
Logical Methods in Computer Science

Vol. 8 (1:25) 2012, pp. 1–31

www.lmcs-online.org

Submitted Jan. 10, 2011

Published Mar. 16, 2012

FORMAL THEORIES FOR LINEAR ALGEBRA ∗

STEPHEN COOK AND LILA FONTES

University of Toronto Department of Computer Science Sandford Fleming Building 10 King’s
College Road Toronto, Ontario M5S 3G4 Canada
e-mail address: {sacook,fontes}@cs.toronto.edu

Abstract. We introduce two-sorted theories in the style of Cook and Nguyen for the
complexity classes ⊕L and DET , whose complete problems include determinants over
Z2 and Z, respectively. We then describe interpretations of Soltys’ linear algebra theory
LAp over arbitrary integral domains, into each of our new theories. The result shows
equivalences of standard theorems of linear algebra over Z2 and Z can be proved in the
corresponding theory, but leaves open the interesting question of whether the theorems
themselves can be proved.

1. Introduction

This paper is a contribution to bounded reverse mathematics [Ngu08, CN10], that part
of proof complexity concerned with determining the computational complexity of concepts
needed to prove theorems of interest in computer science. We are specifically interested in
theorems of linear algebra over finite fields and the integers. The relevant complexity classes
for each case have been well-studied in the computational complexity literature. The classes
are ⊕L and DET , associated with linear algebra over Z2 and Z, respectively. We introduce
formal theories V⊕L and V#L for ⊕L and DET , each intended to capture reasoning in
the corresponding class. Each theory allows induction over any relation in the associated
complexity class, and the functions definable in each theory are exactly the functions in
the class. In particular determinants and coefficients of the characteristic polynomial of a
matrix can be defined.

To study the question of which results from linear algebra can be proved in the theories
we take advantage of Soltys’s theory LAp [SK01, SC04] for formalizing linear algebra over an
arbitrary field or integral domain. We present two interpretations of LAp: one into V⊕L

and one into V#L. Both interpretations translate theorems of LAp to theorems in the
corresponding theory, but the meaning of the theorems differs in the two translations since
the ring elements range over Z2 in one and over Z in the other. From these interpretations
and results in [SK01, SC04] we show that the theories prove some interesting properties of
determinants, but leave open the question of whether the proofs of some basic theorems

1998 ACM Subject Classification: F.4.0.
Key words and phrases: logic, complexity classes, parity, determinant, linear algebra.

∗ A preliminary version of this work appeared as [CF10].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:25) 2012

c© S. Cook and L. Fontes
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. COOK AND L. FONTES

such as the Caley-Hamilton Theorem can be formalized in the theories. We also leave open
the question of whether the theories prove simple matrix identities studied in [SK01, SC04],
such as AB = I → BA = I. An affirmative answer would shed light on interesting questions
in propositional proof complexity concerning the lengths of proofs required in various proof
systems to prove tautology families corresponding to the identities.

1.1. The complexity classes. Complete problems for the classes ⊕L and DET include
standard computational problems of linear algebra over their respective rings Z2 and Z, such
as computing determinants, matrix powers, and coefficients of the characteristic polynomial
of a matrix. (Recently [BKR09] proved that for each k ≥ 1, computing the permanent mod
2k of an integer matrix is in ⊕L, and hence complete.) The classes satisfy the inclusions

AC0 ⊂ L ⊆ ⊕L ⊆ DET ⊆ NC2 ⊆ P

AC0 ⊂ L ⊆ NL ⊆ DET ⊆ NC2 (1.1)

(ignoring the distinction between function and language classes) where L and NL are the
problems accepted in deterministic and nondeterministic log space, respectively. It is not
known whether ⊕L and NL are comparable. (In fact no one has been able to disprove the
unlikely possibility that all of the above classes except AC0 coincide.)

The simplest way of defining the classes ⊕L and DET is using uniform AC0 reductions:
Let AC0(f) be the set of functions computable by a uniform family of polynomial size
constant depth circuits with oracle access to f . Then ⊕L = AC0(det2) and DET =
AC0(det), where det2 and det are the determinant functions for matrices over Z2 and Z
respectively. For the case of Z, integer entries of a matrix are presented in binary.

The usual definitions of these classes involve counting the number of accepting compu-
tations of nondeterministic log space Turing machines. Thus #L is the class of functions
f such that for some nondeterministic log space Turing machine M , f(x) is the number
of accepting computations of M on input x. Then the sets in ⊕L are those of the form
{x | f(x) mod 2 = 1} for some f in #L. It turns out that AC0(det) = AC0(#L), and
AC0(det2) = AC0(⊕L) = ⊕L [AO96, BDHM92].

DET can also be characterized as the #L hierarchy #LH. This is defined as follows:
#LH1 = #L, and for i ≥ 1, #LHi+1 = #L#LHi . (The exponent #LHi indicates that a
function from this class is allowed to be an oracle for the log space machine whose accepting
computations are being counted). Then [AO96] shows

DET = #LH =
⋃

i

#LHi (1.2)

We should clarify that our definition of DET = AC0(det) here differs from that given
in [Coo85], where DET is defined to be NC1(det), the closure of {det} under the more
general NC1 reductions. Allender proved (see the Appendix to [All04]) that if AC0(det) =
NC1(det) then the #L hierarchy collapses to some finite level #LHi, something that is
not known to be true. However the present first author wrote [Coo85] before uniform AC0

reductions had been studied, and now believes that AC0 reductions are the natural ones
to use in studying small complexity classes. Evidence for this is that (1.2) holds when
DET = AC0(det) as we now define DET , and does not hold under the old definition
(assuming the #L hierarchy is strict).

The above inclusions (1.1) compare the class of functions DET with classes of relations.
Here and elsewhere we sometimes do not explicitly distinguish between a function class FC

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 3

and the corresponding relation class C, using the following standard correspondence (which
applies to all classes we consider): A relation is in C iff its characteristic function is in FC,
and a function is in FC iff it is polynomially bounded and its bit graph is in C. (The bit
graph of a function F : {0, 1}∗ → {0, 1}∗ is the relation BF (i,X) which holds iff the ith bit
of F (X) is 1.)

1.2. The theories V⊕L and V#L. To construct formal theories for the classes ⊕L and
DET we follow the framework laid out in Chapter 9 of the monograph [CN10] of Cook and
Nguyen for defining theories for certain complexity classes between AC0 and P . All of these
theories share a common two-sorted (number and string) vocabulary L2

A (see Equation 2.1).
The intention is that the number sort ranges over N and the string sort ranges over bit strings
(more precisely, finite subsets of N). The strings are intended to be inputs to the machine
or circuit defining a member of the complexity class, and the numbers are used to index bits
in the strings. Each theory V C for a class C extends the finitely-axiomatized base theory
V 0 for AC0 by addition of a single axiom stating the existence of a solution to a complete
problem for C. General techniques are presented for defining a universally-axiomatized
conservative extension V C of V C which has function symbols and defining axioms for each
function in FC, and V C admits induction on open formulas in this enriched vocabulary. It
follows from the Herbrand Theorem that the provably-total functions in V C (and hence in
V C) are precisely the functions in FC.

Chapter 9 (with earlier chapters) of [CN10] explicitly defines theories for the following
classes:

AC0 ⊂ AC0(2) ⊂ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC ⊆ P (1.3)

These classes are defined briefly as follows. A problem in AC0 is solved by a uniform
family of polynomial size constant depth Boolean circuits with unbounded fanin AND and
OR gates. AC0(2) properly extends AC0 by also allowing unbounded fanin parity gates
(determining whether the inputs have an odd number of 1’s) in its circuits. TC0 allows
majority gates rather than parity gates in its circuits (and has binary integer multiplication
as a complete problem). NC1 circuits restrict all Boolean gates to fanin two, but the circuits
are allowed to have logarithmic depth. Problems in L and NL are solved respectively by
deterministic and nondeterministic log space Turing machines. NC is defined like NC1,
but the circuits can have polylogarithmic depth (and polynomial size). Problems in P are
solved by polynomial time Turing machines.

Our new theories V⊕L and V#L for ⊕L and DET extend the base theory V 0 for
AC0 by adding axioms stating the existence of powers Ak of matrices A over Z2 and Z,
respectively. Here k is presented in unary, but for the case of V#L integer entries for A

are presented in binary. (Matrix powering is a complete problem for these classes). Here
there is a technical difficulty of how to nicely state these axioms, since neither the parity
function (needed to define matrix multiplication over Z2) nor integer product and multiple
summation (needed to define matrix multiplication over Z) are AC0 functions, and hence
neither is definable in the base theory V 0. We solve this by basing an initial version of
V⊕L on the theory V 0(2) for AC0(2) (which contains the parity function) and basing an
initial version of V#L on the theory V TC0 for TC0 (which contains integer product). We
then use results from [CN10] to translate the axioms for the initial versions to the language
of the base theory V 0, to obtain the actual theories V⊕L and V#L. We show that the
resulting theories satisfy the requirements of Chapter 9 (existence of “aggregate functions”)

4 S. COOK AND L. FONTES

that allow the existence of the nice universal conservative extensions V⊕L and V#L of
V⊕L and V#L. Using general results from Chapter 9 of [CN10] we show the following (see
Theorems 3.4 and 3.7 for more formal statements).

Theorem 1.1. The provably total functions of V⊕L and V⊕L (resp. V#L and V#L) are
exactly the functions of the class ⊕L (resp. DET). Further V⊕L (resp. V#L) proves the
induction scheme for ΣB

0 (LF⊕L) formulas (resp. ΣB
0 (LF#L) formulas.

The last sentence means in effect that V⊕L and V#L prove the induction schemes for
formulas expressing concepts in their corresponding complexity classes.

The new theories mesh nicely with the theories for the complexity classes in (1.3). In
particular, we have

V 0 ⊂ V 0(2) ⊂ V TC0 ⊆ V NC1 ⊆ V L ⊆ V⊕L ⊆ V#L ⊆ V NC ⊆ V P (1.4)

We also have V L ⊆ V NL ⊆ V#L. We do not know whether V NL and V⊕L are
comparable, because we do not know whether NL and ⊕L are comparable.

1.3. The interpretations. Next we study the question of which results from linear algebra
can be proved in the theories. As mentioned above, we take advantage of Soltys’s theory
LAp [SK01, SC04] for formalizing results from linear algebra over an arbitrary field or
integral domain. We present two interpretations of LAp: one into V⊕L and one into V#L.
Both interpretations translate theorems of LAp to theorems in the corresponding theory,
but the meaning of the theorems differs in the two translations since the ring elements range
over Z2 in one and over Z in the other.

LAp defines matrix powering, and uses this definition and Berkowitz’s algorithm [Ber84]
to define several functions of matrices, including determinant, adjoint, and characteristic
polynomial. The following standard principles of linear algebra are discussed:

(i) The Cayley-Hamilton Theorem (a matrix satisfies its characteristic polynomial).
(ii) The axiomatic definition of the determinant (the function det(A) is characterized by

the properties that it is multilinear and alternating in the rows and columns of A, and
det(I) = 1).

(iii) The co-factor expansion of the determinant.

Although it remains open whether LAp can prove any of these, a major result from
[SK01, SC04] is that LAp proves their pairwise equivalence. As a result of this and our
interpretations (Theorems 4.1 and 4.3) we have the following.

Theorem 1.2. V⊕L proves the equivalence of (i), (ii), and (iii) over the ring Z2, and
V#L proves their equivalence over Z.

An intriguing possibility is that either V⊕L or V#L could use special properties of Z2 or
Z to prove its version of the principles, but LAp cannot prove them (for all integral domains
or fields). For example there is a dynamic programming algorithm involving combinatorial
graph properties (see the concluding Section 5) whose correctness for Z might be provable
in V#L using combinatorial reasoning with concepts from #L which are not available in
LAp.

