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Abstract. Reactive Turing machines extend classical Turing machines with a facility to
model observable interactive behaviour. We call a behaviour (finitely) executable if, and
only if, it is equivalent to the behaviour of a (finite) reactive Turing machine. In this paper,
we study the relationship between executable behaviour and behaviour that can be specified
in the π-calculus. We establish that every finitely executable behaviour can be specified in
the π-calculus up to divergence-preserving branching bisimilarity. The converse, however,
is not true due to (intended) limitations of the model of reactive Turing machines. That is,
the π-calculus allows the specification of behaviour that is not finitely executable up to
divergence-preserving branching bisimilarity. We shall prove, however, that if the finiteness
requirement on reactive Turing machines and the associated notion of executability is
relaxed to orbit-finiteness, then the π-calculus is executable up to (divergence-insensitive)
branching bisimilarity.

1. Introduction

In 2006, Jos Baeten initiated a research programme to explore and strengthen the connections
between the classical theory of automata and formal languages and concurrency theory, with
the aim to establish a unified theory. Such a unified theory should, in particular, upgrade
the classical theory of automata and formal languages with a treatment of interaction, and
reconsider standard notions and results modulo some form of bisimilarity instead of language
equivalence.

Thus, non-deterministic finite automata and pushdown automata, and their correspon-
dences with regular and context-free grammars were explored in the context of branching
bisimilarity [BCLT09]. The expressiveness of regular expressions modulo bisimilarity was
characterised [BCG07], and the expressiveness of extensions of regular expressions with
various forms of parallel composition were studied [BLMT16]. The latter culminated in a
concurrency-theoretic variant of Kleene’s theorem establishing the correspondence, modulo
bisimilarity, between finite automata and regular expressions extended with ACP-style
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parallel composition and encapsulation. Also, the idea that a pushdown automaton is a
finite automaton interacting with a stack was formalised [BCT08].

Finite automata and pushdown automata have a straightforward labelled transition
system semantics, and are therefore directly amenable to investigation from a concurrency-
theoretic perspective. Turing machines, on the other hand, are designed to compute
mathematical functions and not to exhibit interactive behaviour: the input for the computa-
tion is assumed to be present on the Turing machine tape at the start of the computation,
output is what is left on the tape after the computation, and the computation process itself
is deemed internal. To add interactivity, an extension of the Turing machine was proposed
that associates an action with every computation step [BLT13]. This so-called reactive
Turing machine does have a labelled transition system semantics and can be studied from a
concurrency-theoretic perspective.

In the same way as Turing machines have been used to define which functions are
effectively computable, reactive Turing machines can be used to define which processes can
be executed by a computing system. A process, mathematically modelled as a labelled
transition system, is executable if it is behaviourally equivalent to the labelled transition
system associated with a reactive Turing machine. Thus, reactive Turing machines provide a
way to characterise the absolute expressiveness of a process calculus, by determining to what
extent transition systems specified in the calculus are executable, and by determining to
what extent executable transition systems can be specified in the calculus. If it is possible to
specify every executable transition system in a process calculus, then we say that the process
calculus is behaviourally complete. Note that the behavioural equivalence is a parameter
of this method: if a process calculus is not behaviourally complete up to some fine notion
of behavioural equivalence (e.g., divergence-preserving branching bisimilarity), it may still
be behaviourally complete up to some coarser notion of behavioural equivalence (e.g., the
divergence-insensitive variant of branching bisimilarity). The entire spectrum of behavioural
equivalences (see van Glabbeek’s seminal paper [Gla93]) is at our disposal to draw precise
conclusions.

Expressiveness questions have received ample attention in concurrency theory, especially
in the context of the π-calculus (see, e.g., [Gor10, FL10]), but mostly pertaining to so-called
relative expressiveness: Is there a transformation of expressions of one calculus to expressions
of another calculus preserving certain behavioural properties? In this article, instead, we
consider the absolute expressiveness of the π-calculus using the tool of reactive Turing
machine.

Our first contribution, which was already announced in [LY15], is a characterisation of
the expressiveness of the π-calculus according to the method described above. We prove that
the π-calculus is behaviourally complete up to divergence-preserving branching bisimilarity:
every executable behaviour can be specified in the π-calculus up to divergence-preserving
branching bisimilarity [GW96, GLT09a], which is the finest behavioural equivalence discussed
in [Gla93]. Our proof explains how the behaviour of an arbitrary finite reactive Turing
machine can be simulated by a π-calculus expression. The specification consists of a
component that specifies the behaviour of the tape memory, and a component that specifies
the behaviour of the finite control of the reactive Turing machine under consideration. The
specification of the behaviour of the tape memory is generic and elegantly uses the link
mobility feature of the π-calculus.
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We also prove that the converse is not true: it is possible to specify, in the π-calculus,
transition systems that are not executable up to divergence-preserving branching bisimilarity.
We shall analyse the discrepancy and identify two causes.

The first cause is that the π-calculus presupposes an infinite supply of names, which
is technically essential both for the way input is modelled and for the way fresh name
generation is implemented. The infinite supply of names in the π-calculus gives rise to an
infinite alphabet of actions. The presupposed alphabet of actions of a finite reactive Turing
machine is, however, purposely kept finite. Allowing reactive Turing machines to have an
infinite alphabet of actions only makes sense if the reactive Turing machine also has infinitely
many states or infinitely many data symbols, and then, without any alternative restrictions
we get an unrealistically expressive model of executability. In fact, every countable transition
system is then executable up to divergence-preserving branching bisimilarity. We refer to
[Yan18, Section 6.1] for an elaboration.

The second cause is that the transition system associated with a π-calculus term may have
unbounded branching, even if it refers to only finitely many names. Transition systems with
unbounded branching are not executable up to divergence-preserving branching bisimilarity,
but unbounded branching behaviour can be simulated at the expense of sacrificing divergence
preservation. In [LY15], we proved that π-calculus processes referring to only finitely many
names are executable up to (the divergence insensitive variant of) branching bisimilarity.

Our second contribution is a refinement and generalisation of the aforementioned result
presented in [LY15] regarding the executability of the π-calculus. Building on the foundations
laid by Gabbay and Pitts on nominal techniques [GP02] and subsequent work by Bojańczyk
et al. on Turing machines with atoms [BKLT13], we propose a notion of orbit-finite reactive
Turing machine and orbit-finite executability. The components of an orbit-finite reactive
Turing machine (i.e., its sets of states, transitions, data symbols, action alphabet) are allowed
to be infinite, as long as they are finitely presentable. We argue that the π-calculus is
orbit-finitely executable up to branching bisimilarity.

The paper is organised as follows. In Section 2, the basic definitions of labelled transition
system, (divergence-preserving) branching bisimilarty, and reactive Turing machine are
recapitulated, and we also recall the syntax and operational semantics of the π-calculus
with replication. In Section 3, we prove that the π-calculus is behaviourally complete
modulo divergence-preserving branching bisimilarity: a finite specification of reactive Turing
machines in the π-calculus is proposed and verified. In Section 4, we discuss the orbit-finite
executability of transition systems associated with π-calculus processes. We define the notion
of orbit-finite reactive Turing machine and show that every π-calculus term can be simulated
up to the divergence insensitive version of branching bisimilarity. The paper ends with some
conclusions in Section 5.

2. Preliminaries

2.1. Labelled Transition System and Behavioural Equivalence. The transition sys-
tem is the central notion in the mathematical theory of discrete-event behaviour. It is
parameterised by a set A of action symbols, denoting the observable events of a system. We
shall later impose extra restrictions on A, e.g., requiring that it be finite or have a particular
structure, but for now we let A be just an arbitrary abstract set. We extend A with a
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special symbol τ , which intuitively denotes unobservable internal activity of the system. We
shall abbreviate A ∪ {τ} by Aτ .

Definition 2.1. An Aτ -labelled transition system is a triple (S,−→, ↑), where

(1) S is a set of states;
(2) −→ ⊆ S ×Aτ × S is an Aτ -labelled transition relation; and
(3) ↑ ∈ S is the initial state.

Let (S,−→, ↑) be an Aτ -labelled LTS. We shall usually write s a−→ t in lieu of (s, a, t) ∈ −→.
The set Reach(s) of states reachable from a state s is defined by

Reach(s) =

{s′ ∈ S | ∃n ≥ 0, s0, . . . , sn ∈ S, a1, . . . , an ∈ Aτ . s = s0
a1−−→ · · · an−−→ sn = s′} .

Transition systems can be used to give semantics to programming languages and process
calculi. The standard method is to first associate with every program or process expression
a transition system (its operational semantics), and then consider programs and process
expressions modulo one of the many behavioural equivalences on transition systems that have
been studied in the literature. In this paper, we shall use the notion of (divergence-preserving)
branching bisimilarity [GW96, Lut20], which is the finest behavioural equivalence discussed
in [Gla93], and also the coarsest behavioural equivalence that is a congruence for parallel
composition and preserves CTL∗−X formulas [GLT09b].

In the definition of (divergence-preserving) branching bisimilarity we need the following
notation: let −→ be an Aτ -labelled transition relation on a set S, and let a ∈ Aτ ; we write

s
(a)−−→ t for “s a−→ t or a = τ and s = t”. Furthermore, we denote the transitive closure of

τ−→ by −→+ and the reflexive-transitive closure of
τ−→ by −→∗.

