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Abstract. We investigate four model-theoretic tameness properties in the context of least
fixed-point logic over a family of finite structures. We find that each of these properties
depends only on the elementary (i.e., first-order) limit theory, and we completely determine
the valid entailments among them. In contrast to the context of first-order logic on arbitrary
structures, the order property and independence property are equivalent in this setting.

McColm conjectured that least fixed-point definability collapses to first-order definability
exactly when proficiency fails. McColm’s conjecture is known to be false in general. However,
we show that McColm’s conjecture is true for any family of finite structures whose limit
theory is model-theoretically tame.

1. Introduction

Least fixed-point (LFP) logic is obtained by extending first-order (FO) logic by a quantifier
denoting the least fixed-point of a relational operator. The difference between FO and
LFP definability over classes of finite structures is a central question in finite model theory.
McColm conjectured that the existence of arbitrarily long elementary inductions would
suffice to separate LFP from FO [McC90]. This conjecture was refuted by two separate
constructions due to Gurevich, Immerman, and Shelah [GIS94]. However, instances of this
conjecture remain interesting: in particular, any resolution of the ordered conjecture, which
states that LFP is more expressive than FO over every class of totally ordered structures,
would resolve a longstanding open problem in computational complexity [KV92].

Recent work, e.g., Adler and Adler [AA14], has shown that certain model-theoretic
tameness properties introduced by Shelah [She90] are relevant to finite model theory, gen-
eralizing assumptions like bounded cliquewidth and bounded treewidth which permit, e.g.,
fast algorithms for formula evaluation [Cou90]. Here we study four such properties, NOP,
NIP, NSOP, and NTP2. We show that any counterexample to McColm’s conjecture must
fail all of them, thus establishing in a precise sense that any such counterexample must be
complicated (Theorem 2.18).

Key words and phrases: Least fixed-point logic, inductive definability, finite model theory, model-theoretic
dividing lines.
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This result was foreshadowed by McColm himself, who observed in [McC90] that any
counterexample to his conjecture must fail another model-theoretic tameness property, viz.,
the negation of the finite cover property (NFCP). Our work complements Lindell and
Weinstein [LW00], who show that any counterexample cannot be recursion-theoretically
tame.

In the course of this investigation, we formulate LFP versions of these four properties.
In FO logic, NOP ⇒ NSOP and NOP ⇒ NIP ⇒ NTP2, but no other entailments hold in
general between these four properties. By contrast, in LFP logic over finite structures, we
have NOP⇔ NIP⇒ NTP2 ⇒ NSOP (Corollary 3.2). Moreover, both of the implications
in NIP⇒ NTP2 ⇒ NSOP are strict (Theorem 3.5). We find the equivalence NOP⇔ NIP
especially remarkable: intuitively, it says that “order implies randomness” in this context.

Finally, we find that each of the properties of families of finite structures that we
study, viz., FO = LFP, proficiency, and LFP-(NOP,NIP,NSOP,NTP2), depend only on the
elementary limit theory of the class of structures (Lemma 2.2, Corollary 2.7, and Corollary
2.17). This relatively innocuous observation seems not to have been explicitly mentioned
before, but the resulting shift in perspective, from classifying structures to classifying theories,
brings these questions closer to the spirit of classical model theory.

1.1. Least fixed-point logic. We assume familiarity with FO and LFP definability, and
we very briefly review the latter. (See, e.g., Libkin [Lib04] for a reference.) Ordinary (first-
order) variables are denoted by lowercase Latin letters, e.g., x, y, z. Relational (second-order)
variables are denoted by uppercase Latin letters, e.g., P,Q,R, S. Every relational variable
comes with an arity, but this is not made explicit in the notation.

Following the typical model-theoretic convention, we will also use, e.g., x, to denote a
tuple of (first-order) variables, not just a single variable. We write |x| to indicate the length
of the tuple x. Below, when we write, e.g., ϕ(x, S), we mean that ϕ is a formula, x is a tuple
of first-order variables (which includes all free first-order variables in ϕ), and S is a single
second-order variable which is free in ϕ (but ϕ may have other free second-order variables).

We use boldface letters, especially A and M, to denote structures. Their respective
domains are denoted in lightface, e.g., A and M . We denote a class of structures by C; its
elements are always assumed to share a common signature.

Definition 1.1. A formula ϕ(x, S) is positive elementary in S if each occurrence of S is in
the scope of an even number of negations. In addition, ϕ(x, S) is operative if it is positive
elementary in S and the arity of S is |x|.

An operative formula ϕ(x, S) is so called because for any structure A, given together
with interpretations of all free second-order variables in ϕ other than S, ϕ defines a monotone
operator A|x| → A|x| by

R 7→ {a ∈ A|x| | A |= ϕ(a,R)}.
For every ordinal α, we define

ϕα =


∅ if α = 0

{a ∈ A|x| | A |= ϕ(a, ϕβ)} if α = β + 1⋃
β<α ϕ

β if α is a limit

The relations ϕα are called the stages of ϕ on A. The closure ordinal ‖ϕ‖A is the least
ordinal Γ such that ϕΓ = ϕΓ+1. (Note that if A is finite, ‖ϕ‖A must be finite.) The relation
ϕΓ is the least fixed-point of the monotone operator defined by ϕ, and is written ϕ∞.
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Definition 1.2. The class of LFP formulas is obtained from the class of atomic formulas (in
first- and second-order variables) by closing under boolean connectives, first-order quantifiers,
and the least fixed-point quantifier: If ϕ(x, S) is an operative LFP formula and t is a tuple
of terms of length |x|, then [lfpSx.ϕ](t) is an LFP formula, in which the free first-order
variables are those in t and the free second-order variables are those in ϕ, except for S,
which is bound by the quantifier.

The standard semantics of first-order logic are extended to the least fixed-point quantifier
as follows: A structure A (given together with an interpretation of the free first- and second-
order variables) satisfies [lfpSx.ϕ](t) if and only if the interpretation of the tuple of terms t
is in the relation ϕ∞.

