
Logical Methods in Computer Science
Volume 17, Issue 1, 2021, pp. 21:1–21:26
https://lmcs.episciences.org/

Submitted Dec. 23, 2019
Published Mar. 18, 2021

STUBBORN SET REDUCTION FOR
TWO-PLAYER REACHABILITY GAMES

FREDERIK MEYER BØNNELAND, PETER GJØL JENSEN, KIM GULDSTRAND LARSEN,
MARCO MUÑIZ, AND JIŘÍ SRBA

Department of Computer Science, Aalborg University, Denmark
e-mail address: {frederikb,pgj,kgl,muniz,srba}@cs.aau.dk

Abstract. Partial order reductions have been successfully applied to model checking of
concurrent systems and practical applications of the technique show nontrivial reduction
in the size of the explored state space. We present a theory of partial order reduction
based on stubborn sets in the game-theoretical setting of 2-player games with reachability
objectives. Our stubborn reduction allows us to prune the interleaving behaviour of both
players in the game, and we formally prove its correctness on the class of games played
on general labelled transition systems. We then instantiate the framework to the class of
weighted Petri net games with inhibitor arcs and provide its efficient implementation in
the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case
studies and demonstrate its efficiency.

1. Introduction

The state space explosion problem is the main obstacle for model checking of concurrent
systems. Even simple processes running in parallel can produce an exponentially large
number of interleavings, making full state space search practically intractable. A family of
methods for taming this problem is that of partial order reductions [God96, Pel93, Val91] by
exploiting the commutativity of independent concurrent processes. Variants of partial order
reductions include persistent sets [God96, God90, GW93], ample sets [Pel93, Pel96, Pel98],
and stubborn sets [Val91, Val92, Val93, VH17].

As our main contribution, we generalise the theory of the stubborn set variant of partial
order reductions into the setting of 2-player games. We exploit the observation that either of
the two players often is left with no actions to propose, leaving the opponent to independently
dictate the behavior of the system for a limited, consecutive sequence of actions. In such
cases we may apply the classical stubborn set reductions in order to reduce the number of
interleavings of independent actions. To preserve the winning strategies of both players, a
number of conditions of the reduction has to be satisfied. We define the notion of a stable
stubborn set reduction by a set of sufficient conditions that guarantee the preservation of
winning strategies for both players. Furthermore, we formally prove the correctness of stable
reductions in the setting of general game labelled transition systems, and instantiate our

Key words and phrases: Petri nets, games, synthesis, partial order reduction, stubborn sets.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(1:21)2021
© F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

21:2 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

framework to weighted Petri net games with inhibitor arcs. We propose approximate syntax-
driven conditions of a stable Petri net game reduction satisfying the sufficient conditions
for our stable reductions and demonstrate their applicability in an efficient, open source
implementation in the model checker TAPAAL [DJJ+12]. Our implementation is based on
dependency graphs, following the approach from [DEF+18, JLS16], and we demonstrate on
several case studies that the computation of the stubborn sets only has a minor overhead
while having the potential of achieving exponential reduction both in the running time as
well as in the number of searched configurations. To the best of our knowledge, this is the
first efficient implementation of a 2-player game partial order reduction technique for Petri
net games.

Related Work. Partial order reductions in the non-game setting for linear time properties
have previously been studied [LW14, LLW12, Pel93, Val92] which lends itself towards the
safety or liveness properties we wish to preserve for winning states. Originally Peled and
Valmari presented partial order reductions for general stuttering-insensitive LTL [Pel93, Val92]
and Lehmann et al. subsequently studied stubborn sets applied to a subset of LTL properties,
called simple linear time properties, allowing them to utilise a relaxed set of conditions
compared to those for general LTL preservation [LLW12].

