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ABSTRACT. We extend the classical notion of solvability to a A-calculus equipped with
pattern matching. We prove that solvability can be characterized by means of typability
and inhabitation in an intersection type system P based on non-idempotent types. We show
first that the system P characterizes the set of terms having canonical form, i.e. that a
term is typable if and only if it reduces to a canonical form. But the set of solvable terms
is properly contained in the set of canonical forms. Thus, typability alone is not sufficient
to characterize solvability, in contrast to the case for the A-calculus. We then prove that
typability, together with inhabitation, provides a full characterization of solvability, in the
sense that a term is solvable if and only if it is typable and the types of all its arguments
are inhabited. We complete the picture by providing an algorithm for the inhabitation
problem of P.

1. INTRODUCTION

In these last years there has been a growing interest in pattern \-calculi [25, 20, 13, 21, 19, 24]
which are used to model the pattern-matching primitives of functional programming languages
(e.g. OCAML, ML, Haskell) and proof assistants (e.g. Coq, Isabelle). These calculi are
extensions of the A-calculus: abstractions are written as Ap.t, where p is a pattern specifying
the expected structure of the argument. In this paper we restrict our attention to pair
patterns, which are expressive enough to illustrate the challenging notion of solvability in
the framework of pattern A-calculi.

We define a calculus with explicit pattern-matching called A,. The use of explicit
pattern-matching becomes very appropriate to implement different evaluation strategies,
thus giving rise to different programming languages with pattern-matching [13, 14, 3]. In all
of them, an application (Ap.t)u reduces to t[p/ul, where the constructor [p/u] is an explicit
matching, defined by means of suitable reduction rules, which are used to decide if the
argument u matches the pattern p. If the matching is possible, the evaluation proceeds
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by computing a substitution which is applied to the body t. Otherwise, two cases may
arise: either a successful matching is not possible at all, and then the term t[p/u] reduces
to a failure, denoted by the constant fail, or pattern matching could potentially become
possible after the application of some pertinent substitution to the argument u, in which
case the reduction is simply blocked. For example, reducing (A(z1,z2).21)(Ay.y) leads to a
failure, while reducing (A\(z1,z2).z1)y leads to a blocking situation.

We aim to study solvability in the Ap-calculus. Let us first recall this notion in the
framework of the A-calculus: a closed (i.e., without free variables) A-term t is solvable
if there is n > 0 and there are terms uy, ..., u, such that tu;...u, reduces to the identity
function. Closed solvable terms represent meaningful programs: if t is closed and solvable,
then t can produce any desired result when applied to a suitable sequence of arguments.
The relation between solvability and meaningfulness is also evident in the semantics: it is
sound to equate all unsolvable terms, as in Scott’s original model Dy, [26]. This notion can
be easily extended to open terms, through the notion of head context, which does the job of
both closing the term and then applying it to an appropriate sequence of arguments. Thus
a A-term t is solvable if there is a head context H such that, when H is filled by t, then H[t]
is closed and reduces to the identity function.

In order to extend the notion of solvability to the Aj-calculus, it is clear that pairs have
to be taken into account. A relevant question is whether a pair should be considered as
meaningful. At least two choices are possible: a lazy semantics considering any pair to be
meaningful, or a strict one requiring both of its components to be meaningful. We chose a
lazy approach, in fact in the operational semantics of A, the constant fail is different from
(fail,fail): if a term reduces to fail we do not have any information about its result,
but if it reduces to (fail,fail) we know at least that it represents a pair. In fact, being a
pair is already an observable property, which in particular is sufficient to unblock an explicit
matching, independently from the solvability of its components. As a consequence, a term t
is defined to be solvable iff there exists a head context H such that H[t] is closed and reduces
to a pair. Thus for example, the term (t,t) is always solvable, also when t is not solvable.
Our notion of solvability turns out to be conservative with respect to the same notion for
the A-calculus (see Theorem 5.6).

In this paper we characterize solvability for the Ap-calculus through two different and
complementary notions related to a type assignment system with non-idempotent intersection
types, called P. The first one is typability, that gives the possibility to construct a typing
derivation for a given term, and the second one is inhabitation, which gives the possibility
to construct a term from a given typing. More precisely, we first supply a notion of
canonical form such that reducing a term to some canonical form is a necessary but not a
sufficient condition for being solvable. In fact, canonical forms may contain blocking explicit
matchings, so that we need to guess whether or not there exists a substitution being able to
simultaneously unblock all these blocked forms. Our type system P characterizes canonical
forms: a term t has a canonical form if and only if it is typable in system P (Theorem 3.11).
Types are of the shape Ay — Ay — ... — A, — o, for n > 0, where A; are multisets of
types and o is a type. The use of multisets to represent the non-idempotent intersection is
standard, namely [o71, ..., 0p,] is just a notation for o1 N ... N o,,. By using the type system
P we can supply the following characterization of solvability (Theorem 5.5): a closed term
t in the Ap-calculus is solvable if and only if t is typable in system P, let say with a type
of the shape Ay — Ay — ... = A, — o (where o is a type derivable for a pair), and for all
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1 <14 < n there is a term t; inhabiting the type A;. In fact, if u; inhabits the type A;, then
tuj...u,, resulting from plugging t into the head context [u;...u,, reduces to a pair. The
extension of this notion to open terms is obtained by suitably adapting the notion of head
context of the A-calculus to our pattern calculus.

The property of being solvable in our calculus is clearly undecidable. More precisely,
the property of having a canonical form is undecidable, since A, extends the A-calculus,
the A-terms having a Ap-canonical form are exactly the solvable ones, and solvability of
A-terms is an undecidable property. But our characterization of solvability through the
inhabitation property of P does not add a further level of undecidability: in fact we prove
that inhabitation for system P is decidable, by designing a sound and complete inhabitation
algorithm for it. The inhabitation algorithm presented here is a non trivial extension of
the one given in [10, 11] for the A-calculus, the difficulty of the extension being due to the
explicit pattern matching.

Relation with A-calculus. Let us recall the existing characterizations of solvability for
the A-calculus:

(1) : H[t] reduces to the identity for an appropriate head context H;
(2) : t has a head normal form;
(3) : t can be typed in a suitable intersection type system.

Statement (1) is the definition of solvability, Statement (2) (resp. (3)) is known as the
syntactical (resp. logical) characterization of solvability. The syntactical characterization, i.e.
(2) & (1) has been proved in an untyped setting using the standardization theorem (see [6]).
The logical characterization, i.e. (3) < (1), uses the syntactical one: it is performed by
building an intersection type assignment system characterizing terms having head normal
form (see for example [16]). Then the implication (3) = (2) corresponds to the soundness
of the type system (proved by means of a subject reduction property), while (2) = (3)
states its completeness (proved by subject expansion).

Traditional systems in the literature characterizing solvability for A-calculus are for
example [7, 22|, where intersection is idempotent. Exactly the same results hold for non-
idempotent intersection types, for example for the type system [15, 10], which is a restriction
of P to A-terms.

How does the particular case of the A-calculus fit in the “solvability = typability +
inhabitation” frame? We address this issue in the following digression. Let ¢ be a type which
is peculiar to some subset of “solvable” terms, in the sense that any closed term of type ¢
reduces to a solvable term in that set (in the present work, such a subset contains all the
pairs, in the case of the A-calculus, it is the singleton containing only the identity). Then a
type 7 of the form Ay — ... = A, — ¢ may be viewed as a certificate, establishing that, by
applying a closed term t : 7 to a sequence of closed arguments u; : A;, one gets a term that
reduces to a term in such a subset. This is summarized by the slogan “solvability = typability
+ inhabitation”. In the case of the call-by-name A-calculus, however, typability alone already
guarantees solvability. The mismatch is only apparent, though: any closed, head normal
term of the A-calculus, i.e. any term of the shape Ax1...x,.xt1... .t (n,m > 0), may be
assigned a type of the form Ay — ... — A, — ¢+ where all the A;’s are empty except the
one corresponding to the head variable x;, which is of the shape [[] = ... =[] = ¢]. The

——

m
problems of finding inhabitants of the empty type and of [| — ... — [] — ¢ are both trivial.
—_—

m



74 ANTONIO BUCCIARELLI®, DELIA KESNER?, AND SIMONA RoNcHI DELLA Rocca © Vol. 17:1
b bl

Hence, “solvability = typability 4+ inhabitation” does hold for the A-calculus, too, but the
“inhabitation” part is trivial in that particular case. This is due, of course, to the fact that
the head normalizable terms of the A-calculus coincide with both the solvable terms and the
typable ones.

But in other settings, a term may be both typable and non solvable, the types of (some
of) its arguments being non-inhabited (Theorem 5.1).

Related work. This work is an expanded and revised version of [12]. In particular:

e The reduction relation on Ap-terms in this paper is smaller. In particular, the new
reduction system uses reduction at a distance [1], implemented through the notion of list
contexts.

e Accordingly, the type system P in this paper and the corresponding inhabitation algorithm
are much simpler. In particular, the use of idempotent/persistent information on the
structure of patterns is no more needed.

Non-idempotent intersection types are also used in [9] to derive strong normalization of a
call-by-name calculus with constructors, pattern matching and fixpoints. A similar result
can be found in [5], where the completeness proof of the (strong) call-by-need strategy
in [4] is extended to the case of constructors. Based on [12], the type assignment system
P was developed in [2] in order to supply a quantitative analysis (upper bounds and exact
measures) for head reduction.

