
Logical Methods in Computer Science
Volume 17, Issue 1, 2021, pp. 18:1–18:20
https://lmcs.episciences.org/

Submitted Jul. 10, 2017
Published Mar. 02, 2021

COMPLETE CALL-BY-VALUE CALCULI OF CONTROL

OPERATORS, II: STRONG TERMINATION

RYU HASEGAWA

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku,
Tokyo 153-8914, Japan
e-mail address: ryu@ms.u-tokyo.ac.jp

Abstract. We provide characterizations of the strong termination property of the CCV
(complete call-by-value) λµ-calculus introduced in the first part of this series of papers.
The calculus is complete with respect to the standard continuation-passing style (CPS)
semantics. The union-intersection type system for the calculus was developed in the first
paper. We characterize the strong normalizability of the calculus in terms of the CPS
semantics and typeability.

Introduction

This is the second half of a series of papers. In the first part, we proposed a call-by-value
λµ-calculus, called the CCV λµ-calculus, which is complete for the continuation-passing style
(CPS) semantics [Has15]. Furthermore, we proposed the union-intersection type discipline.
Among others, we verified the following:
(1) A term M terminates with respect to the call-by-value evaluation if and only if its CPS

translation [[M]] is solvable.
(2) A term M is weakly normalizing if and only if its CPS translation [[M]] is weakly

normalizing.
(3) A term M terminates with respect to the call-by-value evaluation if and only if M is

typeable.
(4) A term M is weakly normalizing if and only if M is typeable where the typing judgment

of M contains neither empty intersection nor empty union.

The theme of the second part is to further exntend these results. We give characterizations
of the strong termination property. Specifically, we show that

(5) M is strongly normalizing if and only if its CPS translation [[M]] is strongly normalizing.
(6) M is strongly normalizing if and only if M is typeable using empty intersection or empty

union nowhere.
After a brief introduction to the CCV λµ-calculus and its type system containing union and
intersection, we first verify the strong termination of a fragment in §2.1 as an intermediate
step. Employing this result, we verify (6) in Thm. 2.30 and (5) in Thm. 2.31 in §2.2.

Key words and phrases: λµ-calculus, control operators, call-by-value, normalization, type discipline.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(1:18)2021
© Ryu Hasegawa
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

18:2 Ryu Hasegawa Vol. 17:1

An essential idea behind our calculus is a departure from the conventional demand that
terms be freely generated by syntactic grammars. An analogy is found in arithmetic. We
frequently use expressions such as 3 + 5 + 7. When we calculate it (or implement a calculator
on a computer), we forcibly interpret the expression as either (3 + 5) + 7 or 3 + (5 + 7) and
perform the calculation. However, strictly distinguishing between the two cases presents
little advantage for humans to understand the essence of arithmetic. We positively use the
expression 3 + 5 + 7 as an amalgamation of two types of bracketed expressions, or even as a
sum of three numbers. This type of intended ambiguity helps us process arithmetic flexibly.
In the same vein, we introduce ambiguity in the constructors of call-by-value calculus. The
resulting calculus is complete with respect to the standard semantics, and yet usable.

1. Preliminaries

We recall the CCV λµ-calculus and the union-intersection type discipline for the calculus
[Has15]. We also review some of the results needed later. Details are found in the first paper.

1.1. CCV λµ-calculus. The CCV λµ-calculus is a variant of the call-by-value λµ-calculus.
It employs the let-syntax as in Moggi’s λc-calculus [Mog88]. However, we write the let-binding
to the right of its body:

M � x :=N in place of let x = N in M.

Note that the order of M and N is reversed.
Formally, the syntax of the CCV λµ-calculus is given as follows. We distinguish ordinary

variables and continuation variables. We also distinguish terms M and jumps J . They are
defined mutually recursively by the following syntax:

M ::= x | λx.M | MM | M � x :=M | µk. J
J ::= [k]M | J � x :=M

where x ranges over ordinary variables and k over continuation variables. The notion of free
variables is naturally defined. The let-construct M � x :=N binds x, and its scope is M . We
use the notation z ∈M to denote that a variable z that is ordinary or continuation occurs
freely in M .

A key idea is that this syntax is not regarded to freely generate the entities. We introduce
syntactic equalities by two associativity axioms:

L � x := (M � y :=N) = (L � x :=M) � y :=N if y 6∈ L
[k](L � x :=M) = ([k]L) � x :=M

where L, M , and N are terms. We do not syntactically distinguish two terms (or two jumps)
if they turn out to be equal by a series of application of these rules. We mostly omit brackets:

L � x :=M � y :=N

µk. J � x :=M

[k]L � x :=M.

For the first, if the side condition is not satisfied (i.e., if y ∈ L), we take it to mean
(L � x :=M) � y :=N . For the second, we read it as µk. (J � x :=M).

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:3

A value is either a variable or a lambda abstraction. We have the following ten reduction
rules, where N is a non-value and V is a value:

(ad1) NM → zM � z :=N
(ad2) V N → V z � z :=N
(βλ) (λx.M)V → M � x := V
(βlet) M � x := V → M{V/x}
(βµ) M � x := µk. J → µk. J{[k]� 7→ [k]M � x := �}
(βjmp) [l]µk. J → J{l/k}
(ηλ) λx. V x → V (if x 6∈ V)
(ηlet) x � x :=M → M
(ηµ) µk. [k]M → M (if k 6∈M)
(exch) (µk. J) � x :=M → µk. J � x :=M (if k 6∈M)

In the first two rules, z is a fresh ordinary variable. We use braces for substitution. The
notation J{[k]� 7→ [k]M � x := �} is a standard context substitution in the λµ-calculus.
We write L =ccv M if two terms are equivalent regarding the smallest equivalence relation
generated from reductions.

Since we are allowed to alter the scope of let-binding by the equality axioms, the
continuation M � x := � captured by rule βµ is changeable, depending on the choice of the
scope. This ambiguity is intended and is crucial to verifying the sharpened completeness
theorem, which is a key result in our previous paper.

Remark 1.1. In the previous paper, we had the third equality axiom:

(µk. J) � x :=M = µk. (J � x :=M) if k 6∈M.

Namely, we were able to exchange the µ-operator and let-operator. As we commented
in the first paper, however, this equality axiom was inessential for proving the sharpened
completeness theorem. Instead, we can consider a reduction rule. For the purpose of this
paper, the latter approach gives better results at this stage. Therefore, we adopt the rule
exch above. It is open whether the same results are obtained if the equality axiom is chosen.
See Rem. 2.12.

The semantics of the CCV λµ-calculus is given by the call-by-value CPS translation.
It maps each CCV term and each jump to a lambda term. In place of a standard CPS
translation, we adopt the definition via the colon translation, which is introduced to diminish
a number of superfluous redexes [Plo75]. The latter behaves better in regard to reductions,
which are our concern. We use the notation (|M |)[K] in place of M : K for readability.

(|V |)[K] := KV ∗

(|V1V2|)[K] := V ∗1 V
∗

2 K
(|V N |)[K] := (|N |)[λy. V ∗yK]
(|NV |)[K] := (|N |)[λx. xV ∗K]
(|N1N2|)[K] := (|N1|)[λx. (|N2|)[λy. xyK]]
(|L � x :=M |)[K] := (|M |)[λx. (|L|)[K]]
(|µk. J |)[K] := (λk. (|J |))K
(|[k]M |) := (|M |)[k]
(|J � x :=M |) := (|M |)[λx. (|J |)]

x∗ := x

18:4 Ryu Hasegawa Vol. 17:1

(λx.M)∗ := λxk. (|M |)[k]

[[M]] := λk. (|M |)[k]

Here V and Vi are values, while N and Ni are non-values. L and M are terms. The results
are applicable to the standard CPS translation, with some extra arguments, as discussed in
Rem. 2.33.

