
Logical Methods in Computer Science
Volume 17, Issue 1, 2021, pp. 12:1–12:42
https://lmcs.episciences.org/

Submitted Dec. 19, 2019
Published Feb. 03, 2021

ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY

SIDI MOHAMED BEILLAHI, AHMED BOUAJJANI, AND CONSTANTIN ENEA

Université de Paris, IRIF, CNRS, F-75013 Paris, France
e-mail address: beillahi@irif.fr
e-mail address: abou@irif.fr
e-mail address: cenea@irif.fr

Abstract. Distributed storage systems and databases are widely used by various types of
applications. Transactional access to these storage systems is an important abstraction
allowing application programmers to consider blocks of actions (i.e., transactions) as
executing atomically. For performance reasons, the consistency models implemented by
modern databases are weaker than the standard serializability model, which corresponds to
the atomicity abstraction of transactions executing over a sequentially consistent memory.
Causal consistency for instance is one such model that is widely used in practice.

In this paper, we investigate application-specific relationships between several variations
of causal consistency and we address the issue of verifying automatically if a given transac-
tional program is robust against causal consistency, i.e., all its behaviors when executed
over an arbitrary causally consistent database are serializable. We show that programs
without write-write races have the same set of behaviors under all these variations, and we
show that checking robustness is polynomial time reducible to a state reachability problem
in transactional programs over a sequentially consistent shared memory. A surprising
corollary of the latter result is that causal consistency variations which admit incomparable
sets of behaviors admit comparable sets of robust programs. This reduction also opens the
door to leveraging existing methods and tools for the verification of concurrent programs
(assuming sequential consistency) for reasoning about programs running over causally
consistent databases. Furthermore, it allows to establish that the problem of checking
robustness is decidable when the programs executed at different sites are finite-state.

1. Introduction

Distribution and replication are widely adopted in order to implement storage systems
and databases offering performant and available services. The implementations of these
systems must ensure consistency guarantees allowing to reason about their behaviors in an
abstract and simple way. Ideally, programmers of applications using such systems would like
to have strong consistency guarantees, i.e., all updates occurring anywhere in the system
are seen immediately and executed in the same order by all sites. Moreover, application

Key words and phrases: Distributed Databases, Causal Consistency, Model Checking.
This work is supported in part by the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No 678177).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(1:12)2021
© S.M. Beillahi, A. Bouajjani, and C. Enea
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

12:2 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

t1 [z = 1

x = 1]

t2 [y = 1]

||

t3 [x = 2

r1 = z] //0

t4 [r2 = y //1

r3 = x] //2

(a) CCv but not CM.

t1 [x = 1]

t2 [r1 = x] //2
|| t3 [x = 2]

t4 [r2 = x] //1

(b) CM but not CCv.

t1 [x = 2] ||
t2 [x = 1]

t3 [r1 = x] //2

t4 [r2 = x] //1

(c) CC but not CM nor CCv.

Figure 1. Program computations showing the relationship between CC, CCv
and CM. Transactions are delimited using brackets and the transactions issued
on the same site are aligned vertically. The values read in a transaction are
given in comments.

programmers also need an abstract mechanism such as transactions, ensuring that blocks
of actions (writes and reads) of a site can be considered as executing atomically without
interferences from actions of other sites. For transactional programs, the consistency model
offering strong consistency is serializability [37], i.e., every computation of a program is
equivalent to another one where transactions are executed serially one after another without
interference. In the non-transactional case this model corresponds to sequential consistency
(SC) [31]. However, while serializability and SC are easier to apprehend by application
programmers, their enforcement (by storage systems implementors) requires the use of global
synchronization between all sites, which is hard to achieve while ensuring availability and
acceptable performances [23, 24]. For this reason, modern storage systems ensure weaker
consistency guarantees. In this paper, we are interested in studying causal consistency [30].

Causal consistency is a fundamental consistency model implemented in several production
databases, e.g., AntidoteDB, CockroachDB, and MongoDB, and extensively studied in the
literature [7, 22, 33, 34, 39]. Basically, when defined at the level of actions, it guarantees
that every two causally related actions, say a1 is causally before (i.e., it has an influence on)
a2, are executed in that same order, i.e., a1 before a2, by all sites. The sets of updates visible
to different sites may differ and read actions may return values that cannot be obtained in
SC executions. The definition of causal consistency can be lifted to the level of transactions,
assuming that transactions are visible to a site in their entirety (i.e., all their updates are
visible at the same time), and they are executed by a site in isolation without interference
from other transactions. In comparison to serializability, causal consistency allows that
conflicting transactions, i.e., which read or write to a common location, be executed in
different orders by different sites as long as they are not causally related. Actually, we
consider three variations of causal consistency introduced in the literature, weak causal
consistency (CC) [38, 13], causal memory (CM) [3, 38], and causal convergence (CCv) [17].

The weakest variation of causal consistency, namely CC, allows speculative executions
and roll-backs of transactions which are not causally related (concurrent). For instance, the
computation in Fig. 1c is only feasible under CC: the site on the right applies t2 after t1

before executing t3 and roll-backs t2 before executing t4. CCv and CM offer more guarantees.
CCv enforces a total arbitration order between all transactions which defines the order in
which delivered concurrent transactions are executed by every site. This guarantees that all
sites reach the same state when all transactions are delivered. CM ensures that all values
read by a site can be explained by an interleaving of transactions consistent with the causal
order, enforcing thus PRAM consistency [32] on top of CC. Contrary to CCv, CM allows
that two sites diverge on the ordering of concurrent transactions, but both models do not

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:3

allow roll-backs of concurrent transactions. Thus, CCv and CM are incomparable in terms of
computations they admit. The computation in Fig. 1a is not admitted by CM because there
is no interleaving of those transactions that explains the values read by the site on the right:
reading 0 from z implies that the transactions on the left must be applied after t3 while
reading 1 from y implies that both t1 and t2 are applied before t4 which contradicts reading
2 from x. However, this computation is possible under CCv because t1 can be delivered to
the right after executing t3 but arbitrated before t3, which implies that the write to x in
t1 will be lost. The CM computation in Fig. 1b is not possible under CCv because there is no
arbitration order that could explain both reads from x.

As a first contribution of our paper, we show that the three causal consistency models
coincide for transactional programs containing no write-write races, i.e., concurrent transac-
tions writing on a common variable. We also show that if a transactional program has a
write-write race under one of these models, then it must have a write-write race under any
of the other two models. This property is rather counter-intuitive since CC is strictly weaker
than both CCv and CM, and CCv and CM are incomparable (in terms of admitted behaviors).
Notice that each of the computations in Figures 1a, 1b, and 1c contains a write-write race
which explains why none of these computations is possible under all three models.

Then, we investigate the problem of checking robustness of application programs against
causal consistency relaxations: Given a program P and a causal consistency variation X,
we say that P is robust against X if the set of computations of P when running under
X is the same as its set of computations when running under serializability. This means
that it is possible to reason about the behaviors of P assuming the simpler serializability
model and no additional synchronization is required when P runs under X such that it
maintains all the properties satisfied under serializability. Checking robustness is not trivial,
it can be seen as a form of checking program equivalence. However, the equivalence to
check is between two versions of the same program, obtained using two different semantics,
one more permissive than the other one. The goal is to check that this permissiveness
has actually no effect on the particular program under consideration. The difficulty in
checking robustness is to apprehend the extra behaviors due to the reorderings introduced
by the relaxed consistency model w.r.t. serializability. This requires a priori reasoning
about complex order constraints between operations in arbitrarily long computations, which
may need maintaining unbounded ordered structures, and make the problem of checking
robustness hard or even undecidable.

We show that verifying robustness of transactional programs against causal consistency
can be reduced in polynomial time to the reachability problem in concurrent programs over
SC. This allows to reason about distributed applications running on causally consistent
storage systems using the existing verification technology and it implies that the robustness
problem is decidable for finite-state programs; the problem is PSPACE-complete when the
number of sites is fixed, and EXPSPACE-complete otherwise. This is the first result on the
decidability and complexity of verifying robustness against causal consistency. In fact, the
problem of verifying robustness has been considered in the literature for several consistency
models of distributed systems, including causal consistency [11, 15, 16, 19, 35]. These works
provide (over- or under-)approximate analyses for checking robustness, but none of them
provides precise (sound and complete) algorithmic verification methods for solving this
problem, nor addresses its decidability and complexity.

The approach we adopt for tackling this verification problem is based on a precise
characterization of the set of robustness violations, i.e., executions that are causally consistent

12:4 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

〈prog〉 ::= program 〈process〉∗
〈process〉 ::= process 〈pid〉 regs 〈reg〉∗

〈ltxn〉∗
〈ltxn〉 ::= 〈binst〉 〈linst〉∗ 〈einst〉
〈binst〉 ::= 〈label〉: begin; goto 〈label〉;
〈einst〉 ::= 〈label〉: end; goto 〈label〉;

〈linst〉 ::= 〈label〉: 〈inst〉; goto 〈label〉;

〈inst〉 ::= 〈reg〉 := 〈var〉
| 〈var〉 := 〈reg-expr〉
| assume 〈bexpr〉

Figure 2. Program syntax. a∗ indicates zero or more occurrences of a.
〈pid〉, 〈reg〉, 〈label〉, and 〈var〉 represent a process identifier, a register, a
label, and a shared variable respectively. 〈reg-expr〉 is an expression over
registers while 〈bexpr〉 is a Boolean expression over registers.

but not serializable. For both CCv and CM, we show that it is sufficient to search for a special
type of robustness violations, that can be simulated by serial (SC) computations of an
instrumentation of the original program. These computations maintain the information
needed to recognize the pattern of a violation that would have occurred in the original
program under a causally consistent semantics (executing the same set of operations). A
surprising consequence of these results is that a program is robust against CM iff it is robust
against CC, and robustness against CM implies robustness against CCv. This shows that the
causal consistency variations we investigate can be incomparable in terms of the admitted
behaviors, but comparable in terms of the robust applications they support.

2. Causal Consistency

2.1. Program syntax. We consider a simple programming language where a program
is parallel composition of processes distinguished using a set of identifiers P. Our simple
programming language syntax is given in Fig. 2. Each process is a sequence of transactions
and each transaction is a sequence of labeled instructions. Each transaction starts with a
begin instruction and finishes with an end instruction. Each other instruction is either an
assignment to a process-local register from a set R or to a shared variable from a set V, or
an assume statement. The assignments use values from a data domain D. An assignment to
a register 〈reg〉 := 〈var〉 is called a read of 〈var〉 and an assignment to a shared variable
〈var〉 := 〈reg-expr〉 is called a write to 〈var〉 (〈reg-expr〉 is an expression over registers).
The statement assume 〈bexpr〉 blocks the process if the Boolean expression 〈bexpr〉 over
registers is false. Each instruction is followed by a goto statement which defines the evolution
of the program counter. Multiple instructions can be associated with the same label which
allows us to write non-deterministic programs and multiple goto statements can direct the
control to the same label which allows us to mimic imperative constructs like loops and
conditionals. We assume that the control cannot pass from one transaction to another
without going as expected through begin and end instructions.

2.2. Program Semantics Under Causal Memory. Informally, the semantics of a pro-
gram under causal memory is defined as follows. The shared variables are replicated across
each process, each process maintaining its own local valuation of these variables. During the
execution of a transaction in a process, the shared-variable writes are stored in a transaction
log which is visible only to the process executing the transaction and which is broadcasted

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:5

to all the processes at the end of the transaction1. To read a shared variable x, a process p
first accesses its transaction log and takes the last written value on x, if any, and then its
own valuation of the shared variables, if x was not written during the current transaction.
Transaction logs are delivered to every process in an order consistent with the causal delivery
relation between transactions, i.e., the transitive closure of the union of the program order
(the order in which transactions are executed by a process), and the delivered-before relation
(a transaction t1 is delivered-before a transaction t2 iff the log of t1 has been delivered
at the process executing t2 before t2 starts). By an abuse of terminology, we call this
property causal delivery. Once a transaction log is delivered, it is immediately applied on the
shared-variable valuation of the receiving process. Also, no transaction log can be delivered
to a process p while p is executing another transaction, we call this property transaction
isolation.

Formally, a program configuration is a triple gs = (ls,msgs) where ls : P→ S associates
a local state in S to each process in P, and msgs is a set of messages in transit. A local
state is a tuple 〈pc, store, rval, log〉 where pc ∈ Lab is the program counter, i.e., the label
of the next instruction to be executed, store : V → D is the local valuation of the shared
variables, rval : R → D is the valuation of the local registers, and log ∈ (V × D)∗ is the
transaction log, i.e., a list of variable-value pairs. For a local state s, we use s.pc to denote
the program counter component of s, and similarly for all the other components of s. A
message m = 〈t, log〉 is a transaction identifier t from a set T together with a transaction
log log ∈ (V× D)∗. We let M denote the set of messages.

Then, the semantics of a program P under causal memory is defined using a labeled
transition system (LTS) [P]CM = (C,Ev, gs0,→) where C is the set of program configurations,
Ev is a set of transition labels called events, gs0 is the initial configuration, and→⊆ C×Ev×C
is the transition relation. As it will be explained later in this section, the executions of P
under causal memory are a subset of those generated by [P]CM. The set of events is defined
by:

Ev = { begin(p, t), ld(p, t, x, v), isu(p, t, x, v), del(p, t), end(p, t) : p ∈ P, t ∈ T, x ∈ V, v ∈ D}
where begin and end label transitions corresponding to the start, resp., the end of a transac-
tion, isu and ld label transitions corresponding to writing, resp., reading, a shared variable
during some transaction, and del labels transitions corresponding to applying a transition
log to the local state of the process issuing the transaction or to the state of another process
that received the log. An event isu is called an issue while an event del is called a store.

The transition relation → is partially defined in Fig. 3 (we will present additional
constraints later in this section). The events labeling a transition are written on top of →.
A begin transition will just reset the transaction log while an end transition will add the
transaction log together with the transaction identifier to the set msgs of messages in transit.
An ld transition will read the value of a shared-variable looking first at the transaction log
log and then, at the shared-variable valuation store, while an isu transition will add a new
write to the transaction log. Finally, a del transition represents the delivery of a transaction
log that was in transit which is applied immediately on the shared-variable valuation store.

We say that an execution ρ satisfies transaction isolation if no transaction log is delivered
to a process p while p is executing a transaction, i.e., if an event ev = del(p, t) occurs in ρ
before an event ev ′ = end(p, t′) with t′ 6= t, then ρ contains an event ev ′′ = begin(p, t′) between

1For simplicity, we assume that every transaction commits. The effects of aborted transactions shouldn’t
be visible to any process.

12:6 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

begin ∈ inst(ls(p).pc) s = ls(p)[log 7→ ε, pc 7→ next(pc)]

(ls,msgs)
begin(p, t)
−−−−−−−→ (ls[p 7→ s],msgs)

r := x ∈ inst(ls(p).pc) eval(ls(p), x) = v rval = ls(p).rval[r 7→ v] s = ls(p)[rval 7→ rval , pc 7→ next(pc)]

(ls,msgs)
ld(p, t, x, v)
−−−−−−−−→ (ls[p 7→ s],msgs)

x := v ∈ inst(ls(p).pc) log = (ls(p).log) · (x, v) s = ls(p)[log 7→ log, pc 7→ next(pc)]

(ls,msgs)
isu(p, t, x, v)
−−−−−−−−−→ (ls[p 7→ s],msgs)

end ∈ inst(ls(p).pc) s = ls(p)[pc 7→ next(pc)]

(ls,msgs)
end(p, t)
−−−−−−→ (ls[p 7→ s],msgs ∪ {(t, ls(p).log)})

〈t, log〉 ∈ msgs store = ls(p).store[x 7→ last(log, x) : x ∈ V, last(log, x) 6= ⊥] s = ls(p)[store 7→ store]

(ls,msgs)
del(p, t)
−−−−−→ (ls[p 7→ s],msgs)

Figure 3. The set of transition rules defining the causal memory semantics.
We assume that all the events which come from the same transaction use a
unique transaction identifier t. For a function f , we use f [a 7→ b] to denote a
function g such that g(c) = f(c) for all c 6= a and g(a) = b. The function inst
returns the set of instructions labeled by some given label while next gives
the next instruction to execute. We use · to denote sequence concatenation.
The function eval(ls(p), x) returns the value of x in the local state ls(p): (1) if
ls(p).log contains a pair (x, v), for some v, then eval(ls(p), x) returns the value
of the last such pair in ls(p).log, and (2) eval(ls(p), x) returns ls(p).store(x),
otherwise. Also, last(log , x) returns the value v in the last pair (x, v) in log ,
and ⊥, if such a pair does not exist.

ev and ev ′. For an execution ρ satisfying transaction isolation, we assume w.l.o.g. that
transactions executed by different processes do not interleave, i.e., if an event ev associated
to a transaction t (an event of the process executing t or the delivery of the transaction log
of t) occurs in ρ before ev ′ = end(p′, t′), then ρ contains an event ev ′′ = begin(p′, t′) between
ev and ev ′. Formally, we say that an execution ρ satisfies causal delivery if the following
hold:

• for any event begin(p, t), and for any process p′, ρ contains at most one event del(p′, t),
• for any two events begin(p, t) and begin(p, t′), if begin(p, t) occurs in ρ before begin(p, t′),

then the event del(p, t) occurs before begin(p, t′) in ρ. This ensures that when p issues t it
must store the writes of t in its local state before issuing another transaction t′;
• for any events ev1 ∈ {del(p, t1), end(p, t1)}, ev2 = begin(p, t2), and ev ′2 = del(p′, t2) with
p 6= p′, if ev1 occurs in ρ before ev2, then there exists ev ′1 = del(p′, t1) such that ev ′1 occurs
before ev ′2 in ρ.