Organization of the paper. Section 2 introduces the pattern calculus and its main
properties. Section 3 presents the type system and proves a characterization of terms
having canonical forms by means of typability. Section 4 presents a sound and complete
algorithm for the inhabitation problem associated with our typing system. Section 5 shows
a complete characterization of solvability using the inhabitation result and the typability
notion. Section 6 concludes by discussing some future work.

2. THE PAIR PATTERN CALCULUS

We now introduce the Ap-calculus, a generalization of the A-calculus where abstraction is
extended to patterns and terms to pairs. Pattern matching is specified by means of an
explicit operation. Reduction is performed only if the argument matches the abstracted
pattern.

Terms and contexts of the Aj-calculus are defined by means of the following grammars:

(Patterns) p,q = x|(p,q)

(Terms) t,u,v = x| Ap.t] (t,u)|tu]t[p/u]|fail

(List Contexts) L x= O] L[p/t]

(Term Contexts) C m= O] Ap.C|(C,t)| (t,C)|Ct|tC|C[p/t]|t[p/C]
(Head Contexts) H m= O] \p.H|Ht | H]p/t]

where x,y,z range over a countable set of variables, and every pattern p is linear, i.e. every
variable appears at most once in p. We denote by I the identity function Ax.x and by ¢
the auto applicative function Ax.xx. As usual we use the abbreviation Ap;y...pp.t1 ...ty for
Api(. .. (Apn-((t1t2) ... tm))...), n >0, m > 1. Remark that every A-term is in particular a
Ap-term.
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The operator [p/t] is called an explicit matching. The constant fail denotes the failure
of the matching operation. The sets of free and bound variables of a term t, denoted
respectively by fv(t) and bv(t), are defined as expected, in particular fv(Ap.t) := fv(t) \
fv(p) and fv(t[p/u]) := (fv(t) \ £v(p)) Ufv(u). A term t is closed if fv(t) = (). We write
p#q iff fv(p) Nfv(q) = 0. As usual, terms are considered modulo a-conversion. Given a
term (resp. list) context C (resp. L) and a term t, C[t] (resp. L[t]) denotes the term obtained
by replacing the unique occurrence of 0 in C (resp. L) by t, thus possibly capturing some
free variables of t. In this paper, an occurrence of a subterm u in a term t is understood as
the unique context C such that t = C[u].

The reduction relation of the Ap-calculus, denoted by —, is the C-contextual closure
of the following rewriting rules:

(aB) L[Ap-tlu —  L[t[p/u]]

(subs) t[x/u] = t{x/u}
(matchs)  €[(p1,p2)/L(ur,u2)]] — L[t[p1/w][pa/usl]
(matchy) t[({p1,p2)/L[Aq.u]] —  fail

(apps)  L[(t,w)]v = fail

(remy) t[(pl,p2>/fail] —  fail

(lemy) L[fail] —  fail

(lay) failt —  fail

(absy) Ap.fail —  fail

where t{x/u} denotes the substitution of all the free occurrences of x in t by u and L # [ in
rule (lemy). By a -conversion, and without loss of generality, no reduction rule captures free
variables, so that in particular bv(L) N fv(u) = () holds for rule (dB) and bv(L) Nfv(t) =
holds for rule (matchg). The rule (dB) triggers the pattern operation while rule (subs)
performs substitution, rules (matchy) and (matchy) implement (successful or unsuccessful)
pattern matching. Rule (app;) prevents bad applications and rules (remy), (lemy), (1ay)
and (absy) deal with propagation of failure in right/left explicit matchings, left applications
and abstractions, respectively. A redex is a term having the form of the left-hand side of
some rewriting rule —. The reflexive and transitive closure of — is written —*.

Lemma 2.1. The reduction relation — is confluent.

Proof. The proof is given in the next subsection. []

Normal forms N are terms without occurrences of redexes; they are formally defined
by the following grammars:

N = fail|O
O = M|Xp.O|(N.N)|O[p,q)/M]
M u= x| MO | M[(p,q)/M]

Lemma 2.2. A term t is an N-normal form if and only if t is a —-normal form, i.e. if
no rewriting rule is applicable to any subterm of t.

We define a term to be normalizing if it reduces to a normal form.

Let us notice that in a language like Ay, where there is an explicit notion of failure,
normalizing terms are not interesting from a computation point of view, since fail is a
normal form, but cannot be considered as the result of a computation. If we want to
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formalize the notion of programs yielding a result, terms reducing to fail cannot be taken
into consideration. Remark however that (fail,fail) is not operationally equivalent to
fail, according to the idea that a pair can always be observed, and so it can be considered
as a result of a computation. This suggests a notion of reduction which is lazy w.r.t. pairs,
i.e. that never reduces inside pairs. Indeed:

Definition 2.3. A term t is solvable if there exists a head context H such that H[t] is
closed and H[t] —* (u, V), for some terms u and v.

Therefore, a syntactical class of terms which is particularly interesting from an opera-
tional point of view is that of canonical forms. Canonical forms 7 (resp. pure canonical
forms 7') can be formalized by the following grammar:

J == 2p.J | (¢, %) | K| T[(p,9)/K] J = 2p.J" | (8,8) | K" | T'[(p,0)/K]
K:=x|Kt|K[(p,q)/K] K':=x|K't

where the notion of pure canonical form, i.e. of canonical form without nested matchings, is
a technical notion that will be useful in the sequel. A term t is in canonical form (or it is
canonical), written cf, if it is generated by 7, and it has a canonical form if it reduces
to a term in cf. Note that K-canonical forms cannot be closed. Also, remark that the cf of
a term is not unique, e.g. both (I,I I) and (I,I) are cfs of (Axy.(x,y)) I (I I). It is worth
noticing that N'NJ # 0 but neither N C J nor J C N. Latter, we will prove that solvable
terms are strictly contained in the canonical ones.

Example 2.4.

e The term (fail, fail) is both in normal and canonical form.

e The term fail is in normal form, but not in canonical form.

e The term (00, 0) is in canonical form, but not in normal form.

e The term \(x,y).I[(z1,22)/yI[(y1,y2)/2]] is in canonical form, but not in pure canonical
form.

The term A(x,y).I[(z1,22)/yI] is in pure canonical form.

We end this section by stating a lemma about (subs)-reduction that will be useful in
next Section.

Lemma 2.5. FEvery infinite —-reduction sequence contains an infinite number of (subs)-
reduction steps.

Proof. Tt is sufficient to show that the reduction system without the rule (subs), that we
call Ay, is terminating. Indeed, remark that t — 4, t’ implies v(t) > v(t’), where v(t) is
a pair whose first component is the number of applications of the form L[uj|ug in t (rules
dB,lay, app f), and whose second component is the sum of the sizes of patterns in t (rules
matchg,matchy, remys, absy, lems). These pairs are ordered lexicographically. []

2.1. The Confluence Proof. In order to show confluence of our reduction system — we
first simplify the system by erasing just one rule sg in such a way that confluence of — holds
if confluence of — deprived from —, holds. This last statement is proved by applying the
decreasing diagram technique [28]. We just change the name/order of the rules to make
easier the application of the decreasing technique.
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(s0) t[x/u] = t{x/u}

(s1) Ll[fail] — fail (L non-empty)
(s2) failt —  fail

(s3) Ap.fail s fail

(s4) L[(t,u)]v — fail

(s5) t[(p1,p2)/fail] s fail

(s6) t[(p1,p2)/L[Aq.u]] > fail

(87) t[<p1,p2>/L[<u1,u2>H = L[t[pl/ul][pz/uﬂ]

(ss) L[Ap.tJu —  Lit[p/u]]

We define Ay :=— \sp. We write t —, t/ iff t —,, t' or t =t

Lemma 2.6. For all to,t1,t2, if to —s, t1 and to — .4, t2, then there exists t3 s.t.
t1 —>f40 t3 and to —>_50 t3.

Proof. By induction on tg —5, t1, we only show the most significant cases:

t[x/u] =5 t{x/u} t[x/u] =5 t{x/u}
Ao \ Ao { Ao { Ao L«
tx/u] = t{x/u} tfx/u] = t{x/v'}

Lo[Li[fail][x/u]] —s, L2[Li[faill{x/u}]

S1 \L S1 \l/:
fail = fail (]

The following lemma can be found for example in [6].

Lemma 2.7. Let -, and =g, be two reduction relations. Suppose for any to,t1,ta such
that to =g, t1 and to =R, te, there exists t3 verifying t1 —%, t3 and ta —R, ts3. Then
—Rs and —R, commute, i.e. Vto,t1,t2 if to —>j;z2 t1 and tg —)%1 to, dt3 s.t. t1 _>>7k€1 ts3
and to —>%2 t3.

By Lemma 2.7 and 2.6 we obtain:
Corollary 2.8. The reduction relations — 5, and —5, commute.
Lemma 2.9. The reduction relation — 4, is confluent.