It is better to regard the target of the CPS translation as a sorted lambda calculus.
There are four sorts. The terms of the sorted calculus are defined as follows:

Term T ::= λk.Q | WW
Jump Q ::= KW | TK
Value W ::= x | λx. T
Continuation K ::= k | λx.Q

The CPS translation yields terms that are subject to this syntax. (|M |)[K] and (|J |) produce
terms of sort Q, and V ∗ of sort W . [[M]] has sort T .

We also have the inverse translation (-)−1 from the target calculus back into the CCV
λµ-calculus. We do not, however, need the concrete shape of the translation, for we use it
only through Lem. 1.2 and 1.3 below. We refer the interested reader to [Has15].

We list several results that are needed in this paper from [Has15]. We call a reduction
by rule (ηµ) vertical, and a reduction by (ad1) or (ad2) administrative. A non-administrative
reduction is called practical.

Lemma 1.2. Let M be a term of the CCV λµ-calculus. There is a term M † of the calculus
such that M A∗−→M † V ∗←− [[M]]−1 (notice the direction). Here A∗ denotes a finite number of
administrative reductions and V ∗ a finite number of vertical reductions.

Lemma 1.3. If P →βη Q in the target calculus, then P−1 +−→ Q−1 by one or more steps
of practical reductions with no use of rule exch.

Lemma 1.4. If L′ V ∗←− L P ∗−→M by finite steps of vertical reductions and practical reductions,
there is a term M ′ such that L′ P ∗−→M ′ V ∗←−M . Moreover, the arrow L′ P ∗−→M ′ may be an
identity only when L P ∗−→M consists solely of βµ, βjmp, ηµ, and exch.

In the verifications of Lem. 1.2 and 1.3, we need the equality axioms of our calculus.
Sharpened completeness is an immediate consequence of these lemmata. This explains why
we include the equality axioms in the CCV λµ-calculus. These lemmata are also necessary
to prove one direction of implications in the main theorems.

1.2. Union-intersection type discipline. Types are divided into three categories: raw
types R, subsidiary types S, and types T . These are defined by the following syntax:

R ::= α | S → T

S ::=
⋂
R

T ::=
⋃
S

where α ranges over atomic types.
⋂
R means a nonempty finite formal intersection

R1 ∩R2 ∩ · · · ∩Rn (n ≥ 1).
⋃
S is similar. Intersection and union follow associativity and

commutativity.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:5

Remark 1.5. In our previous work [Has15], the empty intersection ω and the empty union

ωare allowed. In this paper, we use only the type derivations that contain ω or ωnowhere.
So we omit them from the beginning.

We define the subtype relation ≤ by the following derivation rules:

α ≤ α
S′ ≤ S T ≤ T ′
S → T ≤ S′ → T ′

S ≤ S′
S ∩ S′′ ≤ S′

[S ≤ Si]i
S ≤

⋂
i Si

T ≤ T ′
T ≤ T ′′ ∪ T ′

[Ti ≤ T]i⋃
i Ti ≤ T .

The notation [S ≤ Si]i means a sequence of derivations where i ranges over a finite index
set. [Ti ≤ T]i is similar.

A typing judgment has the form Γ ` M : T | ∆ where Γ is a finite sequence of xi : Si,
and ∆ is a finite sequence of kj : Tj . Note that ordinary variables have only subsidiary types.
We assume a special type ⊥⊥ for typing jumps. The inference rules are given as follows:

Γ, x : S ` x : S | ∆

[Γ, x : Si `M : Ti | ∆]i
Γ ` λx.M :

⋂
i(Si → Ti) | ∆

Γ `M :
⋃
i

⋂
j(Sij → T) | ∆ [Γ ` N :

⋃
j Sij | ∆]i

Γ `MN : T | ∆

[Γ, x : Si `M : T | ∆]i Γ ` N :
⋃
i Si | ∆

Γ `M � x :=N : T | ∆

Γ ` J :⊥⊥ | ∆, k : T

Γ ` µk. J : T | ∆

Γ `M : T | ∆, k : T

Γ ` [k]M :⊥⊥ | ∆, k : T

[Γ, x : Si ` J :⊥⊥ | ∆]i Γ ` N :
⋃
i Si | ∆

Γ ` J � x :=N :⊥⊥ | ∆

Γ `M : T | ∆ T ≤ T ′

Γ `M : T ′ | ∆
Each index (i or j) ranges over a finite set. The notation [· · ·]i denotes a finite sequence of
judgments. In each rule, the same indices are understood to range over the same set. For
example, in the third rule, i ranges over a finite set I and j over a finite set J(i) depending
on i, and these I and J(i) are shared between the assumptions.

1.3. Type system of the target calculus. The characterization of strong termination is
verified through the type theory of the target calculus we present here. The type theory is
based on the standard intersection type discipline. We assume a special atomic type ⊥⊥ and

18:6 Ryu Hasegawa Vol. 17:1

write ¬(-) in place of (-)→ ⊥⊥. We define the strict types τ, κ, and σ and types κ and σ by
the following:

σ ::= α | σ → τ σ ::=
⋂
σ

κ ::= ¬σ κ ::=
⋂
κ

τ ::= ¬κ

where α represents atomic types.
⋂
κ denotes a finite formal intersection κ1 ∩ κ2 ∩ · · · ∩ κn

with n ≥ 1.
⋂
σ is similar. Intersection follows associativity and commutativity. We have

the subtype relation ≤ between types, which is defined naturally.
A typing judgment Π,Θ `s M : ρ has two environments, Π and Θ, the former a finite

sequence of x : σ and the latter of k : κ. Here M is either of term T , jump Q, value W , and
continuation K, on which the kind of type ρ depends. A term has type τ , a jump ⊥⊥, a
value σ, and a continuation κ. We note that only strict types occur on the right hand of `s
(this is indicated by the subscript).

The inference rules of the intersection type discipline are standard [vBa92], except that
the sorts must be respected. For instance, the derivation rule for W1W2 is

Π,Θ `s W1 : σ → τ [Π,Θ `s W2 : σi]i
Π,Θ `s W1W2 : τ

Moreover, we include the inheritance rule for each sort; e.g.,

Π,Θ `s T : τ τ ≤ τ ′

Π,Θ `s T : τ ′

to deal with η-rules. We refer the reader to [Has15] for the presentation of the complete set.

Theorem 1.6. Let M be a term of the CCV λµ-calculus. If Π, Θ `s [[M]] : τ is derivable
in the target calculus, then Γ ` M : T |∆ is derivable for some Γ,∆, and T in the CCV
λµ-calculus.

Proof. The theorem is verified in [Has15] using the inverse translation. By inspection of the
proof therein, we see that the induced derivation of Γ ` M : T |∆ contains neither ω nor ω,
provided the derivation of Π, Θ `s [[M]] : τ contains ω nowhere.

2. Strong Normalization

The main theorems of this section are the following: (i) a CCV λµ-term M is strongly
normalizable if and only if [[M]] is strongly normalizable (Thm. 2.31), and (ii) M is strongly
normalizable if and only if M is typeable (Thm. 2.30). We note that the strong normalizability
of lambda terms is not closed under βη-equality. It happens that M =βη N and M is strongly
normalizable, whereas N is not. Hence the main result (i) is sensitive to the choice of the CPS
translation. The following argument assumes the colon translation as defined in Preliminaries.
The case of the standard CPS translation is briefly discussed in 2.33.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:7

2.1. Termination of βµβjmpηµ reduction sequences. We verify the termination of all
reduction sequences consisting exclusively of βµ, βjmp , and ηµ. The reasons we prove it
independently are the following: (a) it is used later in Prop. 2.13, (b) it holds regardless of
types, (c) in the proof, we introduce the notion of places, which are used in the sequel, and
(d) it explains why we regard the exchange of the µ-operator and let-operator as a reduction
rule rather than an equality rule in our previous work.