An execution ρ satisfies causal memory if it satisfies transaction isolation and causal delivery.
The set of executions of P under causal memory, denoted by ExCM(P), is the set of executions
of [P]CM satisfying causal memory.

Fig. 4a shows an execution under CM. This execution satisfies transaction isolation since
no transaction is delivered while another transaction is executing.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:7

begin(p1, t1)
isu(p1, t1, x, 1)
end(p1, t1)

·del(p1, t1) ·
begin(p2, t3)
isu(p2, t3, x, 2)
end(p2, t3)

·del(p2, t3) ·del(p1, t3) · del(p2, t1) ·
begin(p2, t4)
ld(p2, t4, x, 1)
end(p2, t4)

·
begin(p1, t2)
ld(p1, t2, x, 2)
end(p1, t2)

(a) CM execution of the program in Fig. 1b.
begin(p1, t1)
isu(p1, t1, z, 1)
isu(p1, t1, x, 1)
end(p1, t1)

·del(p1, t1) ·

begin(p2, t3)
isu(p2, t3, x, 2)
ld(p2, t3, z, 0)
end(p2, t3)

·del(p2, t3) ·del(p1, t3) · del(p2, t1) ·
begin(p1, t2)
isu(p1, t2, y, 1)
end(p1, t2)

·del(p1, t2) ·del(p2, t2) ·

begin(p2, t4)
ld(p2, t4, y, 1)
ld(p2, t4, x, 2)
end(p2, t4)

(b) CCv execution of the program in Fig. 1a.
begin(p1, t1)
isu(p1, t1, x, 2)
end(p1, t1)

·del(p1, t1) ·
begin(p2, t2)
isu(p2, t2, x, 1)
end(p2, t2)

·del(p2, t2) · del(p2, t1) ·
begin(p2, t3)
ld(p2, t3, x, 2)
end(p2, t3)

·
begin(p2, t4)
ld(p2, t4, x, 1)
end(p2, t4)

· del(p1, t2)

(c) CC execution of the program in Fig. 1c.

Figure 4. For readability, the sub-sequences of events delimited by begin
and end are aligned vertically, the execution-flow advancing from left to right
and top to bottom.

2.3. Program Semantics Under Causal Convergence. Compared to causal memory,
causal convergence ensures eventual consistency of process-local copies of the shared variables.
Each transaction log is associated with a timestamp and a process applies a write on some
variable x from a transaction log only if it has a timestamp larger than the timestamps
of all the transaction logs it has already applied and that wrote the same variable x. For
simplicity, we assume that the transaction identifiers play the role of timestamps, which
are totally ordered according to some relation <. CCv satisfies both causal delivery and
transaction isolation as well. Assuming that transactions are constituted of either a read
alone or a write alone, CCv is equivalent to Strong Release-Acquire (SRA), a strengthening
of the standard Release-Acquire of the C11 memory model [28]2.

Formally, we define a variation of the LTS [P]CM, denoted by [P]CCv, where essentially,
the transition identifiers play the role of timestamps and are ordered by a total order <, each
process-local state contains an additional component tstamp storing the largest timestamp
the process has seen for each variable, and a write on a variable x from a transaction log is
applied on the local valuation store only if it has a timestamp larger than tstamp(x). Also,
a begin(p, t) transition will choose a transaction identifier t greater than those in the image
of the tstamp component of p’s local state. The transition rules of [P]CCv that change w.r.t.
those of [P]CM are given in Fig. 5.

The set of executions of P under causal convergence, denoted by ExCCv(P), is the set of
executions of [P]CCv satisfying transaction isolation, causal delivery, and the fact that every
process p generates monotonically increasing transaction identifiers.

The execution in Fig. 4a is not possible under causal convergence since t4 and t2 read 2
and 1 from x, respectively. This is possible only if t1 and t3 write x at p2 and p1, respectively,
which contradicts the definition of del transition given in Fig. 5 where we cannot have both
t1 < t3 and t3 < t1 at the same time. Fig. 4b shows an execution under CCv (we assume
t1 < t2 < t3 < t4). Notice that del(p2, t1) did not result in an update of x because the
timestamp t1 is smaller than the timestamp of the last transaction that wrote x at p2,

2This equivalence excludes the atomic read-modify-write (also know as compare-and-swap) operation
which is not provided by CCv.

12:8 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

Φ1 img(ls(p).tstamp) < t

(ls, lk,msgs)
begin(p, t)
−−−−−−−→ (ls[p 7→ s], lk,msgs)

〈t, log〉 ∈ msgs store = ls(p).store[x 7→ last(log, x) : x ∈ V, last(log, x) 6= ⊥, tstamp(x) < t]

tstamp = ls(p).tstamp[x 7→ t : x ∈ V, last(log, x) 6= ⊥, tstamp(x) < t] s = ls(p)[store 7→ store, tstamp 7→ tstamp]

(ls, lk,msgs)
del(p, t)
−−−−−→ (ls[p 7→ s], lk,msgs)

Figure 5. Transition rules for defining causal convergence. Φ1 is the hy-
pothesis of the begin(p, t) transition rule in Fig. 3, and img denotes the image
of a function.

namely t3, a behavior that is not possible under CM. The two processes converge and store
the same shared variable copy at the end of the execution.

2.4. Program Semantics Under Weak Causal Consistency. Compared to the previ-
ous semantics, CC allows that reads of the same process observe concurrent writes as executing
in different orders. Each process maintains a set of values for each shared variable, and a
read returns any one of these values non-deterministically. Transaction logs are associated
with vector clocks [30] which represent the causal delivery relation, i.e., a transaction t1 is
before t2 in causal-delivery iff the vector clock of t1 is smaller than the vector clock of t2. We
assume that transactions identifiers play the role of vector clocks, which are partially ordered
according to some relation <. In applying the log of a transaction t on the local state of the
receiving process p, the final set of values for each shared variable in p will be constituted of
the value in the log of t and the values that were written by concurrent transactions (not
related by causal delivery to t). CC satisfies both causal delivery and transaction isolation.

Formally, in CC semantics, the local valuation of the shared variables store : V→ (D×T)∗

is a map that accepts a shared variable and returns a set of pairs. The pairs are constituted
of values that were written concurrently and identifiers of the transactions that wrote
those values. When applying a transaction log on the local valuation store, we keep the
values that were written by transactions that are concurrent with the current transaction.
Additionally, in the CC semantics, the local state of a process has an additional component
snapshot : V→ (D×T) that maps each shared variable to a single pair. snapshot is obtained
by taking a “consistent” snapshot from store when a new transaction starts. Such a snapshot
corresponds to a linearization of the transactions that were delivered to the process, which
is consistent with the vector clock order. The snapshot associates to each variable the last
value written in this linearization. When a process does a read from a shared variable x, it
looks first at the transaction log log and then, at the variable valuation snapshot. In Fig. 6,
we provide the transition rules of [P]CC that change w.r.t. those of [P]CCv and [P]CM.

The set of executions of P under weak causal consistency model, denoted by ExCC(P), is
the set of executions of [P]CC satisfying transaction isolation and causal delivery. We denote
by Tr(P)CC the set of traces of executions of a program P under weak causal consistency.

Fig. 4c shows an execution under CC, which is not possible under CCv and CM because t3
and t4 read 2 and 1, respectively. Since the transactions t1 and t2 are concurrent, p2 stores
both values 2 and 1 written by these transactions. A read of x can return any of these two
values.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:9

begin ∈ inst(ls(p).pc) img(ls(p).tstamp) < t

s = ls(p)[log 7→ ε, snapshot 7→ buildSnapshot(store), pc 7→ next(pc)]

(ls,msgs)
begin(p, t)−−−−−−→ (ls[p 7→ s],msgs)

r := x ∈ inst(ls(p).pc) cceval(ls(p), x) = (v, t′) rval = ls(p).rval[r 7→ v]

s = ls(p)[rval 7→ rval , pc 7→ next(pc)]

(ls,msgs)
ld(p, t, x, v)−−−−−−−→ (ls[p 7→ s],msgs)

end ∈ inst(ls(p).pc) s = ls(p)[snapshot 7→ ε, pc 7→ next(pc)]

(ls,msgs)
end(p, t)−−−−−→ (ls[p 7→ s],msgs ∪ {(t, ls(p).log)})

〈t, log〉 ∈ msgs store = ls(p).store[x 7→ update(ls(p), x, t, last(log , x)) : x ∈ V]

s = ls(p)[store 7→ store, pc 7→ next(pc)]

(ls,msgs)
del(p, t)−−−−−→ (ls[p 7→ s],msgs)

Figure 6. Transition rules for defining weak causal consistency semantics:
buildSnapshot(store) returns a consistent snapshot of store. cceval(ls(p), x)
returns the pair (last(log , x), t) if last(log , x) 6= ⊥, and returns the pair
(v, t′) in ls(p).snapshot(x), otherwise. update(ls(p), x, t, last(log , x)) returns
the result of appending the pair (last(log , x), t) to the set ls(p).store(x) after
removing all pairs that contain values overwritten by t.

2.5. Execution Summary. Let ρ be an execution under X ∈ {CCv, CM, CC}, a sequence τ
of events isu(p, t) and del(p, t) with p ∈ P and t ∈ T is called a summary of ρ if it is obtained
from ρ by substituting every sub-sequence of transitions in ρ delimited by a begin and an
end transition, with a single “macro-event” isu(p, t). For example, isu(p1, t1) · isu(p2, t3) ·
del(p1, t3) · del(p2, t1) · isu(p2, t4) · isu(p1, t2) is a summary of the execution in Fig. 4a.

We say that a transaction t in ρ performs an external read of a variable x if ρ contains
an event ld(p, t, x, v) which is not preceded by a write on x of t, i.e., an event isu(p, t, x, v).
Under CM and CC, a transaction t writes a variable x if ρ contains an event isu(p, t, x, v), for
some v. In Fig. 4a, both t2 and t4 perform external reads and t2 writes to y. A transaction
t executed by a process p writes x at process p′ if t writes x and ρ contains an event del(p′, t)
(e.g., in Fig. 4a, t1 writes x at p2). Under CCv, we say that a transaction t executed by a
process p writes x at process p′ if t writes x and ρ contains an event del(p′, t) which is not
preceded by an event del(p′, t′) with t < t′ and t′ writing x (if it would be preceded by such
an event then the write to x of t will be discarded). For example, in Fig. 4b, t1 does not
write x at p2.

2.6. Trace. We define an abstract representation of executions that satisfy transaction
isolation3, called trace. Essentially, a trace contains the summary of an execution (it forgets
the order in which shared-variables are accessed inside a transaction) and several happens-
before relations between events in its summary which record control-flow dependencies, the
order between transactions issued in the same process, and data-flow dependencies, e.g.
which transaction wrote the value read by another transaction.

More precisely, the trace of an execution ρ is a tuple tr(ρ) = (τ,PO,WR,WW,RW, STO)
where τ is the summary of ρ, PO is the program order, which relates any two issue events

3We refer collectively to executions in [P]X with X ∈ {CCv, CM, CC}.

12:10 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

isu(p1, t1) del(p1, t1) isu(p2, t3) del(p2, t3) del(p1, t3) del(p2, t1) isu(p1, t2) del(p1, t2) del(p2, t2) isu(p2, t4)

WWPO

STO

STO PO

PO

STO STO

PO

RW WR

STO

PO

STO
WR

t1 t3 t2 t4

WW

PO PORW

WR

WR

Figure 7. The trace of the execution in Fig. 4b and its transactional
happens-before.

isu(p, t) and isu(p, t′) that occur in this order in τ , WR is the write-read relation (also called
read-from), which relates events of two transactions t and t′ such that t writes a value
that t′ reads, WW is the write-write order (also called store-order), which relates events
of two transactions that write to the same variable, RW is the read-write relation (also
called conflict), which relates events of two transactions t and t′ such that t reads a value
overwritten by t′, and STO is the same-transaction relation, which relates events of the
same transaction.

Definition 2.1 (Trace). Formally, the trace of an execution ρ satisfying transaction isolation
is tr(ρ) = (τ,PO,WR,WW,RW,STO) where τ is a summary of ρ, and

PO: relates the issue and store events isu(p, t) and del(p, t) of t and subsequently, the
event del(p, t) with any issue event isu(p, t′) that occurs after it in τ .

WR: relates any store and issue events ev1 = del(p, t) and ev2 = isu(p, t′) that occur in
this order in τ such that t′ performs an external read of x, and ev1 is the last event
in τ before ev2 such that t writes x at p. To make the shared variable x explicit, we
may use WR(x) to name the relation between ev1 and ev2.

WW: relates events of two transactions that write to the same variable. More precisely,
WW relates any two store events ev1 = del(p, t1) and ev2 = del(p, t2) that occur in
this order in τ provided that t1 and t2 both write the same variable x, and if ρ is
an execution under causal convergence, then t1 and t2 writes x at p, and t1 < t2.
To make the shared variable x explicit, we may use WW(x) to name the relation
between ev1 and ev2.

RW: relates events of two distinct transactions t and t′ such that t reads a value that
is overwritten by t′. Formally, RW(x) = WR−1(x);WW(x) (we use ; to denote the
standard composition of relations) and RW =

⋃
x∈V RW(x). If a transaction t reads

the initial value of x then RW(x) relates isu(p, t) with every event del(p′, t′) with
p′ ∈ P of any other transaction t′ that writes to x at p′.

STO: relates issue events with store events of the same transaction. More precisely, STO
relates every event isu(p, t) with every event del(p′, t) with p′ ∈ P.

The following result states an important property of the store order relation WW that
is enforced by the CCv semantics. It holds because the writes in different transactions are
applied by different processes in the same order given by their timestamps, when visible
(delivered) to those processes.

Lemma 2.2. Let τ ∈ TrCCv(P) be a trace. If (del(p0, t0), del(p0, t1)) ∈ WW(x), then for
every other process p, (del(p, t1), del(p, t0)) 6∈WW(x).

We define the happens-before relation HB as the transitive closure of the union of all
the relations in the trace, i.e., HB = (PO ∪WR ∪WW ∪ RW ∪ STO)+. Since we reason

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:11

about only one trace at a time, we may say that a trace is simply a summary τ , keeping the
relations implicit. The trace of the CCv execution in Fig. 4b is shown on the left of Fig. 7.
Tr(P)X denotes the set of traces of executions of a program P under X ∈ {CCv, CM, CC}.

For readability, we write ev1 →HB ev2 instead of (ev1, ev2) ∈ HB and ev1 and ev2 can
be either isu(p, t) or del(p, t). We use the notation ev1 →HB1 ev2 (resp., (ev1, ev2) ∈ HB1)
to denote (ev1, ev2) ∈ (PO ∪WW ∪WR ∪ STO ∪ RW).

The causal order CO of a trace tr = (τ,PO,WR,WW,RW, STO) is the transitive closure
of the union of the program order, write-read relation, and the same-transaction relation, i.e.,
CO = (PO∪WR∪STO)+. For readability, we write ev1 →CO ev2 instead of (ev1, ev2) ∈ CO.

Let t1 and t2 be two transactions issued in a trace tr that originate from two different
processes p1 and p2, respectively. If (isu(p1, t1), isu(p2, t2)) 6∈ CO and (isu(p2, t2), isu(p1, t1)) 6∈
CO, then t1 and t2 are called concurrent transactions.

The happens-before relation between events is extended to transactions as follows: a
transaction t1 happens-before another transaction t2 6= t1 if the trace tr contains an event of
transaction t1 which happens-before an event of t2. The happens-before relation between
transactions is denoted by HBt and called transactional happens-before (an example is given
on the right of Fig. 7).

Remark 2.3. The operational models of causal consistency we described are equivalent to the
axiomatic models defined in [13]. These axiomatic models are defined as a set of constraints on
abstractions of executions, called histories, that consist of a set of read and write operations
along with a program order, denoted by PO′, and a read-from relation, denoted by WR′: PO′

relates operations in the same process and WR′ associates every read operation to the write
operation which wrote the read value. For instance, the axiomatic model of CC requires that
the union of PO′ and WR′ (denoted CO′) is acyclic4, and its composition with a variation
of the conflict relation, denoted by RW′, ((a, b) ∈ RW′5 iff ∃ c. (c, b) ∈ CO′ ∧ (c, a) ∈ WR′)
is irreflexive6. These models can be extended easily to histories that contain transactions
instead of operations by adapting the above relations. Note that every program trace (cf.
Definition 2.1) can be “projected” to a history where issue and store events from the same
transaction in the trace are mapped to a single transaction in the history. Also, the read-from
and the program order between trace events are mapped to the WR′ and PO′ of the history.

To show equivalence between these models, it is sufficient to show that (1) every history
corresponding to a trace in the operational model satisfies the constraints of the axiomatic
model, and (2) every history that is valid under the axiomatic model is the “projection” of
a trace of the operational model. For instance, for CC, it is easy to see that the relation
CO′ = PO′ ∪WR′ in a history that is the projection of a trace τ ∈ TrCC(P) is acyclic because
the causal order CO in τ is. Also, the proof that CO′;RW′ is irreflexive can be derived easily
by contradiction (for instance, if (a, b) ∈ RW′ and (b, a) ∈ CO′, then there exists c such that
(c, b) ∈ CO′ which means that by causal delivery, a can never read the value written by c).

3. Write-Write Race Freedom

We say that an execution ρ has a write-write race on a shared variable x if there exist two
concurrent transactions t1 and t2 that were issued in ρ and each transaction contains a write

4This constraint corresponds to the absence of the CyclicCO bad pattern in [13].
5b is overwriting the value a is reading.
6This constraint corresponds to the absence of the WriteCORead bad pattern in [13].