Proof. We use the decreasing diagram technique [28]. For that, we first order the reduction
rules of the system Ay by letting s; < s; iff i < j. We write t —; uif t =, u. Given
a set Z of natural numbers we write t —{; u if every — j;-reduction step in the sequence
t =57 u verifies j < Z, i.e. if for every —;-reduction step in the sequence 3i € 7 such that
j < i. The system — 4, is said to be decreasing iff for any to, t1, t2 such that to —; t; and
to —m to, there exists t3 such that t; %;{l}jm_};{l,m} t3 and to %;{m}jl_};{l,m} t3,

where t —; t/ means t —; t/ or t = t’.

We now show that the system — 4, is decreasing. As a matter of notation, we write for
example t —3—5 t’ to denote a rewriting sequence of length 2 or 1, composed respectively
by a —3-step followed by a —5-step or by a single —5-step.
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e We consider the cases tg —1 t1 and tg —; t2 (i = 1...8). We only show the interesting
ones.

Lg[Ll[fail]Kpl,pg)/failﬂ —1 fail
54 B =
Lo[fail] 5, fail

Lo[L1[fail][(p1, p2)/L[(u1, ug)]]] —1 fail
74 =
Lo[L[L1[fail][pi /ui][p2/ua]]]  —1 fail

All of them are decreasing diagrams as required.
The cases tg —2 t1 and tg —; to (i = 2...8) are straightforward.
The interesting case tg —3 t1 and to —; t2 (i = 3...8) is the following.

L[Ap.faillu —3 L[fail]u
8 1=2 4
L[faillp/u]] —1  fail

The interesting cases tg —4 t1 and to —; to (i = 4...8) are straightforward.

The interesting cases tg —5 t1 and to —; t2 (¢ = 5...8) are the following.

t[<P17P2>/L1[L2[<u1,f2>][<q1,q2>/fail]]] —5 t[<P17P2>/L¢1[fai1H
7 1=,5
L1[Lo[tlp1/w][p2/uz]][(q1, q2) /fail]]  —5 L1[fail]

Li[La[Ap.t][{q1,q2)/fail]lu —5 Li[fail]u
84 =24
Li[Lo[t[p/u]l[{a1, a2)/fail]] —51—  fail
o The cases for tg —¢ t1 and tg —, t2 (i =6...8) are similar.
e The cases for tg —7 t1 and tg —, t2 (¢ = 7...8) have the following reduction scheme:

. 4)7 . . *>7 .
74 74 8 4 8 4
. %7 . . —)7 .
e There is no other case. ]

Lemma 2.10 (Hindley-Rosen). Let —g, and —r, be two confluent reduction relations
which commute. Then —r,uR, S confluent.

Lemma 2.1. The reduction relation — is confluent.

Proof. Since —, is trivially confluent, — 4, is confluent by Lemma 2.9 and — 4, and —,
commute by Corollary 2.8, then — 4, U —5,=— turns out to be confluent by Lemma 2.10,
which concludes the proof. ]
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3. THE TYPE SYSTEM P

In this section we present a type system for the Ap-calculus, and we show that it characterizes
terms having canonical form, i.e. that a term t is typable if and only if t has canonical form.
The set 7 of types is generated by the following grammar:

(Types) 0,7 = a|r|A—o0o
(Product Types) 7 == x(A,B)
(Multiset Types) A,B = [ok|ker

where « ranges over a countable set of constants, K is a (possibly empty) finite set of
indices, and a multiset is an unordered list of (not necessarily different) elements. The arrow
type constructor — is right associative.

Typing environments, written I', A, A, are functions from variables to multiset types,
assigning the empty multiset to almost all the variables. The domain of I', written
dom(T"), is the set of variables whose image is different from []. We may write T#A iff
dom(I") N'dom(A) = 0.

Notation 3.1. Sometimes we will use symbols p, v to range over the union of types and
multiset types. We abbreviate by the constant o the product type x([],[]). We write U to
denote multiset union and C multiset inclusion; these operations take multiplicities into
account. Moreover, abusing the notation we will use € to denote both set and multiset
membership.

Given typing environments {I'; };cr, we write +;¢;I; for the environment which maps x
to UserTi(x). If T = (), the resulting environment is the one having an empty domain. Note
that I' + A and I +;¢5 A; are just particular cases of the previous general definition. When
I'#A we may write I'; A instead of I + A. The notation I\ A is used for the environment
whose domain is dom(I") \ dom(A), defined as expected; x;:A1;...; %y A, is the environment
assigning A; to x;, for 1 <4 < n, and [] to any other variable; I'|, denotes the environment
such that I'|y(x) = I'(x), if x € £v(p), [| otherwise. We also assume that I';x : [] is identical
to I'. Finally, I' C A means that x € dom(I") implies x € dom(A) and I'(x) C A(x).

The type assignment system P (cf. Figure 1) is a set of typing rules assigning both
types and multiset types of 7 to terms of Ap. It uses an auxiliary system assigning multiset
types to patterns. We write IIbT'Ft: 0 (resp. I>T Ft:Aand II>T IFp: A) to denote a
typing derivation ending in the sequent 't : o (resp. 't : Aand ' IF p: A), in which
case t (resp. p) is called the subject of IT and o or A its object. By abuse of notation,
F'Ft:o(resp. 'Ft:Aand I'lFp: A) also denotes the existence of some typing derivation
ending with this sequent. A derivation II>1"F t : u is meaningful if y is either a type
or a multiset # []. A pattern p is typable if there is a derivation whose subject is p; a
term t is typable if there is derivation whose subject is t and whose object is a type, or
equivalently if there is a a meaningful derivation whose subject is t. We will prove later that
every pattern is in fact typable (cf. Corollary 3.6). The measure of a typing derivation II,
written meas(II), is the number of all the typing rules in II except (many).

Rules (ax) and (app) are those used for the A-calculus in [10, 15]. Rule (abs) is the
natural extension to patterns of the standard rule for abstraction used in the A-calculus.
Linearity of patterns is guaranteed by the clause p#q in rule (pairpat). Rule (varpat) with
A =[] is essential to type erasing functions such as for example Ax.I. The rule (many) allows
to assign multiset types to terms, and it cannot be iterated; in particular note that every
term can be assigned with this typing rule the empty multiset type by setting K = (). The
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( ) 'Fp:A AlFq:B p#q( )
— —  (varpat airpat
x:AlFx:a OF D+AKF(pa): [x(B)] "

Patterns

Tk t:op)ke
ax) Tk Bt op)kex (many)

+rex T -t [orlker

x:[o]Fx:0o (

'tt:o TplFp:A F'Ft:A—0 AbFu:A
(abs) (app)
F'\TlpFApt:A—o F'+Aktu:o
't:A AFu:B 'tt:o TplFp:A Alu:A
(pair) (sub)
'+ AF (t,u): x(A,B) (C\T|p) +AFtp/u]: 0
Terms

Figure 1: The Type Assignment System P.

rule (pair) is self explanatory; note that, in case both the objects of its premises are empty
multisets, it allows to type a pair like (00, dd) without assigning types to its components,
thus (A(x,y).1)(d6,00) will be typable too, whereas 00 will not. This choice reflects the fact
that every pair is canonical, so any kind of pair needs to be typed. Rule (sub) is the more
subtle one: in order to type t[p/u], on one hand we need to type t, and on the other one,
we need to check that p and u can be assigned the same types.

The system is relevant, in the sense that only the used premises are registered in the
typing environments. This property, formally stated in the following lemma, will be an
important technical tool used to develop the inhabitation algorithm.

Lemma 3.2 (Relevance).

o IfT'IFp:A, then dom(I") C fv(p).
o IfT'Ft:0, then dom(I") C fv(t).

Proof. By induction on the typing derivations. []

A first elementary property of the type system is that head occurrences are always
typed:

Lemma 3.3. If H[t] is typable, then t is typable.

Proof. Let II>T F H[t] : 4 be meaningful, then it is easy to prove, by induction on H, that
the occurrence of t filling the hole of H is always typed. L]
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3.1. On the Typing of Patterns. The system P features two kinds of typings: those of
the form I' - t : u, for terms, and those of the form I' IF p : A, for patterns. These are,
of course, fundamentally dissymetric notions: F is undecidable and non deterministic (a
given term may have several types in a given environment), whereas I is decidable and
deterministic. As a matter of fact the unique type A such that I' I p : A could have been
denoted by I'(p), as we do for variables. However, we decided to keep the typing judgements
I'IF p : A since they allow for a clearer formulation of the typing rules of P. Some preliminary
definitions are given below to prove the uniqueness of the typing of patterns.
Given two patterns p and g, we say that p occurs in q if

e either p=q
e or g = (q1,q2) and either p occurs in q; or p occurs occurs in gs.

Remark that, by linearity of patterns, at most one of the conditions in the second item
above may hold.
If p occurs in q, the multiset type A} is defined as follows:

e Ab=A

q1 3 .
(a,a2) _ | Ap if p occurs in q;
o [x(8.B)l N { BY® if p occurs in g

o Af,ql’q2> is undefined if A is not of the shape [x(C,B)], for some C, B.

Typings of patterns can be characterized as follows:

Lemma 3.4. For every environment I and pattern p, T' I p : A if and only if dom(I") C fv(p)
and for all q occurring in p, AY is defined and T|q IF q : Af.