The extension of partial order reductions to game-oriented formalisms and verification
tasks has not yet received much attention in the literature. In [JPDM18] partial order
reductions for LTL without the next operator are adapted to a subset of alternating-time
temporal logic and applied to multi-agent systems. The authors consider games with
imperfect information, however, they also show that their technique is inapplicable for perfect
information games. In our work, we assume an antagonistic environment and focus on
preserving the existence of winning strategies with perfect information, reducing the state
space, and improving existing controller synthesis algorithms. Partial order reduction for
the problem of checking bisimulation equivalence between two labelled transition systems is
presented in [Val97, HNW98, GKPP99]. Our partial order reduction is applied directly to a
labelled transition system while theirs are applied to the bisimulation game graph. While
the setting is distinctly different, our approach is more general as we allow for mixed states
and allow for reduction in both controllable as well as environmental states. Moreover, we
provide an implementation of the on-the-fly strategy synthesis algorithm and argue by a
number of case studies for its practical applicability.

The work on partial order reductions for weak modal µ-calculus and CTL (see e.g. [RS97,
WW96]) allows us in principle to encode the game semantics as a part of a µ-calculus formula.
Recently, partial order reduction techniques for parity games have been proposed by Neele et
al. [NWW20], which allows for model checking the full modal µ-calculus. However, the use
of more general partial order reduction methods may waste reduction potential, as the more
general methods usually generate larger stubborn sets to preserve properties that are not
required in the 2-player game setting.

Complexity and decidability results for control synthesis in Petri net games are not
encouraging. The control synthesis problem is for many instances of Petri net formalisms
undecidable [ABDL16, BHSS12], including those that allow for inhibition [BHSS12] which
we utilise to model our case studies. If the problem is decidable for a given instance of a
Petri net formalism (like e.g. for bounded nets) then it is usually of high computational
complexity. In fact, most questions about the behaviour of bounded Petri nets are at least
PSPACE-hard [Esp98]. We opt to use efficient overapproximation algorithms using both
syntactic and local state information to generate stable stubborn sets.

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:3

The work presented in this article is an extended version with full proofs of our conference
paper [BJL+19]. The stubborn set conditions presented in [BJL+19] were insufficient in
order to guarantee the preservation of reachability while condition C from the conference
paper was found to be redundant. These issues are fixed, and in the present article we add
an additional visibility condition on player 2 actions and we elaborate on its syntax-based
algorithmic overapproximation for the Petri net games. The implementation is accordingly
fixed and the efficiency of the method is still confirmed on an extended set of case studies
compared to [BJL+19].

2. Preliminaries

We shall first introduce the basic notation and definitions.

Definition 2.1 (Game Labelled Transition System). A (deterministic) Game Labelled
Transition System (GLTS) is a tuple G = (S, A1, A2,→,Goal) where
• S is a set of states,
• A1 is a finite set of actions for player 1 (the controller),
• A2 is a finite set of actions for player 2 (the environment) where A1 ∩ A2 = ∅ and
A = A1 ∪A2,
• → ⊆ S ×A× S is a transition relation such that if (s, a, s′) ∈ → and (s, a, s′′) ∈ → then
s′ = s′′, and
• Goal ⊆ S is a set of goal states.

Let G = (S, A1, A2,→,Goal) be a fixed GLTS for the remainder of the section. Whenever
(s, a, s′) ∈ → we write s a−→ s′ and say that a is enabled in s and can be executed in s yielding
s′. Otherwise we say that a is disabled in s. The set of enabled player i actions where
i ∈ {1, 2} in a state s ∈ S is given by eni(s) = {a ∈ Ai | ∃s′ ∈ S. s

a−→ s′}. The set of all
enabled actions is given by en(s) = en1(s) ∪ en2(s). For a state s ∈ S where en(s) 6= ∅ if
en2(s) = ∅ then we call s a player 1 state, if en1(s) = ∅ then we call s a player 2 state, and
otherwise we call it a mixed state. If en(s) = ∅ then we call s a deadlock state. The GLTS
G is called non-mixed if all states are either player 1, player 2, or deadlock states.