Since we have equality axioms between terms, the notion of subterms is obscure. We
substitute this concept with the novel notion of places. We assume to be given an infinite
set of place symbols.

Definition 2.1. Suppose that a CCV λµ-term M0 is given. A term M occurs at place p if
p @M is derived by the following recursive process. Let p0 be an arbitrary place symbol. We
start with p0 @M0, and apply the following operations recursively until we reach variables:

(1) If either p @ (MN) or p @ (M � x :=N), then p @M and q @N concurrently, where q is a
fresh place symbol.

(2) If either p @ (λx.M) or p @ (µk. [l]M), then q @M , where q is a fresh place symbol.

We say that a place q occurs in M whenever q @N is derived for some N from p @M during
the process (the case p = q is inclusive). We also say that q @N occurs in M .

Here we assume to read [k](L � x :=M) for [k]L � x :=M . For the associativity of the
let-construct, either bracketing yields the same set of places up to the renaming of place
symbols. For instance, the following term has five places:

(µk. [l](λz. x)y) � y:=x.
↑
p0

↑
p1

↑
p2
↑
p3

↑
p4

Namely, a place marks the location from which a term starts. Note that one place may
mark several terms. For example, place p0 marks both of the whole term and µk. [l](λz. x)y.
Likewise, place p1 marks (λz. x)y and λz. x. Each place marks all possible subterms starting
at the position.

In the let-binding M � x :=N , we regard that the scope M is viewable from the bound
term N . We extend the notion to future let-binding. We consider M to be visible from
N in term M � x := µk. · · · [k]N though it is not currently the scope of N , as a one-step
βµ-reduction yields µk. · · · [k]M � x :=N , in which M turns out to be the scope of N . This
idea naturally leads to the following definition.

Definition 2.2. Let p be a place occurring in a given term M0. The vision V (p) is the set
of places in M0 recursively defined as follows:

(1) If p@M marks the bound term of p1 @L �x :=M , then V (p) is defined by
⋃
q({q}∪V (q)),

where q ranges over the set of all places in L (p1 inclusive).
(2) If p @M is preceded by a jumper, as in p1 @ µk. · · · [k]M · · · , then V (p) is defined by

V (p1). Intuitively, place p is superposed over p1 and the intermediate places between µk
and the jumper [k] are invisible. If k is not bound, we deal with V (p) by the following
third rule (thus V (p) = ∅).

(3) For all other cases, we set V (p) = ∅.

Remark 2.3.

(1) The places in V (p) occur physically to the left of p. Hence V (p) is defined by induction
from left to right.

18:8 Ryu Hasegawa Vol. 17:1

(2) By definition, visions are transitive. That is, if r ∈ V (q) and q ∈ V (p), then r ∈ V (p).
(3) The definition of visions is irrelevant to the bracketing of let-constructs for associativity.

Namely, if p @N occurs in L � x :=M � y :=N with y 6∈ L, then either bracketing yields
the same set V (p) up to the renaming of place symbols.

(4) In contrast, the interchange law of µ and let is annoying. If we returned to the
identification of (µk. J) � x := M and µk. (J � x := M), where k 6∈ M as commented
in Rem. 1.1, then we would have the following double vision problem. Suppose p is
the place of M in p1 @ µk. [l]L � x := M , where k 6∈ M . If we understand it to be
p1 @ (µk. [l]L) � x :=M , place p1 is visible from p. On the other hand, if we regard the
expression as p1 @ µk. [l](L � x := M), the vision of p skips place p1, jumping from [l].
Namely, the vision is affected by bracketing.

Let us write q ≺ p if q is immediately visible from p. In other words, q ∈ V (p) holds,
while q ∈ V (r) and r ∈ V (p) hold for no r.

Remark 2.4. The relation q ≺ p holds if and only if either of the following two cases happens.
(i) p @N is the place of the bound term of L � x :=N , and q occurs in L. Furthermore, if q
occurs in a let-expression P � y :=Q inside L, q lies in the argument side, Q. (ii) p @N is
the place preceded by a jumper, as in p1 @ (µl. · · · [l]N · · ·) with q ≺ p1.

Definition 2.5. The breadth |p| of a place p is defined by induction on a physical location
from left to right. We define |p| as the smallest natural number n satisfying |q| < n for all
places q ∈ V (p). In particular, |p| = 0 if V (p) = ∅.

In other words, |p| is the height of the tree of all sequences of places q ≺ q′ ≺ · · · ≺ p
having p as its root.

The following is an example of visions and breadths. Let us consider

uv � u:= (µl.[l]v) � v:=µk.[k](λx.µm.[k]x).
↑
p0
↑
p1

↑
p2

↑
p3

↑
p4

↑
p5

↑
p6

↑
p7

Then V (p0) = V (p1) = V (p6) = ∅ and V (p2) = V (p3) = {p0, p1}, while V (p4) = V (p5) =
V (p7) = {p0, p1, p2, p3}. Hence |p0| = |p1| = |p6| = 0 and |p2| = |p3| = 1, while |p4| = |p5| =
|p7| = 2. Let us suppose that a one-step βµ-reduction is applied to this term. There are
three possibilities, one for µl and two for µk by the choices of bracketing. One of the two
for µk inhales (µl.[l]v) � v := �, yielding

uv � u:=µk.[k](µl.[l]v) � v:=(λx.µm.[k](µl.[l]v) � v:=x)
↑
p̄0
↑
p̄1

↑
p̄4

↑
p̄′2

↑
p̄′3

↑
p̄5

↑
p̄6

↑
p̄′′2

↑
p̄′′3

↑
p̄7

where we write bars over places for distinction. The numbers associated with the places
are given so that the correspondences are clear. For example, p̄′3 and p̄′′3 marking v in the
copied terms correspond to p3 in front of v before the reduction. For instance, we have
V (p̄′′3) = {p̄0, p̄1} and V (p̄5) = {p̄0, p̄1, p̄

′
2, p̄
′
3}, while V (p̄7) = {p̄0, p̄1, p̄

′′
2, p̄
′′
3}. Note that the

visions are essentially unaffected by the reduction. This is because the reduction simply
shifts the copies of µl.[l]v to the points, where jumpers [k] point to the original location
skipping the intermediate parts. The only exception is the place in front of µk. We have
V (p̄4) = {p̄0, p̄1}, thus |p̄4| = 1, which decrease from |p4| = 2.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:9

We consider the general case of a one-step βµ reduction. Let us suppose that the places
are specified as follows.

M � x:=µk. · · · [k]N · · · −→ µk. · · · [k]M � x:=N · · ·
↑
s

↑
r0

↑
t

↑
r̄0

↑
s̄(i)

↑
t̄

where the displayed jumper denotes the i-th occurrence of [k] under an appropriate enumera-
tion, i = 1, 2, . . . , n. For each place after the reduction, there is a unique corresponding place
p before it. There are n places p̄(i) (i = 1, 2, . . . , n), one in each copy of M , which correspond
to p in M . Namely, we have an n-to-one correspondence if we look from the term after the
reduction. For the places p̄ occurring elsewhere, there is a one-to-one correspondence to the
places p before the reduction.

We let the notation C[M] mean a term wherein p @M occurs for some p.

Lemma 2.6. Let us consider the βµ reduction C[M � x := µk. J]→ C[µk. J ′], where J ′ =
J{[k]� 7→ [k]M � x := �}. We set the place symbols as above.