Proof. (=): If I" IF p : A, then dom(I") C fv(p) by Lemma 3.2. The proof is by induction
on p. If p = x then either x ¢ dom(I") and A =[], or I'(x) = B # [] and A = BX = B. If the
considered pattern is (p,q), then the last rule of its type derivation is

F'Fp:B AlFq:C p#q
I'+Al-(p,q) : [x(B,C)]

where A = [x(B,C)]. By the induction hypothesis dom(I') C fv(p), dom(A) C fv(q) and
for every p’,q’ occurring respectively in p and q, I'|y IF p’ : B}}z, and Aly IF g’ : Bg,. Note
that every pattern occurring in (p,q) is either (p,q) itself or it occurs in exactly one of the
two components of the pair. In the first case the proof is trivial. In the second one, since
the domains of I' and A are disjoint, by linearity of (p,q), I'l|y + Al = (I' + A)|py and
Iy + Alg = (I'+ A)]|q, and the proof follows by induction.

(<): The proof is again by induction on p. ]

Example 3.5. Let p= ((x,y),w) and I' =x: [a, 8],y : [y]. The (sub)patterns occurring in
p are x, y, w, (x,y) and p. In the typing environment I" restricted to its free variables, each
(sub)pattern can be typed by a unique multiset:

I‘|x = X [avﬁ] IFx: [avﬁ} F|(x,y> = Ik <X7Y> : [X([O&,ﬁ], [’Y])]
Iy = y:0hllFy:D0] Ilp = Tlkp: [x([x([a, 8], YD1 D]
Iy = 0lFw:]]
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If we denote by A the type [x([x([e, 5], [7])],[])], then it is easy to verify that:
]

A = [op My = [X([e 81,0
Ay = [ A = A
Ay = |

The following corollary follows immediately.

Corollary 3.6. For every pattern p and every environment I' such that dom(I") C fv(p),
there exists a unique multiset A such that I" I+ p : A.  Moreover if p = (p1,p2) then
A =[x (B,C)], for some B,C.

3.2. Main Properties of system P. We are going to define the notion of typed occurrences
of a typing derivation, which plays an essential role in the rest of this paper: indeed, thanks to
the use of non-idempotent intersection types, a combinatorial argument based on a measure
on typing derivations (cf. Lemma 3.10(1)), allows to prove the termination of reduction of
redexes occurring in typed occurrences of their respective typing derivations.

Given a typing derivation II>T' F C[u] : o, the occurrence of u in the hole of C is a typed
occurrence of II if and only if u is the subject of a meaningful subderivation of II. More
precisely:

Definition 3.7. Given a type derivation II, the set of typed occurrences of II, written

toc(II), is the set of contexts defined by induction on II as follows.

o If IT ends with (ax), then toc(II) := {J}.

o If IT ends with (pair) with subject (u,v) and premises II; (i = {1,2}) then
toc(Il) := {O} U {(C,v) | C € toc(Il1)} U {(u,C) | C € toc(Ily)}.

e If IT ends with (abs) with subject Ap.u and premise II' then
toc(Il) := {0} U {\p.C| C € toc(Il')} .

o If IT ends with (app) with subject tu and premises II; and IIy with subjects t and u
respectively, then toc(II) := {0} U {Cu | C € toc(Il;)} U{tC| C € toc(Ila)}.

e If IT ends with (sub) with subject t[p/u] and premises II; and Iy with subjects t and u
respectively, then toc(II) := {00} U {C[p/u] | C € toc(Il;)} U {t[p/C] | C € toc(Il2)}.

e If IT ends with (many), with premises II; (k € K), then toc(Il) := Ugegtoc(Ily).

Example 3.8. Given the following derivations IT and IT’, the occurrences [ and Uy belong
to both toc(IT) and toc(II') while x[J belongs to toc(II) but not to toc(Il').

y:[rlFy:T
x:[[r]=>71]kFx: 1] =T y:[rlFy:[7]

II>

x:[r] =7,y [rlbxy:T

H/DX:[H—>T]|—X:[]—>T DEy:]

x:[[]=>7bxy: 7

The type assignment system P enjoys the fundamental properties of subject reduction
and subject expansion, based respectively on substitution and anti-substitution properties
whose proofs can be found in [2].
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Lemma 3.9 (Substitution/Anti-Substitution Lemma).

(1) If llepTysx At o7 and y > Ty Fut A, then there exists 1T Ty + Iy > t{x/u} : 7
such that meas(Il) < meas(Il;) + meas(Il,).

(2) If I T F t{x/u} : 7, then there exist derivations II; and Il,, environments I'y, 'y and
multiset A such that Il >Ty;x: At 7, [IypTyFu:Aand D =Ty +T'y.

On the other hand, the measure of any typing derivation is not increasing by reduction.
Moreover, the measure strictly decreases for the reduction steps that are typed. This property
makes easier the proof of the “only if” part of Theorem 3.11.

Lemma 3.10.

(1) (Weighted Subject Reduction) IfII>T'Ht:7 and t — t/, then I'>T Ft': 7 and
meas(Il') < meas(IT). Moreover, if the reduced redex occurs in a typed occurrence of 11,
then meas(Il') < meas(II).

(2) (Subject Expansion) IfII'>T' 1t :0 andt — t/, then I>T Ft: 0.

Proof. Both proofs are by induction on the reduction relation t — t’. For the base cases
(reduction at the root position): the rules (dB), (subs), (match,) are treated exactly as in [2],
and the rules (matchy), (appys), (rems), (lemy), (1ay), (absy) do not apply since the term
t (resp. t’) would not be typable. All the inductive cases are straightforward, and in
particular, when the reduction occurs in an untyped position, then the measures of 1I and
IT' are equal. L]

Given II>T'F t : 7, the term t is said to be in I[I-normal form, also written II-nf, if
for every typed occurrence C € toc(II) such that t = C[u], the subterm u is not a redex.

We are now ready to provide the logical characterization of terms having canonical
form. This proof has been already given in [2], based on the property that, if a term has
a canonical form, then there is a head reduction strategy reaching this normal form. But
in order to make this paper self contained, we reformulate here the proof, using (for the
completeness proof) a more general approach, namely that every reduction strategy choosing
at least all the typed redexes reaches a canonical form.

Theorem 3.11 (Characterizing Canonicity). A term t is typable iff t has a canonical form.

Proof.

e (if) We reason by induction on the grammar defining the canonical forms.

We first consider -canonical forms, for which we prove a stronger property, namely
that for every t € IC, for every o there is an environment I" such that I' - t : 0. We reason
by induction on the grammar defining K.

If t = x, the proof is straightforward. If t = vu, then by the 4.h. there is a typing
derivation I' - v : [] — 0. Since to every term the multiset [] can be assigned by rule
(many) with an empty premise, the result follows by application of rule (app).

Let t = u[(p,q)/v]. By the i.h. for every o, there is I' such that I' - u : 0. By
Corollary 3.6, T'|(p o) IF (p,q) : [x(A,B)] for some A,B. Then by the i.h. again there is A
such that A F v : x(A,B), and so, by rule (many), A - v : [x(A,B)]. Then, by applying
rule (sub), we get I'\ I'|p o) + A Fuf(p,q)/v] : 0.

Now, let t be a J-canonical form. If t = (u,v) then by rules (many) and (pair)
F(u,v) : x([],[])- If t = Ap.u, then u can be typed by the i.h. so that let I' - u: 0. If
p = x, for some x, then by applying rule (abs), I' \ I'|y - Ax.u : I'(x) — o, otherwise, by
Corollary 3.6, I'|p I p : [x(A,B)], for some A,B, and then I' \ I'| F Ax.u : [x(4,B)] — o,



7:14 ANTONIO BUCCIARELLI®, DELIA KESNER?, AND SiMONA RoNcHI DELLA Rocca © Vol. 17:1

always by rule (abs). Let t = t'[(p,q)/v], where t’ (resp. v) is a J (resp. K) canonical
form. By the i.h. there are I',o such that ' - t’ : . Moreover, Corollary 3.6 gives
[lipq IF(p;a) : [x(4,B)] for some A,B. Since v is a K-canonical form, then A v : x(A,B)
as shown above, and then A - v : [x(4,B)], by rule (many). Thus I' + A + t'[(p,q)/v] : &
by applying rule (sub).

e (only if) Let t be a typable term, i.e. II>T'F t : 0. Consider a reduction strategy ST that
always chooses a typed redex occurrence. By Lemma 3.10(1) and Lemma 2.5 the strategy
ST always terminates. Let t’ be a normal-form of t for the strategy ST, i.e. t reduces
to t’ using ST, and t’ has no typed redex occurrence. We know that II'>T' ¢’ : o by
Lemma 3.10(1). We now proceed by induction on IT', by taking into account the notion of
typed occurrence of IT'.