12:12 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

to the variable x. We call ρ write-write race free if there is no variable x such that ρ has a
write-write race on x. Also, we say a program P is write-write race free under a consistency
semantics X ∈ {CCv, CM, CC} iff for every ρ ∈ ExX(P), ρ is write-write race free.

We show that if a given program has a write-write race under one of the three causal
consistency models then it must have a write-write race under the remaining two. The
intuition behind this is that the three models coincide for programs without write-write
races. Indeed, without concurrent transactions that write to the same variable, every process
local valuation of a shared variable will be a singleton set under CC and no process will ever
discard a write when applying an incoming transaction log under CCv.

Theorem 3.1. Given a program P and two consistency semantics X,Y ∈ {CCv, CM, CC},
P has a write-write race under X iff P has a write-write race under Y.

Proof. Since CC is weaker than both CCv and CM, it is sufficient to prove the following two
cases: (1) if P has a write-write race under CC, then P has a write-write race under CCv and
(2) if P has a write-write race under CC, then P has a write-write race under CM.

We prove the first case by induction on the number of transactions in P. The second
case can be proved in a similar way.
Base case: P is constituted of two transactions t1 and t2. Assume that P has a write-write
race under CC then the transactions t1 and t2 must originate from different processes. Thus,
in any trace τ of P under CCv where the transactions t1 and t2 are executed concurrently
we will have a write-write race between these two transactions. Thus, P has a write-write
race under CCv.
Induction step: If n > 2 is the number of transactions in P, we assume that for any
program P ′ with n′ < n transactions, if P ′ has a write-write race under CC, then P ′ has a
write-write race under CCv. Assume that P has a write-write race under CC. Let τ be a trace
of P under CC where we have a write-write race between two transactions t1 and t2 that were
issued by processes p1 and p2, respectively. Executing t1 and t2 concurrently while writing to
a common variable is not possible under CCv only if the writes were enabled by some events
that occurred before t1 and t2 under CC and are not possible under CCv. However, based
on the semantic models of both CC and CCv, if all the transactions that write to common
variables are causally related then such events cannot occur under CC but not CCv. Thus,
we must have two other transactions t′1 and t′2 of P that were executed concurrently in τ
under CC and occurred before t1 (or t2 or both) which write to a common variable. Without
loss of generality, let P1 be the program resulting from removing the transaction t1 from P.
We know that P1 admits a trace τ1 under CC where the transactions t′1 and t′2 are involved
in a data race. Also, the size of P1 is n− 1 < n. Thus, from the induction hypothesis we
get that P1 has a write-write race under CCv. Because adding a new transaction to P1 will
not eliminate existing data races, P has a write-write race under CCv as well.

The following result shows that indeed, the three causal consistency models coincide for
programs which are write-write race free under any one of these three models.

Theorem 3.2. Let P be a program. Then, ExCC(P) = ExCCv(P) = ExCM(P) iff P has no
write-write race under neither CC, CM, and CCv.

Proof. Left-to-right direction: By Theorem 3.1, it is sufficient to prove that P has no
write-write race under CM. Suppose by contradiction that P has a write-write race under CM.
Then, there must exist a trace τ ∈ TrCC(P) such that we have two concurrent transactions t1
and t2 that are issued in τ and write to a variable x. Assume w.l.o.g that the issue event of

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:13

t1 occurs before the issue event of t2 in τ . Since t1 and t2 are concurrent in τ , the issue event
of t1 and the store events of t2 are commutative, and the issue event of t2 and the store
events of t1 are commutative. Then, τ ′ = α · isu(p1, t1) · del(p1, t1) · β · isu(p2, t2) · del(p2, t2) ·
del(p1, t2) · del(p2, t1) where α and β are sequences of events in τ that t1 and t2 causally
depend on (since we are not interested in other events)7, is a trace of P under CM. In τ ′,
both store events del(p2, t1) and del(p1, t2) do not discard any writes (guaranteed under
CM). Therefore, (del(p1, t1), del(p1, t2)) ∈WW(x) and (del(p2, t2), del(p2, t1)) ∈WW(x) since
both t1 and t2 write to x. However, it is impossible to obtain τ ′ under CCv as we cannot
have (del(p2, t2), del(p2, t1)) ∈ WW(x) if (del(p1, t1), del(p1, t2)) ∈ WW(x) which leads to a
contradiction (P has different sets of traces under CM and CCv).

Right-to-left direction: It is sufficient to prove the following two cases: if τ has no
write-write race under CC then τ ∈ TrCC implies τ ∈ TrCM and τ ∈ TrCCv (TrCCv(P) ⊆ TrCC(P)
and TrCM(P) ⊆ TrCC(P) hold by definition).

Let τ ∈ TrCC be a trace under CC. Then, τ satisfies transactions isolation and causal
delivery. It is important to notice that if τ has no write-write race then the contents of store
at a given variable will contain a single value at any time during τ . This implies that store
can be simulated by a single value memory which does not discard writes. Thus, we obtain
a program semantics that is the same as the one for CM. Thus, τ is also a trace of P under
CM. To prove that τ ∈ TrCCv, we also need to ensure that the transitive closure of store order
in τ is acyclic which is enough to guarantee the existence of a total arbitration between
transactions which is ensured by CCv semantics. Suppose by contradiction that the transitive
closure of store order is cyclic then there must exist a sequence of events ev1 · ev2 · . . . evn in
τ such that (ev i, ev i+1) ∈WW, for all 1 ≤ i ≤ n− 1 and (evn, ev1) ∈WW. Since τ has no
write-write races then (ev i, ev i+1) ∈WW implies that the issue events corresponding to ev i
and ev i+1 must be related by causal ordered (since the corresponding transactions must be
causally related to prevent concurrency which will lead to write-write races for transactions
that write to a common variable). For all i s.t. 1 ≤ i ≤ n − 1, let ev ′i and ev ′i+1 denote
these issue events then (ev ′i, ev ′i+1) ∈ CO which implies that the causal order CO is cyclic.
This is a contradiction since it is not possible under CC. Thus, there exists a total order
between transactions in τ that includes both the causal order and the transitive closure of
store order. Thus, τ is also a trace of P under CCv.

4. Program Robustness

4.1. Program Semantics Under Serializability. The semantics of a program under
serializability [37] can be defined using a transition system where the configurations keep a
single shared-variable valuation (accessed by all processes) with the standard interpretation
of read or write statements. Each transaction executes in isolation. Alternatively, the
serializability semantics can be defined as a restriction of [P]X, X ∈ {CCv, CM, CC}, to the set
of executions where each transaction is immediately delivered to all processes, i.e., each event
end(p, t) is immediately followed by all del(p′, t) with p′ ∈ P. Such executions are called
serializable and the set of serializable executions of a program P is denoted by ExSER(P). The

7Note that other cases such as τ ′ = α · isu(p1, t1) · β · isu(p2, t2) · del(p2, t2) · del(p1, t2) · del(p1, t1) implies
that τ ′′ = α · isu(p1, t1) · del(p1, t1) · β · isu(p2, t2) · del(p2, t2) · del(p1, t2) · del(p2, t1) is a trace of P as well since
all events in β are not causally dependent on t1.

12:14 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

p1:

t1: [r = y

x = 1]

|| p2:

t2: [y = 2] isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)

RW

isu(p1, t1) del(p1, t1) del(p2, t1) (p2, t2)

RW

Figure 8. Two executions of the same serializable trace.

latter definition is easier to reason about when relating executions under causal consistency
and serializability, respectively.

Given a trace tr = (τ,PO,WR,WW,RW,STO) of a serializable execution, we have that
every event isu(p, t) in τ is immediately followed by all del(p′, t) with p′ ∈ P. For simplicity,
we write τ as a sequence of “atomic macro-events” (p, t) where (p, t) denotes a sequence
isu(p, t) · del(p, t) · del(p1, t) · . . . · del(pn, t) with P = {p, p1, . . . , pn}. We say that t is atomic.
In Fig. 7, t3 is atomic and we can use (p2, t3) instead of isu(p2, t3) · del(p2, t3) · del(p1, t3).

The following result characterizes traces of serializable executions, and follows from
previous works [2, 41] that considered a notion of history/trace that corresponds to our notion
of transactional happens-before. The transactional happens-before of any trace under SER

is acyclic, and conversely, any trace obtained under a weaker semantics X ∈ {CCv, CM, CC}
with an acyclic transactional happens-before can be transformed into a trace under SER by
successive swaps of consecutive events in its summary, which are not related by happens-before
(the happens-before relations remain the same). Indeed, note that multiple executions/traces
can have the same (transactional) happens-before (an example for traces is given in Fig. 8).
In particular, it is possible that a trace tr produced by a variation of causal consistency has
an acyclic transactional happens-before even though isu(p, t) events are not immediately
followed by the corresponding del(p′, t) events. However, tr would be equivalent, up to
reordering of consecutive summary events that are not related by happens-before to a
serializable trace.

Theorem 4.1 [2, 41]. For any trace tr ∈ TrSER(P), the transactional happens-before of
tr is acyclic. Moreover, for any trace tr = (τ,PO,WR,WW,RW,STO) ∈ TrX(P) with
X ∈ {CCv, CM, CC}, if the transactional happens-before of tr is acyclic, then there exists a
permutation τ ′ of τ such that (τ ′,PO,WR,WW,RW, STO) ∈ TrSER(P).

As a consequence of Theorem 4.1, we define a trace tr to be serializable if it has the
same happens-before relations as a trace of a serializable execution. Let TrSER(P) denote the
set of serializable traces of a program P.

4.2. Robustness Problem. We consider the problem of checking whether the causally-
consistent semantics of a program produces only serializable traces (it produces all serializable
traces because every issue event can be immediately followed by all the corresponding store
events).

Definition 4.2. A program P is called robust against a semantics X ∈ {CCv, CM, CC} iff
TrX(P) = TrSER(P).

A trace tr ∈ TrX(P) \ TrSER(P) is called a robustness violation (or violation, for short).
By Theorem 4.1, the transactional happens-before HBt of tr is cyclic.

We discuss several examples of programs which are (non-) robust against both CM and CCv

or only one of them. Robustness violations are presented in terms of “observable” behaviors,
tuples of values that can be read in the different transactions and that are not possible

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:15

p1

t1 [r1 = x //0

x = r1 + 1]

||
p2

t2 [r2 = x //0

x = r2 + 1]

(a) Lost Update (LU).

p1

t1 [x = 1

r1 = y] //0

||
p2

t2 [y = 1

r2 = x] //0

(b) Store Buffering (SB).

[a = 1

z = 1

x = 1

y = 1]

||

if (a == 1)

[x = 2

r1 = z //0

r2 = y //1

r3 = x] //2

(c) Without transactions,
non-robust against CCv.

[a = 1

x = 1

r1 = x] //2

||
if (a == 1)

[x = 2

r2 = x] //1

(d) Without transactions, non-
robust only against CM.

if (*)

[x = 1]

else

[r1 = x]

||

if (*)

[x = 2]

else

[r2 = x]

(e) Robust against both CM

and CCv.

[x = 1]

[r1 = y]
||

[r2 = x

if (r2 == 1)

y = 1]

(f) Robust against both CM and
CCv.

Figure 9. (Non-)robust programs. For non-robust programs, the read in-
structions are commented with the values they return in robustness violations.
The condition of if-else is checked inside a transaction whose demarcation
is omitted for readability (∗ denotes non-deterministic choice).

under the serializability semantics (they correspond to traces with acyclic transactional
happens-before). Fig. 9a and Fig. 9b show examples of programs that are not robust against
both CM and CCv, which have also been discussed in the literature on weak memory models,
e.g. [6]. The execution of Lost Update under both CM and CCv allows that the two reads of x
in transactions t1 and t2 return 0 although this cannot happen under serializability. Also,
executing Store Buffering under both CM and CCv allows that the reads of x and y return 0
although this would not be possible under serializability. These values are possible because
the transaction in each of the processes may not be delivered to the other process.

Assuming for the moment that each instruction in Fig. 9c and Fig. 9d forms a different
transaction, the values we give in comments show that the program in Fig. 9c, resp., Fig. 9d,
is not robust against CCv, resp., CM. The values in Fig. 9c are possible assuming that the
timestamp of the transaction [x = 1] is smaller than the timestamp of [x = 2] (which means
that if the former is delivered after the second process executes [x = 2], then it will be
discarded). Moreover, enlarging the transactions as shown in Fig. 9c, the program becomes
robust against CCv. The values in Fig. 9d are possible under CM because different processes
do not need to agree on the order in which to apply transactions, each process applying the
transaction received from the other process last. However, under CCv this behavior is not
possible, the program being actually robust against CCv. As in the previous case, enlarging
the transactions as shown in the figure leads to a robust program against CM.

We end the discussion with several examples of programs that are robust against both
CM and CCv. These are simplified models of real applications reported in [27]. The program
in Fig. 9e can be understood as the parallel execution of two processes that either create
a new user of some service, represented abstractly as a write on a variable x or check its
credentials, represented as a read of x (the non-deterministic choice abstracts some code
that checks whether the user exists). Clearly this program is robust against both CM and
CCv since each process does a single access to the shared variable. Although we considered
simple transactions that access a single shared-variable this would hold even for “bigger”

12:16 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

transactions that access an arbitrary number of variables. The program in Fig. 9f can be
thought of as a process creating a new user of some service and reading some additional
data in parallel to a process that updates that data only if the user exists. It is rather easy
to see that it is also robust against both CM and CCv.

5. Minimal Violations

We define a class of robustness violations called minimal violations. The particular shapes
of these violations, that we determine through a series of results in this section, Section 6,
and Section 7, enables a polynomial-time reduction of robustness checking to a reachability
problem in a program running under serializability.

For simplicity, we use “atomic macro-events” (p, t) even in traces obtained under causal
consistency (recall that this notation was introduced to simplify serializable traces), i.e., we
assume that any sequence of events formed of an issue isu(p, t) followed immediately by all
the store events del(p′, t) is replaced by (p, t). Then, all the relations that held between an
event ev of such a sequence and another event ev ′, e.g., (ev , ev ′) ∈ PO, are defined to hold
as well between the corresponding macro-event (p, t) and ev ′, e.g, ((p, t), ev ′) ∈ PO.

5.1. Happens-Before Through Relation. To decide if two events in a trace are “inde-
pendent” (or commutative) we use the information about the existence of a happens-before
relation between the events. If two events are not related by happens-before then they can
be swapped while preserving the same happens-before. Thus, we extend the happens-before
relation to obtain the happens-before through relation as follows:

Definition 5.1. Let τ = α · a · β · b · γ be a trace where a and b are events (or atomic
macro events), and α, β, and γ are sequences of events (or atomic macro events) under a
semantics X ∈ {CCv, CM}. We say that a happens-before b through β if there is a non empty
sub-sequence c1 · · · cn of β that satisfies:

ci →HB1 ci+1 for all i ∈ [0, n]

where c0 = a, cn+1 = b.

The following result shows that any two events in a trace which are not related via the
happens-before through relation can be reordered without affecting the happens-before or
they can be placed one immediately after the other.

Lemma 5.2. Let τ be a trace of a program P under a semantics X ∈ {CCv, CM}, and a and
b be two events such that τ = α · a · β · b · γ. Then, one of the following holds:

(1) a happens-before b through β;
(2) τ ′ = α · β1 · a · b · β2 · γ ∈ TrX(P) where (a, b) ∈ HB1 has the same happens-before as τ ;
(3) τ ′ = α · β1 · b · a · β2 · γ ∈ TrX(P) has the same happens-before as τ .

Proof. We prove that ¬(1)⇒ ((2) or (3)) using induction on the size of β.
Base case: If |β| = 0, then τ = α · a · b · γ, which implies that a does not happen-before b
through β (by definition, β cannot be empty). Thus, either a and b are HB1-related, which
corresponds to (2), or a and b are not HB1-related, which implies that b can move to the left
of a producing the trace τ ′ = α · b · a · γ that has the same happens-before as τ and that
corresponds to (3).

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:17

Induction step: We assume that the lemma holds for |β| ≤ n. Consider τn+1 = α ·a ·β ·b ·γ
with |β| = n+ 1. Consider c the last event in the sequence β = β1 · c. If a does not happen
before b through β, then either a does not happen before c through β1 and a and c are not
HB1-related, or c and b are not HB1-related.

First case: suppose that a does not happen before c through β1 and a and c are not
HB1-related. Using the induction hypothesis over τn+1 with respect to a and c (since
|β1| ≤ n) results in τ ′n+1 = α · β11 · c · a · β12 · b · γ that has the same happens-before as
τn+1. We know that if a happens-before b through β12 then a happens-before b through
β because β12 is a subset of β. Therefore, a does not happen-before b through β12. Since
|β12| ≤ |β1| ≤ n, then we can apply the induction hypothesis to τ ′n+1 with respect to a and b
which yields either τ ′′n+1 = α · β11 · c · β121 · b · a · β122 · γ which has the same happens-before

as τ ′n+1, if a and b are not HB1-related, or τ ′′n+1 = α · β11 · c · β121 · a · b · β122 · γ which has
the same happens-before as τ ′n+1, otherwise.

Second case: suppose c and b are not HB1-related. We apply the induction hypothesis to
τn+1 with respect to c and b, and we get τ ′n+1 = α ·a ·β1 ·b ·c ·γ with the same happens-before
as τn+1. As we already know that a does not happen before b through β then a does not
happen before b through β1. Subsequently by using the induction hypothesis over τ ′n+1

with respect to a and b, we obtain τ ′′n+1 = α · β11 · b · a · β12 · c · γ where τ ′′n+1 has the same

happens-before as τ ′n+1, if a and b are not HB1-related, or τ ′′n+1 = α · β11 · a · b · β12 · c · γ
where τ ′′n+1 has the same happens-before as τ ′n+1, otherwise.