Definition 2.2. Let T1 = (S1,−→1, ↑1) and T2 = (S2,−→2, ↑2) be transition systems. A
branching bisimulation from T1 to T2 is a binary relation R ⊆ S1 × S2 such that for all states
s1 and s2, s1 R s2 implies

(1) if s1
a−→1 s

′
1, then there exist s′2, s

′′
2 ∈ S2, such that s2 −→∗2 s′′2

(a)−−→ s′2, s1 R s′′2 and
s′1 R s′2;

(2) if s2
a−→2 s

′
2, then there exist s′1, s

′′
1 ∈ S1, such that s1 −→∗1 s′′1

(a)−−→ s′1, s′′1 R s2 and
s′1 R s′2.

The transition systems T1 and T2 are branching bisimilar (notation: T1 ↔b T2) if there
exists a branching bisimulation R from T1 to T2 s.t. ↑1R↑2.

A branching bisimulation R from T1 to T2 is divergence-preserving if, for all states s1

and s2, s1 R s2 implies

(3) if there exists an infinite sequence (s1,i)i∈N such that s1 = s1,0, s1,i
τ−→s1,i+1 and s1,i R s2

for all i ∈ N, then there exists a state s′2 such that s2 −→+ s′2 and s1,i R s′2 for some
i ∈ N; and

(4) if there exists an infinite sequence (s2,i)i∈N such that s2 = s2,0, s2,i
τ−→s2,i+1 and s1 R s2,i

for all i ∈ N, then there exists a state s′1 such that s1 −→+ s′1 and s′1 R s2,i for some
i ∈ N.

The transition systems T1 and T2 are divergence-preserving branching bisimilar (notation:
T1 ↔∆

b T2) if there exists a divergence-preserving branching bisimulation R from T1 to T2

such that ↑1R↑2.
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For two LTSs T1 = (S1,−→1, ↑1) and T2 = (S2,−→2, ↑2), s1 ∈ S1 and s2 ∈ S2, we write
s1 ↔b s2 (s1 ↔∆

b s2) if there is a (divergence-preserving) branching bisimilarity from T1 to
T2 relating s1 and s2. Thus, ↔b is a relation from the states of T1 to the states of T2, and
it can be shown that it satisfies the conditions of Definition 2.2. We can also write s1 ↔b s2

(s1 ↔∆
b s2) if s1 and s2 are states in a single LTS T and related by a (divergence-preserving)

branching bisimulation from T to itself.
The relations ↔b and ↔∆

b are equivalence relations, both as relations on a single
transition system, and as relations on a set of transition systems [Bas96, GLT09a].

Next we define the notion of bisimulation up to↔b. Note that we adapt a non-symmetric
bisimulation up to relation, which is a useful tool to establish branching bisimilarity later.

Definition 2.3. Let T1 = (S1,−→1, ↑1) and T2 = (S2,−→2, ↑2) be two transition systems.
A relation R ⊆ S1 × S2 is a bisimulation up to ↔b if, whenever s1 R s2, then for all a ∈ Aτ :

(1) if s1 −→∗ s′′1
a−→ s′1, with s1 ↔b s

′′
1 and a 6= τ ∨ s′′1 6↔b s

′
1, then there exists s′2 such that

s2
a−→ s′2, s′′1 ↔b◦R s2 and s′1 ↔b◦R s′2; and

(2) if s2
a−→ s′2, then there exist s′1, s

′′
1 such that s1−→∗ s′′1

a−→ s′1, s′′1 ↔b s1 and s′1 ↔b◦R s′2.

Lemma 2.4. If R is a bisimulation up to ↔b, then R ⊆ ↔b.

Proof. It is sufficient to prove that ↔b◦R is a branching bisimulation, since ↔b is reflexive.
Let s1 ↔b s2 R s3.

(1) Suppose s1
a−→ s′1. We distinguish two cases,

(a) If a = τ and s1 ↔b s
′
1, then s′1 ↔b s1 ↔b s2, so s′1 ↔b◦R s3.

(b) Otherwise, we have a 6= τ ∨ s1 6↔b s
′
1. Then according to Definition 2.2, there

exist s′′2 and s′2 such that s2 −→∗ s′′2
a−→ s′2, s1 ↔b s′′2 and s′1 ↔b s′2. Note that

s2 ↔b s1 ↔b s
′′
2, so by Definition 2.3, there exist s′′4, s′4 and s′3 such that s3

a−→ s′3
and s′′2 ↔b s

′′
4 R s3 and s′2 ↔b s

′
4 R s′3. Since s′1 ↔b s

′
2
↔b s

′
4 and s′4 R s′3, it

follows that s′1 ↔b◦R s′3.

(2) If s3
a−→s′3, then according to Definition 2.3, there exist s′′2 and s′2 such that s2−→∗s′′2

a−→s′2,

s′′2 ↔b s2 and s′2 ↔b◦R s′3. Since s1 ↔b s2 ↔b s′′2 and s′′2
a−→ s′2, by Definition 2.2,

there exist s′′1 and s′1 such that s1 −→∗ s′′1
(a)−−→ s′1 with s′′1 ↔b s

′′
2 and s′1 ↔b s

′
2. Since

s′′2 ↔b s2 R s3 and s′2 ↔b◦R s′3, it follows that s′′1 ↔b◦R s3 and s′1 ↔b◦R s′3.

Therefore, a branching bisimulation up to ↔b is included in ↔b.

2.2. Reactive Turing Machines and Executability. The notion of (finite) reactive
Turing machine (RTM) was put forward in [BLT13] to mathematically characterise which
behaviour is executable by a conventional computing system. In this section, we recall the
definition of RTMs and the ensued notion of executable transition system. The definition of
RTMs is parameterised by a set Aτ of action symbols and a set D of data symbols. We extend
D with a special symbol � /∈ D to denote a blank tape cell; the elements of D� = D ∪ {�}
are called tape symbols.

Definition 2.5. A reactive Turing machine (RTM) M is a tuple (S,D�,Aτ ,−→, ↑), where

(1) S is a set of states;
(2) D� is a set of tape symbols including the special symbol � denoting a blank tape cell;
(3) Aτ is a set of action symbols including the special symbol τ denoting an unobservable

event;
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(4) −→ ⊆ S×D�×Aτ ×D�×{L,R}×S is a (D�×Aτ ×D�×{L,R})-labelled transition

relation (we write s
a[d/e]M−−−−−−→ t for (s, d, a, e,M, t) ∈ −→); and

(5) ↑ ∈ S is a distinguished initial state.

An RTM is finite if the sets S, D� and Aτ are all finite.

Remark 2.6. The reactive Turing machines proposed in [BLT13] are finite by definition.
In Section 4 we wish to investigate a relaxation of the finiteness requirement, and therefore
it is convenient to provide a more general definition of the notion here. Until Section 4 all
RTMs are assumed to be finite, even if we do not explicitly say so.

Remark 2.7. The original definition of RTMs in [BLT13] includes an extra facility to
declare a subset of the states of an RTM as final states, and so does the associated notion of
executable transition system. In this paper, however, our goal is to explore the relationship
between the transition systems associated with RTMs and those that can be specified in the
π-calculus. Since the π-calculus does not include the facility to specify that a state has the
option to terminate, we leave it out from the definition of RTMs too.

Intuitively, the meaning of a transition s
a[d/e]M−−−−−−→ t is that whenever M is in state s,

and d is the symbol currently read by the tape head, then it may execute the action a, write
symbol e on the tape (replacing d), move the read/write head one position to the left or the
right on the tape (depending on whether M = L or M = R), and then end up in state t.

To formalise the intuitive understanding of the operational behaviour of RTMs, we
associate with every RTM M an Aτ -labelled transition system T (M). The states of T (M)
are the configurations of M, which consist of a state from S, its tape contents, and the
position of the read/write head. We denote by Ď� = {ď | d ∈ D�} the set of marked symbols;
a tape instance is a sequence δ ∈ (D�∪Ď�)∗ such that δ contains exactly one element of Ď�,
indicating the position of the read/write head. We adopt a convention to concisely denote
new placement of the tape head marker. Let δ be an element of D∗�. Then by δ< we denote

the element of (D� ∪ Ď�)∗ obtained by placing the tape head marker on the right-most
symbol of δ if δ is non-empty, and �̌ otherwise. Similarly >δ is obtained by placing the tape
head marker on the left-most symbol of δ if δ is non-empty, and �̌ otherwise.

Definition 2.8. Let M = (S,D�,Aτ ,−→, ↑) be an RTM. The transition system T (M)
associated with M is defined as follows:

(1) its set of states is the set ConfM = {(s, δ) | s ∈ S, δ a tape instance} of all configurations
of M;

(2) its transition relation −→ ⊆ ConfM ×Aτ × ConfM is the least relation satisfying, for
all a ∈ Aτ , d, e ∈ D� and δL, δR ∈ D∗�:

• (s, δLďδR) a−→ (t, δL
<eδR) iff s

a[d/e]L−−−−−→ t, and

• (s, δLďδR)
a−→ (t, δLe

>δR) iff s
a[d/e]R−−−−−→ t, and

(3) its initial state is the configuration (↑, �̌).

Turing introduced his machines to define the notion of effectively computable function
[Tur36]. By analogy, the notion of finite RTM can be used to define a notion of effectively
executable behaviour.

A transition system is (finitely) executable if it is the transition system associated with
some (finite) RTM. Usually, we shall be interested in executability up to some behavioural
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equivalence (e.g., the divergence-preserving or divergence-insensitive variant of branching
bisimilarity).

