

((

Γ∗ · Σsw

)i−1(
Γ∗ · Σinr

))

The set L′
((q,γ),i) is a context-free language in general (since it is the intersection of

a context-free language with a regular one). Due to the fact that some of the generated
threads can be ignored (or lost), we can consider without loss of preciseness the downward
closure of L′

(q,γ) w.r.t. the sub-word relation corresponding to the deletion of symbols in Γ

while preserving all symbols in Σsw ∪ Σinr, i.e., the set

19

L′
(q,γ) =

k+1
⋃

i=1

(

L′
((q,γ),i) ↓ ∩

((

Γ∗ · Σsw

)i−1(
Γ∗ · Σinr

))

)

By Theorem 1.1, the language L′
(q,γ) is regular and can be effectively represented by

a finite-state automaton A(q,γ) = (S(q,γ),Σ,∆(q,γ), I(q,γ), F(q,γ)). We assume w.l.o.g that all
the states in the automaton A(q,γ) are co-reachable from the final states. We assume also
that ∆(q,γ) ⊆ S(q,γ) × Σ × S(q,γ) (i.e., there is no transition of A(q,γ) labeled by the empty
word).

5.2. From the DCPS M to the DCFS Mfs. In the following, we give the formal def-
inition of the DCFS Mfs. The system Mfs is defined by the tuple (Qfs,Γfs,∆fs, q0, γ0)
where:

• Qfs = Q ∪ {♯} is the finite set of states.
• Γfs = Γ ∪ Ssm

fs ∪ Ssw
fs is the finite set of stack alphabet where Ssm

fs =
⋃

(q,γ)∈Q×Γ S(q,γ) and

Ssw
fs = Q× Ssm

fs × Γǫ.
• ∆fs is the smallest set of transitions such that
− Initialize: For every γ ∈ Γ and q ∈ Q, we have 〈q, γ〉−→Mfs

〈♯, s0〉 ⊲ ǫ where s0 is the
initial state of A(q,γ).

− Spawn: For every q ∈ Q, γ ∈ Γ, and s α−→A(q,γ)
s′, we have 〈♯, s〉−→Mfs

〈♯, s′〉 ⊲ α.

(Notice that, from the definition of A(q,γ), α is necessarily in Γ.)

− Interrupt: For every q ∈ Q, γ ∈ Γ, and s
(q1,α,q2)−−−−−−→A(q,γ)

s′, we have 〈♯, s〉 7→Mfs

〈q1, (q2, (s
′, α))〉.

− Dispatch: For every s ∈ Ssm
fs and q1 7→M q2 ⊳ γ′, we have q1 7→Mfs

q2 ⊳ γ′ and
q1 7→Mfs

q2 ⊳ (q2, (s, γ
′)).

− Resume: For every q ∈ Q, γ ∈ Γ, and s ∈ Ssm
fs , we have 〈q, (q, (s, γ))〉−→Mfs

〈♯, s〉 ⊲ ǫ.

Theorem 5.1 is an immediate consequence of Lemma 5.3.

Lemma 5.3. For every k ∈ N, a control state q ∈ Q is k-bounded reachable (resp. k-
stratified) reachable byM iff q is k-bounded (resp. k-stratified) reachable byMfs.

The proof of Lemma 5.3 is given in Appendix E.

6. Conclusion

We have proposed new concepts for context-bounded verification we believe that are natural
and suitable for programs with dynamic thread creation. These concepts are based on the
idea of bounding the number of switches for each thread and not for all the threads in a
computation.

First, we have proved that even for finite-state threads, adopting such a notion of
context-bounding leads in general to a problem which is as hard as the coverability problem
of Petri nets. This means that, in theory, the complexity of this problem is high, but in
practice, there are quite efficient techniques (based on iterative computation of under/upper
approximations) developed recently for solving this problem which have been implemented
and used successfully in [GRB06b, GRB06a]. Moreover, we have proposed a notion of
stratified context-bounding for which the verification is in NP, i.e., as hard as in the case

20 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

without dynamic thread creation. An interesting question is how to implement efficiently
the analysis in this case using clever encodings in SMT solvers.

Moreover, we have proved that the considered problems are still decidable for the case
of pushdown threads. This is done by a nontrivial reduction to the corresponding problems
for finite-state threads. This reduction is based on computing the regular downward closure
of context-free languages w.r.t. the sub-word relation. The downward closure computation
may lead in general to an unavoidable exponential blow-up. This is due to the succinctness
of context-free grammars w.r.t. finite state automata: For instance, the finite language

{a2
N
}, for a fixed N ≥ 1, can be defined with a context-free grammar of size N whereas

a finite-state automaton representing it (or its downward closure) is necessarily of size at
least 2N . An interesting open problem is whether there is an alternative proof technique
which allows to avoid the downward closure construction. In practice, we believe that it
would be possible to overcome this problem by for instance designing algorithms allowing
to generate efficiently and incrementally (parts of the) downward closure.

Finally, in our models, we consider that each created thread inherits a switch number
from its father (the one of its father plus 1). An alternative definition can be obtained
by considering that each created thread is given the switch number 0. (Therefore, each
thread can perform up to k switches.) However, the problem SSR[k] for finite state threads
(resp. pushdown threads) becomes EXPSPACE-complete (in 2-EXPSPACE) instead of
NP-complete (NEXPTIME) for this definition.

References

[BESS05] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of multithreaded
software with asynchronous communication. In FSTTCS’05, LNCS 3821, pages 348–359.
Springer, 2005.

[BMOT05] Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In CONCUR’05, LNCS, 2005.

[BT03] Ahmed Bouajjani and Tayssir Touili. Reachability Analysis of Process Rewrite Systems. In
FSTTCS’03. LNCS 2914, 2003.

[BT05] Ahmed Bouajjani and Tayssir Touili. On Computing Reachability Sets of Process Rewrite Sys-
tems. In RTA’05. LNCS, 2005.

[CKS06] Byron Cook, Daniel Kroening, and Natasha Sharygina. Over-approximating boolean programs
with unbounded thread creation. Formal Methods in Computer Aided Design, 0:53–59, 2006.

[CKS07] Byron Cook, Daniel Kroening, and Natasha Sharygina. Verification of boolean programs with
unbounded thread creation. Theoretical Computer Science, 388(1-3):227 – 242, 2007.

[Cou91] Bruno Courcelle. On construction obstruction sets of words. EATCS’91, 44:178–185, June 1991.
[EP00] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural parallel

flow graphs. In POPL’00. ACM, 2000.
[GRB06a] P. Ganty, J. F. Raskin, and L. Van Begin. A complete abstract interpretation framework for

coverability properties of WSTS. In VMCAI’06, LNCS 3855, pages 49–64. Springer, 2006.
[GRB06b] G. Geeraerts, J. F. Raskin, and L. Van Begin. Expand, enlarge and check: New algorithms for

the coverability problem of WSTS. J. Comput. Syst. Sci., 72(1):180–203, 2006.
[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
[Lip76] R. Lipton. The reachability problem requires exponential time. Technical Report TR 66, 1976.
[LMP09] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-bounded concur-

rent reachability to sequential reachability. In CAV, volume 5643 of Lecture Notes in Computer
Science, pages 477–492. Springer, 2009.

21

[LMP10] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Model-checking parameterized con-
current programs using linear interfaces. In CAV, volume 6174 of Lecture Notes in Computer
Science, pages 629–644. Springer, 2010.

[LR08] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. In CAV’08, LNCS 5123, pages 37–51. Springer, 2008.

[LS98] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes. In Proc. 9th Int.
Conf. Concurrency Theory (CONCUR’98), Nice, France, Sep. 1998, volume 1466, pages 50–
66. Springer, 1998.

[LTKR08] A. Lal, T. Touili, N. Kidd, and T. W. Reps. Interprocedural analysis of concurrent programs
under a context bound. In TACAS’08, LNCS 4963, pages 282–298. Springer, 2008.

[Mo02] M. Muller-olm. Variations on constants. Habilitation thesis, Dortmund University, 2002.
[MQ07] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of multithreaded

programs. In PLDI’07, pages 446–455. ACM, 2007.
[QR05] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS’05,

LNCS 3440, pages 93–107. Springer, 2005.
[QW04] S. Qadeer and D. Wu. KISS: keep it simple and sequential. In PLDI’04, pages 14–24. ACM,

2004.
[Rac78] Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.

Comput. Sci., 6:223–231, 1978.
[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.ACM Trans.

Program. Lang. Syst., 22(2):416–430, 2000.
[SES08] D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Symbolic context-bounded analysis of mul-

tithreaded java programs. In SPIN’08, LNCS 5156, pages 270–287. Springer, 2008.
[SS00] Helmut Seidl and Bernhard Steffen. Constraint-based inter-procedural analysis of parallel pro-

grams. In 9th European Symposium on Programming (ESOP), 2000.
[SSMH04] H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in trees for free. In ICALP’04,

LNCS 3142, pages 1136–1149. Springer, 2004.
[Ste95] Iain A. Stewart. Reachability in some classes of acyclic petri nets. Fundam. Inform., 23(1):91–

100, 1995.
[VSS05] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of equational

Horn clauses. In CADE’05, LNCS 3632, pages 337–352. Springer, 2005.
[ZJ08] A. Zaks and R. Joshi. Verifying multi-threaded C programs with SPIN. In SPIN’08, LNCS 5156,

pages 325–342. Springer, 2008.

Appendix A. The proof of Lemma 3.3

Lemma 3.3 Let q ∈ Q. q is k-bounded reachable byM iff q is reachable byM′.

Proof. To proof Lemma 3.3 we proceed as follows: First, we show that for every reachable
configuration c byM′, the local configuration ((w′, i′), j′) ∈ Loc(M′) of any thread satisfies
the condition that the switch number j′ is equal to the recored switch number i′ (i.e.,
i′ = j′). This property is established by Lemma A.1. Then, we prove that if a state q is
k-bounded reachable byM, then q is reachable byM′ (see Lemma A.2). Finally, we show
that if a state q is reachable by a computation ofM′, then q is k-bounded reachable byM
(see Lemma A.3).

The switch number of any thread ofM′ is equal to its recorded switch number: In
the following, we show that for every reachable configuration c byM′, the local configuration
((w′, i′), j′) ∈ Loc(M′) of any thread satisfies the condition that the switch number j′ is
equal to the recored switch number i′.

22 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Lemma A.1. If cinitM′
τ

==⇒∗
T (M′) c, then Active(c) ∈

(

{⊥} ∪ {((w, i), i) |w ∈ Γǫ, i ∈ [0, k]}
)

,

Idle(c)((ǫ, l)) = 0 for all l ∈ N, and Idle(c)((w′, i′), j′)) = 0 for all w′ ∈ Γǫ and i′, j′ ∈ N

such that i′ 6= j′.

Proof. Assume that cinitM′
τ

==⇒
n

T (M′) c for some n ∈ N. We proceed by induction on n.

Basis. n = 0. Then cinitM′ = c = (q0,⊥, Id
{((γ0,0),0)}
Loc(M′)

). Hence, Lemma A.1 holds.

Step. n > 0. Then, there is a configuration c′ ∈ Conf (M′), τ ′ ∈ (∆′)∗, and t ∈ ∆′ such

that τ = τ ′t, and cinitM′
τ ′

===⇒
n−1

T (M′) c
′ t−→ T (M′) c.

Now, we apply the induction hypothesis to the run cinitM′
τ ′

===⇒
n−1

T (M′) c
′, and we obtain

Active(c′) ∈
(

{⊥} ∪ {((w, i), i) |w ∈ Γǫ, i ∈ [0, k]}
)

, Idle(c′)((ǫ, l)) = 0 for all l ∈ N, and
Idle(c′)((w′, i′), j′)) = 0 for all w′ ∈ Γǫ and i′, j′ ∈ N such that i′ 6= j′.

Since c′ t−→ T (M′) c, then there are four cases to study depending on the type of the transition

t ∈ ∆′:

• Case 1: t = 〈q, (γ, r)〉−→M′〈q′, (u, r)〉 ⊲ ǫ with r ∈ [0, k]. Then, Active(c′) = ((γ, r), r)
(using the induction hypothesis). This implies that Active(c) = ((u, r), r) and Idle(c) =
Idle(c′). Hence, all the conditions of Lemma A.1 are satisfied.
• Case 2: t = 〈q, (γ, r)〉−→M′〈q′, (u, r)〉 ⊲ (α, r + 1) with r ∈ [0, k] and α ∈ Γ. Then,

Active(c′) = ((γ, r), r), Active(c) = ((u, r), r), and Idle(c) = Idle(c′) + Id
{((α,r+1),r+1)}
Loc(M′) .

This implies that all the conditions of Lemma A.1 are satisfied.
• Case 3: t = 〈q, (γ, r)〉 7→M′ 〈q′, (u, r + 1)〉 with r ∈ [0, k]. Then, Active(c′) = ((γ, r), r),

Active(c) = ⊥, and Idle(c) = Idle(c′) + Id
{((u,r+1),r+1)}
Loc(M′) . This implies that all the condi-

tions of Lemma A.1 are satisfied.
• Case 4: t = q 7→M′ q′ ⊳ (γ, r) with r ∈ [0, k] and γ ∈ Γ. Then, there is j ∈ N

such that Active(c′) = ⊥, Active(c) = ((γ, r), j), Idle(c′)((γ, r), j) ≥ 1, and Idle(c) =

Idle(c′) − Id
{((γ′,r),j)}
Loc(M′) . Since Idle(c′)((γ, r), j) ≥ 1, this implies that necessarily we have

r = j (from the induction hypothesis). Thus, all the conditions of Lemma A.1 are
satisfied.

The Only if direction of Lemma 3.3: In the following, we show that if a state q is
k-bounded reachable byM, then q is also reachable byM′.

Lemma A.2. If cinitM
τ

==⇒∗
T[0,k](M) c, then there is τ ′ ∈ (∆′)∗ such that cinitM′

τ ′
==⇒∗

T (M′) c
′ where

the configuration c′ ∈ Conf (M′) is defined as follows:

• State(c′) = State(c).
• If Active(c) = ⊥, then Active(c′) = ⊥.
• If Active(c) = (w, i) for some w ∈ Γǫ and i ∈ [0, k], then Active(c′) = ((w, i), i).
• Idle(c′) is defined from Idle(c) as follows:
(1) Idle(c′)(((w′, j′), j′)) = Idle(c)((w′, j′)) for all w′ ∈ Γǫ and j′ ∈ [0, k + 1], and
(2) 0 otherwise.

23

Proof. First, we observe that cinitM
τ

==⇒∗
T[0,k](M) c implies Active(c) = ⊥ or Active(c) = (w, i)

for some w ∈ Γǫ and i ∈ [0, k] by definition. Let us assume that cinitM
τ

==⇒
n

T[0,k](M) c for some

n ∈ N. We proceed by induction on n.

Basis. n = 0. This implies that τ = ǫ and cinitM = c = (q0,⊥, Id
{(γ0,0)}
Loc(M)). Then, by taking

c′ = cinitM′ and τ ′ = ǫ, all the conditions of Lemma A.2 are satisfied.