Definition 1.3. A query R(x) of arity n over a class of structures C is an isomorphism-
invariant family of n-ary relations RA ⊆ An for each A ∈ C. It is LFP-definable in case
it is defined by some LFP formula with no free second-order variables, uniformly over
all structures in C. An important special case is a boolean query, whose arity is zero.
LFP-definable boolean queries are defined by LFP sentences.

We say LFP = FO over a class of structures C if every query which is LFP-definable
over C is defined by a first-order formula. Otherwise, we say LFP > FO over C.

Definition 1.4. An operative formula ϕ(x, S) is basic if it is first-order (i.e., it does not
contain any instances of the least fixed-point quantifier) and it has no free second-order
variables other than S.

Remark 1.5. We are primarily concerned with definability over families of finite structures.
Immerman [Imm86], building on the work of Moschovakis [Mos74], proves the following
normal form for LFP formulas over finite structures:

(Qy) ([lfpSx.ϕ](t))

for a basic operative formula ϕ, a tuple of terms t, and a string of first-order quantifiers Qy
binding some of the free variables in t.

When working with a class of finite structures, this normal form allows us to restrict
attention to LFP formulas containing a single least fixed-point quantifier. In particular, we
only need to consider least fixed-point quantification of basic operative formulas. On the
other hand, when we want to show that a particular relation is LFP-definable, we will freely
make use of the full syntax in Definition 1.2.

Definition 1.6. Operative formulas ϕ(x, S) and ψ(y, T ) are complementary on finite struc-
tures in case |x| = |y| and for every finite structure A,

A |= ∀z ([lfpSx.ϕ](z)↔ ¬[lfpTy.ψ](z)) .

Fact 1.7 [Imm86]. For every basic operative formula ϕ(x, S), there exists a basic operative
formula ψ(y, T ), such that ϕ(x, S) and ψ(y, T ) are complimentary on finite structures.

1.2. Proficiency and McColm’s conjecture.

Definition 1.8. We say that a class of finite structures C is proficient if there exists a basic
operative formula ϕ(x, S) such that

sup{‖ϕ‖A : A ∈ C} = ω.
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Remark 1.9. For any basic operative formula ϕ(x, S) and any finite n, the stage ϕn is
definable by a first-order formula, uniformly over all structures. It follows immediately that
if a class of finite structures C is not proficient, then LFP = FO over C. This observation
was made originally in [McC90].

In 1990, McColm [McC90] conjectured that the following three properties are equivalent,
for any family of finite structures C:
(1) C is proficient.
(2) FO < LFP over C.
(3) FO < Lω∞ω over C.
The implication from 2 to 1 is Remark 1.9, and the implication from 3 to 1 is also easy.
In 1992, Kolaitis and Vardi [KV92] proved the equivalence of 1 and 3. In 1994, Gurevich,
Immerman, and Shelah [GIS94] constructed two examples of a proficient family of structures
for which FO = LFP, thus establishing that 1 does not imply 2.

Historically, the equivalence of 1 and 2 has been called McColm’s first conjecture and
the equivalence of 1 and 3 McColm’s second conjecture (see, e.g., [KV92]). In the interests
of brevity, we will simply say McColm’s conjecture to mean the equivalence of 1 and 2,
following the usage in [GIS94].

1.3. Elementary limit theories. In model theory, the most important invariant of a
structure is its theory. In the present paper, the most important invariant of a family of
finite structures is its limit theory.

Definition 1.10. Let C be a class of finite structures. For a first-order sentence ϕ, we write
C |= ϕ in case all but finitely many structures in C satisfy ϕ. The (elementary) limit theory
of a family C of finite structures is

Th(C) = {ϕ | ϕ is a first-order sentence, and C |= ϕ}.
Unlike the theory Th(A) of a structure A, limit theories are not always complete —

nor consistent! But it is easy to see that Th(C) is consistent if and only if C is infinite.
Henceforth, we will only consider infinite families of finite structures.

Lemma 1.11. For any class of finite structures C, Th(C) is closed under logical consequence.

Proof. Suppose Th(C) |= ϕ. By compactness, ∆ |= ϕ for some finite subset ∆ ⊆ Th(C).
Each sentence in ∆ is true in all but finitely many structures in C, and ∆ is finite, so all but
finitely many structures in C satisfy ∆, and hence satisfy ϕ. Thus ϕ ∈ Th(C).
Definition 1.12. A first-order theory T has the finite model property if for every sentence
ϕ, if T |= ϕ, then ϕ has a finite model.

Lemma 1.13. Let T be a countable first-order theory. Then T has the finite model property
if and only if T ⊆ Th(C) for some infinite class of finite structures C.

Proof. Suppose T has the finite model property. Enumerate T as {ϕn | n ∈ N}, and let
ψn =

∧n
i=0 ϕi for each n ∈ N. Then T |= ψn, so ψn has a finite model An (which we may

assume to be distinct from Am for all m < n). Letting C = {An | n ∈ N}, each sentence
ϕn ∈ T is satisfied by Am for all m ≥ n, so C |= ϕn, and hence T ⊆ Th(C).

Conversely, suppose T ⊆ Th(C) for some infinite class of finite structures C. If T |= ϕ,
then ϕ ∈ Th(C), by Lemma 1.11. Since C is infinite, there exists some A ∈ C such that
A |= ϕ, so T has the finite model property.
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1.4. Model-theoretic dividing lines. Stability theory originated in the work of Shelah in
his program to classify the models of certain complete first-order theories. He discovered a
robust division of theories into “stable” and “unstable.” The former are “tame” in the sense
that their definable sets are highly structured, in a way that makes it possible to classify
their models (under certain additional hypotheses); the latter are “wild” in the sense that
they interpret combinatorial objects such as infinite linear orders and random graphs, and
they necessarily have too many models to admit a nice classification.