Definition 2.9. A transition system T is finitely executable up to branching bisimilarity if
there exists a finite RTMM such that T ↔b T (M). It is finitely executable up to divergence-
preserving branching bisimilarity if there exists a finite RTM M such that T ↔∆

b T (M).

2.3. π-Calculus. The π-calculus was proposed by Milner, Parrow and Walker in [Mil92]
as a language to specify processes with link mobility. The expressiveness of many variants
of the π-calculus has been extensively studied. In this paper, we shall consider the basic
version presented in [SW01], excluding the match prefix. We recapitulate some definitions
from [SW01] below and refer to the book for detailed explanations.

We presuppose a countably infinite set N of names; we use strings of lower case letters
for elements of N . The prefixes, processes and summations of the π-calculus are, respectively,
defined by the following grammar:

π := x y | x(z) | τ (x, y, z ∈ N )

P := M | P | P | (νz)P | !P

M := 0 | π.P | M +M .

In x(z).P and (νz)P , the displayed occurrence of the name z is binding with scope P . An
occurrence of a name in a process is bound if it is, or lies within the scope of, a binding
occurrence in P ; otherwise it is free. We use fn(P ) to denote the set of names that occur
free in P , and bn(P ) to denote the set of names that occur bound in P . We write P =α Q if
P and Q are α-convertible, i.e., if Q can be obtained from P by a finite number of changes
of bound names (see [SW01] for details).

We define the operational behaviour of π-processes by means of the structural operational
semantics in Table 1, in which α ranges over the set of actions of the π-calculus

Aπ = {x y, x y, x (z) | x, y, z ∈ N} ∪ {τ} . (2.1)

The rules in Table 1 define on π-terms an Aπ-labelled transition relation −→. Then, we
can associate with every π-term P an Aπ-labelled transition system T (P ) = (SP ,−→P , P ).
The set of states SP of T (P ) consists of all π-terms reachable from P , the transition relation
−→P of T (P ) is obtained by restricting the transition relation −→ defined by the structural
operational rules to SP (i.e., −→P = −→ ∩ (SP ×Aπ × SP )), and the initial state of T (P ) is
the π-term P .

For convenience, we sometimes want to abbreviate interactions that involve the trans-
mission of no name at all, or more than one name. Instead of giving a full treatment of the
polyadic π-calculus (see [SW01]), we define the following abbreviations, assuming w 6∈ fn(P )
in both:

x 〈y1, . . . , yn〉.P
def
= (νw)xw.w y1. · · ·w yn.P , and

x(z1, . . . , zn).P
def
= x(w).w(z1). · · ·w(zn).P .

Divergence-preserving branching bisimilarity is not a congruence with respect to π-
calculus parallel composition and restriction, due to subtle issues regarding free and bound
names stemming from scope extrusion. In the remainder of this section we introduce several
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(Tau)
τ.P τ−→ P

(Out)
xy.P

xy−−→ P
(Inp)

x(y).P xz−−→ P{z/y}

(Sum-l)
P α−→ P ′

P +Q
α−→ P ′

(Alpha)
P α−→ P ′

Q
α−→ P ′

P =α Q

(Par-l)
P α−→ P ′

P |Q α−→ P ′ |Q
bn(α) ∩ fn(Q) = ∅ (Rep-act)

P α−→ P ′

!P
α−→ P ′ | !P

(Comm-l)
P

xy−−→ P ′ Q
xy−−→ Q′

P |Q τ−→ P ′ |Q′
(Close-l)

P
x(z)−−−→ P ′ Q xz−−→ Q′

P |Q τ−→ (νz)(P ′ |Q′)
z /∈ fn(Q)

(Res)
P α−→ P ′

(νz)P
α−→ (νz)P ′

z /∈ α (Open)
P xz−−→ P ′

(νz)P
x(z)−−−→ P ′

z 6= x

(Rep-comm)
P

x y−−→ P ′, P
x y−−→ P ′′

!P τ−→ (P ′ | P ′′) | !P
(Rep-close)

P
x (z)−−−→ P ′, P x z−−→ P ′′

!P τ−→ (νz)(P ′ | P ′′) | !P

Table 1: The operational rules for the π-calculus; the symmetric variants (Par-r), (Comm-r)
and (Close-r) of the rules (Par-l), (Comm-l) and (Close-l), respectively, have
been omitted for conciseness.

P1 + (P2 + P3) ≡ (P1 + P2) + P3 P1 | (P2 | P3) ≡ (P1 | P2) | P3

P1 + P2 ≡ P2 + P1 P1 | P2 ≡ P2 | P1

P + 0 ≡ P P | 0 ≡ P

(νz)(νw)P ≡ (νw)(νz)P (νz)(P1 | P2) ≡ P1 | (νz)P2 (if z /∈ fn(P1))
(νz)0 ≡ 0 !P ≡ P | !P

Table 2: The axioms of structural congruence.

technical tools that we shall use in our proof that the π-calculus is behaviourally complete
up to divergence-preserving branching bisimilarity in Section 3.

Structural congruence, denoted by ≡, is the least congruence on π-terms satisfying the
axioms in Table 2. The following lemma establishes that structurally congruent π-terms are
divergence-preserving branching bisimilar.

Lemma 2.10. For all π-terms P and Q, if P ≡ Q, then P ↔∆
b Q.
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Proof. Using the Harmony Lemma [SW01, Lemma 1.4.15] it is straightforward to establish
that ≡ is a divergence-preserving branching bisimulation, from which the lemma immediately
follows.

Another useful tool in arguments establishing divergence-preserving branching bisimilar-
ity will be the notion of deterministic internal computation.

Definition 2.11. Let P and P ′ be π-temrs. Then P has a deterministic internal computation
to P ′ (notation: P  P ′) if there exist π-terms P0, . . . , Pn such that P = P0

τ−→ · · · τ−→Pn =

P ′ and for every π-term Pi (1 ≤ i < n) it holds that Pi
α−→ P ′i implies α = τ and P ′i = Pi+1.

All π-terms on a deterministic internal computation are divergence-preserving branching
bisimilar, and

Lemma 2.12. Let P and P ′ be π-terms. If P  P ′, then for all z1, . . . , zn ∈ N and for all
π-terms Q it holds that (νz1, . . . , zn)(P |Q) ↔∆

b (νz1, . . . , zn)(P ′ |Q).

We say that a π-term P has reachable bound output if there exist π-terms P0, . . . , Pn, P
′,

actions α1, . . . , αn ∈ Aπ and names x, z ∈ N such that

P = P0
α1−−→ · · · αn−−→ Pn

x (z)−−−→ P ′ .

Lemma 2.13. Let P1, P2, Q1 and Q2 be π-terms without reachable bound output. If
P1 ↔∆

b Q1 and P2 ↔∆
b Q2, then P1 | P2 ↔∆

b Q1 |Q2.

Let P be a π-term and let z ∈ N . We say that P eventually outputs z if there exist π-terms
P0, . . . , Pn, P

′, actions α1, . . . , αn ∈ Aπ and a name x ∈ N such that

P = P0
α1−−→ · · · αn−−→ Pn

x z−−→ P ′ .

Lemma 2.14. Let P and Q, and let z ∈ N be such that neither P nor Q eventually outputs
z. If P ↔∆

b Q, then (νz)P ↔∆
b (νz)Q.

3. The π-Calculus is Behaviourally Complete

In the previous section, we have introduced the π-calculus as a language to specify behaviour
of systems with link mobility, and we have proposed RTMs to define a notion of executable
behaviour. In this section we prove that every executable behaviour can be specified in the
π-calculus up to divergence-preserving branching bisimilarity. To this end, we associate with
every RTM M a π-term P that simulates the behaviour of M up to divergence-preserving
branching bisimilarity, that is, T (M)↔∆

b T (P ).
The structure of our specification is illustrated in Figure 1. In this figure, each node

represents a parallel component of the specification, each labelled arrow stands for a
communication channel, with the arrow pointing from sender to receiver. The dashed lines
represent links between cells that are achieved by instantiating parameters with the same
name. The equalities on arrows and dashed lines indicate identifications that will thus be
made; for instance, the equality ti−1 = li indicates that the parameter t of the process
Ci−1 will be instantiated with the same name as the parameter l of the process Ci. The
specification consists of a generic finite specification of the behaviour of a tape (parallel
components Hk, Bl,k, Ck, Br,k in Figure 1), and a finite specification of a control process
that is specific for the RTM M under consideration (parallel component S in Figure 1). We
first discuss the generic specification of the tape in Section 3.1, then we discuss how to add
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a suitable control process specific for M in Section 3.2 proving that M is simulated by the
parallel composition of the two parts.

Bl,m−1 Cm . . . Ci−1 Ci Ci+1 . . . Cn Br,m+1

Hi

S

tm−1 = lm ti−1 = li ri = ti+1 rn = tm+1

ti

read write, left, right

ui

ti−1 = li ri = ti+1

Figure 1: Specification of an RTM utilizing the linking structure of the π-calculus

3.1. Tape. In [BBK87], the behaviour of the tape of a Turing machine is finitely specified
in ACPτ making use of finite specifications of two stacks. That specification is not easily
modified to take intermediate termination into account, and therefore, in [BLT13], an
alternative solution is presented, specifying the behaviour of a tape in TCPτ by using a
finite specification of a queue (see also [BBR10]). In this paper, we will exploit the link
passing feature of the π-calculus to give a more direct specification. In particular, we shall
model the tape as a collection of cells endowed with a link structure that organises them in
a linear fashion.