Step. n > 0. Then there are c1 ∈ Conf (M), τ1 ∈ ∆∗, and t ∈ ∆ such that:

cinitM
τ1===⇒

n−1
T[0,k](M) c1

t−→ T[0,k](M) c (A.1)

We apply the induction hypothesis to the run cinitM
τ1===⇒
n−1

T[0,k](M) c1, and we obtain that

there are c′1 ∈ Conf (M′) and τ ′1 ∈ (∆′)∗ such that:

• cinitM′

τ ′1==⇒∗
T (M′) c

′
1.

• State(c′1) = State(c1).
• If Active(c1) = ⊥, then Active(c′1) = ⊥.
• If Active(c1) = (w, i) for some w ∈ Γǫ and i ∈ [0, k], then Active(c′1) = ((w, i), i).
• The function Idle(c′1) is defined from Idle(c1) as follows:
(1) Idle(c′1)(((w

′, j′), j′)) = Idle(c1)((w
′, j′)) for all w′ ∈ Γǫ and j′ ∈ [0, k + 1], and

(2) 0 otherwise.

Since c1
t−→ T[0,k](M) c, one of the following four cases holds:

• Case 1: t = 〈q, γ〉−→M〈q
′, u〉 ⊲ ǫ. Then, there is i ∈ [0, k] such that State(c1) = q,

State(c) = q′, Active(c1) = (γ, i), Active(c) = (u, i), and Idle(c1) = Idle(c). From
the definition of M′, t′ = 〈q, (γ, i)〉−→M′〈q′, (u, i)〉 ⊲ ǫ. Moreover, we have State(c′1) =
State(c1) = q and Active(c1) = ((γ, i), i). Then, by taking c′ = (q′, ((u, i), i), Idle (c′1))
and τ ′ = τ ′1t

′, we can show that Lemma A.2 holds.
• Case 2: t = 〈q, γ〉−→M〈q

′, u〉 ⊲ α with α ∈ Γ. Then, there is i ∈ [0, k] such that
State(c1) = q, State(c) = q′, Active(c1) = (γ, i), Active(c) = (u, i), and Idle(c) =

Idle(c1) + Id
{(α,i+1)}
Loc(M) . From the definition of M′, we have t′ = 〈q, (γ, i)〉−→M′〈q′, (u, i)〉

⊲ (α, i + 1). Then, by taking c′ = (q′, ((u, i), i), Idle (c′1) + Id
{((α,i+1),i+1)}
Loc(M′)) and τ ′ = τ ′1t

′,

we can show that Lemma A.2 holds.
• Case 3: t = 〈q, γ〉 7→M 〈q′, u〉. Then, there is i ∈ [0, k] such that State(c1) = q,

State(c) = q′, Active(c1) = (γ, i), Active(c) = ⊥, and Idle(c) = Idle(c1) + Id
{(u,i+1)}
Loc(M)

.

From the definition of M′, we have t′ = 〈q, (γ, i)〉 7→M′ 〈q′, (u, i + 1)〉. Then, by taking

c′ = (q′,⊥, Idle(c′1) + Id
{((u,i+1),i+1)}
Loc(M′)) and τ ′ = τ ′1t

′, we can show that Lemma A.2 holds.

• Case 4: t = q 7→M q′ ⊳ γ with γ ∈ Γ. Then, there is i ∈ [0, k] such that State(c1) = q,
State(c) = q′, Active(c1) = ⊥, Active(c) = (γ, i), Idle(c1)((γ, i)) ≥ 1, and Idle(c) =

Idle(c1) − Id
{(γ,i)}
Loc(M). From the definition of M′, we have t′ = q 7→M′ q′ ⊳ (γ, i). Then,

by taking c′ = (q′, ((γ, i), i), Idle (c′1) − Id
{((γ,i),i)}
Loc(M′)) and τ ′ = τ ′1t

′, we can show that all

the conditions of Lemma A.2 are satisfied. This is possible since Idle(c′1)(((γ, i), i)) =
Idle(c1)((γ, i)) ≥ 1.

24 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

The If direction of Lemma 3.3 : In the following, we shows that if a state q is reachable
by a computation ofM′, then q is k-bounded reachable byM.

Lemma A.3. If cinitM′
τ ′
==⇒∗

T (M′)c
′, then there is τ ∈ ∆∗ such that cinitM

τ
==⇒∗

T[0,k](M) c where

the configuration c ∈ Conf (M) is defined as follows:

• State(c) = State(c′).
• If Active(c′) = ⊥, then Active(c) = ⊥.
• If Active(c′) = ((w, i), i) for some w ∈ Γǫ and i ∈ [0, k], then Active(c) = (w, i).
• Idle(c) is defined from Idle(c′) as follows:
(1) Idle(c)((w′, j′)) = Idle(c′)(((w′, j′), j′)) for all w′ ∈ Γǫ and j′ ∈ [0, k + 1], and
(2) 0 otherwise.

Proof. First, we observe that if cinitM′
τ ′
==⇒∗

T (M′)c
′, then by Lemma A.1 Active(c′) = ⊥ or

Active(c′) = ((w, i), i) for some w ∈ Γǫ and i ∈ [0, k]. Let us assume that cinitM′
τ ′
==⇒
n

T (M′) c
′

for some n ∈ N. We proceed by induction on n.

Basis. n = 0. Then, τ ′ = ǫ and cinitM′ = c′ = (q0,⊥, Id
{((γ0,0),0)}
Loc(M′)). By taking c = cinitM =

(q0,⊥, Id
{(γ0,0)}
Loc(M)) and τ = ǫ, we can show that all the conditions of Lemma A.3 are fulfilled.

Step. n > 1. Then, there are τ ′1 ∈ (∆′)∗, t′ ∈ ∆′, and c′1 ∈ Conf (M′) such that:

cinitM′

τ ′1===⇒
n−1

T (M′) c
′
1

t′−→ T (M′) c
′ (A.2)

We apply Lemma A.1 to cinitM′

τ ′1===⇒
n−1

T (M′) c
′
1 and cinitM′

τ ′
==⇒
n

T (M′) c
′, and we obtain that:

• Active(c′),Active(c′1) ∈
(

{⊥} ∪ {((w, i), i) |w ∈ Γǫ, i ∈ [0, k]}
)

,
• Idle(c′1)((ǫ, l)) = Idle(c′)((ǫ, l)) = 0 for all l ∈ N, and
• Idle(c′1)((w

′, i′), j′)) = Idle(c′)((w′, i′), j′)) = 0 for all w′ ∈ Γǫ and i′ 6= j′.

We apply also the induction hypothesis to cinitM′

τ ′1===⇒
n−1

T (M′) c′1, and we obtain that there

are τ1 ∈ ∆∗ and c1 ∈ Conf (M) such that:

• cinitM
τ1==⇒∗

T[0,k](M) c1.

• State(c1) = State(c′1).
• If Active(c′1) = ⊥, then Active(c1) = ⊥.
• If Active(c′1) = ((w, i), i) for some w ∈ Γǫ and i ∈ [0, k], then Active(c1) = (w, i).
• The function Idle(c1) is defined from Idle(c′1) as follows:
(1) Idle(c1)((w

′, j′)) = Idle(c′1)(((w
′, j′), j′)) for all w′ ∈ Γǫ and j′ ∈ [0, k + 1], and

(2) 0 otherwise.

On the other hand, c′1
t′−→ T (M′) c

′ implies that one of the following four cases holds:

• Case 1: t′ = 〈q, (γ, i)〉−→M′〈q′, (u, i)〉 ⊲ ǫ with i ∈ [0, k]. Then, State(c′1) = q,
State(c′) = q′, Active(c′1) = ((γ, i), i), Active(c′) = ((u, i), i), and Idle(c′1) = Idle(c′).
We can use the definition ofM′ to show that t = 〈q, γ〉−→M〈q

′, u〉 ⊲ ǫ. Then, by taking
c = (q′, (u, i), Idle(c1)) and τ = τ1t, we can show that Lemma A.3 holds.

25

• Case 2: t′ = 〈q, (γ, i)〉−→M′〈q′, (u, i)〉 ⊲ (α, i + 1) with i ∈ [0, k] and α ∈ Γ. Then,
State(c′1) = q, State(c′) = q′, Active(c′1) = ((γ, i), i), Active(c′) = ((u, i), i), and Idle(c′) =

Idle(c′1) + Id
{((α,i+1),i+1)}
Loc(M′) . The definition ofM′ implies t = 〈q, γ〉−→M〈q

′, u〉 ⊲ α. Then,

by taking c = (q′, (u, i), Idle(c1) + Id
{(α,i+1)}
Loc(M)) and τ = τ1t, we can show that Lemma A.3

holds.
• Case 3: t′ = 〈q, (γ, i)〉 7→M′ 〈q′, (u, i+1)〉 with i ∈ [0, k]. Then, State(c′1) = q, State(c′) =

q′, Active(c′1) = ((γ, i), i), Active(c′) = ⊥, and Idle(c′) = Idle(c′1) + Id
{((u,i+1),i+1)}
Loc(M′) . We

can use the definition of M′ to show that t = 〈q, γ〉 7→M 〈q′, u〉. Then, by taking

c = (q′,⊥, Idle(c1) + Id
{(u,i+1)}
Loc(M)) and τ = τ1t, we can show that all the conditions of

Lemma A.3 are fulfilled.
• Case 4: t′ = q 7→M′ q′ ⊳ (γ, i) with i ∈ [0, k]. Then, State(c′1) = q, State(c′) = q′,
Active(c′1) = ⊥, Active(c

′) = ((γ, i), i), Idle(c′1)(((γ, i), i)) ≥ 1, and Idle(c′) = Idle(c′1) −

Id
{((γ,i),i)}
Loc(M′) . This is due to the fact that Idle(c′1)((γ, i), j)) = 0 for all j ∈ N such that

i 6= j. We can use the definition ofM′ to show that t = q 7→M q′ ⊳ γ. Then, by taking

c = (q′, (γ, i), Idle(c1)− Id
{(γ,i)}
Loc(M)) and τ = τ1t, we can easily show that all the conditions

of Lemma A.3 are fulfilled. This is possible since Idle(c1)((γ, i)) = Idle(c′1)((γ, i), i) and
Idle(c′1)(((γ, i), i)) ≥ 1.

As an immediate consequence of Lemma A.2 and A.3, we obtain that for every state
q ∈ Q, q is k-bounded reachable byM iff q is reachable byM′.

Appendix B. The proof of Lemma 3.5

Lemma 3.5 Let q ∈ Q. q is reachable byM if and only if (q,⊥) is reachable by V.

Proof. To prove Lemma 3.5, we proceed as follows: First, we introduce the function µ which
defines a simulation relation betweenM and V (see Definition B.1). Then, we show that if
a state q is reachable byM, then (q,⊥) is also reachable by V (see Lemma B.2). Finally,
we prove that if (q,⊥) is reachable by V, then q is reachable byM (see Lemma B.3).

The simulation relation between V and M: Let us define the function µ which maps
every configuration ofM to a configuration of V.

Definition B.1. Let µ be a function from Conf (M) to Conf (V) such that: For every
c ∈ Conf (M), we have µ(c) = ((q, η),u) where:

• q = State(c),
• η = ⊥ if Active(c) = ⊥,
• η = w if Active(c) = (w, i) for some w ∈ Γǫ and i ∈ N,
• u[i] =

∑

j∈N Idle(c)((γi−1, j)) for all i ∈ [1,m[, and (2) u[m] =
∑

j∈N Idle(c)((ǫ, j)).

26 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

The Only if direction of Lemma 3.5 : In the following, we show that if a state q is
reachable byM, then (q,⊥) is also reachable by V.

Lemma B.2. If cinitM
τ

==⇒∗
T (M)c, then ((p0,⊥),u0)

τ
==⇒∗

T (V)µ(c).

Proof. We use induction on the length of the run cinitM
τ

==⇒∗
T (M)c. For some ℓ ∈ N assume

that cinitM
τ

==⇒
ℓ

T (M) c. We proceed by induction on ℓ.

Basis. ℓ = 0. Then c = cinitM and τ = ǫ. Moreover, we have µ(cinitM) = ((q0,⊥),u0). This

implies that ((q0,⊥),u0)
τ

==⇒∗
T (V) µ(c) holds.

Step. ℓ > 0. Then there are c′ ∈ Conf (M), τ ′ ∈ Σ∗, and t ∈ Σ such that τ = τ ′t and:

cinitM
τ ′

==⇒
ℓ−1

T (M) c
′ t−→ T (M) c (B.1)

We apply the induction hypothesis to the run cinitM
τ ′

==⇒
ℓ−1

T (M) c
′, and we obtain:

((q0,⊥),u0)
τ ′
==⇒∗

T (V) µ(c
′) (B.2)

Let us assume that µ(c′) = ς ′ and µ(c) = ς. Since c′ t−→ T (M) c, then one of the following
cases holds:

• Case 1: If t = 〈q, γ〉−→M〈q
′, u〉 ⊲ ǫ. Then, there is i ∈ N such that State(c′) = q,

State(c) = q′, Active(c′) = (γ, i), Active(c) = (u, i), and Idle(c) = Idle(c′). We can use
the definition of µ to show that State(ς ′) = (q, γ), State(ς) = (q′, u), and Val(ς) = Val(ς ′).
Moreover, from the definition of V, we have δ((q, γ), t) = ((q′, u),0m). This implies that

ς ′ t−→ T (V) ς, and so we obtain ((p0,⊥),u0)
τ

==⇒∗
T (V)µ(c).

• Case 2: If t = 〈q, γ〉−→M〈q
′, u〉 ⊲ γj−1 for some j ∈ [1,m[. Then, there is i ∈ N such that

State(c′) = q, State(c) = q′, Active(c′) = (γ, i), Active(c) = (u, i), and Idle(c) = Idle(c′)+

Id
{(γj−1,i+1)}
Loc(M) . We can use the definition of µ to show that State(ς ′) = (q, γ), State(ς) =

(q′, u), and Val(ς) = Val(ς ′)[j ←֓ (Val(ς ′)[j] + 1)]. Moreover, from the definition of V, we

have δ((q, γ), t) = ((q′, u),0m[j ←֓ 1]). This implies that ς ′ t−→ T (V) ς, and so we obtain

((p0,⊥),u0)
τ

==⇒∗
T (V)µ(c).

• Case 3: If t = 〈q, γ〉 7→M 〈q′, ǫ〉. Then, there is i ∈ N such that State(c′) = q,

State(c) = q′, Active(c′) = (γ, i), Active(c) = ⊥, and Idle(c) = Idle(c′) + Id
{(ǫ,i+1)}
Loc(M) .

We can use the definition of µ to show that State(ς ′) = (q, γ), State(ς) = (q′,⊥), and
Val(ς) = Val(ς ′)[m ←֓ (Val(ς ′)[m] + 1)]. Moreover, from the definition of V, we have

δ((q, γ), t) = ((q′,⊥),0m[m ←֓ 1]). This implies that ς ′ t−→ T (V) ς, and so we obtain

((p0,⊥),u0)
τ

==⇒∗
T (V)µ(c).

• Case 4: If t = 〈q, γ〉 7→M 〈q′, γj−1〉 for some j ∈ [1,m[. Then, there is i ∈ N such
that State(c′) = q, State(c) = q′, Active(c′) = (γ, i), Active(c) = ⊥, and Idle(c) =

Idle(c′) + Id
{(γj−1,i+1)}
Loc(M) . We can use the definition of µ to show that State(ς ′) = (q, γ),

State(ς) = (q′,⊥), and Val(ς) = Val(ς ′)[j ←֓ (Val(ς ′)[j] + 1)]. Moreover, from the

definition of V, we have δ((q, γ), t) = ((q′,⊥),0m[j ←֓ 1]). This implies that ς ′ t−→ T (V) ς,

and so we obtain ((p0,⊥),u0)
τ

==⇒∗
T (V)µ(c).