We show next that a robustness violation should contain at least an issue and a store
event of the same transaction that are separated by another event that occurs after the issue
and before the store and which is related to both via the happens-before relation. Otherwise,
since any two events which are not related by happens-before could be swapped in order to
derive a trace with the same happens-before, every store event could be swapped until it
immediately follows the corresponding issue and the trace would be serializable.

Lemma 5.3. Given a violation τ , there must exist a transaction t such that τ = α · isu(p, t) ·
β · del(p0, t) · γ and isu(p, t) happens-before del(p0, t) through β.

Proof. Assume by contradiction that the lemma does not hold. For every transaction t of
τ suppose there exist p′ ∈ P such that del(p′, t) does not occur immediately after isu(p, t).
Thus, τ = α · isu(p, t) · β · del(p′, t) · γ, and (isu(p, t), del(p′, t)) ∈ STO ⊂ HB1. From Lemma
5.2, τ ′ = α · β1 · isu(p, t) · del(p′, t) · β2 · γ has the same happens-before as τ (since isu(p, t)
does not happens-before del(p′, t) through β). Then, the trace τ∗ where for every transaction
t of τ the store events occur immediately after the issue event has the same happens-before
as τ . Thus, τ∗ is serializable which means that its HBt is acyclic which contradicts the fact
that τ is a violation.

The transaction t in the trace τ above is called a delayed transaction. The happens-
before constraints imply that t belongs to a transactional happens-before cycle in the trace.
In the remainder of the paper, when given a violation τ = α · isu(p, t) · β · del(p0, t) · γ, we
assume that t is the first delayed transaction in τ .

5.2. Minimal Violations. Given a trace τ = α ·b ·β ·c ·ω containing two events b = isu(p, t)
and c, the distance between b and c, denoted by dτ (b, c), is the number of events in β
that are causally related to b, excluding events that correspond to the delivery of t, i.e.,
dτ (b, c) = |{d ∈ β | (b, d) ∈ CO ∧ d 6= del(p′, t) for every p′ ∈ P}|

12:18 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

The number of delays #(τ) in a trace τ is the sum of all distances between issue and
store events that originate from the same transaction:

#(τ) =
∑

isu(p,t), del(p′,t) ∈ τ

dτ (isu(p, t), del(p′, t))

Definition 5.4 (Minimal Violation). A robustness violation τ is called minimal if it has
the least number of delays among all robustness violations (for a given program P and
semantics X ∈ {CC, CCv, CM}).

Remark 5.5. It is important to note that a non-robust program can admit multiple minimal
violations with different happens-before relations. For instance, Fig. 10 pictures two minimal
violations that do not have the same happens-before and both traces have 0 delays. In
the trace in Fig. 10b a single transaction is delayed while in the trace in Fig. 10c two
transactions are delayed and are not causally related. For the trace τ1 in Fig. 10b, we have
that #(τ1) = dτ1(isu(p2, t2), del(p2, t2)) + dτ1(isu(p2, t2), del(p3, t2)) = 0. For the trace τ2

in Fig. 10c, we have that #(τ2) = dτ2(isu(p1, t1), del(p1, t1)) + dτ2(isu(p1, t1), del(p3, t1)) +
dτ2(isu(p2, t2), del(p3, t2)) = 0. Hence, the number of delays for both cases is 0.

p1:

t1: [x = 1

r1 = y]

||
p2:

t2: [y = 2

r2 = z]

||

p3:

t3: [z = 3

r3 = x

r4 = y]

(a) A program.

isu(p2, t2) del(p2, t2) (p3, t3) del(p3, t2) (p1, t1)
RW

RW

RW

STO

(b) A minimal violation of (a).

isu(p1, t1) del(p1, t1) isu(p2, t2) del(p2, t2) del(p1, t2) (p3, t3) del(p3, t2) del(p3, t1)

STO

RW

STO

RW

RW

RW

(c) Another minimal violation of (a).

Figure 10. Example of two minimal violation traces that do not have the
same happens-before relation (possible under both CCv and CM). Both traces
have the same number of delays which is equal to 0. The minimal violation
in (b) contains a single delayed transaction (t2), and the minimal violation
in (c) contains two delayed transactions (t1 and t2). For readability, we do
not show all PO and STO transitions.

Given a minimal violation τ = α · isu(p, t) · β · del(p0, t) · γ, the following lemma shows
that we can assume w.l.o.g. that γ contains only store events from transactions that were
issued before del(p0, t) in τ .

Lemma 5.6. Let τ = α · isu(p, t) · β · del(p0, t) · γ be a minimal violation such that isu(p, t)
happens-before del(p0, t) through β. Then, τ ′ = α · isu(p, t) · β · del(p0, t) · γ′, such that γ′

contains only store events from transactions that were issued before del(p0, t) in τ , is also a
minimal violation.

Proof. The prefix α · isu(p, t) · β · del(p0, t) has a cyclic transactional happens-before and it is
already a minimal violation independently of whether γ contains additional transactions.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:19

The following result shows that for every minimal violation, we can extract another mini-
mal violation of the shape τ = α·isu(p, t)·β·(p′, t′)·del(p′, t)·γ such that (isu(p, t), (p′, t′)) ∈ HB,
and ((p′, t′), del(p′, t)) ∈ HB1.

Lemma 5.7. If P is a program that is not robust against some X ∈ {CCv, CM, CC}, then
its set of traces under the semantics X must admit a minimal violation of the shape τ =
α·isu(p, t)·β ·(p′, t′)·del(p′, t)·γ such that (isu(p, t), (p′, t′)) ∈ HB and ((p′, t′), del(p′, t)) ∈ HB1.

Proof. Let τ = α · isu(p, t) · β · del(p0, t) · γ be a minimal violation of P, such that isu(p, t)
happens-before del(p0, t) through β. By Lemma 5.6, we assume that γ contains only
store events. We prove by induction on the size of β that P admits another minimal
violation against X of the form τ ′ = α′ · isu(p1, t1) · β′ · (p2, t2) · del(p2, t1) · γ′ such that
(isu(p1, t1), (p2, t2)) ∈ HB, ((p2, t2), del(p2, t1)) ∈ HB1, and τ ′ is a permutation of a subse-
quence of τ .

Note that isu(p, t) happens-before del(p0, t) through β implies that there exists a sub-
sequence c1 · · · cn of β that satisfies: ci →HB1 ci+1 for all i ∈ [0, n] where c0 = isu(p, t),
cn+1 = del(p0, t). Then, we have three possibilities for cn: (p′, t′), isu(p′, t′), or del(p0, t

′).
Base case: |β| = 1 implies that β = cn. If cn = (p′, t′) then τ is a minimal violation s.t.
isu(p, t)→HB (p′, t′) and (p′, t′)→HB1 del(p0, t). If cn = isu(p′, t′) then we regroup together
the issue event isu(p′, t′) with its store events obtaining τ ′ = α · isu(p, t) ·(p′, t′) ·del(p0, t) ·γ′ to
be a minimal violation as well (since the transactional happens-before of the trace resulting
from reordering store events in del(p0, t)·γ′ will always be cyclic). Since (p′, t′)→HB1 del(p0, t)
implies that (p′, t′)→HB1 del(p′, t) ∈ γ, then τ ′′ = α · isu(p, t) · (p′, t′) · del(p′, t) · γ′′, where the
two store events del(p′, t) and del(p′, t) are reordered, is a minimal violation. cn = del(p0, t

′)
is not possible since t is the first delayed transaction in τ .
Induction step: We assume that the induction hypothesis holds for |β| ≤ m. The case
cn = (p′, t′) is trivial. If cn = isu(p′, t′) then removing the issue events that occur after cn
will not impact the happens-before. Thus, we remove every issue and atomic marco event
that occurs after isu(p′, t′) with all their store events and regroup together the event isu(p′, t′)
with its store events obtaining τ ′ = α · isu(p, t) · β′ · (p′, t′) · del(p0, t) · γ′ to be a minimal
violation. Similar to before, τ ′′ = α · isu(p, t) · β′ · (p′, t′) · del(p′, t) · γ′′ is a minimal violation.

If cn = del(p0, t
′), then the corresponding issue event isu(p′, t′) must occur in β (α

contains only atomic macro events because t is the first delayed transaction). If isu(p′, t′)
does not happen before del(p0, t

′) (or any store event of t′ in β · del(p0, t) · γ) through a
subsequence of β (resp., β ·del(p0, t)·γ) then we can regroup together the issue and store events
of t′ and get that τ ′ = α· isu(p, t)·β′ ·(p′, t′)·β′′ ·del(p0, t)·γ′ is a minimal violation. Otherwise,
if isu(p′, t′) happens-before del(p0, t

′) through a subsequence of β, then τ can be written as
τ = α·isu(p, t)·β1·isu(p′, t′)·β2·del(p0, t

′)·β3·del(p0, t)·γ. Note that if there exists an issue event
isu(p1, t1) in β1 ·isu(p′, t′)·β2 s.t. (isu(p1, t1), del(p0, t)) ∈ RW (or (isu(p1, t1), del(p1, t)) ∈ RW)
then similar to before the following trace τ ′ = α · isu(p, t) · β′ · (p1, t1) · del(p0, t) · γ′ (resp.,
τ ′ = α · isu(p, t) · β′ · (p1, t1) · del(p1, t) · γ′) is a minimal violation. Assume now that there
does not exist an issue event isu(p1, t1). Then, let isu(p2, t2) be the first issue event in
isu(p, t) · β1 · isu(p′, t′) s.t. τ = α · isu(p, t) · β′1 · isu(p2, t2) · β′2 · del(p3, t2) · β′3 · γ and isu(p2, t2)
happens-before del(p3, t2) through β′2 and s.t. for every issue event in isu(p, t) · β′1 of a
transaction t4 there does not exist an event in β′1 · isu(p2, t2) · β′2 that reads from a variable
that t4 overwrites. We can remove every issue event and atomic marco event which occur
after del(p3, t2) with all related stores: τ ′ = α · isu(p, t) ·β′1 · isu(p2, t2) ·β′2 ·del(p3, t2) ·γ′ where
γ′ contains only store events is a minimal violation. Then, not delaying the transactions

12:20 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

τCCv1:
αA

isu(p, t)
◦

del(p, t)
◦ β (p′, t′)

◦
del(p′, t)
◦ γS

HB \ CO
∀ CO

∀

WW(y)
RW(y)

τCCv2:
αA

isu(p, t)|¬x◦ β1|¬x isu(p1, t1)◦ β2
(p′, t′)
◦

del(p′, t)
◦ γS

HB \ CO
∀

CO RW(x) ∪ (STO;WW(x))
∃

HB
∀

RW(y 6= x)

Figure 11. Robustness violation patterns under CCv. We use a
R−−−→∀ β to

denote ∀ b ∈ β. (a, b) ∈ R. We use β1|¬x to say that all delayed transactions
in β1 do not access x. For violation τCCv1, t is the only delayed transaction.
For τCCv2, all delayed transactions are in isu(p, t) ·β1 · isu(p1, t1) and they form
a causality chain that starts at isu(p, t) and ends at isu(p1, t1).

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)
WW

RW

(a) Violation of LU program in Fig. 9a.

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)

RW
RW

(b) Violation of SB program in Fig. 9b.

Figure 12. (a) A τCCv1 violation where β2 = ε, γS = ε, and t and t′

correspond to t1 and t2. (b) A τCCv2 (resp., τCM2) violation where t and t1
coincide and correspond to t1. Also, β1 = ε, β2 = (p2, t2), γS = ε, such
that (isu(p1, t1), (p2, t2)) ∈ RW(y) and ((p2, t2), del(p2, t1)) ∈ RW(x). In all
traces, we show only the relations that are part of the happens-before cycle.

in isu(p, t) · β′1 does not affect the reads in β′1 · isu(p2, t2) · β′2, and thus, we get that τ ′′ =
α · (p, t) · β′′1 · isu(p2, t2) · β′′2 · del(p3, t2) · γ′′, where t2 is the first delayed transaction in τ ′′

and isu(p2, t2) happens-before del(p3, t2) through β′′2 , is a minimal violation. Note that
|β′′2 | < |β| = m + 1, and we can apply the induction hypothesis to τ ′′ and conclude the
proof.

Next, we show that a program which is not robust against CCv or CM admits violations
of particular shapes. For the remainder of the paper, we write a minimal violation in the
shape τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS to say that all the events in the sequence αA

are atomic macro events and all the events in the sequence γS are store events. As before,
we assume that t is the first delayed transaction in τ , and by Lemma 5.7, we assume that
(isu(p, t), (p′, t′)) ∈ HB and ((p′, t′), del(p′, t)) ∈ HB1.

6. Robustness Violations Under Causal Convergence

In this section, we present a precise characterization of minimal violations under CCv. In
particular, we show that in these violations, the first delayed transaction (which must exist
by Lemma 5.3) is followed by a possibly-empty sequence of delayed transactions that form a
“causality chain”, i.e., the issue of every new delayed transaction is causally ordered after the
issue of the first delayed transaction. Also, we show that the issue event of the last delayed
transaction happens-before an event of another transaction that reads a variable updated

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:21

by the first delayed transaction (which implies a cycle in the transactional happens-before).
This characterization will allow us to build a monitor for detecting the existence of robustness
violations that is linear in the size of the input program.

Next, we give a precise definition of the “causality chain”. It consists of a sequence of
issue events such that the first issue is causally ordered before every other issue event and
every issued transaction is delivered to the process executing the next issue event in the
chain, before this issue event executes.

Definition 6.1. We say that a sequence of issue events ev1 · ev2 · . . . evn forms a causality
chain that starts with ev1 and ends at evn in a trace τ if the followings hold:

(1) (ev1, ev i) ∈ CO, for all 2 ≤ i ≤ n
(2) for all 1 ≤ i ≤ n− 1 such that ev i = isu(pi, ti), ev i+1 = isu(pi+1, ti+1), the store event

del(pi+1, ti) occurs before the issue event ev i+1 in τ .

The characterization of robustness violations under CCv is stated in the following theorem
and pictured in Fig. 11.

Theorem 6.2. A program P is not robust under CCv iff there exists a minimal violation in
Tr(P)CCv of one of the following forms:

(1) τCCv1 = αA · isu(p, t) · del(p, t) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p, t) is the issue of the first and only delayed transaction (Lemma 6.3);
(b) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈ RW(y) (Lemma 6.3);
(c) ∀ a ∈ β2. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO (Lemma 6.3).

(2) τCCv2 = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p, t) and isu(p1, t1) are the issues of the first and last delayed transactions
(Lemmas 6.3 and 6.4);

(b) the issues of all delayed transactions are in β1 and are included in a causality chain
that starts with isu(p, t) and ends at isu(p1, t1) (Lemma 6.4);

(c) for every a ∈ β2, we have that (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB
(Lemma 6.3);

(d) there exist a ∈ β2 · (p′, t′), x, and y s.t. x 6= y, (isu(p1, t1), a) ∈ RW(x) ∪
(STO;WW(x)), (a, (p′, t′)) ∈ HB?8, and ((p′, t′), del(p′, t)) ∈ RW(y) (Lemma 6.3);

(e) all delayed transactions in isu(p, t) · β1 do not access the variable x (Lemma 6.6).

Above, τCCv1 contains a single delayed transaction while τCCv2 may contain arbitrarily
many delayed transactions. In τCCv1 the store event del(p, t) of the only delayed transaction
happens before (p′, t′) which is conflicting with t, thus resulting in a cycle in the transactional
happens-before. In τCCv2 the issue event of the last delayed transaction t1, which is causally
ordered after the issue of the first delayed transaction t, happens before (p′, t′) which is
conflicting with t, thus resulting in a cycle in the transactional happens-before as well. The
theorem above allows αA = ε, β1 = ε, β2 = ε, β = ε, γS = ε, p = p1, t = t1, and t1 to be
a read-only transaction. Fig. 12a and Fig. 12b show two violations under CCv where such
equalities hold. If t1 is a read-only transaction then isu(p1, t

′) has the same effect as (p1, t1)
since t1 does not contain writes.

The minimality of the violation enforces the constraints stated above. For example, in
the context of τCCv2, the delayed transactions in β1 cannot create a cycle in the transactional

8HB? is the reflexive closure of HB.

12:22 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

happens-before (otherwise, there exists a sequence of store events γ′S such that αA · isu(p, t) ·
del(p, t) ·β1 ·del(p0, t) ·γ′S is a violation with a smaller measure, which contradicts minimality).
Moreover, (c) implies that β2 contains no stores of delayed transactions from β1. If this were
the case, then these stores can either be reordered after del(p′, t) or if this is not possible
due to happens-before constraints, then there would exist an issue event which is after such
a store in the happens-before order and thus causally after isu(p, t), which would contradict
the fact that isu(p1, t1) is the last issue event in τ that is causally ordered after isu(p, t).
Also, if it were to have a delayed transaction t2 in β2 (resp., β for τCCv1), then it is possible
to remove some transaction (the issue and all its store events) from the original trace and
obtain a new violation trace with a smaller number of delays. For instance, in the case of
β2, if t1 6= t, then we can remove the events of the last delayed transaction (i.e., t1), that is
causally related to isu(p, t), since all events in β2 · del(p0, t) · γS neither read from the writes
of t1 nor are issued by the same process as t1 (because of the HB \ CO relation between
events β2 and isu(p1, t1)). The resulting trace is still a robustness violation (because of the
transactional happens-before cycle involving t2 since it is delayed in β2) but with a smaller
measure. Note that all processes that delayed transactions, stop executing new transactions
in β2 (resp., β) because of the relation HB \ CO, shown in Fig. 11, between the delayed
transaction t1 (resp., t) and events in β2 (resp., β).