If TI' ends with (ax), then its subject is x, which is canonical. If IT" ends with (abs) with
subject Ap.u and premise II” with subject u, then u has no typed redex occurrences, so it
is canonical by the i.h. We conclude that Ap.u is canonical too, by definition of canonical
form. If II ends with (app) with subject tu and premises II; and IIs having subjects t
and u respectively, then t, which is also typable, has no typed redex occurrences, so that
it is canonical by the i.h. Moreover [J € toc(II), so tu cannot be a redex. This implies
that t cannot be an abstraction, so it is a U canonical form, and consequently tu is a K
canonical form too. Suppose II ends with (sub) with subject t[p/u] and premises II; and
Il with subjects t and u respectively. The term t, which is typable, has no typed redex
occurrences, so it is canonical by the i.h. Moreover, p cannot be a variable, otherwise the
term would have a typed subs-redex occurrence, so, by Corollary 3.6, I'|, I- p : [x(4,B)],
for some A, B, where I' is the typing environment of t. The term u is also typed. Since u
cannot be neither an abstraction (rule matchy) nor a pair (rule match,), it is necessarily a
K canonical form, and consequently t[p/u] is canonical. Finally, if II" ends with (pair),
then its subject is a pair, which is a canonical form. This concludes the proof. ]

4. INHABITATION FOR SYSTEM P

Given u, a type or a multiset type, the inhabitation problem consists in finding a closed
term t such that - t : p is derivable. These notions will naturally be generalized later
to non-closed terms. Since system P characterizes canonicity, it is natural to look for
inhabitants in canonical form. The next Lemma proves that the problem can be simplified,
namely that it is sufficient to look for inhabitants in pure canonical form, i.e. without nested
substitution (we postpone the proof of this lemma to Section 4.1).

Lemma 4.1. Let t be a canonical form. If II>T F t : p is derivable, then there is some
type derivation II' and some pure canonical form t' such that ITI'>T =t/ : p is derivable.

We already noticed that the system P allows to assign the multiset [] to terms through
the rule (many). As a consequence, a typed term may contain untyped subterms. In order
to identify inhabitants in such cases we introduce a term constant €2 to denote a generic
untyped subterm. Accordingly, the type system P is extended to the new grammar of terms
possibly containing €2, which can only be typed using a particular case of the (many) rule:

m (many)
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So the inhabitation algorithm should produce approximate normal forms (denoted
a, b, c), also written anf, defined as follows:

b,c == QN
i= >\I|>-/£V| (a,b) | £ | N[(p,q)/L]

N
i

The grammar defining anfs is similar to that of pure canonical forms, starting, besides
variables, also from €. The notion of typed occurrences in the new extended system is
straightforward. Moreover, an anf does not contain any redex, differently from canonical
forms. Roughly speaking, an anf can be seen as a representation of an infinite set of pure
canonical forms, obtained by replacing each occurrence of €2 by any term.

Example 4.2. The term A(x,y).(x(II))[(z1,2z2)/yI] is (pure) canonical but not an anf,
while A(x,y).(xQ)[(z1,z2)/yI] is an anf.

Anfs are ordered by the smallest contextual order < such that Q < a, for any a. We
also write a < t when the term t is obtained from a by replacing each occurrence of €2 by
a term of Ap. Thus for example xQ€2 < x(I6)(09) is obtained by replacing the first (resp.
second) occurrence of Q2 by I (resp. 09).

Let A(t) ={a| Ju t —* u and a < u} be the set of approximants of the term t, and
let \/ denote the least upper bound with respect to <. We write T;c; a; to denote the fact
that \/{a;}ics does exist. Note that I = () implies \/{a;};c; = Q. It is easy to check that,
for every t and ai,...a, € A(t), Ticf1,..,n} 2 An anf a is a head subterm of b if either
b =aor b= cc and a is a head subterm of c. It is easy to check that, if I' - a : o and
a<b (resp. a<t)thenI'Fb:o (resp. '+t :0).

Given II>T' F t : pu, where t is in II-nf (¢f. Section 3), the minimal approximant of
I1, written A(II), is defined by induction on II as follows:

e AT Fx:p) =x

e IfII>T F Ap.t : A — p follows from II'>T" F t : p, then A(IT) = Ap.A(IT'), t being in
IT'-nf.

o If I>T F (t,u) : x(A,B) follows from II; >T'; F t : A and IIs >T F u : B, then
A(IT) = (A(IL), A(IL2)).

e If TIoT =T"+AF tu: pfollows from II; IV Ft : A — pand Ilo> A F u: A, then
A(IT) = A(TL)(A(TL)).

e IfII>T =14+ A+ t[p/u] : 7 follows from I'>T" F t : 7 and ¥ > A F u: A, then
A(TT) = A(I)[p/A(D)).

o If II> +icrl' = t ¢ [o4]ier follows from (IL; > Iy =t @ 0y)ier, then A(IL) =/, A(1L;).

Example 4.3. Consider the following derivation II (remember that o is an abbreviation for
x([],[])), built upon the subderivations II; and Iy below:

H1 H‘ <Zl,22> : [0] H2
x:[[] = oy [[] = o] Fy(60)[(z1,22)/%1] : 0
F Axy.y(00)[(z1,2z2)/xI] : [[] = o] = [[] = o] = 0
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x:[[]=2okFx:[]—o0 PET:[]
v ol Fv: o) @"55 —
nly[n—lluijgiywa‘o | m- w il o olF oo
: ' x:[[] = o] FxI:][o]

The minimal approximant of IT is Axy.yQ[(z1, z2)/x€)].
A simple induction on meas(II) allows to show the following:

Lemma 4.4. IfTIcT Ft: p and t is in H-nf, then II>T = A(II) : .

4.1. From Canonical Forms to Pure Canonical Forms. In this section we prove that,
when a giving typing is inhabited, then it is necessarily inhabited by a pure canonical form.
This property turns out to be essential to prove the completeness property of our algorithm
(Theorem 4.8), since the algorithm only builds pure canonical forms.

Lemma 4.1. Let t be a canonical form. If II>T F t : p is derivable, then there is some
type derivation II' and some pure canonical form t' such that II'>T =t/ : p is derivable.

Proof. By induction on IT>T + t : u. The only interesting case is when t = to[p/t1], where
p is some pair pattern. By construction of II, there is a type derivation of the following form:
AFty:x (A, B)
I'tto:7 Tplkp:[x(4,B)]  AFt;:[x(AB)]
C\T|p+AFto[p/t1]: 7

where the shape of the type for p comes from Corollary 3.6. By the i.h. there are pure
canonical terms t(,t] such that I' - t; : 7 and A F t] : x(A,B). If t{[p/t}] is a pure
canonical term, then we conclude with a derivation of I'\ T'|, + A  t{[p/t}] : 7. If t([p/t]]
is not a pure canonical term, then necessarily t| = u[q/v], q being a pair and u, v being pure
canonical terms. Then there is necessarily a derivation of the following form:

Ik v:x(CE)
A'Fu:x(AB) Allglkq:[x(CE)] I+ v:[x(CE)]
A=A \Alg+T"Fulg/v]: x(A,B)

We can then build the following derivation:

A'Fu: x(A,B)
PHty:7 Tplkp:[x(AB)] A'Fu:[x(AB)
P\T|p + A"+ tylp/u] : 7

Note that (T'\ T'|, + A’)|q = A’|q, since we can always choose £v(q) N\I" = (), by a conversion.
So the following derivation can be built:

I"Fv:x(CE)
P\T|p+A"Ftylp/ul: 7 Allqlkq:[x(C,E)] TI'Fv:[x(CE)]
(T\Tlp + &)\ Al + T F thlp/ul[a/v] 7
Since T\ T'|p \ A’|q =T \T'|p and A"\ A’|q +T" = A, the proof is given. []
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4.2. The Inhabitation Algorithm. We now show a sound and complete algorithm to
solve the inhabitation problem for System P. The algorithm is presented in Figure 2. As
usual, in order to solve the problem for closed terms, it is necessary to extend the algorithm
to open ones, so, given an environment I" and a type o, the algorithm builds the set T(T", o)
containing all the anfs a such that there exists a derivation II>T'+ a : o, with a = A(II),
then stops!. Thus, our algorithm is not an extension of the classical inhabitation algorithm
for simple types [8, 18]. In particular, when restricted to simple types, it constructs all
the anfs inhabiting a given type, while the original algorithm reconstructs just the long
n-normal forms. The algorithm uses three auxiliary predicates, namely

e P,(A), where V is a finite set of variables, contains the pairs (I', p) such that (i) I'lF p : A,
and (ii) p does not contain any variable in V.

o M(T', [oi]icr), contains all the anfs a = \/,_; a; such that I' = +;c/I';, a; € T(I';, 03) for all
1 €1, and Tier a;.

e H(T',0) > 7 contains all the anfs a such that b is a head subterm of a, and such that if
b € T(A,0) then a € T(I' + A, 7). As a particular case, notice that b € H3 (0, o) > o, for
all b € L, environment A and type o.

Note that a special case of rule (Many) with I = () is ————_. Note also that the
Qe u(0,[1)

algorithm has different kinds of non-deterministic behaviours, i.e. different choices of rules
can produce different results. Indeed, given an input (I', A — o), the algorithm may apply
a rule like (Abs) in order to decrease the type o, or a rule like (Head) in order to decrease
the environment I". Moreover, every rule (R) which is based on some decomposition of the
environment and/or the type, like (Subs), admits different applications. In what follows we
illustrate the non-deterministic behaviour of the algorithm. For that, we represent a run of
the algorithm as a tree whose nodes are labeled with the name of the rule being applied.