27

• Case 5: If t = q 7→M q′ ⊳ γj−1 for some j ∈ [1,m[. Then, there is i ∈ N such that
State(c′) = q, State(c) = q′, Active(c′) = ⊥, Active(c) = (γj−1, i), Idle(c

′)((γj−1, i)) ≥ 1,

and Idle(c) = Idle(c′) − Id
{(γj−1,i)}
Loc(M) . We can use the definition of µ to show State(ς ′) =

(q,⊥), State(ς) = (q′, γj−1), Val(ς
′)[j] ≥ 1, and Val(ς) = Val(ς ′)[j ←֓ (Val(ς ′)[j] − 1)].

Moreover, from the definition of V, we have δ((q,⊥), t) = ((q′, γj−1),0
m[j ←֓ −1]). This

implies that ς ′ t−→ T (V) ς, and so we obtain ((p0,⊥),u0)
τ

==⇒∗
T (V)µ(c).

The If direction of Lemma 3.5: In the following, we prove that if (q,⊥) is reachable by
V, then q is reachable byM.

Lemma B.3. Let ς ∈ (Q × (Γǫ ∪ {⊥})) × N
m and τ ∈ Σ∗. If ((q0,⊥),u0)

τ
==⇒∗

T (V) ς, then

there is c ∈ Conf (M) such that ς = µ(c) and cinitM
τ

==⇒∗
T (M) c.

Proof. We use induction on the length of the run p0
τ

==⇒
∗

T (V) ς. For some ℓ ∈ N assume

((q0,⊥),u0)
τ

==⇒
ℓ

T (V) ς. We proceed by induction on ℓ.

Basis. ℓ = 0. Then, ((q0,⊥),u0) = ς and τ = ǫ. By taking c = cinitM , we have cinitM
τ

==⇒∗
T (M) c.

Moreover, using the definition of µ, we have µ(cinitM) = µ(c) = ((q0,⊥),u0) = ς.
Step. ℓ > 0. Then, there are ς ′ ∈ Conf (V), τ ′ ∈ Σ∗, and t ∈ Σ such that τ = τ ′t and

((q0,⊥),u0)
τ ′

==⇒
ℓ−1

T (V) ς
′ t−→ T (V) ς. Moreover, we can assume that State(ς ′) ∈ Q×(Γǫ∪{⊥})

since State(ς) ∈ Q× (Γǫ ∪ {⊥}) (see the definition of the transition function of V).

We apply now the induction hypothesis to the run ((q0,⊥),u0)
τ ′

==⇒
ℓ−1

T (V) ς
′, and we

obtain that there is a configuration c′ ∈ Conf (M) such that µ(c′) = ς ′ and cinitM
τ ′
==⇒∗

T (M) c
′.

On the other hand, the run ς ′ t−→ T (M) ς implies that one of the following cases holds:

• Case 1: If t = 〈q, γ〉−→M〈q
′, u〉 ⊲ ǫ. Then, from the definition of V, we have State(ς ′) =

(q, γ), State(ς) = (q′, u), and Val(ς) = Val(ς ′). Moreover, from the definition of the
function µ, we know that there is i ∈ N such that State(c′) = q and Active(c′) = (γ, i).

Let c = (q, (u, i), Idle(c′)). Then, c′ t−→T (M) c and µ(c) = ς. So, we obtain ς = µ(c) and

cinitM
τ

==⇒∗
T (M) c.

• Case 2: If t = 〈q, γ〉−→M〈q
′, u〉 ⊲ γj−1 for some j ∈ [1,m[. Then, from the definition of V,

we have State(ς ′) = (q, γ), State(ς) = (q′, u), and Val(ς) = Val(ς ′)[j ←֓ (Val(ς ′)[j] + 1)].
Moreover, from the definition of the function µ, we know that there is i ∈ N such that

State(c′) = q and Active(c′) = (γ, i). Let c = (q, (u, i), Idle(c′) + Id
{(γj−1,i+1)}
Loc(M)). Then,

c′ t−→T (M) c and µ(c) = ς. So, we obtain ς = µ(c) and cinitM
τ

==⇒∗
T (M) c.

• Case 3: If t = 〈q, γ〉 7→M 〈q′, ǫ〉. Then, from the definition of V, we have State(ς ′) =
(q, γ), State(ς) = (q′,⊥), and Val(ς) = Val(ς ′)[m ←֓ (Val(ς ′)[m] + 1)]. Moreover, from
the definition of the function µ, we know that there is i ∈ N such that State(c′) = q and

Active(c′) = (γ, i). Let c = (q,⊥, Idle(c′) + Id
{(ǫ,i+1)}
Loc(M)). Then, c′ t−→T (M) c and µ(c) = ς.

So, we obtain ς = µ(c) and cinitM
τ

==⇒∗
T (M) c.

• Case 4: If t = 〈q, γ〉 7→M 〈q
′, γj−1〉 for some j ∈ [1,m[. Then, from the definition of V,

we have State(ς ′) = (q, γ), State(ς) = (q′,⊥), and Val(ς) = Val(ς ′)[j ←֓ (Val(ς ′)[j] + 1)].

28 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Moreover, from the definition of the function µ, we know that there is i ∈ N such that

State(c′) = q and Active(c′) = (γ, i). Let c = (q,⊥, Idle(c′) + Id
{(γj−1,i+1)}

Loc(M)
). Then,

c′ t−→T (M) c and µ(c) = ς. So, we obtain ς = µ(c) and cinitM
τ

==⇒∗
T (M) c.

• Case 5: If t = q 7→M q′ ⊳ γj−1 for some j ∈ [1,m[. Then, from the definition of V, we
have State(ς ′) = (q,⊥), State(ς) = (q′, γj−1), Val(ς

′)[j] ≥ 1, and Val(ς) = Val(ς ′)[j ←֓
(Val(ς ′)[j] − 1)]. Moreover, from the definition of the function µ, we know that there
is i ∈ N such that State(c′) = q, Active(c′) = ⊥, and Idle(c′)((γj−1, i)) ≥ 1. Let c =

(q, (γj−1, i), Idle(c
′)− Id

{(γj−1,i)}
Loc(M)). Then, c is well defined, c′ t−→T (M) c, and µ(c) = ς. So,

we obtain ς = µ(c) and cinitM
τ

==⇒∗
T (M) c.

Hence Lemma 3.5 is an immediate consequence of Lemma B.2 and Lemma B.3.

Appendix C. The proof of Lemma 3.7

Lemma 3.7 Let q ∈ Q. q is reachable by V if and only if q is 2-bounded reachable byM.

Proof. To prove Lemma 3.7, we proceed as follows: First, we prove that if q ∈ Q is reachable
by V, then q is 2-bounded reachable byM (see Lemma C.1). Then, we show that if q ∈ Q
is 2-bounded reachable byM, then q is reachable by V (see Lemma C.2).

The If direction of Lemma 3.7: In the following, we show if q ∈ Q is reachable by V, then
q is 2-bounded reachable byM.

Lemma C.1. If (q0,0
n)

σ
==⇒∗

T (V) (q,u), then for every m ∈ N, there are τ ∈ ∆∗ and Val ∈

[Loc(M)→ N] such that: (1) Val((γi, 2)) = u[i] for all i ∈ [1, n], (2) Val((γ′0, 1)) = m, and

(3) cinitM
τ

==⇒∗
T[0,2](M) (q,⊥,Val).

Proof. We use induction on the length of the run (q0,0
n)

σ
==⇒∗

T (V) (q,u). For some ℓ ∈ N

assume that (q0,0
n)

σ
==⇒
ℓ

T (V) (q,u). We proceed by induction on ℓ.

Basis. ℓ = 0. Then σ = ǫ, q = q0 and u = 0n. It is easy to observe that for every
m ∈ N, T[0,2](M), from the initial configuration cinitM , can apply m-times the transition
t0 = 〈p0, γ0〉−→M〈p0, γ0〉 ⊲ γ′0 followed by the transition t′0 = 〈p0, γ0〉 7→M 〈q0, ǫ〉 to reach

the configuration (q0,⊥,Val) (i.e., c
init
M

tm0 ·t′0===⇒∗
T[0,2](M) (q0,⊥,Val)) with Val((γ′0, 1)) = m and

Val((γi, 2)) = u[i] for all i ∈ [1, n].
Step. ℓ > 0. Then, there are q′ ∈ Q, u′ ∈ N

n, σ′ ∈ Σ∗, and a ∈ Σ such that σ = σ′a and:

(q0,0
n)

σ′

==⇒
ℓ−1

T (V) (q
′,u′) a−→ T (V) (q,u) (C.1)

We apply the induction hypothesis to (q0,0
n)

σ′

==⇒
ℓ−1

T (V) (q
′,u′), and we obtain that:

29

∀m′ ∈ N, ∃τ ′ ∈ ∆∗ and ∃Val ′ ∈ [Loc(M)→ N] s.t.:

cinitM
τ ′
==⇒∗

T[0,2](M) (q
′,⊥,Val ′)

Val ′((γ′0, 1)) = m′

Val ′((γi, 2)) = u′[i],∀i ∈ [1, n] (C.2)

Moreover, we have (q′,u′) a−→ T (V) (q,u). This implies that δ(q′, a) = (q,u − u′), and one
of the following cases holds:

• Case 1: If u′ = u, then t = q′ 7→M q′ ⊳ γ′0, t
′ = 〈q′, γ′0〉 −→M 〈q, γ

′
0〉 ⊲ ǫ, and t′′ =

〈q, γ0〉 7→M 〈q, ǫ〉. This implies that for every Val ∈ [Loc(M) → N], T[0,2](M) can move

from the configuration (q′,⊥,Val + Id
{(γ′

0,1)}

Loc(M)) to the configuration (q,⊥,Val + Id
{(ǫ,2)}
Loc(M)).

Now, we can use Equations C.2, to show that:

∀m ∈ N, ∃τ ′ ∈ ∆∗ and ∃Val ∈ [Loc(M)→ N] s.t.:

cinitM
τ ′tt′t′′
====⇒∗

T[0,2](M) (q,⊥,Val)

Val((γ′0, 1)) = m

Val((γi, 2)) = u[i],∀i ∈ [1, n] (C.3)

• Case 2: If u = u′[j ←֓ (u′[j] + 1)] for some j ∈ [1, n], then we have that t = q′ 7→M

q′ ⊳ γ′0, t
′ = 〈q′, γ′0〉 −→M 〈q, γ

′
0〉 ⊲ γj, and t′′ = 〈q, γ0〉 7→M 〈q, ǫ〉. This implies that for

every Val ′′ ∈ [Loc(M) → N], T[0,2](M) can move from the configuration (q′,⊥,Val ′′ +

Id
{(γ′

0,1)}

Loc(M)) to the configuration (q,⊥,Val) with Val = Val ′′ + Id
{(ǫ,2),(γj ,2)}
Loc(M) . Now, we can

use Equations C.2, to show that:

∀m ∈ N, ∃τ ′ ∈ ∆∗ and ∃Val ∈ [Loc(M)→ N] s.t.:

cinitM
τ ′tt′t′′
====⇒∗

T[0,2](M) (q,⊥,Val)

Val((γ′0, 1)) = m

Val((γi, 2)) = u[i],∀i ∈ [1, n] (C.4)

• Case 3: If u = u′[j ←֓ (u′[j] − 1)] and u′[j] ≥ 1 for some j ∈ [1, n], then t = q′ 7→M

q ⊳ γj, and t′ = 〈q, γj〉 7→M 〈q, ǫ〉. This implies that for every Val ′′ ∈ [Conf loc(M)→ N]
such that Val ′′((γj , 2)) ≥ 1, T[0,2](M) can move from the configuration (q′,⊥,Val ′′) to

the configuration (q,⊥,Val) with Val = Val ′′ + Id
{(ǫ,3)}
Loc(M) − Id

{((γj ,2)}
Loc(M) . Now, we can use

Equations C.2, to show that:

∀m ∈ N, ∃τ ′ ∈ ∆∗ and ∃Val ∈ [Loc(M)→ N] s.t.:

cinitM
τ ′tt′
===⇒∗

T[0,2](M) (q,⊥,Val)

Val((γ′0, 1)) = m

Val((γi, 2)) = u′[i] , ∀i ∈ [1, n] (C.5)

30 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

(This is possible since Val ′((γj , 2)) = u′[j] ≥ 1.)

The Only if direction of Lemma 3.7: In the following, we show that if q ∈ Q is 2-
bounded reachable byM, then q is reachable by V.

Lemma C.2. If cinitM
τ

==⇒∗
T[0,2](M) c for some τ ∈ ∆∗ and c ∈ Conf (M) such that State(c) ∈

Q, then the following conditions are satisfied:

(1) Active(c) ∈ ({⊥} ∪ ({(γ′0, 1)}) ∪ ((Γ \ {γ0, γ
′
0})× {2})),

(2) Idle(c)((γ0, i)) = 0 for all i ∈ N,
(3) Idle(c)((γj , i)) = 0 for all j ∈ [1, n] and i 6= 2,
(4) Idle(c)((γ′0, i)) = 0 for all i 6= 1, and

(5) there is σ ∈ Σ∗ with (q0,0
n)

σ
==⇒∗

T (V) (q,u), where q = State(c) and u[j] = Idle(c)((γj , 2))

for all j ∈ [1, n].

Proof. Again, we use induction. Let us assume that cinitM
τ

==⇒∗
T[0,2](M) c for some τ ∈ ∆∗

and c ∈ Conf (M) such that State(c) ∈ Q. Then, from the definition of M, there are

τ1, τ2 ∈ ∆∗ and m ∈ N such that τ = τ1τ2 and cinitM
τ1==⇒∗

T[0,2](M) (q0,⊥,Val0)
τ2==⇒∗

T[0,2](M)c

with Val0((γ
′
0, 1)) = m and Val0((α, j)) = 0 for all (α, j) ∈ Γ×N such that (α, j) 6= (γ′0, 1).

Since (q0,⊥,Val0)
τ2==⇒∗

T[0,2](M)c, then there is ℓ ∈ N such that (q0,⊥,Val0)
τ2==⇒
ℓ

T[0,2](M) c.

To prove Lemma C.2, we proceed by induction on ℓ.
Basis. ℓ = 0. Then, τ2 = ǫ, c = (q0,⊥,Val0). By taking σ = ǫ and u = 0n, we have

(q0,0
n)

σ
==⇒∗

T (V) (q,u) with q = State(c) and u[i] = Idle(c)((γi, 2)) = 0 for all i ∈ [1, n].

Moreover, we have Idle(c)((α, j)) = 0 for all (α, j) ∈ Γ× N such that (α, j) 6= (γ′0, 1).
Step. ℓ > 0. Then, there are τ ′ ∈ ∆∗, t ∈ ∆, and c′ ∈ Conf (M) such that τ2 = τ ′t and

(q0,⊥,Val 0)
τ ′

==⇒
ℓ−1

T[0,2](M) c
′ t−→ T[0,2](M) c.

