
Logical Methods in Computer Science

Vol. 8 (1:15) 2012, pp. 1–27

www.lmcs-online.org

Submitted Feb. 2, 2011

Published Mar. 2, 2012

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS

THOMAS SCHWENTICK a AND THOMAS ZEUME b

a,b TU Dortmund University
e-mail address: {thomas.schwentick, thomas.zeume}@cs.uni-dortmund.de

Abstract. It is shown that the finite satisfiability problem for two-variable logic over
structures with one total preorder relation, its induced successor relation, one linear order
relation and some further unary relations is EXPSPACE-complete. Actually, EXPSPACE-
completeness already holds for structures that do not include the induced successor rela-
tion. As a special case, the EXPSPACE upper bound applies to two-variable logic over
structures with two linear orders. A further consequence is that satisfiability of two-
variable logic over data words with a linear order on positions and a linear order and
successor relation on the data is decidable in EXPSPACE.

As a complementing result, it is shown that over structures with two total preorder
relations as well as over structures with one total preorder and two linear order relations,
the finite satisfiability problem for two-variable logic is undecidable.

1. Introduction

First-order logic restricted to two-variables (two-variable logic or FO
2 in the following) is

generally known to be reasonably expressive for many purposes. In contrast to full first-
order logic, its satisfiability and its finite satisfiability problem are decidable [Mor75], in
fact they are NEXPTIME-complete [GKV97].

However, if one is interested in (finite or general) satisfiability of FO2 over structures
with a particular property P these general results can only be applied if P is expressible in
FO

2. Unfortunately, there are some simple properties like transitivity of a binary relation
that cannot be expressed in FO

2. In particular, in FO
2 it can neither be expressed that

a given binary relation is a linear order nor that it is an equivalence relation. Thus, the
results from [Mor75, GKV97] do not help for satisfiability of FO2 over (finite or general)
structures with linear orders or equivalence relations,

In [Ott01] it was shown that it can be decided in NEXPTIME whether a given FO
2

sentence has a model (or whether it has a finite model) in which a particular relation symbol

1998 ACM Subject Classification: F.4.1.
Key words and phrases: two-variable logic, linear orders, data word.

a,b We acknowledge the financial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission, under the FET-Open grant
agreement FOX, number FP7-ICT-233599. We further acknowledge the financial support by the German
DFG under grant SCHW 678/4-1.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:15) 2012

c© T. Schwentick and T. Zeume
CC© Creative Commons

http://creativecommons.org/about/licenses

2 T. SCHWENTICK AND T. ZEUME

is interpreted by a linear order. On the other hand, in the presence of eight binary symbols
that have to be interpreted as linear orders it is undecidable. Note that in these results
the formulas might use further relation symbols of arbitrary arity for which the possible
interpretations are unrestricted.

The problem of deciding finite satisfiability1 was shown to be NEXPTIME-complete
over structures with one equivalence relation and undecidable over structures with three
equivalence relations in [KO05]. In [KT09] it was shown that over structures with two
equivalence relations the problem is decidable in triply exponential nondeterministic time.

In this article we study two-variable logic over structures with linear orders and total
preorders. A total preorder - is basically an equivalence relation ∼ whose equivalence
classes are ordered by ≺. Total preorders can therefore encode equivalence relations as
well as linear orders and in this sense they generalize both types of relations. It should be
stressed that in our results, structures may have an arbitrary number of additional unary
relations but no further non-unary relations.

Our motivation stems from the context of so-called data words. A data word is a word,
that is, a finite sequence of symbols from a finite alphabet, but besides a symbol, every posi-
tion also carries a value from a possibly infinite domain. An interest in data words and data
trees arises from applications in database theory, where XML documents can be modeled
by data trees in which the symbols correspond to the tags and the data values to text or
attribute values. On the other hand, (infinite) data words can also be considered as traces
of computations in a distributed environment, where symbols correspond to states of pro-
cesses and data values encode process numbers. Recently many logics and automata models
have been considered for data words and data trees (see [Seg06] for a gentle introduction).

First-order logic on data words (with a linear order on positions and equality on data
values) is undecidable, even for formulas with three variables [BMS+06].

On the other hand, finite satisfiability of two-variable logic on data words is decidable.
More precisely, it was shown in [BMS+06] that it is decidable even in the setting where data
words are equipped with a linear order and its corresponding successor relation on positions
and equality on data values. However, the complexity is unknown but basically equivalent
to the open complexity of Petri net reachability. It was further shown in [BMS+06] that the
problem is NEXPTIME-complete without the successor relation on the positions and that
it becomes undecidable if the data values are equipped with a linear order (in the presence
of linear order and successor relation on positions).

Data words are closely related with finite structures with order relations. More precisely,
data words can be represented by

• some unary relations to encode symbols at positions,
• a linear order (on the positions), possibly its induced successor relation, and
• an equivalence relation corresponding to data equality between positions.

In this context, an additional linear order on data values can be represented by a total
preorder -. All positions with a particular value constitute an equivalence class and these
classes are ordered by the linear order on the values. It is exactly this setting which triggered
our study of structures with a linear order, a total preorder, and some unary relations.

1As this article only deals with finite structures we henceforth only mention results on finite satisfiability.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 3

Results. We show that finite satisfiability of two-variable logic over structures with a linear
order, a total preorder, and unary relations is EXPSPACE-complete. Consequently, finite
satisfiability of FO2 over data words with a linear order (but no successor relation) on the
positions and a linear order on the data values can be decided in exponential space as well.
As it can be expressed in FO

2 that a total preorder is a linear order, the corresponding
problem with two linear orders (and no total preorder) is also solvable in EXPSPACE.
Thus, the gap between one and eight linear orders that was left in the work of Otto [Ott01]
is narrowed.

The upper bound even holds when the preorder is accompanied by a partial successor
relation (the precise definition of this notion will be given in Section 2). As a corollary,
satisfiability of FO2 on data words is in EXPSPACE even if the linear order on the data
values is accompanied with a corresponding partial successor relation.

The upper bounds are obtained by a reduction to finite satisfiability of semi-positive
FO

2 sentences over sets of labeled points in the plane, where points can be compared by
their relative position with respect to the directions տ,ր,ւ,ց,←,→. Furthermore two
points can be tested for being on successive horizontal lines. Semi-positive formulas are
in negation normal form and do not contain negated “direction atoms”. For a precise
definition we refer to Section 3. Finite satisfiability of semi-positive FO

2 over such point
sets can in turn be reduced in exponential time to a constraint problem for labeled points
in the plane with PSPACE-complexity. The EXPSPACE lower bound is by a reduction
from exponential width corridor tiling.

Finally, we show by reductions from the Post Correspondence Problem (PCP) problem
that finite satisfiability of FO2 over structures2 with two total preorders and over structures
with two linear orders and a total preorder is undecidable.

Organization. After some basic definitions in Section 2, we prove the EXPSPACE upper
bound in Section 3 and all lower bounds in Section 4. We conclude with Section 5 where
we discuss research directions and related work on compass and interval logics.

Related work. As mentioned before, also other logics for data words besides FO2 have been
studied. As an example we mention the “freeze”-extension of LTL studied, e.g. in [DL09]
and [FS09]. The latter paper is more closely related to our work as it considers a restriction
of LTL without the X-operator. Amaldev Manuel has recently proved decidability and
undecidability results for FO

2-logic over structures with orders [Man10]. However, in his
work structures have at least two successor relations but no linear orders, hence neither
results nor techniques translate from his work to ours nor vice versa.

Acknowledgements. We thank Jan van den Bussche for stimulating discussions and Daniela
Huvermann for careful proof reading.

2Additional unary relations are again allowed.

4 T. SCHWENTICK AND T. ZEUME

2. Preliminaries

In this article, we only consider finite structures. We are interested in three kinds of finite
structures: ordered structures, sets of labeled points in the plane and data words.

In the following, N denotes the set of natural numbers and Q the set of rationals.

Ordered Structures. We first fix our notation concerning order relations. A total preorder
- is a transitive, total relation, that is, u - v and v - w implies u - w and for every
two elements u, v of a structure u - v or v - u holds. In particular, every total preorder
is reflexive, that is u - u holds for every u. A linear order ≤ is a antisymmetric total
preorder, that is, if u ≤ v and v ≤ u then u = v. Thus, the essential difference between a
total preorder and a linear order is that the former allows that for two distinct elements u
and v both u - v and v - u hold. We call two such elements equivalent with respect to -
and write u ∼ v. We write u ≺ v if u - v and u 6∼ v.

A total preorder can be viewed as an equivalence relation ∼ whose equivalence classes
are linearly ordered by ≺. Clearly, every linear order is a total preorder with equivalence
classes of size one.

We define the induced successor relation S- of a total preorder - as follows. For two
elements u, v, S-(u, v) if u ≺ v, and there is no element w such that u ≺ w ≺ v. A partial
successor relation S is a sub-relation of S- such that u ∼ u′, v ∼ v′ and S(u, v) imply
S(u′, v′). Thus, a partial successor relation is a sub-relation of S- that is derived from a
sub-relation of the successor relation on the equivalence classes of -. We say that S- is
complete to distinguish it from (truly) partial successor relations.

We use binary relation symbols <,<1, <2, . . . that are always interpreted as linear
orders, binary relation symbols -,-1,-2, . . . that are interpreted as total preorders, and
binary relation symbols S, S1, S2, . . . that are interpreted as (partial or complete) successor
relations. We note that ∼ and ≺ can be expressed in two-variable logic, given �.

In this article, an ordered structure is a finite structure with non-empty universe and
some linear orders, some total preorders, some successor relations and some unary relations.
We always allow an unlimited number of unary relations and specify the numbers of allowed
linear orders and total preorders explicitly.

We denote classes of ordered structures by the notation FinOrd(O) where O indicates
the orders and successor relations following the above conventions. Here, corresponding
relations are grouped together by square brackets. For example, by FinOrd(≤1, [-2, S2])
we denote the set of finite structures with one linear order and one total preorder together
with a corresponding partial successor relation.

Sets of Labeled Points. As mentioned before, we also consider finite sets of labeled points.
Let Prop = {e1, . . . , ek} be a set of propositions. A Prop-labeled point p is a point in N2

in which propositions e1, . . . , ek may or may not hold. We refer to the x-coordinate and
the y-coordinate of a point p by p.x and p.y, respectively. We simply say point if Prop is
understood from the context. We do not allow different points p 6= q at the same position,
that is, if p.x = q.x and p.y = q.y then p = q. We say that a set Prop of labeled points is
contiguous, if the y-coordinates of Prop constitute an interval3 in N.