[SK01, SC04] also present the so-called hard matrix identities:

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 5

Definition 1.3. The hard matrix identities are
AB = I,AC = I → B = C

AB = I,AC = 0 → C = 0

AB = I → BA = I

AB = I → AtBt = I

(1.5)

where A,B,C are square matrices of the same dimensions, and At is the transpose of A.

Again it is open whether LAp proves these identities, but LAp does prove that they
follow from any of the principles mentioned in Theorem 1.2 above. The next result follows
from this and our interpretations (Theorems 4.1 and 4.3).

Theorem 1.4. V⊕L proves that (1.5) over the ring Z2 follows from any of the three
principles mentioned in Theorem 1.2. The same is true for V#L over the ring Z.

[SK01, SC04] introduce an extension ∀LAp of LAp, which includes an induction rule
that applies to formulas with bounded universally quantified matrix variables, and show that
the three principles mentioned in Theorem 1.2 and the four matrix identities are all provable
in ∀LAp. These papers claim that these proofs in ∀LAp translate into proofs in the theory
V 1 for polynomial time (V 1 extends V P in equation (1.4)) when the underlying ring is finite
or Q. However Jeřábek [Jeř05] (page 44) points out that for infinite rings this is not true,
because the definition given of bounded universal matrix quantifiers only bounds the number
of rows and columns, and not the size of the entries. To fix this, [Jeř05] defines a subsystem
∀LAp− of ∀LAp, with properly defined bounded universal matrix quantifiers, which still
proves the three principles mentioned in Theorem 1.2 and the four matrix identities, and
shows that these proofs translate into proofs in V 1 when the underlying ring is finite or
Q (and hence also Z). Since V 1 is conservative over V P for universal theorems involving
polynomial time functions we have the following result.

Proposition 1.5. [SK01, SC04, Jeř05] The theory V P proves the three principles (i), (ii),
(iii) and the matrix identity (1.5) for both the rings Z2 and Z.

2. Two-Sorted Theories

We start by reviewing the two-sorted logic used here and in [CN10]. We have number vari-
ables x, y, z, . . . whose intended values are numbers (in N), and string variables X,Y,Z, . . .

whose intended values are finite sets of numbers. We think of the finite sets as binary strings
giving the characteristic vectors of the sets. For example the string corresponding to the
set {0, 3, 4} is 10011.

All our two-sorted theories include the basic vocabulary L2
A, which extends the first-

order vocabulary of Peano Arithmetic as follows:

L2
A = [0, 1,+, ·, | |,∈,≤,=1,=2] (2.1)

The symbols 0, 1,+, · are intended to take their usual meanings on N. Here | | is a function
from strings to numbers, and the intended meaning of |X| is 1 plus the largest element of
X, or 0 if X is empty. (If X = {0, 3, 4} then |X| = 5.) The binary predicate ∈ is intended
to denote set membership. We often write X(t) for t ∈ X (think that bit number t of the
string X is 1). The equality predicates =1 and =2 are for numbers and strings, respectively.
We will write = for both, since the missing subscript will be clear from the context.

6 S. COOK AND L. FONTES

Number terms (such as x + ((|X| + 1) · |Y |)) are built from variables and function
symbols as usual. The only string terms based on L2

A are string variables X,Y,Z, . . ., but
when we extend L2

A by adding string-valued functions, other string terms will be built as
usual. Formulas are built from atomic formulas (e.g. t = u, t ≤ u,X(t),X = Y) using
∧,∨,¬ and ∃x,∀x,∃X,∀X.

Bounded quantifiers are defined as usual, except bounds on string quantifiers refer to
the length of the string. For example ∃X≤t ϕ stands for ∃X(|X|≤t ∧ ϕ).

We define two important syntactic classes of formulas.

Definition 2.1. ΣB
0 is the class of L2

A formulas with no string quantifiers, and only bounded

number quantifiers. ΣB
1 formulas are those of the form ∃ ~X≤~t ϕ, where ϕ is in ΣB

0 and the
prefix of bounded quantifiers may be empty.

Notice our nonstandard requirement that the string quantifiers in ΣB
1 formulas must be

in front.
We also consider two-sorted vocabularies L ⊇ L2

A which extend L2
A by possibly adding

predicate symbols P,Q,R, . . . and function symbols f, g, h, . . . and F,G,H, Here f, g, h, . . .
are number functions and are intended to take values in N, and F,G,H, . . . are string func-
tions and are intended to take string values. Each predicate or function symbol has a
specified arity (n,m) indicating that it takes n number arguments and m string arguments.
Number arguments are written before string arguments, as in

f(x1, . . . , xn,X1, . . . ,Xm) F (x1, . . . , xn,X1, . . . ,Xm) (2.2)

The formula classes ΣB
0 (L) and ΣB

1 (L) are defined in the same way as ΣB
0 and ΣB

1 , but
allow function and relation symbols from L in addition to L2

A.

2.1. Two-sorted complexity classes. In standard complexity theory an element of a
complexity class is either a set of binary strings or a function f : {0, 1}∗ → {0, 1}∗. In
our two-sorted point of view (Chapter 4 of [CN10]) it is convenient to replace a set of

strings by a relation R(~x, ~X) of any arity (n,m), and functions are generalized to allow
both number functions and string functions as in (2.2). Each standard complexity class,
including those in (1.3) and ⊕L and #L, is defined either in terms of Turing machines or
circuit families. These definitions naturally extend to two-sorted versions by representing
strings (as inputs to machines or circuits) in a straightforward way as binary strings, but by
representing numbers using unary notation. This interpretation of numbers is a convenience,
and is justified by our intention that numbers are ‘small’ and are used to index strings and
measure their length.

For example, the (two-sorted) complexity class P (resp. NP) is the set of relations

R(~x, ~X) recognized by polynomial time (resp. nondeterministic polynomial time) Turing
machines, with the above input conventions. Thus the relation Prime1(x) (x is a prime
number) is trivially in P since there are at most x possible divisors to test, and the testing
can obviously be done in time polynomial in x. The relation Prime2(X) (the number whose
binary notation is X is prime) is also in P, but this is a major result [AKS04], since the
testing must be done in time polynomial in the length |X| of X.

The class (uniform) AC0 can be defined in terms of uniform polynomial size constant
depth circuit families, but it has a nice characterization as those sets recognized by an
alternating Turing machine (ATM) in log time with a constant number of alternations.
More useful for us, [Imm99] showed that an element of AC0 can be described as an element

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 7

of FO, namely the set of finite models of some first-order formula with a certain vocabulary.
From this and the ATM definition of two-sorted AC0, we have the following important
results relating syntax and semantics.

Proposition 2.2. [Representation Theorems] (IV.3.6 and IV.3.7 of [CN10]) A relation

P (~x, ~X) is in AC0 (respectively NP) iff it is represented by some ΣB
0 -formula (respectively

ΣB
1 -formula) ϕ(~x, ~X).

For example the relation PAL(X) (X is a palindrome) is an AC0 relation because the
ΣB
0 -formula ∀x, y<|X| (x+ y + 1 = |X| ⊃ (X(x) ↔ X(y))) represents it.

2.2. Special functions. There are several conventional number and string functions in
FAC0 used to encode and retrieve information from bit-strings. Their usage is crucial to
several technical proofs below, so we here provide definitions of common functions from
[CN10] as well as extensions useful for our own purposes.

The pairing function 〈x, y〉 = (x+ y)(x+ y+1)+2y allows easy 2-dimensional indexing
in strings. It can be extended to k-arity.

〈x1, x2, . . . , xk〉 = 〈x1, 〈x2, . . . , xk〉〉

We construct the unary relation Pair(z) to be true only of numbers in the range of the
pairing function. The functions left(〈x, y〉) = x and right(〈x, y〉) = y reverse the pairing
function, and are defined to be 0 on numbers z where Pair(z) is false.

For example a k-dimensional bit array can be encoded by a stringX, with bits recovered
using the pairing function. By convention, we write:

X(x1, . . . , xk) = X(〈x1, . . . , xk〉)

For 2-dimensional arrays, the xth row can be recovered using the Row function, which
is bit-defined:

Row (x,Z)(i) ↔ i < |Z| ∧ Z(x, i)

For notational convenience, we write Row (x,Z) = Z [x]. Thus a 1-dimensional array of j

strings X1, . . . ,Xj can be encoded in a single bit-string Z, where Xi = Z [i].
It will be useful when dealing with integers (section 3.2) to be able to encode 2-

dimensional arrays of strings Xi,j as a single string Z. To do so, we first encode each row of

the 2-dimensional matrix of strings as a 1-dimensional array of strings Yi so that Y
[j]
i = Xi,j .

Then we encode a 1-dimensional array of those arrays: Z [i] = Yi. The x, yth strings in this
2-dimensional array Z is recovered with the Row2 function: Row2 (x, y, Z) = Z [x][y].

Row2 (x, y, Z)(i) ↔ i < |Z| ∧Row (x,Z)(y, i) (2.3)

The Row and Row2 functions allow a bit-string Z to encode a list or matrix of other
bit-strings. We have analogous functions seq and entry that enable string Z to encode a
list or matrix of numbers (respectively). Thus the numbers y0, y1, y2, . . . encoded in Z can
be recovered yi = seq(i, Z) = (Z)i by convention.

y = seq(x,Z) ↔

(y < |Z| ∧ Z(x, y) ∧ ∀z < y,¬Z(x, z)) ∨ (∀z < |Z|,¬Z(x, z) ∧ y = |Z|) (2.4)

8 S. COOK AND L. FONTES

Numbers yi,j are encoded in Z by first arranging them into rows Yi where (Yi)
j = seq(j, Yi).

Then Yi = Z [i]. The numbers are retrieved using the entry function: yi,j = entry(i, j, Z).

entry(i, j, Z) = y ↔ (Z [i])j = y

2.3. The classes ⊕L and DET .

Definition 2.3. ⊕L is the set of relations R(~x, ~X) such that there is a nondeterministic log

space Turing machine M such that M with input ~x, ~X (represented as described in Section

2.1) has an odd number of accepting computations iff R(~x, ~X) holds.

#L is the set of string functions F (~x, ~X) such that there exists nondeterministic log

space Turing machine M , and F (~x, ~X) is the number (in binary) of accepting computations

of M with input ~x, ~X .

In the above definition we restrict attention to log space Turing machines that halt for

all computations on all inputs. We think of the binary string F (~x, ~X) as a number, as given
by the following definition.

Definition 2.4. A string X represents the number bin(X) if

bin(X) =
∑

i

2iX(i)

where we treat the predicate X(i) as a 0-1 valued function.

We now formalize the correspondence (mentioned in Section 1) between a complexity

class C of relations and a complexity class FC of functions. A number function f(~x, ~X)

(respectively string function F (~x, ~X)) is p-bounded if there is a polynomial g(~x, ~y) such that

f(~x, ~X) ≤ g(~x, | ~X |) (respectively |F (~x, ~X)| ≤ g(~x, | ~X |)). The bit graph of a string function

F is the relation BF defined by BF (i, ~x, ~X) ↔ F (~x, ~X)(i).

Definition 2.5. If C is a class of (two-sorted) relations then FC denotes the corresponding
class of functions, where f (respectively F) is in FC iff it is p-bounded and its graph
(respectively bit graph) is in C. If C is a two-sorted complexity class of functions, then RC

consists of all relations whose characteristic functions are in C.