Example 4.5. We consider different inputs of the form (), o), for different types o. For
every such input, we give an output and the corresponding run.
(1) o =la] = o] = [a] = a.
(a) output: Axy.xy, run:
Abs(Abs(Head(Prefix(Many(Head(Final)),Final)), Varp), Varp).
(b) output: Ax.x, run:
Abs(Head(Final), Varp).
o =[] = o] = «. output: Ax.xQ), run: Abs(Head(Prefix(Many,Final)), Varp).
o = |[[o] = 0,0] = o.
(a) output: Ax.xx, run: Abs(Head(Prefix(Many(Head(Final)),Final)),Varp).
(b) Explicit substitutions may be used to consume some, or all, the resources in
[[o] = o,0]. output: Ax.x[(y,z)/x(Q, Q)] run:
Abs(Subs(Prefix(Many(Prod),Final), Pairp(Varp, Varp), Head(Final)), Varp).
(¢) There are four additional runs, producing the following outputs:
xx(0.0)(5.2) 3]

Ax(Q, D) [(y, z) /xx],
Ax(Q, D) [(y, z) /x][(w, 5) /x(2, )],
X, Q)[(y. 2) /x(2, Q)] [(w, 5) /4]

(2)
3)

1t is worth noticing that, given I" and o, the set of anfs a such that there exists a derivation II>I'Fa: o
is possibly infinite. However, the subset of those verifying a = A(II) is finite.This is proved in Corollary 4.12.
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x¢V
(x: A, x) €Py(hA)

(I,p) €Py(A)  (A,q) €Py(B) pi#q

(Varp)

Pair
T+ alpa) enxwa) o)
a€T(l'+A,7)  (A,p) € Pyour(8) (bs) acMT,p) beMA,B) (Proa)
Ap.a e T(IA— 1) (a,b) € T(I' + A, x(A,B))

(ai € T(Ls,09))ier  Tier i
\/ a; € M(+ierTy, [o7)ier)  (Many)

i€l
a € HEl] o)t o=T
=" (10) (Head) X (Final)
ac€T(l +x:[o],7) acHt;(0,0)>7
beM,A) acHSTT (A o)bT
(T 4) w (A0) (Prefix)

acHAT+AA—o0)>T

c € BT, 0) > F(0)(x) (A, (p,a)) € Paomrinsuloly (F(0)]) b ET(A+A,7)

(Subs)
b[(p,q)/c] € T+ A+x:[o],7)

(*) where the operator F() on types is defined as follows:

F(a) = «
F(m) =7
F(A—71) = F(7)

Figure 2: The inhabitation algorithm

Along the recursive calls of the inhabitation algorithm, the parameters (type and/or
environment) decrease strictly, for a suitable notion of measure, so that every run is finite:

Theorem 4.6. The inhabitation algorithm terminates.

Proof. See Subsection 4.3. ]
We now prove soundness and completeness of our inhabitation algorithm.

Lemma 4.7. a € T(I',0) & I >T'F a: o such that a = A(II).

Proof. The “only if” part is proved by induction on the rules in Figure 2, and the “if” part
is proved by induction on the definition of A(II) (see Section 4.3 for full details). In both
parts, additional statements concerning the predicates of the inhabitation algorithm other
than T are required, in order to strengthen the inductive hypothesis. L]

Theorem 4.8 (Soundness and Completeness).
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(1) Ifa€ T(I',0) then, for all t such thata<t,['Ft:o.
(2) IfTIeT & t : o then there exists II'>T F t/ @ o such that t' is in IU'-nf, and A(Il') € T(T, o).

Proof. Soundness follows from Lemma 4.7 (=) and the fact that I'F a: ¢ and a < t imply
I' -t : 0. Concerning completeness: Theorem 3.11 and Lemma 3.10(1) ensures that t has a
canonical form tg such that IIo> T tg : 0. Then, Lemma 4.1 guarantees the existence of a
pure canonical form t’ such that II'>T'F t' : 0 and t’ is in II'-nf. Then Lemma 4.4 and
Lemma 4.7 (<) allow us to conclude. []

4.3. Properties of the Inhabitation Algorithm. We prove several properties of the
inhabitation algorithm, namely, termination, soundness and completeness.

Termination. Being the inhabitation algorithm non deterministic, proving its termination
means to prove both that a single run terminates and that every input generates a finite
number of runs. We will prove these two properties separately.

First, let us define the following measure on types and environments:

#(a) =1

#([Ui]iel) = 1 4yer #(01)
#(x(A,B)) = #(A)+#(B )+1
#A— o) = #(A)+H(0)+

#(I) = Dxeaon(r) F((x ))

The measures are extended to predicates in the following way:
#(T(I', 0)) = #(I) + #(0)
#HET,0)p7) = #(I)+ #(0)
#M(L, 4)) = #(I) +#(4)
#(Py(4)) = #(A)

Notice that #(I') < #(I" + A), for any A. Also, #(I' + A) < #(I') + #(A), thus
eg. #x:[a]l+x:[a]) = #x: [a,a]) =3 < #(x: [a]) + #(x : [a]) = 4. Notice also
that #(A1) < #(Az) does not imply #(A1 + A) < #(A2 + A), e.g. when A} = x : [o],
Ay =y :]a,a] and A =y : [a]. However, as a particular useful case, if #(A) +1 < #(x : A),
then #(A+A) < #(x: A+ A). Indeed, if x ¢ dom(A), then #(A+A) < #(A)+#(A) < #(x:
A) + #(A) = #(x : A+ A); otherwise, #(A +A) <HA)+#(A) < (F#(x:A) —-1)+#A) =
#H(x:A+A).

The following property follows directly.

Property 4.9. Let (I',p) € P jon(y) (A). Then #(I") < #(A). Moreover, p = (p1, p2) implies
#(I) +1 < #(4).

We can now prove:
Lemma 4.10. Every run of the algorithm terminates.

Proof. We associate a tree T to each call of the algorithm, where the nodes are labeled
with elements in the set {T(_,_),M(-,-),H-(.,_)> P ())}. A node n’ is a son of n iff there
exists some instance of a rule having n as conclusion and n’ as premise. Thus, a run of the
algorithm is encoded in the tree 7, which turns to be finitely branching. We now prove that
the measure #(_) strictly decreases along all the branches of T, so that every branch has
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finite depth. We proceed by induction on the rules of the algorithm. The only interesting
cases are rules (Abs) and (Subs).

7) and premises a € T(I' + A 7')
< #(A), so that #(T(T' + A, 7)) <
A—

= 7)) and #(P oy (A) = #(8) <

e Consider rule (Abs), with conclusion Ap.a € T(I',;A —
and (A,p) € Pdom(r)(A). By Property 4.9, #(A)
#(L)+#(A) +#(7) < #() +#(8) +#(7) < #(T(T,
#(T(L, A — 7).

e Consider rule (Subs), with conclusion b[(p,q)/c] € T(I' + A + x : [0],7) and premises
c € K7D, 0) > F(0), (A, (P, @) € Pyoursns (o) ([F(0)]) and b € T(A + A, 7). Clearly

#HE(T, 0)oF(0)) = #(D)+#(0) < #(D)+#(A) +#([o])+#(r) = #(T(T+A+x : [o], 7).
A150, (P s s ooy (F@]) = #(F(0)]) < #([0]) < #(T(C + A+ x : o], 7). Finally,
by Property 4.9, #(A) + 1 < #([F(0)]) < #([o]) = #(x : [0]). So #(T(A + A, 7)) =
H#A+A)+#(7) < #(x: [o]+A)+#(7) < #(T+x: [o]+A)+#(7) = #(T(T+A+x : [0], 7)).
So every branch has finite depth. Hence, T is finite by Konig’s Lemma, i.e. the algorithm
terminates. ]

dom(
7#(

In order to complete the proof of termination we need to show that the number of
different run of the algorithm on any given input is finite.

Let II>T F a: 0, where, by a-conversion, we assume that fv(a) Nbv(a) = (). We write
||a||l! (resp |alll) to denote the number of free (resp. bound) occurrences of x in a which are
typed in II. The following property holds?.

Property 4.11. Let a be an approximate normal form. Let II>T'F a: 0. Then, for every
variable x occurring in a we have ||a||lf < #(I'(x)) and [|a|ll < #(T) + #(0).

Proof. If x € fv(a), then x : [0;];c; € T', for some non-empty set I, and since every axiom
corresponds to a free occurrence of x in a which is typed in II, then the number of such
occurrences is exactly the cardinality of I, which is trivially smaller than #(I'(x)).

Let x € bv(a). The proof is by induction on II.

e Let the last rule of II be (abs), with conclusion II>T"\ T"|; - Ap.b : A — 7 and premises
> +Fb:7and IV IFp: A, where I' =TI\ I'|; and 0 = A — 7. Since x is bound in
Ap.b, then either x is bound in b or x occurs in the pattern p. If x is bound in b, then
the proof follows by induction. Otherwise, by Lemma 3.4, I"|; IF x : A}, d.e. IV(x) = A%.
Then the number of free occurrences of x in b typed in IT' is |[b]|!" < #(AE), so the
number of its bound occurrences in Ap.b typed in II is the same. Since #(A¥) < #(A) and
#(A) < #(A — 1) + #(I'), then we are done.

e Let the last rule of II be (sub)7 with conclusion I"\T"|;, ) +A Fb[(p,q)/c] : o and premises
[>T Fb:o, Ipq - (p,a) : [X(4,B)], and TIe > A = ¢ : [x(4,B)], where a = b[(p,q)/c]
and ' =T"\ F’| + A. Since x is bound in b[(p, q)/c], then either x is bound in b or c,
or x occurs in (p q> and so x is free in b. If x is bound in b or c, then the proof follows by
induction. Let x occur in (p,q). Since x occurs free in b, by the i.h., ||b||i < #(I"(x)).
Notice that, by definition of approximant, ¢ must be an £ approximate normal form, so
that let ¢ = yaj...a, (n > 0). The derivation II; has necessarily been obtained by applying
rule (many) to a derivation II_>A - ¢ : x(A,B), so A(y) must be C+[A; — ... A, — X(A,B)],
for some C,Aq,...,A, such that A; - a; : A;, and A = +i€IAi+y : [Al — ... A, — X(A,B)],

where (+icrAi)(y) = C. So #(A) > #(([x(&,B))). By the i.h. [|el|§* = [e] I < (A(y))-

2Tighter upper bounds than those provided below may be found, but this is inessential here.
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Moreover, by Lemma 3.4 I(x) = [x(A,B ];p’q>. Then the number of free occurrences of x
in b typed in Tl is [[b][X* = #([x (&, B)"Y) < #([x(4,B)]) < #(A) < #(A) + #(0). We
conclude since |a|ll = ||b||M>.

e All other cases follow easily by induction. []

This property has an important corollary.