From the definition ofM, it is not hard to prove that State(c′) ∈ Q.

We apply the induction hypothesis to (q0,⊥,Val0)
τ ′

==⇒
ℓ−1

T[0,2](M) c
′, and we obtain that the

following conditions are satisfied:

• Active(c′) ∈ ({⊥} ∪ ({(γ′0, 1)}) ∪ ((Γ \ {γ0, γ
′
0})× {2})),

• Idle(c′)((γ0, i)) = 0 for all i ∈ N,
• Idle(c′)((γj , i)) = 0 for all j ∈ [1, n] and i 6= 2,
• Idle(c′)((γ′0, i)) = 0 for all i 6= 1, and
• there is σ′ ∈ Σ∗ such that:

(q0,0
n)

σ′

==⇒∗
T (V) (q

′,u′) (C.6)

where q′ = State(c′) and u′[j] = Idle(c′)((γj , 2)) for all j ∈ [1, n].

Moreover, we have c′ t−→ T[0,2](M) c. This implies that one of the following cases holds:

• Case 1: t = 〈q′, γ′0〉−→M〈q, γ
′
0〉 ⊲ ǫ. Then, State(c) = q, State(c′) = q′, Active(c) =

Active(c′) = (γ′0, 1), and Idle(c) = Idle(c′). This implies that the conditions 1-4 of
Lemma C.2 are satisfied. Moreover, from the definition of M, there is a ∈ Σ such that
δ(q′, a) = (q,0n) since we have t = 〈q′, γ′0〉−→M〈q, γ

′
0〉 ⊲ ǫ. This implies that T (V) can

31

reach the configuration (q,u′) from the configuration (q′,u′). I.e., we have the following
computation of T (V):

(q′,u′) a−→ T (V) (q,u) (C.7)

with u = u′.
Putting together Equation C.6 and C.7, we obtain that:

(q0,0
n)

σ′a
==⇒∗

T (V) (q,u) (C.8)

Now, we can use the fact that u = u′, Idle(c) = Idle(c′), and u′[j] = Idle(c′)((γj , 2)) for
all j ∈ [1, n], to show that u[j] = Idle(c)((γj , 2)) for all j ∈ [1, n].
• Case 2: t = 〈q′, γ′0〉−→M〈q, γ

′
0〉 ⊲ γk for some k ∈ [1, n]. Then, State(c) = q, State(c′) =

q′, Active(c) = Active(c′) = (γ′0, 1), and Idle(c) = Idle(c′) + Id
{(γk ,2)}
Loc(M) . This implies that

the conditions 1-4 of Lemma C.2 are satisfied. Moreover, from the definition ofM, there
is a ∈ Σ such that δ(q′, a) = (q,0n[k ←֓ 1]) since we have t = 〈q′, γ′0〉−→M〈q, γ

′
0〉 ⊲ γk.

This implies that T (V) can reach the configuration (q,u) from the configuration (q′,u′)
with u = u′[k ←֓ (u′[k] + 1)]. I.e., we have the following computation of T (V):

(q′,u′) a−→ T (V) (q,u) (C.9)

Putting together Equation C.6 and C.9, we obtain that:

(q0,0
n)

σ′a
==⇒∗

T (V) (q,u) (C.10)

Now, we can use the fact that u = u′[k ←֓ (u′[k] + 1)], Idle(c) = Idle(c′) + Id
{(γk ,2)}
Loc(M) ,

and u′[j] = Idle(c′)((γj , 2)) for all j ∈ [1, n], to show that u[j] = Idle(c)((γj , 2)) for all
j ∈ [1, n].
• Case 3: t = 〈q′, γk〉 7→ M〈q

′, ǫ〉 for some k ∈ [1, n]. Then, State(c) = State(c′) = q′,

Active(c) = ⊥, Active(c′) = (γk, 2), and Idle(c) = Idle(c′) + Id
{(ǫ,3)}
Loc(M)

. This implies that

the conditions 1-4 of Lemma C.2 are satisfied. Moreover, by taking q = q′, σ = σ′, and
u = u′, we have:

(q0,0
n)

σ
==⇒∗

T (V) (q,u) (C.11)

Now, we can use the fact that u = u′, Idle(c) = Idle(c′) + Id
{(ǫ,3)}
Loc(M)

, and u′[j] =

Idle(c′)((γj , 2)) for all j ∈ [1, n], to show that u[j] = Idle(c)((γj , 2)) for all j ∈ [1, n].
• Case 4: t = q′ 7→M q ⊳ γk for some k ∈ [1, n]. Then, State(c) = q, State(c′) = q′,

Active(c) = (γk, 2), Active(c
′) = ⊥, Idle(c′)((γk, 2)) ≥ 1, and Idle(c) = Idle(c′)−Id

{(γk ,2)}
Loc(M) .

This implies that the conditions 1-4 of Lemma C.2 are satisfied. Moreover, from the
definition of M, there is a ∈ Σ such that δ(q′, a) = (q,0n[k ←֓ −1]). This implies that
T (V) can reach the configuration (q,u) from the configuration (q′,u′) with u = u′[k ←֓
(u′[k]− 1)] since Idle(c′)((γk, 2)) = u′[k] ≥ 1. I.e., we have the following computation of
T (V):

(q′,u′) a−→ T (V) (q,u) (C.12)

Putting together Equation C.6 and C.12, we obtain that:

32 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

(q0,0
n)

σ′a
==⇒∗

T (V) (q,u) (C.13)

Now, we can use that u = u′[k ←֓ (u′[k]− 1)], Idle(c) = Idle(c′) − Id
{(γk ,2)}
Loc(M) , and u′[j] =

Idle(c′)((γj , 2)) for all j ∈ [1, n], to show that u[j] = Idle(c)((γj , 2)) for all j ∈ [1, n].
• Case 5: t = 〈q′, γ′0〉 7→M 〈q′, ǫ〉. Then, State(c) = State(c′) = q′, Active(c′) = (γ′0, 1),

Active(c) = ⊥, and Idle(c) = Idle(c′) + Id
{(ǫ,2)}
Loc(M). This implies that the conditions 1-4 of

Lemma C.2 are satisfied. By taking u = u′, σ = σ′, and q = q′, we have that T (V) can
reach the configuration (q,u) from the configuration (q′,u′). I.e., we have the following
computation of T (V):

(q0,0
n)

σ
==⇒∗

T (V) (q,u) (C.14)

Now, we can use that u = u′, Idle(c) = Idle(c′) + Id
{(ǫ,2)}
Loc(M), and u′[j] = Idle(c′)((γj , 2))

for all j ∈ [1, n], to show that u[j] = Idle(c)((γj , 2)) for all j ∈ [1, n].
• Case 6: t = q′ 7→M q′ ⊳ γ′0. Then, State(c) = State(c′) = q′, Active(c) = (γ′0, 1),

Active(c′) = ⊥, Idle(c′)((γ′0, 1)) ≥ 1, and Idle(c) = Idle(c′)− Id
{(γ′

0,1)}

Loc(M) . This implies that

the conditions 1-4 of Lemma C.2 are satisfied. By taking u = u′, σ = σ′, and q = q′, we
have that T (V) can reach the configuration (q,u) from the configuration (q′,u′). I.e., we
have the following computation of T (V):

(q0,0
n)

σ
==⇒∗

T (V) (q,u) (C.15)

Now, we can use that u = u′, Idle(c) = Idle(c′) − Id
{(γ′

0,1)}

Loc(M), and u′[j] = Idle(c′)((γj , 2))

for all j ∈ [1, n], to show that u[j] = Idle(c)((γj , 2)) for all j ∈ [1, n].

Hence, Lemma 3.7 is an immediate consequence of Lemma C.1 and Lemma C.2.

Appendix D. The proof of Lemma 4.4

Lemma 4.4. A state q ∈ F is k-stratified reachable by M if and only if there is σi ∈ Σ∗
i

for all i ∈ [0, k] such that:

• σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}), and
• |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ and i ∈ [0, k] where σ−1 = (γ0, 0,⊲).

Proof. To prove Lemma 4.4, we need first to define a simulation relation µ betweenM and
P that maps any configuration ofM to a configuration of P.

Definition D.1. Let µ be a function from Q × ΓP × Loc(M) to Conf (P) such that for
every c ∈ Q× ΓP × Loc(M), µ(c) = (State(c),Active(c)).

33

The Only if direction of Lemma 4.4: In the following, we show that if there is a state q ∈ F
such that q is k-stratified reachable byM, then there is σi ∈ Σ∗

i for all i ∈ [0, k] such that
σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}), and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ and
i ∈ [0, k] where σ−1 = (γ0, 0,⊲).

To this aim, we first prove that if there is a run c
τi==⇒∗

T{i}(M) c
′ (where M executes

only threads with switch number i ∈ [0, k]), then there is a run µ(c)
σi==⇒∗

T (P) µ(c
′) of P such

that: (1) σi ∈ Σ∗
i , (2) the number of occurrences of (γ, i,⊳) in σi is equal to the number of

activated threads byM with local configuration (γ, i), and (3) the number of created/added
threads by M with local configuration (γ, i + 1) is equal to the number of occurrence of
(γ, i+ 1,⊲) in σi.

Lemma D.2. For every i ∈ [0, k], and c, c′ ∈
(

Q× ΓP × Loc(M)
)

, if there is τi ∈ ∆∗ such

that c
τi==⇒∗

T{i}(M) c
′, then there is σi ∈ Σ∗

i such that:

(1) µ(c)
σi==⇒∗

T (P) µ(c
′).

(2) Idle(c)((α, i)) ≥ |σi|(α,i,⊳) for all α ∈ Γǫ.

(3) Idle(c′)((α, i)) = Idle(c)((α, i))−|σi |(α,i,⊳) and Idle(c′)((α, i+1)) = Idle(c)((α, i+1))+
|σi|(α,i+1,⊲) for all α ∈ Γǫ.

(4) Idle(c′)((α, j)) = Idle(c)((α, j)) for all (α, j) ∈ Γǫ × [0, k + 1] such that j /∈ {i, i + 1}.

Proof. Assume that c
τi==⇒
ℓ

T{i}(M) c
′ for some ℓ ∈ N. We proceed by induction on ℓ.

Basis. ℓ = 0. Then, τi = ǫ and c = c′. By taking σi = ǫ, we have all the conditions of
Lemma D.2 are fulfilled.
Step. ℓ > 0. Then there are τ ′i ∈ ∆∗, t ∈ ∆, c′′ ∈

(

Q× ΓP × Loc(M)
)

such that:

c
τ ′i==⇒
ℓ−1

T{i}(M) c
′′ t−→ T{i}(M) c

′ (D.1)

We apply the induction hypothesis to the run c
τ ′i==⇒
ℓ−1

T{i}(M) c
′′, and we obtain that there

is σ′
i ∈ Σ∗

i such that:

• µ(c)
σ′
i==⇒∗
T (P) µ(c

′′).

• Idle(c)((α, i)) ≥ |σ′
i|(α,i,⊳) for all α ∈ Γǫ.

• Idle(c′′)((α, i)) = Idle(c)((α, i))− |σ′
i|(α,i,⊳) and Idle(c′′)((α, i+1)) = Idle(c)((α, i+1))+

|σ′
i|(α,i+1,⊲) for all α ∈ Γǫ.

• Idle(c′′)((α, j)) = Idle(c)((α, j)) for all (α, j) ∈ Γǫ × [0, k + 1] such that j /∈ {i, i+ 1}.

Since we have c′′ t−→ T{i}(M) c
′, one of the followings cases holds:

• Case 1: t = 〈q′′, γ〉−→M〈q
′, u〉 ⊲ ǫ. Then State(c′′) = q′′, State(c′) = q′, Active(c′′) =

(γ, i), Active(c′) = (u, i), and Idle(c′) = Idle(c′′). Moreover, from the definition of P, we

have 〈q′′, (γ, i)〉
(ǫ,i,−)
−−−−→P〈q

′, (u, i)〉. This implies that T (P) has the following run:

(q′′, (γ, i))
(ǫ,i,−)
−−−−→ T (P)(q

′, (u, i)) (D.2)

We can use the definition of µ to show that µ(c′′) = (q′′, (γ, i)) and µ(c′) = (q′, (u, i)).

Then, let σi = σ′
i(ǫ, i,−). Putting together the equation µ(c)

σ′
i==⇒∗
T (P) µ(c

′′) and Equation

34 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

D.2, we obtain that:

µ(c)
σi==⇒∗

T (P) µ(c
′) (D.3)

Then, we can use the fact that Idle(c′) = Idle(c′′) and σi = σ′
i(ǫ, i,−) to show that all

the conditions of Lemma D.2 are fulfilled.
• Case 2: t = 〈q′′, γ〉−→M〈q

′, u〉 ⊲ α with α ∈ Γ. Then State(c′′) = q′′, State(c′) = q′,

Active(c′′) = (γ, i), Active(c′) = (u, i), and Idle(c′) = Idle(c′′) + Id
{(α,i+1)}
Loc(M) . Moreover,

from the definition of P, we have 〈q′′, (γ, i)〉
(α,i+1,⊲)
−−−−−−−→P〈q

′, (u, i)〉. This implies that T (P)
has the following run:

(q′′, (γ, i))
(α,i+1,⊲)
−−−−−−−→ T (P)(q

′, (u, i)) (D.4)

We can use the definition of the function µ to show that µ(c′′) = (q′′, (γ, i)) and µ(c′) =
(q′, (u, i)). Then, let σi = σ′

i(α, i + 1,⊲).

Putting together the equation µ(c)
σ′
i==⇒∗
T (P) µ(c

′′) and Equation D.4, we obtain that:

µ(c)
σi==⇒∗

T (P) µ(c
′) (D.5)

Then, we can use the fact that Idle(c′) = Idle(c′′) + Id
{(α,i+1)}
Loc(M) and σi = σ′

i(α, i+1,⊲) to

show that all the conditions of Lemma D.2 are fulfilled.
• Case 3: t = 〈q′′, γ〉 7→M 〈q

′, u〉. Then State(c′′) = q′′, State(c′) = q′, Active(c′′) = (γ, i),

Active(c′) = ⊥, and Idle(c′) = Idle(c′′) + Id
{(u,i+1)}
Loc(M) . Moreover, from the definition of P,

we have 〈q′′, (γ, i)〉
(u,i+1,⊲)
−−−−−−→P〈q

′,⊥〉. This implies that T (P) has the following run:

(q′′, (γ, i))
(u,i+1,⊲)
−−−−−−→ T (P)(q

′,⊥) (D.6)

Using the definition of the function µ, it is easy to observe that µ(c′′) = (q′′, (γ, i))
and µ(c′) = (q′,⊥). Then, let σi = σ′

i(u, i + 1,⊲). Putting together the equation

µ(c)
σ′
i==⇒∗
T (P) µ(c

′′) and Equation D.6, we obtain that:

µ(c)
σi==⇒∗

T (P) µ(c
′) (D.7)

Then, we can use the fact that Idle(c′) = Idle(c′′) + Id
{(u,i+1)}
Loc(M) and σi = σ′

i(u, i+ 1,⊲) to

show that all the conditions of Lemma D.2 are fulfilled.
• Case 4: t = q′′ 7→M q′ ⊳ γ. Then State(c′′) = q′′, State(c′) = q′, Active(c′′) = ⊥,

Active(c′) = (γ, i), Idle(c′′)((γ, i)) ≥ 1, and Idle(c′) = Idle(c′′) − Id
{(γ,i)}
Loc(M). Moreover,

from the definition of P, we have 〈q′′,⊥〉
(γ,i,⊳)
−−−−−→P〈q

′, (γ, i)〉. This implies that T (P) has
the following run:

(q′′,⊥)
(γ,i,⊳)
−−−−−→ T (P)(q

′, (γ, i)) (D.8)

Using the definition of the function µ, it is easy to observe that µ(c′′) = (q′′,⊥) and µ(c′) =

(q′, (γ, i)). Then, let σi = σ′
i(γ, i,⊳). Putting together the equation µ(c)

σi==⇒∗
T (P) µ(c

′′)

and Equation D.8, we obtain that:

µ(c)
σi==⇒∗

T (P) µ(c
′) (D.9)

Then, we can use the fact that Idle(c′) = Idle(c′′)− Id
{(γ,i)}
Loc(M) and σi = σ′

i(γ, i,⊳) to show

that all the conditions of Lemma D.2 are fulfilled.