In general when we refer to a complexity class such as AC0 or P we refer to the relations
in the class, and sometimes also to the functions in the corresponding function classes FAC0

and FP .
We will consider two-sorted vocabularies L which extend L2

A, and in all cases each
function and relation symbol in L has a specific intended interpretation in our standard
two-sorted model (the two universes being N and the set of finite subsets of N). Thus we
can make sense of both syntactic and semantic statements about L.

If L is a two-sorted vocabulary, then f (respectively F) is ΣB
0 -definable from L if it is

p-bounded and its graph (respectively bit graph) is represented by a formula in ΣB
0 (L). In

this case f (or F) can be computed by a uniform polynomial size family of bounded-depth
circuits with oracle access to the functions and predicates in L.

The following definition is from page 269 of [CN10].

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 9

Definition 2.6 (AC0-reducibility). (IX.1.1 in [CN10]) A string function F (respectively, a
number function f) is AC0-reducible to L if there is a sequence of string functions F1, . . . ,
Fn, (n ≥ 0) such that

Fi is Σ
B
0 -definable from L ∪ {F1, . . . , Fi−1} for i = 1, . . . , n;

and F (resp. f) is ΣB
0 -definable from L ∪ {F1, . . . , Fn}. A relation R is AC0-reducible to

L if there is a sequence of string functions F1, . . . , Fn as above, and R is represented by a
ΣB
0 (L ∪ {F1, . . . , Fn})-formula.

AC0(L) (the AC0 closure of L) denotes the closure of L under AC0-reducibility.

It is easy to see from the above definitions and Proposition 2.2 that AC0(L2
A) is the set

of all AC0 functions and relations.
From Lemma 6 in [BDHM92] we know that ⊕L is closed under NC1 reductions, and

hence also under the weaker AC0 reductions, so AC0(⊕L) = ⊕L. However we do not know
whether #L is closed under AC0 reductions [AO96]. Since our theories can only characterize
classes closed under AC0 reductions, we use the class DET instead of #L.

Definition 2.7. DET = AC0(#L)

Matrix powering is central to our theories for ⊕L and DET . So we need to define
this for each of the two classes as a two-sorted function. For ⊕L we use the truth values
{false , true} to represent the elements {0, 1} of Z2, and we represent a matrix over Z2 with
a string X. For DET we represent integers with binary notation by bit strings (using
Definition 2.4), and we represent a matrix over Z by an array of strings (see Section 2.2).
We number rows and columns starting with 0, so if X is an n× n matrix then 0 ≤ i, j < n

for all entries X(i, j).

Definition 2.8 (Matrix Powering). Let X be a string representing an n×n matrix over Z2

(resp. Z). Then the string function Pow 2(n, k,X) (resp. PowZ(n, k,X)) has output Xk,
the string representing the kth power of the same matrix.

Proposition 2.9. ⊕L = AC0(Pow 2) and DET = AC0(PowZ).

Proof. For DET , by Definition 2.7 it suffices to show AC0(PowZ) = AC0(#L), and this
is proved in [Fon09]. A proof can also be extracted from the earlier literature as follows.
Let IntDet(n,X) be the function that returns the determinant of the n× n integer matrix
X. By Berkowitz’s algorithm [Ber84, SC04], IntDet is AC0 reducible to PowZ, and by a
standard reduction (see for example the proof of Proposition 5.2 in [Coo85]) PowZ is AC0

reducible to IntDet . Hence it remains to show that AC0(IntDet) = AC0(#L), and this is
stated as Corollary 21 in [AO96]. A key idea is to show that the problem of counting the
number of paths of length at most a parameter p from nodes s to t in a directed graph is
complete for #L.

The fact that ⊕L = AC0(Pow2) follows from Theorem 10 in [BDHM92]. (That theorem
is stated in terms ofNC1 reductions, but the needed reductions are easily shown to be AC0.)

Although PowZ(n, k,X) allows the entries of the matrix X to be arbitrary binary
integers, it turns out that the function is still complete for DET when the argument X

is restricted to matrices with entries in 0, 1 (see for example the proof of Lemma 16 in
[Fon09]).

10 S. COOK AND L. FONTES

2.4. The Theories V 0, V 0(2), and V TC0. The theory V 0 for AC0 is the basis for ev-
ery two-sorted theory considered here and in [CN10]. It has the two-sorted vocabulary
L2
A, and is axiomatized by the set 2-BASIC (Figure 1) of axioms consisting of 15 ΣB

0 for-

mulas expressing basic properties of the symbols of L2
A, together with the following ΣB

0
comprehension scheme.

ΣB
0 -COMP : ∃X≤y ∀z<y (X(z) ↔ ϕ(z))

Here ϕ(z) is any ΣB
0 formula with no free occurrence of X.

B1. x+ 1 6= 0 B2. x+ 1 = y + 1 ⊃ x = y

B3. x+ 0 = x B4. x+ (y + 1) = (x+ y) + 1
B5. x · 0 = 0 B6. x · (y + 1) = (x · y) + x

B7. (x ≤ y ∧ y ≤ x) ⊃ x = y B8. x ≤ x+ y

B9. 0 ≤ x B10. x ≤ y ∨ y ≤ x

B11. x ≤ y ↔ x < y + 1 B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)
SE.

(
|X| = |Y | ∧ ∀i < |X|(X(i) ↔ Y (i))

)
⊃ X = Y

Figure 1: 2-BASIC axioms

V 0 has no explicit induction axiom, but nevertheless the induction scheme

ΣB
0 -IND :

(
ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x+ 1))

)
⊃ ∀zϕ(z)

for ΣB
0 formulas ϕ(x) is provable in V 0, using ΣB

0 -COMP and the fact that |X| produces
the maximum element of the set X.

Definition 2.10. A string function F (~x, ~X) is ΣB
1 -definable (or provably total) in a two-

sorted theory T if there is a ΣB
1 formula ϕ(~x, ~X, Y) representing the graph Y = F (~x, ~X) of

F such that T ⊢ ∀~x ∀ ~X ∃!Y ϕ(~x, ~X, Y). Similarly for a number function f(~x, ~X).

It is shown in Chapter 5 of [CN10] that V 0 is finitely axiomatizable, and the ΣB
1 -

definable functions in V 0 comprise the class FAC0 (see Definition 2.5).
The definition in [CN10] of the theory V 0(2) for the class AC0(2) is based on V 0 and

an axiom showing the definability of the function Parity(x, Y). If Z = Parity(x, Y) then
Z(z) holds iff 1 ≤ z ≤ x and there is an odd number of ones in Y (0)Y (1) . . . Y (z−· 1). The
graph of Parity is defined by the following ΣB

0 formula:

δParity (x, Y, Z) ≡ ¬Z(0) ∧ ∀z<x (Z(z + 1) ↔ (Z(z)⊕ Y (z)))

Definition 2.11. [CN10] The theory V 0(2) has vocabulary L2
A and axioms those of V 0 and

∃Z≤x+1 δParity(x, Y, Z).

The complexity class FAC0(2) is the AC0 closure of the function Parity(x, Y), and in
fact the ΣB

1 -definable functions of V 0(2) are precisely those in FAC0(2).
The theory V TC0 for the counting class TC0 is defined similarly to V 0(2), but now

the function Parity(x, Y) is replaced by the function numones(y,X), whose value is the
number of elements (i.e. ‘ones’) of X that are less than y. The axiom for V TC0 is based
on a ΣB

0 formula δNUM(y,X,Z) defining the graph of a string function accumulating the
values of numones(y,X) as y increases.

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 11

Definition 2.12. [CN10] The theory V TC0 has vocabulary L2
A and axioms those of V 0

and ∃Z≤1+〈y, y〉 δNUM(y,X,Z).

The class FTC0 is the AC0 closure of the function numones , and in fact the ΣB
1 -

definable functions of V TC0 are precisely those in FTC0.
In Chapters 5 and 9 of [CN10] it is shown that the theories V 0, V 0(2), V TC0 have

respective universally axiomatized conservative extensions V 0, V 0(2), V TC0 obtained by
introducing function symbols and their defining axioms for all string functions (and some
number functions) in the corresponding complexity class. These have the following proper-
ties.

Proposition 2.13. Let (FC, V, V) be any of the triples (FAC0, V 0, V 0) or (FAC0(2),

V 0(2), V 0(2)) or (FTC0, V TC0, V TC0), and let L be the vocabulary of V .

(i) V is a universally axiomatized conservative extension of V ,
(ii) the ΣB

1 -definable functions of both V and V are those in FC,
(iii) a string function (respectively number function) is in FC iff it has a function symbol

(respectively term) in L,
(iv) V proves the ΣB

0 (L)-IND and ΣB
0 (L)-COMP schemes,

(v) for every ΣB
1 (L) formula ϕ+ there is a ΣB

1 formula ϕ such that V ⊢ ϕ+ ↔ ϕ.

3. The New Theories

When developing theories for ⊕L and #L it will be more convenient to work first with ⊕L,
where each number can be represented by a single bit, before adding the complication of
multi-bit numbers in #L.

3.1. The Theory V⊕L. The theory V⊕L is an extension of V 0(2) (Definition 2.11) ob-
tained by adding an axiom showing the existence of matrix powering over Z2. We use the
fact that ⊕L is the AC0 closure of this matrix powering function (Proposition 2.9) and the
development in Chapter 9 of [CN10] to show that the provably total functions in V⊕L are
exactly the set F⊕L.

The actual method followed below of describing the theory V⊕L is slightly more compli-
cated. In order to obtain the desired axiom for matrix powering (i.e., the function Pow2 in

Definition 2.8), we will work with the theory V 0(2), a conservative extension of V 0(2), and
its vocabulary LFAC0(2), which has function symbols or terms for every function in FAC 0(2)

(Proposition 2.13). We describe the ΣB
1 axiom for matrix powering as a ΣB

1 (LFAC0(2)) for-
mula and refer to part (v) of proposition 2.13 to conclude that this formula is provably
equivalent to a ΣB

1 (L
2
A) formula. Hence we will freely use FAC 0 functions and the function

Parity(x, Y) when describing formulas which will help express the ΣB
1 axiom.

Each string function F (~x, ~X) (other than Parity(x, Y)) in the vocabulary of V 0(2) has
a defining axiom specifying its bit graph as follows:

F (~x, ~X)(z) ↔ z < t(~x, ~X) ∧ ϕ(z, ~x, ~X)

where t is an L2
A term bounding the function and the formula ϕ is ΣB

0 in the previously
defined symbols.

12 S. COOK AND L. FONTES

In order for a formula to encode matrix powering, it will need to include witnesses –
enough information to “check” that the matrix has been powered correctly. The function
PowSeq2 computes every entry of every power of matrix X up to the kth power.

Definition 3.1 (PowSeq2). Let X be a string representing an n×n matrix over Z2, and let
Xi be the string representing the ith power of the same matrix. Then the string function
PowSeq2(n, k,X) has output the list of matrices [ID(n),X,X2, . . . ,Xk], coded as described
in Section 2.2.

Note that the functions Pow2 and PowSeq2 are AC0-reducible to each other, so both
are complete for F⊕L. Our axiom for V⊕L states the existence of values for PowSeq2.