(1) The strict inequality |r̄0| < |r0| holds.
(2) |p̄| ≤ |p| holds for every place p̄ occurring in C[µk. J ′], where p denotes the place in

C[M � x := µk. J] associated with p̄ by the (n-to-one and one-to-one) correspondence

explained immediately above (read p̄ = p̄(i) for some i if it occurs in a copy of M).

Proof. (1) is evident since s ∈ V (r0). We note that V (s) and V (r̄0) has a one-to-one
correspondence, and thus |s| = |r̄0|.

(2) Recall that the breadth equals the height of the tree of places ordered by ≺. It suffices
to show that q̄ ≺ p̄ implies q ≺ p, excluding the case p̄ = r̄0. (i) The case that p̄ occurs

in one of the copies of M . If p̄ = s̄(i) in front of a copy of M , then q̄ ≺ r̄0 holds, as p̄
is superposed over r̄0. By the one-to-one correspondence between V (r̄0) and V (s), we
have q ≺ s. Otherwise, p̄ occurs strictly inside one of the copies of M (namely, it is

p̄(i) for some i). Then, q̄ stays inside the same copy of M , or to the left of r̄0 when p̄

is preceded by a jumper. Namely, q̄ never lies in the dotted part between r̄0 and s̄(i).
Hence q ≺ p holds from the beginning. (ii) The case that p̄ occurs in none of the copies
of M . If p̄ = t̄, then q̄ occurs in M . Now q ≺ r0 holds. Therefore, q ≺ t as t superposes
over r0. If p̄ 6= t̄, then q̄ does not lie in M . This follows from Rem. 2.4, since M is not a
let-argument and none of the jumpers to the right of t̄ points into M , as the scope of
µ-binding in M must stay inside M . As both q̄ and p̄ stay outside M , places q and p
are not affected by the reduction. Hence q ≺ p from the beginning.

Next, we consider the βjmp-reduction C[[l]µk. J]→ C[J{l/k}]. Each place p̄ in C[J{l/k}]
occurs either in C or in J{l/k}. Hence, we can naturally associate a place p in C[[l]µk. J]
that locates in C or in J .

Lemma 2.7. Let us consider the βjmp-reduction C[[l]µk. J]→ C[J{l/k}]. With each place
p̄ in C[J{l/k}] is associated p in C[[l]µk. J], as explained immediately above. Then |p̄| = |p|
holds.

Proof. A crucial case is when the place p is preceded by a jumper [k] in J . Then, p̄ is
preceded by [l]. If l is bound and r̄0 is the place of µl · · · occurring in the context C, then
|p̄| = |r̄0|. On the other hand, if we let r1 denote the place of µk. J , we have |p| = |r1| = |r0|.
Evidently, |r̄0| = |r0|, so |p̄| = |p|. If l is not bound, we have |p̄| = 0 = |p|.

18:10 Ryu Hasegawa Vol. 17:1

Next, we consider the ηµ-reduction C[µk. [k]M]→ C[M]. Each place p̄ in C[M] occurs
either in C or in M . There is a corresponding place p in C[µk. [k]M] located in C or in M .

Lemma 2.8. Let us take ηµ-reduction C[µk. [k]M]→ C[M]. As explained above, a place p
in C[µk. [k]M] is associated with each place p̄ in C[M] Then |p̄| = |p| holds.

Proof. Let r̄1 denote the place of M after reduction. Moreover, let r0 denote the place of
µk. [k]M . Then, |r̄1| = |r0| = |r1|. For other places, the lemma is immediate.

We call p a µ-place if p @ µk. J happens.

Definition 2.9. The sight of a term M is the natural sum of ω|p|, where p ranges over all
µ-places occurring in M .

Written in a Cantor normal form, the sight of M is equal to ωn1k1 +ωn2k2 + · · ·+ωnsks
for integers ki > 0 and n1 > n2 > · · · > ns ≥ 0, where ki is the number of µ-places p
satisfying |p| = ni.

Proposition 2.10. If M0 →M1 by an application of rule βµ, βjmp, or ηµ, the sight of M1

is strictly less than the sight of M0.

Proof. For the βµ-reduction, we follow the notation in Lem. 2.6. By (2) of the lemma, thhe
breadth of each place never increases. Each µ-place p in M has n copies after reduction.
However, we have |p| < |r0| since p ∈ V (r0). To summarize, the places of breadth less than
|r0| may be copied, while the places of breadth greater than or equal to |r0| are never copied.
Moreover, the breadth of r0 itself decreases by (1) of the same lemma. Hence the sight
diminishes.

For the βjmp-reduction, we use symbols in the proof of Lem. 2.7. The breadth of p never
changes unless p = r1. Moreover, the place r1 just vanishes. For the ηµ-reduction, we use
Lem. 2.8. The place r0 vanishes.

Corollary 2.11. All βµβjmpηµ-reduction sequences are finite.

Proof. Transfinite induction up to ωω by Prop. 2.10.

Remark 2.12. To understand the necessity of regarding the exchange of the µ-operator
and let-operator as reduction, we consider the following example:

K � x := L � y := µk. [m]M � z := µl. [k]N.

We assume k does not occur elsewhere. By applying a βµ-reduction to µk, we obtain
µk. [m]M � z := µl. [k](K � x := L � y :=N). Suppose l 6∈ N . If we can exchange µ and let,
the term is equal to

µk. [m]M � z := (µl. [k]K) � x := L � y :=N.

Now M turns out to be visible from L, while it was previously out of vision, as M occurred
to the right of L. Hence the vision of L is widened by the reduction. Furthermore, M
becomes visible from N , while it was previously skipped by jumper [k]. These phenomena
make the proof of Lem. 2.6 fail.

This situation is troublesome since the problem does not arise if l ∈ N . In this case, we
cannot narrow the scope of µk. The behavior is influenced by whether l ∈ N or not. We
would need an argument sensitive to the occurrences of variables.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:11

2.2. Characterization of strong normalizability. We characterize strong normalizable
terms in the CCV λµ-calculus by the union-intersection type discipline and by the CPS
translation. Strong normalizability is not closed under βη-convertibility. So we must be
sensitive to the choice of the CPS. We assume the CPS defined via colon translation. At the
end of this section, we sketch how to generalize the results to the standard translation

Proposition 2.13. Let M be a term of the CCV λµ-calculus. If M is strongly normalizable,
[[M]] is strongly normalizable.

Proof. Toward contradiction, we assume that M is strongly normalizable, while [[M]] admits
an infinite reduction sequence. By Lem. 1.3, we have an infinite sequence of practical
reductions from [[M]]−1 with no use of the rule exch. By Cor. 2.11, we cannot continue
βµ, βjmp , and ηµ ceaselessly. Hence there must be an infinite number of reductions other

than these four rules. By Lem. 1.4 and 1.2, an infinite reduction sequence from M † is thus
induced. This contradicts the strong normalizability of M as M ∗−→M †.

Lemma 2.14. In the target calculus, if T is strongly normalizable, then there is a derivation
tree of Π, Θ `s T : τ for some Π,Θ, and τ . Similar results hold for other sorts.

Proof. This lemma is essentially the same as Cor. 3.4.4 of [vBa92, p. 159]. We note that, in
the ordinary lambda calculus, strong normalizability with respect to βη obviously implies
strong normalizability with respect to β. As it can be easily checked, eacn term in β-normal
form admits a type. Then, by induction on the length of the longest reduction sequences,
we can verify the lemma.

Proposition 2.15. Let M be a CCV λµ-term. If M is strongly normalizable, there is a
derivation tree of a typing judgment Γ ` M : T | ∆ for some Γ,∆, and T .

Proof. By Prop. 2.13, [[M]] is strongly normalizable. Hence, by Lem. 2.14, we obtain a
derivation tree Π, Θ `s [[M]] : τ . By Thm. 1.6, we have Γ ` M : T | ∆.