We first give an informal description of the behaviour of a tape. The state of a tape is
characterised by a tape instance δLďδR, consisting of a finite (but unbounded) sequence of
data with the current position of the tape head indicated byˇ. The tape may then exhibit
the following observable actions:

(1) read d: the datum under the tape head is output along the channel read;
(2) write(e): a datum e is written on the position of the tape head, resulting in a new tape

instance δLěδR; and
(3) left, right: the tape head moves one position left or right, resulting in δL

<dδR or δLd
>δR,

respectively.

Henceforth, we assume that tape symbols are included in the set of names, i.e., that
D� ⊆ N .

In our π-calculus specification of the behaviour of a tape, each individual tape cell is
specified as a separate component, and there is a separate component modelling the tape
head. A tape cell stores a datum d, represented by a free name in the specification, and it
has pointers l and r to its left and right neighbour cells. Furthermore, it has two links to
the component modelling the tape head: the link u is used by the tape head for updating
the datum, and the link t serves as a general communication channel for communicating all
relevant information about the cell to the tape head.

The following π-term represents the behaviour of a tape cell:

C
def
= c(t, l, r, u, d).C(t, l, r, u, d)

C(t, l, r, u, d)
def
= u(e).c〈t, l, r, u, e〉.0 + t〈l, r, u, d〉.c〈t, l, r, u, d〉.0 .
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A cell is created by a synchronisation on name c, by which all relevant information about
the cell is passed; we shall have a component !C facilitate the generation of new incarnations
of existing tape cells. Note that the behaviour of an individual tape cell C(t, l, r, u, d) is
as follows: either it receives along channel u an update e for its datum d, after which it
recreates itself with datum e in place of d; or it outputs all relevant information about itself
(i.e., the links to its left and right neighbours, its update channel u, and the stored datum
d) to the tape head along channel t, after which it recreates itself. The following lemma,
which is a straightforward consequence of the definition of C and the operational rules of
the π-calculus, expresses that recreation proceeds via a deterministic internal computation.

Lemma 3.1. (νc)(c〈t, l, r, u, d〉.0 | !C) ≡ (νc)(C(t, l, r, u, d) | !C)

At any moment, the number of tape cells will be finite. To model the unbounded nature
of the tape, we define a process B that serves to generate new blank tape cells on either
side of the tape whenever needed:

B
def
= bl(t, r). (νu, l)Bl(t, l, r, u) + br(t, l). (νu, r)Br(t, l, r, u)

Bl(t, l, r, u)
def
= t〈l, r, u,�〉.bl〈l, t〉.c〈t, l, r, u,�〉.0

Br(t, l, r, u)
def
= t〈l, r, u,�〉.br〈r, t〉.c〈t, l, r, u,�〉.0 .

Note that B offers the choice to either create a blank tape cell at the left-hand side of
the tape through Bl(t, l, r, u), or a blank tape cell at the right-hand side of the tape through
Br(t, l, r, u). In the first case, suppose the original leftmost cell has the channels to and lo, for
itself and its left neighbour, respectively, then for the new cell, we have t = lo and r = to, in
order to maintain the links to its neighbour. Moreover, at the creation of the new blank cell,
two new links are created too: u is the update channel of the new blank cell, and l will later
be used as the link to generate another cell. Thus, an extra blank cell is generated on the
left through bl〈l, t〉.0 and the original blank cell on the left is promoted to a regular cell by
c〈t, l, r, u,�〉.0. In the second case, a symmetrical procedure is implemented by Br(t, l, r, u).

Lemma 3.2. We have

(νbl, br, c)(bl〈l, t〉.c〈t, l, r, u,�〉.0 | !B | !C)

 ≡ (νbl, br, c, u
′, l′)(Bl(l, l

′, t, u′) | C(t, l, r, u,�) | !B | !C)

and

(νbl, br, c)(br〈r, t〉.c〈t, l, r, u,�〉.0 | !B | !C)

 ≡ (νbl, br, c, u
′, r′)(Br(r, t, r

′, u′) | C(t, l, r, u,�) | !B | !C)

Throughout the simulation of an RTM, the number of parallel components modelling
individual tape cells will grow. We shall presuppose a numbering of these parallel components
with consecutive integers from some interval [m,n] (m and n are integers such that m ≤ n),
in agreement with the link structure. The numbering is reflected by a naming scheme
that adds the subscript i to the links t, l, r, u and d of the ith cell (m ≤ i ≤ n). We
abbreviate C(ti, li, ri, ui, di) by Ci(di), and Bl(ti, li, ri, ui) and Bl(ti, li, ri, ui) by Bl,i and

Br,i, respectively. Let ~d[m,n] = dm, dm+1, . . . , dn−1, dn; we define:

Cells[m,n](~d[m,n])
def
= (νbl, br, c)(Bl,m−1 | Cm(dm) | · · · | Cn(dn) |Br,n+1 | !C | !B) .
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The component modelling the tape head serves as the interface between the tape cells
and the RTM-specific control process. It is defined as:

H
def
= h(t, l, r, u, d).H(t, l, r, u, d)

H(t, l, r, u, d)
def
= read d.h〈t, l, r, u, d〉.0 + write(e).u e.h〈t, l, r, u, e〉.0

+ left.l(l′, r′, u′, d′).h〈l, l′, r′, u′, d′〉.0
+ right.r(l′, r′, u′, d′).h〈r, l′, r′, u′, d′〉.0 .

The tape head maintains two links to the current cell (a communication channel t and an
update channel u), as well as links to its left and right neighbour cells (l and r, respectively).
Furthermore, the tape head remembers the datum d in the current cell. The datum d may
be output along the read-channel. Furthermore, a new datum e may be received through
the write-channel, which is then forwarded through the update channel u to the current cell.
Finally, the tape head may receive instructions to move left or right, which has the effect of
receiving information about the left or right neighbours of the current cell through l or r,
respectively. In all cases, a new incarnation of the tape head is started, with a call on the
h-channel.

Lemma 3.3. (νh)(h〈t, l, r, u, d〉.0 | !H) ≡ (νh)(H(t, l, r, u, d) | !H)

Let ~t[m,n] = tm, tm+1, . . . , tn−1, tn, let ~u[m,n] = um, um+1, . . . , un−1, un, and let Hi(di) =
H(ti, li, ri, ui, di); we define

Tapei[m,n](
~d[m,n])

def
= (ν~t[m−1,n+1], ~u[m,n])((νh)(Hi(di) | !H) | Cells[m,n](~d[m,n])) .

We shall write P a−→ ↔∆
b P ′ for “there is a P ′′ such that P

a−→ P ′′ and P ′′ ↔∆
b P ′”.

Lemma 3.4. Tapei[m,n](
~d[m,n])

α−→ T ′ if, and only if, at least one of the following holds:

(1) α = read di and T ′ ↔∆
b Tapei[m,n](

~d[m,n]), or

(2) α = write e and T ′ ↔∆
b Tapei[m,n](d[m,i−1], e, d[i+1,n]), or

(3) α = left , i > m and T ′ ↔∆
b Tapei−1

[m,n](
~d[m,n]), or

(4) α = left , i = m and T ′ ↔∆
b Tapei−1

[m−1,n](�,
~d[m,n]), or

(5) α = right , i < n and T ′ ↔∆
b Tapei+1

[m,n](
~d[m,n]), or

(6) α = right , i = n and T ′ ↔∆
b Tapei+1

[m,n+1](
~d[m,n],�).

Proof. The component Cells[m,n](~d[m,n]) of Tapei[m,n](
~d[m,n]) only admits interactions on the

channels ~t[m−1,n+1] and ~u[m,n], which are restricted in Tapei[m,n](
~d[m,n]). Hence, the only

transitions afforded by Tapei[m,n](
~d[m,n]) are those faciliated by the component Hi(di), from

which it is clear that α = read di, α = write e, α = left , or α = right . After each of these
transitions, the component Hi(di) initiates deterministic internal computations of one or
more parallel components:

If α = read di, then, note that, up to structural congruence, T ′ is obtained from

Tapei[m,n](
~d[m,n]) by replacing the component Hi(di) by h〈ti, li, ri, ui, di〉.0. Since

(νh)(h〈ti, li, ri, ui, di〉.0 | !H) ≡ (νh)(H(ti, li, ri, ui, di) | !H) ,

by Lemma 3.3, it follows by Lemma 2.12 that T ′ ↔∆
b Tapei[m,n](

~d[m,n]).
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If α = write e, then, note that, up to structural congruence, T ′ is obtained from

Tapei[m,n](
~d[m,n]) by replacing the component Hi(di) by u e.h〈ti, li, ri, ui, e〉.0. Then, u e inter-

acts with Cells[m,n](~d[m,n]) to update di to e, giving rise to a deterministic internal commu-

nication T ′  T ′′. Moreover, T ′′ is obtained from Tapei[m,n](d[m,i−1], e, d[i+1,n]) by replacing

the component Hi(e) by h〈ti, li, ri, ui, e〉.0 and the component Ci(di) by c〈ti, li, ri, ui, e〉.0.
Since, by Lemma 3.1,

(νc)(c〈ti, li, ri, ui, e〉.0 | !C) ≡ (νc)(C(ti, li, ri, ui, e) | !C) ,

and, by Lemma 3.3,

(νh)(h〈ti, li, ri, ui, e〉.0 | !H) ≡ (νh)(H(ti, li, ri, ui, e) | !H) ,

it follows by Lemma 2.12 that T ′′ ↔∆
b Tapei[m,n](d[m,i−1], e, d[i+1,n]), and hence

T ′′ ↔∆
b Tapei[m,n](d[m,i−1], e, d[i+1,n]) .