We start by defining the matrix product operation. The AC0 string function ID(n)
codes the n× n identity matrix, and has the defining axiom (recall Section 2.2)

ID(n)(b) ↔ b < 〈n, n〉 ∧ Pair(b) ∧ left(b) = right(b)

For X and Y encoding two matrices, the AC0 string function G(n, i, j,X, Y) codes the
string of pairwise bit products of row i of X and column j of Y :

G(n, i, j,X, Y)(b) ↔ b < n ∧X(i, b) ∧ Y (b, j)

We define
PAR(X) ≡ Parity(|X|,X)(|X|) (3.1)

so that PAR(X) holds iff X has an odd number of ones. Thus the function Prod2(n,X, Y)
producing the product of two n× n matrices X and Y over Z2, has bit graph axiom:

Prod2(n,X, Y)(b) ↔ b < 〈n, n〉 ∧ Pair(b) ∧ left(b) < n ∧ right(b) < n

∧PAR(G(n, left(b), right (b),X, Y)) (3.2)

This yields a ΣB
0 (LFAC0(2)) formula δPowSeq2

(n, k,X, Y) for the graph of PowSeq2(n, k,X, Y):

Y [0] = ID(n) ∧ ∀i<k (Y [i+1] = Prod2(n,X, Y [i]) (3.3)

∧∀b<|Y |
(
Y (b) ⊃ (Pair (b) ∧ left(b) < n)

)

The second line ensures that Y is uniquely defined by specifying that all bits not used in
encoding matrix entries must be false. Note that δPowSeq2

involves the function Prod2 and

hence is not equivalent to a ΣB
0 formula, but by part (v) of Proposition 2.13, V 0(2) proves

it is equivalent to a ΣB
1 formula δ′PowSeq

2

.

Definition 3.2. The theory V⊕L has vocabulary L2
A and axioms those of V 0(2) and the

ΣB
1 formula ∃Y≤1+〈k, 〈n, n〉〉 δ′PowSeq2

(n, k,X, Y) stating the existence of a string value for

the function PowSeq2(n, k,X).

Following the guidelines of Section IX.2 of [CN10], we prove that several functions,
including the aggregate function PowSeq⋆2 (see (3.5) and (3.6) below), are ΣB

1 -definable in
V⊕L.

Lemma 3.3. The functions Pow2, PowSeq2, and PowSeq⋆2 are ΣB
1 -definable (definition

2.10) in V⊕L.

Proof. Since V 0(2) is a conservative extension of V 0(2), it follows that the theory

T = V⊕L+ V 0(2) (3.4)

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 13

is a conservative extension of V⊕L, and this allows us to reason in T to make inferences
about the power of V⊕L. Thus by part (v) of Proposition 2.13, to prove that a function is
ΣB
1 -definable in V⊕L it suffices to prove that it is ΣB

1 (LFAC0(2))-definable in T .
For the function PowSeq2 the graph is given by either of the equivalent formulas δPowSeq2

or δ′PowSeq2

. Existence of the function value follows immediately from the axiom given in

Definition 3.2, and uniqueness is proved by induction (justified by part (iv) of Proposition
2.13) on the ΣB

0 (LFAC0(2)) formula stating that the first i bits of the function’s output are
unique.

For Pow2 the function value can be extracted from the value for PowSeq2 by an AC0

function, and existence and uniqueness of that value follows from existence and uniqueness
for PowSeq2.

Recall from chapter 8 of [CN10] (Definition VIII.1.9) that the aggregate function
PowSeq⋆2 is the polynomially bounded string function that satisfies

|PowSeq⋆2(b,W1,W2,X)| ≤ 〈b, 〈|W2|, 〈|W1|, |W1|〉〉〉 (3.5)

and
PowSeq⋆2(b,W1,W2,X)(i, v) ↔ i < b ∧ PowSeq2((W1)

i, (W2)
i,X [i])(v) (3.6)

The strings W1, W2, and X encode b-length lists of inputs to each place of PowSeq2: W1 en-
codes the list of numbers n0, n1, n2, . . . , nb−1; W2 encodes the list of numbers k0, k1, . . . , kb−1;
andX encodes the list of strings X0,X1, . . . ,Xb−1. Our goal is to raise the ni×ni matrix en-
coded in Xi to the powers 1, 2, . . . , ki. The string function PowSeq⋆2 computes all these lists
of powers, aggregating many applications of the function PowSeq2. This is accomplished by
forming a large matrix S by placing padded versions of the matrices X0,X1, . . . ,Xb−1 down
its diagonal, and noting that the ith power of Xj can be extracted from the ith power of S.
The padding is necessary to make the diagonal matrices all the same size, so the location of
Xj in S can be computed with AC0(2) functions. The details of a formula for the graph of
PowSeq⋆2 and the proof that T can prove its unique output exists can be found in appendix
A.

Section IX.2 in [CN10] presents a general method for defining a universal conservative
extension V C (satisfying the properties of Proposition 2.13) of a theory V C over L2

A. Here
V C is assumed to be defined in a manner similar to V 0(2) and V TC0; namely by adding
a ΣB

1 axiom to V 0 showing the existence of a complete function FC (and its aggregate F ⋆)
for the complexity class C. Although our new theory V⊕L fits this pattern, for the purpose
of defining V⊕L it is easier to start from the conservative extension T of V⊕L defined in
(3.4).

We now view T as the extension of V 0(2) obtained by adding the axiom

∃Y≤1+〈k, 〈n, n〉〉 δPowSeq2
(n, k,X, Y)

where δPowSeq
2
is the original version of δ′PowSeq2

given in (3.3). (Note that this axiom is

equivalent to the one in Definition 3.2.)
A small modification to the development in Section IX.2 generalizes it to the case in

which the base theory is an extension V of V 0 rather than just V 0 (in this case V = T).
The construction of V C works so that Proposition 2.13 holds, where now the complexity
class C is the AC0 closure of {L, F}, where L is the vocabulary of V and F is the func-
tion whose existence follows from the axiom. In the present case, this allows us to define

14 S. COOK AND L. FONTES

V⊕L satisfying Proposition 2.13, where now the complexity class C is the AC0 closure of
{LFAC0(2),PowSeq2}, which is same as the AC0 closure of {PowSeq2}, namely ⊕L.

To start this construction we need a quantifier-free axiomatization of T = V⊕L+V 0(2).

This consists of the axioms for V 0(2) (which are quantifier-free) together with a quantifier-
free defining axiom for PowSeq2. The formula (3.3) for δPowSeq2

(n, k,X, Y) (the graph of
PowSeq2) has bounded number quantifiers, but these may be eliminated using functions in
FAC0(2) (see Section V.6 of [CN10]). Thus δPowSeq

2
(n, k,X, Y) is provably equivalent to

a quantifier-free formula δ′′PowSeq2
(n, k,X, Y) over the vocabulary LFAC0(2) for V

0(2). The
required quantifier-free defining axiom is

Y = PowSeq2(n, k,X, Y) ↔ δ′′PowSeq2
(n, k,X, Y)

As a result of this development we have a version of Proposition 2.13 for V⊕L:

Theorem 3.4. Let LF⊕L be the vocabulary of V⊕L.

(i) V⊕L is a universal conservative extension of V⊕L,
(ii) the ΣB

1 -definable functions of both V⊕L and V⊕L are those of F⊕L,
(iii) a string function (respectively, number function) is in F⊕L iff it has a function symbol

(resp., term) in LF⊕L,
(iv) V⊕L proves the ΣB

0 (LF⊕L)-IND and ΣB
0 (LF⊕L)-COMP schemes, and

(v) for every ΣB
1 (LF⊕L) formula ϕ+ there is a ΣB

1 formula ϕ such that V⊕L ⊢ ϕ+ ↔ ϕ.

3.2. The Theory V#L. Our theory V#L is associated with the class DET = AC0(#L)
(Definition 2.7). Just as V⊕L is an extension of V 0(2), V#L is the extension of V TC0

(Definition 2.12) obtained by adding an axiom showing the existence of matrix powering for
matrices with binary integer entries. We use the fact that DET is the AC0 closure of this
matrix powering function (Proposition 2.9) and the development in Chapter 9 of [CN10] to
show that the provably total functions in V#L are exactly the set FDET .

The development of V#L is similar to that of V⊕L, but has extra complications. Before
defining matrix multiplication and powering we must define multiplication and iterated sum
for binary integers. Both of these functions are complete for the complexity class TC0, so we
define V#L as an extension of the theory V TC0 (recall that V⊕L is defined as an extension

of V 0(2)). To define the required functions we work in the conservative extension V TC0

of V TC0 (just as we worked in the conservative extension V 0(2) of V 0(2) when developing
V⊕L).

We represent integers by strings. For a string X encoding an integer x, the first bit
X(0) indicates the sign of x: x < 0 iff X(0). The rest of string X is a binary representation
of x, from least to most significant bit. The magnitude of an integer can be extracted with
the FAC0 function intsize(X), which simply deletes the low order bit of the string X. Thus

an integer can be recovered from its string encoding by computing (−1)X(0) · intsize(X).
The theory V 0 defines binary addition X +N Y over natural numbers (Example V.2.5

in [CN10]), and V TC0 defines binary multiplication X ×N Y over natural numbers and
SumN(n,X) (the sum of the list X [0], . . . ,X [n−1] of natural numbers) (Section IX.3.6 in
[CN10]). These functions over N can be used to help develop quantifier-free formulas over
LFTC0 which define the corresponding functions +Z, ×Z, and SumZ over Z. For example
the function ×N can be used to define the graph R×Z

(X,Y,Z) by

intsize(Z) = intsize(X)×N intsize(Y) ∧ (Z(0) ↔ (X(0) ⊕ Y (0)))

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 15

The definition of integer addition +Z is more complicated and requires defining the ‘borrow’
relation for subtraction as well as using +N. The definition of SumZ(n,X) (iterated integer
sum) splits the list X into a list of positive integers and a list of negative integers, sums
each using SumN, and subtracts the second sum from the first.

Matrices of integers are represented by arrays of strings using the Row2 function (2.3).
Integer matrix product is the TC0 function ProdZ(n,X, Y) defined analogously to formula
(3.2) for Prod2, and the graph of iterated matrix product is defined by the ΣB

0 (LFTC0)
formula δPowSeqZ

(n, k,X, Y) analogous to δPowSeq2
(3.3). (See [Fon09]) for more details.)

By part (v) of Theorem 2.13, V TC0 proves δPowSeqZ
is equivalent to a ΣB

1 formula
δ′PowSeq

Z

, which we use in the following axiom for V#L.

Definition 3.5. The theory V#L has vocabulary L2
A and axioms those of V TC0 and the

ΣB
1 formula ∃Y≤t δ′PowSeqZ

(n, k,X, Y) for a suitable bounding term t.

The next two results are proved similarly to Lemma 3.3 and Theorem 3.4.

Lemma 3.6. The functions PowZ , PowSeqZ, and PowSeq⋆Z are ΣB
1 -definable in V#L.

Theorem 3.7. Let LF#L be the vocabulary of V#L.

(i) V#L is a universal conservative extension of V#L,
(ii) the ΣB

1 -definable functions of both V#L and V#L are those of FDET ,
(iii) a string function (respectively, number function) is in FDET iff it has a function

symbol (resp., term) in LF#L,

(iv) V#L proves the ΣB
0 (LF#L)-IND and ΣB

0 (LF#L)-COMP schemes, and

(v) for every ΣB
1 (LF#L) formula ϕ+ there is a ΣB

1 formula ϕ such that V#L ⊢ ϕ+ ↔ ϕ.

4. Interpretations of LAp

Having established the theories V⊕L and V#L, we are interested in studying which results
from linear algebra are provable in these theories. This job is made much easier by taking
advantage of Soltys’ theory LAp [SK01, SC04], which formalizes linear algebra over an
arbitrary field (or integral domain). As explained in Section 1, this theory defines standard
matrix functions such as determinant, adjoint, and characteristic polynomial, in terms of
matrix powering, and formalizes relative proofs of their properties. We show that V⊕L

and V#L prove these same properties by interpreting LAp into each of them. The two
interpretations are different because the intended semantics are different: the underlying
rings are respectively Z2 and Z.