A critical observation about the stable/unstable dichotomy is that stability can be
defined by the absence of a simple combinatorial configuration in definable sets, namely
the order property (described below). Subsequent work in “neo-stability” has generalized
stability theory to increasingly more inclusive notions of tameness, each of which is defined
by the absence of a particular configuration in definable sets. The goal is to find robust
dividing lines, such that it is possible to prove structure theorems on the tame side and
non-structure theorems on the wild side. For an interactive guide to the these dividing lines,
see [Con]; see Hodges [Hod87] for a discussion of structure theorems.

Any formula ϕ(x; y), whose free variables are partitioned into a tuple x and a tuple

y, defines a bipartite graph relation Rϕ between M |x| and M |y| for any structure M, by
(a, b) ∈ Rϕ if and only if M |= ϕ(a; b). From another point of view, such a formula defines

a family of Sϕ of subsets of M |x|: writing ϕ(M ; b) for {a ∈ M |x| | M |= ϕ(a; b)}, we let

Sϕ = {ϕ(M ; b) | b ∈ M |y|}. By a combinatorial configuration, we usually mean some
concrete property of the graph Rϕ or the family of sets Sϕ.

We will now give the precise definitions of the combinatorial properties we will consider in
this paper, all of which are originally due to Shelah [She90]. See below for further discussion.

Definition 1.14. Let ϕ(x; y) be any formula (FO or LFP), whose free variables are parti-
tioned into a tuple x and a tuple y. Let n be a natural number, and let M be a structure.

• ϕ has an n-instance of the order property (OP(n)) in M if there exist tuples a1, . . . , an ∈
M |x| and b1, . . . , bn ∈M |y| such that M |= ϕ(ai; bj) if and only if i ≤ j.
• ϕ has an n-instance of the independence property (IP(n)) in M if there exist tuples ai ∈
M |x| for all i ∈ {1, . . . , n} and bX ∈M |y| for all X ⊆ {1, . . . , n} such that M |= ϕ(ai; bX)
if and only if i ∈ X.
• ϕ has an n-instance of the strict order property (SOP(n)) in M if there exist tuples

b1, . . . , bn ∈M |y| such that ϕ(M ; bi) ⊆ ϕ(M ; bj) if and only if i ≤ j.
• We say ϕ(x; y) has an n-instance of the tree property of the second kind (TP2(n)) in

M if there are tuples bi,j ∈ M |y| for 1 ≤ i, j ≤ n such that for any i and any j 6= k,
ϕ(M ; bi,j) ∩ ϕ(M ; bi,k) = ∅, but for any function f : {1, . . . , n} → {1, . . . , n},

n⋂
i=1

ϕ(M ; bi,f(i)) 6= ∅.

Definition 1.15. Let C be a class of structures. For each property P in {OP, IP, SOP,TP2},
we say C has LFP-P (resp. FO-P ) if there exists an LFP formula (resp. an FO formula)
ϕ(x; y) such that for each n, there exists a structure M ∈ C such that ϕ has P (n) in M.

Let T be a theory. We say that T has FO-P if the class of models of T has FO-P .
If a class of structures C or a theory T does not have (FO/LFP)-OP (resp. IP, SOP,

TP2), we say it has (FO/LFP)-NOP (resp. NIP, NSOP, NTP2).
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Remark 1.16. Our definitions of these properties differ from the standard definitions in
model theory, which consist of a single infinite configuration, rather than a sequence of finite
configurations. For example, according to the standard definition, a theory T has the order
property if there exists an FO formula ϕ(x; y), a model M |= T , and tuples (an)n∈N in M |x|

and (bn)n∈N in M |y| such that M |= ϕ(ai, bj) if and only if i ≤ j.
In the context of a first-order theory T , our definitions are equivalent to the standard

ones, by an application of the compactness theorem. But compactness is not available in
the context of LFP definability, and the standard infinitary definitions are not meaningful
over classes of finite structures.

Another advantage of using finite configurations is that the presence or absence of an
n-instance of one of our properties in a structure M is expressible by a single sentence. For
example, ϕ(x; y) has OP(n) in M if and only if

M |= ∃x1 . . . ∃xn∃y1 . . . ∃yn

∧
i≤j

ϕ(xi; yj) ∧
∧
i>j

¬ϕ(xi; yj)

 .

For P ∈ {OP, IP, SOP,TP2}, we denote by Pϕ(n) the sentence expressing that ϕ(x; y) has
P (n). This leads immediately to the following lemma.

Lemma 1.17. Let C be a class of finite structures. For any P in {OP, IP,SOP,TP2}, C
has FO-P if and only if Th(C) has FO-P .

Proof. Suppose C does not have FO-P . Then for every FO formula ϕ(x; y), there is some
n ∈ N such that for all M ∈ C, ϕ(x; y) does not have P (n) in M. That is, ¬Pϕ(n) is true in
every structure in C, so ¬Pϕ(n) ∈ Th(C). Thus ϕ(x; y) does not have P (n) in any model of
T , so T does not have FO-P .

Conversely, suppose Th(C) does not have FO-P . Then for every FO formula ϕ(x; y),
there is some n ∈ N such that for all M |= Th(C), ϕ(x; y) does not have P (n) in M. By
Lemma 1.11, ¬Pϕ(n) ∈ Th(C), so ϕ(x; y) does not have P (n) in any structures in C, except
for finitely many exceptions. Each of these exceptional structures are finite, so there is
some maximum N such that ϕ(x; y) has P (N) in any structure in C. Thus C does not have
FO-P .

Intuitively, a formula ϕ(x; y) has the order property if arbitrarily long linear orders are
represented in the bipartite graph Rϕ, in the sense that the “half-graphs” appear as induced
subgraphs: a1, . . . , an and b1, . . . , bn with aiRϕbj if and only if i ≤ j. The independence
property and the strict order property are two natural strengthenings of this condition: IP
is equivalent to the condition that arbitrary bipartite graphs appear as induced subgraphs
of Rϕ, and SOP says that arbitrarily long linear orders appear as chains in the family of
sets Sϕ.

It is not hard to see that any formula with IP(n) or SOP(n + 1) in a structure has
OP(n) in that structure. At the level of of complete first-order theories, the converse is true
(but the same formula need not serve as the witness). This important dichotomy is due to
Shelah: an unstable (OP) theory must exhibit order (SOP) or randomness (IP).