The main contribution of this section is the verification of the inverse of Prop. 2.13 and
2.15. To this end, we elaborate a syntactic translation that satisfies a kind of soundness with
respect to reduction. In the literature, we can find several proofs of strong normalizability by
syntactic translations for call-by-value calculi with control operators [Nak03][IN06][KA08].
Though all use CPS translations, they have to manage the phenomenon that continuations
may be discarded. All of these works add some twists to the translations to avoid this
problem. Nakazawa preprocesses certain terms in the source calculus before the translation,
carefully specifying harmful parts in the translation. Ikeda and Nakazawa modify the CPS
translation by adjoining extra terms they call garbage. Kameyama and Asai use a two-level
λ-calculus as the target of the translation to isolate the segment that does not discard
continuations. See Rem. 2.19 for more information.

Our translation adds garbage, inspired by [IN06]. In order to deal with the complication
causeed by associative let-binding, we add a new infix binary operator (-) · (-) to the ordinary
lambda calculus. We assume that the operator is syntactically associative:

(L ·M) ·N = L · (M ·N).

We write L ·M ·N for either of the two bracketings. We consider the standard βη-reduction.
As a new reduction rule involving the dot operator, we add

M ·N → N.

18:12 Ryu Hasegawa Vol. 17:1

We define a new type of colon translation. The target calculus is the lambda calculus
augmented by the binary dot operator.

Definition 2.16. We associate a fresh variable k̃ with each of continuation variables k in a
one-to-one manner. We define K̃ as follows:

K̃ =

{
k̃ if K = k

Q if K = λx.Q
.

Each occurrence of variable x becomes free in the second case. We emphasize that k̃ is a
variable independent from k. So the substitution k 7→ K does not automatically substitute
k̃ with K̃.

Definition 2.17. Let M be a term in the CCV λµ-calculus, and let K be a lambda term.
The lambda terms {[M]}[K], {[J]}, and V ∗ are simultaneously defined as in the following
table:

{[V]}[K] = KV ∗

{[L � x :=M]}[K] = {[L]}[K] · {[M]}[λx. K̃ · {[L]}[K]]

{[V1V2]}[K] = V ∗1 KK̃V
∗

2

{[V N]}[K] = K̃ · {[V z � z :=N]}[K]

{[NM]}[K] = K̃ · {[zM � z :=N]}[K]

{[µk. J]}[K] = K̃ · {[J]}{K/k, K̃/k̃}
{[[k]M]} = k̃ · {[M]}[k]
{[J � x :=M]} = {[J]} · {[M]}[λx. {[J]}]

x∗ = x
(λx.M)∗ = λkk̃x. {[M]}[k] · ((λx. k̃ · {[M]}[k])x)

where V denotes a value and N a non-value. L and M are understood to be arbitrary
terms, while z is a fresh variable. We assume the infix dot operator has higher precedence
than lambda binding. Though the definition is not a simple induction on construction,
well-definedness is easy.

The obtained lambda terms do not follow the rules of sorts given in §1.1. We may renew
the definition to accommodate the new colon translation. The sorts, however, scarcely play
a role hereafter, as inverse translation will not involved. We use symbols such as K and Q
only to indicate correspondence to the original target calculus.

Remark 2.18. As easily seen from Def. 2.17, the associated K̃ actually occurs in {[M]}[K],
although K may vanish.

Remark 2.19. We compare Def. 2.17 with the colon translation given in Preliminaries.
A crucial difference is that K is actually substituted in the definition of the translation
of µk. J . This type of translations is found in the verification of strong normalizability
[Nak03][IN06]. In fact, the first attempt by Parigot for the call-by-name λµ-calculus already
used a translation where the continuation was actually substituted [Par97] (unfortunately,
the proof has a flaw; see [NT03]). If k does not occur in J , the substituted K vanishes. This

is why we add the prefix K̃. That is, we record the history of the continuations K, that
may be deleted. For a technical reason, the order of a value and a continuation is reversed
in the translation of V1V2, and the garbage K̃ is added. The complication of (λx.M)∗ is
nothing more than for proof to work out.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:13

Lemma 2.20. Let M1 and M2 be CCV λµ-terms. If M1 = M2 holds, then {[M1]}[K] =
{[M2]}[K] holds for every K. Likewise, if J1 = J2, then {[J1]} = {[J2]} holds.

Proof. First, both {[L � x := (M � y := N)]}[K] and {[(L � x := M) � y := N]}[K] are equal

to Q′ · Q′′ · {[N]}[λy. K̃ · Q′ · Q′′] where we set Q′ = {[L]}[K] and Q′′ = {[M]}[λx. K̃ · Q′].
Second, both {[[k](L � x :=M)]} and {[([k]L) � x :=M]} are equal to k̃ ·Q′ · {[M]}[λx. k̃ ·Q′] for
Q′ = {[L]}[k]. We comment that, in these two cases, the associativity of the infix dot operator
is indispensable. Since the definition in 2.17 is compositional, the lemma follows.

Remark 2.21. For a fresh variable k, the equality ({[M]}[k]){K/k, K̃/k̃} = {[M]}[K] holds

as naturally supposed. We note that the definition of {[M]}[k] contains k̃ implicitly. Therefore,
substituting only k with K does not suffice.

Lemma 2.22. Let us put {[M]}[K] = Q where x 6∈ K, and let us consider two substitutions,

θ0 = {k 7→ K, k̃ 7→ K̃} and θ = {k 7→ λx. K̃ · Q, k̃ 7→ K̃ · Q}. Then {[J]}θ = {[J{[k]� 7→
[k]M � x := �}]}θ0 holds.

Proof. The proof is by induction on the construction of terms and jumps. We simultaneously
verify V ∗θ = (V {[k]� 7→ [k]M �x:=�})∗θ0 and {[L]}θ[K ′] = {[L{[k]� 7→ [k]M �x:=�}]}θ0[K ′].

Here the tricky notation {[L]}θ[K ′] means {[L]}[K ′]θ under the condition that k, k̃ 6∈ K ′.

During the induction process, however, the variables k and k̃ may occur in the position of K ′.
In this case, {[L]}[K ′]θ should be manipulated as {[L]}θ[K ′θ]. An essential case is J = [k]L.

The left hand side is {[J]}θ = K̃ · Q · {[L]}θ[λx. K̃ · Q] by Rem. 2.21, while the right hand

side equals K̃ ·Q · {[L{[k]� 7→ [k]M � x := �}]}θ0[λx. K̃ ·Q]. Apply the induction hypothesis
to L.

Lemma 2.23. Suppose M0 →M1, where the whole M0 is a redex that is contracted. Then
{[M0]}[K] +−→ {[M1]}[K] by one or more steps of βη reduction (read {[J0]} +−→ {[J1]} for the
case of βjmp). Moreover, (λx. V x)∗ +−→ V ∗ holds.

Proof. First, consider the rule exch. We have {[(µk. J)�x:=M]}[K] = K̃·Q′·{[M]}[λx. K̃·K̃·Q′],
where Q′ = {[J]}{K/k, K̃/k̃}. On the other hand, {[µk. (J � x := M)]}[K] is equal to

K̃ ·Q′ · {[M]}[λx.Q′]. Therefore, the elimination of the two occurrences of K̃ settles this case.

We comment that λx. K̃ · K̃ · Q′ actually occurs, in view of Rem. 2.18. Hence a positive
number of β reductions is enforced by the elimination.

For rule ad1, we have {[NM]}[K] = K̃ · {[zM � z :=N]}[K], regardless of whether M is a

value or a non-value. Hence, eliminating K̃ yields {[zM � z :=N]}[K]. Rule ad2 is similarly

handled. For rule βλ, we have {[(λx.M)V]}[K] = (λkk̃x. ({[M]}[k]·((λx. k̃·{[M]}[k])x)))KK̃V ∗.