35

Now, we are ready to prove the only if direction of Lemma 4.4.

Lemma D.3. If q ∈ F is k-stratified reachable byM, then there is σi ∈ Σ∗
i for all i ∈ [0, k]

such that σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}), and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all
γ ∈ Γ and i ∈ [0, k] where σ−1 = (γ0, 0,⊲).

Proof. Let us assume that there is a state q ∈ F such that q is k-stratified reachability byM.
Then, there are τ0, τ1, . . . , τk ∈ ∆∗, and c1, . . . , ck+1 ∈ Conf (M) such that State(ck+1) = q,
Active(ck+1) = ⊥, and we have:

cinitM
τ0==⇒∗

T{0}(M) c1
τ1==⇒∗

T{1}(M) · · ·
τk−1
===⇒∗

T{k−1}(M) ck
τk==⇒∗

T{k}(M) ck+1 (D.10)

Notice that all the configurations cinitM , c1, c2, . . . , ck+1 are in
(

Q×ΓP×Loc(M)
)

by definition.
Then, we can use Lemma D.2, to show that there are σi ∈ Σ∗

i for all i ∈ [0, k] such that:

µ(cinitM)
σ0==⇒∗

T (P) µ(c1)
σ1==⇒∗

T (P) · · ·
σk−1
===⇒∗

T (P) µ(ck)
σk==⇒∗

T (P) µ(ck+1) (D.11)

Then, we obtain σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F × {⊥}) since µ(cinitM) = (q0,⊥),
State(ck+1) = q ∈ F , and Active(ck+1) = ⊥ (i.e., µ(ck+1) ∈ F × {⊥}). Moreover, we

can use the fact that Idle(cinitM) = Id
{(γ0,0)}
Loc(M) and the second condition of Lemma D.2, to

prove that for every α ∈ Γǫ, we have that |σ0|(α,i,⊳) ≤ |σ−1|(α,i,⊲) with σ−1 = (γ0, 0,⊲).
Conversely, we can use the conditions (3) and (4) of Lemma D.2, to prove that for every

j ∈ [1, k + 1] and every α ∈ Γǫ, we have Idle(cj)((α, j)) = |σj−1|(α,j,⊲) and Idle(cj)((α, j +
1)) = 0. So, for every j ∈ [1, k] and α ∈ Γǫ, we can use the fact that Idle(cj)((α, j)) =
|σj−1|(α,j,⊲) and the second condition of Lemma D.2 (i.e., Idle(cj)((α, j)) ≥ |σj |(α,j,⊳)), to
prove that |σj−1|(α,j,⊲) ≥ |σj |(α,j,⊳).

The if direction of Lemma 4.4: In the following, we prove that if there is σi ∈ Σ∗
i for all

i ∈ [0, k] such that σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)}, F×{⊥}), and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲)

for all γ ∈ Γ and i ∈ [0, k] where σ−1 = (γ0, 0,⊲), then there is a state q ∈ F such q is
k-stratified reachable byM.

To this aim, we first show that for every configuration c ∈
(

Q×ΓP×Loc(M)
)

and σi ∈

Σ∗
i , if there is a run µ(c)

σi==⇒∗
T (P) ς

′ for some ς ′ ∈ Conf (P) and the number of occurrences

of (γ, i,⊳) in σi is less than the number of pending thread in c with local configuration

(γ, i), then there are c′ ∈ Conf (M) and a run c
τi==⇒∗

T{i}(M) c
′ such that: (1) µ(c′) = ς ′, (2)

the number of occurrences of (γ, i,⊳) in σi is equal to the number of activated threads by
M with local configuration (γ, i), and (3) the number of created/added threads byM with
local configuration (γ, i + 1) is equal to the number of occurrence of (γ, i + 1,⊲) in σi.

Lemma D.4. For every i ∈ [0, k], ς, ς ′ ∈ Conf (P), c ∈
(

Q×ΓP×Loc(M)
)

, and σi ∈ Σ∗
i , if

ς
σi==⇒∗

T (P) ς
′, µ(c) = ς, and Idle(c)((α, i)) ≥ |σi|(α,i,⊳) for all α ∈ Γǫ, then there are τi ∈ ∆∗

and c′ ∈
(

Q× ΓP × Loc(M)
)

such that:

(1) µ(c′) = ς ′.

(2) c
τi==⇒∗

T{i}(M) c
′.

(3) Idle(c′)((α, i)) = Idle(c)((α, i))−|σi |(α,i,⊳) and Idle(c′)((α, i+1)) = Idle(c)((α, i+1))+
|σi|(α,i+1,⊲) for all α ∈ Γǫ.

(4) Idle(c′)((α, j)) = Idle(c)((α, j)) for all (α, j) ∈ Γǫ × [0, k + 1] such that j /∈ {i, i + 1}.

36 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Proof. Assume that ς
σi==⇒
ℓ

T (P) ς
′ for some ℓ ∈ N, µ(c) = ς, and Idle(c)((α, i)) ≥ |σi|(α,i,⊳)

for all α ∈ Γǫ. The proof is done by induction on ℓ.

Basis. ℓ = 0. Then, ς = ς ′, σi = ǫ. By taking c′ = c and τi = ǫ, all the conditions of
Lemma D.4 are fulfilled.

Step. ℓ > 0. Then, there are σ′
i ∈ Σ∗

i , a ∈ Σi, and ς ′′ ∈ Conf (P) such that σi = σ′
ia and

ς
σ′
i==⇒
ℓ

T (P) ς
′′ a−→ T (P) ς

′.

We apply the induction hypothesis to ς
σ′
i==⇒
ℓ

T (P) ς
′′ since Idle(c)((α, i)) ≥ |σi|(α,i,⊳) ≥

|σ′
i|(α,i,⊳) for all α ∈ Γǫ, and we obtain that there are τ ′i ∈ ∆∗ and c′′ ∈

(

Q×ΓP ×Loc(M)
)

such that:

• µ(c′′) = ς ′′.

• c
τ ′i==⇒∗

T{i}(M) c
′′.

• Idle(c′′)((α, i)) = Idle(c)((α, i))− |σ′
i|(α,i,⊳) and Idle(c′′)((α, i+1)) = Idle(c)((α, i+1))+

|σ′
i|(α,i+1,⊲) for all α ∈ Γǫ.

• Idle(c′′)((α, j)) = Idle(c)((α, j)) for all (α, j) ∈ Γǫ × [0, k + 1] such that j /∈ {i, i+ 1}.

Since we have ς ′′ a−→ T (P) ς
′, one of the following cases holds:

• Case 1: a = (ǫ, i,−). Then, there are q, q′ ∈ Q, γ ∈ Γ, and u ∈ Γǫ such that

〈q, (γ, i)〉
(ǫ,i,−)
−−−−→P〈q

′, (u, i)〉, ς ′′ = (q, (γ, i)), and ς ′ = (q′, (u, i)). Since µ(c′′) = ς ′′, we
have State(c′′) = q and Active(c′′) = (γ, i). Moreover, we have t = 〈q, γ〉−→M〈q

′, u〉 ⊲ ǫ.

By taking c′ = (q′, (u, i), Idle(c′′)), we have c′′ t−→Ti(M) c
′.

Now, we can use the definition of the function µ to show that µ(c′) = (q′, (u, i)) =

ς ′. Let τi = τ ′i t. We can put together the equation c
τ ′i==⇒∗

Ti(M) c
′′ and the equation

c′′ t−→Ti(M) c
′ to obtain the following run of T (P):

c
τi==⇒∗

T (P) c
′ (D.12)

Then, we can use the fact that Idle(c′) = Idle(c′′) and σi = σ′
i(ǫ, i,−) to show that the

conditions 4-5 of Lemma D.4 are fulfilled.
• Case 2: a = (α, i+1,⊲) and ς ′ /∈ (Q×({⊥}). Then, there are q, q′ ∈ Q, γ ∈ Γ, and u ∈ Γǫ

such that 〈q, (γ, i)〉 a−→P〈q
′, (u, i)〉, ς ′′ = (q, (γ, i)), and ς ′ = (q′, (u, i)). Since µ(c′′) = ς ′′,

we have State(c′′) = q and Active(c′′) = (γ, i). Moreover, we have t = 〈q, γ〉−→M〈q
′, u〉 ⊲

α. By taking c′ = (q′, (u, i), Idle(c′′) + Id
{(α,i+1)}
Loc(M)), we have c′′ t−→Ti(M) c

′.

Then, we can use the definition of the function µ to show that µ(c′) = (q′, (u, i)) =

ς ′. Let τi = τ ′i t. We can put together the equation c
τ ′i==⇒∗

Ti(M) c
′′ and the equation

c′′ t−→Ti(M) c
′ to obtain the following run of T (P):

c
τi==⇒∗

T (P) c
′ (D.13)

Then, we can use the fact that Idle(c′) = Idle(c′′) + Id
{(α,i+1)}
Loc(M) and σi = σ′

i(α, i+1,⊲) to

show that the conditions 4-5 of Lemma D.4 are fulfilled.
• Case 3: a = (u, i + 1,⊲) and ς ′ ∈ (Q × ({⊥}). Then, there are q, q′ ∈ Q and γ ∈ Γ
such that 〈q, (γ, i)〉 a−→P〈q

′,⊥〉, ς ′′ = (q, (γ, i)), and ς ′ = (q′,⊥). Since µ(c′′) = ς ′′, we

37

have State(c′′) = q and Active(c′′) = (γ, i). Moreover, we have t = 〈q, γ〉 7→M 〈q
′, u〉. By

taking c′ = (q′,⊥, Idle(c′′) + Id
{(u,i+1)}
Loc(M)), we have c′′ t−→Ti(M) c

′.

Now, we can use the definition of the function µ to show that µ(c′) = (q′,⊥) = ς ′. Let

τi = τ ′i t. We can put together the equation c
τ ′i==⇒∗

Ti(M) c
′′ and the equation c′′ t−→Ti(M) c

′

to obtain the following run of T (P):

c
τi==⇒∗

T (P) c
′ (D.14)

Then, we can use the fact that Idle(c′) = Idle(c′′) + Id
{(u,i+1)}
Loc(M) and σi = σ′

i(u, i+ 1,⊲) to

show that the conditions 4-5 of Lemma D.4 are fulfilled.

• Case 4: a = (γ, i,⊳). Then, there are q, q′ ∈ Q such that 〈q,⊥〉 a−→P〈q
′, (γ, i)〉, ς ′′ =

(q,⊥), and ς ′ = (q′, (γ, i)). Since µ(c′′) = ς ′′, State(c′′) = q and Active(c′′) = ⊥. In
addiction, we have Idle(c′′)((γ, i)) ≥ 1 since idle(c′′)((γ, i)) = Idle(c)−|σ′

i|(γ,i,⊲), Idle(c) ≥
|σi|(γ,i,⊳), and |σi|(γ,i,⊳) = |σ

′
i|(γ,i,⊳) + 1. Moreover, we have t = q 7→M q′ ⊳ γ. Then, by

taking c′ = (q′, (γ, i), Idle(c′′)− Id
{(γ,i)}
Loc(M)), we have c′′ t−→Ti(M) c

′.

Now, we can use the definition of the function µ to show that µ(c′) = (q′,⊥) = ς ′.

Let τi = τ ′it. Then, we can put together the equation c
τ ′i==⇒∗

Ti(M) c
′′ and the equation

c′′ t−→Ti(M) c
′ to obtain the following run of T (P):

c
τi==⇒∗

T (P) c
′ (D.15)

Then, we can use the fact that Idle(c′) = Idle(c′′)− Id
{(γ,i)}
Loc(M) and σi = σ′

i(γ, i,⊳) to show

that the conditions 4-5 of Lemma D.4 are fulfilled.

Now, we are ready to prove the if direction of Lemma D.4:

Lemma D.5. There is σi ∈ Σ∗
i for all i ∈ [0, k] such that σ0σ1 · · · σk ∈ TracesT (P)({(q0,⊥)},

F × {⊥}), and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ and i ∈ [0, k] with σ−1 = (γ0, 0,⊲),
then there is a state q ∈ F such that q is k-stratified reachable byM.

Proof. Let us assume now that there are σi ∈ Σ∗
i for all i ∈ [0, k] such that σ0σ1 · · · σk ∈

TracesT (P)({(q0,⊥)}, F ×{⊥}), and |σi|(γ,i,⊳) ≤ |σi−1|(γ,i,⊲) for all γ ∈ Γ and i ∈ [0, k] with
σ−1 = (γ0, 0,⊲). Then, there are ς0, ς1, . . . , ςk+1 ∈ Conf (P) such that: (i) ς0 = (q0,⊥) and
ςk+1 ∈ F × {⊥}, and (ii) we have the following run of T (P):

ς0
σ0==⇒∗

T (P) ς1
σ1==⇒∗

T (P) ς2 · · · ςk−1
σk−1
===⇒∗

T (P) ςk
σk==⇒∗

T (P) ςk+1

Then, we can apply Lemma D.4 to µ(cinitM) = ς0, ς0
σ0==⇒∗

T (P) ς1, and Idle(cinitM)((α, 0)) ≥

|σ0|(α,0,⊳) for all α ∈ Γǫ, to prove that there are τ0 ∈ ∆∗ and c1 ∈
(

Q×ΓP ×Loc(M)
)

such
that:

• µ(c1) = ς1.

• cinitM
τ0==⇒∗

T{0}(M) c1.

• Idle(c1)((α, 0)) = Idle(cinitM)((α, 0)) − |σ0|(α,0,⊳) and Idle(c1)((α, 1)) = |σ0|(α,1,⊲) for all
α ∈ Γǫ.
• Idle(c1)((α, j)) = Idle(cinitM)((α, j)) = 0 for all (α, j) ∈ Γǫ × [0, k + 1] such that j /∈ {0, 1}.

38 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Now, we can apply Lemma D.4 to µ(c1) = ς1, ς1
σ1==⇒∗

T (P) ς2, and Idle(c1)((α, 1)) =

|σ0|(α,1,⊲) ≥ |σ1|(α,1,⊳) for all α ∈ Γǫ, to show that there are τ1 ∈ ∆∗ and c2 ∈
(

Q × ΓP ×

Loc(M)
)

such that:

• µ(c2) = ς2.