Fact 1.18 [She90, Theorem II.4.7]. A first-order theory T has FO-OP if and only if it has
FO-IP or FO-SOP.

The tree property of the second kind is admittedly somewhat less intuitive. Roughly
speaking, a formula ϕ(x; y) has the tree property of the second kind if the family of sets Sϕ
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includes arbitrarily many arbitrarily large families of disjoint sets, such that these families
interact independently. It is not hard to see that any formula with TP2(n) in a structure
has IP(n) in that structure.

The name TP2 comes from another important dichotomy identified by Shelah: a theory
is called simple if it does not have the tree property (TP), and a theory has the tree property
if and only if it has the tree property of the first kind (TP1) or the tree property of the
second kind (TP2). Unlike TP2, the configurations defining the properties TP and TP1 are
visibly related to trees. We will not consider the properties TP and TP1 in this paper.

1.5. Examples via Fräıssé limits. Fräıssé theory is a fruitful source of examples in
model theory and provides an important connection between classes of finite structures
and the model theory of complete first-order theories. If a class C of finite structures is
isomorphism-closed and countable up to isomorphism, and has the hereditary property, the
joint embedding property, and the amalgamation property, then it admits a unique countable
Fräıssé limit MC. This structure is universal and homogeneous for C, in the sense that a
finite structure is in C if and only if it embeds in MC, and any two such embeddings are
conjugate by an automorphism of MC . The theory Th(MC) is called the generic theory of
C. For more on Fräıssé theory, see [Hod93, Section 7.1].

Here are some examples of generic theories, and which properties from Definition 1.14
they do and do not satisfy:

• T∞, the theory of an infinite set with no additional structure. This is the generic theory of
the class of finite sets. It has FO-NOP (and hence FO-NIP, FO-NSOP, and FO-NTP2).
• DLO, the theory of dense linear orders without endpoints. This is the generic theory of

the class of finite linear orders. It has FO-SOP (and hence FO-OP), but FO-NIP (and
hence FO-NTP2).
• Trg, the theory of the random graph. This is (by definition) the generic theory of the class

of finite graphs. It has FO-IP (and hence FO-OP), but FO-NSOP and FO-NTP2.
• Torg, the generic theory of the class of finite graphs equipped with an ordering of their

vertices. It has FO-IP and FO-SOP (and hence FO-OP), but FO-NTP2.
• Tfeq, the generic theory of the class of finite parameterized equivalence relations. The

language consists of two unary predicates O and P (for “objects” and “parameters”),
and one ternary relation symbol E. A parameterized equivalence relation is a structure
such that O and P partition the domain, and for every element a satisfying P , the binary
relation E(a, x, y) is an equivalence relation on the elements satisfying O. This theory has
FO-TP2 (and hence FO-IP and FO-OP) but FO-NSOP.
• Taba, the theory of atomless Boolean algebras. This is the generic theory of the class of

finite Boolean algebras. It has FO-SOP and FO-TP2 (and hence FO-IP and FO-OP).

We will return to several of these examples in Section 3 below.

2. FO characterizations of LFP properties

Many important properties of a class of finite structures C depend only on the elementary
limit theory Th(C), in the sense that any two classes of structures with the same limit theory
agree on the property in question. Lemma 1.17 shows this holds of the FO properties from
Definition 1.14. In this section, we show that it additionally holds for proficiency, “FO =
LFP over C,” and all the LFP properties from Definition 1.14.
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2.1. Proficiency and FO = LFP. By Remark 1.9, each finite stage ϕn of a basic operative
formula ϕ(x, S) is definable by a first order formula, uniformly over all structures. We also
use ϕn(x) to denote any such formula. The context that the symbol ϕn appears in will
distinguish whether we mean the formula or the relation it defines.

Definition 2.1. A theory T is not proficient in case for every basic operative formula
ϕ(x, S), there is a natural number n such that

T |= (∀x)(ϕn(x)↔ ϕn+1(x)).

Otherwise, we say that T is proficient.

Lemma 2.2. Let C be a class of finite structures. Then C is proficient if and only if Th(C)
is proficient.

Proof. Suppose that C is not proficient. Then for each basic operative formula ϕ(x, S),
there is a bound n ∈ N such that ‖ϕ‖A ≤ n for all A ∈ C. Therefore, for all A ∈ C,
A |= (∀x)(ϕn(x)↔ ϕn+1(x)), and hence Th(C) |= (∀x)(ϕn(x)↔ ϕn+1(x)).

Conversely, suppose that Th(C) is not proficient, and let ϕ be any basic operative
formula. Then, there is some n ∈ N such that Th(C) |= (∀x)(ϕn(x) ↔ ϕn+1(x)). Hence,
for all but finitely many A ∈ C, A |= (∀x)(ϕn(x) ↔ ϕn+1(x)), and therefore ‖ϕ‖A ≤ n
for all but finitely many A ∈ C. Since there are only finitely many exceptional structures,
sup{‖ϕ‖A : A ∈ C} must still be finite.

Corollary 2.3. Let C and D be classes of finite structures. If Th(C) = Th(D), then C is
proficient if and only if D is proficient.

The proof of Lemma 2.2 actually shows that if Th(C) ⊆ Th(D), and D is proficient, then
C is proficient. Similar refinements, replacing equality of limit theories with containment,
can be observed for many of the results in this section.

Definition 2.4. Let ϕ(x, S) be a basic operative formula, and let C be a class of finite
structures. We say that ϕ∞ is elementary over C if there is a first-order formula γ(x) which
defines the query ϕ∞ over C.
Lemma 2.5. ϕ∞ is elementary over C if and only if there is a first-order formula γ(x)
which defines the query ϕ∞ over all but finitely many structures in C.

Proof. One direction is trivial. For the other direction, suppose γ(x) defines ϕ∞ over all but
finitely many structures in C. Since every finite structure is determined up to isomorphism
by a first-order sentence, and every automorphism-invariant relation on a finite structure is
definable by a first-order formula, we can modify γ(x) so that it defines ϕ∞ in each of the
finitely many exceptional cases.

