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Abstract. We study probabilistic complexity classes and questions of derandomisation
from a logical point of view. For each logic L we introduce a new logic BPL, bounded
error probabilistic L, which is defined from L in a similar way as the complexity class BPP,
bounded error probabilistic polynomial time, is defined from P.

Our main focus lies on questions of derandomisation, and we prove that there is a
query which is definable in BPFO, the probabilistic version of first-order logic, but not
in Cω

∞ω, finite variable infinitary logic with counting. This implies that many of the
standard logics of finite model theory, like transitive closure logic and fixed-point logic,
both with and without counting, cannot be derandomised. Similarly, we present a query
on ordered structures which is definable in BPFO but not in monadic second-order logic,
and a query on additive structures which is definable in BPFO but not in FO. The latter
of these queries shows that certain uniform variants of AC0 (bounded-depth polynomial
sized circuits) cannot be derandomised. These results are in contrast to the general belief
that most standard complexity classes can be derandomised.

Finally, we note that BPIFP+C, the probabilistic version of fixed-point logic with count-
ing, captures the complexity class BPP, even on unordered structures.

1. Introduction

The relation between different modes of computation — deterministic, nondeterministic,
randomised — is a central topic of computational complexity theory. The P vs. NP problem
falls under this topic, and so does a second very important problem, the relation between
randomised and deterministic polynomial time. In technical terms, this is the question
of whether P = BPP, where BPP is the class of all problems that can be solved by a
randomised polynomial time algorithm with two-sided errors and bounded error probability.
This question differs from the question of whether P = NP in that most complexity theorists
seem to believe that the classes P and BPP are indeed equal. This belief is supported by
deep results due to Nisan and Wigderson [31] and Impagliazzo and Wigderson [20], which
link the derandomisation question to the existence of one-way functions and to circuit lower
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bounds; cf. also [21]. Similar derandomisation questions are studied for other complexity
classes such as logarithmic space, and it is believed that derandomisation is possible for
these classes as well.

Descriptive complexity theory gives logical descriptions of complexity classes and thus
enables us to translate complexity theoretic questions into the realm of logic. While logical
descriptions are known for most natural deterministic and nondeterministic time and space
complexity classes, probabilistic classes such as BPP have received very little attention in
descriptive complexity theory yet. In this paper, we study probabilistic complexity classes
and questions of derandomisation from a logical point of view. For each logic L we introduce
a new logic BPL, bounded error probabilistic L, which is defined from L in a similar way as
BPP is defined from P. The randomness is introduced to the logic by letting formulas of
vocabulary τ speak about random expansions of τ -structures to a richer vocabulary τ ∪ ρ.
We also introduce variants RL, co-RL with one-sided bounded error and PL with unbounded
error, corresponding to other well known complexity classes.

Our main technical results are concerned with questions of derandomisation. By this we
mean upper bounds on the expressive power of randomised logics in terms of classical logics.
Trivially, BPL is at least as expressive as L, and if the two logics are equally expressive,
then we say that BPL derandomisable. More generally, if L′ is a (deterministic) logic that
is at least as expressive as BPL, then we say that BPL derandomisable within L′. We prove
that BPFO, bounded error probabilistic first-order logic, is not derandomisable within Cω

∞ω,
finite variable infinitary logic with counting. This implies that many of the standard logics
of finite model theory, like transitive closure logic and fixed-point logic, both with and
without counting, cannot be derandomised. Note that these results are in contrast to the
general belief that most standard complexity classes can be derandomised.

We then investigate whether BPFO can be derandomised on classes of structures with
built-in relations, such as ordered structures and arithmetic structures. We prove that
BPFO cannot be derandomised within MSO, monadic second-order logic, on structures
with built-in order. Furthermore, BPFO cannot be derandomised on structures with built-
in order and addition. Interestingly and nontrivially, BPFO can be derandomised within
MSO on structures with built-in order and addition. Behle and Lange [5] showed that the
expressive power of FO on classes of ordered structures with certain predefined relation
symbols corresponds to uniform subclasses of AC0, the class of problems decidable by cir-
cuit families of bounded depth, unbounded fan-in and polynomial size. In fact, for any
set R of built-in relations they show that FO[R] captures FO[R]-uniform AC0. Arguably

the most intensively studied uniformity condition on AC0 is dlogtime-uniform AC0, which
corresponds to FO[+,×], first-order logic with built-in arithmetic (Barrington et al. [3]).

The question of whether dlogtime-uniform BPAC0 can be derandomised is still open, but
there is a conditional derandomisation by Viola [39]. There are less uniform variants of

BPAC0 that can be proved to be derandomisable by standard arguments; cf. [1]. We prove

that the more uniform FO[+]-uniform AC0 is not derandomisable. This raises the question
of how weak uniformity must be for derandomisation to be possible.

In the last section of this paper, we turn to more standard questions of descriptive com-
plexity theory. We prove that BPIFP+C, the probabilistic version of fixed-point logic with
counting, captures the complexity class BPP, even on unordered structures. For ordered
structures, this result is a direct consequence of the Immerman-Vardi Theorem [18, 38], and
for arbitrary structures it follows from the observation that we can define a random order
with high probability in BPIFP+C. Still, the result is surprising at first sight because of its
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similarity with the open question of whether there is a logic capturing P, and because it is
believed that P = BPP. The caveat is that the logic BPIFP+C does not have an effective
syntax and thus is not a “logic” according to Gurevich’s [16] definition underlying the ques-
tion for a logic that captures P. Nevertheless, we believe that BPIFP+C gives a completely
adequate description of the complexity class BPP, because the definition of BPP is inher-
ently ineffective as well (as opposed to the definition of P in terms of the decidable set of
polynomially clocked Turing machines). We obtain similar descriptions of other probabilis-
tic complexity classes. For example, randomised logspace is captured by the randomised
version of deterministic transitive closure logic with counting.

Related work

As mentioned earlier, probabilistic complexity classes such as BPP have received very little
attention in descriptive complexity theory. There is an unpublished paper due to Kaye [22]
that gives a logical characterisation of BPP on ordered structures. Müller [30] and Mon-
toya (unpublished) study a logical BP-operator in the context of parameterised complexity
theory. What comes closest to our work “in spirit” and also in some technical aspects is
Hella, Kolaitis, and Luosto’s work on almost everywhere equivalence [17], which may be
viewed as a logical account of average case complexity in a similar sense that our work
gives a logical account of randomised complexity. There is a another logical approach to
computational complexity, known as implicit computational complexity, which is quite dif-
ferent from descriptive complexity theory. Mitchell, Mitchell, and Scedrov [28] give a logical
characterisation of BPP by a higher-order typed programming language in this context.

Let us emphasise that the main purpose of this paper is not the definition of new
probabilistic logics, but an investigation of these logics in a complexity theoretic context.

2. Preliminaries

2.1. Structures and Queries

A vocabulary is a finite set τ of relation symbols of fixed arities. A τ -structure A consists
of a finite set V (A), the universe of the structure, and, for all R ∈ τ , a relation R(A) on
A whose arity matches that of R. Thus we only consider finite and relational structures.
Let σ, τ be vocabularies with σ ⊆ τ . Then the σ-restriction of a τ -structure B is the σ-
structure B|σ with universe V (B|σ) := V (B) and relations R(B|σ) := R(B) for all R ∈ σ.
A τ -expansion of a σ-structure A is a τ -structure B such that B|σ = A. For every class C of
structures, C[τ ] denotes the class of all τ -structures in C. A renaming of a vocabulary τ is
a bijective mapping r from τ to a vocabulary τ ′ such that for all R ∈ τ the relation symbol
r(R) ∈ τ ′ has the same arity as R. If r : τ → τ ′ is a renaming and A is a τ -structure then
Ar is the τ ′-structure with V (Ar) := V (A) and r(R)(Ar) := R(A) for all R ∈ τ .