• c1
τ1==⇒∗

T{1}(M) c2.

• Idle(c2)((α, 1)) = Idle(c1)((α, 1)) − |σ1|(α,1,⊳) and Idle(c2)((α, 2)) = |σ1|(α,2,⊲) for all
α ∈ Γǫ.
• Idle(c2)((α, j)) = Idle(c1)((α, j)) for all (α, j) ∈ Γǫ × [0, k + 1] such that j /∈ {1, 2}.

So, we can apply step by step Lemma D.4 to prove that there are τ0, . . . , τk ∈ ∆∗

and c0, c1, . . . , ck+1 ∈
(

Q × ΓP × Loc(M)
)

such that: (1) c0 = cinitM , (2) µ(ci) = ςi for all

i ∈ [0, k + 1], and (3) c0
τ0==⇒∗

T{0}(M) c1
τ1==⇒∗

T{1}(M) · · ·
τk−1
===⇒∗

T{k−1}(M) ck
τk==⇒∗

T{k}(M) ck+1.

Moreover, we have State(ck+1) ∈ F and Active(ck+1) = ⊥ since ςk+1 ∈ F × {⊥} and
µ(ck+1) = ςk+1. This implies that State(ck+1) ∈ F is k-stratified reachable byM.

Lemma 4.4 is an immediate consequence of Lemma D.3 and Lemma D.5.

Appendix E. The proof of Lemma 5.3

The proof of Lemma 5.3 is structured as follows: First, we establish the relation between
a computation of a thread of Mfs and a run of S(q,γ). Then, we give the relation between
a computation of a thread of M and a run of P(q,γ). Due to the link between the set of
runs of P(q,γ) and the set of runs of A(q,γ), these two relations permit us to construct for
every thread computation ofM an “equivalent” thread computation ofMfs and vice-versa.
Then, we consider a DCPSM∪ which is the union ofM andMfs in the sense that for each
thread T with initial configuration γ ∈ Γ, A∪ chooses in nondeterministic way to execute
the thread T following the transition relation ofMfs or the transition relation ofM.

Afterwards, we define the rank of a run of M∪ from the initial configuration cinitM∪
by

the pair (m,n) ∈ N×N where m is the number of threads involved in the run following the
transition relation of M and n is the number of threads involved in the run following the
transition relation of Mfs. Observe that runs of rank (m,n) where n = 0 (resp. m = 0)
are precisely the runs ofM (resp. Mfs). Then, we prove that for any computation ofM∪

(from the initial configuration cinitM∪
) of rank (m + 1, n) (resp. (m,n + 1)), there is a run

of A∪ of rank (m,n + 1) (resp. (m + 1, n)). This run is obtained from the original one
by replacing a thread that follows the transition relation of M (resp. Mfs) by a thread
that follows the transition relation of Mfs (resp. M). This is possible since any thread of
Mls can be simulated by a thread ofMfs and vice-versa. As an immediate consequence of
the following result is that, for every m ∈ M, a state q is k-bounded (resp. k-stratified)
reachable by a run ofM∪ of rank (m, 0) (i.e., a run ofMls) if and only if it is k-bounded
(resp. k-stratified) reachable by a run of M∪ of rank (0,m) (i.e., a run of Mfs). This is
precisely what Lemma 5.3 says.

E.1. The language of finite state automata A(q,γ). In the following, we establish the
following property about the finite state automata A(q,γ):

39

Lemma E.1. Let i ≤ k. If there are elements σ0, . . . , σi ∈ Γ∗, γ0, . . . , γi ∈ Γ, α ∈ Γǫ,
g0, p0, g1, . . . , pi, gi+1 ∈ Q, s0 ∈ I(g0,γ), and s ∈ S(g0,γ) such that

σ0(p0, γ1, g1)σ1 · · · σi−1(pi−1, γi, gi)σi(pi, α, gi+1) ∈ TracesT (A(g0,γ)
)({s0}, {s}),

then
σ0(p0, γ1, g1)σ1 · · · σi−1(pi−1, γi, gi)σi(pi, ǫ, gi+1) ∈ L(A(g0,γ)).

Proof. Since all the states in the automaton A(g0,γ) are co-reachable from the final states,
in particular the state s, there is ν ∈ Σ∗ such that:

σ0(p0, γ1, g1)σ1 · · · σi−1(pi−1, γi, gi)σi(pi, α, gi+1)ν ∈ L(A(g0,γ))

This implies that there are σ′
0, . . . , σ

′
i ∈ Γ∗ and ν ′ ∈ Σ∗ such that: (1) σl � σ′

l for all l ∈ [0, i],
(2) ν � ν ′, and (3) we have:

σ′
0(p0, γ1, g1)σ

′
1 · · · σ

′
i−1(pi−1, γi, gi)σ

′
i(pi, α, gi+1)ν

′ ∈ L(P(g0,γ))

Now, we can use the definition of P(g0,γ) to show that we have:

σ′
0(p0, γ1, g1)σ

′
1 · · · σ

′
i−1(pi−1, γi, gi)σ

′
i(pi, ǫ, gi+1) ∈ L(P(g0,γ))

In addition, we can show that σ′
0(p0, γ1, g1)σ

′
1 · · · σ

′
i−1(pi−1, γi, gi)σ

′
i(pi, ǫ, gi+1) ∈ L′

((g0,γ),i+1)

since i ≤ k. This implies that σ0(p0, γ1, g1)σ1 · · · σi−1(pi−1, γi, gi)σi(pi, ǫ, gi+1) ∈ L(A(g0,γ))
since σl � σ′

l for all l ∈ [0, i].

E.2. The relation between the DCFS Mfs and the FSA A(p,γ). In the following, we
establish the link between the set of runs of a thread ofMfs without a context switches and
the language generated by the finite state automaton A(q,γ).

Lemma E.2. Let j ∈ N, s, s′ ∈ Ssm
fs , and Val ,Val ′ ∈ [Loc(Mfs) → N]. There is τ ∈ ∆∗

fs

such that (♯, (s, j),Val)
τ

==⇒∗
T{j}(Mfs)

(♯, (s′, j),Val + Val ′)) if and only if there are q ∈ Q,

γ ∈ Γ, and σ ∈ Γ∗ such that s
σ

==⇒∗
T (A(q,γ))

s′, Val ′((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ, and

Val ′((w, l)) = 0 for all w ∈ Γ∗
fs and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

Proof. The Only if direction: Assume that there is τ ∈ ∆∗
fs such that (♯, (s, j),Val)

τ
==⇒
n

T{j}(Mfs) (♯, (s
′, j),Val + Val ′)) for some n ∈ N. We proceed by induction on n.

Basis. n = 0. Then, τ = ǫ, s = s′, and Val ′ = Id
∅
Loc(Mfs)

. Since s ∈ Ssm
fs , there is q ∈ Q

and γ ∈ Γ such that s ∈ S(q,γ). By taking σ = ǫ, we have s
σ

==⇒∗
T (A(q,γ))

s′, Val ′((γ′, j +

1)) = |σ|γ′ = 0 for all γ′ ∈ Γ, and Val ′((w, l)) = 0 for all w ∈ Γ∗
fs and l ∈ N such that

(w, l) /∈ Γ× {j + 1}.
Step. n > 0. Then, from the definition of Mfs, there is τ ′ ∈ ∆∗

fs, t ∈ ∆fs, s
′′ ∈ Ssm

fs , and
Val ′′ ∈ [Loc(Mfs)→ N] such that τ = τ ′t, and:

(♯, (s, j),Val)
τ ′

===⇒
n−1

T{j}(Mfs)(♯, (s
′′, j),Val +Val ′′)) t−→ T{j}(Mfs)(♯, (s

′, j),Val +Val ′)) (E.1)

We apply the induction hypothesis to (♯, (s, j),Val)
τ ′

===⇒
n−1

T{j}(Mfs)(♯, (s
′′, j),Val + Val ′′)),

and we obtain that there are q ∈ Q, γ ∈ Γ, and σ′ ∈ Γ∗ such that s
σ′

==⇒∗
T (A(q,γ))

s′′,

40 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Val ′′((γ′, j + 1)) = |σ′|γ′ for all γ′ ∈ Γ, and Val ′′((w, l)) = 0 for all w ∈ Γ∗
fs and l ∈ N such

that (w, l) /∈ Γ× {j + 1}.
In addition, from the definition of Mfs, t is necessarily of the form 〈♯, s′〉−→M〈♯, s

′〉 ⊲ α
with α ∈ Γ. This implies that s′ ∈ S(q,γ) and s′′ α−→A(q,γ)

s′. Moreover, we have Val ′ =

Val ′′ + Id
{(α,j+1)}
Loc(Mfs)

. Then, by taking σ = σ′α, we can show (using the induction hypothesis)

that s
σ

==⇒∗
T (A(q,γ))

s′, Val ′((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ, and Val ′((w, l)) = 0 for all

w ∈ Γ∗
fs and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

The If direction: Assume that there are q ∈ Q, γ ∈ Γ, and σ ∈ Γ∗ such that s
σ

==⇒
n

T (A(q,γ)) s
′

for some n ∈ N, Val ′((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ, and Val ′((w, l)) = 0 for all w ∈ Γ∗
fs

and l ∈ N such that (w, l) /∈ Γ× {j + 1}. We proceed by induction on n.

Basis. n = 0. Then, s = s′ and σ = ǫ. By taking τ = ǫ, we get (♯, (s, j),Val)
τ

==⇒∗
T{j}(Mfs)

(♯, (s′, j),Val + Val ′)) since Val ′ = Id
∅
Loc(Mfs)

.

Step. n > 0. Then, there are s′′, σ′ ∈ Γ∗, and α ∈ Γ such that σ = σ′α, and:

s
σ′

===⇒
n−1

T (A(q,γ)) s
′′ α−→ T (A(q,γ)) s

′ (E.2)

Let Val ′′ ∈ [Loc(M) → N] such that , Val ′′((γ′, j + 1)) = |σ′|γ′ for all γ′ ∈ Γ, and
Val ′′((w, l)) = 0 for all w ∈ Γ∗

fs and l ∈ N such that (w, l) /∈ Γ × {j + 1}. Then, we

apply the induction hypothesis to s
σ′

===⇒
n−1

T (A(q,γ)) s
′′ and Val ′′, and we obtain that there is

τ ∈ ∆∗
fs such that (♯, (s, j),Val)

τ ′
==⇒∗

T{j}(Mfs)
(♯, (s′′, j),Val + Val ′′)).

Since s′′ α−→ T (A(q,γ)) s
′, we have t = 〈♯, s′′〉−→Mfs

〈♯, s′〉 ⊲ α. Then, using the induction

hypothesis, we can show that (♯, (s, j),Val)
τ

==⇒∗
T{j}(Mfs)

(♯, (s′, j),Val + Val ′)) with τ = τ ′t

since we have Val ′ = Val ′′ + Id
{(α,j+1)}
Loc(Mfs)

.

Next, we use Lemma E.2 to establish the relation between the set of languages accepted
by the finite state automata A(q,γ) and the set of runs of Mfs between two configurations
with no active thread and without context switches.

Lemma E.3. Let j ∈ N, p1, p2 ∈ Q, λ1 ∈ (Ssw
fs ∪ Γ), λ2 ∈ Ssw

fs , and Val ∈ [Loc(Mfs)→ N].

There is τ ∈ ∆∗
fs such that |τ | ≥ 1 and (p1,⊥, Id

{(λ1,j)}
Loc(Mfs)

)
τ

==⇒∗
T{j}(Mfs)

(p2,⊥,Val+Id
{(λ2,j+1)}
Loc(Mfs)

)

iff there are q ∈ Q, γ, γ1 ∈ Γ, α ∈ Γǫ, p
′
1, p

′
2 ∈ Q, s, s′ ∈ S(q,γ), and σ ∈ Γ∗ such that:

• p1 7→Mfs
p′1 ⊳ λ1, λ1 = (p′1, (s, γ1)) if λ1 ∈ Ssw

fs , and p′1 = q and s ∈ I(q,γ) if λ1 ∈ Γ.

• s
σ(p2,α,p′2)======⇒∗

T (A(q,γ))
s′ and λ2 = (p′2, (s

′, α)).

• Val((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ.
• Val((w, l)) = 0 for all w ∈ Γ∗

fs and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

Proof. The Only if direction: Assume the existence of some τ ∈ ∆∗
fs such that |τ | ≥ 1

and (p1,⊥, Id
{(λ1,j)}
Loc(Mfs)

)
τ

==⇒∗
T{j}(Mfs)

(p2,⊥,Val + Id
{(λ2,j+1)}
Loc(Mfs)

). Then, from the definition of

T{j}(Mfs), there are q ∈ Q, γ, γ1 ∈ Γ, p′1 ∈ Q, τ ′ ∈ ∆∗
fs, s, s

′′ ∈ S(q,γ), and σ ∈ Γ∗ such that:

• (p1,⊥, Id
{(λ1,j)}
Loc(Mfs)

) t−→ T{j}(Mfs) (p
′
1, (λ1, j), Id

∅
Loc(Mfs)

) such that t = p1 7→Mfs
p′1 ⊳ λ1.

41

• (p′1, (λ1, j), Id
∅
Loc(Mfs)

) t′−→ T{j}(Mfs) (♯, (s, j), Id
∅
Loc(Mfs)

) with t′ = 〈p′1, λ1〉 7→Mfs
〈♯, s〉 ⊲ ǫ,

λ1 = (p′1, (s, γ1)) if λ1 ∈ Ssw
fs , and p′1 = q and s ∈ I(q,γ) if λ1 ∈ Γ.

• (♯, (s, j), Id∅
Loc(Mfs)

)
τ ′
==⇒∗

T{j}(M) (♯, (s
′′, j),Val). Then, we apply Lemma E.2, and we obtain

that there is σ ∈ Γ∗ such that s
σ

==⇒∗
T (A(q,γ))

s′′, Val((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ and

Val((w, l)) = 0 for all w ∈ Γ∗
fs and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

• (♯, (s′′, j),Val) t′′−−→ T{j}(M) (p2,⊥,Val + Id
{(λ2,j+1)}
Loc(Mfs)

) with t′′ = 〈♯, s′′〉 7→Mfs
〈p2, λ2〉. From

the definition ofMfs, this implies that there is p′2 ∈ Q, s′ ∈ S(q,γ), and α ∈ Γǫ such that

s′′
(p2,α,p′2)−−−−−−→ s′ and λ2 = (p′2, (s

′, α)).

This terminates the proof of the Only if direction.

The If direction: Assume that there are q ∈ Q, γ, γ1 ∈ Γ, α ∈ Γǫ, p
′
1, p

′
2 ∈ Q, s, s′ ∈ S(q,γ),

and σ ∈ Γ∗ such that:

• t = p1 7→M p′1 ⊳ λ1, λ1 = (p′1, (s, γ1)) if λ1 ∈ Ssw
fs , and p′1 = q and s ∈ I(q,γ) if λ1 ∈ Γ.

• s
σ(p2,α,p′2)======⇒∗

T (A(q,γ))
s′ and λ2 = (p′2, (s

′, α)).