If α = left or α = right then the arguments are similar as above, using also Lemma 3.2
if i = m or i = n, respectively.

3.2. Finite control. We associate with every RTM M = (SM,D�,Aτ ,−→M, ↑M) a finite
specification of its control process. Here m can be either left or right.

S
def
=

∑
s∈SM

s.
∑
d∈D�

d.Ss,d

Ss,d
def
=

∑
(s,d,a,e,m,t)∈−→M

a.write e.m.read(f).t.f .0

We define

Controls,d
def
= Ss,d | !S .

The following lemma characterises the behaviour of the control process.

Lemma 3.5. Let M = (SM,D�,Aτ ,−→M, ↑M) be an RTM. Then

Controls,d
a−→ write e−−−−−→ m−−→ read f−−−−→  ≡ Controlt,f .

if and only if (s, d, a, e,m, t) ∈ −→M.

Given an RTM M, we associate with every configuration (s, δLďδR) a π-term Ms,δLďδR
,

consisting of a parallel composition of the specifications of its tape instance and con-
trol process. Let ~s = s1, s2, . . . , sm ∈ SM, let ~e = e1, e2, . . . , en ∈ D�, and let ~r =
read,write, left, right; we define

Ms,δLďδR
= (ν~e,~s, ~r)(Controls,d | Tapei[m,n](

~d[m,n])), where ~d[m,n] = δLďδR .

The following lemma establishes that Ms,δLďδR
simulates the execution steps of the RTM in

the configuration (s, δLďδR).
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Lemma 3.6. Given an RTM M = (SM,D�,Aτ ,−→M, ↑M), for every configuration
(s, δLďδR), we have

Ms,δLďδR

a−→ ↔∆
b Mt,δ′Lf̌ δ

′
R

if and only if there is a transition (s, δLďδR)
a−→ (t, δ′Lf̌ δ

′
R).

Proof. On the one hand, if Ms,δLďδR

a−→ ↔∆
b Mt,δ′Lf̌ δ

′
R

, then

Controls,d
a−→ write e−−−−→ m−−→ read f−−−−→  ≡ Controlt,f ,

so by Lemma 3.5, (s, d, a, e,m, t) ∈ −→M.

On the other hand, if (s, δLďδR)
a−→ (t, δ′Lf̌ δ

′
R), then (s, d, a, e,m, t) ∈ −→M. Hence, by

Lemma 3.5, we have

Ms,δLďδR

a−→ (ν~e,~s, ~r)(write e.m.read(f).t.f .0 | !S | Tapei[m,n](
~d[m,n])) = M ′ .

It then remains to prove that M ′ ↔∆
b Mt,δ′Lf̌ δ

′
R

.

To this end, first note that by Lemma 3.4, we get

M ′  ≡ (ν~e,~s, ~r)(m.read(f).t.f .0 | !S | T ′) ,

where T ′ ↔∆
b Tapei[m,n](dm, . . . , di−1, e, di+1, . . . , dn), so by Lemmas 2.10, 2.12, 2.13 and 2.14

M ′ ↔∆
b

(ν~e,~s, ~r)(m.read(f).t.f .0 | !S | Tapei[m,n](dm, . . . , di−1, e, di+1, . . . , dn)) = M ′′ .

Then, again by Lemma 3.4, we get

M ′′  ≡ (ν~e,~s, ~r)(read(f).t.f .0 | !S | T ′′) ,

where T ′′ ↔∆
b Tapej[m,n](dm, . . . , di−1, e, di+1, . . . , dn) and j = i− 1 if m = left and j = i+ 1

if m = right. So, by Lemmas 2.10, 2.12, 2.13 and 2.14,

M ′′ ↔∆
b

(ν~e,~s, ~r)(read(f).t.f .0 | !S | Tapej[m,n](dm, . . . , di−1, e, di+1, . . . , dn)) = M ′′′ .

Then, with another application of Lemma 3.4, we get

M ′′′  ≡ (ν~e,~s, ~r)(t.f .0 | !S | T ′′′) ,

where T ′′′ ↔∆
b Tapej[m,n](dm, . . . , di−1, e, di+1, . . . , dn). So, by Lemmas 2.10, 2.12, 2.13 and

2.14,

M ′′′ ↔∆
b (ν~e,~s, ~r)(t.f .0 | !S | Tapej[m,n](dm, . . . , di−1, e, di+1, . . . , dn)) = M ′′′′ .

And finally,

M ′′′′  ≡Mt,δ′Lf̌ δ
′
R
,

where δ′Lfδ
′
R = dm, . . . , di−1, e, di+1, . . . , dn.

Theorem 3.7. For every RTM M, we have that T (M↑,�̌) ↔∆
b T (M).
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Proof. Let M = (S,D�,Aτ ,−→′, ↑), let i /∈ Aτ , and let M′ = (S,D�,Aτ ,−→′, ↑) be the
RTM obtained from M by replacing all τ -transitions by i-transitions. Clearly, T (M) is
isomorphic to T (M′) up to a renaming of i to τ . Hence, in order to prove that T (M↑,�̌)↔∆

b

T (M), it suffices to prove that T (M ′↑,�̌)↔∆
b T (M′), where M ′↑,�̌ is the π-term associated

with (↑, �̌) given M′.
Using Lemma 3.6 it is straightforward to establish that the relation

R′= {(M ′
s,δLďδR

, (s, δLďδR)) | s ∈ S, δL, δR ∈ D∗�, ď ∈ Ď�}

is a branching bisimulation up to↔b. So, by Lemma 2.4, it follows that T (M ′↑,�̌)↔b T (M′).
It remains to show that divergence is preserved too.
Note that there is no τ -transition in M′, which means T (M′) has no divergence. Then,

by Lemma 3.6, the specification of a certain configuration M ′
s,δLďδR

can only do a-labelled

transitions, where a ∈ A ∪ {i}, i.e.

M ′
s,δLďδR

a−→M ′ ↔∆
b M ′

t,δ′Lf̌ δ
′
R
.

Since there is no τ transition from the term M ′
t,δ′Lf̌ δ

′
R

, it follows that M ′ has no divergence

either. Hence, no π-term reachable from M ′
s,δLďδR

admits a divergence, and therefore we

have,

T (M ′↑,�̌)↔∆
b T (M′) .

Finally, we switch back to M, by changing all the i labelled transition to τ , and we let
M↑,�̌ be the specification of the initial state of M. We can also establish that the relation

R= {(Ms,δLďδR
, (s, δLďδR)) | s ∈ S, δL, δR ∈ D∗�, ď ∈ Ď�} .

is a branching bisimulation up to↔b. Moreover, note that every infinite sequence of the form
i−→−→∗ i−→−→∗ · · · from M ′↑,�̌ corresponds with a infinite sequence of the form i−→ i−→ · · ·

from M′, and vice versa. Additionally, there is no divergence from M ′↑,�̌. Therefore, every

infinite τ -labelled transition sequence from M↑,�̌ corresponds with an infinite τ -labelled

transition sequence from M. We conclude that R ⊆ ↔∆
b .

Thus we have the following expressiveness result for the π-calculus.

Corollary 3.8. The π-calculus is behaviourally complete up to divergence-preserving branch-
ing bisimilarity.

4. On the Executability of the π-Calculus

We have proved that every executable behaviour can be specified in the π-calculus modulo
divergence-preserving branching bisimilarity. We shall now investigate to what extent
behaviour specified in the π-calculus is executable. Recall that we have defined executable
behaviour as behaviour of an RTM. So, in order to prove that the behaviour specified by
a π-term is executable, we need to show that the transition system associated with this
π-term is behaviourally equivalent to the transition system associated with some RTM.

Note, however, that there is a mismatch between the formalisms of RTMs and π-calculus.
On the one hand, the notion of RTM as we have defined it in Section 2.1 presupposes finite
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sets Aτ and D� of actions and data symbols, and also the transition relation of an RTM is
finite. As a consequence, the transition system associated with an RTM is finitely branching,
and, in fact, its branching degree is bounded by a natural number. (Note that this does
not mean that RTMs cannot deal with data of unbounded size; it only means that it has to
be encoded using finitely many symbols.) The π-calculus, on the other hand, presupposes
an infinite set of names by which an infinite set of actions Aπ is generated. Furthermore,
the transition system associated with a π-term by the structural operational semantics
(see Table 1) may contain states with an infinite branching degree, even modulo branching
bisimilarity, due to the rules for input prefix and bound output prefix.

From the assumption that the set of actions and the transition relation of an RTM
must be finite it immediately follows that there are π-terms that cannot be simulated. The
following example illustrates that it is not enough to relax just those two requirements.
Example 4.1. Consider the π-term P = x(y).y y.0. According to (Inp) (see Table 1), P

affords, for every z ∈ N , a transition P xz−−→ z z.0, and since z z.0 z z−−→0 is the only transition
of z z.0, it follows that z′ z′.0 6↔b z′′ z

′′.0 if z′ 6= z′′.
Now suppose that M = (S,D�,Aτ ,−→, ↑) is an RTM, except that we allow its set of

actions to be the infinite set Aπ and also we allow its transition relation to be infinite, and
assume that T (M)↔b T (P ).