Now, applying β reduction to k, k̃, and x yields {[M]}[K] · (λx. K̃ · {[M]}[K])V ∗, which is
equal to {[M � x := V]}[K]. This finishes the case of βλ. Furthermore, from the last term,

eliminating {[M]}[K] and K̃ and applying a β reduction to x yield {[M]}[K]{V ∗/x}. It is

safe to assume that K and K̃ contain no x, by α-conversion if needed. Therefore the last
terms equals {[M{V/x}]}[K]. This completes the case of rule βlet .

For rule βµ, we have {[M � x := µk. J]}[K] = Q · K̃ · Q · {[J]}θ where Q and θ are

given in Lem. 2.22. Now the elimination of the two Q’s gives K̃ · {[J]}θ. It is equal to
{[µk. J{[k]� 7→ [k]M � x := �}]}[K] by the same lemma, finishing this case. We comment
that Q = {[M]}[K] is annihilated exactly at the moment of the dispatch of continuation
M � x := �. This ensures reductions antecedently done inside M are not ignored even if

18:14 Ryu Hasegawa Vol. 17:1

k 6∈ J . For rule βjmp , we have {[[l]µk. J]} = l̃ · l̃ · {[J]}{l/k, l̃/k̃}. Eliminating two l̃’s gives

{[J]}{l/k, l̃/k̃} = {[J{l/k}]}.
For rule ηlet , we have {[x � x :=M]}[K] = Kx · {[M]}[λx. K̃ ·Kx]. The elimination of Kx

and K̃ yields {[M]}[λx.Kx]. Now we apply the η reduction to obtain {[M]}[K]. For rule ηλ, we

must verify (λx. V x)∗ +−→ V ∗. The left hand side equals λkk̃x. (V ∗kk̃x) · ((λx. k̃ · V ∗kk̃x)x).

Eliminating V ∗kk̃x and k̃ gives λkk̃x. (λx. V ∗kk̃x)x. Hence, one step of β followed by three
steps of η yields V ∗. Thus {[λx. V x]}[K] +−→ {[V]}[K] is also valid. Finally, if k 6∈ M , then

{[µk. [k]M]}[K] = K̃ · K̃ · {[M]}[K]. Eliminating two K̃’s gives {[M]}[K], establishing the case
of the ηµ rule.

Lemma 2.23 ensures the strict preservation of reductions in the case where the redex occurs
naked at the topmost level. In general, the redex R may be encapsulated in a context as
C[R]. We introduce the notion of E-depth to handle this.

We recall the definition of places in Def. 2.1 where the notion of an occurrence of q @N
in M was also defined.

In the following definition, we use the evaluation contexts E defined by the following
syntax:

E ::= � | E[V�] | E[�M] | E[M � x := �].

Definition 2.24. The E-depth dM (q @ L) is defined, when q @ L occurs in M . As the base
case, we set dL(q @ L) = 0. In general, the definition is provided by the following table,
where q @ L is assumed to occur in M or V .

dE[M](q @ L) = dM (q @ L)
dE[V N](q @ L) = 1 + dV (q @ L)
dE[NM](q @ L) = 1 + dM (q @ L)
dE[M�x:=N](q @ L) = 1 + dM (q @ L)
dλx.M (q @ L) = 1 + dM (q @ L)
dµk. [l]M (q @ L) = 1 + dM (q @ L).

The second through the fourth of these equalities handle the case where L occurs in the
context E if we split the term to the shape E[M]. The number dM changes by bracketing
of let-binding, This does no harm, however, for we use the number only as the measure of
complexity of terms to handle one-step reductions.

We prove theorems by induction on the E-depth. We first explore the base case, in
which the redex R has E-depth 0. Namely, the redex occurs in the form E[R]. For rule βjmp ,
we understand R to be µm. [l]µk. J , including the µ-operator preceding the redex [l]µk. J .
We must beware of rule ηλ, the redex of which is a value.

Lemma 2.25. Given an evaluation context E and a term K in the target calculus, there
are QE and KE that satisfy the following:

(1) If N is a non-value, {[E[N]]}[K] = QE · {[N]}[KE].
(2) If V is a value, QE · {[V]}[KE] ∗−→ {[E[V]]}[K].

Here QE and KE are terms in the extended language, although the former may be void. If
this is the case, we just ignore the preceding QE and the following dot.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:15

Proof. (1) The definition of QE and KE will be read off from the following equalities:

{[E[NM]]}[K] = QE · K̃E · {[zM]}[KE] · {[N]}[λz. K̃E · {[zM]}[KE]]

{[E[V N]]}[K] = QE · K̃E · {[V z]}[KE] · {[N]}[λz. K̃E · {[V z]}[KE]]

{[E[M � x :=N]]}[K] = QE · {[M]}[KE] · {[N]}[λx. K̃E · {[M]}[KE]]

Namely, the following inductive definition works. If E = �, we set K� = K and Q� as
void. For inductive cases,

QE[�M] = QE · K̃E · {[zM]}[KE] KE[�M] = λz. K̃E · {[zM]}[KE]

QE[V �] = QE · K̃E · {[V z]}[KE] KE[V �] = λz. K̃E · {[V z]}[KE]

QE[M�x:=�] = QE · {[M]}[KE] KE[M�x:=�] = λx. K̃E · {[M]}[KE].

The first two in the left column depend on the choices of fresh variables z in the
construction of {[·]}.

(2) By induction on the construction of E. In the case E = � and E[M � x := �], both
sides are equal. In the case E[�M], by definition, QE[�M] · {[V]}[KE[�M]] reduces
to QE · {[zM � z := V]}[KE] by dropping a single K̃E . By Lem. 2.23, it reduces to
QE · {[VM]}[KE], viz., {[E[VM]]}[K]. The case of E[V ′�] is similar.

Lemma 2.26. Let R→ S be one of the reduction rules. Then, {[E[R]]}[K] +−→ {[E[S]]}[K]
with one or more steps of βη reduction.

Proof. Except for the ηλ-redex, R is a non-value. By Lem. 2.25, (1), {[E[R]]}[K] = QE ·
{[R]}[KE], which contracts to QE · {[S]}[KE] by one or more steps by Lem. 2.23. If S is a
non-value, we are done. If S is a value, we employ Lem. 2.25, (2). If R equals λx. V x,
which is a value, we need to take special care. In the case of E[�N], the translation
{[E[(λx. V x)N]]}[K] is as computed in the proof of Lem. 2.25. We apply (λx. V x)∗ +−→ V ∗,

verified in Lem. 2.23, to the two occurrences of {[(λx. V x)z]}[KE] = (λx. V x)∗KEK̃Ez. The
other cases are similar.

So the base case is done. Now, by induction on E-depth, we can verify a central
proposition of this subsection.

Proposition 2.27. If L +−→ M holds in the CCV λµ-calculus, then {[L]}[K] +−→ {[M]}[K]
holds with respect to βη reduction for every K.

Proof. It suffices to prove the case of the one-step reduction L → L1. Let R → S be the
instance of the reduction rule contracted by this step, and let q @ R be the place of the
redex in L. We show that if dL(q @R) ≤ m, then L→ L1 implies {[L]}[K] +−→ {[L1]}[K], and
simultaneously that if dV (q @ R) ≤ m, then V → V1 implies V ∗ +−→ V ∗1 by induction on
m. We note that if V → V1 and if V is a value, V1 is also a value. The base case m = 0 is
Lem. 2.26. We verify the induction step.