• Val((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ.
• Val((w, l)) = 0 for all w ∈ Γ∗

fs and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

Then, from the definition of T (Mfs), we have the following run:

(p1,⊥, Id
{(λ1,j)}
Loc(Mfs)

) t−→ T{j}(Mfs) (p
′
1, (λ1, j), Id

∅
Loc(Mfs)

) (E.3)

Let t′ = 〈p′1, λ1〉 7→Mfs
〈♯, s〉 ⊲ ǫ. Then, we have the following run of T{j}(Mfs):

(p′1, (λ1, j), Id
∅
Loc(Mfs)

) t′−→ T{j}(Mfs) (♯, (s, j), Id
∅
Loc(Mfs)

) (E.4)

Let s′′ ∈ S(q,γ) such that s
σ

==⇒∗
T (A(q,γ))

s′′ and s′′
(p2,α,p′2)−−−−−−→ T (A(q,γ))s

′. Then, we can apply

Lemma E.2, to prove that there is τ ′ ∈ ∆∗
fs such that:

(♯, (s, j), Id∅
Loc(Mfs)

)
τ ′
==⇒∗

T{j}(M) (♯, (s
′′, j),Val) (E.5)

Since s′′
(p2,α,p′2)−−−−−−→ T (A(q,γ))s

′, we have 〈♯, s′′〉 7→Mfs
〈p2, λ2〉. This implies that T{j}(Mfs) has

the following run:

(♯, (s′′, j),Val) t′′−−→ T{j}(M) (p2,⊥,Val + Id
{(λ2,j+1)}
Loc(Mfs)

) (E.6)

This terminates the proof of the If direction.

E.3. The relation between the DCPS M and the PDA P(p,γ). In the following, we
establish the link between the set of runs of a thread ofM and the language generated by
the pushdown automaton P(q,γ).

Lemma E.4. Let j ∈ N, q ∈ Q, γ ∈ Γ, p1, p2 ∈ Q, w1, w2 ∈ Γ∗, and Val ,Val ′ ∈ [Loc(M)→

N]. There is τ ∈ ∆∗ such that (p1, (w1, j),Val)
τ

==⇒∗
T{j}(M) (p2, (w2, j),Val +Val ′)) for some

iff there is σ ∈ Γ∗ such that (p1, w1)
σ

==⇒∗
P(q,γ)(p2, w2), Val

′((γ′, j+1)) = |σ|γ′ for all γ′ ∈ Γ,

and Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

42 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Proof. The Only if direction: Assume that there is τ ∈ ∆∗ and some n ∈ N such that

(p1, (w1, j),Val)
τ

==⇒
n T{j}(M)

(p2, (w2, j),Val + Val ′)). We proceed by induction on n.

Basis. n = 0. This implies that p1 = p2, w1 = w2, τ = ǫ, and Val ′ = Id
∅
Loc(M). By taking

σ = ǫ, we have (p1, w1)
σ

==⇒P(q,γ)(p2, w2), Val
′((γ′, j + 1)) = |σ|γ′ = 0 for all γ′ ∈ Γ, and

Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

Step. n > 0. From the definition of M, this implies that there are p ∈ Q, w′
1 ∈ Γ∗,

Val ′′ ∈ [Loc(M)→ N], τ ′ ∈ ∆∗, and t ∈ ∆ such that τ = τ ′t and:

(p1, (w1, j),Val)
τ ′

===⇒
n−1

T{j}(M)(p, (w
′
1, j),Val + Val ′′) t−→ T{j}(M)(p2, (w2, j),Val + Val ′)

(E.7)

We apply the induction hypothesis to (p1, (w1, j),Val)
τ ′
==⇒∗

T{j}(M)(p, (w
′
1, j),Val+Val ′′), and

we obtain that there is σ′ ∈ Γ∗ such that (p1, w1)
σ′

==⇒∗
T (P(q,γ))

(p,w′
1), Val

′′((γ′, j+1)) = |σ′|γ′

for all γ′ ∈ Γ, and Val ′′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.
In addition, from the definition of M, the transition t is necessarily of the form

〈p, γ1〉−→M 〈p2, u〉 ⊲ α with γ1 ∈ Γ and α ∈ Γǫ such that w′
1 = γ1v and w2 = uv for

some v ∈ Γ∗. This implies that 〈p, γ1〉
α−→P(q,γ)

〈p2, u〉, and so, (p,w′
1)

α−→T (P(q,γ))(p2, w1).

Moreover, we have Val ′ = Val ′′ + Id
{(α,j+1)}
Loc(M) . Then, by taking σ = σ′α, we can easily show

(using the induction hypothesis) that (p1, w1)
σ

==⇒P(q,γ)(p2, w2), Val
′((γ′, j + 1)) = |σ|γ′ for

all γ′ ∈ Γ, and Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

The If direction: Assume that there is σ ∈ Γ∗ such that (p1, w1)
σ

==⇒
n P(q,γ)

(p2, w2),

Val ′((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ, and Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N

such that (w, l) /∈ Γ× {j + 1}. We proceed by induction on n.

Basis. n = 0. This implies that p1 = p2, w1 = w2, σ = ǫ, and Val ′ = Id
∅
Loc(M). By taking

τ = ǫ, we have (p1, (w1, j),Val)
τ

==⇒∗
T{j}(M) (p2, (w2, j),Val + Val ′)).

Step. n > 0. Then, from the definition of P(q,γ), there are p ∈ Q, w′
1 ∈ Γ∗, σ′ ∈ Γ∗, and

α ∈ Γǫ such that σ = σ′α, and:

(p1, w1)
σ′

===⇒
n−1

T (P(q,γ))(p,w
′
1)

α−→ T (P(q,γ))(p2, w2) (E.8)

Let Val ′′ ∈ [Loc(M) → N] such that Val ′′((γ′, j + 1)) = |σ′|γ′ for all γ′ ∈ Γ, and
Val ′′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

Then, we apply the induction hypothesis to (p1, w1)
σ′

===⇒
n−1

T (P(q,γ))(p,w
′
1) and Val ′′, and

we obtain that there is τ ′ ∈ ∆∗ such that (p1, (w1, j),Val)
τ ′
==⇒∗

T{j}(M) (p, (w
′
1, j),Val+Val ′′))

Since (p,w′
1)

α−→ T (P(q,γ))(p2, w2), there are elements γ1 ∈ Γ and u ∈ Γ∗ such that t =

〈p, γ1〉−→M〈p2, u〉 ⊲ α, w′
1 = γ1v, and w2 = uv for some v ∈ Γ∗. Then, using the induction

hypothesis, we can easily show that (p1, (w1, j),Val)
τ

==⇒∗
T{j}(M) (p2, (w2, j),Val + Val ′))

where τ = τ ′t.

43

Next, we use Lemma E.4 to establish the relation between the set of languages accepted
by the pushdown automata P(q,γ) and the set of runs ofM between two configurations with
no active thread and without context switches.

Lemma E.5. Let j ∈ N, q ∈ Q, γ ∈ Γ, p1, p2 ∈ Q, w1 ∈ Γ∗, and Val ∈ [Loc(M) → N].

There is τ ∈ ∆∗ such that |τ | ≥ 1 and (p1,⊥, Id
{(w1,j)}
Loc(M))

τ
==⇒∗

T{j}(M) (p2,⊥,Val) iff there are

p′1 ∈ Q, γ1 ∈ Γ, w2 ∈ Γ∗, σ ∈ Γ∗, Val ′ ∈ [Loc(M)→ N] such that:

• p1 7→M p′1 ⊳ γ1 and w1 = γ1v1 for some v1 ∈ Γ∗.

• Val = Val ′ + Id
{(w2,j+1)}
Loc(M) .

• (p′1, w1)
σ(p2,α,p′2)======⇒∗

T (P(q,γ))
(p′2, w2) for all p′2 ∈ Q and α ∈ Γǫ such that w2 = αv2 for some

v2 ∈ Γ∗.
• Val ′((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ.
• Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

Proof. The Only if direction: Assume that (p1,⊥, Id
{(w1,j)}
Loc(M))

τ
==⇒∗

T{j}(M) (p2,⊥,Val)) for some

τ ∈ ∆∗ such that |τ | ≥ 1. Then, from the definition of T{j}(M), there are p′1, p
′ ∈ Q,

γ1, γ2 ∈ Γ, w′
2, u ∈ Γ∗, τ ′ ∈ ∆∗, Val ′ ∈ [Loc(M)→ N] such that:

• (p1,⊥, Id
{(w1,j)}
Loc(M))

t−→ T{j}(M) (p
′
1, (w1, j), Id

∅
Loc(M)) such that t = p1 7→M p′1 ⊳ γ1. This

implies that w1 = γ1v1 for some v1 ∈ Γ∗.

• (p′1, (w1, j), Id
∅
Loc(M))

τ ′
==⇒∗

T{j}(M) (p
′, (w′

2, j),Val
′). Then, we can apply Lemma E.4, to

show that there is σ ∈ Γ∗ such that (p′1, w1)
σ

==⇒∗
P(q,γ)(p

′, w′
2), Val

′((γ′, j + 1)) = |σ|γ′ for

all γ′ ∈ Γ, and Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}.

• (p′, (w′
2, j),Val

′) t′−→ T{j}(M) (p2,⊥, Id
{w2,j+1}
Loc(M) +Val ′) such that: (1) Val = Id

{w2,j+1}
Loc(M) +Val ′,

(2) t′ = 〈p′, γ2〉 7→M 〈p2, u〉, and (3) w′
2 = γ2v and w2 = uv for some v ∈ Γ∗. Using the

definition of P(q,γ), we have (p′, w′
2)

(p2,α,p′2)======⇒∗
P(q,γ)(p

′
2, w2) for all p

′
2 ∈ Q and α ∈ Γǫ such

that w2 = αv2 for some v2 ∈ Γ∗.

This terminates the proof of the only if direction of Lemma E.5

The If direction: Assume that there are p′1 ∈ Q, γ1 ∈ Γ, w2 ∈ Γ∗, σ ∈ Γ∗, Val ′ ∈ [Loc(M)→
N] such that:

• t = p1 7→M p′1 ⊳ γ1 and w1 = γ1v1 for some v1 ∈ Γ∗.

• Val = Val ′ + Id
{(w2,j+1)}
Loc(M) .

• (p′1, w1)
σ(p2,α,p′2)======⇒∗

P(q,γ)(p
′
2, w2) for all p′2 ∈ Q and α ∈ Γǫ such that w2 = αv2 for some

v2 ∈ Γ∗.
• Val ′((γ′, j + 1)) = |σ|γ′ for all γ′ ∈ Γ.
• Val ′((w, l)) = 0 for all w ∈ Γǫ and l ∈ N such that (w, l) /∈ Γ× {j + 1}

Since t =1 7→M p′1 ⊳ γ1 and w1 = γ1v1 for some v1 ∈ Γ∗, we have the following run of
T{j}(M):

(p1,⊥, Id
{(w1,j)}
Loc(M))

t−→ T{j}(M) (p
′
1, (w1, j), Id

∅
Loc(M)) (E.9)

44 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Let p′ ∈ Q and w′
2 ∈ Γ∗ such that (p′1, w1)

σ
==⇒∗

P(q,γ)
(p′, w′

2) and (p′, w′
2)

(p2,ǫ,p′2)−−−−−−→ P(q,γ)
(p′2, w2)

for some p′2 ∈ Q. Now, we can apply Lemma E.4 to (p′1, w1)
σ

==⇒∗
P(q,γ)

(p′, w′
1) show that there

is τ ′ ∈ ∆∗ such that:

(p′1, (w1, j), Id
∅
Loc(M))

τ ′
==⇒∗

T{j}(M) (p
′, (w′

2, j),Val
′) (E.10)

Since (p′, w′
2)

(p2,ǫ,p′2)−−−−−−→ P(q,γ)
(p′2, w2), we can use the definition of P(q,γ), to show that there

are γ2 ∈ Γ and u ∈ Γ∗ such that t′ = 〈p′, γ2〉 7→M 〈p2, u〉 such that w′
2 = γ2v and w2 = uv

for some v ∈ Γ∗. So, Tj(M) has the following run:

(p′, (w′
2, j),Val

′) t′−→ T{j}(M) (p2,⊥, Id
{w2,j+1}
Loc(M) + Val ′) (E.11)

Now, we can put together Equation E.9, Equation E.10, and Equation E.11, and we obtain

that (p1,⊥, Id
{(w1,j)}
Loc(M))

τ
==⇒∗

T{j}(M) (p2,⊥,Val) with τ = tτ ′t′.

E.4. From the DCPSM to the DCPSMpf . In order to be able to distinguish between
pending threads of M that has been activated at least one time from the other ones, we
need to define a DCPSMpf (which is just a copy ofM) that uses, in addition to the stack
alphabet Γ, a new stack alphabet Γ′, which is a copy Γ, to process threads. Let Γ′ be a stack
alphabet such that Γ′∩Γfs = ∅ and there is a bijective function f from Γ to Γ′. This function
f is extended to words over Γ in the natural way: f(ǫ) = ǫ and f(u · v) = f(u) · f(v) for all
u, v ∈ Γ∗. Moreover, we define the function h from Γpf to Γ such that h(γ) = h(f(γ)) = γ
for all γ ∈ Γ. The function h is extended in the usual way to words.

In the following, we define the DCPS Mpf obtained from M by using Γ′ to process
threads instead of Γ. LetMpf = (Q,Γpf ,∆pf , q0, γ0, F) be a DCPS where Γpf = Γ ∪ Γ′ and
∆′

pf is the smallest transition relation satisfying the following conditions:

• Initialize: For every q ∈ Q and γ ∈ Γ, we have 〈q, γ〉−→Mpf
〈q, f(γ)〉 ⊲ ǫ.

• Spawn: For every 〈q, γ〉−→M〈q
′, u〉 ⊲ α, we have 〈q, f(γ)〉−→Mpf

〈q′, f(u)〉 ⊲ α.

• Interrupt: For every 〈q, γ〉 7→M 〈q
′, u〉, we have 〈q, f(γ)〉 7→Mpf

〈q′, f(u)〉.
• Dispatch: For every q 7→M q′ ⊳ γ, we have q 7→Mpf

q′ ⊳ γ and q 7→Mpf
q′ ⊳ f(γ).

Then, the relation between a thread execution ofM and a thread execution ofMpf is
given by the following lemma:

Lemma E.6. Let j ∈ N, p1, p2 ∈ Q, w1 ∈ ((Γ′)∗ ∪ Γ), w2 ∈ (Γ′)∗, Val ∈ [Loc(M) → N],
and Val ′ ∈ [Loc(Mpf)→ N]. There is τ ′ ∈ ∆∗

pf such that

(p1,⊥, Id
{(w1,j)}
Loc(Mpf)

)
τ ′
==⇒Tj(Mpf) (p2,⊥,Val

′ + Id
{(w2,j+1)}
Loc(Mpf)

)

if and only if there is τ ∈ ∆∗ such that

(p1,⊥, Id
{(h(w1),j)}
Loc(Mpf)

)
τ

==⇒Tj(M) (p2,⊥,Val + Id
{(h(w2),j+1)}
Loc(Mpf)

)

and Val ′((γ′, j + 1)) = Val((γ′, j + 1)) for all γ′ ∈ Γ, and Val ′((w′, l)) = Val((w, l)) = 0 for
all w ∈ Γ∗, w′ ∈ Γ∗

pf , and l ∈ N such that (w, l), (w′, l) /∈ Γ× {j + 1}.

Moreover, we can show that the BSR[k] problem forM is reducible to its corresponding
problem forMpf .