Now Theorems 1.2 and 1.4 in Section 1 follow from the fact that each interpretation
translates theorems of LAp into theorems in the theory. Actually there are exceptions to
this preservation in the case of V#L, because the underlying ring Z is not a field. However
as explained at the beginning of Section 4.3, Theorems 1.2 and 1.4 do indeed hold for V#L.

4.1. Defining LAp. Soltys’ theory LAp (for Linear Algebra with matrix Powering) is a
quantifier-free theory based on Gentzen-style sequents. It has three sorts: indices (i.e.
natural numbers) (represented by i, j, k), field elements (a, b, c), and matrices (A, B, C)
with entries from the field.

16 S. COOK AND L. FONTES

The language LLAp of LAp has symbols

0index, 1index,+index, ∗index,
.
index

,div, rem, r, c,
0field, 1field,+field, ∗field,−field,

−1, e,
∑

,

≤index,=index,=field,=matrix, condindex, condfield,p

The intended meanings of 0, 1,+, ∗,−1, and −field are obvious. The symbol .
index

is
cutoff subtraction; div(i, j) and rem(i, j) are the quotient and remainder functions; r(A)
and c(A) return the numbers of rows and columns in A; e(A, i, j) is the field element Aij ,
(where Aij = 0 if i = 0 or j = 0 or i > r(A) or j > c(A)),

∑
(A) is the sum of all the entries

of A; and for α a formula, condindex(α, i, j) is i if α is true and j otherwise (similarly for
condfield(α, a, b)). The powering function p(n,A) = An.

Terms and quantifier-free formulas are mostly constructed in the usual way, respecting
types. We use n,m for index terms, t, u for field terms, T,U for matrix terms, and α, β for
(quantifier-free) formulas. The four kinds of atomic formulas are m ≤index n, m =index n,
t =field u, and T =matrix U . Formulas are built from atomic formulas using ∧,∨,¬. There
are restrictions on terms beginning with cond: If α is a formula with atomic subformulas
all of the form m ≤index n and m =index n, then condindex(α,m

′, n′) is a term of type index
and condfield(α, t, u) is a term of type field.

A term of type matrix is either a variable (A,B,C, · · ·) or a lambda term of the form
λij〈m,n, t〉 (with the restriction that i and j are not free in the index terms m and n). This

lambda term defines an m× n matrix with (i, j)th entry given by t(i, j).
Lines in an LAp proof are Gentzen-style sequents α1, . . . , αk → β1, . . . , βℓ with the

usual meaning
∧

αi ⊃
∨

βj . The logical axioms and rules are those of Gentzen’s system LK
(minus the quantifier rules). The nonlogical axioms are numbered A1 through A36 (see
Appendix B).

There are two nonlogical rules. The first nonlogical rule is the Induction Rule:

Γ, α(i) → α(i+ 1),∆

Γ, α(0) → α(n),∆
(4.1)

The second nonlogical rule is the Matrix Equality Rule, which states that two matrices are
equal if they have the same numbers of rows and columns, and have equal entries:

S1 S2 S3

Γ → ∆, T =matrix U
where

S1 : Γ → ∆, e(T, i, j) = e(U, i, j)
S2 : Γ → ∆, r(T) = r(U)
S3 : Γ → ∆, c(T) = c(U)

(4.2)

Many matrix functions such as multiplication, addition, transpose, can be defined using
λ terms, avoiding the need for separately defined function symbols. We use the following
abbreviations for defined terms.

Integer maximum max{i, j} := cond(i ≤ j, j, i)

Matrix sum A+B := λij〈max{r(A), r(B)},max{c(A), c(B)}, Aij +Bij〉

Note that A + B is well defined even if A and B are incompatible in size, because of
the convention that out-of-bound entries are 0.

Scalar product aA := λij〈r(A), c(A), a ∗Aij〉

Matrix transpose At := λij〈c(A), r(A), Aji〉

Zero and Identity matrices

0kl := λij〈k, l, 0〉 and Ik := λij〈k, k, cond(i = j, 1, 0)〉

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 17

Sometimes we will just write 0 and I when the sizes are clear from the context.

Matrix trace tr(A) := Σλij〈r(A), 1, Aii〉

Dot product A · B := Σλij〈max{r(A), r(B)},max{c(A), c(B)}, Aij ∗Bij〉

Matrix product

A ∗B := λij〈r(A), c(B), λkl〈c(A), 1, entry (A, i, k)〉 · λkl〈r(B), 1, entry(B, k, j)〉〉

Matrix product is defined even when c(A) 6= r(B), again by the convention that out-
of-bound entries are 0.

Finally, the following decomposition of an n×n matrix A is used in the axioms defining
Σ(S) and in presenting Berkowitz’s algorithm:

A =

(
a11 R

S M

)

(4.3)

where a11 is the (1, 1) entry of A, and R,S are 1×(n−1), (n−1)×1 submatrices, respectively,
and M is the principal submatrix of A Therefore, we make the following precise definitions:

R(A) := λij〈1, c(A)− 1, entry(A, 1, i + 1)〉

S(A) := λij〈r(A)− 1, 1, entry(A, i + 1, 1)〉

M(A) := λij〈r(A)− 1, c(A)− 1, entry(A, i+ 1, j + 1)〉

(4.4)

4.2. Interpreting LAp into V⊕L. Here we take the underlying field in the semantics of
LAp to be Z2. We interpret the three-sorted theory LAp into the two-sorted theory V⊕L.
The index sort is interpreted as the number sort, field elements are interpreted as Boolean
values, and matrices are interpreted as strings. We translate each formula α of LAp into a
formula ασ of V⊕L. Here ασ is in ΣB

0 (LF⊕L), so by part(v) of Theorem 3.4, ασ is equivalent
to a ΣB

1 formula (ασ)′ of V⊕L. The translation preserves provability (sequent theorems
are translated to sequent theorems) and it also preserves truth in our intended standard
models: (N,Z2,matrices over Z2) for LAp and (N,finite subsets of N) for V⊕L.

In order for Theorems 1.2 and 1.4 (for the case of V⊕L) to follow from this interpretation
we need that a term T of type matrix in LAp, when interpreted as a matrix over Z2, is
translated to a string term T σ in V⊕L which represents the same matrix, using conventions
like those developed in Sections 2.2 and 3.1. In particular the matrix entries (elements of
Z2) are certain bits in the string T σ, which is why we represent the elements 0, 1 of Z2 as
the Boolean values ⊥ and ⊤.

Recall that formulas of LAp are built from atomic formulas using the Boolean con-
nectives ∧,∨,¬. Below we show how to translate atomic formulas. Then each formula α

is translated by translating its atomic formulas and putting them together with the same
connectives. Thus (α ∧ β)σ = ασ ∧ βσ, (α ∨ β)σ = ασ ∨ βσ, and (¬α)σ = ¬ασ. Finally, a
sequent of LAp is translated to a sequent of V⊕L formula by formula. Thus the translation
of α1, . . . , αk → β1, . . . , βℓ is α

σ
1 , . . . , α

σ
k → βσ

1 , . . . , β
σ
ℓ

The atomic formulas of LAp are simple, since the only predicate symbols are ≤ and the
three sorts of =. Thus the main work in defining the interpretation comes in translating the
three sorts of terms: m to mσ, t to tσ, and T to T σ. In order to do this we define function
symbols in the language of V⊕L to interpret functions in LAp: . , fdiv, frem, fr, fc, and

functions fϕ and Fϕ for certain formulas ϕ. All of these functions have ΣB
0 definitions and

18 S. COOK AND L. FONTES

are definable in the subtheory V 0 of V⊕L. However to interpret Σ and p we need to go
beyond V 0.

Defining Σ requires the parity function PAR(X), which is definable in the theory V 0(2).
We note that the theory LAp is the extension of the base theory LA obtained by adding the
function p and the two axioms A35 and A36 defining matrix powering. Our interpretation
translates LA into V 0(2). Conveniently V⊕L is obtained from V 0(2) by adding the axiom
defining PowSeq2 (defining matrix powering).

The next three subsections give inductive definitions for translating LAp terms of each
of the three sorts.

4.2.1. Index sort. The table below shows how to translate each index term m of LAp into a
term mσ in V⊕L, except we postpone to Subsection 4.2.3 translating terms involving r and
c, which specify the numbers of rows and columns in a matrix. The graph of each function
symbol used in mσ is defined by a ΣB

0 formula (except for the case condindex(α,m, n), for
which the formula is in ΣB

0 (α
σ)). These formulas are given in the table below. (The first

three lines give the base case of the inductive definition of the translation.)

LAp V⊕L

0index 0
1index 1

i i index variables map to number variables
m+index n mσ + nσ

m ∗index n mσ · nσ

m .
index

n mσ . nσ ‘ . ’ is standard limited subtraction, defined:
x . y = z ↔ (x = y + z) ∨ (z = 0 ∧ x < y)

div(m,n) fdiv(m
σ, nσ) fdiv is a number function with graph:

fdiv(x, y) = z ↔ (y · z ≤ x ∧ x < y · (z + 1))
∨(y = 0 ∧ z = 0)

rem(m,n) frem(m
σ, nσ) frem is a number function with graph:

frem(x, y) = z ↔ z + y · fdiv(x, y) = x

condindex(α,m, n) fασ(mσ, nσ) where for certain formulas ϕ, fϕ is defined:
fϕ(x, y) = z ↔ (ϕ ∧ x = z) ∨ (¬ϕ ∧ y = z)

Note that in LAp, condindex(α,m, n) is defined only when all atomic sub-formulas of α have
the form m = n or m ≤ n. Thus fϕ(x, y) need only be defined when ϕ is the interpretation
of such a formula from LAp.

4.2.2. Field sort. Since we represent elements of Z2 by Boolean values in V⊕L, each field
term t is translated to a ΣB

0 (LF⊕L) formula tσ. (This convenient representation of ring
elements as truth values is not possible for the ring Z, complicating section 4.3.) Each
variable of type field is interpreted as a formula specifying the first entry of a 1× 1 matrix
variable.

The table below shows how to interpret variables of type field (except those involving
the matrix entry function e and the matrix sum function Σ, which are given in Subsection
4.2.3).

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 19

For t and u terms of type field, we interpret:

LAp V⊕L

0field ⊥
1field ⊤
a Xa(1, 1) Xa is a string variable

t+field u tσ ⊕ uσ that is, tσ XORuσ

t−field u tσ ⊕ uσ

t ∗field u tσ ∧ uσ

t−1 tσ

condfield(α, t, u) (ασ ∧ tσ) ∨ (¬ασ ∧ uσ)

4.2.3. Matrix sort. The translation of terms involving matrices is complicated. Every ma-
trix of LAp has three attributes: number of rows, number of columns, and matrix entries
(field elements). In our two-sorted language for V⊕L we represent a matrix by a string
which codes all of these. Thus an a × b matrix A is represented by a string Aσ such that
Aσ(0, 〈a, b〉) is true, and for all i, j with 1 ≤ i ≤ a and 1 ≤ j ≤ b and e(A, i, j) = Aij = 1,
the bit Aσ(i, j) is true. All other bits of Aσ are false.

We will use the formula isMatrix 2(X) (equivalent to a ΣB
0 formula) which asserts that

the string X properly encodes a matrix as above. We allow the number of rows and/or
columns to be 0, but any entry out of bounds is 0 (a false bit).

isMatrix 2(X) ≡ ∃x, y<|X|
[
X(0, 〈x, y〉) ∧ (4.5)

∀z<|X|
(
(z = 0 ∨ ¬X(z, 0)) ∧ (z = 〈x, y〉 ∨ ¬X(0, z))

)
∧

[X(z) ⊃
(
Pair(z) ∧ left(z) ≤ x ∧ (left(z) = 0 ∨ right(z) ≤ y)

)
]
]

The following table completes the inductive definition of the translation of all LAp
terms. (Here PAR(X) is defined in (3.1) and the functions fr, fc, Fϕ, Fp are defined below).)