3It is not required that every number occurs only once as the y-coordinate of a point.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 5

For a finite set P of labeled points, we write pտ q if p.x > q.x and p.y < q.y, that is if q
is in the northwest of p. Likewise for ←,ւ, ↓,ց,→,ր, ↑. We write Iy(p, q) if p.y+1 = q.y

and Ix(p, q) if p.x+1 = q.x. Let D = {ր, ↑,տ,←,ւ, ↓,ց,→} denote the set of directions.
We denote D without ↓ and ↑ by D−.

Point Sets versus Ordered Structures. There is a strong connection between sets of labeled
points and ordered structures with two total preorders.

With every finite ordered structure O with universe U and relations -1, -2, their
induced successor relations S1, S2 and some unary relations one can associate a finite point
set M in the plane and a bijection π such that the following statements hold.

• u ≺1 v in O if and only if π(u)ր π(v) or π(u)→ π(v) or π(u)ց π(v) in M .
• u ≺2 v in O if and only if π(u)տ π(v) or π(u) ↑ π(v) or π(u)ր π(v) in M .
• u ∼1 v in O if and only if π(u) ↑ π(v) or π(u) ↓ π(v) or π(u) = π(v) in M .
• u ∼2 v in O if and only if π(u)← π(v) or π(u)→ π(v) or π(u) = π(v) in M .
• S1(u, v) in O if and only if Ix(π(u), π(v)) in M .
• S2(u, v) in O if and only if Iy(π(u), π(v)) in M .

To this end, we can assign to every equivalence class of-1 a natural number in increasing
order, likewise for -2. Then, π(u).x is just the number of u’s ∼1-class and π(u).y is the
number of its ∼2-class. Note that this construction might yield a multiset as there could
be elements u 6= v such that u ∼1 v and u ∼2 v. However, in the following this case will
not occur as we will require that -1 is a linear order.

Similarly, from every labeled point set M in N2, an ordered structure O (with universe
M) can be obtained by defining

• u -1 v if u.x ≤ v.x and
• u -2 v if u.y ≤ v.y

and by defining S1 and S2 accordingly.
Thus, points are equivalent with respect to -2 if they have the same y-coordinate.

Data Words. We are interested in a particular kind of ordered structures, data words with
ordered data. In a nutshell, a data word with ordered data is a string in which every position
carries a label from a finite alphabet and a value from a potentially infinite, ordered domain.
In this paper, this domain will always be N. As only a finite number of values can occur
in a finite data strings this is not a restriction. More formally, a data word s over alphabet
Σ is a finite sequence (σ1, d1), . . . , (σn, dn) where σi ∈ Σ and di ∈ N, for every i. Such
a data word can be represented in a natural way by an ordered structure whose universe
is the set {1, . . . , n} of positions of s and which is equipped with a linear order ≤1 and a
successor relation S1 on the positions. To represent the linear order on the data values the
structure may have a total preorder -2. Thus, i -2 j if di ≤ dj . Note that if the same data
value occurs at different positions, -2 may indeed have non-singleton equivalence classes.
Furthermore, the structure has one unary relation for each symbol of Σ. In logical formulas
we simply write σ(x) to denote that position x carries symbol σ. Note that data words
are a special kind of ordered structures as every position is contained in exactly one of the
unary relations.

In this article, we do not consider data words with the successor relation on positions.
However, we allow a partial successor relation S2 of the total preorder which translates to
the successor relation on the data values as (i, j) ∈ S2 if and only if di + 1 = dj .

6 T. SCHWENTICK AND T. ZEUME

6 • b
5
4 • a
3 • a • b
2
1 • a

1 2 3 4 5

Figure 1: Finite set of labeled points corresponding to the data word
(a, 1)(a, 3)(a, 4)(b, 6)(b, 3). Columns are ordered by <1 and rows are ordered by
-2.

From the point of view of finite structures there is only one difference between ordered
structures and data words: in data words every position carries exactly one symbol from
some finite alphabet Σ, whereas ordered structures in general allow several unary relations
that need not be disjoint. We thus add Σ to our notation of ordered structures to indicate
that there is one unary relation per symbol in Σ and the unary relations partition the
universe. For example, write FinOrd(Σ,≤1, [-2, S2]) to denote predicate logic over data
words with ordered data, alphabet Σ and domain N without successor on positions but
with successor on values.

The correspondence between ordered structures and sets of labeled points naturally
translates to a correspondence between data words with ordered data and sets of labeled

points. Figure 1 shows the point set corresponding to the data word w =

(

a a a b b

1 3 4 6 3

)

.

Logic. Two-variable logic is the restriction of predicate logic to formulas that only use (at
most) two variables x and y. We denote two-variable logic by FO

2.
We denote two-variable logic on a restricted set S of structures by FO

2(S). As an
abbreviation, we denote FO

2(FinOrd(O)), for a set O of predicates by FO
2(O).

If D is a set of directions, we denote by FO
2(D) two-variable logic with binary relations

from D and unary relations from Prop. We interpret FO2(D) logic over non-empty sets of
Prop-points in N2 where Prop has a proposition ei, for every unary relation symbol Ui.

3. Upper Bounds for Two-variable Logic on Ordered Structures

The following theorem states our main result.

Theorem 3.1. Finite satisfiability of FO2(≤1, [-2, S2]) is EXPSPACE-complete.

Corollary 3.2. Finite satisfiability of FO
2 over data words with a linear order on the

positions and a linear order and a corresponding successor relation on the data values can
be decided in EXPSPACE.

It is worthwhile to compare Corollary 3.2 with the following result from [BMS+06].

Proposition 3.3. Finite satisfiability of FO2 over data words with a linear order and its
corresponding successor relation on the positions and a linear order on the data values is
undecidable.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 7

The two results might appear contradictory at first sight. However, translated into the
language of orders the two settings are indeed different. In Corollary 3.2 there is a total
preorder with a corresponding successor relation plus a linear order, whereas in Proposition
3.3 there is a linear order with its underlying successor relation plus a total preorder. We can
conclude that the additional total preorder yields more expressive power in that it allows
to encode Post’s correspondence problem in a two-variable fashion as shown in [BMS+06]..

The lower bound of Theorem 3.1 will be shown in the following section as Theorem 4.1.
The upper bound proof is given in this section and consists of three main steps.

(3.1) We first reduce finite satisfiability of FO2(≤1, [-2, S2]) to finite satisfiability of FO2(D)-
formulas of a syntactically restricted form in polynomial time.

(3.2) The latter problem is then reduced to the two-dimensional labeled point problem
(2LPP), which will be defined below, in exponential time.

(3.3) Finally, we show that 2LPP can be solved in polynomial space.

3.1. From ordered structures to labeled point sets. By FO
2(D−, Iy) we denote two-

variable logic with binary atoms x ◦d y using directions ◦d from D− (in infix notation) and
binary predicate Iy. A sentence ϕ of this logic is semi-positive if it fulfills the following
conditions.

(i) ϕ is in negation normal form (NNF).
(ii) There are no negated literals ¬(x◦d y) in ϕ. However, the occurrence of negated atoms

x 6= y is not restricted.
(iii) Literals Iy(x, y) and ¬Iy(x, y) only appear in conjunction with positive atoms ◦d ∈ D−.

The correspondence between ordered structures and finite sets of labeled points can be
exploited to show the following result.

Proposition 3.4. For each FO
2(≤1 [-2, S2])-sentence ϕ a semi-positive FO

2(D−, Iy)-
sentence ψ can be computed in polynomial time such that ψ and ϕ are equivalent with
respect to finite satisfiability over structures with a linear order and a total preorder with
induced successor relation.

Proof. We assume without loss of generality that ϕ is given in negation normal form.
The target formula ψ is of the form χ ∧ ϕ′ where χ ensures that no two points are on the
same vertical line and ϕ′ is the actual translation of ϕ into the setting of labeled points.

More precisely,

χ = ∀x∀y x = y ∨
∨

◦d∈D−

x ◦d y,

and ϕ′ is obtained from ϕ by translating its binary literals as follows.

ϕ ϕ′

x ≤1 y x = y ∨ xր y ∨ x→ y ∨ xց y

¬(x ≤1 y) xտ y ∨ x← y ∨ xւ y

x -2 y x = y ∨ x→ y ∨ x← y ∨ xր y ∨ xտ y

¬(x -2 y) xց y ∨ xւ y

S2(x, y) (Iy(x, y) ∧ xր y) ∨ (Iy(x, y) ∧ xտ y)
¬S2(x, y) (¬Iy(x, y) ∧ xր y) ∨ (¬Iy(x, y) ∧ xտ y) ∨ x = y ∨ x← y ∨ x→ y ∨ xւ y ∨ xց y

The translation of literals as y ≤1 x is analogous.

8 T. SCHWENTICK AND T. ZEUME

The correctness of this translation relies on the fact that χ ensures that no two points
are on the same vertical line. For example, for x ≤1 y, no disjuncts x ↑ y or x ↓ y are
needed. It is easy to verify that ψ is indeed semi-positive.

3.2. From Two-Variable Logic to Two-Dimensional Constraints. We next define
the 2-dimensional labeled point problem, 2LPP. For an alphabet Σ, a Σ-labeled point p is
an element from N2 × Σ. Of course, Prop-labeled points can be considered as Σ-labeled
points with Σ = 2Prop. However, the number of symbols is exponential in the number of
propositions. Likewise, Σ-labeled points can be encoded as points over a suitable set of
propositions but in that direction the encoding is less canonical. One could, e.g., use one
proposition per symbol of Σ or a logarithmic number of propositions. We write p.l for the
label of a Σ-labeled point p.

A directional constraint is a pair (◦d, sd) from D × {S,¬S}. We denote the set of
directional constraints by C. By C− we denote the set of directional constraints (◦d, sd) with
◦d ∈ D−.

We say a pair (p, q) of Σ-labeled points satisfies a directional constraint d = (◦d, sd), if
p ◦d q and the following conditions are fulfilled.

• p.y + 1 = q.y, if sd = S.
• p.y + 1 6= q.y, if sd = ¬S.

Note that the constraints (→, S) and (←, S) are not satisfied for any pair of points. By
6= we denote an inequality constraint (and there is only one such constraint). A pair (p, q)
satisfies the inequality constraint 6= if p 6= q.