In the following we give a series of lemmas that collectively imply Theorem 6.2. Next
lemma gives the decomposition of minimal violations under CCv into two possible patterns.
It also characterizes the nature of the happens-before dependencies in these traces. For
instance, we show that the last dependency in the happens-before cycle is always a conflict
dependency. The lemma proof starts with a minimal violation as characterized in Lemma 5.7
and uses induction to show that we can always obtain a minimal violation which follows one
of the two patterns. The induction is based on the size of the sequence of events between the
issue and delayed store events of the first delayed transaction (the sequence β in Lemma 5.7).

Lemma 6.3. If P is a program that is not robust under CCv, then it must admit a minimal
violation τ that satisfies one of the following:

(1) τ = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γS where:

(a) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈ RW(y);
(b) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO.

(2) τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p1, t1) is the last issue event in {c ∈ β | (isu(p, t), c) ∈ CO};
(b) ∃ x, y, and a ∈ β2·(p′, t′) s.t. (isu(p1, t1), a) ∈ RW(x)∪(STO;WW(x)), (a, (p′, t′)) ∈

HB?, and ((p′, t′), del(p′, t)) ∈ RW(y);
(c) ∀ a ∈ β2. (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB.

Proof. Let τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS be a minimal violation under CCv

(cf. Lemma 5.7). We prove by induction on the size of β that there exists a minimal
violation trace τ ′ that satisfies (1) or (2) and τ ′ is obtained from τ . By the definition of the
happens-before ((p′, t′), del(p′, t)) ∈ HB1 implies that ((p′, t′), del(p′, t)) ∈ RW ∪WW. Since
t′ was issued after t in τ , then based on the total order of timestamps under CCv, we cannot
have ((p′, t′), del(p′, t)) ∈WW. Then, there must exist y s.t. ((p′, t′), del(p′, t)) ∈ RW(y).
Base case: |β| = 0. Since (isu(p, t), (p′, t′)) ∈ HB then from the definition of the happens-
before the only possible relation is (isu(p, t), (p′, t′)) ∈ RW. Thus, there must exist x s.t.
(isu(p, t), (p′, t′)) ∈ RW(x). If x = y then both t and t′ write to x. Thus, by reordering

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:23

the store event del(p, t) ∈ γS to occur just after the corresponding issue event we get τ ′ =
αA · isu(p, t) ·del(p, t) ·(p′, t′) ·del(p′, t) ·γ′S is also a minimal violation where (del(p, t), (p′, t′)) ∈
WW(x) (since t was issued before t′ and both write to x) and ((p′, t′), del(p′, t)) ∈ RW(x). τ ′

satisfies the first case of the lemma. If x 6= y then τ = αA · isu(p, t) · (p′, t′) ·del(p′, t) ·γS where
there exist x and y s.t. x 6= y, (isu(p, t), (p′, t′)) ∈ RW(x), and ((p′, t′), del(p′, t)) ∈ RW(y)
satisfies the second case of the lemma where t and t1 coincide and a corresponds to (p′, t′).
Induction step: We assume the induction hypothesis holds for |β| ≤ m. Let σ = {c ∈
β | (isu(p, t), c) ∈ CO}, we will consider the following three possible cases:

First, assume that σ is empty. Since (isu(p, t), (p′, t′)) ∈ HB then there must exist
a ∈ β · (p′, t′) s.t. (isu(p, t), a) ∈ HB1 and (a, (p′, t′)) ∈ HB?. σ is empty implies that β does
not contain events that are related to isu(p, t) through CO (which includes PO∪WR∪ STO),
therefore, (isu(p, t), a) ∈ WW ∪ RW. It is impossible to have (isu(p, t), a) ∈ WW since
isu(p, t) does not contain writes. Thus, there must exist x s.t. (isu(p, t), a) ∈ RW(x). If
x = y then both the transaction of the event a, denoted t2, and t write to x. We consider
the two cases of (a, (p′, t′)) ∈ HB?: i) a = (p′, t′) (i.e., t2 = t′), and ii) (a, (p′, t′)) ∈ HB.
Assume a = (p′, t′) then by reordering the store event del(p, t) ∈ τ to occur just after
the corresponding issue event (since the events in β are not causally related to isu(p, t))
we get τ ′ = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γ′S is also a minimal violation
where (del(p, t), (p′, t′)) ∈ WW(x) (since t was issued before t′ and both write to x) and
((p′, t′), del(p′, t)) ∈ RW(x). In τ ′ we remove all events in β that are not causally ordered
before (p′, t′) since they do not contribute to the happens-before cycle. We obtain a new
violation trace that satisfies the first case of the lemma. Assume now that (a, (p′, t′)) ∈ HB.
This implies that isu(p2, t2) ∈ β happens-before (p′, t′) (since a is an event t2). Since both t2
and t write to x and t occurs before t2 in τ then from the definition of store and conflict
relations ((p′, t′), del(p′, t)) ∈ RW(x) implies that ((p′, t′), del(p′, t2)) ∈ RW(x). Also, since
in β we do not have events that are causally related to isu(p, t) then let τ ′ be the trace
resulting from removing all events of t in τ : τ ′ = αA · isu(p2, t2) · β′ · (p′, t′) · del(p′, t2) · γ′S
where τ ′ is a subsequence of τ and β′ is a subsequence of β. τ ′ is a minimal violation as
well since it was obtained from τ by just removing events and (isu(p2, t2), (p′, t′)) ∈ HB and
((p′, t′), del(p′, t2)) ∈ RW(x). Since |β′| ≤ m then we can apply the induction hypothesis on
τ ′. If x 6= y we get that in τ , (isu(p, t), a) ∈ RW(x) and ((p′, t′), del(p′, t)) ∈ RW(y) which
satisfies the second case of the lemma.

Second, assume that σ is not empty and all the elements of σ are store events. Since t is
the first delayed transaction in τ then all stores in σ are stores of t. Then, following the same
analogy as before there must exist x and an event a ∈ β · (p′, t′) that is not a store event
of t s.t. (isu(p, t), a) ∈ (STO;WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB?. Similar to before we
consider the two cases x = y and x 6= y and apply the induction hypothesis in the first case.

Third, assume that σ is not empty and isu(p1, t1) is the last issue event in σ, i.e.,
β = β1 · isu(p1, t1) · β2 where all the events in β2 are either stores of transactions that are
causally related to isu(p, t) (we can reorder these stores to be part of γS except the store
del(p1, t1)) or other events that are not causally related to isu(p, t). We also have that isu(p, t)
is causally ordered before isu(p1, t1). Since (isu(p, t), (p′, t′)) ∈ HB then (isu(p1, t1), (p′, t′)) ∈
HB, otherwise, we remove isu(p1, t1) and all related store events from τ and the resulting trace
is still a violation and it has less delays since isu(p, t) was not delayed after isu(p1, t1) in the
trace. Thus, (isu(p1, t1), (p′, t′)) ∈ HB. Similar to before we obtain that there exist x and an
event a ∈ β2 ·(p′, t′) that is not a store event of t1 s.t. (isu(p1, t1), a) ∈ (STO;WW(x))∪RW(x)
and (a, (p′, t′)) ∈ HB?. If x = y then both the transaction of the event a, denoted t2, and

12:24 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

t write to x. Thus, (isu(p, t), a) ∈ STO;WW(x). Then, since the events in β2 · (p′, t′)
do not causally depend on isu(p1, t1) then we can remove the events of t1 and obtain τ ′

where (isu(p, t), a) ∈ STO;WW(x), (a, (p′, t′)) ∈ HB?, and ((p′, t′), del(p′, t)) ∈ RW(y) where
t was not delayed after isu(p1, t1) in the trace, which means that τ ′ has less delays than
τ (a contradiction to τ being a minimal violation). Therefore, we must have x 6= y s.t.
(isu(p1, t1), a) ∈ (STO;WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB? and ((p′, t′), del(p′, t)) ∈
RW(y) which satisfies the second case of the lemma.

We use Tccv1 and Tccv2 to denote the class of minimal violations that satisfy the first
and second case in Lemma 6.3, respectively. The following lemma shows that we can always
obtain a minimal violation trace in either Tccv1 or Tccv2 where β and β2 contain no delayed
transactions, respectively. We distinguish two cases in the proof: i) a minimal violation in
Tccv2 where t and t1 are distinct transactions, and ii) a minimal violation in Tccv1 or in
Tccv2 where t and t1 coincide. In the first case, we show that if it were to have a delayed
transaction in β2, then it is possible to remove some transaction from τ that is causally
dependent on the first delayed transaction in τ , and obtain a new violation with a smaller
number of delays (which contradicts the minimality assumption). The second case is proved
by induction on the size of β (note that if t and t1 coincide, then β = β2) where the base
case is trivial (i.e., β = ε), and in the induction step, we show that if it were to have a
delayed transaction in β then we can remove one of the delayed transactions in the trace
and obtain another violation with the same number of delays as the original violation and
for which we can apply the induction hypothesis.

Lemma 6.4. Let τ be a minimal violation in Tccv1 or Tccv2. Then, there exist a violation
τ1 in Tccv1 where β contains no delayed transactions or a violation τ2 in Tccv2 where β2

contains no delayed transactions.

Proof. We consider two cases: i) τ in Tccv2 where t1 and t are two distinct transactions, ii)
τ in Tccv1 or τ in Tccv2 where t1 and t coincide. We prove the first case by contradiction
and the second case by induction on the size β (we abused terminology here and considered
β2 = β since β1 = ε in the second case).

First case: let τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS and suppose by
contradiction that β2 contains a delayed transaction t0 issued by a process q 6= p. W.l.o.g., we
assume that the delayed store events of t0 occur in β2. Thus, β2 = β21·isu(q, t0)·β22·del(q′, t0)·
β23 and τ = αA · isu(p, t) ·β1 · isu(p1, t1) ·β21 · isu(q, t0) ·β22 ·del(q′, t0) ·β23 · (p′, t′) ·del(p′, t) ·γS.
In τ , isu(q, t0) happens-before del(q′, t0) through β22. Hence, we deduce that we can get a
robustness violation when the event del(q′, t0) is executed, thus we can remove all issued
transactions from β23 · (p′, t′) except stores of already issued transactions and we obtain:
τ ′ = αA ·isu(p, t)·β1 ·isu(p1, t1)·β21 ·isu(q, t0)·β22 ·del(q′, t0)·β′23 ·del(p′, t)·γS which is a minimal
violation because isu(q, t0) happens-before del(q′, t0) through β22 and its number of delays is
less or equal to the one of τ . We know that in β21 · isu(q, t0) ·β22 ·del(q′, t0) ·β′23 ·del(p′, t) ·γS
there are no transactions from the process p1 or that see the effect of transactions from p1

(because of the HB \ CO relation between events β2 and isu(p1, t1)). Therefore, isu(p1, t1)
is the last issued transaction from p1 and we do not have any transaction in τ ′ that
depends on it. Thus, we can remove isu(p1, t1) and we obtain the following trace: τ ′′ =
αA · isu(p, t) · β1 · β21 · isu(q, t0) · β22 · del(q′, t0) · β′23 · del(p′, t) · γ′S, which is a robustness
violation because isu(q, t0) happens-before del(q′, t0) through β22. τ ′′ has less delays than τ ′

(del(p′, t) was not delayed after isu(p1, t1) which was removed), which is a contradiction to
the fact that τ is a minimal violation.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:25

Second case: let τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS. We show by induction that
we can construct either τ1 in Tccv1 where β of τ1 contains no delayed transactions or τ2 in
Tccv2 where β2 of τ2 contains no delayed transactions.
Base case: |β| = 0 is trivial.
Induction step: We assume that the induction hypothesis holds for |β| ≤ m. Let t0
be the first delayed transaction in β. Similar to before, we assume w.l.o.g. that the
delayed store events of t0 occurs in β. Thus, β = β01 · isu(q, t0) · β02 · del(q′, t0) · β03 and
τ = αA · isu(p, t) · β01 · isu(q, t0) · β02 · del(q′, t0) · β03 · (p′, t′) · del(p′, t) · γS where isu(q, t0)
happens-before del(q′, t0) through β02. Using the same arguments as before, we can remove
the event isu(p, t), its related stores in τ , and all issued transactions in β03 ·(p′, t′). We obtain:
τ ′ = α′A · isu(q, t0) · β02 · del(q′, t0) · γ′S where α′A = αA · β01 and isu(q, t0) happens-before
del(q′, t0) through β02. τ ′ is a robustness violation, and it has the same number of delays
as τ . We now consider two possible case of τ ′: i) τ ′ is in Tccv2 where t0 and t01, the last
delayed transaction causally dependent on isu(q, t0) in τ ′, are two distinct transactions, or
ii) τ in Tccv1 or τ in Tccv2 where t0 and t01 coincide. From the first part of the proof, it is
guaranteed that in the first case there are no delayed transactions after t01. For the second
case, we use the induction hypothesis since |β02| ≤ m (β02 is a strict subsequence of β).

We have now showed all the necessary characterizations for minimal violations that fall
under the first pattern (i.e., Tccv1). In the rest of this section, we focus on minimal violations
that fall under the second pattern (i.e., Tccv2). In particular, we look at minimal violations
in Tccv2 where t and t1 are distinct transactions. In the following lemma, we show that for
these minimal violations the issue events of delayed transactions in isu(p, t) · β1 · isu(p1, t1)
constitute a causality chain. Our proof can be decomposed to two parts. In the first part,
we show that we cannot have an issue event of a delayed transaction in β1 · isu(p1, t1) that
is not causally dependent on isu(p, t). We prove this by showing that if this were possible
then we can remove a transaction that is causally dependent on one of the two delayed
transactions and obtain a new violation trace with less delays than the original violation
(which contradicts the minimality assumption). For the second part, we show that for a
given minimal violation, we can construct a happens-before equivalent trace where for every
two successive issue events of delayed transactions in isu(p, t) · β1 · isu(p1, t1), the transaction
in the first issue is delivered to the process executing the second issue before this event
happens.

Lemma 6.5. Let τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS be a minimal
violation in Tccv2 s.t t 6= t1 and β2 contains no delayed transactions (cf. Lemma 6.4). Then,
there exists a violation τ ′ = αA · isu(p, t) · β′1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γ′S obtained
from τ where β′1 · γ′S is a subsequence of β1 · γS and the sequence of issue events of delayed
transactions forms a causality chain that starts with isu(p, t) and ends at isu(p1, t1).

Proof. First, we show that we can obtain a violation τ ′ from τ where all delayed transactions
in β′1 · isu(p1, t1) are causally dependent on isu(p, t). From the definition of t1 in Lemma
6.3, we already have that (isu(p, t), isu(p1, t1)) ∈ CO. In the proof, we assume w.l.o.g that
in β1 · isu(p1, t1) · β2 there is no event a that reads a value that t overwrites, otherwise, we
can shortcut the trace by removing (p′, t′) and instead using the conflict relation between a
and a store event of t to build the transactional happens-before cycle. Now, assume that β1

contains a delayed transaction t0 from another process q 6= p that is not causally dependent
on isu(p, t). We show that we either can obtain a contradiction or we can remove all events
of t0 and obtain a new violation trace τ ′ that has the same number of delays as τ . We have

12:26 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

three possible cases based on whether the delayed store event del(q′, t0) of t0 occurs in β1,
β2 or γS. Hence, we get that τ can be one of the following:

(a) τ = αA · isu(p, t) · β11 · isu(q, t0) · β12 · del(q′, t0) · β13 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS
(b) τ = αA · isu(p, t) · β11 · isu(q, t0) · β12 · isu(p1, t1) · β21 · del(q′, t0) · β22 · (p′, t′) · del(p′, t) · γS
(c) τ = αA · isu(p, t) · β11 · isu(q, t0) · β12 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γ1

S · del(q′, t0) · γ2
S

In case (a) (resp., (b)) we can notice that since isu(q, t0) happens-before del(q′, t0) through
β12 (resp., β12 · isu(p1, t1) · β21) then after executing del(q′, t0) we obtain a cycle in the
transactional happens-before. Thus, we can remove (p′, t′) from both traces and still obtain
a robustness violation. Let τ ′ be the resulting trace. τ ′ has the same number of delays as τ .
In τ ′, we do not have events that read values that t overwrites. Therefore, we do not need to
delay the transaction t to ensure that that the trace is a violation. Let τ ′′ be the resulting
trace where the transaction t executes atomically. In τ ′′, the transaction t was not delayed
after the issue event of t1 which means that τ ′′ has less delays than τ . This contradicts the
fact that τ is a minimal violation.

Case (c): we assume that del(q′, t0) happens-before after (p′, t′), otherwise, we can
reorder it before (p′, t′) and get case (b). Since γ1

S contains only store events, then by the
happens-before definition, del(q′, t0) must be a store event executed by p′ which means that
q′ = p′. Let e1 and e2 be the read/write actions t′ that are the source of the conflict between
(p′, t′) and del(p′, t) and the happens-before between (p′, t′) and del(p′, t0), respectively.
Similar to before we assume w.l.o.g that there is no event in β12 · isu(p1, t1) · β2 that reads a
value that t0 overwrites. We consider the two cases: i) e2 occurs before e1 in t′ or the two
coincide, and ii) e1 occurs before e2 in t′. In the first case we can obtain a new violation
where we do not delay the transaction t which will not affect the action e2 that is the source
of the happens-before between (p′, t′) and del(p′, t0) (since e1 occurs after e2 then it cannot
disable it). The new trace τ ′ is a violation since the store event del(p′, t0) is delayed. Also,
since the store event del(p′, t) of t was not delayed after isu(p1, t1) then τ ′ has less delays
than τ , which contradicts the fact that τ is a minimal violation. In the second case, if in
β12 · isu(p1, t1) · β2 we do not have any event that is causally dependent on isu(q, t0) other
than the store events of t0, then we can remove all events of t0 from τ without affecting
the happens before between isu(p, t) and del(p′, t) through β12 · isu(p1, t1) · β2 · (p′, t′). Let
τ ′ = αA · isu(p, t) · β′1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γ′S be the resulting trace which has
the same number of delays as τ . Otherwise, if in β12 · isu(p1, t1) · β2 we have an event a
that is causally dependent on isu(q, t0) that is not a store event of t0, then the new trace
t′ resulting from not delaying t0 is a violation. This is because the store event del(p′, t) is
delayed. τ ′ has less delays than τ since the store event del(p′, t0) of t0 was not delayed after
a. This contradicts the fact that τ is a minimal violation.