Note that the sentence
∀x ([lfpSx.ϕ](x)↔ γ(x)),

which expresses that γ defines ϕ∞, is not first-order. So it does not follow directly from
Lemma 2.5 that elementarity of ϕ∞ over C is a property of the limit theory Th(C). Never-
theless, this turns out to be true, as we will now show.

Lemma 2.6. Let ϕ(x, S) be a basic operative formula. Then ϕ∞ is elementary over C if
and only if there exists a first-order formula θ(x) such that

∀x (ϕ(x, θ)↔ θ) ∈ Th(C), and

∀x (ψ(x,¬θ)↔ ¬θ) ∈ Th(C),
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where ψ(x, S) is a basic operative formula which is complementary to ϕ(x, S) on finite
structures.

Proof. Suppose ϕ∞ is elementary relative to C, witnessed by θ. In an arbitrary structure A ∈
C, θ defines ϕ∞, which is a fixed-point for ϕ. Since ψ(x, S) and ϕ(x, S) are complementary
on finite structures, ¬θ defines ψ∞, which is a fixed-point for ψ. So A satisfies the sentences
in the statement of the lemma.

Conversely, suppose these two sentences are in Th(C). Then for all but finitely many
structures A ∈ C, the relation θA defined by θ over A is a fixed-point of ϕ, and its
complement (¬θ)A, which is defined by ¬θ, is a fixed point of ψ. Since ϕ∞ and ψ∞ are
the least fixed-points of ϕ and ψ, ϕ∞ ⊆ θA and ψ∞ ⊆ (¬θ)A. Since ϕ∞ and ψ∞ are
complements, ϕ∞ = θA. This is true for all but finitely many structures in C, so ϕ∞ is
elementary over C by Lemma 2.5.

Corollary 2.7. If Th(C) = Th(D), then LFP = FO over C if and only if LFP = FO over D.

Proof. Suppose that every LFP-definable query over C is FO-definable. Consider an arbitrary
LFP-definable query R over D. By the normal form for LFP formulas over finite structures
(Remark 1.5), we may assume that R is defined by the LFP formula (Qy) ([lfpSx.ϕ](t)).
Then it suffices to show that ϕ∞ is elementary over D.

By assumption, ϕ∞ is elementary over C. But Th(C) = Th(D), so by Lemma 2.6, ϕ∞ is
elementary over D. The converse follows in the same way.

Remark 2.8. Even though FO = LFP is a property of limit theories, we have not proven
(and in fact it is not true) that FO = LFP over C if and only if FO = LFP over the class of
models of Th(C). This stands in contrast to the properties FO-P and proficiency, which do
pass (Lemmata 1.17 and 2.2) between C and models of Th(C).

We learned Lemmata 2.2 and 2.6 from Steven Lindell through personal communication.
As an immediate consequence of Lemma 2.2 and Corollary 2.7, we deduce the following.

Corollary 2.9. If Th(C) = Th(D), then C satisfies McColm’s conjecture if and only if D
does.

Remark 2.10. If we were to define the LFP limit theory to be the set of all LFP sentences
that hold of all but finitely many structures in C, then both FO = LFP and proficiency
could easily seen to depend only on the LFP limit theory. One might naturally wonder
whether the LFP limit theory itself depends only on the (elementary) limit theory; this
would contain Lemma 2.2 and Corollary 2.7 as special cases.

However, this is not the case. For example, the family of even-sized linear orders and
the family of odd-sized linear orders are two families with the same (elementary) limit
theory: the complete theory of infinite discrete linear orders with endpoints. But they are
distinguished by their LFP limit theories, since parity of the domain is an LFP-definable
boolean query over ordered structures.

2.2. Model-theoretic dividing lines. We will now show that each LFP property defined
in Definition 1.14 depends only on the elementary limit theory of a family of finite structures.
We start by identifying proficiency with LFP-SOP. Key to this argument is the LFP-
definability of the stage comparison relation [Mos74].
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Definition 2.11. For any basic operative formula ϕ(x, S) with |x| = k, any structure A,
and any a ∈ Ak, the stage of a, ‖a‖ϕ, is the least ordinal α such that a /∈ ϕα, or ∞ if
α /∈ ϕ∞. The stage comparison relation �ϕ is defined by a �ϕ b if and only if ‖a‖ϕ ≤ ‖b‖ϕ.

Fact 2.12 [Mos74, Theorem 2A.2]. For any basic operative formula ϕ(x, S), the stage
comparison relation �ϕ is LFP-definable over the class of all structures.

By a partial preorder, we mean a reflexive transitive relation � on some set X. We get
a partial order if we take the quotient by the equivalence relation x � y ∧ y � x. A partial
preorder is linear if the associated partial order is linear. By a chain in a partial preorder �,
we mean a subset X which is linearly ordered by �. In particular, for x, y ∈ X, x � y and
y � x implies x = y.

Note that for any basic operative formula ϕ(x, S) with |x| = k and any structure A,
the stage comparison relation �ϕ is always a linear preorder on Ak, whose associated linear
order is a well-order.

Theorem 2.13. Let C be a class of finite structures. The following are equivalent:

(1) C is proficient.
(2) There is some n ∈ N and some LFP formula ψ such that ψ defines a linear preorder

on n-tuples in every structure in C, and this linear preorder has arbitrarily long finite
chains in structures in C.

(3) There is some n ∈ N and some LFP formula ψ such that ψ defines a partial preorder
on n-tuples in every structure in C, and this partial preorder has arbitrarily long finite
chains in structures in C.

Proof. (1⇒ 2) Suppose ϕ(x, S) is a basic operative formula with |x| = n, which witnesses
proficiency of C. Its stage comparison relation �ϕ, which is LFP-definable by Fact 2.12,
linearly preorders the n-tuples from each M ∈ C, and this linear preorder contains a chain
of length ‖ϕ‖M. By proficiency, there is no finite bound on the lengths of these chains.