A position constraint is either a directional or an inequality constraint.
An existential constraint (∃-constraint) is a pair (σ,E) where σ ∈ Σ and E is a possibly

empty set of pairs (τ, d), where τ ∈ Σ and d is a position constraint from C− ∪ {6=}. For a
set P of Σ-labeled points and a point p, we say p satisfies an ∃-constraint (σ,E) if either
p.l 6= σ or there is q ∈ P such that, for some (τ, d) in E, q.l = τ and (p, q) satisfies d.

A universal constraint (∀-constraint) is a tuple (σ, τ, d) where σ, τ ∈ Σ and d is a
directional constraint. A pair (p, q) of points from M satisfies a ∀-constraint (σ, τ, d) if it is
not the case that p.l = σ, q.l = τ , and (p, q) satisfies d.

An input L = (Σ, C∃, C∀) to the two-dimensional labeled point problem (2LPP) consists
of an alphabet Σ, a set C∃ of existential constraints and a set C∀ of universal constraints.
A non-empty set M ⊆ N2 ×Σ is a solution of L if every point of M satisfies all constraints
from C∃ and every pair of distinct points satisfies all constraints from C∀. It should be
noted that C∃ specifies required patterns whereas C∀ specifies forbidden patterns.

Proposition 3.5. From every semi-positive FO2(D−, Iy)-sentence ϕ an instance L of 2LPP
can be computed in exponential time such that ϕ is finitely satisfiable if and only if L has
a finite solution.

Proof. First, ϕ can be translated into a semi-positive FO
2(D−, Iy)-sentence ϕ

′ in Scott
normal form (SNF)

∀x∀y ψ(x, y) ∧

m
∧

i=1

∀x∃y ψi(x, y),

that has a finite model if and only if ϕ has a finite model. The translation can be done in
a way that ensures that

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 9

(1) ψ and all ψi are quantifier-free semi-positive formulas,
(2) ϕ′ is of linear size in the size of ϕ,

In general, ϕ′ uses more unary relation symbols than ϕ.
The translation mimics the proof of Theorem 2.1 in [GO99]. However, we need to be a

bit careful to get ϕ′ semi-positive.
The transformation is done in several rounds. After each round, a formula of the form

θi ∧ ϕi is obtained that is equivalent to ϕ with respect to (finite) satisfiability. Here, θi is
already in SNF and ϕi has i quantifiers less than ϕ. Furthermore, ϕi uses additional new
unary predicates P1, . . . , Pi and is semi-positive. Initially, we have θ0 = ⊤ and ϕ0 = ϕ. In
round i, a subformula χi(x) of the form ∃y ρi(x, y) or the form ∀y ρi(x, y) with quantifier-
free formula ρi is chosen from ϕi−1. In the former case,

• θi = θi−1 ∧ ∀x∃y(Pi(x)→ ρi(x, y)) and
• ϕi is obtained from ϕi−1 by replacing ∃y ρi(x, y) with Pi(x).

In the latter case,

• θi = θi−1 ∧ ∀x∀y(Pi(x)→ ρi(x, y)) and
• ϕi is obtained from ϕi−1 by replacing ∀y ρi(x, y) with Pi(x).

Clearly, this process has as many rounds as the initial formula ϕ has quantifiers. It is
easy to see that each θi is semi-positive and in SNF and each ϕi is semi-positive as well. Let
θk ∧ ϕk be the resulting formula. ϕk does not contain any quantifiers and is equivalent to
∀x∀y ϕk. Therefore, ϕ

′ = θk∧∀x∀y ϕk is in SNF (after combining all ∀∀-conjuncts into one
∀∀-formula). Furthermore, the size of ϕ′ is linear in the size of ϕ. However, the signature
has been extended by k unary relation symbols.

It remains to show that ϕ′ is finitely satisfiable if and only if ϕ is finitely satisfiable.
To this end, we show by induction on i that, for every i > 0, θi ∧ ϕi is finitely satisfiable
if and only if θi−1 ∧ ϕi−1 is finitely satisfiable. Indeed, if Ai−1 |= θi−1 ∧ ϕi−1, a model4

Ai = (Ai−1, Pi) for ϕi can be obtained from Ai−1 by letting Pi = {a | A |= χi(a)}. On
the other hand, assume that Ai = (Ai−1, Pi) is a model for θi ∧ ϕi in the case that χi(x)
is of the form ∃y ρi(x, y). Thus, Ai |= θi guarantees that for every a with Ai |= Pi(a) the
formula ∃y ρi(a, y) is satisfied by Ai and thus also Ai−1 |= ∃y ρi(a, y) (as Pi does not occur
in ρi). As ϕi−1 is in NNF, the occurrence of ∃y ρi(a, y) is not in the scope of any negations,
therefore Ai |= ϕi implies Ai−1 |= ϕi−1. Furthermore, Ai |= θi also implies Ai−1 |= θi−1. If
χi(x) is of the form ∀y ρi(x, y) the reasoning is analogous. This completes the proof that
ϕ′ is finitely satisfiable if and only if ϕ is finitely satisfiable.

In order to continue the translation into a 2LPP-instance, we next describe how to
obtain ∀-constraints from ψ. A full atomic type for x and y consists of

• a full atomic type σ for x,
• a full atomic type τ for y, and
• a conjunction of binary literals concerning x and y which can be either
− x = y or
− the conjunction of a direction atom x ◦d y with ◦d ∈ D and one of the formulas S(x, y)

or S(y, x) or ¬S(x, y) ∧ ¬S(y, x).

It should be noted that we do not allow x 6= y in full atomic types as this literal is equivalent
to the disjunction of all other possible relationships besides x = y.

4Here, (B,P) denotes the extension of a structure B by a relation P .

10 T. SCHWENTICK AND T. ZEUME

We further note that each full atomic type which does not contain the formula x = y

corresponds to a universal constraint. For instance, σ(x)∧τ(y)∧xր y∧¬S(x, y)∧¬S(y, x)
corresponds to (σ, τ, (ր,¬S)) and σ(x)∧τ(y)∧xց y∧S(y, x) corresponds to (τ, σ, (տ, S)).
The reader should note the direction change and the switch of σ and τ in the latter example.
It is due to the translation of the atom S(y, x).

For every full atomic binary or unary type, ψ determines whether this type is allowed
or forbidden in a model of ϕ′. We let Σ be the set of all unary atomic types σ of x for which
σ(x) ∧ σ(y) ∧ x = y is allowed. Furthermore, we let C∀ be the set of all ∀-constraints that
are obtained from the forbidden binary types. Clearly, the size of C∀ is at most exponential
in ϕ.

It should finally be noted that, although ϕ only uses directions from D−, the resulting
universal constraints might contain the directions ↑ or ↓. This is for instance necessary
in the case that ψ implies ∀x∀y (σ(x) ∧ σ(y) → x = y), since here universal constraints
(σ, σ, ◦d) are needed for all ◦d ∈ D.

By transforming every ψi into DNF and some additional simple steps, every conjunct
∀x∃y ψi(x, y) of ϕ

′ can be rewritten as

∀x
K
∧

j=1

(

σj(x)→ ∃y
M
∨

ℓ=1

(τjℓ ∧ ψjℓ)
)

,

where the σj describe pairwise distinct full atomic types, every τjℓ is a full atomic type and
ψjℓ is one of the following.

(1) a formula x ◦d y ∧ S(x, y) with ◦d ∈ D−,
(2) a formula x ◦d y ∧ ¬S(x, y) with ◦d ∈ D−,
(3) an atom x = y,
(4) a literal x 6= y.

For each j ≤ K, the disjuncts with formulas ψjℓ of types (1) and (3) can be combined
into one ∃-constraint. Disjuncts with formulas of type (2) can be treated as follows. If
σj = τj,ℓ then the j-th conjunct can be completely removed as it becomes a tautology. If
σj 6= τj,ℓ, the disjunct can be deleted as it can not be satisfied. If this results in an empty
disjunction then σj is deleted from Σ. The numbers K and M are at most exponential in
|ϕ|.

Altogether, we obtain an instance L = (Σ, C∃, C∀) of 2LPP such that a Σ-labeled point
set is a solution to L if and only if the corresponding labeled point set M is a model of ϕ.
Furthermore, the size of L is at most exponential in |ϕ| and the construction of L from ϕ

can be done in exponential time.

3.3. 2LPP is in PSPACE. In order to prove the upper bound of Theorem 3.1 it would be
sufficient to give a polynomial space algorithm that decides whether a given 2LPP-instance
has a solution where no two points are on the same vertical. However, there is an algorithm
that decides the existence of any finite solution.

Proposition 3.6. Whether an instance L of 2LPP has a finite solution can be decided in
polynomial space.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 11

The algorithm follows a plane sweep approach, that is, it guesses a solution for L
(horizontal) line by line. The crucial point is to show that this is possible in polynomial
space.

With every line l of a set of labeled points we associate a profile that, roughly speaking,
contains all neccessary information to validate the constraints from L for points on line l.
Profiles respecting the constraints from L will be called valid. We will prove that a solution
of L can be constructed from a sequence of valid profiles where every pair of successive
profiles is consistent. Then, the algorithm guesses a sequence of profiles and verifies validity
and consistency locally. Since the size of each profile is polynomial in the size of L, this is
a polynomial space algorithm proving Proposition 3.6.

Now, we fill in the details of the proof, and start by giving some definitions.

Profile of a Horizontal Line. A horizontal line of a set P of labeled points is a number
r ∈ N such that P contains points p and q with p.y ≤ r ≤ q.y. Intuitively, a horizontal
line is just a line that lies between the top-most and the bottom-most point of P. We say
that a point from P lies on r if p.y = r. We associate with every horizontal line r of a set
P a profile Pro(r) that represents information about the points on r and on other points
of P that are “important” with respect to ∃-constraints and ∀-constraints. Intuitively, for
each symbol and each “direction” the profile contains the x-value of the leftmost and the
rightmost point in that direction.

Let DP := {·} ∪ ({↑, ↓} × {S,¬S}) denote the set of profile constraints. For two rows
r, s we denote by d(r, s) the profile constraint of s relative to r, that is

d(r, s) =

(↑,¬S) if s > r + 1,

(↑, S) if s = r + 1,

· if s = r,

(↓, S) if s = r − 1,

(↓,¬S) if s < r − 1.

A profile is a sequence P = A1 . . . Ak of non-empty sets of pairs from Σ×DP , such that

• every set Ai contains at most one pair of the form (σ, ·),
• for each σ there are at most two indices i, j such that (σ, ·) ∈ Ai and (σ, ·) ∈ Aj , and
• for every i there is some (σ, d) ∈ Ai such that i is either the minimal or the maximal
index of a set containing (σ, d).