Corollary 4.12. Given a pair (I',0), the number of approxzimate normal forms a such that
IIeTFa:o and a= A(Il) is finite.

Proof. Let II>I' - a: 0. By Property 4.11, the number of typed occurrences of every variable
in IT is bounded by #(I') + #(0) (we suppose each variable to be either bound or free, but
not both, in A(II), by a-conversion). So the total number of typed occurrences of variables
in IT is bounded by an integer, let say B. By definition of A(II), 2 is the only untyped
subterm of a, then B is an upper bound for the number of all occurrences of variables of a,
which turn out to be all typed occurrences of variables of a in II.

It is easy to see that B is also a bound for the total number of axioms of each derivation
II>T'F a: o, so the number of such derivations is finite and the conclusion follows. []

Now we are able to complete the termination proof.
Theorem 4.6. The inhabitation algorithm terminates.

Proof. Lemma 4.7 (=) ensures that the outputs of the inhabitation algorithm, called on
(', o), are all of the form a = A(II) for some II>T F a: 0. By Corollary 4.12 there exist
finitely many such a’s, and by Lemma 4.10 producing any of these takes a finite number of
steps. Altogether, the inhabitation algorithms always terminates. L]

Soundness and Completeness. In order to show Lemma 4.7 we first introduce the
following key notion. A derivation II is a left-subtree of a derivation ¥ if either II = X,
or II> A F u: o is the major premise of some derivation X' > A’ Fuv : 7, such that ¥’ is a
left-subtree of 3.

Property 4.13. (I',p) € Pion(V) (A), if and only if there is a derivation I' IF p : A, such that
fv(p) NV = 0.

Proof. Easy, by checking the rules. []
Lemma 4.7. a€ T(I',0) & JlI>T'F a: o such that a = A(II).

Proof. (=): We prove by mutual induction the following statements:

a) a€ T(l['o) = JI>T F a: o such that a = A(II).

b) a€ M(I',A) = 3T+ a: A such that a = A(ID).

c) acH)(T,0)p7 = if I > Ak b:o such that b= A(X), then A>T + Ak a:7

such that a = A(II).

Each statement is proved by induction on the rules in Figure 2.

a) e Let the last rule be (Abs), with conclusion Ap.a € T(I',A — 7) and premises
acT(I'+A,7) and (A,p) € P jom(I) (A). By Property 4.13, there is a derivation
A |- p: A, and we conclude by the i.h. (a) on a € T(I' + A, 7) and the typing
rule (abs).
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e Let the last rule be (Head), with conclusion a € T(I" 4 x : [7],0) and premise
a € Hol] (I'",7) >0, where I' = IV 4+ x : [r]. Then consider the derivation
Y>x: [r] b x:7 where x = A(X). The i.h. (c) provides I>I" +x: [7]Fa:o
such that a = A(II).

e Let the last rule be (Prod), with conclusion (a,b) € T(I'g + I'1, x(A,B)) and
premises a € M(I'g,A) and b € M(I'1,B), where I' = 'y + 'y and o0 = x(A,B).
Then we conclude by the i.h. (b) and the typing rule (pair).

e Let the last rule be (Subs), with conclusion b[(p,q)/c] € T(To+T1 +x: [7],0)
and premises ¢ € Hﬁ'[T](FO,T) >F(7), (A, (p,q)) € Pdom(F0+F1+x:[ﬂ)([F<T>]> and
beT(I'+ A,0), where ' =Ty + I'y +x : [7]. Since thereis ¥ox: [7]Fx: T,
by i.h. (¢) on c € gl (Do, 7) > F(7) there is ¥/ s.t. W' >To+x: [7]F c:F(r),
and ¢ = A(¥’). Moreover, by rule (many) we obtain ¥ Ty +x: [7] F c: [F(7)].
By Property 4.13, (A, (p,q)) € Pdom(Fo+F1+x:[T})qF(T)D implies there is ¥/ > A |-
(p,q) : [F(7)] and £v((p,q)) Ndom(T'g + 'y + x : [7]) = . Now, by applying the
i.h. (a) tob € T(I'y + A, o), we get a derivation I'>T7 + A F b : o such that
b = A(IT"). We get the required proof II by using the typing rule (sub) on the
premises ¥, U” and II'.

b) Let the last rule be (Many) with conclusion a € M(+;ecrI', [0:]icr) and premises
(a; € T(T'y,04))ier and Tier a;. The proof follows from the i.h. (a) and then the
typing rule (many) or the (new) typing rule (£2).

c¢) o Let the last rule be (Final), with conclusion a € HL (), o) > 7 and premise o = 7.
Suppose X > A a: 0. The fact that the there exists a derivation A+0Fa: o
is then straightforward.

e Let the last rule be (Prefix), with conclusion a € HX (T +T'1,A — o) > 7 and
premises b € M(I'g,A) and a € HCA;FO (T'1,0’)> 7, where 0 = A — ¢’. Suppose
that there exists a derivation ¥ > A F ¢ : A — ¢ such that ¢ = A(X). The
i.h. (b) applied to b € M(T'g,A) provides a derivation W >Ty F b : A, where
b = A(V). The typing rule (app) with premises ¥ and ¥ gives a derivation
I'> A+ Ty F cb: o, such that cb = A(IT'). Then, the i.h. (d) applied to
a € ("1, 0’) b 7 provides a derivation II> A + T 4+ I'y F a : 7 such that
a = A(II), as required.

(«<): We prove by mutual induction the following statements:

a) Given X>AFb:7and I Fa: o, if b=A(X) and a = A(II) are L-anfs,
and X is a left-subtree of II, then there exists IV s.t. I' = I + A and for every ©,
KAT(0,0)0 p CHE(O + TV, 7) b p.

b) II>T'+a: o and a = A(Il) imply a € T(T', 0).

Each statement is proved by induction on the definition of approximate normal
forms.

a) e If a =x, then Il is an axiom (ax); ¥ being a left subtree of II, we get X = 1II,
b=x I' =10, 0 =7 and the inclusion 21" (©,0) > p C HR(© +T',7) > p
trivially holds.

e If a = ca/, c being an L-anf, then the last rule of II is an instance of (app),
with premises II{1 >I'1 Fc:A— ocand Iy > Ty - a’ : A, so that TV =T'; + I's.
Moreover, X > A F b : 7 is also a left-subtree of II; and Iy comes from
(4 > T4 &' @ 0y)ier, where +c/T% = Ty and [0i];e; = A. We have in



Vol. 17:1 SOLVABILITY = TYPABILITY + INHABITATION 7:23

this case ' = \/,.; A(IL}), where by the i.h. (b), A(I}) € T(I'},0;). Then
Héjrﬁ_rz (67 U)l>p Q(Prefix) HcA+F1 (@+F27 A— O’)l>p g(a) HbA(@""_Fl + 19, T)l>p.
e Since by hypothesis both a and b are L-anfs, there are no other cases.
b) e a = does not apply, since o is not the empty multiset.
e If a is an L-anf, then 3x,7 s.t. ' = 'y + x : [7] and the type derivation

Yox:[r]F x:7is aleft subtree of II>Tg+x : [7] F a: 0. Then we have

a € H. (0, 0) > o by rule (Final), HEOJFX:[T](V), o)>po C gl (T'o,7) > o by Point

(a) and gl (To,7)>0 CT(I'g +x : [7],0) by rule (Head). We thus conclude

acTo+x:[7],0).

e Otherwise, we analyze all the other cases of N-anfs.

— If a = Ap.b (resp. a = (b, c)) then it is easy to conclude by induction, using
rule Abs (resp. Prod).