(2⇒ 3) Trivially.
(3⇒ 1) Suppose λ(y1; y2) defines a partial preorder � which has arbitrarily long finite

chains in structures in C. In any finite partial preorder, we define the height of an element
to be one more than the maximum height among its (strict) predecessors, or 0 if it has
none. Since λ has arbitrarily long chains, elements in the preorder defined by λ will have
arbitrarily large heights.

Let ϕ(y;T ) say that all of y’s strict predecessors are in T . In symbols,

ϕ(y;T ) ≡ ∀y′ ((λ(y′, y) ∧ ¬λ(y, y′))→ T (y′)).

(Notice T occurs positively in ϕ.) Then it is easy to show by induction that the stages ϕn of
ϕ are exactly those elements of height < n, and hence ϕ witnesses that C is proficient.

Theorem 2.14. C is proficient if and only if it has LFP-SOP.

Proof. Suppose that the LFP formula ϕ witnesses that C has LFP-SOP. Define

ψ(y1; y2) ≡ ∀x (ϕ(x; y1)→ ϕ(x; y2)),

so that for each M ∈ C and b1, b2 ∈M |y|,
M |= ψ(b1; b2) if and only if ϕ(M ; b1) ⊆ ϕ(M ; b2),

where (as in Section 1.4), ϕ(M ; b) = {a ∈ M |x| |M |= ϕ(a; b)}. Then ψ defines a partial

preorder on M |y|. If ϕ has SOP(n) in M , then this partial preorder on M |y| contains a
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chain of length n. Since ϕ has the strict order property, we have arbitrarily long chains in
structures in C, so C is proficient by Theorem 2.13.

Conversely, suppose that C is proficient. By Theorem 2.13, there exists an LFP formula
λ(y1; y2) that defines a partial preorder with arbitrarily long chains in structures in C. The
formula λ itself witnesses the strict order property: given n, pick M ∈ C which contains a
chain b1, . . . , bn. Then

λ(M |y1|; b1) ( · · · ( λ(M |y1|; bn).

Among all the LFP properties from Definition 1.14, the strict order property turns out
to be the strongest, in that in entails all the others. This contrasts with the first-order case
where, in general, the strict order property does not imply the independence property or the
tree property of the second kind.

Lemma 2.15. If C has LFP-SOP, then it also has LFP-OP, LFP-IP, and LFP-TP2.

Proof. As noted in Section 1.4, LFP-SOP easily implies LFP-OP. For the other two
properties, we consider the family N of all finite linear orders. Identify the unique linear
order of size n with the set n = {0, 1, . . . , n− 1} equipped with its natural ordering. It is
well known that over N , the graphs of addition and multiplication are LFP-definable; hence,
so is the graph of exponentiation [Lin]. Therefore, since the relations bit(x; y):

“the x-th bit of y base 2 is 1”

and factor(x; y, z):

“yz is the largest power of y dividing x”

are first-order definable over N with addition, multiplication, and exponentiation, they are
LFP-definable over N .

The relation bit(x; y) has IP(n) in m for sufficiently large m, witnessed by ai = i− 1
for i ∈ {1, . . . , n} and bX =

∑
j∈X 2j−1 for X ⊆ {1, . . . , n}. The relation factor(x; y, z)

has TP2(n) in (m,<) for sufficiently large m, witnessed by bi,j = (pi, j), where (pi)i∈ω
is an enumeration of the primes: for any function f : {1, . . . , n} → {1, . . . , n}, we have

af =
∏n
i=1 p

f(i)
i ∈ factor(M ; pi, f(i)) for all 1 ≤ i ≤ n. Hence, N has LFP-IP and LFP-TP2.

Now suppose C has LFP-SOP. Since there is some LFP formula ψ which defines a linear
preorder on n-tuples with arbitrarily long chains in structures in C (by Theorem 2.13 and
Theorem 2.14), we can repeat the constructions of bit and factor above to get formulas
witnessing that C has LFP-IP and LFP-TP2.

To be a little more concrete, suppose ϕ(x; y) witnesses LFP-IP or LFP-TP2 over N .
Simply replace each variable v in ϕ by n variables v1, . . . , vn, replace v = w by (v ≤ w∧w ≤ v),
replace v ≤ w by ψ(v1, . . . , vn;w1, . . . , wn), and proceed by induction on the construction of
ϕ in the obvious way. This gives us a new formula ϕ?(x?; y?) witnessing LFP-IP or LFP-TP2

over C.

Theorem 2.16. For any class C of finite structures and any P in {OP, IP,SOP,TP2}, C
has LFP-P if and only if C is proficient or C has FO-P .

Proof. In the forwards direction, if C has LFP-P , but is not proficient, then FO = LFP over
C (Remark 1.9), so C has FO-P .

Conversely, if C is proficient, then it has LFP-P by Theorems 2.14 and 2.15. Otherwise,
if C has FO-P , then it trivially has LFP-P as well.
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Theorem 2.16, when combined with Lemmata 1.17 and 2.2, has the immediate conse-
quence that all the LFP properties depend only on the elementary limit theory of a family
of structures.

Corollary 2.17. Suppose C and D are families of structures with the same limit theory,
and let P be any property in {OP, IP,SOP,TP2}. Then C has LFP-P if and only if D has
LFP-P .

It also has the nice consequence that any tame class of structures (in the sense of
first-order model theory) satisfies McColm’s conjecture.

Theorem 2.18. For any family of finite structures C, if C has FO-NOP, FO-NIP, FO-NTP2,
or FO-NSOP, then C satisfies McColm’s conjecture.

Proof. Let P ∈ {OP, IP,SOP,TP2} be a property such that C does not have FO-P . To
show that C satisfies McColm’s conjecture, it suffices to show that if C is proficient, then
LFP 6= FO over C.

So we assume C is proficient. Then C has LFP-P , by Theorem 2.14 and Lemma 2.15.
Since it does not have FO-P , LFP 6= FO over C, as desired.

3. Entailments between LFP properties

We continue towards determining all valid entailments among the LFP properties. First, we
show that an important dichotomy remains true in the LFP context.