The latter two conditions ensure that the number of sets in a profile is at most 10|Σ|. A pro-
file is a top profile, if none of its sets contains any pair (σ, (↑, S)) or (σ, (↑,¬S)). Analogously
a bottom profile is a profile that does not contain any pairs (σ, (↓, S)) or (σ, (↓,¬S)).

Let, for the following, a finite labeled point set P ⊆ N2 be fixed. Let P ′ be the set of
all points p from P for which p.x is minimal or maximal within all points with label p.l in
row p.y. More precisely let

P ′ ={p ∈ P | ¬∃q ∈ P : q.l = p.l, q.y = p.y, q.x < p.x}

∪ {p ∈ P | ¬∃q ∈ P : q.l = p.l, q.y = p.y, q.x > p.x}

As P ′ has, for each label σ, at most two σ-labeled points per row, it has at most 2|Σ| points
per row altogether.

We describe next, how the profile Pro(r) is constructed, for every horizontal row r

of P ′. Let thus, a row r be fixed in the following. For each σ ∈ Σ and every profile

12 T. SCHWENTICK AND T. ZEUME

r

a

ac b

c b

c
a

c
a

b

d

a

c

c
c

a

c

a b

a b

a

Figure 2: Line with profile (c, ↑)(c, ↓){(a, ↓), (c, (↓, S))}(c, ·)(a, (↑, S))(a, ·)(b, (↑, S)) (a, ↑
)(c, ↓)(b, ·)(b, ↓)(b, ↓){(b, ↑), (d, ↓)}(a, ↓)(a, ↑). Dotted vertical lines indicate points
contributing to the profiles. The dashed horizontal lines indicate the predecessor
and successor line, respectively. Singleton sets in profiles are written without
braces. Profile constraints (↑,¬S) and (↓,¬S) are abbreviated as ↑ and ↓, respec-
tively. Thus, e.g., the first pair (c, ↑) abbreviates the full notation {(c, (↑,¬S))}.

constraint d ∈ DP , we choose a point q = q(σ, d,min, r) ∈ P ′ with minimal value q.x such
that d(r, q.y) = d and a point q = q(σ, d,max, r) ∈ P ′ with maximal value q.x such that
d(r, q.y) = d. Note that q(σ, d,min, r) and q(σ, d,max, r) can be equal and do not necessarily
exist for every σ, d and r.

Let A′
r,1, . . . , A

′
r,kr

be the equivalence classes of points of the form q = q(σ, d,min, r)

and q = q(σ, d,max, r) with arbitrary σ and d and the same value q.x, ordered by q.x. For
every i ≤ kr, we denote by A′

r,i.x the value of the x-coordinate of the points in A′
r,i.

Even though the classes in A′
r,1, . . . , A

′
r,kr

contain all points that are relevant for the
validity of the given constraints, it might be necessary to add some more points for technical
reasons, as follows.

For each i ≤ kr, let the set A′′
r,i be defined as follows.

A′′
r,i = A′

r,i ∪ {q ∈ P
′ | ∀s(r < s ≤ q.y → ∃j A′

s,j.x = A′
r,i.x)}

∪ {q ∈ P ′ | ∀s(r > s ≥ q.y → ∃j A′
s,j.x = A′

r,i.x)}

For each i ≤ kr we define the set Ar,i as

Ar,i = {(q.l, d(r, q)) | q ∈ A
′′
r,i}

and, finally, we let
Pro(r) = Ar,1, . . . , Ar,kr

For every i ≤ kr, we call A′
r,i.x the x-value of position i in Pro(r).

It is easy to see that Pro(r) is indeed a profile as defined above. We refer to Figure 2
for an example profile extraction.

Let ymax be the maximal y-value of a point in P ′ and ymin be the minimal y-value
of a point in P ′. The profile sequence PSeq(P) of P is the sequence Pro(ymin)Pro(ymin +
1) . . .Pro(ymax).

Valid Profiles. Next we define some necessary conditions that a profile of a horizontal line
in a solution of an 2LPP-instance L must fulfill.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 13

Let A = A1 . . . Ak be a profile. We say that a pair (σ, ·) ∈ Ai fulfills a directional
constraint (◦d, sd) ∈ D×{S,¬S} with respect to a pair (τ, c) ∈ Aj , if the following conditions
are satisfied, where c = (◦c, sc) or c = ·:

• (Horizontal Conditions)
− If ◦d ∈ {տ,←,ւ} then i > j.
− If ◦d ∈ {ր,→,ց} then i < j.
− If ◦d ∈ {←,→} then c = ·.
− If ◦d 6∈ {←,→} then c 6= · and sd = sc.
• (Vertical Conditions)
− If ◦d ∈ {տ, ↑,ր} then ◦c =↑.
− If ◦d ∈ {ւ, ↓,ց} then ◦c =↓.
− If ◦d ∈ {↑, ↓} then i = j.

A pair (σ, ·) ∈ Ai fulfills an inequality constraint 6= with respect to a pair (τ, c) ∈ Aj, if i 6= j

or c 6= ·.
A profile A = A1 . . . Ak is valid with respect to an existential constraint (σ,E) if, for

every i and every (σ, ·) ∈ Ai, there is some (τ, d) ∈ E and some (τ, c) in some Aj such that
(σ, ·) fulfills d with respect to (τ, c).

The profile A is valid with respect to a universal constraint (σ, τ, d) if there do not exist
any i, j and pairs (σ, ·) ∈ Ai and (τ, c) ∈ Aj such that (σ, ·) fulfills d with respect to (τ, c).

A profile A is L-valid if it is valid with respect to all (existential and universal) con-
straints from L.

Example 3.7. Let L be an 2LPP instance and A = A1 . . . Ak a profile. If L contains an
∃-constraint (σ, {(τ1, (տ,¬S)), (τ2, 6=), (τ3, (ց, S))}) then for any (σ, ·) in Ai there has to
be

• an occurrence (τ1, (↑,¬S)) in Aj for some j < i,
• an occurrence of a pair (τ2, c) in Aj with c 6= · if j = i, or
• an occurrence (τ3, (↓, S)) in Al for some l > i.

If L contains a ∀-constraint (σ, τ, (ւ, S)) then there should be no i > j with (σ, ·) ∈ Ai and
(τ, (↓, S)) ∈ Aj.

Consistent Pairs of Profiles. Let A = A1 . . . Ak and B = B1 . . . Bm be profiles. The pair
(A,B) is said to be consistent, if there is a function

s :
(

{a} × {1, . . . , k} ∪ {b} × {1, . . . ,m}
)

→ Q

that is strictly monotone in its second parameter and fulfills the following conditions (C1)
and (C2) for every σ ∈ Σ.

(C1) (a) If for some i, Ai contains (σ, (↑, S)) then there is some j, such that Bj contains
(σ, ·) and s(a, i) = s(b, j).

(b) If for some j, Bj contains (σ, ·) then there is some i such that Ai contains (σ, (↑, S))
and s(a, i) = s(b, j).

(C2) (a) If for some i, Ai contains (σ, (↑,¬S)), there is some j such that Bj contains
(σ, (↑, S)) or (σ, (↑,¬S)) and s(a, i) = s(b, j).

(b) If for some j, Bj contains (σ, (↑, S)) or (σ, (↑,¬S)) and j is minimal or maximal
with this property then there is some i with s(a, i) = s(b, j) such that Ai contains
(σ, (↑,¬S)).

14 T. SCHWENTICK AND T. ZEUME

(c) If for some j, Bj contains (σ, (↑, S)) or (σ, (↑,¬S)) and there is some i with
s(a, i) = s(b, j) then (σ, (↑,¬S)) ∈ Ai.

The analogous conditions hold with respect to occurrences of (σ, (↓, S)) and (σ, (↓,¬S))
in B.

Intuitively, s “synchronizes” points in A with points in B by mapping them to the same
“x-coordinate”. The conditions (C1) ensure that successive roles fit together with respect
to profile constraints of the form (↑, S) and (↓, S). More precisely, if (σ, (↑, S)) occurs in A
then B should have a σ-point at the same vertical position. The conditions of (C2) ensure
consistency for profile constraints of the form (↑,¬S) and (↓,¬S). (C2a) ensures that the
requirement that there is a σ-point above a certain position of A is reflected in B. (C2b)
ensures that A contains the full information about minimal and maximal points above B.
Finally, (C2c) guarantees that if a point u for A is synchronized with a point v for B then
its profile carries the full information about the points above v.

If s(a, i) = s(b, j) we say that position i of A and position j of B are synchronized.
We additionally require for s that unless requested by (C1) or (C2) (or their downward
counterparts) s(a, i) 6= s(b, j) holds for every i and j. This requirement guarantees that,
even though s is not uniquely determined, the set of pairs of synchronized positions is
unique.

A sequence S = P1 . . . PN of profiles is called consistent, if P1 is a bottom profile, PN

is a top profile and (Pi, Pi+1) is consistent for every i ∈ {1, . . . , N − 1}.
If S = P1 . . . PN is a consistent sequence of profiles, we say that a position k of Pi is

connected to position ℓ of Pj , where j > i if

(1) j = i+ 1 and the two positions are synchronized or
(2) position k in Pi is synchronized with some position in Pi+1 which in turn is connected

to position ℓ in Pj.

The following proposition characterizes the 2LPP-instances with finite solutions in
terms of existence of consistent sequences of valid profiles and is key to our algorithm.

Proposition 3.8. Let L be an instance of 2LPP. Then L has a finite solution if and only
if there is a finite consistent sequence of L-valid profiles.

Proof. Let P be a model of L. We claim that PSeq(P) = P1 . . . PN is a consistent sequence
of L-valid profiles. Let P ′ be defined as in the definition of PSeq(P). To this end, let k ≤ N
be arbitrarily chosen such that P = Pk = A1, . . . , Aℓ, for some ℓ. We show that P is valid
with respect to all existential and universal constraints from L.

Let first (σ,E) be an ∃-constraint from L and let (σ, ·) ∈ Ai, for some i ≤ ℓ. Let r be a
horizontal line of P that corresponds to Pk and let p be the point on r that corresponds to
(σ, ·) ∈ Ai. As P is a solution for L there is some (τ, d) ∈ E and a point q ∈ P with label
τ such that (p, q) satisfies d. We first consider the case that d is a directional constraint
(◦d, sd).