We let 6, + and × be distinguished relation symbols of arity two, three and three,
respectively. Whenever any of these relations symbols appear in a vocabulary τ , we demand
that they be interpreted by a linear order and ternary addition and multiplication relations,
respectively, in all τ -structures. To be precise, let [a, b] be the set {a, a + 1, . . . , b} for
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a ≤ b ∈ N, and denote by Nn the {6,+,×}-structure with

V (Nn) = [0, n − 1], 6(Nn) = {(a, b) | a 6 b} and

+(Nn) = {(a, b, c) | a+ b = c}, ×(Nn) = {(a, b, c) | a · b = c}.
We demand A|{6,+,×}∩τ

∼= (N|A|)|{6,+,×}∩τ for all τ -structures A. We call structures whose
vocabulary contains any of these relation symbols ordered, additive and multiplicative, re-
spectively. We say that a formula ϕ(x) with exactly one free variable x defines an element
if in every structure it is satisfied by exactly one element. Since we may identify the ele-
ments of an ordered structure uniquely with natural numbers it makes sense to say, e.g.,
that “ϕ(x) defines a prime number” or “ϕ(x) defines a number ≤ logO(1) |A|”, and we will
sometimes do so.

On ordered structures, every fixed natural number i can be defined in first-order logic
by a formula ϕi-th using only three variables as follows:

ϕ0-th(x) := ∀y x ≤ y

ϕ(n+1)-th(x) := ∃y∀z
(
ϕn-th(y) ∧ ¬(x=̇y) ∧ y ≤ x∧

((y ≤ z ∧ z ≤ x) → (y=̇z ∨ y=̇z))
)
.

Because the ordering may be defined using the addition relation, the same holds true on
additive structures, again using only three variables.

A k-ary τ -global relation is a mapping R that associates a k-ary relation R(A) with
each τ -structure A. A 0-ary τ -global relation is usually called a Boolean τ -global relation.
We identify the two 0-ary relations ∅ and {()}, where () denotes the empty tuple, with the
truth values false and true, respectively, and we identify the Boolean τ -global relation R
with the class of all τ -structures A with R(A) = true. A k-ary τ -query is a k-ary τ -global
relation Q preserved under isomorphism, that is, if f is an isomorphism from a τ -structure
A to a τ -structure B then for all ~a ∈ V (A)k it holds that ~a ∈ Q(A) ⇐⇒ f(~a) ∈ Q(B).

2.2. Logics

A logic L has a syntax that assigns a set L[τ ] of L-formulas of vocabulary τ with each

vocabulary τ and a semantics that associates a τ -global relation QL[τ ]
ϕ with every formula

ϕ ∈ L[τ ] such that for all vocabularies σ, τ, τ ′ the following three conditions are satisfied:

(1) For all ϕ ∈ L[τ ] the global relation QL[τ ]
ϕ is a τ -query.

(2) If σ ⊆ τ then L[σ] ⊆ L[τ ], and for all formulas ϕ ∈ L[σ] and all τ -structures A it holds

that QL[σ]
ϕ (A|σ) = QL[τ ]

ϕ (A).
(3) If r : τ → τ ′ is a renaming, then for every formula ϕ ∈ L[τ ] there is a formula ϕr ∈ L[τ ′]

such that for all τ -structures A it holds that QL[τ ]
ϕ (A) = QL[τ ′]

ϕr (Ar).

Condition (ii) justifies dropping the vocabulary τ in the notation for the queries and just
write QL

ϕ. For a τ -structure A and a tuple ~a whose length matches the arity of QL
ϕ, we

usually write A |=L ϕ[~a] instead of ~a ∈ QL
ϕ(A). If QL

ϕ is a k-ary query, then we call ϕ a

k-ary formula, and if QL
ϕ is Boolean, then we call ϕ a sentence. Instead of A |=L ϕ[()] we

just write A |=L ϕ and say that A satisfies ϕ. We omit the index L if L is clear from the
context.

A query Q is definable in a logic L if there is an L-formula ϕ such that Q = QL
ϕ. Two

formulas ϕ1, ϕ2 ∈ L[τ ] are equivalent (we write ϕ1 ≡ ϕ2) if they define the same query. We
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say that a logic L1 is weaker than a logic L2 (we write L1 ≦ L2) if every query definable in
L1 is also definable in L2. Similarly, we define it for L1 and L2 to be equivalent (we write
L1 ≡ L2) and for L1 to be strictly weaker than L2 (we write L1 � L2). The logics L1 and L2

are incomparable if neither L1 ≦ L2 nor L2 ≦ L1.

Remark 2.1. Our notion of logic is very minimalistic, usually logics are required to meet
additional conditions (see [8] for a thorough discussion). In particular, we do not require
the syntax of a logic to be effective. Indeed, the main logics studied in this paper have an
undecidable syntax. Our definition is in the tradition of abstract model theory (cf. [4]);
proof theorists tend to have a different view on what constitutes a logic.

We assume that the reader has heard of the standard logics studied in finite model
theory, specifically first-order logic FO, second-order logic SO and its fragments Σ1

k,monadic
second-order logic MSO, transitive closure logic TC and its deterministic variant DTC, least,
inflationary, and partial fixed-point logic LFP, IFP, and PFP, and finite variable infinitary
logic Lω

∞ω. For all these logics except LFP there are also counting versions, which we denote
by FO+C, TC+C, . . ., PFP+C and Cω

∞ω, respectively. Only familiarity with first-order logic
is required to follow most of the technical arguments in this paper. The other logics are
more or less treated as “black boxes”. We will say a bit more about some of them when
they occur later. The following diagram shows how the logics compare in expressive power:

FO � DTC � TC � LFP ≡ IFP � PFP � Lω
∞ω

� � � � � �
FO+C � DTC+C � TC+C � IFP+C � PFP+C � Cω

∞ω.
(2.1)

Furthermore, MSO is strictly stronger than FO and incomparable with all other logics
displayed in (2.1).

2.3. Complexity theory

We assume that the reader is familiar with the basics of computational complexity theory
and in particular the standard complexity classes such as P and NP. Let us briefly review the
class BPP, bounded error probabilistic polynomial time, and other probabilistic complexity
classes: A language L ⊆ Σ∗ is in BPP if there is a polynomial time algorithm M , expecting
as input a string x ∈ Σ∗ and a string r ∈ {0, 1}∗ of “random bits”, and a polynomial p such
that for every x ∈ Σ∗ the following two conditions are satisfied:

(i) If x ∈ L, then Prr∈{0,1}p(|x|)
(
M accepts (x, r)

)
≥ 2

3 .

(ii) If x 6∈ L, then Prr∈{0,1}p(|x|)
(
M accepts (x, r)

)
≤ 1

3 .

In both conditions, the probabilities range over strings r ∈ {0, 1}p(|x|) chosen uniformly at
random. The choice of the error bounds 1/3 and 2/3 in (i) and (ii) is somewhat arbitrary,
they can be replaced by any constants α, β with 0 < α < β < 1 without changing the
complexity class. (To reduce the error probability of an algorithm we simply repeat it
several times with independently chosen random bits r.)

Hence BPP is the class of all problems that can be solved by a randomised polynomial
time algorithm with bounded error probabilities. RP is the class of all problems that can
be solved by a randomised polynomial time algorithm with bounded one-sided error on
the positive side (the bound 1/3 in (ii) is replaced by 0), and co-RP is the class of all
problems that can be solved by a randomised polynomial time algorithm with bounded
one-sided error on the negative side (the bound 2/3 in (i) is replaced by 1). Finally, PP
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is the class we obtain if we replace the lower bound ≥ 2/3 in (i) by > 1/2 and the upper
bound ≤ 1/3 in (ii) by ≤ 1/2. Note that PP is not a realistic model of “efficient randomised
computation”, because there is no easy way of deciding whether an algorithm accepts or

rejects its input. Indeed, by Toda’s Theorem [37], the class PPP contains the full polynomial
hierarchy. By the Sipser-Gács Theorem (see [24]), BPP is contained in the second level of
the polynomial hierarchy. More precisely, BPP ⊆ Σp

2 ∩Πp
2. It is an open question whether

BPP ⊆ NP. However, as pointed out in the introduction, there are good reasons to believe
that BPP = P.