Theorem 3.1. For any family C of finite structures, C has LFP-OP if and only if C has
LFP-SOP or LFP-IP.

Proof. Since both LFP-SOP and LFP-IP entail LFP-OP, it suffices to show the forwards
direction.

Suppose C has LFP-OP. If C is proficient, then it has LFP-SOP by Theorem 2.14. If C is
not proficient, then C has FO-NSOP and FO-OP by Theorem 2.17, so Th(C) has FO-NSOP
and FO-OP by Lemma 1.17. It follows that Th(C) has FO-IP by Fact 1.18. Hence C has
FO-IP, and therefore LFP-IP.

By Theorems 2.15, 3.1, and propositional reasoning, we obtain the following.

Corollary 3.2. For any family C of finite structures,

C |= LFP-OP ⇐⇒ C |= LFP-IP.

Therefore,

C |= LFP-SOP =⇒ C |= LFP-TP2 =⇒ C |= LFP-OP ⇐⇒ C |= LFP-IP.

We would like to give examples showing that the first two implications above are strict.
To do this, we will employ countably categorical first-order theories with the finite model
property.

A theory is countably categorical if it has only one countable model up to isomorphism.
Various equivalent formulations of countable categoricity were proven in the 50’s and 60’s
by Ryll-Nardzewski, Svenonius, and Engler. These established countable categoricity as
a robust and important property of first-order theories. Fräıssé theory is an important
source of examples of countably categorical theories: every Fräıssé limit in a finite relational
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language has a countably category complete theory. For more information and history on
countable categoricity, see Chapter 7 of Hodges [Hod93].

Though seemingly separate notions, proficiency and countable categoricity are intimately
related: roughly speaking, non-proficiency is the “finite variable logic version” of countable
categoricity. The Ryll-Nardzewski theorem [Hod93, Theorem 7.3.1] asserts that countable
categoricity is equivalent to the finiteness of the set of complete n-types over T , for all n.
Non-proficiency essentially weakens this condition to the finiteness of the set of all n-types in
m-variable logic, for all n and m ≥ n [DLW96, Theorem 23]. We now prove more carefully
that countable categoricity implies non-proficiency, for first-order theories.

Lemma 3.3. Every countably categorical first-order theory is non-proficient.

Proof. Suppose that T is countably categorical, fix a basic operative formula ϕ(x, S), and
consider the first-order formulas ϕn(x) defining its stages. By the Ryll-Nardzewski theorem,
there are only finitely many pairwise non-T -equivalent formulas with free variables from x.
Thus there must be some m ∈ N and n < m such that T |= (∀x)(ϕn(x)↔ ϕm(x)). Since, for
all j, T |= (∀x)(ϕj(x)→ ϕj+1(x)), it must be the case that T |= (∀x)(ϕm(x)↔ ϕm+1(x)),
and ‖ϕ‖M ≤ m for all models M |= T .

Since ϕ was chosen arbitrarily, T is non-proficient.

Remark 3.4. In particular, if T is a countable and countably categorical theory with the
finite model property, then there is some family of finite structures C with limit theory T ,
by Lemma 1.13. Since T is countably categorical, it is non-proficient, and hence so is C, by
Lemma 2.2. Therefore, FO = LFP over C. In addition, C inherits any property FO-P (or its
negation) from T itself, by Lemma 1.17.

To complete the classification, we show that both of the one-way implications in Corollary
3.2 are strict.

Theorem 3.5. There exists a class of finite structures with LFP-IP but without LFP-TP2

and a class of finite structures with LFP-TP2 but without LFP-SOP.

Proof. To exhibit a class of structures with a certain combination of LFP-properties, it
suffices to exhibit a class of structures with the same combination of FO-properties, over
which FO = LFP. By Lemma 3.3 and Remark 3.4, it suffices to exhibit a countable, complete,
and countably categorical theory with the finite model property, with the same combination
of FO-properties. This is exactly what we do. See Section 1.4 for definitions of our example
theories. In this proof, we drop the prefix FO-.

For IP but NTP2, consider TRG, the theory of the random graph. This is well-known
to be countably categorical with the finite model property, to have IP, and to be simple; a
first-order theory is simple if it does not have the tree property (TP), which implies that it
does not have TP2.

For TP2 but NSOP, consider Tfeq, the generic theory of parameterized equivalence
relations. For discussions of this theory, see [CR16] and [Kru19]. In [CR16], Chernikov and
Ramsey establish (Corollary 6.20) that Tfeq does not have the property SOP1, which implies
that it does not have SOP, and (Corollary 6.18) that Tfeq is not simple by witnessing TP2

directly. A proof that Tfeq has the finite model property is given in [Kru19].

We conclude with a list of some simple examples satisfying the various combinations of
properties we have discussed in this paper (see Figure 1). Even though the LFP properties in
each box in the table are not explicit, we can easily deduce them: in the column LFP = FO,



2:14 Siddharth Bhaskar and Alex Kruckman Vol. 17:1

the LFP properties agree with the FO properties, and in the column LFP 6= FO, each family
of structures is proficient, and hence (by Theorem 2.16) satisfies each of LFP-SOP, LFP-TP2,
LFP-IP, and LFP-OP. Since we have established (Lemma 2.15) that there are no classes
satisfying (NIP and SOP and LFP = FO) or (IP and NTP2 and SOP and LFP = FO), the
table is complete.

Figure 1: Examples
FO properties LFP = FO LFP 6= FO

NOP = (NIP and NSOP) Nfin (Nfin, S)
NIP and SOP — (Nfin, <)

IP and NTP2 and NSOP RG RG + (Nfin, S)
IP and NTP2 and SOP — RG + (Nfin, <)

TP2 and NSOP PEQ PEQ + (Nfin, S)
TP2 and SOP GIS PEQ + (Nfin, <)

Here are the definitions of the classes appearing in Figure 1:

• Nfin is the class of initial segments of N with no extra structure. (Nfin, S) and (Nfin, <) are
the classes of structures with the same domains, but equipped with the successor relation
and the order relation, respectively.
• RG is any class of finite structures with limit theory TRG, the theory of the random graph.