• If ◦d =ր then q is to the northeast of p, in particular, p.y < q.y and p.x < q.x. Let q′

be q(τ, (↑, sd),max, r). By definition of q(τ, (↑, sd),max, r), it holds p.x < q.x ≤ q′.x and
p.y+1 < q′.y in case sd = ¬S (in case, sd = S, we get p.y+1 = q′.y instead). Therefore,
(τ, (↑, sd)) occurs in Aj , for some j > i. Clearly, (σ, ·) and (τ, (↑, sd)) are consistent with
respect to d. Analogous arguments can be applied if ◦d ∈ {տ,ւ,ց}.
• If ◦d =→ then q is to the right (east) of p, in particular, it holds p.y = q.y and p.x < q.x.
Without loss of generality, q = q(τ, ·,max, r). By definition of q(τ, ·,max, r), it holds

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 15

p.y = q.y and p.x < q.x. Therefore, (τ, ·) occurs in Aj , for some j > i. Clearly, (σ, ·) and
(τ, ·) are consistent with respect to d. An analogous argument can be applied if ◦d =←.

If d is an inequality constraint, then q 6= p but the relative position of p and q can be
arbitrary. If p.y < q.y we can argue as above with q′ = q(τ, (↑,¬S),max, r) or q′ = q(τ, (↑
, S),max, r) (if the former does not exist). Note however, that the corresponding pair
(τ, (↑, S)) or (τ, (↑,¬S)) could be in Ai. However, as the second component of the pair is
not · this is sufficient. If p.y > q.y we can argue analogously. If p.y = q.y and p.x < q.x

we can argue as above in the case ◦d =→. Likewise, we can argue as above in the case
◦d =← if p.y = q.y and p.x > q.x. Altogether we can conclude that P is valid with respect
to (σ,E).

Let now (σ, τ, d) be a ∀-constraint from L and let (σ, ·) ∈ Ai, for some i, p = q(σ, ·,m, r)
for some m ∈ {min,max} the corresponding point and (τ, c) ∈ Aj for some j. Towards a
contradiction let us now assume that (σ, ·) ∈ Ai and (τ, c) ∈ Aj are consistent with respect
to d = (◦d, sd). We distinguish cases based on ◦d.

• We first consider the case ◦d =ր. Thus, we can conclude that i < j, c 6= ·. Hence
c = (◦c, sc) for some ◦c, sc and we can further conclude sd = sc and ◦c =↑. Let q ∈ P

′ be
the point corresponding to (τ, c) ∈ Aj. Clearly, q.l = τ and (p, q) satisfy d and therefore
P is not a solution for L, the desired contradiction. For ◦d ∈ {տ,ւ,ց} we can argue
analogously.
• We next consider the case ◦d =→. Thus, we can conclude that i < j and c = ·. But
then it is easy to see that p → q, where q is the point corresponding to (τ, ·) in Aj and
therefore P is not a solution for L, the desired contradiction. For ◦d =← we can argue
analogously.
• Finally, we consider the case ◦d =↑. Thus, we can conclude c 6= · and therefore c = (◦c, sc)
for some ◦c, sc. Furthermore, ◦c =↑, sc = sd and i = j. But then it is easy to see that
p ↑ q, where q is the point corresponding to (τ, (↑, sc)) in Aj and therefore P is not a
solution for L, the desired contradiction. For ◦d =↓ we can argue analogously.

Altogether we can conclude that P is valid with respect to (σ, τ, d) and therefore P and all
profiles in PSeq(P) are L-valid.

We continue by showing that PSeq(P) is consistent. Clearly, P1 is a bottom profile and
PN is a top profile as there are no points in P ′ below the row corresponding to P1 or above
the row corresponding to PN . It thus remains to be shown that, for every k < N , Pk and
Pk+1 are consistent.

Let Pk = A1 . . . Aℓ and Pk+1 = B1 . . . Bm be profiles and let r and r+1 be the horizontal
rows of Pk and Pk+1, respectively.

We define the synchronizing function

s :
(

{a} × {1, . . . , ℓ} ∪ {b} × {1, . . . ,m}
)

→ Q

as follows. For u ≤ ℓ, we let s(a, u) be the x-value of Au and for v ≤ m, we let s(b, v) be
the x-value of Bv. We need to show conditions (C1) and (C2).

Towards (C1a), let (σ, (↑, S)) ∈ Ai, for some i. By construction of Pk, there is a σ-
labeled point q ∈ P ′ with q.y = r + 1 and q.x is the x-value of position i in Pk. Therefore,
there is a j such that (σ, ·) ∈ Bj and s(a, i) = s(b, j). Towards (C1b), let (σ, ·) ∈ Bj and
let q ∈ P ′ be its corresponding point. As there are at most two σ-labeled points on r + 1,
q = (σ, (↑, S),m, r), for some m ∈ {min,max}. Therefore, by definition of Pro(r), there is
i such that (σ, (↑, S)) ∈ Ai and s(a, i) = s(b, j). Analogously, for (σ, (↓, S)) ∈ Ai.

16 T. SCHWENTICK AND T. ZEUME

Towards (C2a), let (σ, (↑,¬S)) ∈ Ai, for some i. Let q = q(σ, (↑,¬S),m, r) be the
corresponding point in P ′, for some m ∈ {min,max}. By definition of Pro(r), either q =
q(σ, (↑,¬S),m, r + 1) or q = q(σ, (↑, S),m, r + 1). In either case (C2a) holds, by definition
of Pro(r + 1).

In order to show (C2b), let j be minimal such that Bj contains (σ, (↑, S)) or (σ, (↑,¬S)).
Therefore, the point q corresponding to Bj is a leftmost point above r + 1 with label σ.
Thus, q = q(σ, (↑,¬S),min, r) and there is some i with s(a, i) = s(b, j) and q induces a pair
(σ, (↑,¬S)) in Ai.

Finally, (C2c) is guaranteed by the definition of Pro(r).
Altogether, we can conclude that PSeq(P) is consistent.
This concludes the first part of the proof that is, if L has a finite solution then there is

a finite consistent sequence of L-valid profiles.
Now, let S = P1 . . . PN be a consistent sequence of L-valid profiles. There are sets Ak,i

and numbers mk such that for each k ≤ 1, Pk = Ak,1, . . . , Ak,mk
.

We construct a finite set P of labeled points with PSeq(P) = S and prove that P is a
model of L. Intuitively, the idea is that for every occurrence of (σ, ·) in profile Pi the ith
line of P contains a point p labeled with σ. That is, the points in P only have y-values from
{1, . . . , N}. During the construction of P we will use rational, possibly non-integer values
for x-coordinates. We note that if there is a finite solution for L with rational x-values, then
there is also a finite solution for L with natural x-values which can be obtained by replacing,
for every k, the k-th smallest x-value by the number k. Clearly, this transformation does
not affect the successor relation on the y-values.

More formally, we assign to every set of a profile a point in Q × N. To this end, we
define, for every k ∈ {1, . . . , n}, a function πk : {1, . . . ,mk} → Q with the interpretation
that the point (πk(i), k) is assigned to the set Ak,i. Whenever a set Ak,i contains a pair
(σ, ·) we add a point p to P with p.y = k, p.x = πk(i) and p.l = σ. Therefore, P is defined
as soon as the functions πk are defined.

The function π1 for the first row is defined by π1(i) = i, for every i ≤ m1. Let us now
assume that the function π1, . . . , πk−1 are already defined. Since (Pk−1, Pk) is consistent
there is a synchronizing function s for them. For every pair (i, j) such that Ak−1,i and
Ak,j are synchronized by s we define πk(j) = πk−1(i). Let j0, j1 be such that πk(j0) and
πk(j1) are already defined by the previous step, and πk(j) is not defined for every j with
j0 < j < j1. We define πk(j) for all j, j0 < j < j1 by picking values such that

• πk(j0) < πk(j) < πk(j
′) < πk(j1), for every pair j, j′ with j0 < j < j′ < j1, and

• for every j, j0 < j < j1, πk(j) is not in the range of πℓ for any ℓ < k.

As the interval (πk(j0), πk(j1)) contains infinitely many points from Q such values can be
found. We note that this choice of x-values ensures that two points can be on the same
vertical only if they are connected. This concludes the construction of P.

It remains to prove that P is indeed a solution for L.
To this end, we first prove the following claim.

Claim 1. Let k ≤ N and i ≤ mk.

(a) There is a τ -labeled point q ∈ P with q.x = πk(i), q.y > k + 1 and q.l = τ if and only
if (τ, (↑,¬S) ∈ Ak,i.

(b) There is a τ -labeled point q ∈ P with q.x = πk(i), q.y = k + 1 and q.l = τ if and only
if (τ, (↑, S) ∈ Ak,i.

Furthermore, the corresponding statement with ↓ in place of ↑ hold as well.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 17

Proof (of Claim 1). Let us first assume that (τ, (↑,¬S)) ∈ Ak,i. By consistency of the
profiles and induction it follows that for some ℓ > k + 1 and j ≤ mℓ, (τ, ·) ∈ Aℓ,j and
position j of Pℓ is connected to position i of Pk. By definition of π and induction we can
conclude that πk(i) = πℓ(j) and therefore, by construction of P from π, such a point q
indeed exists. If (τ, (↑, S)) ∈ Ak,i an analogous argument yields (τ, ·) ∈ Ak+1,j and again a
point q with the desired properties. Thus, we can conclude that the “if”-statements in (a)
and (b) hold. The corresponding conclusion for ↓ in place of ↑ naturally also holds.

Let us now assume that q is as in the statement of the claim. By construction of P there
must be ℓ and j such that (τ, ·) ∈ Aℓ,j, ℓ > k+1, and πℓ(j) = πk(i). By definition of π and
induction it follows that position j of Pℓ and position i of Pk are connected. By consistency
condition (C1) and the definition of π we can conclude that (τ, (↑, S)) ∈ Aℓ−1,j′, for some
j′ ≤ mℓ−1 with πℓ−1(j

′) = πℓ(j). This yields the “only if”-part of (b). By consistency
condition (C2), definition of π and induction we can conclude that for every u < ℓ−1 there
is some v ≤ mu such that (τ, (↑,¬S)) ∈ Au,v and πu(v) = πℓ(j). Thus, in particular, either
k = ℓ − 1 and (τ, (↑, S)) ∈ Ak,i or k < ℓ − 1 and (τ, (↑,¬S)) ∈ Ak,i. This yields the “only
if”-part of (a). The corresponding conclusion for ↓ in place of ↑ holds again. This completes
the proof of Claim 1.

Now we can show that P is a solution for L.
Let first (σ,E) be an ∃-constraint from L and p ∈ P with p.l = σ. Let k be the

number of the corresponding profile and i the position of the corresponding set in Pk. By
construction of P, (σ, ·) ∈ Ak,i. As S is L-valid, there is some (τ, d) ∈ E, some j ≤ mk and
some (τ, c) ∈ Ak,j such that (σ, ·) and (τ, c) are consistent with respect to d.