2.4. Descriptive complexity

It is common in descriptive complexity theory to view complexity classes as classes of
Boolean queries, rather than classes of formal languages. This allows it to compare logics
with complexity classes. The translation between queries and languages is carried out as
follows: Let τ be a vocabulary, and assume that 6 6∈ τ . With each ordered (τ ∪ {6})-
structure B we can associate a binary string s(B) ∈ {0, 1}∗ in a canonical way. Then with
each class C ⊆ O[τ ∪{6}] of ordered τ structures we associate the language L(C) := {s(B) |
B ∈ C} ⊆ {0, 1}∗. For a Boolean τ -query Q, let Q6 :=

{
B ∈ O[τ ∪ 6]

∣
∣ B|τ ∈ Q

}
be the

class of all ordered (τ ∪{6})-expansions of structures in Q. We say that Q is decidable in a
complexity class K if the language L(Q6) is contained in K. We say that a logic L captures
K if for all Boolean queries Q it holds that Q is definable in L if and only if Q is decidable
in K. We say that L is contained in K if all Boolean queries definable in L are decidable in
K.

Remark 2.2. Just like our notion of “logic”, our notion of a logic “capturing” a complexity
class is very minimalistic, but completely sufficient for our purposes. For a deeper discussion
of logics capturing complexity classes we refer the reader to one of the textbooks [9, 15, 19,
25].

3. Randomised logics

Throughout this section, let τ and ρ be disjoint vocabularies. Relations over ρ will be
“random”, and we will reserve the letter R for relation symbols from ρ. We are interested
in random (τ ∪ ρ)-expansions of τ -structures. For a τ -structure A, by X (A, ρ) we denote
the class of all (τ ∪ ρ)-expansions of A. We view X (A, ρ) as a probability space with the
uniform distribution. Note that we can “construct” a random X ∈ X (A, ρ) by deciding
independently for all k-ary R ∈ ρ and all tuples ~a ∈ V (A)k with probability 1/2 whether
~a ∈ R(X). Hence if ρ = {R1, . . . , Rk}, where Ri is ri-ary, then a random X ∈ X (A, ρ) can

be described by random bitstring of length
∑k

i=1 n
ri , where n := |V (A)|. We are mainly

interested in the probabilities
Pr

X∈X (A,ρ)
(X |= ϕ)

that a random (τ ∪ρ)-expansion of a τ -structure A satisfies a sentence ϕ of vocabulary τ ∪ρ
of some logic.

Definition 3.1. Let L be a logic and 0 ≤ α ≤ β ≤ 1.
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(1) A formula ϕ ∈ L[τ ∪ρ] that defines a k-ary query has an (α, β]-gap if for all τ -structures
A and all ~a ∈ V (A)k it holds that

Pr
X∈X (A,ρ)

(X |= ϕ[~a]) ≤ α or Pr
X∈X (A,ρ)

(X |= ϕ[~a]) > β.

(2) The logic P(α,β]L is defined as follows: For each vocabulary τ ,

P(α,β]L[τ ] :=
⋃

ρ

{
ϕ ∈ L[τ ∪ ρ]

∣
∣ ϕ has an (α, β]-gap

}
,

where the union ranges over all vocabularies ρ disjoint from τ . To define the semantics,
let ϕ ∈ P(α,β]L[τ ]. Let k, ρ such that ϕ ∈ L[τ∪ρ] and ϕ is k-ary. Then for all τ -structures
A,

QP(α,β]L
ϕ (A) :=

{
~a ∈ V (A)k

∣
∣ Pr

X∈X (A,ρ)
(X |=L ϕ[~a]) > β

}
.

It is easy to see that for every logic L and all α, β with 0 ≤ α ≤ β ≤ 1 the logic P(α,β]L

satisfies conditions (i)–(iii) from Subsection 2.2 and hence is indeed a well-defined logic. We
let

PL := P(1/2,1/2]L and RL := P(0,2/3]L and BPL := P(1/3,2/3]L.

We can also define a logic P[α,β)L and let co-RL := P[1/3,1)L. The following lemma, which is
an adaptation of classical probability amplification techniques to randomised logics, shows
that for reasonable L the strength of the logic P(α,β]L does not depend on the exact choice
of the parameters α, β. This justifies the arbitrary choice of the constants 1/3, 2/3 in the
definitions of RL and BPL.

Lemma 3.2. Let L be a logic that is closed under conjunctions and disjunctions. Then for
all α, β with 0 < α < β < 1 it holds that P(0,β]L ≡ RL and P(α,β]L ≡ BPL.

Proof. Let τ an ρ = {R1, . . . , Rk} be disjoint relational vocabularies and let ϕ ∈ L[τ ∪ ρ].
For any n ≥ 1 we define a new vocabulary

ρ(n) := {R(i)
j | 1 ≤ i ≤ n, 1 ≤ j ≤ k},

where the arity of R
(i)
j is that of Rj ∈ ρ. Using the renaming property with the renaming

r(i) : (τ ∪ ρ) → (τ ∪ ρ(n))
that leaves τ fixed and maps Rj ∈ ρ to R

(i)
j we get sentences ϕ(i), which are the sentence

ϕ with every occurrence of Rj replaced by R
(i)
j . Since L is closed under conjunctions and

disjunctions, for every 0 < l ≤ n there is an L[τ ∪ ρ(n)]-sentence
ϕ(n,l) :=

∨

I⊆[n]
|I|=l

∧

i∈I

ϕ(i)

which is satisfied iff at least l of the ϕ(i) are satisfied. Notice that the ϕ(i) use distinct
random relations, so they are satisfied independently of each other.

Clearly, if Pr(X |= ϕ) = 0 then also Pr(X |= ϕ(n,l)) = 0, because we assumed l ≥ 1.
On the other hand, if Pr(X |= ϕ) > β for some β ∈ (0, 1), then

Pr(X |= ϕ(n,1)) = 1− (1− Pr(X |= ϕ))n (3.1)

> 1− (1− β)n, (3.2)
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and this bound can be made arbitrarily close to 1 by choosing n sufficiently large. This
proves the claim about RL.

For BPL, notice that if ϕ has an (α, β]-gap for some any 0 < α < β < 1, then for any
0 < α′ < β′ < 1 there is an n ∈ N such that

ϕ(n,⌈β−α

2
⌉)

has an (α′, β′]-gap. In fact, the Chernoff bound (see, e.g., [29]) gives very sharp estimates
on n in terms of α, β, α′ and β′, though we only need the mere existence of such an n
here.

3.1. First observations

We start by observing that the syntax of BPFO and thus of most other logics BPL is unde-
cidable. This follows easily from Trakhtenbrot’s Theorem (see [9] for similar undecidability
proofs):

Observation 3.3. For all α, β with 0 ≤ α < β < 1 and all vocabularies τ containing at
least one at least binary relation symbol, the set BP(α,β]FO[τ ] is undecidable.

Proof Sketch. Assume for some 0 ≤ α < β < 1 and some τ containing a binary relation
symbol E the set BP(α,β]FO[τ ] is decidable.

By Trakhtenbrot’s Theorem (cf. [9, Thm. 7.2.1]), the satisfiability of a first-order
formula ψ ∈ FO[τ ] on finite graphs is undecidable. Let G be the class of all graphs with
exactly one isolated vertex, and let ϕG be a sentence defining G on finite structures. By
standard arguments, whether a formula is satisfiable in G or on is undecidable.