Now, we show that for every two successive issue events of delayed transactions in
τ ′, we can deliver the first to the process of the second before the second is issued. Let
ev i = isu(pi, ti) and ev j = isu(pj , tj) be two successive issue events of delayed transactions in
β1 · isu(p1, t1) s.t. either (ev i, ev j) ∈ HB or (ev i, del(pi, tj)) ∈ HB. Note that the only case
where the store event del(pj , ti) cannot be moved to occur before ev j in β1 is when the two
events are related by a happens-before relation, i.e., (ev j , del(pj , ti)) ∈ HB. In this case, we
get that the transactions ti and tj are involved in a cycle in the transactional happens-before
in τ ′ which means that τ ′′ = αA · (p, t) · β1 · isu(p1, t1) · γS is a violation which has less delays
than τ (since t was not delayed after isu(p1, t1)). Therefore, the trace τ ′′ where the store
event del(pj , ti) occurs before ev2 is happens-before equivalent to τ ′. Similarly, when the

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:27

τCM1:
αA

isu(p, t)
◦

del(p, t)
◦ β (p′, t′)

◦
del(p′, t)
◦ γS

HB \ CO
∀ CO

∀

WW(x) WW(x)

τCM2:
αA

isu(p, t)|¬x◦ β1|¬x isu(p1, t1)◦ β2
(p′, t′)
◦

del(p′, t)
◦ γS

HB \ CO
∀

CO RW(x)
∃

HB
∀

RW(y 6= x)

Figure 13. Robustness violation patterns under CM. For violation τCM1, t
is the only delayed transaction. For τCM2, all delayed transactions are in
isu(p, t) · β1 · isu(p1, t1) and they form a causality chain that starts at isu(p, t)
and ends at isu(p1, t1).

two events are concurrent, the trace τ ′′ where the store event del(pj , ti) occurs before ev j is
happens-before equivalent to τ ′. Thus, given the sequence of issue events ev1 · ev2 · . . . evn
of delayed transactions in τ ′ s.t. ev1 = isu(p, t) and evn = isu(p1, t1), the trace τ ′′ where for
every 1 ≤ k ≤ n − 1 s.t. evk = isu(pk, tk) and evk+1 = isu(pk+1, tk+1), we have the store
event del(pk+1, tk) occurs before the issue event evk+1 is happens-before equivalent to τ ′.
Also, in τ ′′ for every 2 ≤ k ≤ n, we have that evk is causally dependent on ev1 = isu(p, t).
Thus, in τ ′′ the sequence of issue events ev1 · ev2 · . . . evn of delayed transactions forms a
causality chain.

Next, we show that for minimal violations in Tccv2 where t and t1 are distinct transac-
tions, all delayed transactions in isu(p, t) · β1 do not access the shared variable x that starts
the happens-before path in β2 (Lemma 6.3) between isu(p1, t1) and (p′, t′). If this were not
the case, then the events of t1 can be removed and we still guarantee a happens-before path to
del(p′, t) (starting in the delayed transaction accessing the variable x), thus obtaining a new
robustness violation trace with less delays (since del(p′, t) was not delayed after isu(p1, t1)),
which contradicts the minimality assumption.

Lemma 6.6. Let τ be a minimal violation in Tccv2 where t1 and t are two distinct transac-
tions. Then, all the delayed transactions in isu(p, t) · β1 do not access the variable x from
Lemma 6.3.

Proof. Suppose by contradiction that we have an issue event isu(p2, t2) in isu(p, t) · β1 (i.e.,
isu(p, t) · β1 = isu(p, t) · β11 · isu(p2, t2) · β12) which accesses the shared variable x with either
a read or a write instruction. Then, since there exists an event a ∈ β2 s.t. (isu(p1, t1), a) ∈
WW(x) ∪ (STO;RW(x)), we have that (isu(p2, t2), a) ∈WW(x) ∪ (STO;RW(x)). Moreover,
because β2 · (p′, t′) · del(p′, t) · γS does not contain any transaction that causally depends
on isu(p1, t1), we get that isu(p1, t1) is the issue event by the process p1 and we can remove
it together with all the related stores in γS to obtain: τ ′ = αA · isu(p, t) · β11 · isu(p2, t2) ·
β12 · β2 · (p′, t′) · del(p′, t) · γ′S which is a violation because isu(p, t) happens-before del(p′, t)
through β11 · isu(p2, t2) ·β12 ·β2 · (p′, t′). Furthermore, τ ′ has less delays than τ since del(p′, t)
was not delayed after isu(p1, t1). This contradicts the fact that τ is a minimal violation.

12:28 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

7. Robustness Violations Under Causal Memory

The characterization of robustness violations under CM is at some level similar to that of
robustness violations under CCv. However, some instance of the violation pattern under CCv
is not possible under CM and CM admits some class of violations that is not possible under
CCv. This reflects the fact that these consistency models are incomparable in general.

The following theorem gives the characterization of minimal violations under CM which
is pictured in Fig. 13. Roughly, a program is not robust iff it admits a violation that either
contains two concurrent transactions that write to the same variable, or it is a restriction
of the pattern τCCv2 admitted by CCv where the last delayed transaction is related only by
RW to future transactions. The first pattern is not admitted by CCv because the writes to
each variable are executed according to the timestamp order (CM does not satisfy the CCv

property stated in Lemma 2.2).

Theorem 7.1. A program P is not robust under CM iff there exists a minimal violation in
Tr(P)CM of one of the following forms:

(1) τCM1 = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γS, where:

(a) isu(p, t) is the issue of the first and only delayed transaction;
(b) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈WW(y) (Lemma 7.3);
(c) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO (Lemma 7.3).

(2) τCM2 = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS, where

(a) isu(p, t) and isu(p1, t1) are the issues of the first and last delayed transactions
(Lemma 7.3);

(b) the issues of all delayed transactions are in β1 are included in a causality chain
that starts with isu(p, t) and ends with isu(p1, t1);

(c) for every a ∈ β2, we have that (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB
(Lemma 7.3);

(d) there exist a ∈ β2 · (p′, t′), x, and y s.t. x 6= y, (isu(p1, t1), a) ∈ RW(x), (a, (p′, t′)) ∈
HB?, and ((p′, t′), del(p′, t)) ∈ RW(y) (Lemma 7.3);

(e) all delayed transactions in isu(p, t) · β1 do not access the variable x.

isu(p1, t1) del(p1, t1) (p2, t2) del(p2, t1)

WW WW

Figure 14. Violation of LU
program in Fig. 9a. A τCM1 vi-
olation where β2 = γS = ε, and
t and t′ correspond to t1 and t2.

The violation pattern τCM2 is a restriction of the pat-
tern τCCv2 under CCv. For instance, the trace in Fig.12b
is a valid minimal violation of the SB program under CM.
The violation pattern τCM1 implies the existence of a write-
write race under CM. Fig.14 shows a minimal violation
under CM that corresponds to a write-write race in the LU
program. Conversely, if a program P admits a trace τ
which contains a write-write race under CM, then P also
admits a trace τ ′ where the two transactions t1 and t2
that caused the write-write race form a cycle in the store order (the store events of t1 and
t2 on the two processes p1 and p2 that issued them can be reordered to occur in opposite
orders, i.e., del(p1, t1) before del(p1, t2) and del(p2, t2) before del(p2, t1), which implies that
are also in opposite orders w.r.t. the store order). Thus, P has a trace τ ′ with a cycle in
the transactional happens-before which means that P is not robust against CM. Therefore,
a program which is robust against CM is also write-write race free under CM. Since without
write-write races, the CM and the CCv semantics coincide, we get the following the result.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:29

Lemma 7.2. If a program P is robust against CM, then P is robust against CCv.

Next, we discuss the proof of Theorem 7.1. The following lemma reveals the two possible
minimal violation patterns under causal memory. The characterization of the patterns in this
lemma can be refined further using arguments similar to the case of CCv (see the discussion
at the end of this section).

Lemma 7.3. If P is a program that is not robust under CM, then it must admit a minimal
violation τ that satisfies one of the following:

(1) τ = αA · isu(p, t) · del(p, t) · β · (p′, t′) · del(p′, t) · γS where:

(a) ∃ y. s.t. (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈WW(y);
(b) ∀ a ∈ β. (isu(p, t), a) ∈ HB \ CO and (a, (p′, t′)) ∈ CO.

(2) τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS where:

(a) isu(p1, t1) is the last issue event from {c ∈ β | (isu(p, t), c) ∈ CO} in τ ;
(b) there exist two variables x 6= y, a in β2 · (p′, t′), and b = (p′, t′) such that

(isu(p1, t1), a) ∈ RW(x), (b, del(p′, t)) ∈ RW(y), and (a, b) ∈ HB?;
(c) ∀ a ∈ β2. (isu(p1, t1), a) ∈ HB \ CO and (a, (p′, t′)) ∈ HB.

Proof. The proof will contain many arguments which are similar to those used in the proof
of Lemma 6.3. Let τ = αA · isu(p, t) · β · (p′, t′) · del(p′, t) · γS be a minimal violation under
CM (cf. Lemma 5.7). We prove that there exists a minimal violation trace τ ′ obtained
from τ that satisfies (1) or (2). Similar to Lemma 6.3, we get that there must exist y s.t.
((p′, t′), del(p′, t)) ∈ RW(y) ∪WW(y).

We consider two cases: i) ((p′, t′), del(p′, t)) ∈WW(y), and ii) ((p′, t′), del(p′, t)) ∈ RW(y).
If ((p′, t′), del(p′, t)) ∈WW(y), then by reordering the store event del(p, t) ∈ γS to occur just
after the corresponding issue and removing all events in β (and all related stores in γS) that are
not causally ordered before (p′, t′) (since they do not contribute to the transactional happens-
before cycle) we obtain a trace τ ′ = αA · isu(p, t) ·del(p, t) ·β′ · (p′, t′) ·del(p′, t) ·γ′S that is also
a minimal violation and where (del(p, t), (p′, t′)) ∈WW(y) and ((p′, t′), del(p′, t)) ∈WW(y).
The trace τ ′ satisfies the first case of the lemma.

Now assume that ((p′, t′), del(p′, t)) ∈ RW(y), and let σ = {c ∈ β | (isu(p, t), c) ∈ CO}.
We consider the following three cases.

First, assume that σ is empty. As in the proof of Lemma 6.3, we obtain that there
exist a ∈ β · (p′, t′) and x s.t. (isu(p, t), a) ∈ RW(x) and (a, (p′, t′)) ∈ HB?. If x = y then
both t and the transaction t2 by a process p2 of the event a write to x. Similar to before
we can reorder the store event del(p, t) ∈ γS to occur just after the corresponding issue
and remove all issue events in β · (p′, t′) that occur after the issue event of t2 and all their
related stores. Also, we remove all events in β that are not causally ordered before the
issue event of t2. We obtain τ ′ = αA · isu(p, t) · del(p, t) · β′(p2, t2) · del(p2, t) · γ′S. In τ ′ the
events of t2 are assembled together, del(p2, t) ∈ γS is reordered to occur just after (p2, t2),
and (del(p, t), (p2, t2)) ∈ WW(y) and ((p2, t2), del(p2, t)) ∈ WW(y). Thus, τ ′ is a minimal
violation and it satisfies the first case of the lemma. If x 6= y then we get the second case of
the lemma.

Second, assume that σ is not empty and all the elements of σ are store events. As in
the proof of Lemma 6.3, we obtain that there exist x and an event a ∈ β · (p′, t′) that is
not a store event of t s.t. (isu(p, t), a) ∈ (STO;WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB?. If
(isu(p, t), a) ∈ (STO;WW(x)) or x = y then both t and the transaction t2 by a process p2

12:30 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

of the event a write to x. Using the same procedure as in the previous paragraph we can
obtain τ ′ = αA · isu(p, t) · del(p, t) · β′ · (p2, t2) · del(p2, t) · γ′S that satisfies the first case of
the lemma. Similarly, if (isu(p, t), a) ∈ RW(x) and x 6= y then we get the second case of the
lemma.

Third, assume that σ is not empty and isu(p1, t1) is the last issue event in σ, i.e.,
β = β1 · isu(p1, t1) · β2 · (p′, t′). As in the proof of Lemma 6.3, we obtain that there
exist x and an event a ∈ β2 · (p′, t′) that is not a store event of t1 s.t. (isu(p1, t1), a) ∈
(STO;WW(x)) ∪ RW(x) and (a, (p′, t′)) ∈ HB?. If x = y then both t and the transaction
t2 by a process p2 of the event a write to x. Using the same procedure as before we can
obtain a trace τ ′ = αA · isu(p, t) · del(p, t) · β′1 · β′2 · (p2, t2) · del(p2, t) · γ′S that is a minimal
violation. τ ′ has less delays than τ since the store of t was not delayed after isu(p1, t1). This
contradicts the fact that τ is a minimal violation. Assume now that x 6= y. We assume
w.l.o.g. that all events in β2 do not read values that any transaction with an issue event in
isu(p, t) · beta1 · isu(p1, t1) overwrites. If (isu(p1, t1), a) ∈ (STO;WW(x)) and a 6= (p′, t′) then
we can remove all issue events in β2 · (p′, t′) that occur after the issue event of t2 including
(p′, t′) and assemble together the events of t2. We obtain that (del(p1, t1), (p2, t2)) ∈WW(x)
and ((p2, t2), del(p2, t1)) ∈ WW(x) where we do not need to delay the transaction t and
obtain τ ′ = αA · (p, t) · β′1 · isu(p1, t1) · del(p1, t1) · β′2 · (p2, t2) · del(p2, t1) · γ′S that is a violation
and has less delays than τ . This contradicts the fact that τ is a minimal violation. If
(isu(p1, t1), a) ∈ (STO;WW(x)) and a = (p′, t′) (i.e., t′ = t2) then we construct τ ′ such
that all transactions that have issue events in σ and t are executed atomically after all
the events in (β1 \ σ) · β2 · isu(p′, t′) · del(p′, t′) are executed first, i.e., τ ′ = αA · β11 · β2 ·
isu(p′, t′) · del(p′, t′) · (p, t) · β12 · β′ · (p1, t1) · del(p1, t

′) · γ′S. τ ′ is a robustness violation since
(del(p′, t′), (p1, t1)) ∈WW(x) and ((p1, t1), del(p1, t

′)) ∈WW(x). Also, τ ′ has less delays than
τ since t′ was not delayed after a causally dependent event other than its store events and t
is no longer delayed after the issue event of t1. This contradicts the fact that τ is a minimal
violation. Finally, the only remaining possibility is (isu(p1, t1), a) ∈ RW(x) where x 6= y
which corresponds to the second case of the lemma.

We use Tcm1 and Tcm2 to denote the class of minimal violations that satisfy the first
and second case in Lemma 7.3, respectively. To show that for a non robust program, we
can always find a minimal violation in either Tcm1 or Tcm2 where β and β2 do not contain
delayed transactions we can use the same proof arguments as in Lemma 6.4. For minimal
violations in Tcm2 where t and t1 are distinct transactions, the two properties that issue
events of all delayed transactions form a causality chain and that delayed transactions in
isu(p, t) · β1 do not access the shared variable x can also be proved in the same manner as in
Lemmas 6.5 and 6.6, respectively.

8. Robustness Violations Under Weak Causal Consistency

If a program is robust against CM, then it must not contain a write-write race under CM (note
that this is not true for CCv). Therefore, by Theorem 3.2, a program which is robust against
CM has the same set of traces under both CM and CC, which implies that it is also robust
against CC. Conversely, since CC is weaker than CM (i.e., TrCM(P) ⊆ TrCC(P) for any P), if
a program is robust against CC then it is robust against CM. Thus, we obtain the following
result.

Theorem 8.1. A program P is robust against CC iff it is robust against CM.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:31

9. Reduction to SC Reachability

We describe a reduction of robustness checking to a reachability problem in a program
executing under the serializability semantics, which can be simulated on top of standard
sequential consistency (SC) by considering that each transaction is an atomic section (guarded
by a fixed global lock). Essentially, given a program P and a semantics X ∈ {CCv, CM, CC},
we define an instrumentation of P such that P is not robust against X iff the instrumentation
reaches an error state under the serializability semantics. The instrumentation uses auxiliary
variables in order to simulate the robustness violations (in particular, the delayed transactions)
satisfying the patterns given in Fig. 11 and Fig. 13. We will focus our presentation on the
second violation pattern of CCv (which is similar to the second violation pattern of CM):
τCCv2 = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS.

The process p that delayed the first transaction t is called the Attacker. The other
processes delaying transactions in β1 · isu(p1, t1) are called Visibility Helpers. Recall that all
the delayed transactions must be causally ordered after isu(p, t). The processes that execute
transactions in β2 · (p′, t′) and contribute to the happens-before path between isu(p1, t1) and
del(p′, t) are called Happens-Before Helpers. A happens-before helper cannot be the attacker
or a visibility helper since this would contradict the causal delivery guarantee provided
by causal consistency (a transaction of a happens-before helper is not delayed, so visible
immediately to all processes, and it cannot follow a delayed transaction). γS contains the
stores of the delayed transactions in isu(p, t) · β1 · isu(p1, t1). It is important to notice that
we may have t = t1. In this case, β1 = ε and the only delayed transaction is t. Also, all
delayed transactions in β1 including t1 may be issued by the same process as t. In all of
these cases, the set of Visibility Helpers is empty.