• Let us first assume that d = (ր, sd), for some sd. From statements (a) and (b) of Claim
1 it follows that there exists a τ -labeled point q corresponding to (τ, c) in Ak,j such that
(p, q) satisfies d. For directions տ,ւ,ց we can argue analogously.
• Let us now assume that d = (→,¬S). By validity, c = · and thus there is a τ -labeled
point q with q.y = k and q.x = πk(j) > p.x. Likewise, for ←.
• Let finally d = 6=. From validity it follows that i 6= j or c 6= ·. Similarly as in the
two previous cases, we can conclude that there is a τ -labeled point q in the row of p or
somewhere else, possibly on the same vertical line as p but different from p.

Let now (σ, τ, d) be a ∀-constraint. For the sake of a contradiction, let us assume that
there are p and q that do not satisfy this constraint. By definition this means that p.l = σ,
q.l = τ and (p, q) satisfies d. Let Ak,i and Aℓ,j be the sets from which p and q were obtained.

• Let us first assume that d = (ր, S). Thus, ℓ = k + 1. As (τ, ·) ∈ Aℓ,j and q.x > p.x,
(C1) implies that (τ, (↑, S)) ∈ Ak,j′ for some j′ > i contradicting validity. An analogous
argument applies to the directions տ,ւ,ց in place of ր.
• Let us next assume that d = (ր,¬S). Thus, ℓ > k + 1. Using consistency it can be
shown by induction that, for every u < ℓ− 1 there is some v such that (τ, (↑,¬S)) ∈ Au,v

and πu(v) ≥ πℓ(j). In particular, there is some j′ such that (τ, (↑,¬S)) ∈ Ak,j′ and
πk(j

′) ≥ πℓ(j) > πk(i), contradicting validity. An analogous argument applies to the
directions տ,ւ,ց in place of ր.
• Let us next assume that d = (→,¬S). Thus, ℓ = k and (τ, ·) ∈ Ak,j, an immediate
contradiction to validity. Likewise for ← in place of →.
• Let us finally assume that d = (↑, sd), for some sd. By Claim 1 it follows that (τ, (↑, sd)) ∈
Ak,i, an immediate contradiction to validity.

18 T. SCHWENTICK AND T. ZEUME

As all possible cases yield a contradiction we can conclude that violations of ∀-constraints
do not occur. Altogether we have shown that P is indeed a solution for L.

It should be noted that the proof implicitly shows that if an 2LPP-problem has a finite
solution then it has a solution with at most 2|Σ| points per horizontal line.

Now we are ready to complete the proof of Proposition 3.6.
Proof (of Proposition 3.6). Proposition 3.8 allows for testing satisfiability of a labeled
point problem L by checking whether there is a consistent sequence of L-valid profiles. We
note that there is only an exponential numberM of profiles, thus if there is a such sequence
of profiles, there is also a sequence of length ≤M .

Whether such a sequence exists can be tested by a non-deterministic algorithm with
polynomial space. The algorithm guesses a sequence P1, . . . , PN of profiles, for someN ≤M .
It checks that every profile is L-valid and that the sequence is consistent. To this end, it
only needs to store two profiles Pk, Pk+1 at any time. Clearly, L-validity of a given profile
can be tested in polynomial time, likewise consistency of two profiles Pk, Pk+1 and whether
P1 is a bottom profile and PN a top profile.

By Savitch’s Theorem the problem can therefore be solved in polynomial space.

The proof of Theorem 3.1 can now be given by a simple combination of the results in
this section.
Proof (of the upper bound of Theorem 3.1). Let ϕ be a FO

2(≤1, [-2, S2])-sentence.
By Proposition 3.4, a semi-positive FO

2(D−, Iy)-sentence ϕ
′ that is equivalent to ϕ with

respect to finite satisfiability can be computed in polynomial time. From ϕ′ an equivalent
exponential size labeled point problem L can be obtained, by Proposition 3.5. By Propo-
sition 3.6, finite satisfiability of L can be tested in polynomial space. Hence, testing finite
satisfiability of a FO

2(≤,1 , [-2, S2])-sentence can be done in exponential space.

Already in Section 2 we saw a strong connection between finite ordered structures and
data words. Hence the following theorem follows straightforwardly from Theorem 3.1.

Theorem 3.9. Finite satisfiability for FO2(Σ,≤1 [-2, S2]) is in EXPSPACE.

4. Lower Bounds for Two-variable Logic on Ordered Structures

4.1. One Linear Order and one Total Preorder. The following result shows that the
upper bound of Theorem 3.1 is sharp. We recall that FO

2(≤1,-2) is an abbreviation for
FO

2(FinOrd(≤1,-2)).

Theorem 4.1. Finite satisfiability for FO2(≤1,-2) is EXPSPACE-hard.

Proof. In the following, we use the notation [i, j] to denote the set of natural numbers
between i and j.

The proof of the theorem is by reduction from the EXPSPACE-complete problem
ExpCorridorTiling. An input to ExpCorridorTiling is a tuple I = (T,H, V, α, ω, n), where

• T is the set of allowed tiles,
• V,H ⊆ T 2 are the sets of horizontal and vertical constraints,
• α, ω ∈ T are tiles for the bottom row and the top row, respectively, and
• n is a natural number, given in binary.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 19

A valid tiling for I is a mapping λ : [1, n] × [1,m] → T , for some m ≥ 2 such that the
following constraints are satisfied:

(1) the bottom row starts with α, that is, λ(1, 1) = α;
(2) the top row ends with ω, that is, λ(n,m) = ω;
(3) all vertical constraints are satisfied, that is, for every i ≤ n and every j < m, (λ(i, j), λ(i, j+

1)) ∈ V ; and,
(4) all horizontal constraints are satisfied, that is, for every i < n and every j ≤ m,

(λ(i, j), λ(i + 1, j)) ∈ H.

Deciding, whether an instance I for ExpCorridorTiling has a valid tiling is EXPSPACE-
complete (see, e.g., [Boa97]).

We first describe how tilings for I can be encoded as structures with a linear order
≤1, a total preorder -2 and some unary relations. Then we describe how an FO

2(≤1

,-2)-sentence ϕI can be constructed in polynomial time from I that describes necessary
conditions for structures that encode a valid tiling. Finally, we show that from a model of
ϕI a valid tiling for I can be constructed, thus establishing that I 7→ ϕI is a reduction from
ExpCorridorTiling to finite satisfiability of FO2(≤1,-2).

Let I = (T,H, V, α, ω, n) be an ExpCorridorTiling-instance and let λ : [1, n]×[1,m] → T

be a valid tiling for I. For simplicity we assume that n = 2k, for some integer k. We define
a structure M(λ) as follows. The universe P of M(λ) consists of points from N × N. Each
position (i, j) of the tiling is represented in M(λ) by the two elements

• p−(i, j) = (2jn + i, j) and
• p+(i, j) = ((2j + 3)n + i, j).

It should be noted that x 6= x′ for any two elements (x, y) 6= (x′, y′) from P . Therefore,
we can define a linear order ≤1 on P by

(x, y) ≤1 (x
′, y′) ⇔def x ≤ x

′.

We define the total preorder -2 by

(x, y) -2 (x
′, y′) ⇔def y ≤ y

′.

Thus, the equivalence classes of -2 are just maximal sets of points of P on the same
horizontal line.

Furthermore, M(λ) has the set C ∪ S ∪ {R−, R+} of unary relations, where

• the relations from C = {C1, . . . , Ck} encode the column number of elements via Cp =
{(i, j) | the p-th bit of the binary representation of i is 1};
• the relations from S = {St | t ∈ T} encode the actual tiling via St = {p−(i, j), p+(i, j) |
λ(i, j) = t}; and
• R− contains all elements of the form p−(i, j) and R+ all elements of the form p+(i, j).
We call the former negative and the latter positive elements.

See Figure 3 for an outline of the construction.
Next, we describe the construction of ϕI . As we keep the intuition of the previous

section that elements of a structure with a linear order ≤1 and a total preorder -2 can be
considered as points in the plane, we will refer to the elements of such a structure as points
and to the equivalence classes with respect to ∼2 as horizontal lines or simply lines5.

Let ϕgeneral be a formula that expresses that

• every point p is in exactly one of R+ and R−, and

5We avoid the term row for horizontal lines to avoid confusion with the rows of a tiling.

20 T. SCHWENTICK AND T. ZEUME

r1, R−

r2, R−

r3, R−

r4, R−

r5, R−

r1, R+

r2, R+

r3, R+

r4, R+

r5, R+

Figure 3: Mapping of a valid tiling with rows r1, . . . , r5 into a model of ϕ.

• for every point p there is exactly one t such that p ∈ St. In the following, we refer to this
t by t(p).

In the following, we associate with every point p a column number c(p) that is the
number whose bit string has a 1 at position i if and only if p ∈ Ci (where we count the least
significant bit as position 1).

We use a formula ψ+1(x, y) to express that the column number of y is the column
number of x plus one:

ψ+1(x, y) =
k
∨

i=1

(

¬Ci(x) ∧ Ci(y)∧

i−1
∧

j=1

Cj(x) ∧ ¬Cj(y)∧

k
∧

j=i+1

Cj(x)↔ Cj(y)
)

The next formula ϕline expresses that the points of every horizontal line are as intended.
More precisely, ϕline expresses that for every point p

• there is a point q ∈ R− with column number 0 in the same line such that q ≤1 p;
• there is a point q ∈ R+ with column number 0 in the same line such that (q ≤1 p ⇐⇒
p ∈ R+);
• there is a point q in the same line with c(q) = c(p), t(q) = t(p) and (p ∈ R− ⇐⇒ q ∈ R+);
• unless c(p) = n − 1, there is a point q in the same line with c(p) + 1 = c(q), p <1 q,
(p ∈ R− ⇐⇒ q ∈ R−) and (t(p), t(q)) ∈ H; and
• there is no point q 6= p in the same line with the same column number and (p ∈ R− ⇐⇒
q ∈ R−).

The last formula ϕnext-line expresses that for every line l which is not a top line, there is
another line l′ such that the R−-part of l

′ is to the northwest of the R+-part of l and such
that the points in l and l′ are compatible with respect to V . That is, ϕnext-line expresses
that

• for every point p ∈ R+ with c(p) = 0 there is a point q such that
• q is in the same line as p, c(q) = n− 1 and t(q) = ω, or
• q <1 p, p ≺2 q and c(q) = n− 1; and
• for every point p ∈ R+ and every point q ∈ R− with q <1 p, p ≺2 q and c(q) = c(p) it
holds (t(p), t(q)) ∈ V .