— If a = c[(p,q) /D], then ¢ (resp. b) is an N (resp. L)-approximate normal
form. By construction, II is of the following form:

UV>AFb: X(Al,AQ)
Melkc:o Tlpg lF(p,a): [x(A1,A2)]  ¥>AFb:[x(A,A)]

P\ Tpq +AFclp,q)/b]: 0
By definition A(IT) = A(Il")[(p,q)/A(¥’)]. By the i.h. (¢) A(Il') € T(T, o).
Moreover, b = ycj...cp (b > 0), since it is an L-canonical form, so that
A = A"+ (y: [r]) where F(7) = x(A1,A2) and Xy : [7] F y: 7 is a left
prefix of ¥/ > A F b : X(A1,As). Therefore, A(V) = A(¥’) belongs to the
set Hﬁ(\p,)(ﬁ), F(7))>F(7), which is included in H{,:[T}(A’, 7)>F(7) by Point (a).
By Property 4.13 we also have (I o), (p,q)) € Pdom(F\FRP,q)—&-A)([F(T)])‘ We
thus obtain A(IT) = A(II")[(p,q)/A(¥)] € T(T"\ Llpq + A+ (y:[7]),0) =
T\ I'[(p,q) + A, 0) by rule (Subs). ]

5. CHARACTERIZING SOLVABILITY

We are now able to state the main result of this paper, i.e. the characterization of the
solvability property for the pattern calculus Ap.

The logical characterization of canonical forms given in Section 3 through the type
assignment system P is a first step in this direction. In fact, the system P is complete with
respect to solvability, but it is not sound, as shown in the next theorem.

Theorem 5.1. The set of solvable terms is a proper subset of the set of terms having
canonical forms.

Proof.

e (Solvability implies canonicity) If t is solvable, then there is a head context H such that
H[t] is closed and reduces to (u,v), for some u and v. Since all pairs are typable, the term
H[t] is typable by Lemma 3.10(2), so that t is typable too by Lemma 3.3. We conclude
that t has canonical form by Theorem 3.11.

e (Canonicity does not imply solvability) Let t; = Ax.I[(y,z)/x][(y/,2')/xI]. the term t;
is canonical, hence typable by Theorem 3.11. However t; is not solvable. In fact, it is
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easy to see that there is no term u such that both u and uI reduce to pairs. Indeed, let
u —* (vq,vg); then ul —* (vi,vy)I, which will reduce to fail. ]

However, as explained in the introduction, we can use inhabitation of system P to
completely characterize solvability. The following lemma guarantees that the types reflect
correctly the structure of the data.

Lemma 5.2. Let t be a closed and typable term.

e Ift has functional type, then t reduces to an abstraction.
e Ift has product type, then it reduces to a pair.

Proof. Let t be a closed and typable term. By Theorem 3.11 we know that t reduces to
a (closed) canonical form in J. The proof is by induction on the maximal length of such
reduction sequences. If t is already a canonical form, we analyze all the cases.

If t is a variable, then this gives a contradiction with t closed.

If t is an abstraction, then the property trivially holds.

If t is a pair, then the property trivially holds.

If t is an application, then t necessarily has a head (free) variable which belongs to the
set of free variables of t, which leads to a contradiction with t closed.

o If t = u[(p1,p2)/v] is closed, then in particular v is closed, which leads to a contradiction
with t € J implying v € K. So this case is not possible.

Otherwise, there is a reduction sequence t — t’ —* u, where u is in 7. The term t’ is also
closed and typable by Lemma 3.10(1), then the i.h. gives the desired result for t’, so the
property holds also for t. L]

The notion of inhabitation can easily be extended to typing environments, by defining I'
inhabited if x : C € I" implies C is inhabited. The following lemma shows in particular that if
the type of a pattern is inhabited, then its typing environment is also inhabited.

Lemma 5.3.

(1) IfII>T IFp: A and A is inhabited, then I is also inhabited.
(2) IfT'Ft:A and T is inhabited, then A is inhabited.

Proof.

(1) The proof is by induction on p.
e If p==xthen I''is x: A with A # [] or it is (). In both cases the property is trivial.
L] pr = <p1,p2>, then H1 I>F1 I P1: Ay and HQ I>F2 I+ P2: Ay, where A = [X(Al,A2>] and
I' =T +I's. Let us see that A; (¢ = 1,2) is inhabited. Since [x(A;,A2)] is inhabited,
so is x(A1,A2). By Lemma 5.2, the closed term t inhabiting x (A1, A2) reduces to a
pair (ti,t2). We know by Lemma 3.10(1) that F (t1,t2) : x (A1, A2), and we conclude
that - t; : A; (i = 1,2). Now, by applying the i.h. to II; (resp. II3) we have that for
every x : A € T'; (resp I'y), A’ is inhabited. By linearity of p, if x : A’ € T then either
x: A" €Ty orx: A €Ty (otherwise stated: T'; +T'9 = T'1;T'2). Hence we conclude that
for every x : A’ € ', A is inhabited.
(2) For all x : B €I, let ux be a closed term inhabiting B. By Lemma 3.9(1) the closed term
obtained by replacing in t all occurrences of x € dom(I") by uy inhabits A. []

In order to simplify the following proofs, let us introduce a new notation: let & denote
a sequence of multiset types A1, ..., A,, so that Ay — ... — A, — o will be abbreviated by
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K — 0. Note that every type has this structure, for some multisets A1, ..., A, (n > 0) and
type 0. Moreover we will say that X is inhabited if all its components are inhabited.

Lemma 5.4. Let H[t] be such that TIo-T - H[t] : & — 7, where T' and A are inhabited. Then
there are I, T",C such that TI'>T' +t : C — 7 where I and C are inhabited.

Proof. By induction on H.

e If H =[], then the property trivially holds.
e IfH=H u, then ' ="+ A and II is:

I'+H[t]:B—A—7 Atu:B
'+ AFH[tlu:A =7
IV and A are inhabited, being sub-environments of I'. By Lemma 5.3(2) B is inhabited.

Then the proof follows by the i.h. on the major premise.
o If H=)\p.H then I' = I"\ I"|;, A = A, A’ and II is:

I'FH[t) X -7 T l-p:Ag
'\T'|p - ApH[t] : 4 > & — 7
Since Ag is inhabited, Lemma 5.3(1) ensures that I"|, (and thus I'") is inhabited, too.
The proof follows by the i.h. on the major premise.
o If H=H'[p/u] then I' =T\ I'"|; + A and II is:
I"'rFH[t]:A—>7 T'|plFp:B Alu:B
T'\T|p) + A+ H[t][p/u] : A = 7
A is inhabited, being a sub-environment of I'. By Lemma 5.3(2) B is inhabited. Hence by

Lemma 5.3(1) I"|, (and thus I") is inhabited. Then the proof follows by the i.h. on the
major premise. L]

(app)

(abs)

(sub)

Theorem 5.5 (Characterizing Solvability). A term t is solvable iff I>T F t : ¢ — o, where
o is a product type and T and C are inhabited.

Proof.

e (only if) If t is solvable, then there exists a head context H such that H[t] is closed and
H[t] —* (u,v). By subject expansion - H[t] : 0. Then Lemma 5.4 allows to conclude.

o (if) Let ' =x1 : Ay,..., % : Ag (k> 0) and C =Cy,...,Cp, (m > 0). By hypothesis there
exist closed terms uy,...u, Vi,...Vy, such that O Fw; A and O v;:C; (1 <1<k, 1<
j <m). Let H= (Axg...((Ax1.0)uy)...ux)vy... vy be a head context. We have H[t]
closed and () - H[t] : o, where o is a product type. This in turn implies that H[t] reduces
to a pair, by Lemma 5.2. Then the term t is solvable by definition. []

Our notion of solvability is conservative with respect to that of the A-calculus.

Theorem 5.6 (Conservativity). A A-term t is solvable in the A-calculus if and only if t is
solvable in the Ap-calculus.

Proof.

e (if) Let t be a A-term which is not solvable, i.e. which does not have head normal-form.
Then t (seen as a term of our calculus) has no canonical form, and thus t is not typable
by Theorem 3.11. It turns out that t is not solvable in Ay, by Theorem 5.5.



7:26 ANTONIO BUCCIARELLI®, DELIA KESNER?, AND SiMONA RoNcHI DELLA Rocca © Vol. 17:1

e (only if) Let t be a solvable A-term so that there exist a head context H such that H[t
is closed and reduces to I, then it is easy to construct a head context H such that H'[t
reduces to a pair (just take H = H (t1, t2) for some terms tq, to).

]
]

[]

6. CONCLUSION AND FURTHER WORK

We extend the classical notion of solvability, originally stated for the A-calculus, to a pair
pattern calculus. We provide a logical characterization of solvable terms by means of
typability and inhabitation.

An interesting question concerns the consequences of changing non-idempotent types to
idempotent ones in our typing system P. Characterization of solvability will still need the
two ingredients typability and inhabitation, however, inhabitation will become undecidable,
in contrast to our decidable inhabitation problem for the non-idempotent system P. This is
consistent with the fact that the inhabitation problem for the A-calculus is undecidable for
idempotent types [27], but decidable for the non-idempotent ones [10].

Notice however that changing the meta-level substitution operator to explicit substitu-
tions would not change neither the notion nor the characterization of solvability: all the
explicit substitutions are fully computed in normal forms.

Further work will be developed in different directions. As we already discussed in
Section 2, different definitions of solvability would be possible, as for example in [17]. We
explored the one based on a lazy semantics, but it would be also interesting to obtain a full
characterization based on a strict semantics.

On the semantical side, it is well known that non-idempotent intersection types can be
used to supply a logical description of the relational semantics of A-calculus [15, 23]. We
would like to start from our type assignment system for building a denotational model of the
pattern calculus. Last but not least, a challenging question is related to the characterization
of solvability in a more general framework of pattern A-calculi allowing the patterns to be
dynamic [19].
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