Let p = a · 2−k ∈ (α, β) with a ∈ N be a dyadic rational in the interval (α, β), and let
R1, . . . , Rk be unary random relations. For every S ⊂ [k], the sentence

ψS := ∃x



(∀y ¬Exy) ∧
∧

i∈S

Rix ∧
∧

i 6∈S

¬Rix





has satisfaction probability 2−k in all structures in G. Thus for a family S = {S1, . . . , Sa}
of a distinct subsets of [k], the sentence

ψS :=
∨

S∈S

ψS

is satisfied with probability p on such structures. But now the sentence

ϕG → (χ ∧ ψS)

is in BP(α,β]FO[τ ] if and only if χ is not satisfiable on G.
For each n, let Sn be the ∅-structure with universe V (Sn) := {1, . . . , n}. Recall the

0-1-law for first order logic [12, 14]. In our terminology, it says that for each vocabulary ρ
and each sentence ϕ ∈ FO[ρ] it holds that

lim
n→∞

Pr
X∈X (Sn,ρ)

(X |= ϕ) ∈ {0, 1}

(in particular, this limit exists). There is also an appropriate asymptotic law for formulas
with free variables. This implies that on structures with empty vocabulary, PFO (and in
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particular BPFO) has the same expressive power as FO. As there is also a 0-1-law for the
logic Lω

∞ω [23], we actually get the following stronger statement:

Observation 3.4. Every formula ϕ ∈ PLω
∞ω[∅] is equivalent to a formula ϕ′ ∈ FO[∅].

As FO+C is strictly stronger than FO even on structures of empty vocabulary, this obser-
vation implies that there are queries definable in FO+C, but not in (B)PLω

∞ω.
Furthermore, the Sipser-Gács Theorem [24] that BPP ⊆ Σp

2 ∩ Πp
2, the fact that the

fragment Σ1
2 of second-order logic captures Σp

2 [11, 36], and the observation that BPFO ≦

BPP imply the following:

Observation 3.5. BPFO ≦ Σ1
2.

We will use Lautemann’s proof of the Sipser-Gács Theorem in section 5 in the context
of monadic second-order logic.

We close this section by observing that randomised logics without probability gaps are
considerably more powerful than their non-randomised counterparts:

Observation 3.6. Let K be a class of finite structures such that there is a first-order
formula ϕc(x) defining a single element in each structure of K. Then every Σ1

1-query on K
can be defined in PFO.

Proof. Let ϕ be a Σ1
1-query on K, i.e., ϕ is of the form ∃X1 · · · ∃Xkψ, where the Xi are

relation variables and ψ is first-order. We replace each of the Xi by a random relation Ri

of the same arity to get a new sentence ϕ′ and introduce an extra unary random relation
R0. Then ϕ is equivalent to the PFO-sentence

∃x(R0x ∧ ϕc(x)) ∨ ϕ′,

because the first part is satisfied with probability exactly 1/2.

Toda’s Theorem [37] that the polynomial hierarchy is contained in PPP suggests that,
in fact, every second-order query is definable in PFO. However, Toda’s proof does not carry
over easily to the PFO-case. Observation 3.4 suggests that some technical condition such
as definability of an element of the structure is necessary to separate PFO from FO at all.
One example of such a class K is the class of all ordered structures, with ϕc(x) defining the
minimum element.

4. Separation results for BPFO

In this section we study the expressive power of the randomised logics RFO, co-RFO, and
BPFO. Our main results are the following:

• RFO is not contained in Cω
∞ω

• BPFO is not contained in MSO on ordered structures
• RFO is stronger than FO on additive structures

A forteriori, the first and the third result also hold with BPFO instead of RFO, and the
constructions used in their proofs are also definable in co-RFO.

It turns out that we need three rather different queries to get these separation results.
For the first two queries this is obvious, because every query on ordered structures is
definable in Cω

∞ω. The third query (on additive structures) is readily seen to be definable
in MSO. In fact, in Section 5 we show the following:
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• Any BPFO-definable query on additive structures can be defined in MSO.

4.1. RFO is not contained in C
ω
∞ω

Formulas of the logic Cω
∞ω may contain arbitrary (not necessarily finite) conjunctions and

disjunctions, but only finitely many variables, and counting quantifiers of the form ∃≥nx ϕ
(“there exists at least n x such that ϕ”). For example, the class of finite structures of even
cardinality can be defined in this logic by the sentence

∨

k≥0

(

∃≥2kxx=̇x
)

∧ ¬
(

∃≥2k+1xx=̇x
)

.

Theorem 4.1. There is a class T CFI of structures that is definable in RFO and co-RFO,
but not in Cω

∞ω.

Recall that by Observation 3.4 there also is a class of structures definable in FO+C ≤
Cω
∞ω, but not in BPFO.

Our proof of Theorem 4.1 is based on a well-known construction due to Cai, Fürer,
and Immerman [6], who gave an example of a Boolean query in P that is not definable in
Cω
∞ω. We modify their construction in a way reminiscent to a proof by Dawar, Hella, and

Kolaitis [7] for results on implicit definability in first-order logic, and obtain a query T CFI
definable in (co-)RFO, but not in Cω

∞ω. Just like in Cai, Fürer and Immerman’s original
proof, the reason why Cω

∞ω can not define our query T CFI is its inability to choose one out
of a pair of two elements. Using a random binary relation this can – with high probability
– be done in FO.

We first review the construction of [6] and then show how to modify it to suit our needs.
Given a graph G = (V,E), Cai et al. construct a new graph G′, replacing all vertices and
edges of G with certain gadgets. We shall call graphs G′ resulting in this fashion CFI-graphs,
and will from now on restrict ourselves to connected 3-regular graphs G and CFI-graphs
resulting from these.

vertex

a1 b1

a b

a b

a b

edge

edge
group

centre
group

a2 b2 a3 b3

12 13

a b

twisted
∅

straight
23

Figure 1: The gadgets for CFI-graphs. Dashed ellipses indicate groups of equivalent ver-
tices. Vertex labels are not part of the actual structure.

The construction is as follows: For each vertex in G, we place a copy of the gadget
shown on the left of Figure 1 in G′. It has a group of four nodes (henceforth called centre
nodes) plus three pairs of nodes, which are to be thought of as ends of the three edges
incident with that node. For the time being, we think of the pairs as ordered from 1 to
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3 and distinguish between the two nodes in each pair, say one of them is the a-node, the
other one being the b node. Each of the four centre nodes is connected to one node from
each pair, and each of them to an even number of a’s. To illustrate this, the centre nodes
are labelled with the even subsets of {1, 2, 3}. We also introduce an equivalence relation
(or colouring, if you like) of nodes as shown in Figure 1, so any isomorphism of the gadget
necessarily permutes nodes within each edge group and the centre group.

3

1

1

2 3

2 3

2

1

2 3

1

a3

b3

a2

b2

b1a1

∅ 12 13 23

a3

b3

a2

b2

b1a1

∅ 12 13 23

a3

b3

b2

a2

b1a1

∅ 12 13 23

a3

b3

b2

a2

b1a1

∅ 12 13 23

edget
(straight)

edget
(twisted)

Figure 2: The CFI-graph construction for a part of a graph. Edge and nodes labels are not
part of the actual graph.

For each edge in G, we connect the a- and b-nodes in the corresponding pairs as shown
on the right of Figure 1. We say an edge is “twisted” if the a-node of one pair is connected
to the b-node of the other and vice versa. This completes our construction of G′. For
definiteness, when we speak of an edge group we mean an equivalence class of size two,
and by a centre group we mean one of size four. An edget is a pair of edge groups which
form an edge gadget as on the right of Figure 1. Figure 2 shows the result of applying this
construction to a small subgraph (a vertex with its three neighbours).

Without the a- and b-labels, we cannot decide which of the edges have been twisted.
In fact there are only two isomorphism classes of CFI-graphs derived from G, namely those
with an even number of edges twisted and those with an odd number (we call the latter
ones twisted CFI-graphs). This relies on the fact that isomorphisms of the gadget on the
left of Figure 1 are exactly those permutations swapping an even number of a’s and b’s.
Since we assume G to be connected, we can twist edges along a path between two nodes
adjacent to twisted edges, reducing the number of twisted edges by two; cf. [6, Lemma 6.2]
for details.