LAp V⊕L

A A matrix variables map to string variables
r(T) fr(T

σ)
c(T) fc(T

σ)
e(T,m, n) T σ(mσ , nσ) ∧mσ > 0 ∧ nσ > 0 ∧ isMatrix 2(T

σ)
∑

(T) ¬PAR(T σ) ∧ isMatrix 2(T
σ)

λij〈m,n, t〉 Ftσ (m
σ, nσ)

p(m,T) Fp(m
σ, T σ)

The above translation is designed so that for every LAp matrix term T (except a matrix

variable A), isMatrix 2(T
σ) holds and is provable in (V⊕L).

The V⊕L functions fr(X) and fc(X) extract the numbers of rows and columns of the
matrix coded by X, and are used in the table above to translate the LAp terms r(T) and
c(T). These have defining equations

fr(X) = z ↔ (¬isMatrix 2(X) ∧ z = 0) ∨
(
isMatrix 2(X) ∧ ∃y≤|X| X(0, 〈z, y〉)

)

fc(X) = z ↔ (¬isMatrix 2(X) ∧ z = 0) ∨
(
isMatrix 2(X) ∧ ∃y≤|X| X(0, 〈y, z〉)

)

Note that strings not encoding a matrix are semantically interpreted as the 0× 0 matrix.

20 S. COOK AND L. FONTES

The translation of the matrix entry term e(T,m, n) is consistent with the LAp conven-
tion that rows and columns are numbered starting with 1. A string not properly encoding
a matrix has no non-zero entries.

The translation of the entry sum term
∑

(T) is ⊥ if T σ does not properly encode a
matrix, and otherwise it is the parity of 1 + the number of one-bits in T σ (the extra bit is
T σ(0, 〈a, b〉) coding the number of rows and columns).

The matrix term λij〈m,n, t〉 is interpreted by the V⊕L term Ftσ (m
σ, nσ). Here Ftσ (x, y)

is a string function, which has additional arguments corresponding to any free variables in
tσ other than the distinguished variables i, j (we interpret iσ = i and jσ = j). The bit
defining formula for Ftσ is

Ftσ (x, y)(b) ↔ b = 〈0, 〈x, y〉〉 ∨ ∃i≤x ∃j≤y (i > 0 ∧ j > 0 ∧ b = 〈i, j〉 ∧ tσ(i, j))

where tσ(i, j) indicates the distinguished variables i, j. Then isMatrix 2(Ftσ (m
σ, nσ)) is

always true (and provable in V⊕L)).
The last line in the table above translates the LAp term p(m,T) representing matrix

powering to the V⊕L term Fp(m
σ, T σ). The function Fp is defined in terms of Pow 2

(Definition 2.8) which defines matrix powering in V⊕L. But the definition of Fp is not
straightforward, because our translation of LAp terms includes the extra bit in row 0 coding
the matrix dimension.

Thus we need two ΣB
0 string functions. The first one strips the dimensions from the

string, converting a matrix encoded according to our interpretation (of LAp into V⊕L) into
a matrix according to the standard in V⊕L.

Strip(X)(i, j) ↔ X(i + 1, j + 1)

The second function adds the dimension-encoding “wrapper” back, converting a standard-
form V⊕L matrix into the form of an interpreted matrix from LAp.

Wrap(r, c,X)(b) ↔ b = 〈0, 〈r, c〉〉 ∨ ∃0<i, j<b (b = 〈i, j〉 ∧X(i, j))

Given these two functions, we want Fp(i,X) to interpret the LAp function p(i,X). Let
rX = fr(X) be the interpretation of r(X), and cX = fc(X) be the interpretation of c(X).
For strings X that satisfy isMatrix 2(X) and powers i > 0,

Fp(i,X) = Wrap(rX , cX ,Pow 2(max(rX , cX), i,Strip(X)))

This is consistent with the LAp convention that for i > 1, p(i, A) retains the row and column
dimensions of A, and is defined by raising the matrix A′ to the power i and truncating excess
rows or columns, where A′ is the square matrix of dimension max{r(A), c(A)} obtained from
A by adding 0 entries where needed.

There is a special case: if i = 0, then LAp specifies that the zeroth power of a matrix
A is the r(A)× r(A) identity matrix.

Fp(0,X) = Wrap(rX , rX ,Pow 2(rX , 0,Strip(X)))

If ¬isMatrix 2(X) then Fp(i,X) codes the 0× 0 matrix.
Combining all these cases, we can bit-define Fp as follows:

Fp(i,X)(b) ↔
[
isMatrix 2(X) ∧ i = 0 ∧Wrap(rX , rX ,Pow2(rX , 0,Strip(X)))

]

∨
[
i > 0 ∧Wrap(rX , cX ,Pow 2(max(rX , cX), i,Strip(X)))

]

∨
[
¬isMatrix 2(X) ∧ b = 〈0, 〈0, 0〉〉

]

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 21

4.2.4. Translating atomic formulas. We translate atomic formulas as follows:

LAp V⊕L

m =index n mσ =1 n
σ

m ≤index n mσ ≤ nσ

t =field u tσ ↔ uσ

T =matrix U (r(T) = r(U))σ ∧ (c(T) = c(U))σ∧
∀i, j ≤ (|T σ|+ |Uσ|) (e(i, j, T) = e(i, j, U))σ

The translation of T =matrix U could be simplified to T σ = Uσ for all LAp terms T and U

other than matrix variables A, since all other terms translate to terms satisfying isMatrix 2.
However two distinct string variables A,B could nevertheless represent matrices that are
equal according to the Matrix Equality Rule (4.2) if they do not satisfy isMatrix 2.

4.2.5. Provability is preserved.

Theorem 4.1. If LAp proves α1, . . . , αk → β1, . . . , βℓ then V⊕L proves
ασ
1 , . . . , α

σ
k → βσ

1 , . . . , β
σ
ℓ .

Proof. (For more details see [Fon].) Since our translation of formulas and sequents is trans-
parent to the logical connectives, the logical axioms and rule applications for LAp (the
propositional part of Gentzen’s system LK) translate to logical axioms and rule applica-
tions for V⊕L.

The nonlogical axioms A1,...,A36 for LAp are given in Appendix B and the nonlogical
rules are (4.1) (Induction) and (4.2) (Matrix Equality). It suffices to show that the trans-
lated axioms are theorems of V⊕L, and for each of the rules, if the translated hypotheses
are theorems of V⊕L then so is the translated conclusion.

The two rules are easily handled. Consider the Induction Rule (4.1). Since the trans-
lation of each sequent of LAp is a sequent of quantifier-free formulas in V⊕L, the fact that
this translated rule preserves theorems in V⊕L follows from the fact that V⊕L proves the
induction scheme for ΣB

0 (LF⊕L) formulas (part (iv) of Theorem 3.4).
Now consider the Matrix Equality Rule (4.2). The fact that this translated rule pre-

serves theorems in V⊕L follows immediately from the way that matrix equality =matrix is
translated (Section 4.2.4).

Now consider the axioms of LAp. Axioms A1 to A5 are equality axioms, and their
translations mostly follow from the usual equality axioms. However =matrix is not translated
as equality, but it does translate to an equivalence relation, and the functions which take a
matrix A as an argument (namely r, c, e,

∑
, and p) depend only on the numbers of rows

and columns of A, and the entries of A. Hence all translations of A1 to A5 are theorems
of V⊕L.

Axioms A6 to A14 translate to simple properties of N under +, ·, and ≤, which are
provable in V 0 (see Chapter III of [CN10]). A15, A16, and A17 translate to simple

properties of N which are easily proved in V 0 from the definitions fdiv, frem, and fϕ.
Axioms A18 to A26 are the axioms that define a field. Section 4.2.2 translates field

terms to formulas (where ⊥ represents 0 and ⊤ represents 1). All these axioms translate
into logical tautologies, so they are all trivially provable in V⊕L. For example

A18 : → 0 6= 1 ∧ a+ 0 = a translates to
A18σ : (⊥ ↔ ¬⊤) ∧ ((Xa(1, 1) ⊕⊥) ↔ Xa(1, 1))

22 S. COOK AND L. FONTES

Axiom A27 defines condfield, and its instances also translate into tautologies.
Axioms A28 and A29 define the row, column, and entry functions r, c, e, and relate

them to the lambda terms defining matrices. The translations of these follow easily from

the definitions of fr, fc, Fϕ, and are provable in V 0.
Axioms A30 to A34 define

∑
(A) recursively by breaking the matrix A into four parts

as illustrated in (4.3). Since the translation of
∑

(A) is defined in terms of the parity
function PAR, the following lemma is useful. It states that if two strings differ on exactly
one bit, then they have opposite parities.

Lemma 4.2. V 0(2) proves:

(X(k) ↔ ¬Y (k))∧
(
∀i < |X|+ |Y | i 6= k ↔ (X(i) ↔ Y (i))

)
⊃

(
PAR(X) ↔ ¬PAR(Y)

)

Proof. To prove the lemma, recall (3.1) that PAR(X) ≡ Parity(|X|,X)(|X|). The proof

in V 0(2) proceeds by induction on the bits of the witness strings Parity(|X|,X) and
Parity(|Y |, Y) computing the parities of X and Y .

To prove the translations of axioms A28 and A29 in V 0(2) we consider separately the
two cases ¬isMatrix 2(A) and isMatrix 2(A). The first case is trivial to prove because then
A has zero rows and columns and it has no entries. So we may assume isMatrix 2(A). In
that case, according to Section 4.2.3,

∑
(A) translates to ¬PAR(A).

Axiom A30 asserts
∑

(A) = e(A, 1, 1) in case A has exactly one row and column.
Since we may assume isMatrix 2(A), the string A has at most two 1-bits: one is A(0, 〈1, 1〉)
specifying its dimension, and the other possibility is A(1, 1). With the help of Lemma 4.2,

V 0(2) proves A(1, 1) ↔ ¬PAR(A), as required.
Axiom A31 states that if A has exactly one row and at least two columns, then

∑
(A) =

∑
(B) + A1c(A), where B is the matrix obtained from A by deleting the last entry in row

1. The string Y representing B differs in at most three bits from the string X representing
A. Two of these are in row 0, since the dimensions of A and B are different, and the third
possibility is X(1, c(A)) versus Y (1, c(A)), where the latter is always 0. Hence V 0(2) proves
the translation of the axiom using three applications of Lemma 4.2.

Axiom A32 states that if A has only one column, then
∑

(A) =
∑

(At). (See Section
4.1 for the definition of At, the transpose of A.) The translation is equivalent to

fc(A) = 1 ∧ isMatrix 2(A) ⊃ (PAR(A) ↔ PAR(B))

where B = Fϕ(1, fr(A)) is the term translating At. The more general statement obtained
by replacing the conclusion PAR(A) ↔ PAR(B)) by asserting roughly that the parity of the
first i rows of A equals the parity of the first i columns of B by induction on i, using Lemma
4.2. The precise statement takes into account the bit in row 0 of each matrix describing the
dimension of the matrix.

Axiom A33 asserts that if A has at least two rows and two columns, then
∑

(A) is the
the sum of the four submatrices pictured in (4.3). The translation asserts that the parity of
A is equivalent to the exclusive or of the parities of the four pieces. This is proved by double
induction, first by considering just the first i rows of both sides, and for the induction step,
to consider in addition the first j columns of row i+ 1.