Let C = (↑, �̌) be the initial configuration of M. We have C ↔b P , so C affords, for
every z ∈ N , a transition sequence

C −→∗ x z−−→ −→∗ Cz z z−−→ C ′z ,

with Cz ↔b z z.0 and C ′z ↔b 0.

The transition rules of RTMs are of the form s
a[d/e]M−−−−−−→ t, where s, t ∈ S, and d, e ∈ D�;

we call the pair (s, d) the trigger of this rule. A configuration (s′, δLď′δR) satisfies the trigger

(s, d) if s = s′ and d = d′. Now observe that a rule s
a[d/e]M−−−−−−→ s′ gives rise to an a-transition

from every configuration satisfying its trigger (s, d). Since S and D� are finite, there are
finitely many triggers.

So, in the infinite collection of configurations Cz (z ∈ N ), there are at least two
configurations, say Cz′ and Cz′′ with z′ 6= z′′, satisfying the same trigger (s, d); these

configurations must have the same outgoing transitions. It follows that Cz′
z′′ z′′−−−−→C ′′z′ , which

contradicts Cz′ ↔b z′ z
′.0. We conclude that T (M) 6↔b T (P ).

The example illustrates that it is not enough, for the simulation modulo branching
bisimilarity of π-terms, to relax the finiteness restriction on the set of actions and the
transition relation. We should also allow the set of states S or the set of data sybols D� to
be infinite. Simply lifting the finiteness requirement on either yields a notion of RTM that is
arguably too expressive: in both cases, every countable transition system can be simulated
up to divergence-preserving branching bisimilarity [Yan18, Section 6.1]. The transition
system associated with a π-term is clearly countable if the set of names N is countable.

Following the work of Bojańczyk, Klin, Lasota, and Toruńczyk [BKLT13], we consider in
this section a more modest relaxation of the finiteness requirements on RTMs. We propose
orbit-finite RTMs and an associated notion of orbit-finite executability, and then we prove
that every π-term can be simulated up to branching bisimilarity by an orbit-finite RTM.
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4.1. Orbit-Finite Executability. The notion of orbit-finite executability that we introduce
below is based on the notion of orbit-finite set proposed in [BKL11]. Below, we briefly recap
the definitions; we refer to [Boj19] for an extensive treatment and elaborate explanations.

Let A be a countably infinite set of atoms. We denote by Sym(A) the group of all
permutations on A, and denote by id the neutral element of Sym(A). An action of Sym(A)
on a set X is a binary operation · : Sym(A) ×X → X such that id · x = x for all x ∈ X
and πρ · x = π · (ρ · x) for all π, ρ ∈ Sym(A) and x ∈ X. The symbol · will often be omitted.
For the sets with atoms appearing in the remainder of this paper, · will always be specified
in the expected manner: the elements are denoted by expressions involving atoms and, for
every element x it is assumed that π · x is obtained by replacing every atom a occurring in
the expression denoting x by π(a).

A set A ⊆ A supports an element x ∈ X if for all π ∈ Sym(A) such that π(a) = a for all
a ∈ A it holds that πx = x. If for all x ∈ X there exists a finite set Ax ⊆ A that supports x,
then X is called a nominal set.

An action of Sym(A) on X induces an equivalence relation ∼ on X, defined by x ∼ y
if, and only if, there exists π ∈ Sym(A) such that π · x = y. The equivalence relation ∼
partitions X into equivalence classes called orbits, and X is orbit-finite if ∼ partitions X
into finitely many orbits.

Definition 4.2. A reactive Turing machine (S,D�,Aτ ,−→, ↑) is orbit-finite if S, D�, Aτ
and −→ are orbit-finite nominal sets. A transition system is orbit-finitely executable if it is
the transition system associated with some orbit-finite reactive Turing machine.

4.2. The π-Calculus is Orbit-Finitely Executable. To prove that the π-calculus is
orbit-finitely executable up to branching bisimilarity, we should establish that for every
π-term P0 there exists an orbit-finite RTM Sim(P0) such that T (P0)↔b T (Sim(P0)). The
RTM Sim(P0) will be orbit-finite with respect to a set of atoms A that consists of the set N
of names of the π-calculus, i.e., we assume

A = N .

We shall define Sim(P0) as the union of several smaller RTMs that take care of specific
aspects of the simulation; we shall refer to these smaller RTMs as fragments of Sim(P0).
Before we proceed to describe these fragments in detail, we first give a broad overview of the
fragments we need. In the overview we assume that π-terms, transitions and derivations of
transitions can be stored on the tape of the RTM; this will also be discussed in more detail
below.

Initialise: By design, an RTM starts with an empty tape, while for the simulation it is
convenient to assume that (an encoding of) the π-term representing the current state
is written on tape. The purpose of the initialise fragment Init(P0) is to write an
encoding of P0, the π-term to be simulated, on tape.

Generate transition: It is assumed that the generate fragment Gen starts executing with the
encoding of an arbitrary π-term P stored on tape. Its purpose is then to generate (the
encoding of) a transition that is derivable according to the operational semantics of
the π-calculus and has P as source. This is achieved by non-deterministically writing
an arbitrary sequence of symbols on tape, and then verifying whether the sequence
encodes a derivation of a transition and whether this transition has P as source. If so,
then the generate transition fragment erases everything from the tape except for the
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encoding of the derived transition and proceeds with the execute transition fragment
described next; if not, then it erases the generated sequence of symbols and restarts
the transition generation fragment with the same π-term on tape.

Execute transition: It is assumed that the execute fragment Exec starts executing with the
encoding of a transition P

α−→ P ′ written on the tape. Its purpose is to execute the
associated action and thereafer leave only the target P ′ of the transition on the tape,
returning to the generate transition fragment.

Note that only the Init(P0) fragment will be specific for every π-term P0. The fragments
Gen and Exec are generic; their behaviour depends on their initial tape contents. We proceed
to first define the sets D and A associated with Sim(P0), and then discuss the definitions of
the three fragments in more detail.

Orbit-finite sets of data and action symbols. We let the set of data symbols D of Sim(P0)
consist of the set of π-calculus names N , extended with two finite sets of symbols Dπ and
Daux. To store a π-term on the tape of an RTM, we use the symbols in N and

Dπ = { , (, ), τ,0, .,+, |, ν, !} ,
writing x on the tape as x. The symbols in Daux will serve as auxiliary symbols in
computations; we assume thatDaux at least includes the symbols #, 〈, 〉, −, >, ∴, [, and
]. The sets Dπ and Daux are assumed to be mutually disjoint and also disjoint from N ,
and they are assumed to have been constructed using standard set-theoretic methods, not
involving atoms. We have

D = Dπ ∪N ∪ Daux .

The orbits of D are N and all the singleton subsets of Dπ and Daux, so D has |Dπ|+1+ |Daux|
orbits. Hence D and clearly also D� are orbit-finite. Trivially, every π-term P can be specified
with a sequence of symbols from D; for clarity of presentation, we shall distinguish a π-term
P from its specification as a sequence of symbols from D writing dP e for the latter.

The set of action symbols Aτ of Sim(P0) will be the set of all π-calculus actions given
the set of names N (see Equation 2.1), i.e.,

Aτ = {x y, x y, x (z) | x, y, z ∈ N} ∪ {τ} .
Note that x1 y1 ∼ x2 y2 if, and only if, either x1 = y1 and x2 = y2, or x1 6= y1 and
x2 6= y2. Hence, the set {x y | x, y ∈ N} has two orbits, and, by similar reasoning, so do
{x y | x, y ∈ N} and {x (z) | x, z ∈ N}. It follows that Aτ has seven orbits in total, and
hence is orbit-finite. Clearly, every π-calculus action α can be specified on tape using the
symbols in D; we denote this sequence by dαe.

Initialise. The initialise fragment Init(P0) = (SInit(P0),D�,Aτ ,−→Init(P0), ↑Init(P0)) should

simply write the encoding dP0e of P0 on the tape. This is straightforward: Let n = |dP0e|, and
assume dP0e = d0 · · · dn. We define SInit(P0) = {↑Init(P0), s0, . . . , sn, ↑Gen}. The execution of

Init(P0) starts with a transition

↑Init(P0)
τ [�/d0]R−−−−−−→Init(P0) s0 ,

has for every 0 ≤ i < n a transition of the form

si
τ [�/di]R−−−−−−→Init(P0) si+1 ,
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and ends with a transition

sn
τ [�/#]R−−−−−−→Init(P0) ↑Gen .

The latter transition marks the end of the sequence dP0e on the tape with the symbol #,
and its target is the initial state ↑Gen of the generate fragment Gen. Since both SInit(P0)

and −→Init(P0) are finite and D� and Aτ are orbit-finite, it follows that Init(P0) is an
orbit-finite RTM.

Generate transition. The generate transition fragment Gen = (SGen,D�,Aτ ,−→Gen, ↑Gen)
starts with the sequence of symbols dP e# written on tape and the tape head positioned on
the first blank immediately to the right of the sequence. The purpose of the fragment is to
compute a transition P

α−→ P ′, specified on tape as a sequence 〈dP e−dαe>dP ′e〉. To this
end, Gen will non-deterministically generate a sequence of symbols in D\{#} followed by #,
and subsequently checks whether the sequence between the two # symbols on tape encodes
a derivation of a transition of the form P α−→ P ′.