By [6, Thm. 6.4], if the original graph G has no separator of size at most s then the two
isomorphism classes of CFI graphs derived from it can not be distinguished by a sentence
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ϕ ∈ Cs
∞ω, i.e., by a Cω

∞ω sentence with at most s distinct variables. In P, on the other
hand, twisted CFI-graphs can easily be recognised: Choose exactly one node from each
edge group and label this one a and the other one b. A centre node is connected to an even
number of a’s if and only if all four nodes in its centre group are. In this case we call the
centre group even, otherwise we call it odd. Then a CFI-graph is twisted if and only if

(number of odd centre groups + number of twisted edgets) is odd.

We aim for a (co-)RFO-sentence which defines exactly the twisted connected 3-regular
CFI-graphs. In view of the above P-algorithm, we are done if we can

• express connectedness of the graph,
• count edgets and centre groups modulo two and
• choose one representative from each centre group, edge group and edget.

For counting modulo two and to get representatives for centre groups and edgets, we
augment the structures with a Boolean algebra in the following way: Let τ be the vocabulary
{E,∼, <,⊑, P,O}, with unary P and O, and binary E, ∼, < and ⊑. Let CFI be the class
of structures A such that

• E defines a 3-regular, connected CFI-graph on V (A) \ P (A),
• (P (A),⊑) is a Boolean algebraB, and O is true exactly for its members of even cardinality
• < defines a linear order on the set of atoms of B (and no other element of A is <-related
to any other).

• ∼ defines an equivalence relation, where each equivalence class
− contains one atom of B and the nodes of one edget
− or contains one atom of B and the nodes of one centre group
− or consists of a single non-atom of B.
In particular, the number of atoms of the Boolean algebra B is equal to the number of
edgets plus the number of centre groups. Note also that we can distinguish the two edge
groups in an edget because only nodes in the same edge group are connected to nodes in
the same centre group.

Theorem 4.2. The class CFI is definable in FO. The subclass T CFI of twisted CFI-
graphs is definable in BPFO but not in Cω

∞ω.

Proof. That CFI is definable is easy to establish, the only subtlety being that B allows us
to quantify over sets of centre groups, which makes connectedness expressible.

The proof that T CFI is not definable in Cω
∞ω is the same as in [6]; it is unaffected by the

additional structure. Note that because the atoms are ordered, the Boolean algebra is rigid,
i.e., it has no non-trivial automorphism, therefore the isomorphism group of a CFI-graph
is not changed by adding the Boolean algebra.

It remains to show that twistedness can be defined in BPFO. We pick one vertex from
each edge group by viewing a random binary relation R as assigning an m-bit number to
each vertex, where m is the number of atoms in the Boolean algebra. From each pair, we
choose the vertex with the smaller number, expressed by

ξ(x) := ∃y
(

x ∼ y ∧ ∃z
(
α(z) ∧ ¬Rxz ∧Ryz ∧ ∀w(w < z → (Rxw ↔ Ryw))

))

,

where α(x) is an FO-formula satisfied exactly by the atoms of the Boolean algebra. It is
easy to see that if the random relation R assigns a different set of atoms to the two vertices
in each edge group, then ξ succeeds in picking exactly one vertex from each edge group, and

12



boolean algebra perfectly matched set

M = PA
N = A \ PA

· · ·

Figure 3: The structures in B contain a Boolean algebra and a perfectly matched set.

twistedness can then be checked by looking at the O-predicate of the element of B which
contains exactly the atoms equivalent to twisted centre groups or twisted edgets.

To prove that the resulting formula has a large probability gap, we need to establish a
high probability of success only for structures in the class CFI, because this class is FO-
definable. But in such structures, the probability that the two nodes of an edge group are
assigned the same number is 2−m, so by a union bound the probability that we successfully
pick one node from each group is at least

1−m2−m → 1

because there are less than m edgets. Furthermore, we can check in FO whether there is
an edge group whose members we can not distinguish, and choose to invariably reject or
accept in these cases, resulting in an RFO or co-RFO sentence, respectively.

4.2. BPFO on ordered structures is not contained in MSO

In the presence of a linear order, any query becomes definable in Lω
∞ω, and the query T CFI

becomes definable even in FO. However, randomisation adds expressive power to FO also
on ordered structures:

Theorem 4.3. There is a class B of ordered structures that is definable in BPFO, but not
in MSO.

Remember that monadic second-order logic MSO is the the fragment of second-order
logic that allows quantification over individual elements and sets of elements.

Let σEP≤ := {≤, E, P}, with binary relations ≤ and E, and a unary predicate P . We
define two classes B′, B of σEP≤-structures (cf. Figure 4.2):
B′ is the class of all σEP≤-structures A for which

(1) E defines a perfect matching on the set M := P (A)
(2) the set N := V (A) \ P (A) forms a Boolean algebra with the relation E and
(3) no x ∈ N and y ∈M are E-related
(4) ≤ defines a linear order on the whole structure, which puts the M before the N and

orders M in such a way that matched elements are always successive.

It is easy to see that the class B′ is definable in FO. B is the subclass of B′ whose elements
satisfy the additional condition

2|M | ≥ |N |2 . (4.1)

We will prove that B is definable in BPFO, but not in MSO. To prove that B is definable
in BPFO, we will use the following lemma:

13



m = n2

m =
n2

4

p ≤ 0.2

p ≥ 0.5

m

nc

n

Figure 4: The Birthday Paradox with ǫ1 = 0.2, ǫ2 = 0.5 and c = 4. Here, p denotes
Pr(f is injective).

Lemma 4.4 (Birthday Paradox). Let m,n ≥ 1 and let F : [n] → [m] be a random function
drawn uniformly from the set of all such functions.

(1) For any ǫ1 > 0 and c > 2 ln 1
ǫ1

there is an nc ≥ 1 such that if n > nc and m ≤ n2

c we
have

Pr(F is injective) ≤ ǫ1

(2) For any ǫ2 > 0, if m ≥ n2

2ǫ2
, then

Pr(F is injective) ≥ 1− ǫ2

Proof. For the first part, we note that

Pr(F injective) =
n−1∏

i=0

(

1− i

m

)

≤
n−1∏

i=0

exp

(

− i

m

)

= exp

(

−n(n− 1)

2m

)

.

For the second part, note that

Pr(F not injective) = Pr
(

F (i) = F (j) for all i < j
)

≤
∑

i<j

1

m
=

(
n

2

)
1

m
≤ n2

2m
.

Proof of Theorem 4.3. To see that B is not definable in MSO, we use two simple and well-
known facts about MSO. The first is that for every q ≥ 0 there are natural numbers
p,m such that for all k ≥ 0, a plain linear order of length m is indistinguishable from the
linear order of length m+ k · p by MSO-sentences of quantifier rank at most q. The same
fact also holds for linear orders with a perfect matching on successive elements, because
such a matching is definable in MSO anyway. The second fact we use is a version of the
Feferman-Vaught Theorem (cf. [27, Thm. 1.5(ii)]):

Theorem 4.5. Suppose two τ -structures U and V satisfy the same MSO-sentences of
quantifier rank up to q, and let W be another τ -structure. Denote by U ⊔W (resp. V ⊔W )
the disjoint union of U (resp. V ) and W . Then U ⊔ W and V ⊔ W satisfy the same
MSO-sentences of quantifier rank up to q.

The theorem also holds for the ordered disjoint union ⊔< instead of the disjoint union,
but in our case the elements of the individual structures in the disjoint union are definable
anyway. If we put these two facts together, we see that for every q ≥ 0 there are p,m
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such that for all k, n the structure A ∈ B with parts M,N of sizes m, n, respectively, is
indistinguishable from the structure A′ with parts of sizes m + k · p and n. We can easily
choose k and n in such a way that A ∈ B and A′ 6∈ B.