(i) First, we consider the case where q @ R occurs in the V in L = E[VM ′]. We split
cases further according to whether M ′ is a value. If it is a value W , we have
{[E[VW]]}[K] = K̃E · V ∗KEK̃EW ∗. Since dV (q @ R) < dE[VW](q @ R), we apply the
induction hypothesis to V ∗. If M ′ is a non-value N , the computation of {[E[V N]]}[K]

is displayed in Lem. 2.25. Note that {[V z]}[KE] = V ∗KEK̃Ez. We apply the induction
hypothesis to all occurrences of V ∗. Observe that at least one occurrence of V ∗ exists.

18:16 Ryu Hasegawa Vol. 17:1

(ii) The case where q@R occurs in theM in L = E[NM]. The computation of {[E[NM]]}[K]
is given in Lem. 2.25. We note dzM (q @R) = dM (q @R) < dE[NM](q @R) since z is a
value while N is a non-value. Apply the induction hypothesis to all occurrences of
{[zM]}[KE].

(iii) The case where q @ R occurs in the M in L = E[M � x :=M ′]. The computation of
{[E[M � x := M ′]]}[K] is given in Lem. 2.25, if we read N = M ′. Since dM (q @ R) <
dE[M�x:=M ′](q @R), apply induction hypothesis to all occurrences of {[M]}[KE].

(iv) Case where q @ R occurs in M of L = E[λx.M]. We have {[E[λx.M]]}[K] = QE ·
KE [λkk̃x. ({[M]}[k] · ((λx. k̃ · {[M]}[k])x))]. Apply induction hypothesis to the two
occurrences of {[M]}[k] since dM (q @R) < dE[λx.M](q @R). We note that, taking E to
be void, this case essentially contains the proof of V ∗ +−→ V ∗1 .

(v) Finally, we consider the case where q @R occurs in the M in L = E[µk. [l]M]. We have

{[E[µk. [l]M]]}[K] = QE · K̃E · l̃ ·{[M]}[l]{KE/k, K̃E/k̃}. Apply the induction hypothesis
to {[M]}[l].

We define the translation of the union-intersection types of CCV λµ-calculus into
intersection types of the target calculus:

α∗ = α, (S → T)∗ = T+ → ⊥⊥ → ¬S∗, (
⋂
R)∗ =

⋂
R∗

(
⋃
S)+ =

⋂
¬S∗

[[T]] = ¬T+

In the previous paper, we defined (S → T)∗ as S∗ → [[T]]. The modification corresponds
to the change of the colon translation. Although the results of the type translation do not
obey the rule of the target calculus in §1.3, this does not matter in the following argument.
We simply ignore the distinction between σ, κ, and τ . Accordingly, there is no need to
distinguish between the environments Π,Θ. We add the following inference rule:

Π `s Q1 :⊥⊥ Π `s Q2 :⊥⊥
Π `s Q1 ·Q2 :⊥⊥

Lemma 2.28. If Γ ` M :T | ∆ is derived in the CCV λµ-calculus, then Π, k :T+, k̃ :⊥⊥ `s
{[M]}[k] :⊥⊥ is derived for some Π.

Proof. This lemma was proved in our previous paper [Has15] for the original colon translation.
We follow the same line. We need to pay attention, however, to the pieces added by the
dot operator. Let us consider the case Γ ` J � x := M : ⊥⊥ | ∆ inferred from [Γ,
x :Si ` J :⊥⊥ | ∆]i and Γ ` M :

⋃
Si | ∆. We have {[J � x :=M]}[k] = {[J]} · {[M]}[λx. {[J]}].

We must take care of the free occurrences of x that may appear in the first {[J]} in front of the
dot. Hence, we choose i0 and add x :S∗i0 to the typing environment. We then do the same for
L�x :=M . Next we consider the case N1N2, where Ni are non-values. We have {[N1N2]}[k] =

k̃ · {[zN2]}[k] · {[N1]}[λz. k̃ · {[zN2]}[k]], where {[zN2]}[k] = k̃ · (zkk̃w) · {[N2]}[λw. k̃ · (zkk̃w)].
The variable z occurs freely in the left {[zN2]}[k], while the variable w occurs freely in the

left zkk̃w contained in {[zN2]}[k]. We choose i0 and add z :
⋂
j(T

+ → ⊥⊥ → ¬S∗i0j) to the

type environment Moreover, we choose j0(i) for each i and also add w :
⋂
i S
∗
i j0(i) to the

type environment. Then, from the induction hypotheses on Ni, we can infer the typing of

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:17

{[N1N2]}[k] under the augmented environment, in spite of the free occurrences of z and w.
The remaining cases are similar.

Proposition 2.29. If a CCV λµ-term M is typeable, then M is strongly normalizable.

Proof. If M is typeable, {[M]}[k] is typeable by Lem. 2.28. Then, as sketched in the Appendix,
Cor. A.5, {[M]}[k] is strongly normalizable in the lambda calculus with an additional rewriting
rule for the dot operator. Therefore M is strongly normalizable by Prop. 2.27.

Theorem 2.30. A CCV λµ-term M is strongly normalizable if and only if M is typeable.

Proof. A combination of Prop. 2.15 and 2.29.

Theorem 2.31. A CCV λµ-term M is strongly normalizable if and only if [[M]] is strongly
normalizable.

Proof. The only-if part is just Prop. 2.13. The converse uses the characterization by types.
Provided that [[M]] is strongly normalizable, M is typeable. This is included in the proof of
Prop. 2.15. Finally, M is strongly normalizable by Prop. 2.29.

Remark 2.32. We call a CCV λµ-term strongly quasi-normalizable if all reduction sequences
containing none of the η-type rules are finite. Let us show that strong quasi-normalizability
implies strong normalizability. Suppose M is strongly quasi-normalizable. By inspection of
the proof of Prop. 2.13, we see that [[M]] is strongly β-normalizable. Hence [[M]] is typeable
with no use of ω. The rest of the proof goes as that of Thm. 2.31. Contrary to the case of
weak normalizability [Has15], the inverse is trivial.

Remark 2.33. Let us briefly discuss how to extend the main theorem to the standard CPS
translation. The translation is defined by the following:

[[V]] := λk. kV ∗

[[MN]] := λk. [[M]](λx. [[N]](λy. xyk))
[[M � x :=N]] := λk. [[N]](λx. [[M]]k)
[[µk. J]] := λk. [[J]]
[[[k]M]] := [[M]]k
[[J � x :=N]] := [[N]](λx. [[J]])

x∗ := x
(λx.M)∗ := λx. [[M]].

Theorem 2.31 remains valid for this definition. This is verified along the following line. For
distinction, let [[M]]c denote the CPS via the colon translation given in Preliminaries. Let us
observe that, if we modify the standard CPS translation by [[µk. J]]′ = λk. (λk. [[J]]′)k and
by (λx.M)∗ = λxk. [[M]]′k, then we have [[M]]′ ∗−→ [[M]]c. Here [[M]]′ is η-equal to [[M]]. In
the ordinary lambda calculus, strong normalizability is stable under η-equality (one way to
verify this is to use the characterization by intersection types). Hence, if [[M]] is strongly
normalizable, so are [[M]]′ and, in turn, [[M]]c. Therefore M is strongly normalizable by
the theorem 2.31. For the only-if part, if M is strongly normalizable, M is typeable by
Prop. 2.15. We can prove that the typeability of M induces the typeability of [[M]] (verified
for [[M]]c in [Has15]). Hence [[M]] is strongly normalizable.

18:18 Ryu Hasegawa Vol. 17:1

3. Conclusion

In the series of two papers, we presented call-by-value lambda calculi with control operators.
They are complete with respect to the standard CPS semantics. The key idea is to introduce
equality axioms between terms, departing from the convention that terms are freely generated
by grammars.