Generating a sequence of symbols is straightforward: it requires only two states ↑Gen
and ↑Check and transitions

↑Gen
τ [�/d]R−−−−−−→Gen ↑Gen (d ∈ D\{#})

and

↑Gen
τ [�/#]R−−−−−−→Gen ↑Check .

Note that, since D is orbit-finite and hence also D\{#} is orbit-finite, there are orbit-finitely
many transitions of the first type. So, this part of Gen is clearly orbit-finite.

The verification procedure, which starts in ↑Check is tedious, but straightforward given
the operational semantics. We shall refrain from specifying it in detail and only comment
on the subprocedures that need to be carried out by this fragment, and argue that they are
orbit-finite. First, however, we need to explain how a derivation can be (uniquely) encoded
as a sequence of symbols from D − {#}. We adopt the convention that (sub)derivations are
included in square brackets and the conclusion of a (sub)deriviation is preceded with the
symbol ∴. For instance, the derivation

(Res)

(Comm-l)

(Out)

x z.0 x z−−→ 0
(Inp)

x(y).0 x z−−→ 0

x z.0 | x(y).0 τ−→ 0 | 0
(νz)(x z.0 | x(y).0)

τ−→ (νz)(0 | 0)

is specified on tape as

[[[∴ 〈 xz.0− xz>0〉][∴ 〈x(y).0−xz>0〉]∴ 〈 xz.0|x(y).0−τ>0|0〉]
∴ 〈(νz)( xz.0|x(y).0)−τ>(νz)(0|0)〉] .

To verify whether a sequence of symbols from D\{#} indeed encodes a derivation, Gen
implements a procedure consisting of the following steps:

(1) Check whether the occurrences of the symbols [, ∴ and ] between the two occurrences of
the symbol # on the tape represent a tree structure. If so, then continue to the next
step; otherwise, remove all symbols to the right of the left-most occurrence of the symbol
# and return to ↑Gen.
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(2) Check whether all sequences of symbols between subsequent occurrences of ∴ and ]
encode transitions. If so, then continue to the next step; otherwise, remove all symbols
to the right of the left-most occurrence of the symbol # and return to ↑Gen.

(3) Check whether all individual inferences of the represented derivation are instances of a
rule of the operational semantics (see Table 1). If so, then continue to the next step;
otherwise, remove all symbols to the right of the left-most occurrence of the symbol #
and return to ↑Gen.

(4) Check whether the sequence of symbols that constitutes the source of the right-most
transition, i.e., the conclusion of the derivation specified on tape, matches the sequence
dP e preceding the left-most occurrence of # on the tape. If so, then erase everything
except the transition 〈dP e−dαe>dP ′e〉 from the tape and transition to ↑Exec. Otherwise,
remove all symbols to the right of the left-most occurrence of the symbol # and return
to ↑Gen.

The computations described in first two steps of the procedure can be done without any
special consideration of individual names. The parts of Gen implementing these steps have
finitely many states and orbit-finitely many transitions. Step 4 can be implemented as a
simple comparison procedure: the sequence of symbols to the left of the left-most # must
be compared to the sequence of symbols representing the source of the right-most transition.
Such a comparison can be done by comparing one symbol at a time, but it will involve
remembering that symbol in a state. Hence this part of Gen will require an infinite set of
states and an infinite set of transitions, which can, however, both be partitioned into finitely
many Dπ ∪N -indexed orbits.

The implementation of step 3 is computationally more involved. We discuss, for each of
the operational rules in Table 1 (see p. 8), what needs to be done:

(Tau): It needs to be checked that there are no premises (i.e., immediately left of the ∴
symbol there is the [ symbol). Furthermore, it needs to be checked that the source
of the transition is a τ prefix (i.e., starts with the symbols τ and .), that the label of
the transition is τ (i.e., the symbols − and > there is only the symbol τ), and that
the operand of the prefix is equal to the target of the transition (i.e., the sequence
of symbols between the symbol . and the symbol − is identical to the sequence of
symbols between > and 〉).

(Out): It needs to be checked that there are no premises. Furthermore, it needs to be
checked that the source of the transition is of the form x y.P , that the label of the
transition is x y and that the target of the transition is P .

(Inp): It needs to be checked that there are no premises. Futhermore, it needs to be checked
that the source of the transition is of the form x(y).P , that the label of the transition
is x z for some arbitrary name z ∈ N , and that the target is obtained from P by
substituting all free occurrences of y in P by z. The latter operation can, e.g., be
carried out by remembering the pair (y, z) in states and carrying out a symbol-wise
comparison in which the symbol y must be matched by z rather than y, except while
in the scope of a y-binding construct x(y) or (νy). The part of Gen that takes care of
the comparison has finitely many (y, z)-indexed orbits.

(Sum-l): It needs to be checked that there is one premise, that the source of the conclusion
is of the form P +Q, that P is the source of the premise, that the labels of the premise
and the conclusion are identical, and so are the targets of the source and the premise.

(Sum-r): Analogous to (Sum-l).
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(Alpha): It needs to be checked that there is one premise, that the target of the premise is
identical to the target of the conclusion, and that the source of the premise and the
source of the conclusion are α-convertible. The latter could, e.g., be implemented as a
variation on the comparison procedure with a renaming operation built-in (cf. also
[Pit16, Section 4]). Whenever, during the comparison of dP e and dQe, a binder, say
x(y1) in dP e and x(y2) in dQe or (νy1) in dP e and (νy2) in dQe, is encountered, then
(1) a name z is determined that is fresh for both the remainders of dP e and dQe,
(2) all occurrences of y1 in the remainder of dP e and all occurences of y2 in the

remainder of dQe are replaced by z, and
(3) the comparison continues.
Note that generating a name that is fresh with respect to some sequence of symbols
on tape can be achieved by non-deterministically writing an arbitrary name on tape
and subsequently checking whether the name already occurs in the sequence or not. If
it does occur, then the name is not fresh for the sequence and the procedure must be
repeated. If it does not occur, then the name is fresh for the sequence.

(Par-l): It needs to be checked that there is one premise. Furthermore, it needs to be
checked that the source of the conclusion is of the form P |Q, that P is the source of
the premise, that the labels of the premise and the conclusion are identical, and that
the target of the conclusion is the parallel composition of the target of the premise and
Q. Finally, it should be checked that the side condition bn(α) ∩ fn(Q) = ∅ is satisfied.
To this end, a sequence of all free names occurring in Q should be compiled and then
it should be checked whether the bound name of α does not occur in that sequence.

(Par-r): Analogous to (Par-l).
(Comm-l): It needs to be checked that there are two premises. Futhermore, it needs to be

checked that the source of the conclusion is of the form P |Q, that P is the source of
the first premise, that Q is the source of the second premise, and that the target of
the conclusion is the parallel composition of the targets of the premises. Finally, it
needs to be checked that the label of the first premise is x y and the label of the second
premise is x y for some names x, y ∈ N , and that the label of the conclusion is τ .

(Comm-r): Analogous to (Comm-l).
(Close-l): It needs to be checked that there are two premises. Furthermore, it needs to be

checked that the source of the conclusion is of the form P |Q, that P is the source of
the first premise, that Q is the source of the second premise, and that the target of the
conclusion is of the form (νz)(P ′ |Q′), where P ′ and Q′ are the targets of the premises.
It also needs to be checked that the label of the first premise is x (z), for some x ∈ N ,
that the label of the second premise is x z, and that the label of the conclusion is τ .
Finaly, it should be checked that z /∈ fn(Q), by first compiling the sequence of names
with a free occurrence in Q and then checking whether z appears in the sequence.

(Close-r): Analogous to (Close-l).
(Res): It needs to be checked that there is one premise. Furthermore, it needs to be checked

that the source of the conclusion is of the form (νz)P , that P is the source of the
premise, that the target is (νz)P ′ where P ′ is the target of the conclusion, that the
labels of the premise and the conclusion are identical, and that the name z does not
appear in α.

(Open): It needs to be checked that there is one premise. Furthermore, it needs to be
checked that the source of the conclusion is of the form (νz)P , that P is the source
of the premise, and that the targets of the premise and the conclusion are identical.
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Finally, it needs to be checked that the label of the premise is x z for some names
x 6= z, and that the label of the conclusion then is x (z).

(Rep-comm): It needs to be checked that there are two premises. Furthermore, it needs to
be checked that the source of the conclusion is of the form !P , that the source of both
premises is P , and that the target of the conclusion is the parallel composition of, on
the one hand, the parallel composition of the targets of the premises and, on the other
hand, !P . Finally, it needs to be checked that the label of the first premise is x y for
some names x, y ∈ N , that the label of the second premise is then x y, and that the
label of the conclusion is τ .

(Rep-close): It needs to be checked that there are two premises. Furthermore, it needs to
be checked that the source of the conclusion is of the form !P , that the source of both
premises is P , and that the target of the conclusion is a restriction (νz) applied to a
parallel composition of, on the one hand, the parallel composition of the targets of the
premises and, on the other hand, !P . Finally, it needs to be checked that the label of
the first premise is x (z) for some name x ∈ N , that the label of the second premise is
x z, and that the label of the conclusion is τ .