It remains to prove that B is definable in BPFO. Consider the sentence

ϕinj := ∀x∀y
(

x=̇y ∨ Px ∨ Py ∨ ∃z
(
Pz ∧ ¬(Rxz ↔ Ryz)

))

,

which states that the random binary relation R, considered as a function

f : N → Pow(M), x 7→ {y ∈M |Rxy}
from N to subsets of M , is injective. By the definition of R, the function f is drawn
uniformly from the set of all such functions. If we fix |N |, the probability for f to be
injective increases monotonically with |M |. Furthermore, for every structure in B′, the size
of N and M are a power of two and an even number, respectively. Thus either

2|M | ≤ 1

4
|N |2 or 2|M | ≥ |N |2 ,

and this factor of 4 translates into a probability gap for ϕinj in all sufficiently large structures
in B′, by Lemma 4.4 with ǫ1 = 0.2, ǫ2 = 0.5 and c = 4. The remaining finitely many
structures in B′ can be dealt with separately.

4.3. RFO is stronger than FO on additive structures

Recall that an additive structure is one whose vocabulary contains a ternary relation +,
such that A|+ is isomorphic to ([0, |A| − 1], {(a, b, c) | a+ b = c}).
Theorem 4.6. There is a class A of additive structures that is definable in RFO and
co-RFO, but not in FO.

Our proof uses the following result:

Theorem 4.7 (Lynch [26]). For every k ∈ N there is an infinite set Ak ⊆ N and a dk ∈ N
such that for all finite Q0, Q1 ⊆ Ak with |Q0| = |Q1| or |Q0| , |Q1| > dk the structures
(N,+, Q0) and (N,+, Q1) satisfy exactly the same FO-sentences of quantifier rank at most
k.

Here (N,+, Qi) denotes a {+, P}-structure with ternary + and unary P , where + is
interpreted as above and P is interpreted by Qi. For a finite set M ⊆ N we denote by
maxM the maximum element of M . By relativising quantifiers to the maximum element
satisfying P , we immediately get the following corollary:

Corollary 4.8. Let k, Ak, dk, Q0 and Q1 be as above. Then the (finite) structures
([0,maxQ0],+, Q0) and ([0,maxQ1],+, Q1) satisfy exactly the same FO-sentences of quan-
tifier rank at most k.

We call a set Q ⊆ N sparse if |Q ∩ {n, . . . , 3n}| ≤ 1 for all n ≥ 0. Note that ifQ is sparse
and finite, then |Q| ≤ log3(maxQ)+1. It is easy to see that there is an FO[{+, P}]-sentence
ϕsparse such that

([0,maxQ],+, Q) |= ϕsparse ⇔ Q is sparse

for all finite Q ⊆ N.
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Proof of Theorem 4.6. We define the following class of additive {+, P}-structures:
A = {([0,maxQ],+, Q) |Q is finite, sparse and |Q| is even},

with + defined as usual. It follows immediately from Corollary 4.8 that A is not definable
in FO.

It remains to prove that A is definable in (co-)RFO. We consider a binary random
relation R on Q = ([0,maxQ],+, Q) for some finite Q ⊆ N.

Each element a ∈ [0,maxQ] defines a subset of Q, namely the set of b ∈ Q for which
(a, b) ∈ R(Q) holds. If Q is a sparse set, it has

2|Q| ≤ 2log3(maxQ)+1 ≤ maxQ

2 ln(maxQ)

many subsets, and by standard estimates on the coupon collector’s problem (see, e.g., [29];
or use a union-bound argument), if maxQ is large enough, with high probability every
subset of Q is defined by some element of [0,maxQ]. We may check in FO whether this is
actually the case. If so, we use the random relation R and the linear order induced by + to
check whether Q is even. Otherwise we reject (accept) to get an RFO- (co-RFO-)sentence.

5. BPFO is contained in MSO on additive structures

In this section, we prove our first and only nontrivial derandomisation result. It comple-
ments the result of Section 4.2 by saying that, on additive structures, every BPFO-sentence
is equivalent to an MSO-sentence.

Theorem 5.1. Let τ be a finite relational vocabulary containing a ternary relation + and
let ϕ be a BPFO[τ ]-sentence. Then there exists an MSO-sentence ψ such that on additive
structures A

A |= ϕ ⇔ A |= ψ.

We first use Nisan’s pseudorandom generator for constant depth circuits [32] to reduce

the number of random bits to logO(1) n; throughout this section, n will denote the size of
the input structure. We then derandomise the resulting formula following Lautemann’s
argument in [24]. The second-order quantifier depth of the resulting MSO formula does not
depend on the input formula ϕ.

In MSO[+], one can define a multiplication relation (see [35, Lemma 5.4]) and thus
quantify over pairs of elements in [0,

√
n]. We only need the existence of such a pairing

function, a slightly weaker form of which is made precise in the following lemma:

Lemma 5.2 (Pairing Lemma). There are MSO[+]-formulas ϕp(x) and ϕ〈·,·,·〉(x, y, z, w)
such that on additive structures A

• ϕp(x) defines a number p satisfying
√

|A|
2

≤ p ≤
√

|A|.
Moreover, p is a prime number.

• For every b, c < p there is a unique m such that ϕ〈·,·,·〉(0, b, c,m) is satisfied. Furthermore,

for every m there is a unique tuple (a, b, c) ∈ [0, p − 1]3 such that ϕ〈·,·,·〉(a, b, c,m) is
satisfied. Henceforth we write m = 〈a, b, c〉 for this.
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Proof. In MSO[+], we may define a formulas ϕX=〈x〉(X,x) and ϕdivides(x, y) stating that X
is the set of multiples of x and x divides y, respectively. We may thus check whether x is
a prime number. Furthermore, we may define the set of powers of a prime number x: It is
the largest set containing only numbers whose only prime divisor is x.

Then p is the largest prime number whose set of powers contains at least one element
other that 0 and itself. Any number m ∈ [0, p2 − 1] may be written as m = bp + c with
b, c ∈ [0, p− 1]. Both b and c are definable in MSO[+]; notice that b is the largest divisor of
m − c smaller than p, or 0 if m < p. For m ≥ p2 we define m = 〈a, b, c〉 with a ∈ {1, 2, 3}
and m− ap2 = 〈0, b, c〉.

Whenever we write p in this section, we mean the p defined by the ϕp above. The Pairing
Lemma allows us to quantify over binary relations on [0, p− 1] ∼= Fp. In particular, we may
define addition and multiplication modulo p, i.e., there are MSO[+]-formulas ϕ+(x, y, z)
and ϕ×(x, y, z) such that for a, b, c ∈ Fp,

A |= ϕ+(a, b, c) ⇔ a+ b ≡ c (mod p)

and
A |= ϕ×(a, b, c) ⇔ a · b ≡ c (mod p).

For the proof of Theorem 5.1 we may assume that the BPFO-sentence ϕ contains only
one random relation, say R of arity r. In fact, using the formulas ϕi-th defining the i-th
element of an additive structure (cf. section 2.1) we may pack several random relations
R1, . . . , Rk of arities r1, . . . , rk into one random relation R of arity r = 1+max{r1, . . . , rk}
by replacing every occurrence of Rix1 . . . xri by

∃y (ϕi-th(y) ∧R y . . . y
︸ ︷︷ ︸

(r−ri) times

x1 . . . xri).

We first apply a result by Nisan [32] to reduce the number of random bits:

Lemma 5.3. For every r, d ∈ N and ǫ > 0 there are n0 ∈ N and MSO[+]-formulas ϕl(x)
and ϕprg(S, x1, . . . , xr), where S is a set variable, such that in every additive structure A of
size n > n0,

• ϕl defines a number l ≤ logO(1) n and
• if ϕ is an FO[τ ∪ {R}]-sentence of quantifier rank ≤ d, where τ is some finite relational
vocabulary and R is of arity r, then

∣
∣
∣
∣

Pr
X∈X (A,{R})

(X |= ϕ)− Pr
S⊆[l]

(A |= ϕ′(S))

∣
∣
∣
∣
< ǫ,

where ϕ′ is the MSO[+]-formula obtained from ϕ by replacing every occurrence of R~x by
ϕprg(S, ~x).