We demonstrated the aptitude of the calculi through several mathematical properties.
In this second paper, we gave the characterization of the strong termination property of the
CCV λµ-calculus. We verified the following two results:

(1) M is strongly normalizing iff its CPS translation [[M]] is strongly normalizing.
(2) M is strongly normalizing iff M is typeable (with use of empty intersection or empty

union nowhere).

We mention future problems that are not tackled in our series of papers. We adopted the
reduction rule exch for the characterization of strong termination. It remains open if we
assume the equality rule 1.1 exchanging µ and let in place. Second, we plan to extend the
results to a λµ-calculus having delimited control operators. As a matter of fact, this work is
a precursory extract from our attempt to develop complete calculi with delimited control
operators.

In the literature, we can find the characterization of strong normalizability for various
systems of the λµ-calculus1. Van Bakel, Barbanera, and de’Liguoro considered a call-by-name
λµ-calculus using special forms of intersection and product types [VBD12]. Tsukada and
Nakazawa introduced a polarized variation of λ̄µµ̃-calculus and gave a characterization using
union and intersection types [TN16]. In particular, the latter may have a close connection
to our results, although the details remain to be investigated in the future.

Appendix A. Strong normalizability of the extended lambda calculus

We give a sketch of the strong normalizability result needed in the proof of Prop. 2.29. We
extend the ordinary lambda calculus by a binary dot operator M ·N , which is associative,
i.e., (L ·M) ·N = L · (M ·N) holds. We omit the brackets. As a new reduction rule related
to the dot operator, we add

M ·N → N

in addition to the ordinary βη-reduction.
We introduce an intersection type system. We do not need sorts. So the strict types σ

and types τ = σ are defined simply by

σ ::= α | τ → σ

τ ::=
⋂
σ

where α ranges over atomic types and
⋂
σ signifies a finite intersection σ1 ∩ σ2 ∩ · · · ∩ σn

(n ≥ 1). We emphasize that the nullary intersection ω is not considered here. We assume
that a special atomic type ⊥⊥ is included.

We naturally define the subtype relation ≤. As typing rules, we add

Γ `s M :⊥⊥ Γ `s N :⊥⊥
Γ `s M ·N :⊥⊥

1We thank an anonymous referee who informed us of the related works.

Vol. 17:1 COMPLETE CALL-BY-VALUE CALCULI OF CONTROL OPERATORS, II 18:19

to the standard rules, including the inheritance rule. We verify the strong normalizability of
this type system by the standard computability method [vBa92][MHH98].

Strong normalizability satisfies the following three properties elucidated in [MHH98],
even if we consider η-reduction and the new rule associated with the dot operator: (i)
if L1, L2, . . . , Ln (n ≥ 0) are strongly normalizable, xL1L2 · · ·Ln is strongly normaliz-
able, (ii) if Mx is strongly normalizable, M is strongly normalizable. (iii) if N and
M{N/y}L1L2 · · ·Ln (n ≥ 0) are strongly normalizable, (λy.M)NL1L2 · · ·Ln is strongly
normalizable.

Definition A.1. We define a family of sets Compτ of terms by induction on the construction
of type τ .

M ∈ Compα ⇐⇒ M is strongly normalizable

M ∈ Compτ→τ ′ ⇐⇒ ∀N ∈ Compτ . MN ∈ Compτ ′

M ∈ Compτ∩τ ′ ⇐⇒ M ∈ Compτ ∩ Compτ ′ .

It does no harm to consider non-typeable terms. So we do not include the condition of types
for simplicity.

Lemma A.2. The following hold for each type τ :

(1) x ∈ Compτ .
(2) If M ∈ Compτ , then M is strongly normalizable.

Proof. Simultaneous induction on construction of types τ . To let induction go through, we
strengthen condition (1): xM1M2 · · ·Mn ∈ Compτ whenever M1,M2, . . . ,Mn are strongly
normalizable. To handle the case of τ → τ ′, we need property (i) given above. For
(2) of τ → τ ′, we need (ii). We comment that the lemma fails if we allow the nullary
intersection.

Lemma A.3. If τ ≤ τ ′ holds, Compτ ⊆ Compτ ′ holds.

Lemma A.4. Suppose that x1 : τ1, x2 : τ2, . . . , xn : τn `s M : σ holds. For every n-tuple of
Pi ∈ Compτi, we have M{P1/x1, P2/x2, . . . , Pn/xn} ∈ Compσ.

Proof. Induction on the construction of the derivation trees of typing judgments. We consider
the rule deriving M ·N :⊥⊥ from M :⊥⊥ and N :⊥⊥. The substitution Pi/xi plays no role in
this case, so we omit it. Since ⊥⊥ is an atomic type, the induction hypotheses say M and
N are strongly normalizable. Then, M ·N is obiously also strongly normalizable, that is,
M ·N ∈ Comp⊥⊥. To handle lambda-abstraction, we need property (iii) given above. For
the inheritance rule, we use Lem. A.3.

Corollary A.5. If Γ `s M : σ is derivable, M is strongly normalizable.

Proof. We take xi as Pi in Lem. A.4. Then, noting (1) of Lem. A.2, we have M ∈ Compσ.
Thus M is strongly normalizable by (2) of Lem. A.2.

References

[Has15] R. Hasegawa, Complete call-by-value calculi with control operators, I, to appear.
[IN06] S. Ikeda and K. Nakazawa, Strong normalization proofs by CPS-translations, Inform. Process. Let.

99(4):163–170, 2006

18:20 Ryu Hasegawa Vol. 17:1

[KA08] Y. Kameyama and K. Asai, Strong normalization of polymorphic calculus for delimited continua-
tions, Proceedings of Austrian-Japanese Workshop on Symbolic Computation in Software Science,
SCSS 2008, Hagenberg, Austria, Jul. 2008, RISC-Linz Report Series No. 08–08, pages 96–108.

[MHH98] J. Mitchell, M. Hoang, and B. T. Howard, Labeling techniques and typed fixed-point operators.
Higher Order Operational Techniques in Semantics, A. D. Gordon, A. M. Pitts, eds., pages 137–174,
Cambridge University Press, 1998.

[Mog88] E. Moggi, Computational lambda-calculus and monads, preprint, LFCS Report Series, Laboratory
for Foundations of Computer Science, Department of Computer Science, The University of
Edinburgh, Oct., 1988.

[Nak03] K. Nakazawa, Confluency and strong normalizability of call-by-value λµ-calculus, Theoret. Comput.
Sci. 290(1):429–463, 2003.

[NT03] K. Nakazawa and M. Tatsuta, Strong normalization proof with CPS-translation for second order
classical natural deduction, J. Symbolic Logic 68(3):851–859, 2003; Corrigendum, 68(4):1415–1416,
2003.

[Par97] M. Parigot, Proofs of strong normalisation for second order classical natural deduction, J. Symbolic
Logic 62(4):1461–1479, 1997.

[Plo75] G. D. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoret. Comput. Sci. 1(2):125–159,
1975.

[TN16] T. Tsukada and K. Nakazawa, Intersection and union type assignment and polarised λ̄µµ̃, draft,
2016.

[vBa92] S. van Bakel, Complete restrictions of the intersection type discipline, Theoret. Comput. Sci.,
102(1):135–163, 1992.

[VBD12] S. van Bakel, F. Barbanera, and U. de’Liguoro, Characterisation of strongly normalising λµ-terms,
Proceedings Sixth Workshop on Intersection Types and Related Systems, Electr. Proc. Theoret.
Comp. Sci. 121:17–34, 2012.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	Introduction
	1. Preliminaries
	1.1. CCV -calculus
	1.2. Union-intersection type discipline
	1.3. Type system of the target calculus

	2. Strong Normalization
	2.1. Termination of jmp reduction sequences
	2.2. Characterization of strong normalizability

	3. Conclusion
	Appendix A. Strong normalizability of the extended lambda calculus
	References