Axiom A34 assert
∑

(A) = 0 in case A has 0 rows or 0 columns. Its translation is
easily proved.

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 23

Axiom A35 is → p(0, A) = Ir(A). The term p(0, A) is translated Fp(0, A), and the term
Ir(A) is translated Ftσ (fr(A), fr(A)), where t is the term cond(i = j, 1, 0) (see the definition
of Ik in Section 4.1). The symbol = in the axiom is really =matrix, so the translated axiom
asserts that the number of rows, number of columns, and entries of the translations of the
two matrix terms, are all respectively equal. Proving this amounts to verifying that all the
defined functions have their intended meanings.

Axiom A36 is → p(n+ 1, A) = p(n,A) ∗ A. The proof of the translation distinguishes
the two cases ¬isMatrix 2(A) and isMatrix 2(A). The former is easy, since both sides of the
equation translate into the zero by zero matrix. V⊕L proves the second case by induction
on n. Recall that p(n,A) is translated Fp(n,A), where Fp is defined in terms of Pow2,
which in turn is defined in terms of PowSeq2 (3.3), whose value is a sequence of successive
powers of its matrix argument. The induction proof involves verifying that the translated
lambda term defining matrix product in Section 4.1 correctly corresponds to the definition
(3.2) defining Prod2 in V⊕L.

4.3. Interpreting LAp into V#L. Now we interpret the underlying ‘field’ in the seman-
tics of LAp to be the ring Z of integers. Of course Z is not a field, so we cannot translate the
axiom A21 a 6= 0 → a ∗ (a−1) = 1 for field inverses. However according to the footnote on
page 283 of [SC04], this axiom is not used except in the proof of Lemma 3.1 and Theorem
4.1. We do not need Lemma 3.1, and it is not hard to see that Theorem 4.1 does hold for in-
tegral domains (the field inverse axiom can be replaced by the axiom a∗b = 0, a 6= 0 → b = 0
prohibiting zero divisors). It follows that LAp over integral domains proves the hard matrix
identities in Definition 1.3 and the equivalence of (i), (ii), and (iii) in Section 1. Thus our
interpretation of LAp into V#L will show that V#L proves both of these results, and so
Theorems 1.2 and 1.4 hold for V#L.

The interpretation of LAp into V#L is similar to the interpretation into V⊕L. We first
translate LAp into V#L, and then into V#L, using part (v) of Theorem 3.7. As before,
it suffices to show how to translate terms and atomic formulas, since general formulas and
sequents are translated by translating their atomic formulas. We do not translate terms or
formulas involving the field inverse function t−1.

We use tσ and ασ to denote the translation of LAp terms t and formulas α.
Terms of type index (which do not involve matrices) are translated into number terms

in exactly the same way as for V⊕L (see Section 4.2.1).
Terms of type field (integers) are now translated into strings representing integers in

binary, using the functions +Z and ×Z described in Section 3.2.
For t and u terms of type field in LAp we interpret:

24 S. COOK AND L. FONTES

LAp V#L

0field the empty string ∅
1field the string “10”, i.e., X such that X(i) ↔ i = 1
a Xa field variables map to string variables

t+field u tσ +Z uσ

t−field u tσ +Z (uσ)′ where (uσ)′ is identical to uσ, except
on the first bit

t ∗field u tσ ×Z uσ

condfield(α, t, u) F cond
ασ (tσ, uσ) where for each formula ϕ, define:

F cond
ϕ (X,Y) = Z ↔

(ϕ ∧X = Z) ∨ (¬ϕ ∧ Y = Z)

LAp terms T of type matrix are translated into string terms T σ representing arrays
of binary integers. As in the translation into V⊕L, if T has r rows and c columns, then
T σ(0, x) holds iff x = 〈r, c〉. For 1 ≤ i ≤ r and 1 ≤ j ≤ c, the binary integer entry Tij is
given by Row2(i, j, T

σ), where Row2 is defined in (2.3). We need a formula isMatrixZ(X)
asserting that X is a valid encoding of a matrix of integers. This is defined similarly to
isMatrix 2 for the translation into V⊕L.

The following table shows how to translate terms involving matrices.

LAp V#L

A A matrix variables map to string variables

r(T) f
#
r (T σ)

c(T) f
#
c (T σ)

e(T,m, n) Fe(m
σ, nσ, T σ)

∑
(T) F∑(T σ)

λij〈m,n, t〉 F
#
tσ (m

σ, nσ)

p(m,T) F
#
p (mσ, T σ)

The functions above with superscripts # are similar to their prototypes for the translation

into V⊕L. Thus f
#
r and f

#
c have the same definitions as fr and fc except isMatrix 2 is

replaced by isMatrixZ. The entry function Fe is defined by

Fe(i, j,X)(b) ↔ X(i, (j, b)) ∧ i > 0 ∧ j > 0 ∧ isMatrixZ(X)

The function F∑(X) sums the integer entries of the matrix X, and is defined in terms
of the iterated integer sum function SumZ(n, Y) mentioned in Section 3.2 (where Y is a
rearrangement of the integer entries of the matrix X to form a linear list).

The matrix term λij〈m,n, t〉 is interpreted by the V#L term F
#
tσ (m

σ, nσ). Here

F
#
tσ (x, y) has additional arguments corresponding to any free variables in tσ other than

the distinguished variables i, j. Its bit defining axiom is similar to that of F σ
t , used to

translate lambda terms into V⊕L.

F
#
tσ (x, y)(b) ↔

b = 〈0, 〈x, y〉〉 ∨ ∃i≤x ∃j≤y ∃k≤b
(
i > 0 ∧ j > 0 ∧ b = 〈i, 〈j, k〉〉 ∧ tσ(i, j)(k)

)

The function F
#
p interpreting matrix powering is defined similarly to Fp for the V⊕L case,

except that the functions Wrap and Strip need to be modified, Pow 2 is replaced by PowZ ,
and isMatrix 2 is replaced by isMatrixZ.

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 25

To complete the definition of the interpretation, we note that atomic formulas are
translated as in Section 4.2.4.

4.3.1. Provability is preserved.

Theorem 4.3. If LAp proves α1, . . . , αk → β1, . . . , βℓ and none of the formulas αi or βj
contains a term of the form t−1, then V#L proves ασ

1 , . . . , α
σ
k → βσ

1 , . . . , β
σ
ℓ , where now σ

refers to the translation of LAp into V#L.

Proof. As in the case for V⊕L, the proof involves showing that the translated axioms (with
the axiom prohibiting zero divisors replacing the field inverse axiom A21) are theorems of
V#L, and the translated rules preserve provability in V#L. (The proof for each axiom and
rule is similar to the proof for the case of V⊕L, except for the field axioms, which we discuss
below.) This shows that the translation Sσ of a theorem S of LAp is provable in V#L,
provided that the proof of S in LAp does not use the field inverse axiom A21. However
Theorem 4.3 makes a stronger claim, namely that the proof of S can use the original axiom
A21, provided that no term t−1 involving field inverses occurs in S. This holds because the
theorems S are quantifier-free (semantically the free variables are universally quantified).
Reasoning model-theoretically, if S holds for an arbitrary field, then it also holds for an
arbitrary integral domain, because the domain can be extended to a field (the field of
fractions).

The only LAp axioms whose translations in V#L require proof methods significantly
different than for V⊕L are the field axioms A18 to A26 (where we replace A21 a 6= 0 →
a∗(a−1) = 1 by the integral domain axiom a∗b = 0, a 6= 0 → b = 0). Showing that V#L (in

fact V TC0) proves the commutative, associative, and distributive laws for the operations
+Z and ×Z over the binary integers is tedious. This is not much different than proving that
the operations +N and ×N over binary natural numbers satisfy these laws. Some proof
outlines and hints for the latter can be found in Section IX.3.6 of [CN10].

5. Conclusion

There are two general motivations for associating theories with complexity classes. The
first is that of reverse mathematics [Sim99]: determining the complexity of concepts needed
to prove various theorems, and in particular whether the correctness of an algorithm can
be proved with concepts of complexity comparable to that of the algorithm. The second
motivation comes from propositional proof complexity: determining the proof lengths of
various tautology families in various proof systems. To explain these we start by stating
the following:

Open Problem 5.1. Can V⊕L prove the Cayley-Hamilton Theorem or the ‘hard matrix
identities’ (Definition 1.3) over Z2? Can V#L prove these over Z?

The importance of these questions stems partly from Theorem 1.2, which states that the
theories prove the equivalence of the Cayley-Hamilton Theorem and two other properties
of the determinant, and from Theorem 1.4, which states that the theories prove that the
Cayley-Hamilton Theorem implies the ‘hard matrix identities’. Theorems 1.2 and 1.4 follow
from the corresponding theorems in LAp (for which Open Questions 5.1 also apply), and
from our interpretations (Sections 4.2.5 and 4.3.1).

26 S. COOK AND L. FONTES

It is possible that these questions (Open Questions 5.1) could be answered positively
without answering the corresponding questions for LAp, by using methods not available
to LAp. For example a proof in V⊕L might be able to take advantage of the simplicity
of Z2, or a proof in V#L might be able use the algorithmic strength of integer matrix
powering (as opposed to matrix powering over an unspecified field) to prove correctness
of the dynamic programming algorithm for the determinant in [MV97]. This algorithm is
based on a combinatorial characterization of det(A) using clow (closed walk) sequences in
the edge-labeled graph specified by the matrix A.

Over the field Z2 the hard matrix identities translate naturally to a family of propo-
sitional tautologies (and over Z they translate into another family of tautologies). The
motivation for studying these identities is to give further examples of tautology families
(like those in [BBP94]) that might be hard for the class of propositional proof systems
known as Frege systems. There is a close connection between the strength of a theory
needed to prove these identities (or any ΣB

0 formula) and the strength of the propositional
proof system required for their propositional translations to have polynomial size proofs.
(Chapter 10 of [CN10] gives propositional proof systems corresponding in this way to five
of the theories in (1.4).)

In particular, the fact that the hard matrix identities are provable in V P shows that
their propositional translations have polynomial size proofs in Extended Frege systems.
If the identities were provable in V NC1 then the tautologies would have polynomial size
Frege proofs. If the identities turn out to be provable in one of our new theories, then
the tautologies would have polynomial size proofs in proof systems (yet to be defined) of
strength intermediate between Frege and Extended Frege systems.

Finally, we point out a lesser open problem. The main axiom for our new theory
V#L asserts that integer matrix powers exist, where integers are represented in binary. As
explained at the end of Section 2.3 integer matrix powering is complete for the complexity
class DET even when restricted to 0-1 matrices, because the binary case is AC0-reducible
to the 0-1 case. It would be interesting to investigate whether the nontrivial reduction (see
[Fon09]) can be proved correct in the base theory V TC0, so that V#L could equivalently
be axiomatized by the axiom for the 0-1 case rather than the binary case.

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 27

Appendix

Appendix A. Details of Lemma 3.3

Recall that in order to show that PowSeq⋆2 is ΣB
0 (L

2
A)-definable in V⊕L, we need to show

both:
PowSeq⋆2(b,W1,W2,X) = Y ↔ δPowSeq⋆

2
(b,W1,W2,X, Y)

and
V⊕L ⊢ ∀b∀X,W1,W2∃!Y δPowSeq⋆

2
(b,W1,W2,X, Y)

We introduce the AC0 functionsmax and S in order to simplify the definition of δPowSeq⋆
2

over V 0(2), and then use proposition 2.13 to obtain a provably equivalent ΣB
1 (L

2
A) formula.

Since V 0(2) is a conservative extension of V 0(2), this suffices to show that PowSeq⋆2 is
ΣB
1 (L

2
A)-definable in V⊕L. In order to do so, we must establish a ΣB

1 (LFAC0(2)) formula
equivalent to the desired formula δPowSeq⋆

2
.