Proof. For any fixed structure A of size n we may construct a polynomial-sized circuit
Cϕ,A of depth ≤ d which describes the behaviour of ϕ on (τ ∪ {R})-extensions of A. The
circuit has nr inputs indexed by the elements of V (A)r, and an input vector ~x denotes the
(τ ∪ {R})-extension B~x of A given by

~a ∈ R(B~x) iff x~a = 1.

Then Cϕ,A(~x) evaluates to 1 iff B~x |= ϕ.
Nisan [32] gave a pseudorandom generator for such circuits which hinges on the following

lemma:
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circuit

pseudo−random
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y3y1 yly2

x1

⊕

i∈A1
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⊕

i∈A2
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⊕

i∈An
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1 m. . . . . . . . .

. . .

. . .

. . .
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Figure 5: Nisan’s pseudo-random bit generator. The sets Ai ⊆ {1, . . . , l} form a partial-
(log n,m)-design, i.e., they satisfy |Ai| = m and |Ai ∩Aj| ≤ log n for all 1 ≤ i 6=
j ≤ n.

Lemma 5.4 (restated from [32, Lemma 2.2]). Let {Cn} be a family of circuits of depth d
and polynomial size, let m = m(n) = (log n)d+3, l = l(n) and suppose for each n the sets

A
(n)
1 , . . . , A

(n)
n ⊆ [l] satisfy

•
∣
∣
∣A

(n)
i

∣
∣
∣ = m for all 1 ≤ i ≤ n and

•
∣
∣
∣A

(n)
i ∩A(n)

j

∣
∣
∣ ≤ log n for all 1 ≤ i 6= j ≤ n.

Then

|Pr(Cn(~x) = 0)− Pr(Cn(⊕i∈A1yi, . . . ,⊕i∈Anyi) = 0)| ≤ 1

nc

for any c ∈ N and large enough n. Here, the first probability is taken uniformly over all
strings ~x ∈ {0, 1}n, whereas the second is taken uniformly over all strings ~y ∈ {0, 1}l.

The resulting pseudorandom generator is depicted in Figure 5. Families of sets A
(n)
i

satisfying the above conditions are called partial-(log n,m)-designs. Nisan gives a construc-

tion with l = m2 = logO(1) n, which drastically reduces the size of the probability space,
i.e., the number of random bits needed. We now show how his construction can be defined
in MSO[+].

On [0, p−1], we may define a formula ϕlog(x, y) which is satisfied iff x = ⌈log2 y⌉. Using
this and the fact that

2⌈log p⌉ − 1 ≤ ⌈log n⌉ ≤ 2⌈log p⌉+ 2,

we let ϕm(x) and ϕl(x) be two formulas defining natural numbers m and l such that

• m is a prime number between (r2⌈log n⌉)d+3 and 2(r2(⌈log n⌉+ 3)d+3

• l = m2

Using the pairing function ϕ〈·,·,·〉 we may assume that R is a 3r-ary relation which we
only need to define for elements in Fp. That is, we define ϕprg(S, x1, . . . , xr) by

∃z1 · · · ∃z3r x1 = 〈z1, z2, z3〉 ∧ . . . ∧ xr = 〈z3r−2, z3r−1, z3r〉 ∧ ϕ′
prg(S, z1, . . . , z3r)

The formula ϕ′
prg(S, ~z) takes the parity of a subset of S indexed by ~z:

ϕ′
prg(S, ~z) := “ |S ∩ ψ(A; ~z)| is even”,
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where ψ(x, ~z) is an MSO[+]-formula and ψ(A; ~z) := {x | A |= ψ(x, ~z)}; evenness may be
expressed in MSO on ordered structures. By Lemma 5.4, we are done if we can define a
formula ψ(x, ~z) such that

(i) ψ(A; ~z) ⊆ [l] for all ~z ∈ F3r
p ,

(ii) |ψ(A; ~z)| = m for all ~z ∈ F3r
p , and

(iii) |ψ(A; ~z1) ∩ ψ(A; ~z2)| ≤ log n for all ~z1 6= ~z2 ∈ F3r
p ,

which means the sets ψ(A; ~z) form a partial-(log n,m)-design. We use the same construction
as Nisan: We interpret the tuple ~z as a polynomial f~z ∈ Fm[ξ] of degree ≤ log n. The set
ψ(A; ~z) is then the graph of this polynomial, namely

ψ(A; ~z) = {(ξ, f~z(ξ)) | ξ ∈ Fm} ⊆ F2
m,

and we identify F2
m with [l]. We first encode the coefficients of f~z into a set variable X as

follows: Consider the binary representations

zi =
∑

j≥0

zi,j2
j with zi,j ∈ {0, 1}

of the zi. We can define an MSO[+]-sentence ϕpack(~z,X) which holds iff X, interpreted as
a binary relation over Fp, holds exactly for pairs (a, b) with

0 ≤ a ≤ ⌈log p⌉ and b =
∑

1≤i≤3r

zi,a2
i−1.

Thus for each 0 ≤ a ≤ ⌈log p⌉ there is exactly one b = b(a) with (a, b) ∈ X, and all
bs are between 0 and 23r, and thus in Fm if n is large enough. We may now define an
MSO[+]-sentence ϕeval(X,u, v) which, for these Xs, holds iff

v = f~y(u) =
∑

0≤a<⌈log p⌉

b(a)ua,

with addition and multiplication according to Fm. Putting these ingredients together, we
define

ψ(x, ~z) = ∃X∃u∃v “0 ≤ u, v < m” ∧ ϕpack(~z,X) ∧ ϕeval(X,u, v) ∧ “x = u ·m+ v”,

which is easily verified to satisfy conditions (i) to (iii) above.

So far we have reduced the number of random bits from nr to l = logO(1) n, and these
are conveniently packed into the first l bits of a single set variable S. We may now follow
Lautemann’s proof [24] to derandomise this sentence.

Proof of Theorem 5.1. After applying Lemma 5.3 we are left with MSO[+]-sentences ϕl and

ϕ′ such that ϕl defines a number l ≤ logO(1) n and ϕ′ has a free set variable S. We may
assume that for all additive structures A,

either Pr
S⊆[l]

(A |= ϕ′(S)) <
1

l
or Pr

S⊆[l]
(A |= ϕ′(S)) > 1− 1

l
, (5.1)

because otherwise we may use independent repetition and majority vote to obtain these
bounds. To be precise, let χ(S, i, j) be defined by

χ(S, i, j) := (0 ≤ i < l) ∧ (0 ≤ j < l) ∧ ∃z(z=̇i · l + j ∧ Sz).
That is, we divide the first l2 bits of S into l blocks of l bits each, and let χ(S, i, j) select
the i-th bit of the j-th block. We replace each occurrence of Sx in ϕ′ by χ(S, i, x) to obtain
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a formula ϕ̃′(S, i). Because l is of order logO(1) n, we may quantify over pairs of elements
of [0, l − 1], which allows us to express the formula

ϕ̄′(S) = “ϕ̃′(S, i) holds for at least half of the i ∈ [0, l − 1]”

in MSO[+], e.g., by stating that there exists a matching M on [0, l − 1] such that

• if {i, j} ∈M , then exactly one of ϕ̃′(S, i) and ϕ̃′(S, j) holds and
• all i ∈ [0, l − 1] for which ϕ̃′(S, i) does not hold are matched by M .

Then ϕ̄′ uses l2 = logO(1) n many bits of S, and by the Chernoff bound on the tails of the
binomial distribution it satisfies (5.1), even with l replaced by l2 (details can be found in
[2, sec. 7.4]).

We identify subsets of [l] with vectors in Fl
2. Let M ⊆ F

l
2 be the set of vectors for

which A |= ϕ′(S) holds. Equation (5.1) translates into

|M | <
∣
∣
F

l
2

∣
∣

l
or |M | >

(

1− 1

l

) ∣
∣
∣F

l
2

∣
∣
∣ .