The formula ϕstart expresses that the smallest point with respect to ≤1 has the tile α.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 21

α

ω

−

−

−

−

−

+

+

+

+

+

Figure 4: A sketch of the extraction of the rows of a valid tiling from a model of formula
ϕ. The dotted lines indicate rows represented by (half) a line. The dashed lines
indicate the extracted tiling.

Finally,
ϕ =def ϕgeneral ∧ ϕstart ∧ ϕline ∧ ϕnext-line.

It is easy to check that M(λ) |= ϕ if λ is a valid tiling.
It remains to show that from every finite model M of ϕ we can construct a valid tiling

λM for I. Let thus M be a finite model of ϕ. The fact that M |= ϕgeneral guarantees that
every point represents exactly one tile and is in either R− or R+. From M |= ϕline we can
conclude that

• every class of ∼2 consists of exactly 2n points, one for each possible combination of column
number and being in R− or R+;
• points with adjacent column numbers have tiles that are compatible with respect to H;
and
• every R−-point has the same tile as the R+-point with the same column number.

Thus, in particular, every class of ∼2 represents a horizontally valid row.
From M |= ϕstart it follows that there is a line that represents a valid bottom row of a

tiling. We finally show that, for every line l of M it holds that l represents a valid top row
of a tiling or there is another line l′ above l that represents a tiling row that is consistent
with the tiling row of l with respect to V .

It should be noted that we can not guarantee by an FO
2-formula that for every point

p in R+ and column number 0 there is exactly one (full or partial) line in northwestern
direction. However, the first part of ϕnext-line guarantees that there is at least one line l′

such that all R−-points of l
′ are in northwestern direction of p (and therefore in northwestern

direction of all R+-points in the line of p). Thus, the second part of ϕnext-line guarantees
that the tiling row represented by l′ is compatible with the row represented by p’s line.

Therefore, M has a line encoding a valid bottom row of a tiling and every line either
encodes a valid top row or has a line above that encodes a compatible row with respect to
V . As M is finite, we can conclude that there exists a valid tiling for I. The extraction of
a valid tiling from a model of ϕ is illustrated in Figure 4.

4.2. Undecidable Extensions. Next, we show that the approach of Theorem 3.1 fails
if the linear order is replaced by a (second) total preorder. It can be concluded that
Proposition 3.6 does not hold any more if we allow vertical directions in ∃-constraints of
2LPP.

Theorem 4.2. Finite satisfiability for FO2(-1,-2) is undecidable.

22 T. SCHWENTICK AND T. ZEUME

1 0 1 1
1 1 1 1 1 1 0

0 0 1

Figure 5: How the valid sequences u := 01|1110|1 and v := 0|111|101 are represented in a
model for the FO

2(-1,-2)-formula ϕ. Columns represent equivalence classes of
-1 and rows represent equivalence classes of -2. Letters from v are underlined.

Proof. Let Σ = {0, 1}. We give a reduction from the Post Correspondence Problem PCP
to finite satisfiability for FO2(-1,-2), where PCP is defined as follows

Problem: PCP

Input: A sequence (u1, v1), . . . , (uk, vk), where every ui, vi ∈ {0, 1}
∗.

Question: Is there a non-empty, finite sequence ~i = i1, . . . , im such that
ui1 . . . uim = vi1 . . . vim?

Let I = (u1, v1), . . . , (uk, vk) be an instance of the PCP.
We first describe how solutions for I can be encoded as structures with two total

preorders -1,-2 and some unary relations. Then we describe how an FO
2(-1,-2)-sentence

ϕI can be constructed from I that describes properties that a model that encodes a solution
to I should fulfill. Finally, we show that from a model of ϕI a solution to I can be extracted,
thus establishing that I 7→ ϕI is a reduction from PCP to finite satisfiability of FO2(-1,-2)-
sentences.

For the first step, let~i = i1, . . . , im be a solution to I with u := ui1 . . . uim = vi1 . . . vim =: v.
The universe of the intended model consists of all positions of u and all positions of v and
therefore has |u|+ |v| = 2|u| elements. We refer to the i-th position of u and v by u[i] and
v[i], respectively.6

The equivalence classes of -1 are simply the sets Si = {u[i], v[i]}, for i ≤ |u|, and, for
all i, j ≤ |u|, if i < j then Si -1 Sj .

The total preorder -2 has one equivalence class Cj for every j ≤ m containing all
positions corresponding to uij in u and vij in v. Again, if i < j then Ci -2 Cj for all
i, j ≤ m.

The construction of �1 and �2 is illustrated in Figure 5.
Furthermore, the intended model uses unary relation symbols from {A0, A1}∪W ∪P ∪

{U, V }, where

• W = {W1, . . . ,Wk}, and
• P = {P1, . . . , Pℓ}, where ℓ is the length of the longest word in {u1, . . . , uk, v1, . . . , vk}.

The relation U consists of all positions of u and V consists of all positions of v. Every
position with symbol 0 is in A0 and every position with symbol 1 is in A1. Furthermore, if
in u = ui1 . . . uim, position i of u corresponds to the p-th position of uik and ik = j then u[i]
is put into the relationsWj and Pp. Likewise, if in v = vi1 . . . vim , position i of v corresponds
to the p-th position of vik and ik = j then v[i] is put into the relations Wj and Pp.

This completes the description of the construction of the intended model M(~i).

6It should be stressed that u[i] does not denote a symbol but a position in a string.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 23

Next, we give some necessary conditions that M(~i) has to fulfill.
It is easy to construct an FO

2-formula ϕsymbols expressing that

• in every equivalence class of -1, there is exactly one element labeled from U and one
element from V , and
• the elements of every equivalence class of -1 coincide on the predicates A0 and A1.

It should be noted here that in general it can not be expressed by any FO
2 formula that all

classes of a given equivalence relation have size two. However, in our setting it is sufficient
to express that no two different elements from U are ∼1-equivalent and likewise for V .

It is also not hard to construct an FO
2-formula ϕwords expressing that for every equiv-

alence class E of -2, there is some j such that

• all elements of E are in Wj,
• for each p ≤ |uj | there is exactly one element e in E ∩ Pp ∩ U and e is in Aσ if and only
if uj [p] is labeled with σ, and
• for each p ≤ |vj | there is exactly one element e in E ∩ Pp ∩ V and e is in Aσ if and only
if uj [p] is labeled with σ.

Finally, an FO
2-formula ϕorder can be constructed expressing that the two total pre-

orders are consistent with each other, that is,

• for all elements e1, e2 ∈ U , if e1 ≺2 e2, then e1 ≺1 e2, and
• for all elements e1, e2 ∈ U , if e1 ≺1 e2 then
− either e1 ≺2 e2
− or e1 ∼2 e2 and e1 ∈ Pk, e2 ∈ Pℓ, for some k < ℓ.

Likewise for v-positions.
We let ϕI = ϕsymbols ∧ ϕwords ∧ ϕorder. Clearly, if ~i is a solution for I, then M(~i) |= ϕI .
It remains to show that I has a solution if there is a structure M with M |= ϕI . To

this end, let M be a model for ϕI . As M |= ϕwords, we can associate with every equivalence
class E of -2 an index i(E) such that its positions are in Wi(E). Thus, the linear order

E1 ≺2 · · · ≺2 Em induces a sequence ~i = i1, . . . , im, via ij := i(Ej). We show now that ~i is
a solution to I.

Let a 6= b two elements from U . Formula ϕsymbols ensures that they are not in the same
∼1-class. Thus, ≺1 induces a linear order on the U -positions and therefore these positions
naturally constitute a string u. Likewise, the V -positions constitute a string v. Formula
ϕorder ensures that a ≺1 b if a ≺2 b or if a ∼2 b and there are k < l with a ∈ Pk and
b ∈ Pl. Thus, u = ui1 · · · uim and, likewise, v = vi1 · · · vim . Finally, ϕsymbols guarantees that
|u| = |v| and, for every i, u[i] and v[i] carry the same symbol. This completes the proof
of the correctness of the reduction. Clearly, I 7→ ϕI can be computed (even in polynomial
time).

Next we prove undecidability in case one total preorder is replaced by two linear orders
in the previous theorem.

Theorem 4.3. Finite satisfiability for FO2(≤1,≤2,-3) is undecidable.

Proof. As in the previous proof we reduce from PCP. However, given a PCP-instance I we
first translate it into a modified instance I ′ over the alphabet Σ̂ = {0, 1, 0′, 1′}. The idea is
to replace every symbol σ in I by σσ′ in I ′, e.g., to transform the instance (0, 01), (10, 1) into
(00′, 00′11′), (11′00′, 00′). More formally, I ′ = h(I) where h is the homomorphism defined
by h(0) = 00′ and h(1) = 11′.

24 T. SCHWENTICK AND T. ZEUME

1′

1′

1
1

1′

1′

1
1

0′

0′

0
0

Figure 6: How the intended linear orders ≤1,≤2 for a valid sequences u := 00′|11′11′ and
v := 00′11′|11′ look like. Columns are ordered by <1 and rows are ordered by <2.
Letters from v are underlined.

We call letters of the form σ′ marked. Clearly, I ′ has a solution if and only if I has a
solution.

From I ′ we will construct a FO
2(≤1,≤2,-3)-formula ϕI with the intention that ϕI has

a finite model if and only if I has a solution. The construction of ϕI is similar as in the
proof of Theorem 4.2. However, the role of -1 in that proof will be mimicked by ≤1 and
≤2, here.

As before, we first describe how solutions for I ′ can be encoded as structures with two
linear orders ≤1,≤2, a total preorder -3, and some unary relations. Then we define ϕI and
show that I 7→ ϕI is a reduction from PCP to finite satisfiability of FO2(≤1,≤2,-3).

For the first step, let~i = i1, . . . , im be a solution to I with u := ui1 . . . uim = vi1 . . . vim =:

v. As before the intended model M(~i) consists of all positions of u and all positions of v
and therefore has 2|u| elements.

The total preorder -3 is defined exactly as -2 in the previous proof. The model has
additional unary relations {A0, A1,M}∪W ∪P ∪{U, V } where U, V and the relations from
W ∪ P are defined as before. Positions with symbol σ ∈ {0, 1} are in Aσ, positions with
symbol σ′ ∈ {0′, 1′} are in Aσ and in M .