For a sequence of actions w = a1a2 · · · an ∈ A∗ we write s w−→ s′ if s a1−→ s1
a2−→ · · · an−→ s′

and say it is executable. If w ∈ Aω, i.e. if it is infinite, then we write s w−→. Actions that
are a part of w are said to occur in w. A sequence of states induced by w ∈ A∗ ∪ Aω is
called a run and is written as π = s0s1 · · · . We use ΠG(s) to denote the set of all runs
starting from a state s ∈ S in GLTS G, s.t. for all s0s1 · · · ∈ ΠG(s) we have s0 = s, and
ΠG =

⋃
s∈S ΠG(s) as the set of all runs. The number of actions in a run π is given by the

function ` : ΠG → N0 ∪ {∞} s.t. for a run π = s0 · · · sn we have `(π) = n if π is finite and
otherwise `(π) =∞. A position in a run π = s0s1 . . . ∈ ΠG(s) is a natural number i ∈ N0

that refers to the state si and is written as πi. A position i can range from 0 to `(π) s.t. if π
is infinite then i ∈ N0 and otherwise 0 ≤ i ≤ `(π). Let Πmax

G (s) be the set of all maximal
runs starting from s, defined as Πmax

G (s) = {π ∈ ΠG(s) | `(π) 6=∞ =⇒ en(π`(π)) = ∅}. We
omit the GLTS G from the subscript of run sets if it is clear from the context.

A reduced game is defined by a function called a reduction.

Definition 2.2 (Reduction). Let G = (S, A1, A2,→,Goal) be a GLTS. A reduction is a
function St : S → 2A.

21:4 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

Definition 2.3 (Reduced Game). Let G = (S, A1, A2,→,Goal) be a GLTS and St be a
reduction. The reduced game of G by the reduction St is given by GSt = (S, A1, A2,−→

St
,Goal)

where s a−→
St

s′ iff s a−→ s′ and a ∈ St(s).

The set of actions St(s) is the stubborn set of s with the reduction St. The set of
non-stubborn actions for s is defined as St(s) = A \ St(s).

A (memoryless) strategy is a function that proposes the next action player 1 wants to
execute.

Definition 2.4 (Strategy). Let G = (S, A1, A2,→,Goal) be a GLTS. A strategy is a function
σ : S → A1 ∪ {⊥} where for all s ∈ S we have that if en1(s) 6= ∅ then σ(s) ∈ en1(s) else
σ(s) = ⊥.

The intuition is that in order to ensure progress, player 1 always has to propose an action
if she has an enabled action. Let σ be a fixed strategy for the remainder of the section. We
define a function nextσ(s) that returns the set of actions considered at s ∈ S under σ as:

nextσ(s) =

{
en2(s) ∪ σ(s) if σ(s) 6= ⊥
en2(s) otherwise.

Let Πmax
σ (s) ⊆ Πmax (s) be the set of maximal runs subject to σ starting at s ∈ S, defined as:

Πmax
σ (s) = {π ∈ Πmax (s) | ∀i ∈ {1, . . . , `(π)}. ∃a ∈ nextσ(πi−1). πi−1

a−→ πi} .

Definition 2.5 (Winning Strategy). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S be
a state. A strategy σ is a winning strategy for player 1 at s in G iff for all π ∈ Πmax

σ (s) there
exists a position i s.t. πi ∈ Goal . A state s is called winning if there is a winning strategy
for player 1 at s.

If a state is winning for player 1 inG then no matter what action sequence the environment
chooses, eventually a goal state is reached. Furthermore, for a given winning strategy σ at s
in G, there is a finite number n ∈ N0 such that we always reach a goal state with at most n
action firings, which we prove in Lemma 2.7. We call this minimum number the strategy
depth of σ.