The instrumentation uses two copies of the set of shared variables in the original program.
We use primed variables x′ to denote the second copy. When a process becomes the attacker
or a visibility helper, it will write only to the second copy that is visible only to these
processes (and remains invisible to the other processes including the happens-before helpers).
The writes made by other processes including the happens-before helpers are made visible
to all processes, i.e., they are applied on both copies of every shared variable.

To establish the causality chains of the delayed transactions issued by the attacker
and the visibility helpers, we look whether a transaction can extend the causality chain
started by the first delayed transaction issued by the attacker. This is to ensure that all
such transactions are causally related to the first delayed transaction (of the attacker). In
order for a transaction to “join” the causality chain, it has to satisfy one of the following
conditions:

• the transaction is issued by a process that has already another transaction in the causality
chain. Thus, we ensure the continuity of the causality chain through program order;
• the transaction is reading from a variable that was updated by a previous transaction in

the causality chain. Hence, we ensure the continuity of the causality chain through the
write-read relation.

We introduce a flag for each shared variable to mark the fact that it was updated by a
previous transaction in the causality chain. These flags are used by the instrumentation to
establish whether a transaction “joins” a causality chain. Enforcing a happens-before path
starting in the last delayed transaction, using transactions of the happens-before helpers,
can be done in the same way. Compared to causality chains, there are two more cases in
which a transaction can extend a happens-before path:

12:32 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

• the transaction writes to a shared variable that was read by a previous transaction in the
happens-before path. Hence, we ensure the continuity of the happens-before path through
the read-write relation;
• the transaction writes to a shared variable that was updated by a previous transaction

in the happens-before path. Hence, we ensure the continuity of the happens-before path
through write-write order.

Thus, we extend the shared variables flags used for causality chains in order to record if a
variable was read or written by a previous transaction (in this case, a previous transaction
in the happens-before path). Overall, the instrumentation uses a flag x.event or x′.event
for each (copy of a) shared variable, that stores the type of the last access (read or write) to
the variable. Initially, these flags and other flags used by the instrumentation as explained
below are initialized to null (⊥).

In general, whether a process is an attacker, visibility helper, or happens-before helper is
not enforced syntactically by the instrumentation, and can vary from execution to execution.
The role of a process in an execution is set non-deterministically during the execution using
some additional process-local flags. Thus, during an execution, each process chooses to set
to true at most one of the flags p.a, p.vh, and p.hbh, implying that the process becomes an
attacker, visibility helper, or happens-before helper, respectively. At most one process can
be an attacker, i.e., set p.a to true.

9.1. Instrumentation of the Attacker. We provide in Fig. 15, the instrumentation of
the instructions for the attacker process. Such a process passes through an initial phase
where it executes transactions that are visible immediately to all the other processes (i.e.,
they are not delayed), and then non-deterministically it can choose to delay a transaction.
When the attacker randomly chooses the first transaction to start delaying of transactions, it
sets a global flag atrA to true in the instruction begin (line (9.3)). Then, it sets the flag p.a to
true to indicate that the current process is the attacker. During the first delayed transaction,
the attacker non-deterministically chooses a write instruction to a shared variable y and
stores the name of this variable in the flag astA (line (9.8)). The values written during
delayed transactions are stored in the primed variables and are visible only to the attacker
and the visibility helpers. For example, given a variable z, all the writes to z from the
original program are transformed into writes to the primed version z′ (line (9.6)). Each time
the attacker writes to a variable z′, it sets the flag z′.event to st (line (9.7)) which will allow
other processes that read the same variable to join the set of visibility helpers and start
delaying their transactions. Once the attacker delays a transaction, it will read only from
the primed variables (i.e., z′).

To start the happens-before path, the attacker has to execute a transaction that either
reads or writes to a shared variable x that was not accessed by a delayed transaction (i.e.,
x′.event =⊥). In this case, it sets the variable HB to true (lines (9.4) and (9.9)) to mark
the start of the happens before path and the end of the visibility chains, and it sets the
flag x.event to ld (lines (9.5) and (9.10)). We set x.event to ld even in the case of a write
to x in order to simplify the instrumentation of the happens-before helpers (to check that
this transaction is related to a transaction of a happens-before helper p through WW(x)
or RW(x) it is enough that p writes to x and it “observers” the same value ld in x.event).
When the flag HB is set to true the attacker stops executing new transactions. We can

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:33

[[l1: begin; goto l2;]]P2A =

// Typical execution of begin

l1: assume HB =⊥ ∧(p.a 6=⊥ ∨atrA =⊥); goto lx1;(9.1)

lx1: begin; goto l2;

// Begin of first delayed transaction

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lx2; (9.2)

lx2: begin; goto lx3;

lx3: p.a := true; goto lx4;

lx4: Foreach x ∈ V. x′ := x; goto lx5;

lx5: atrA := true; goto l2; (9.3)

[[l1: r := x; goto l2;]]P2A =

// Read before delaying transactions

l1: assume atrA =⊥ ; goto lx1;

lx1: r := x; goto l2;

// Read in delayed transactions

l1: assume atrA 6=⊥ ∧p.a 6=⊥ ; goto lx2;

lx2: r := x′; goto lx3;

lx3: x
′.event := ld; goto l2;

// Special read in last delayed transaction

l1: assume x′.event =⊥ ∧ p.a 6=⊥ ; goto lx4;

lx4: r := x′; goto lx5;

lx5: HB := true; goto lx6; (9.4)

lx6: x.event := ld; goto l2; (9.5)

[[l1: x := e; goto l2;]]P2A =

// Write before delaying transactions

l1: assume atrA =⊥ ; goto lx1;

lx1: x := e; goto l2;

// Write in delayed transactions

l1: assume atrA 6=⊥ ∧p.a 6=⊥ ; goto lx2;

lx2: x
′ := e; goto lx3; (9.6)

lx3: x
′.event := st; goto l2; (9.7)

// Special write in first delayed transaction

l1: assume astA = x.event =⊥ ∧ p.a 6=⊥ ; goto lx4;

lx4: x
′ := e; goto lx5;

lx5: astA := ‘x‘; goto lx6; (9.8)

lx6: x
′.event := st; goto l2;

// Special write in last delayed transaction

l1: assume x′.event =⊥ ∧ p.a 6=⊥ ; goto lx7;

lx7: x
′ := e; goto lx8;

lx8: HB := true; goto lx9; (9.9)

lx9: x.event := ld; goto l2; (9.10)

[[l1: end; goto l2;]]P2A =

l1: assume p.a 6=⊥ ∧ astA =⊥ ; assume false;

l1: end; goto l2;

Figure 15. Instrumentation of the Attacker. We use ‘x‘ to denote the name
of the shared variable x.

notice that when the HB is set to true, we can no longer execute new transactions from the
attacker (all conditions in lines (9.1) and (9.2) become false).

9.2. Instrumentation of the Visibility Helpers. Fig. 16 lists the instrumentation of
the instructions of a process that belongs to the set of visibility helpers. Such a process
passes through an initial phase where it executes the original code instructions (lines (9.18)
and (9.13)) until the flag atrA is set to true by the attacker. Then, it continues the execution
of its original instructions but, whenever it stores a value it writes it to both the shared
variable z and the primed variable z′ so it is visible to all processes. Non deterministically it
chooses a first transaction to delay, at which point it joins the set of visibility helpers. It
sets the flag p.vh to false signaling its desire to join the visibility helpers, and it chooses a
transaction (the begin of this transaction is shown in line (9.12)) through which the process
will join the set of visibility helpers. The process directly starts delaying its writes, i.e.,
writing to primed variables, and reading only from delayed writes, i.e., from primed variables,
and behaving the same as the attacker. In order to check that it can extend the sequence
of causal dependencies (required by the causal chain definition), it takes a snapshot of the
.event fields at the beginning of the transaction and stores it to .event′ fields (line lx4 in

the instrumentation of begin). This snapshot is necessary to check that it reads from writes

12:34 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

[[l1: begin; goto l2;]]P2VH =

// Before joining visibility helpers

l1: assume HB =⊥ ∧ (atrA =⊥ ∨p.vh =⊥); goto lx1;

lx1: begin; goto l2; (9.11)

// Joining visibility helpers

l1: assume HB = p.vh = p.a =⊥ ∧ atrA 6=⊥ ; goto lx2;

lx2: begin; goto lx3;

lx3: p.vh := false; goto lx4;

lx4: Foreach x′ ∈ V. x′.event′ := x′.event; goto l2;

// After joining visibility helpers

l1: assume HB =⊥ ∧ atrA 6=⊥ ∧ p.vh; goto lx5;

lx5: begin; goto l2; (9.12)

[[l1: r := x; goto l2;]]P2VH =

// Before joining visibility helpers

l1: assume atrA =⊥ ∨(p.vh = p.a =⊥); goto lx1;

lx1: r := x; goto l2; (9.13)

// After joining visibility helpers

l1: assume p.vh 6=⊥ ; goto lx2;

lx2: r := x′; goto lx3; (9.14)

lx3: assume x′.event′ = st ∧ ¬p.vh; goto lx4;

lx4: p.vh := true; goto l2; (9.15)

lx3: assume x′.event′ 6= st ∨ p.vh; goto l2;

// Last delayed transaction

l1: assume x′.event =⊥ ∧ p.vh 6=⊥ ; goto lx5;

lx5: HB := true; goto lx6; (9.16)

lx6: x.event := ld; goto lx7; (9.17)

lx7: r := x′; goto l2;

[[l1: x := e; goto l2;]]P2VH =

// Before attacker delays transactions

l1: assume atrA =⊥ ; goto lx1;

lx1: x := e; goto l2; (9.18)

// Before joining visibility helpers

l1: assume atrA 6=⊥ ∧p.vh = p.a =⊥ ; goto lx2;

lx2: x
′ := e; goto lx3;

lx3: x := e; goto l2;

// After joining visibility helpers

l1: assume p.vh 6=⊥ ; goto lx4;

lx4: x
′ := e; goto lx5; (9.19)

lx5: x
′.event := st; goto lx6; (9.20)

lx6: x
′.event′ :=⊥ ; goto l2;

// Last delayed transaction

l1: assume x′.event =⊥ ∧ p.vh 6=⊥ ; goto lx7;

lx7: HB := true; goto lx8; (9.21)

lx8: x.event := ld; goto lx9; (9.22)

lx9: x
′ := e; goto l2;

[[l1: end; goto l2;]]P2VH =

// Before joining visibility helpers

l1: assume atrA =⊥ ∨(atrA 6=⊥ ∧ p.vh =⊥); goto lx1;

lx1: end; goto l2;

// After joining visibility helpers

l1: assume atrA 6=⊥ ∧ p.vh; goto lx2;

lx2: end; goto l2;

// Failed to join visibility helpers

l1: assume atrA 6=⊥ ∧ ¬p.vh; assume false; (9.23)

Figure 16. Instrumentation of the Visibility Helpers.

made in other transactions (ignoring the writes in the current transaction). When a process
choses a first transaction to delay (during the begin instruction), it has made a pledge that
during this transaction it will read from a variable that was updated by a another delayed
transaction from either the attacker or some other visibility helper. This is to ensure that
this transaction extends the visibility chain. Hence, the local process flag p.vh will be set to
true when the process meets its pledge (line (9.15)). If the process does not keep its pledge
(i.e., p.vh is equal to false) at the end of the transaction (i.e., during the end instruction) we
block the execution. Thus, when executing the end instruction of the underlying transaction
we check whether the flag p.vh is null, if so we block the execution (line (9.23)).

When a process joins the visibility helpers, it delays all writes and reads only from the
primed variables (lines (9.19) and (9.14)). Similar to the attacker, a process in the visibility
helpers delays a write to a shared variable z by writing to z′, it sets the flag z′.event to
st (line (9.20)). In order for a process in the visibility helpers to start the happens-before
path, it has to either read or write a shared variable x that was not accessed by a delayed
transaction (i.e., x′.event =⊥). In this case we set the flag HB to true (lines (9.21) and
(9.16)) to mark the start of the happens before path and the end of the visibility chains

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:35

[[l1: begin; goto l2;]]P2HbH =

// Before joining happens-before helpers

l1: assume HB = p.vh = p.a =⊥ ; goto lx1;

lx1: begin; goto l2;

// Joining happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh = p.vh = p.a =⊥ ; goto lx2;

lx2: begin; goto lx3; (9.24)

lx3: Foreach x ∈ V. x.event′ := x.event; goto l2;

// After joining happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh 6=⊥ ; goto lx4;

lx4: begin; goto l2;

[[l1: x := e; goto l2;]]P2HbH =

// Before the first delayed transaction

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lx1;

lx1: x := e; goto l2;

// After the first delayed transaction

l1: assume HB = p.vh = p.a =⊥ ∧ atrA 6=⊥ ; goto lx2;

lx2: x
′ := e; goto lx3; (9.25)

lx3: x := e; goto l2; (9.26)

// After the last delayed transaction

l1: assume HB 6=⊥ ∧ p.vh = p.a =⊥ ; goto lx4;

lx4: x := e; goto lx5;

lx5: x.event := st; goto lx6; (9.27)

lx6: assume x.event′ 6=⊥ ∧ p.hbh =⊥ ; goto lx7;

lx7: p.hbh := true; goto l2; (9.28)

lx6: assume x.event′ =⊥ ∨ p.hbh 6=⊥ ; goto l2;

[[l1: r := x; goto l2;]]P2HbH =

// Before the last delayed transaction

l1: assume HB =⊥ ∧ p.vh = p.a =⊥ ; goto lx1;

lx1: r := x; goto l2; (9.29)

// After the last delayed transaction

l1: assume HB 6=⊥ ∧ p.vh = p.a =⊥ ; goto lx2;

lx2: r := x; goto lx3;

lx3: assume x.event′ = st ∧ p.hbh =⊥ ; goto lx4;

lx4: p.hbh := true; goto l2; (9.30)

lx3: assume x.event =⊥ ; goto lx5;

lx5: x.event := ld; goto l2; (9.31)

lx3: assume x.event 6=⊥ ∨ p.hbh 6=⊥ ; goto l2;

[[l1: end; goto l2;]]P2HbH =

// Before joining happens-before helpers

l1: assume HB = p.vh = p.a =⊥ ; goto lx1;

lx1: end; goto l2;

// After joining happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh 6=⊥ ; goto lx2;

lx2: end; goto lx3;

lx3: r̃ := astA; goto lx4; (9.32)

lx4: r̃ := r̃.event; goto lx5; (9.33)

lx5: assume r̃ 6=⊥ ; assert false; (9.34)

lx5: assume r̃ =⊥ ; goto l2;

// Failed to join happens-before helpers

l1: assume HB 6=⊥ ∧ p.hbh = p.vh = p.a =⊥
; assume false; (9.35)

Figure 17. Instrumentation of Happens-Before Helpers.

and set the flag x.event to ld (lines (9.22) and (9.17)). When the flag HB is set to true, all
processes in the set of visibility helpers stop issuing new transactions because all conditions
for executing the begin instruction become false.

9.3. Instrumentation of the Happens-Before Helpers. The remaining processes, which
are not the attacker or a visibility helper, can become happens-before helpers. Fig. 17 lists
the instrumentation of the instructions of a happens-before helper process. Similar to above,
when the flag atrA is set to true by the attacker, other processes enter a phase where they
continue executing their instructions, however, when they store a value they write it in both
the shared variable z and the primed variable z′ (lines (9.25) and (9.26)). However, they
only read from the original shared variables (line (9.29)). Once the flag HB is set to true, a
process that cannot be the attacker (i.e., the flag p.a is null) or a visibility helper (i.e., the
flag p.vh is null) chooses non-deterministically a transaction t (the begin of this transaction
is shown in line (9.24)) through which it wants to join the set of happens-before helpers, i.e.,
continue the happens-before path created by the existing happens-before helpers. Similar to
visibility helpers, when a process choses the transaction t, it makes a pledge (while executing

12:36 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

the begin instruction) that during this transaction it will either read a variable updated
by another happens-before helper or write to a variable that was accessed (read or written)
by another happens-before helper (every process that executes a transaction after HB is
set to true makes this pledge). When the pledge is met, the process sets the flag p.hbh to
true (lines (9.30) and (9.28)). The execution is blocked if a process does not keep its pledge
(i.e., the flag p.hbh is null) at the end of the transaction (line (9.35)). We use a flag x.event
for each variable x to record the type (read ld or write st) of the last access made by a
happens-before helper (lines (9.31) and (9.27)). Moreover, once HB is set to true (i.e., there
are no more delayed transactions), the process can write and read only the original shared
variables, since the primed versions are no longer in use. A particular case is when the
transaction t is from the first process trying to join the happens-before helpers, in which the
transaction must contain a read accessing the variable x that was read or written to by a
transaction from the attacker of a visibility helper.

The happens-before helpers continue executing their instructions, until one of them reads
from the shared variable y whose name was stored in astA . This establishes a happens-before
path between the last delayed transaction and a “fictitious” store event corresponding to
the first delayed transaction that could be executed just after this read of y. The execution
does not have to contain this store event explicitly since it is always enabled. Therefore,
at the end of every transaction, the instrumentation checks whether the transaction read
y. If it is the case, then the execution stops and goes to an error state to indicate that
this is a robustness violation. The happens-before helpers processes continue executing
their instructions, until one of them executes a load that reads from the shared variable y
that was stored in astA which implies the existence of a happens-before cycle. Thus, when
executing the instruction end at the end of every transaction, we have a conditional check to
detect if we have a load or a write accessing the variable y (lines (9.32), (9.33), and (9.34)).
When the check detects that the variable y was accessed, the execution goes to an error
state (line (9.34)) to indicate that it has produced a robustness violation.