The class of Paley graphs provides an explicit example (see [BEH81]).
• PEQ is any class of finite structures with limit theory T ∗feq, the generic theory of parame-

terized equivalence relations. Such a class exists by Lemma 1.13.
• GIS is any counterexample to McColm’s conjecture. For example, one of the classes of

finite structures devised by Gurevich, Immerman, and Shelah in [GIS94].
• Given classes of finite structures C = {Mi | i ∈ ω} and C′ = {M′

i | i ∈ ω} in disjoint
languages L and L′, respectively, we denote by C+ C′ the family {Mi tM′

i | i ∈ ω}, where
Mi tM′

i is the disjoint union of Mi and M′
i. We use the fact that for any property P in

{SOP,TP2, IP,OP}, C + C′ has FO-P if and only if C has FO-P or C′ has FO-P .

4. Further work

Our results suggest that it may be fruitful to examine SOP, TP2, IP, and OP beyond
the first-order context. In particular, it would be interesting to examine the extend to
which weaker fixed-point logics (like transitive closure logic) recover TP2 and IP from
SOP. Another direction is a program to recover complexity-theoretic tameness properties
of families of finite structures (like fast formula evaluation) from model-theoretic tameness
assumptions, generalizing assumptions like bounded treewidth and cliquewidth.

In the spirit of classification theory, we might hope to deduce some positive concrete
information about, e.g., LFP-NOP classes of finite structures that distinguish them from
the merely stable (FO-NOP) classes. One might hope to develop some kind of asymptotic
structure theory (like Shelah’s classification of models of certain stable theories) for finite
classes which are stable and non-proficient.

Finally, we believe that the observation that FO = LFP is a property of the elementary
limit theory of a class of finite structures strongly suggests a model-theoretic approach to
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difficult questions like the ordered conjecture. At the very least, it gives us a new set of
powerful tools to test and clarify where, exactly, the difficulty lies.

Acknowledgements

We started this project in 2017 when we were both postdocs at Indiana University, Bloom-
ington. We would like to thank Larry Moss and the logic group at IU for their support.

We would also like to acknowledge several people who have read earlier versions of
this paper and discussed this material with us. In particular, we thank Cameron Hill for
his comments on the first draft of this paper, Steve Lindell and Scott Weinstein for being
invaluable sources of knowledge of finite model theory, and Greg McColm for inspiring the
present line of inquiry. Finally, we are indebted to the anonymous referees, whose comments
substantially improved the readability of this paper.

References

[AA14] Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of
model theory. European J. Combin., 36:322–330, 2014.

[BEH81] Andreas Blass, Geoffrey Exoo, and Frank Harary. Paley graphs satisfy all first-order adjacency
axioms. J. Graph Theory, 5(4):435–439, 1981.

[Con] Gabriel Conant. Map of the universe. https://forkinganddividing.com/.
[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Inform. and Comput., 85(1):12–75, 1990.
[CR16] Artem Chernikov and Nicholas Ramsey. On model-theoretic tree properties. J. Math. Log.,

16(2):1650009, 2016.
[DLW96] Anuj Dawar, Steven Lindell, and Scott Weinstein. First order logic, fixed point logic and linear

order. In Computer science logic (Paderborn, 1995), volume 1092 of Lecture Notes in Comput. Sci.,
pages 161–177. Springer, Berlin, 1996.

[GIS94] Yuri Gurevich, Neil Immerman, and Saharon Shelah. Mccolm’s conjecture [positive elementary
inductions]. In Samson Abramsky, editor, Proceedings of the Ninth Annual IEEE Symp. on Logic
in Computer Science, LICS 1994, pages 10–19. IEEE Computer Society Press, July 1994.

[Hod87] Wilfrid Hodges. What is a structure theory? Bull. London Math. Soc., 19(3):209–237, 1987.
[Hod93] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications.

Cambridge University Press, Cambridge, 1993.
[Imm86] Neil Immerman. Relational queries computable in polynomial time. Inform. and Control, 68(1-

3):86–104, 1986.
[Kru19] Alex Kruckman. Disjoint n-amalgamation and pseudofinite countably categorical theories. Notre

Dame J. Form. Log., 60(1):139–160, 2019.
[KV92] P.G. Kolaitis and M.Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model theory. In Andre

Scedrov, editor, Proceedings of the Seventh Annual IEEE Symp. on Logic in Computer Science,
LICS 1992, pages 46–57. IEEE Computer Society Press, June 1992.

[Lib04] Leonid Libkin. Elements of finite model theory. Texts in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, Berlin, 2004.

[Lin] Steven Lindell. Exponentiation is elementarily definable from addition and multiplication on finite
structures. http://ww3.haverford.edu/cmsc/slindell/exponentiation.pdf.

[LW00] Steven Lindell and Scott Weinstein. The role of decidability in first order separations over classes
of finite structures. In Martin Abadi, editor, Proceedings of the Fifteenth Annual IEEE Symp. on
Logic in Computer Science, LICS 2000, pages 45–50. IEEE Computer Society Press, June 2000.

[McC90] Gregory L. McColm. When is arithmetic possible? Ann. Pure Appl. Logic, 50(1):29–51, 1990.
[Mos74] Yiannis N. Moschovakis. Elementary induction on abstract structures. North-Holland Publishing

Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Studies in Logic
and the Foundations of Mathematics, Vol. 77.

https://forkinganddividing.com/
http://ww3.haverford.edu/cmsc/slindell/exponentiation.pdf


2:16 Siddharth Bhaskar and Alex Kruckman Vol. 17:1

[She90] S. Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, second
edition, 1990.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany


	1. Introduction
	1.1. Least fixed-point logic
	1.2. Proficiency and McColm's conjecture
	1.3. Elementary limit theories
	1.4. Model-theoretic dividing lines
	1.5. Examples via Fraïssé limits

	2. FO characterizations of LFP properties
	2.1. Proficiency and FO = LFP
	2.2. Model-theoretic dividing lines

	3. Entailments between LFP properties
	4. Further work
	Acknowledgements
	References