Definition 2.6 (Strategy Depth). Let G = (S, A1, A2,→,Goal) be a GLTS, s ∈ S a winning
state for player 1 in G and σ a winning strategy at s in G. Then n ∈ N0 is the depth of σ at
s in G if:
• for all π ∈ Πmax

σ (s) there exists 0 ≤ i ≤ n s.t. πi ∈ Goal , and
• there exists π′ ∈ Πmax

σ (s) s.t. π′n ∈ Goal and for all 0 ≤ j < n we have π′j /∈ Goal .

Lemma 2.7. Let G = (S, A1, A2,→,Goal) be a GLTS, s ∈ S a winning state for player 1
in G, and σ a winning strategy at s in G. Then
(1) there exists n ∈ N that is the depth of σ at s in G, and
(2) if s /∈ Goal then for all a ∈ nextσ(s) where s a−→ s′, the depth of σ at s′ in G is m such

that 0 ≤ m < n.

Proof. (1): Due to A1 and A2 being finite and any G being deterministic, we know that
every state s ∈ S is finitely branching. Since s is a winning state for player 1 in G, we get
that every run leads to a goal state in a finite number of actions. Therefore, due to König’s

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:5

s1 s2 s3

s4 s5 s6 ∈ Goal

s7safe(s1) = {a}
As1({s6}) = {a}

a b

c

a b

c

d

Figure 1: Example of safe and interesting sets of actions for a state s1

lemma, the tree induced by all runs starting from s, with the leafs being the first occurring
goal states, is a finite tree and hence such n exists.

(2): Let n be the depth of σ at s in G and let s a−→ s′ such that a ∈ nextσ(s). By
contradiction let us assume that the depth of σ at s′ is larger than or equal to n. However,
this implies the existence of a run π from s′ that contains n or more non-goal states before
reaching the goal. The run sπ now contradicts that the depth of s is n.

A set of actions for a given state and a given set of goal states is called an interesting set
if for any run leading to any goal state at least one action from the set of interesting actions
has to be executed.

Definition 2.8 (Interesting Actions). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S a
state. A set of actions As(Goal) ⊆ A is called an interesting set of actions for s and Goal if
whenever s /∈ Goal , w = a1 · · · an ∈ A∗, s

w−→ s′, and s′ ∈ Goal then there exists i, 1 ≤ i ≤ n,
such that ai ∈ As(Goal).

Example 2.9. In Figure 1 we see an example of a GLTS G = (S, A1, A2,→,Goal) where
S = {s1, s2, s3, s4, s5, s6, s7} are the states denoted by circles, A1 = {a, b, c} is the set
of player 1 actions, A2 = {d} is the set of player 2 actions, and → is denoted by the
solid (controllable) and dashed (uncontrollable) transitions between states, labelled by the
corresponding actions for player 1 and 2, respectively. Let Goal = {s6}. We now consider
different proposals for a set of interesting actions for the state s1. The set {b} is an interesting
set of actions in s1 since the goal state s6 cannot be reached without firing b at least once.
Furthermore, the sets {a} and {c} are also sets of interesting actions for the state s1.

Player 1 has to also consider her safe actions. A player 1 action is safe in a given player 1
state if for any player 1 action sequence (excluding the safe action) that does not enable any
player 2 action, prefixing this sequence with the safe action will (in case it is executable)
also not enable any player 2 action.

Definition 2.10 (Safe Action). Let G = (S, A1, A2,→,Goal) be a GLTS and s ∈ S a state
such that en2(s) = ∅. An action a ∈ en1(s) is safe in s if whenever w ∈ (A1 \ {a})∗ with
s

w−→ s′ s.t. en2(s′) = ∅ and s aw−−→ s′′ then en2(s′′) = ∅. The set of all safe actions for s is
written as safe(s).