Let the function max (n,W) yield the maximum number from a list of n numbers
encoded in string W :

max (n,W) = x ↔ ∃i < n∀j < n, x = (W)i ≥ (W)j

The string function S can be bit-defined as follows. Consider two strings W1, repre-
senting a list of b numbers, and X, representing a list of b matrices as above. The function
S(b,W1,X) returns the matrix with matrices Xi (appropriately padded with zeroes) on the
diagonal, and all other entries zero. Let m = max (b,W1). Let X

′
i be the m×m matrix Xi

padded with columns and rows of zeroes:

Xi

m−ni
︷ ︸︸ ︷

0 . . . 0

m− ni

0
...
0

. . .
...

. . .

. . . 0

Then S(b, Y1,X) is the string encoding the matrix:

X ′
0

X ′
2

0

0
. . .

X ′

b−1

All entries not in the matrices along the diagonal are 0.
The string function S can be bit-defined:

S(b,W1,X)(i, j) ↔ ∃a < b,∃i′, j′ < (W1)
a, i < m ∧ j < m ∧

i = i′ +m ∧ j = j′ +m ∧X [a](i′, j′)

By convention, the unspecified bits (i.e., bits b that are not pair numbers) are all zero. This
bit-definition ensures that the string S(b,W1,X)) is uniquely defined.

We will use this matrix S(b,W1,X) and the existence and uniqueness of its sequence
of matrix powers to show the existence and uniqueness of the aggregate matrix powering
function.

28 S. COOK AND L. FONTES

Let nmax denotemax (b,W1) and kmax denotemax (b,W2). Recall equation (3.3) defining
δPowSeq

2
(n, k,X). By convention, the aggregate function of PowSeq2 is defined as:

PowSeq⋆2(b,W1,W2,X) = Y ↔ |Y | < 〈b, 〈kmax, 〈nmax, nmax〉〉〉 ∧

∀j < |Y |,∀i < b,
[
(Y (j) ⊃ Pair(j)) ∧ δPowSeq2

((W1)
i, (W2)

i,X [i], Y [i])
]

(A.1)

The right-hand side of (A.1) is the relation δPowSeq⋆
2
(b,W1,W2,X, Y); it has a provably

equivalent ΣB
1 (L

2
A)-formula ∃Z < t, αPowSeq⋆

2
(b,W1,W2,X, Y, Z), used as the definition for

PowSeq⋆2 over V⊕L.
It remains to prove the existence and uniqueness for PowSeq⋆2(b,W1,W2,X). The func-

tions max and S allow for a straightforward proof based on the existence and uniqueness
of the string A = PowSeq2(b · nmax, kmax, S(b,W1,X)), where nmax = max (b,W1) and
kmax = max (b,W2).

We would like to define the string B = PowSeq⋆2(b,W1,W2,X) from A. Notice that B
encodes a list of strings, each of which represents a power of the matrix S(b,W1,X). The
string A encodes nearly the same information, but in a different format: A is a list of lists,
each of which encodes the powers of a matrix from the list X of matrices.

Observe that:

S(b,W1,X)i =

X ′
0

X ′
2

0

0
. . .

X ′

b−1

i

=

X ′i
0

X ′i
2

0

0
. . .

X ′i
b−1

Also,

X ′i
j =

Xi
j

m−nj

︷ ︸︸ ︷

0 . . . 0

m− nj

0
...
0

. . .
...

. . .

. . . 0

Thus we can “look up” the required powers of each matrix. Let A and B be shorthand:

A = PowSeq2(b · nmax, kmax, S(b,W1,X))

B = PowSeq⋆2(b,W1,W2,X)

Then we can define PowSeq⋆2 from PowSeq2 as follows.

B[m][p](i, j) ↔ m < b ∧ p ≤ (W2)
m ∧ i < (W1)

m ∧ j < (W1)
m ∧

∃m′ < m,m′ + 1 = m ∧A[p](nmax ·m
′ + i, nmax ·m

′ + j) (A.2)

Here, m represents the number of the matrix in the list X, p represents the power of matrix
Xm, and i and j represent the row and column; thus the formula above defines the bit
(Xp

m)(i, j) for all matrices Xm in the list X. By shifting around the pieces of this formula
and adding quantifiers for m, p, i, and j, it is clear that (A.2) can be translated into the
appropriate form for a ΣB

1 -definition of the graph of PowSeq⋆2.
Thus existence and uniqueness of PowSeq⋆2(b,W1,W2,X) follow from existence and

uniqueness of PowSeq2(b · nmax, kmax, S(b,W1,X). Since max and S are AC0 functions,
they can be used without increasing the complexity of the definition (again, by use of
proposition 2.13, as above).

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 29

Appendix B. Axioms for LAp

Here we use the abbreviations given at the end of Section 4.1, such as A + B,At etc. We
use Aij for e(A, i, j).
Equality Axioms

These are the usual equality axioms, generalized to apply to the three-sorted theory
LA. Here = can be any of the three equality symbols, x, y, z are variables of any of the three
sorts (as long as the formulas are syntactically correct). In A4, the symbol f can be any
of the nonconstant function symbols of LAp. However A5 applies only to ≤, since this in
the only predicate symbol of LAp other than =.

A1 → x = x

A2 x = y → y = x

A3 (x = y ∧ y = z) → x = z

A4 x1 = y1, ..., xn = yn → fx1...xn = fy1...yn
A5 i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2

Axioms for indices

A6 → i+ 1 6= 0
A7 → i ∗ (j + 1) = (i ∗ j) + i

A8 i+ 1 = j + 1 → i = j

A9 → i ≤ i+ j

A10 → i+ 0 = i

A11 → i ≤ j, j ≤ i

A12 → i+ (j + 1) = (i+ j) + 1
A13 i ≤ j, j ≤ i → i = j

A14 → i ∗ 0 = 0
A15 i ≤ j, i + k = j → j . i = k and i � j → j . i = 0
A16 j 6= 0 → rem(i, j) < j and j 6= 0 → i = j ∗ div(i, j) + rem(i, j)
A17 α → cond(α, i, j) = i and ¬α → cond(α, i, j) = j

Axioms for field elements

A18 → 0 6= 1 ∧ a+ 0 = a

A19 → a+ (−a) = 0
A20 → 1 ∗ a = a

A211 a 6= 0 → a ∗ (a−1) = 1
A22 → a+ b = b+ a

A23 → a ∗ b = b ∗ a
A24 → a+ (b+ c) = (a+ b) + c

A25 → a ∗ (b ∗ c) = (a ∗ b) ∗ c
A26 → a ∗ (b+ c) = a ∗ b+ a ∗ c
A27 α → cond(α, a, b) = a and ¬α → cond(α, a, b) = b

Axioms for matrices

1
A21 can be replaced by a ∗ b = 0, a 6= 0 → b = 0 for the purpose of proving Theorems 1.2 and 1.4.

30 S. COOK AND L. FONTES

Axiom A28 states that e(A, i, j) is zero when i, j are outside the size of A. Axiom A29

defines the behavior of constructed matrices. Axioms A30-A33 define the function Σ
recursively by first defining it for row vectors, then column vectors (recall At is the transpose
of A), and then in general using the decomposition (4.4). Finally, axiom A34 takes care of
empty matrices.

A28 (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j) → e(A, i, j) = 0
A29 → r(λij〈m,n, t〉) = m and → c(λij〈m,n, t〉) = n and

1 ≤ i, i ≤ m, 1 ≤ j, j ≤ n → e(λij〈m,n, t〉, i, j) = t

A30 r(A) = 1, c(A) = 1 → Σ(A) = e(A, 1, 1)
A31 r(A) = 1, 1 < c(A) → Σ(A) = Σ(λij〈1, c(A)− 1, Aij〉) +A1c(A)

A32 c(A) = 1 → Σ(A) = Σ(At)
A33 1 < r(A), 1 < c(A) → Σ(A) = e(A, 1, 1) + Σ(R(A)) + Σ(S(A)) + Σ(M(A))
A34 r(A) = 0 ∨ c(A) = 0 → ΣA = 0

Axioms for matrix powering

A352 → p(0, A) = Ir(A)

A36 → p(n+ 1, A) = p(n,A) ∗ A.

2This version is from page 45 of [SK01]

FORMAL THEORIES FOR LINEAR ALGEBRA ∗ 31

References

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES in P. Annals of Mathematics,
160:781–793, 2004.

[All04] Eric Allender. Arithmetic Circuits and Counting Complexity Classes. In Jan Krajicek, editor,
Complexity of computations and proofs, pages 33–72. Quaderni di Matematica, 2004.

[AO96] Eric Allender and Mitsunori Ogihara. Relationships Among PL, #L, and the Determinant.
RAIRO - Theoretical Informatics and Applications, 30:1–21, 1996.

[BBP94] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there Hard Examples for Frege Sys-
tems? In P. Clote and J. B. Remmel, editors, Feasible Mathematics II, pages 30–56. Birkhauser,
1994.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure and
Importance of Logspace-MOD Class. Mathematical Systems Theory, 25:223–237, 1992.

[Ber84] S. J. Berkowitz. On computing the determinant in small parallel time using a small number of
processors. Information Processing Letters, 18:147–150, 1984.

[BKR09] Mark Braverman, Raghav Kulkarni, and Sambuddha Roy. Space-Efficient Counting in Graphs
on Surfaces. Computational Complexity, 18:601–649, 2009.

[CF10] Stephen Cook and Lila Fontes. Formal Theories for Linear Algebra. In Computer Science Logic,
volume LNCS 6247, pages 245–259. Springer, 2010.

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge Uni-
versity Press, 2010. Draft available from URL http://www.cs.toronto.edu/~sacook.

[Coo85] S. A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Information and Control,
64:2–22, 1985.

[Fon] Lila Fontes. Interpreting LAp into V⊕L and V#L. Draft available at
www.cs.toronto.edu/~fontes.

[Fon09] Lila Fontes. Formal Theories for Logspace Counting. Master’s thesis, University of Toronto,
2009. Available at http://arxiv.org/abs/1001.1960.

[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.
[Jeř05] Emil Jeřábek. Weak pigeonhole principle, and randomized computation. PhD thesis, Faculty of

Mathematics and Physics, Charles University, Prague, 2005.
[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms, and Complexity.

Chicago Journal of Theoretical Computer Science, 5, 1997.
[Ngu08] Phuong Nguyen. Bounded Reverse Mathematics. PhD thesis, Department of Computer Science,

University of Toronto, 2008.
[SC04] Michael Soltys and S. A. Cook. The Proof Complexity of Linear Algebra. Annals of Pure and

Applied Logic, 130:277–323, 2004.
[Sim99] Stephen Simpson. Subsystems of Second Order Arithmetic. Springer, 1999.
[SK01] Michael Soltys-Kulinicz. The Complexity of Derivations of Matrix Identities. PhD thesis, Uni-

versity of Toronto, 2001.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. The complexity classes
	1.2. The theories VparityL and VnumberL
	1.3. The interpretations

	2. Two-Sorted Theories
	2.1. Two-sorted complexity classes
	2.2. Special functions
	2.3. The classes parityL and DET
	2.4. The Theories V0, V02, and VTC0

	3. The New Theories
	3.1. The Theory VparityL
	3.2. The Theory VnumberL

	4. Interpretations of LAP
	4.1. Defining LAP
	4.2. Interpreting LAP into VparityL
	4.3. Interpreting LAP into VnumberL

	5. Conclusion
	Appendix A. Details of Lemma 3.3
	Appendix B. Axioms for LAP
	References