The linear orders <1 and <2 are defined by

u[1] <1 v[1] <1 u[2] <1 v[2] <1 . . . <1 u[|u|] <1 v[|u|]

and
v[1] <2 u[1] <2 v[2] <2 u[2] <2 . . . <2 v[|u|] <2 u[|u|]

See 6 for an illustration of the construction of ≤1 and ≤2.
Now we describe necessary conditions that M(~i) has to fulfill.
First of all, it should satisfy formula ϕwords of the previous proof, referring to -3 in

place of -2.
Let ϕ3(x, y) be the formula which expresses that

• either x ≺3 y

• or x ∼3 y and x ∈ Pi and y ∈ Pj , for some i < j.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 25

It is not hard to see that in every model of ϕwords the formula ϕ3 induces a linear order
on the positions in U and on the positions in V . Furthermore, ϕwords guarantees that both
orders begin with unmarked positions, alternate between marked and unmarked positions
and end with a marked position (just because the strings ui, vi do so). In the following, we
write x <3 y as an abbreviation for ϕ3(x, y).

Using ϕ3, we can define a formula ϕ2-order expressing that ≤1, ≤2 and <3 are consistent
on positions in U and on positions in V . That is, if x, y ∈ U then x <1 y if and only if
x <2 y if and only if x <3 y and likewise for x, y ∈ V . In the following, we denote these two
orders on the positions of U and V simply by ≤.

Finally, we construct a formula ϕsymbols with a similar intention as in the proof of
Theorem 4.3.

To this end, let ϕbi(x, y) be a formula expressing that x ≤1 y and y ≤2 x.
The formula ϕsymbols expresses that the following conditions hold.

• ϕbi(x, y) only holds for positions x 6= y if
− x ∈ U and y ∈ V , and
− both carry the same symbol from Σ̂.
• For every position x, there is a position y such that ϕbi(x, y) holds and vice versa.

We let ϕI = ϕsymbols ∧ϕwords ∧ϕ2-order and it is again easy to see that, if ~i is a solution

for I, then M(~i) |= ϕI .
It remains to show that I has a solution if there is a structureM with M |= ϕI . To this

end, letM be a model for ϕI . AsM |= ϕwords, we can associate with every equivalence class
E of -3 an index i(E) such that its positions are in Wi(E), just as in the previous proof.

Again, the linear order E1 ≺3 · · · ≺3 Em induces a sequence ~i = i1, . . . , im, via ij := i(Ej).

We show now that ~i is a solution to I.
For this purpose, it is sufficient to show that

(1) ϕbi(x, y) defines a bijection between the positions in U and the positions in V , and
(2) that this bijection is compatible with ≤, that is, if ϕbi(a1, b1) and ϕbi(a2, b2) hold for

a1 6= a2 ∈ U and b1 6= b2 ∈ V then a1 < a2 if and only if b1 < b2.

Indeed, from (1) and (2) it follows that the bijection induced by ϕbi pairs the i-th posi-
tion of U with the i-th position of V , for every i. As ϕsymbols guarantees that corresponding

positions carry the same symbol, it follows that ~i is a solution.
We next show (1), that is, there are no positions a1 6= a2 ∈ U and b ∈ V such that

ϕbi(a1, b) and ϕbi(a2, b) hold (and, correspondingly, for a, b1, b2). Towards a contradiction
let us assume the existence of such elements a1 6= a2 ∈ U and b ∈ V for which ϕbi(a1, b)
and ϕbi(a2, b) hold. Let, without loss of generality a1 < a2 and let us assume that both
are marked.7 Then there is an unmarked U -position a with a1 < a < a2. But then we can
conclude that a ≤1 b and b ≤2 a, a contradiction as ϕsymbols holds in M and a is unmarked
and b is marked.

To show (2) let us assume, again towards a contradiction, that there are a1 6= a2 ∈ U
and b1 6= b2 ∈ V such that ϕbi(a1, b1) and ϕbi(a2, b2), a1 < a2 and b2 < b1. But then

• a1 <1 a2 ≤1 b2 and
• b2 <2 b1 ≤2 a1

and therefore ϕbi(a1, b2) holds, contradicting (1). Similarly, from a1 > a2 and b2 > b1 it
follows that ϕbi(a2, b1) holds, again in contradiction to (1).

7We recall that ϕsymbols guarantees that a1, a2 and b are either all marked or all unmarked.

26 T. SCHWENTICK AND T. ZEUME

Data \ Positions Successor Linear Order Successor &
Linear Order

Successor ? in EXPSPACE

(this work)
undecidable
[MZ11]

Linear Order ? in EXPSPACE

(this work)
undecidable
[BMS+06]

Successor & LO ? in EXPSPACE

(this work)
undecidable
[BMS+06]

single-occ. Succ in 2NEXPTIME

[Man10]
in EXPSPACE

(this work)
decidable
[MZ11]

single-occ. LO in EXPSPACE

(this work)
in EXPSPACE

(this work)
in EXPSPACE

(this work)

Table 1: Summary of results on Finite Satisfiability of FO2 on data words with ordered
data values. “single-occ.” refers to the case where each data values occurs at most
once in a data word.

5. Conclusion

The context of our results was already discussed in the introduction. Table 1 summarizes
the results of this paper and previous results for data words with different kinds of orders
on positions and data values.

We mention some possible lines for extensions and further research. We recall that
FO

2(≤1,-2) is an abbreviation for FO2(FinOrd(≤1,-2)).

Two-Variable Logic. The lower bound for finite satisfiability of FO2(≤1;-2) from Theorem
4.1 does not immediately carry over to FO

2(Σ,≤1, [-2, S2]) as the translation of a FO
2(≤

;-) formula ϕ into a FO
2(Σ,≤,-) formula might yield an alphabet of exponential size in

|ϕ|. Thus, there remains a gap between the EXPSPACE upper bound from Corollary 3.2
and the NEXPTIME lower bound from [BMS+06]. Further there is still a gap between
the “eight orders” undecidability result of [Ott01] and the decidability for FO

2 with two
linear orders in this paper.

In the context of automated verification it would be interesting to generalize our results
from data words to data ω-words.

Other Logics. There are connections between the results of this paper and some temporal
logics, Compass Logic and Interval Temporal Logic. Some of these connections have been
made precise in the conference paper underlying this article [SZ10].

Compass Logic is a two-dimensional temporal logic, whose operators allow for moving
north, south, east and west along a grid [Ven90]. Satisfiability for compass logic is known to
be undecidable [MR97]. Compass logic can be extended in two directions. Up to now, only
complete grids have been considered as underlying structures. Partial grids, i.e. grids where
not all crossings need to exist, can be considered as underlying structures as well. Further-
more, operators northeast, northwest, southeast and southwest can be considered. The
results of this article can be used, after some appropriate modifications, to yield decidabil-
ity for compass logic with these extensions when only the operators northwest, northeast,
southwest, southeast, west and east are used.

TWO-VARIABLE LOGIC WITH TWO ORDER RELATIONS 27

Interval Temporal Logic can reason about intervals of time with the help of operators
as ‘after’, ‘during’, ‘begins’ etc. Expressions such as ‘Immediately after we finished writing
the paper, we will go to the beach’ can be captured. To this end, propositions, like “writing
the paper” or “go to the beach”, are assigned to time intervals. In conventional interval
temporal logic, all possible intervals are considered as part of a structure, that is, reasoning
is always with respect to all intervals. In a setting where structures may consist of a subset
of the set of all intervals, decidability of reasoning with the operators ‘ends’, ‘later’ and
‘during’ as well as their duals can be obtained from our results, again after appropriate
modifications.

We believe that partial models for compass and interval logic deserve some further
investigations.

Besides relations to compass logic and interval logic we conjecture that there are connec-
tions to spatial reasoning that is done in the context of Geographical Information Systems
(for a survey, see [CH01]).

References

[BMS+06] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David, Two-
variable logic on words with data, LICS, 2006, pp. 7–16.

[Boa97] Peter Van Emde Boas, The convenience of tilings, In Complexity, Logic, and Recursion Theory,
Marcel Dekker Inc, 1997, pp. 331–363.

[CH01] Anthony G. Cohn and Shyamanta M. Hazarika, Qualitative spatial representation and reasoning:
An overview, Fundam. Inform. 46 (2001), no. 1-2, 1–29.

[DL09] Stéphane Demri and Ranko Lazic, LTL with the freeze quantifier and register automata, ACM
Trans. Comput. Log. 10 (2009), no. 3, 16:1–16:30.

[FS09] Diego Figueira and Luc Segoufin, Future-looking logics on data words and trees, MFCS, 2009,
pp. 331–343.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi, On the decision problem for two-variable
first-order logic, Bulletin of Symbolic Logic 3 (1997), no. 1, 53–69.

[GO99] Erich Grädel and Martin Otto, On logics with two variables, Theor. Comput. Sci. 224 (1999),
no. 1-2, 73–113.

[KO05] Emanuel Kieronski and Martin Otto, Small substructures and decidability issues for first-order
logic with two variables, LICS, 2005, pp. 448–457.

[KT09] Emanuel Kieronski and Lidia Tendera, On finite satisfiability of two-variable first-order logic with
equivalence relations, LICS, 2009, pp. 123–132.

[Man10] Amaldev Manuel, Two variables and two successors, MFCS, 2010, pp. 513–524.
[Mor75] M. Mortimer, On languages with two variables, Zeitschr. f. math. Logik u. Grundlagen d. Math.

21 (1975), 135–140.
[MR97] Maarten Marx and Mark Reynolds, Undecidability of compass logic, Journal of Logic and Com-

putation 9 (1997), 897–941.
[MZ11] Amaldev Manuel and Thomas Zeume, Personal communication., 2011.
[Ott01] Martin Otto, Two variable first-order logic over ordered domains, J. Symb. Log. 66 (2001), no. 2,

685–702.
[Seg06] Luc Segoufin, Automata and logics for words and trees over an infinite alphabet, CSL, 2006,

pp. 41–57.
[SZ10] Thomas Schwentick and Thomas Zeume, Two-variable logic with two order relations - (extended

abstract), CSL, 2010, pp. 499–513.
[Ven90] Yde Venema, Expressiveness and completeness of an interval tense logic, Notre Dame Journal of

Formal Logic 31 (1990), no. 4, 529–547.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Upper Bounds for Two-variable Logic on Ordered Structures
	3.1. From ordered structures to labeled point sets
	3.2. From Two-Variable Logic to Two-Dimensional Constraints
	3.3. 2LPP is in PSPACE

	4. Lower Bounds for Two-variable Logic on Ordered Structures
	4.1. One Linear Order and one Total Preorder
	4.2. Undecidable Extensions

	5. Conclusion
	References