Example 2.11. Consider again the GLTS in Figure 1. We reasoned in Example 2.9 that
the set {b} is an interesting set of actions in the state s1. However, b is not a safe player 1
action in s1 since by definition b has to be enabled at s1 to be safe. The set of enabled

21:6 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

actions in s1 is en(s1) = {a, c}, and between these two actions only a is safe. The action c is
not safe since we have s1

a−→ s2 and en2(s2) = ∅ but s1
ca−→ s5 and en2(s5) 6= ∅. It is clear

that s1 is a winning state for player 1 and player 1 must initially play a as playing c will
bring us to the mixed state s5 from which player 1 does not have winning strategy.

3. Stable Reduction

In this section we introduce the notion of a stable reduction St that provides at each state
s the set of actions St(s) that are sufficient to be explored so that the given reachability
property is preserved in the reduced game. In the game setting, we have to guarantee the
preservation of winning strategies for both players in the game. In what follows, we shall
introduce a number of conditions (formulated in general terms of game labelled transition
systems) that guarantee that a given reduction preserves winning strategies and we shall call
reductions satisfying these conditions stable.

For the remainder of the section let s ∈ S be a state and Goal ⊆ S be a set of goal
states, and let As(Goal) be an arbitrary but fixed set of interesting actions for s and Goal .

Definition 3.1 (Stable Reduction Conditions). A reduction St is called stable if St satisfies
for every s ∈ S Conditions I, W, R, G1, G2, S, V and D.

I If en1(s) 6= ∅ and en2(s) 6= ∅ then en(s) ⊆ St(s).
W For all w ∈ St(s)∗ and all a ∈ St(s) if s wa−−→ s′ then s aw−−→ s′.
R As(Goal) ⊆ St(s)

G1 For all w ∈ St(s)∗ if en2(s) = ∅ and s w−→ s′ then en2(s′) = ∅.
G2 For all w ∈ St(s)∗ if en1(s) = ∅ and s w−→ s′ then en1(s′) = ∅.
S en1(s) ∩ St(s) ⊆ safe(s) or en1(s) ⊆ St(s)
V If there exists w ∈ A∗2 s.t. s w−→ s′ and s′ ∈ Goal then en2(s) ⊆ St(s).
D If en2(s) 6= ∅ then there exists a ∈ en2(s) ∩ St(s) s.t. for all w ∈ St(s)∗ where s w−→ s′

we have a ∈ en2(s′).

If s is a mixed state then Condition I ensures that all enabled actions are included in the
reduction. That is, we do not attempt to reduce the state space from this state. Condition W
states that we can swap the ordering of action sequences such that performing stubborn
actions first still ensures that we can reach a given state (i.e. a stubborn action commutes
with any sequence of nonstubborn actions). Condition R ensures that a goal state cannot be
reached solely by exploring actions not in the stubborn set (i.e. we preserve the reachability
of goal states). Conditions G1 resp. G2 ensure that from any state belonging to player 1
(resp. player 2), it is not possible to reach any player 2 (resp. player 1) state or a mixed state,
solely by exploring only nonstubborn actions (i.e. reachability of mixed states and opposing
player states are preserved in the reduction). Condition S ensures that either all enabled
stubborn player 1 actions are also safe, or if this is not the case then all enabled player 1
actions are included in the stubborn set. Condition V checks if it is possible to reach a goal
state by firing exclusively player 2 actions, and includes all enabled player 2 actions into the
stubborn set if it is the case. Condition D ensures that at least one player 2 action cannot
be disabled solely by exploring nonstubborn actions.

Example 3.2. In Figure 2 we see an example of a GLTS using the previously introduced
graphical notation. Let Goal = {s8} be the set of goal states and let As1(Goal) = {a} be a