45

Lemma E.7. For every k ∈ N, a state q ∈ Q is k-bounded reachable byM if and only if q
is k-bounded reachable byMpf .

E.5. From the DCPS Mpf and the DCFS Mfs to the DCPS M∪. We define the
DCPS M∪ = (Q∪,Γ∪,∆∪, q0, γ0, F) as the union of Mpf and Mfs where: (1) Q∪ = Qfs,
(2) Γ∪ = Γpf ∪ Γfs is a finite set of stack symbols, and (3) ∆∪ = ∆pf ∪∆fs is the transition
relation.

Now, we are ready to define the rank of a run of T (M∪). Intuitively, the number of
threads that are simulated according to ∆fs (resp. ∆ls) is given by the number of pending
threads with stack configuration in Ssw

fs × N (resp. (Γ′)∗ × N). Formally, we have:

Definition E.8. (The rank of a run of M∪) Let ρ = cinitM∪

τ
==⇒∗

T[0,k](M∪)
c be a run of

T[0,k](M∪) such that Active(c) = ⊥. The rank of ρ, denoted by rank (ρ), is defined by the
pair (m,n) with m =

∑

(w,j)∈(Γ′)∗×N
Idle(c)((w, j)) and m =

∑

(λ,j)∈Ssw
fs
×N

Idle(c)((λ, j)).

E.6. From a run of rank (m + 1, n) of M∪ to a run of rank (m,n + 1) of M∪. In
the following, we establish that given a run of M∪ such that there is one thread executed
following the set of transitions ∆pf , we can compute a run of M∪ where the execution of
this thread is replaced by an execution of a thread following the set of transitions ∆fs. To
this aim, we need first to prove Lemma E.9which states that for any run of a thread ofMpf ,
we can construct an equivalent run of a thread ofMfs.

Lemma E.9. Let γ ∈ Γ and i, j ∈ N such that i+ j ≤ k. If there are p0, p
′
0, . . . , pi, p

′
i ∈ Q,

w1, . . . , wi+1 ∈ (Γ′)∗, τ0, . . . , τi ∈ ∆∗
∪, and Val ′0, . . . ,Val

′
i ∈ [Loc(M∪)→ N] such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(w1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(wl,j+l)}
Loc(M∪)

)
τl==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(wl+1,j+l+1)}
Loc(M∪)

).

Then, there are λ1, . . . , λi+1 ∈ Ssw
fs and τ ′0, . . . , τ

′
i ∈ ∆∗

∪ such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ ′0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(λ1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(λl,j+l)}
Loc(M∪)

)
τ ′
l==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(λl+1,j+l+1)}
Loc(M∪)

).

Proof. Let us assume there are p0, p
′
0, . . . , pi, p

′
i ∈ Q, w1, . . . , wi+1 ∈ (Γ′)∗, τ0, . . . , τi ∈ ∆∗

∪,
and Val ′0, . . . ,Val

′
i ∈ [Loc(M∪)→ N] such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(w1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(wl,j+l)}
Loc(M∪)

)
τl==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(wl+1,j+l+1)}
Loc(M∪)

).

From now, we confuse the systemM∪ andMpf (resp. M∪ andMfs) whenM∪ behaves
according to the set of transitions ∆pf (resp. ∆fs).

Then, we apply Lemma E.5 and Lemma E.6 to show that there are σ0, . . . , σi ∈ Γ∗,
γ0, . . . , γi ∈ Γ, and g0, . . . , gi+1 ∈ Q such that:

• γ0 = γ.
• For every l ∈ [0, i], pl 7→M∪ gl ⊳ γl.
• σ0(p

′
0, γ1, g1)σ1 · · · σi−1(p

′
i−1, γi, gi)σi(p

′
i, ǫ, gi+1) in L′

((g0,γ),i+1).

• For every l ∈ [0, i], Val ′l((γ
′, j + l + 1)) = |σl|γ′ for all γ′ ∈ Γ.

46 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

• For every l ∈ [0, i], Val ′l((w, l)) = 0 for all w ∈ Γ∗
∪ and l ∈ N such that (w, l) /∈ Γ× {j +

l + 1}.

Since L′
((g0,γ),i+1) ⊆ L(A(g0,γ)), there are s0, . . . , si+1 ∈ S(g0,γ) such that: (1) s0 ∈ I(g0,γ),

(2) sl
σl(p

′
l
,γl+1,gl+1)

==========⇒∗
T (A(g0,γ)

)sl+1 for all l ∈ [0, i[, and (3) si
σl(p

′
i,ǫ,gi+1)

========⇒∗
T (A(g0,γ)

)si+1.

Let λl = (gl, (sl, γl)) for all l ∈ [1, i] and λi+1 = (gi+1, (si+1, ǫ)). Since pl 7→M∪ gl ⊳ γl
for all l ∈ [1, i], we can use the definition of Mfs to show that pl 7→M∪ gl ⊳ λl for all
l ∈ [1, i].

Now, we can apply Lemma E.2 to prove that there are τ ′0, . . . , τ
′
i ∈ ∆∗

∪ such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ ′0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(λ1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(λl,j+l)}
Loc(M∪)

)
τ ′
l==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(λl+1,j+l+1)}
Loc(M∪)

).

Next, we show that if some state q is k-bounded reachable by a run of M∪ of rank
(m+ 1, n), then q is k-bounded reachable by a run ofM∪ of rank (m,n + 1).

Lemma E.10. Let (m,n) ∈ N × N, cinitM∪

τ
==⇒∗

T[0,k](M∪)
c be a run of rank (m + 1, n) such

that Active(c) = ⊥. Then, there is a run cinitM∪

τ ′
==⇒∗

T[0,k](M∪)
c′ of rank (m,n + 1) such that

Active(c′) = ⊥, and State(c′) = State(c).

Proof. Let us assume that cinitM∪

τ
==⇒∗

T[0,k](M∪)
c is a run of rank (m + 1, n) with Active(c) =

⊥. Then, by the definition of DCPSs there are i, j ∈ N, γ ∈ Γ, p0, p
′
0, . . . , p

′
i, pi+1 ∈

Q, w1, . . . , wi+1 ∈ (Γ′)∗, κ0, τ0, κ1, τ1, . . . , τi, κi+1 ∈ ∆∗
∪, and Val0,Val

′
0, . . . ,Val

′
i,Val i+1 ∈

[Loc(M∪)→ N] such that the following conditions are satisfied:

• i+ j ≤ k.
• τ = κ0τ0κ1τ1 · · · τiκi+1.

• State(c) = pi+1 and Idle = V all + Id
{(wl+1,j+l+1)}
Loc(M∪)

.

• cinitM∪

κ0==⇒∗
T[0,k](M∪)

(p0,⊥,Val0 + Id
{(γ,j)}
Loc(M∪)

).

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(w1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i + 1], (p′l−1,⊥,Val
′
l−1 + Val l−1)

κl==⇒∗
T[0,k](M∪)

(pl,⊥,Val l).

• For every l ∈ [1, i], (pl,⊥, Id
{(wl,j+l)}
Loc(M∪)

)
τl==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(wl+1,j+l+1)}
Loc(M∪)

).

Now, we can apply Lemma E.9 to show that there are λ1, . . . , λi+1 ∈ Ssw
fs as well as

τ ′0, . . . , τ
′
i ∈ ∆∗

∪ such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ ′0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(λ1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(λl,j+l)}
Loc(M∪)

)
τ ′
l==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(λl+1,j+l+1)}
Loc(M∪)

).

Then, we can use the definition of DCPSs to show that there is a run cinitM∪

τ ′
==⇒∗

T[0,k](M∪)
c′

of rank (m,n + 1) such that Active(c′) = ⊥ and State(c′) = State(c).

47

E.7. From a run of rank (m,n + 1) of M∪ to a run of rank (m + 1, n) of M∪. In
the following, we establish that given a run of M∪ such that there is one thread executed
following the set of transitions ∆fs, we can compute a run of M∪ where the execution of
this thread is replaced by an execution of a thread following the set of transitions ∆pf . To
this aim, we need first to prove Lemma E.11 which states that for any run of a thread of
Mfs, we can construct an equivalent run of a thread ofMpf .

Lemma E.11. Let γ ∈ Γ and i, j ∈ N such that i+ j ≤ k. If there are p0, p
′
0, . . . , pi, p

′
i ∈ Q,

λ1, . . . , λi+1 ∈ Ssw
fs , τ

′
0, . . . , τ

′
i ∈ ∆∗

∪, and Val ′0, . . . ,Val
′
i ∈ [Loc(M∪)→ N] such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ ′0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(λ1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(λl,j+l)}
Loc(M∪)

)
τ ′
l==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(λl+1,j+l+1)}
Loc(M∪)

).

Then, there are elements w1, . . . , wi+1 ∈ (Γ′)∗, τ0, . . . , τi ∈ ∆∗
∪, and Val ′′0 , . . . ,Val

′′
i ∈

[Loc(M∪)→ N] such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′′
0 + Id

{(w1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(wl,j+l)}
Loc(M∪)

)
τl==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′′
l + Id

{(wl+1,j+l+1)}
Loc(M∪)

).

• For every l ∈ [0, i], Val ′l ≤ Val ′′l .

Proof. Let us assume that there are p0, p
′
0, . . . , pi, p

′
i ∈ Q, λ1, . . . , λi+1 ∈ Ssw

fs , τ
′
0, . . . , τ

′
i ∈

∆∗
∪, and Val ′0, . . . ,Val

′
i ∈ [Loc(M∪)→ N] such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ ′0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′
0 + Id

{(λ1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(λl,j+l)}
Loc(M∪)

)
τ ′
l==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′
l + Id

{(λl+1,j+l+1)}
Loc(M∪)

).

Then, we apply Lemma E.2 to show that there are σ0, . . . , σi ∈ Γ∗, γ0, . . . , γi ∈ Γ,
α ∈ Γǫ, g0, . . . , gi+1 ∈ Q, s0 ∈ I(g0,γ), and s ∈ S(g0,γ) such that:

• γ0 = γ.
• For every l ∈ [0, i], pl 7→M∪ gl ⊳ γl.
• σ0(p

′
0, γ1, g1)σ1 · · · σi−1(p

′
i−1, γi, gi)σi(p

′
i, α, gi+1) in TracesT (A(g0,γ)

)({s0}, {s}).

• For every l ∈ [0, i], Val ′l((γ
′, j + l + 1)) = |σl|γ′ for all γ′ ∈ Γ.

• For every l ∈ [0, i], Val ′l((w, l)) = 0 for all w ∈ Γ∗
∪ and l ∈ N such that (w, l) /∈ Γ× {j +

l + 1}.

On the other hand, we can use the Lemma E.1 to show that

σ0(p
′
0, γ1, g1)σ1 · · · σi−1(p

′
i−1, γi, gi)σi(p

′
i, ǫ, gi+1) ∈ L(A(g0,γ)).

Now, we can use the definition of L(A(g0,γ)) to show that there are σ′
0, . . . , σ

′
i ∈ Γ∗ such that

σ′
0(p

′
0, γ1, g1)σ

′
1 · · · σ

′
i−1(p

′
i−1, γi, gi)σ

′
i(p

′
i, ǫ, gi+1) ∈ L′

((g0,γ),i+1) and σl � σ′
l for all l ∈ [0, i].

Then, we can apply E.5 and Lemma E.6 to prove that there are w1, . . . , wi+1 ∈ (Γ′)∗,
τ0, . . . , τi ∈ ∆∗

∪, and Val ′′0 , . . . ,Val
′′
i ∈ [Loc(M∪)→ N] such that:

• (p0,⊥, Id
{(γ,j)}
Loc(M∪)

)
τ0==⇒∗

T{j}(M∪)
(p′0,⊥,Val

′′
0 + Id

{(w1,j+1)}
Loc(M∪)

).

• For every l ∈ [1, i], (pl,⊥, Id
{(wl,j+l)}
Loc(M∪)

)
τl==⇒∗

T{j+l}(M∪)
(p′l,⊥,Val

′′
l + Id

{(wl+1,j+l+1)}
Loc(M∪)

).

• For every l ∈ [0, i], Val ′l ≤ Val ′′l .
• For every l ∈ [0, i], Val ′′l ((γ

′, j + l + 1)) = |σ′
l|γ′ for all γ′ ∈ Γ.

• For every l ∈ [0, i], Val ′′l ((w, l)) = 0 for all w ∈ Γ∗
∪ and l ∈ N such that (w, l) /∈

Γ× {j + l + 1}.

48 M.F. ATIG, A. BOUAJJANI, AND S. QADEER

Next, we show that if some state q is k-bounded reachable by a run ofM∪ of rank (m,n+1),
then q is k-bounded reachable by a run ofM∪ of rank (m+ 1, n).

Lemma E.12. Let (m,n) ∈ N × N, cinitM∪

τ
==⇒∗

T[0,k](M∪)
c be a run of rank (m,n + 1) such

that Active(c) = ⊥. Then, there is a run cinitM∪

τ ′
==⇒∗

T[0,k](M∪)
c′ of rank (m + 1, n) such that

Active(c′) = ⊥, and State(c′) = State(c).

Proof. Let us assume that cinitM∪

τ
==⇒∗

T[0,k](M∪)
c is a run of rank (m,n+1) such that Active(c) =

⊥. Then, we can use the definition of DCPSs and Lemma E.11 to show that there is a run

cinitM∪

τ ′
==⇒∗

T[0,k](M∪)
c′ of rank (m+1, n) such that Active(c′) = ⊥, and State(c′) = State(c).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Preliminary definitions and notations
	1.1. Integers, functions, and vectors
	1.2. Words and languages
	1.3. Transition systems
	1.4. Finite state automata
	1.5. Pushdown automata

	2. Dynamic network of concurrent pushdown systems
	2.1. Syntax
	2.2. Semantics
	2.3. Bounded semantics
	2.4. Reachability problems

	3. The SR problem and the BSR[k] problem for DCFSs
	3.1. Vector addition systems with states
	3.2. From the BSR[k] problem for DCFSs to the SR problem for DCFSs
	3.3. From the SR problem for DCFSs to the coverability problem for VASSs
	3.4. From the coverability problem for VASSs to the BSR[2] problem for DCFSs

	4. The SSR[k] problem for DCFSs
	4.1. Existential Presburger arithmetic
	4.2. The SSR[k] problem for DCFSs is NP-complete

	5. Reachability analysis for dynamic networks of concurrent pushdown systems
	5.1. Simulation of threads of M with finite-state automata
	5.2. From the DCPS M to the DCFS Mfs

	6. Conclusion
	References
	Appendix A. The proof of Lemma 3.3
	Appendix B. The proof of Lemma 3.5
	Appendix C. The proof of Lemma 3.7
	Appendix D. The proof of Lemma 4.4
	Appendix E. The proof of Lemma 5.3
	E.1. The language of finite state automata A(q,)
	E.2. The relation between the DCFS Mfs and the FSA A(p,)
	E.3. The relation between the DCPS M and the PDA P(p,)
	E.4. From the DCPS M to the DCPS Mpf
	E.5. From the DCPS Mpf and the DCFS Mfs to the DCPS M
	E.6. From a run of rank (m+1,n) of M to a run of rank (m,n+1) of M
	E.7. From a run of rank (m,n+1) of M to a run of rank (m+1,n) of M