In step 3, Gen applies, for every individual inference, the procedures associated above
with the operational rules of the π-calculus one after the other until either one of them
succeeds or it has been determined that none of them succeeds. In the first case, all symbols
to the right of the left-most occurrence of the symbol # are removed and Gen returns to
↑Gen. In the second case, Gen proceeds with the next individual inference.

All transitions associated with Gen are deemed internal, i.e., are labelled with τ . More-
over, from every state of Gen at least one of ↑Gen and ↑Exec is reachable.

Execute transition. The execute transition fragment Exec = (SExec,D�,Aτ ,−→Exec, ↑Exec)
starts with the encoding of a transition 〈dP e−dαe>dP ′e〉 written on the tape; we assume
that the tape head is positioned on the first symbol of dαe. The initial state ↑Exec admits
the following transition sequences:

↑Exec
τ [τ/τ ]R−−−−−→Exec sτ

τ [>/>]R−−−−−−→Exec cnt ,

↑Exec
τ [x/x]R−−−−−→Exec s

x
in

τ [y/y]R−−−−−→Exec s
x,y
in

x y[>/>]R−−−−−−−→Exec cnt (x, y ∈ N ) , and

↑Exec
τ [ / ]R−−−−−→Exec sout

τ [x/x]R−−−−−→Exec s
x
out (x ∈ N ) .

From the states sxout we need to distinguish two possible continuations, depending on whether
α represents a regular or a bound output:

sxout
τ [y/y]R−−−−−→Exec s

x,y
out

x y[>/>]R−−−−−−−→Exec cnt (x, y ∈ N ) ,

and

sxout
τ [(/(]R−−−−−→Exec t

x τ [z/z]R−−−−−→Exec t
x,z τ [)/)R]−−−−−→Exec s

x,z
bout

x (z)[>/>]R−−−−−−−−→Exec cnt (x, z ∈ N ) .

In the state cnt an internal (i.e., τ -labelled) deterministic continue procedure is started
which ensures that the contents of the tape is dP ′e#. The last transition of this procedure
leads to ↑Gen with the tape head positioned on the first blank immediately to the right of
the sequence.
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Furthermore, for every s ∈ {sτ} ∪ {sx,yin , s
x,y
out | x, y ∈ N} ∪ {s

x,z
bout | x, z ∈ N}, Exec

includes a transition

s
τ [>/>]R−−−−−−→Exec abrt .

In the state abrt an internal (i.e., τ -labelled) deterministic abort procedure is started which
serves to restore the contents of the tape to dP e# leading to the state ↑Gen with the tape
head positioned on the first blank immediately to the right of the sequence. It is necessary
to have this abort procedure to ensure that the (non-deterministic) choice for this particular
transition is made upon its actual execution and not before. At the same time, note that the
abort procedure introduces divergence into the simulation: ↑Gen affords a non-empty sequence
of τ -transitions to abrt , which, in turn, affords a non-empty sequence of τ -transitions back
to ↑Gen.

From the descriptions above, which are parameterised in at most two names, it is
clear that the part of Exec transitions leading up to the action execution is orbit-finite.
Furthermore, the continue and abort procedures do not give any special treatment to
individual elements of N (names are either skipped or erased), so these procedures require
finitely many states and orbit-finitely many transitions.

We now define Sim(P0) as the union of the three fragments Init(P0), Gen and Exec,
i.e.,

Sim(P0) = (SInit(P0)∪SGen∪SExec,D�,Aτ ,−→Init(P0)∪−→Gen∪−→Exec, ↑Init(P0)) .

(We assume that ↑Gen is shared between all three fragments and ↑Exec is shared between the
fragmens Gen and Exec, but otherwise the sets of states of the three fragments are disjoint.)
We now have the following theorem.

Theorem 4.3. For every π-term P there exists an orbit-finite reactive Turing machine
Sim(P0) such that T (P0) ↔b T (Sim(P0)).

Proof. We have already argued that for every P0 there exists an orbit-finite RTM Sim(P0).
It remains to establish a branching bisimulation R from T (P0) to T (Sim(P0)) such that
P0 R (↑Init(P0), �̌).

We first introduce the following notations

(1) Init(P0, �̌) denotes the set of all configurations reachable from (↑Init(P0), �̌);

(2) for every P reachable from P0 in T (P0), Gen(P ) denotes the set of all configurations
reachable from (↑Gen, dP e#�̌) in T (Sim(P0)).

(3) for every P reachable from P0 in T (P0), Exec(P ) denotes the set of all configurations that
are either on a path from (↑Exec, 〈dP e−dα̌e>dP ′e) to a configuration (s, 〈dP e−dαe>̌〉)
(with s ∈ {sτ} ∪ {sx,yin , s

x,y
out | x, y ∈ N} ∪ {s

x,z
bout | x, z ∈ N}) or on a path from

(abrt , 〈dP e−dα̌e>dP̌ ′e〉) to (↑Gen, dP e#�̌); and
(4) for every P ′ reachable from P0 in T (P0), Exec′(P ′) denotes the set of all configurations

that are on a path from (cnt , 〈dP e−dαe>dP̌ ′e〉 to (↑Gen, dP ′e#�̌).

We can now define the relation R by

R = {(P0, c) | c ∈ Init(P0, �̌)} ∪
{(P, c) | P reachable from P0 in T (P0), c ∈ Gen(P ) ∪ Exec(P )} ∪

{(P ′, c) | P ′ reachable from P0 in T (P0), c ∈ Exec′(P ′)} .
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From (↑Init(P0), �̌) there is a deterministic internal computation leading to (↑Gen, dP e#�̌)
and P0 is related according to R to all intermediate states of this internal computation.
The fragments Gen and Exec have been designed such that all configurations in Gen(P ) and
Exec(P ) are reachable from the configuration (↑Gen, dP e#�̌) by τ -transitions and, moreover,
from all those configurations the configuration (↑Gen, dP e#�̌) is reachable by τ -transitions.
It follows that Gen(P ) ∪ Exec(P ) is a so-called τ -cluster: every configuration is reachable
from every other configuration and the only exits from the cluster are the transitions of the
form

(s, 〈dP e−dαe>̌dP ′e〉) α−→ (c, 〈dP e−dαe>dP̌ ′e〉)
(s ∈ {sτ} ∪ {sx,yin , s

x,y
out | x, y ∈ N} ∪ {s

x,z
bout | x, z ∈ N}) .

Note that these transitions simulate and are simulated by transitions P α−→ P ′. Finally, we
have that from (c, 〈dP e−dαe>dP̌ ′e〉) there is a deterministic internal computation leading
to (↑Gen, dP ′e#�̌), which concludes the argument that R is a branching bisimulation.

Corollary 4.4. The π-calculus is orbit-finitely executable modulo branching bisimilarity.

5. Conclusions

Milner already established in [Mil92] that the π-calculus is computationally complete, by
exhibiting an encoding of the λ-calculus in the π-calculus by which every reduction in the λ-
calculus is simulated by a sequence of reductions in the π-calculus. We have established that
the π-calculus is behaviourally complete up to divergence-preserving branching bisimilarity,
which is the finest reasonable notion of behavioural equivalence [Gla93]. This implies that the
π-calculus is also behaviourally complete up to the weaker notions of behavioural equivalence
usually used in the context of the π-calculus [SW01]. Interestingly, the proof does not rely
on recursion and the finite specification of a queue, as does the proof in [BLT13] that the
process calculus TCPτ is behaviourally complete. Instead, the specification of finite RTMs
in the π-calculus uses replication and link mobility to directly specify a tape process. An
alternative specification of finite RTMs in a process calculus without recursion is presented in
[BLY17], which, instead of replication, uses iteration and nesting operators [BBP94, BP01],
and also relies on a sequencing operator [BLB19].

Our specification of the behaviour of an RTM seems to make essential use of all the
constructions of the π-calculus. Interesting future work would be to consider the various
subcalculi of the π-calculus and determine to what extent these are behaviourally complete.
It could then also be worthwhile to consider deterministic reactive Turing machines. Another
interesting approach to simulate reactive Turing machines in the π-calculus could proceed
via a universal process of the latter [Fu17].

We have also established that the π-calculus is orbit-finitely executable up to branching
bisimilarity, by associating with every π-calculus process an orbit-finite RTM that simulates
it. The simulation is non-deterministic and introduces divergence. We leave it as an open
problem whether there exists a simulation that does not introduce divergence and proves
that the π-calculus is executable up to divergence-preserving branching bisimilarity. It is
established in [BLT13] that every boundedly branching computable transition system is
finitely executable up to divergence-preserving branching bisimilarity and that every effective
transition system is finitely executable up to the divergence-insensitive variant of branching
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bisimilarity. Similar general characterisations of the notion of orbit-finite executability may
be needed for solving the aforementioned open problem.

The generic specification of the behaviour of a Turing machine tape, presented in
Section 3.1, does not rely on a finiteness assumption regarding the set of tape symbols; in
fact, any π-calculus name can be stored on tape. The specification of the control process
of an RTM in Section 3.2, however, does essentially rely on the RTM having finitely many
states, finitely many tape symbols and finitely many action symbols, for it has summations
indexed by the sets of states, tape symbols and transitions of the RTM to be simulated. Thus,
orbit-finite RTMs can be simulated by a variant of the π-calculus that allows summations
indexed by orbit-finite sets. We conjecture that, on the one hand, infinite summations are
essential for a simulation up to divergence-preserving branching bisimilarity, whereas, on the
other hand, up to the divergence-insensitive variant of branching bisimilarity they are not.
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