In Fig. 18, we show an excerpt of the instrumentations of the two transactions of the
SB program. In particular, we only give the instructions of the instrumented SB that are
reached during the execution that leads to an error state. The attacker instrumentation
is applied to the transaction t1 of p1 and the happens-before helpers instrumentation is
applied to the transaction t2 of p2. The first conflict order from t1 to t2 (shown in Fig. 11)
is simulated by the fact that at line 9.39, y.event′ = ld (see lines 9.37 and 9.38). Also, the
second conflict order from t2 to t1 is simulated by the fact that at line 9.41 we reach the
error state where astA .event = x.event = ld (see lines 9.36 and 9.40).

9.4. Correctness. As we have already mentioned, the role of a process in an execution is
chosen non-deterministically at runtime. Therefore, the final instrumentation of a given
program P , denoted by [[P]]P2, is obtained by replacing each labeled instruction 〈linst〉 with
the concatenation of the instrumentations corresponding to the attacker, the visibility helpers,
and the happens-before helpers, i.e., [[〈linst〉]]P2 ::= [[〈linst〉]]P2A [[〈linst〉]]P2VH [[〈linst〉]]P2HbH. The

instrumented program [[P]]P2 reaches the error state iff P admits a violation of the pattern
τCCv2. Let [[P]]P1 be the instrumented program that reaches an error state iff P admits a
violation of the pattern τCCv1. The instrumentation [[]]P1 does not include the visibility
helpers since only a single transaction is delayed in τCCv1, and it can be obtained in the same
manner as [[]]P2. The following theorem states the correctness of the instrumentation.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:37

[[l1: begin; goto l2;]]P2A =

l1: assume HB =⊥ ∧ atrA =⊥ ; goto lb2;

lb2: begin; goto lb3;

lb3: p1.a := true; goto lb4;

lb4: Foreach z ∈ V. z′ := z; goto lb5;

lb5: atrA := true; goto l2;

[[l2: x := 1; goto l3;]]P2A =

l2: assume astA = x.event =⊥ ∧ p1.a 6=⊥ ; goto ls4;

ls4: x
′ := 1; goto ls5;

ls5: astA := ‘x‘; goto ls6; (9.36)

ls6: x
′.event := st; goto l3;

[[l3: r1 := y; goto l4;]]P2A =

l3: assume y′.event =⊥ ∧ atrA 6=⊥ ; goto ll4;

ll4: r1 := y′; goto ll5;

ll5: HB := true; goto ll6;

ll6: y.event := ld; goto l4; (9.37)

[[l4: end; goto l5;]]P2A =

l4: end; goto l5;

[[l1: begin; goto l2;]]P2HbH =

l1: assume HB 6=⊥ ∧ p2.hbh = p2.vh = p2.a =⊥ ; goto lb2;

lb2: begin; goto lb3;

lb3: x.event
′ := x.event; y.event′ := y.event; goto l2; (9.38)

[[l3: y := 1; goto l4;]]P2HbH =

l3: assume HB 6=⊥ ∧ p2.vh = p2.a =⊥ ; goto ls4;

ls4: y := 1; goto ls5;

ls5: y.event := st; goto ls6;

ls6: assume y.event′ 6=⊥ ∧ p2.hbh =⊥ ; goto ls7; (9.39)

ls7: p2.hbh := true; goto l4;

[[l2: r2 := x; goto l3;]]P2HbH =

l2: assume HB 6=⊥ ∧ p.vh = p.a =⊥ ; goto ll2;

ll2: r2 := x; goto ll3;

ll3: assume x.event =⊥ ; goto ll5;

ll5: x.event := ld; goto l3; (9.40)

[[l4: end; goto l5;]]P2HbH =

l4: assume HB 6=⊥ ∧ p2.hbh 6=⊥ ; goto le2;

le2: end; goto le3;

le3: r̃ := astA; goto le4;

le4: r̃ := r̃.event; goto le5;

le5: assume r̃ 6=⊥ ; assert false; (9.41)

Figure 18. Instrumentation of SB program in Fig. 9b.

Theorem 9.1. A program P is not robust against CCv iff either [[P]]P1 or [[P]]P2 reaches the
error state.

The proof of this theorem relies on the explanations given above. One can define a
bijection between executions of the instrumentation that reach an error state and executions
of the original program that satisfy the constraints in one of the two violation patterns.
The former can be rewritten to the latter by roughly, removing all accesses to the auxiliary
variables used by the instrumentation, replacing the writes to shared variable copies by
writes to the original variables, delivering delayed transactions only to visibility helpers, and
appending store events for all the delayed transactions. For the reverse, given a robustness
violation τ = αA · isu(p, t) · β1 · isu(p1, t1) · β2 · (p′, t′) · del(p′, t) · γS of type τCCv2, we can build
an execution of the instrumentation that reaches an error state, where p is the attacker, the
processes delaying transactions in β1 · isu(p1, t1) are visibility helpers, and the processes that
issue transactions between isu(p1, t1) and del(p′, t) and that are part of the happens-before
path between these two events are the happens-before helpers.

The following result states the complexity of checking robustness for finite-state pro-
grams9 against one of the three variations of causal consistency considered in this work
(we use causal consistency as a generic name to refer to all of them). The upper bound
is a direct consequence of Theorem 9.1 and of previous results concerning the reachability
problem in concurrent programs running over SC, with a fixed [26] or parametric number of

9That is, programs where the number of variables and the data domain are bounded.

12:38 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

processes [40]. For the lower bound, given an instance of the reachability problem under
sequential consistency, denoted by (P, `)10, we construct a program P ′ where each statement
s of P is a different transaction (guarded by a global lock), and where reaching the location
` enables the execution of a “gadget” that corresponds to the SB program in Figure 9b.
Executing each statement under a global lock ensures that every execution of P ′ under
causal consistency is serializable, and faithfully represents an execution of the original P
under sequential consistency. Moreover, P reaches ` iff P ′ contains a robustness violation,
which is due to the execution of SB.

Corollary 9.2. Checking robustness of finite-state programs against causal consistency
is PSPACE-complete when the number of processes is fixed and EXPSPACE-complete,
otherwise.

Remark 9.3. The reduction to reachability does not manipulate transaction identifiers and
it is insensitive to the number of transactions executed by one process. Thus, all our results
extend to processes that include unbounded loops of transactions. This includes programs
where each process can call a statically known set of transactions (with parameters) an
arbitrary number of times.

10. Related Work

Causal consistency is one of the oldest consistency models for distributed systems [30].
Formal definitions of several variants of causal consistency, suitable for different types of
applications, have been introduced recently [18, 17, 38, 13]. The definitions in this paper
are inspired from these works and coincide with those given in [13]. In that paper, the
authors address the decidability and the complexity of verifying that an implementation of a
storage system is causally consistent (i.e., all its computations, for every client, are causally
consistent).

While our paper focuses on trace-based robustness, state-based robustness requires that
a program is robust if the set of all its reachable states under the weak semantics is the
same as its set of reachable states under the strong semantics. While state-robustness is
the necessary and sufficient concept for preserving state-invariants, its verification, which
amounts in computing the set of reachable states under the weak semantics, is in general a
hard problem. The decidability and the complexity of this problem has been investigated in
the context of relaxed memory models such as TSO and Power, and it has been shown that
it is either decidable but highly complex (non-primitive recursive), or undecidable [8, 9]. As
far as we know, the decidability and complexity of this problem has not been investigated for
causal consistency. Automatic procedures for approximate reachability/invariant checking
have been proposed using either abstractions or bounded analyses, e.g., [10, 5, 20, 1]. Proof
methods have also been developed for verifying invariants in the context of weakly consistent
models such as [29, 25, 36, 4]. These methods, however, do not provide decision procedures.

Decidability and complexity of trace-based robustness has been investigated for the TSO
and Power memory models [14, 12, 21]. The work we present in this paper borrows the idea of
using minimal violation characterizations for building an instrumentation allowing to obtain
a reduction of the robustness checking problem to the reachability checking problem over SC.
However, applying this approach to the case of causal consistency is not straightforward and

10That is, whether the program P reaches the control location ` under SC.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:39

requires different proof techniques. Dealing with causal consistency is far more tricky and
difficult than dealing with TSO, and requires coming up with radically different arguments
and proofs, for (1) characterizing in a finite manner the set of violations, (2) showing that
this characterization is sound and complete, and (3) using effectively this characterization in
the definition of the reduction to the reachability problem.

As far as we know, our work is the first one that establishes results on the decidability
and complexity issues of the robustness problem in the context of causal consistency, and
taking into account transactions. The existing work on the verification of robustness for
distributed systems consider essentially trace-based concepts of robustness and provide
either over- or under-approximate analyses for checking it. In [11, 15, 16, 19], static analysis
techniques are proposed based on computing an abstraction of the set of computations that
is used in searching for robustness violations. These approaches may return false alarms
due to the abstractions they consider. In particular, [11] shows that a trace under causal
convergence is not admitted by the serializability semantics iff it contains a (transactional)
happens-before cycle with a RW dependency, and another RW or WW dependency. This
characterization alone is not sufficient to prove our result concerning robustness checking.
Our result relies on a characterization of more refined robustness violations and relies on
different proof arguments. In [35] a sound (but not complete) bounded analysis for detecting
robustness violation is proposed. Our approach is technically different, is precise, and
provides a decision procedure for checking robustness when the program is finite-state.

11. Conclusion

We have studied three variations of transactional causal consistency, showing that they are
equivalent for programs without write-write races. We have shown that the problem of
verifying that a transactional program is robust against causal consistency can be reduced,
modulo a linear-size instrumentation, to a reachability problem in a transactional program
running over a sequentially consistent shared memory. This reduction leads to the first
decidability result concerning the problem of checking robustness against a weak transactional
consistency model. Furthermore, this reduction opens the door to the use of existing methods
and tools for the analysis and verification of SC concurrent programs, in order to reason
about weakly-consistent transactional programs. It can be used for the design of a large
spectrum of static/dynamic tools for testing/verifying robustness against causal consistency.

Our notion of robustness relies on a particular interpretation of behaviors as traces
recording all happens-before dependencies. This is stronger than a more immediate notion
of state-based robustness that requires equality of sets of reachable states, which means that
it could produce false alarms, i.e., robustness violations that are not also violations of the
intended program specification. This trade-off is similar in spirit to data races being used as
an approximation of concurrency errors (since data races are easier to detect, compared to
violations of arbitrary specifications).

An interesting direction for future work is looking at the robustness problem in the
context of hybrid consistency models where some of the transactions in the program can
be declared serializable. These models include synchronization primitives similar to lock
acquire/release which allow to enforce a serialization order between some transactions. Such
mechanisms can be used as a “repair” mechanism in order to make programs robust.

12:40 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. Context-bounded
analysis for POWER. In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part II, volume 10206 of Lecture Notes in Computer Science, pages
56–74, 2017.

[2] Atul Adya. Weak consistency: A generalized theory and optimistic implementations for distributed
transactions. PhD thesis, 1999.

[3] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal memory:
Definitions, implementation, and programming. Distributed Comput., 9(1):37–49, 1995.

[4] Jade Alglave and Patrick Cousot. Ogre and pythia: an invariance proof method for weak consistency
models. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
pages 3–18. ACM, 2017.

[5] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient bounded model
checking of concurrent software. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 141–157. Springer, 2013.

[6] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, testing, and
data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.

[7] Sérgio Almeida, João Leitão, and Lúıs E. T. Rodrigues. Chainreaction: a causal+ consistent datastore
based on chain replication. In Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans Kaashoek,
editors, Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013, pages
85–98. ACM, 2013.

[8] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. On the
verification problem for weak memory models. In Manuel V. Hermenegildo and Jens Palsberg, editors,
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pages 7–18. ACM, 2010.

[9] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. What’s
decidable about weak memory models? In Helmut Seidl, editor, Programming Languages and Systems -
21st European Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings,
volume 7211 of Lecture Notes in Computer Science, pages 26–46. Springer, 2012.

[10] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Getting rid of store-buffers in TSO
analysis. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science, pages 99–115. Springer, 2011.

[11] Giovanni Bernardi and Alexey Gotsman. Robustness against consistency models with atomic visibility.
In Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on Concurrency
Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 7:1–7:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[12] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing robustness against
TSO. In Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7792 of Lecture Notes in Computer Science, pages 533–553. Springer, 2013.

[13] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On verifying causal consistency.
In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
pages 626–638. ACM, 2017.

[14] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding robustness against total store ordering.
In Luca Aceto, Monika Henzinger, and Jiŕı Sgall, editors, Automata, Languages and Programming -
38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II,
volume 6756 of Lecture Notes in Computer Science, pages 428–440. Springer, 2011.

Vol. 17:1 ROBUSTNESS AGAINST TRANSACTIONAL CAUSAL CONSISTENCY 12:41

[15] Lucas Brutschy, Dimitar I. Dimitrov, Peter Müller, and Martin T. Vechev. Serializability for eventual
consistency: criterion, analysis, and applications. In Giuseppe Castagna and Andrew D. Gordon, editors,
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 458–472. ACM, 2017.

[16] Lucas Brutschy, Dimitar I. Dimitrov, Peter Müller, and Martin T. Vechev. Static serializability analysis
for causal consistency. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 90–104. ACM, 2018.

[17] Sebastian Burckhardt. Principles of eventual consistency. Found. Trends Program. Lang., 1(1-2):1–150,
2014.

[18] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated data types:
specification, verification, optimality. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, pages 271–284. ACM, 2014.

[19] Andrea Cerone and Alexey Gotsman. Analysing snapshot isolation. J. ACM, 65(2):11:1–11:41, 2018.
[20] Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav. Effective abstractions for

verification under relaxed memory models. Comput. Lang. Syst. Struct., 47:62–76, 2017.
[21] Egor Derevenetc and Roland Meyer. Robustness against power is pspace-complete. In Javier Esparza,

Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Program-
ming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part II, volume 8573 of Lecture Notes in Computer Science, pages 158–170. Springer, 2014.

[22] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: scalable causal consistency
using dependency matrices and physical clocks. In Guy M. Lohman, editor, ACM Symposium on Cloud
Computing, SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013, pages 11:1–11:14. ACM, 2013.

[23] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, 1985.

[24] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[25] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’cause i’m
strong enough: reasoning about consistency choices in distributed systems. In Rastislav Bod́ık and
Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 371–384. ACM, 2016.

[26] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 254–266.
IEEE Computer Society, 1977.

[27] Arthur Kurath. Analyzing Serializability of Cassandra Applications. Master’s thesis, ETH Zurich,
Switzerland, 2017.

[28] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire consistency. In Rastislav Bod́ık
and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 649–662. ACM, 2016.

[29] Ori Lahav and Viktor Vafeiadis. Owicki-gries reasoning for weak memory models. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 311–323. Springer, 2015.

[30] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[31] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. Computers, 28(9):690–691, 1979.

[32] Richard J Lipton and Jonathan S Sandberg. PRAM: A scalable shared memory. Technical Report
TR-180-88, Princeton University, Department of Computer Science, August 1988.

[33] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle for eventual:
scalable causal consistency for wide-area storage with COPS. In Ted Wobber and Peter Druschel, editors,

12:42 S.M. Beillahi, A. Bouajjani, and C. Enea Vol. 17:1

Proceedings of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011, pages 401–416. ACM, 2011.

[34] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In Nick Feamster and Jeffrey C. Mogul, editors, Proceedings of the
10th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL,
USA, April 2-5, 2013, pages 313–328. USENIX Association, 2013.

[35] Kartik Nagar and Suresh Jagannathan. Automated detection of serializability violations under weak
consistency. In Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency
Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 41:1–41:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[36] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro. The CISE
tool: proving weakly-consistent applications correct. In Peter Alvaro and Alysson Bessani, editors,
Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for Distributed Data,
PaPoC@EuroSys 2016, London, United Kingdom, April 18, 2016, pages 2:1–2:3. ACM, 2016.

[37] Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631–653,
1979.

[38] Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. Causal consistency: beyond memory. In Rafael
Asenjo and Tim Harris, editors, Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016, pages 26:1–26:12.
ACM, 2016.

[39] Nuno M. Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte, Valter Balegas, Carlos Baquero,
and Marc Shapiro. Swiftcloud: Fault-tolerant geo-replication integrated all the way to the client machine.
In 33rd IEEE International Symposium on Reliable Distributed Systems Workshops, SRDS Workshops
2014, Nara, Japan, October 6-9, 2014, pages 30–33. IEEE Computer Society, 2014.

[40] Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor. Comput.
Sci., 6:223–231, 1978.

[41] Dennis E. Shasha and Marc Snir. Efficient and correct execution of parallel programs that share memory.
ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Causal Consistency
	2.1. Program syntax
	2.2. Program Semantics Under Causal Memory
	2.3. Program Semantics Under Causal Convergence
	2.4. Program Semantics Under Weak Causal Consistency
	2.5. Execution Summary
	2.6. Trace

	3. Write-Write Race Freedom
	4. Program Robustness
	4.1. Program Semantics Under Serializability
	4.2. Robustness Problem

	5. Minimal Violations
	5.1. Happens-Before Through Relation
	5.2. Minimal Violations

	6. Robustness Violations Under Causal Convergence
	7. Robustness Violations Under Causal Memory
	8. Robustness Violations Under Weak Causal Consistency
	9. Reduction to SC Reachability
	9.1. Instrumentation of the Attacker
	9.2. Instrumentation of the Visibility Helpers
	9.3. Instrumentation of the Happens-Before Helpers
	9.4. Correctness

	10. Related Work
	11. Conclusion
	References