For a vector ~y ∈ Fl
2 we define

~y ⊕M := {~x⊕ ~y | ~x ∈M}
to be the set M translated by ~y. We claim the following:

(a) If |M | <
∣
∣
F

l
2

∣
∣ /l, then for every choice of vectors ~y1, . . . , ~yl we have

⋃

1≤i≤l

(~yi ⊕M) 6= Fl
2.

(b) If |M | > (1− 1/l)
∣
∣
F

l
2

∣
∣, then there are vectors ~y1, . . . , ~yl such that

⋃

1≤i≤l

(~yi ⊕M) = Fl
2.

The first claim follows immediately from |~y ⊕M | = |M |. For (b), assume that we randomly
choose the vectors ~yi independently and uniformly from F

l
2. For any vector ~x ∈ Fl

2 we have

Pr
(

~x 6∈
⋃

(~yi ⊕M)
)

=
∏

i

Pr(~x 6∈ ~yi ⊕M)

≤
(
1

l

)l

,

by the independence of the ~yi. But then the expected number of vectors not in
⋃
(~yi ⊕M)

is

E

[∣
∣
∣F

l
2 \

⋃

(~yi ⊕M)
∣
∣
∣

]

=
∑

~x∈Fl
2

Pr
(

~x 6∈
⋃

(~yi ⊕M)
)

≤
∣
∣
F

l
2

∣
∣

ll
=

(
2

l

)l

< 1,

so there must be a choice of ~yis such that this number is zero, i.e.,
⋃
(~yi ⊕M) = Fl

2.
Again using the formula χ(S, i, j), we can pack the vectors ~y1, . . . , ~yl into a single

existentially quantified set variable and check that
⋃
(~yi ⊕M) = Fl

2 as follows:

ϕ′′ = ∃Y ∀X∃i ϕ′(X ⊕ χ(Y, i, ·)),
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where ϕ′(X ⊕ χ(Y, i, ·)) is the formula ϕ′(S) with every occurrence of Sx replaced by

(Xx ∧ χ(Y, i, x)) ∨ (¬Xx ∧ ¬χ(Y, i, x)).
Claims (a) and (b) imply that

A |= ϕ′′ ⇔ Pr(A |= ϕ′(S)) > 1− 1

l
,

which completes the proof.

6. A logic capturing BPP

In this section, we prove that the logic BPIFP+C captures the complexity class BPP. Tech-
nically, the results of this section are closely related to results in [17].

Counting logics like FO+C and IFP+C are usually defined via two-sorted structures,
which are equipped with an initial segment of the natural numbers of appropriate length.
The expressive power of the resulting logic turns out to be rather robust under changes in
the exact definition, see [33] for a detailed survey of this. However, we will only need the
limited counting ability provided by the Rescher quantifier, which goes back to a unary
majority quantifier defined in [34], see [33].

We let FO(J ) be the logic obtained from first-order logic by adjoining a generalised
quantifier J , the Rescher quantifier. For any two formulas ϕ1(~x) and ϕ2(~x), where ~x is a
k-tuple of variables, we form a new formula

J ~x.ϕ1(~x)ϕ2(~x).

Its semantics is defined by

A |= J ~x.ϕ1(~x)ϕ2(~x) iff
∣
∣
∣{~a ∈ V (A)k | A |= ϕ1[~a]}

∣
∣
∣ ≤

∣
∣
∣{~a ∈ V (A)k |A |= ϕ2[~a]}

∣
∣
∣ . (6.1)

The logic IFP(J ) is defined similarly.

Lemma 6.1. Let R be a 6-ary relation symbol. There is a formula ϕ≤(x, y) ∈ FO(J )[{R}]
such that

lim
n→∞

Pr
A∈X(Sn,{R})

(

{(a, b)
∣
∣ A |= ϕ≤[a, b]

}
is a linear order of V (A)

)

= 1.

(Recall that Sn is the ∅-structure with universe {1, . . . , n}. Thus X(Sn, {R}) just denotes
the set of all {R}-structures with universe {1, . . . , n}.)
Proof. We let

ϕ≤(x, y) := J x1 . . . x5.Rxx1 . . . x5Ryx1 . . . x5.
To see that ϕ≤(x, y) defines an order with high probability, let A be a structure with universe
V (A) = {1, . . . , n}. For each a ∈ V (A), let

Xa :=
∣
∣{~a ∈ V (A)5 | A |= Ra~a.}

∣
∣

Then A |= ϕ≤(a, b) iff Xa ≤ Xb, and ϕ≤ linearly orders A iff the Xa are pairwise distinct.
But for a 6= b ∈ V (A), the random variables Xa and Xb are independent and each is
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binomially distributed with parameters p = 1/2 and m = n5, and thus

Pr(Xa = Xb) =

m∑

k=0

(
1

2m

(
m

k

))2

=
1

22m

∑
(
m

k

)2

=
1

22m

∑
(
m

k

)(
m

m− k

)

=
1

22m

(
2m

m

)

= Θ

(
1√
m

)

,

where the final approximation can be found, for example, in [13]. The second part now

follows by a union bound over the
(n
2

)
= Θ(m2/5) pairs a 6= b.

Theorem 6.2. The logic BPIFP(J ) captures BPP.

Proof. BPIFP(J ) is contained in BPP, because a randomised polynomial time algorithm
can interpret the random relations by using its random bits.

For the other direction, let Q be a Boolean query in BPP. This means that there is a
randomised polynomial time algorithm M that decides the query Q≤ of ordered expansions
of structures in Q. We may view the (polynomially many) random bits used by M as
part of the input. Then it follows from the Immerman-Vardi Theorem that there is a
BPIFP-sentence ψM defining Q≤. Note that, by the definition of Q≤, this sentence is order-
invariant. We replace every occurrence of ≤ in ψM by the formula ϕ≤(x, y) of Lemma 6.1,
which with high probability defines a linear order on the universe.

It is easy to see that BPIFP+C is also contained in BPP and that IFP(J ) ≦ IFP+C.
Thus we get the following corollary.

Corollary 6.3. BPIFP+C = BPIFP(J ), and both capture BPP.

Remark 6.4. Lemma 6.1 also implies that BPLω
∞ω(J ) ≡ BPCω

∞ω, because, in the presence
of an ordering, a quantifier of the form ∃≥nxϕ may be spelled out as

∨

S⊂N
|S|=n

∧

i∈S

∃x (ϕi-th(x) ∧ ϕ(x)),

where ϕi-th(x) defines i-th element in the linear order (cf. section 2.1).
In fact, because the formulas ϕi use only three distinct variables independent of i, any

query is definable in Lω
∞ω on ordered structures, as well as on BPCω

∞ω.

7. Summary and Open Problems

Our main motivation for introducing randomised logics was to apply tools from finite model
theory to problems in computational complexity theory, and possibly vice versa. Because
most capturing results from descriptive complexity remain valid when both the logic and
the complexity class they involve are randomised in the same way, our definitions are indeed
suitable for this purpose. In particular, the capturing results by Barrington et al. [3] for
FO[+,×] and Behle and Lange [5] for FO[≤] and FO[+] fall into this category.

This asks for a more detailed investigation of the expressive power of randomised logics.
For example, we have shown that BPFO[+] can not be derandomised, while conditional de-

randomisation results for dlogtime-uniform BPAC0 (cf. [39]) suggest that BPFO[+,×] might
be derandomisable. As this question seems to elude currect techniques, a first step might be
to find some relation R for which BPFO[R] is derandomisable. Note that derandomisability
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of non-uniform BPAC0 implies the existence of an infinite sequence (Ri)i≥1 of relations for
which BPFO[R1, R2, . . .] is derandomisable.

One obstruction to proving results about randomised logics is that, for example, Eh-
renfeucht-Fräıssé games become quite complicated on structures with both a random and
a non-random part. In [10], the first author proves some non-definability results for BPFO,
namely that, on vocabularies with only unary relations, BPFO can be derandomised, and
that the ordering relation ≤ can not be defined in BPFO from its corresponding successor
relation. A natural next step would be to prove whether BPFO can be derandomised on
word models or not.
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