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:7

s1

s2

s3

s4

s5

s6

s7

s8 ∈ Goal

s9 s10

safe(s1) = {a, b, c}
As1({s8}) = {a}

a

b

c

b

c a

c a

b

c

b

a

d e

Figure 2: Example of a stable reduction for a state s1

fixed set of interesting actions. For state s1 we assume St(s1) = {a, c} as this stubborn set
satisfies the stable reduction conditions. We satisfy G1 since c has to be fired before we can
reach the player 2 state s9. For s1

ba−→ s5 and s1
bc−→ s7 we also have s1

ab−→ s5 and s1
cb−→ s7,

so W is satisfied as well. Clearly St(s1) contains the interesting set As1(Goal) that we fixed
to {a}, so R is satisfied. Condition S is satisfied since St(s1) ∩ en(s1) ⊆ safe(s1). We have
that I, G2, V, and D are satisfied as well since their antecedents are not true. Thick lines in
the figure indicate transitions and states that are preserved by a stable reduction St, while
thin lines indicates transitions and states that are removed by the same reduction.

We shall now prove the correctness of our stubborn set reduction. We first notice the
fact that if a goal state is reachable from some state, then the state has at least one enabled
action that is also in the stubborn set.

Lemma 3.3. Let G = (S, A1, A2,→,Goal) be a GLTS, St a reduction that satisfies Condi-
tions W and R, and s ∈ S \Goal a state. If there exists w ∈ A∗ s.t. s w−→ s′ and s′ ∈ Goal
then St(s) ∩ en(s) 6= ∅.

Proof. Assume that there exists w = a1 · · · an ∈ A∗ s.t. s
w−→ s′ and s′ ∈ Goal . If w ∈ St(s)∗

then by Condition R we must have s′ /∈ Goal , however this contradicts our assumption.
Therefore there must exist an action that occurs in w that is in the stubborn set of s. Let
ai ∈ St(s) be the first of such an action s.t. for all j, 1 ≤ j < i, we have aj /∈ St(s). Clearly,
we have a1 · · · aj ∈ St(s)

∗
and by Condition W we have ai ∈ St(s) ∩ en(s).

The correctness of stable stubborn reductions is proved by the next two lemmas. Both
lemmas are proved by induction on the depth of a winning strategy for player 1 in the game.

Lemma 3.4. Let G = (S, A1, A2,→,Goal) be a GLTS and St a stable reduction. If a state
s ∈ S is winning for player 1 in G then s is also winning for player 1 in GSt.

Proof. Assume that s ∈ S is a winning state for player 1 in G. By definition we have that
there exists a player 1 strategy σ such that for all π ∈ Πmax

G,σ (s) there exists a position i

s.t. πi ∈ Goal . By induction on n we now prove the induction hypothesis IH (n): “If s is a
winning state for player 1 in G with a strategy with a depth of n then s is a winning state
for player 1 in GSt.”

Base step. Let n = 0. Then since n is the depth at s in G we must have s ∈ Goal and
so s is trivially a winning state for player 1 also in GSt.

21:8 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

Induction step. Let n > 0 and let σ be a winning strategy with depth n for s. There are
three cases: (1) en1(s) 6= ∅ and en2(s) 6= ∅, (2) en2(s) = ∅, and (3) en1(s) = ∅. A deadlock
at s, i.e. en(s) = ∅, cannot be the case as we otherwise have n = 0.

Case (1): Let en1(s) 6= ∅ and en2(s) 6= ∅. We assume that s is a winning state for
player 1 in G with a strategy σ with a depth of n and we want to show that there exists a
strategy σ′ s.t. s is a winning state for player 1 in GSt with σ′. Since s is a winning state for
player 1 in G with σ if s a−→ s′ where a ∈ nextσ(s) then s′ is a winning state for player 1 in G
with m < n as the depth of σ at s′ in G due to property 2 of Lemma 2.7. By the induction
hypothesis s′ is a winning state for player 1 in GSt and there exists a strategy σ′ s.t. σ′ is a
winning strategy for player 1 at s′ in GSt. By Condition I we know en1(s) ⊆ St(s) implying
that σ(s) ∈ St(s). Player 1 can therefore choose the same action proposed in the original
game s.t. σ′(s) = σ(s). From the definition of a winning strategy we have that no matter
what action player 2 chooses, the resulting state is a winning state for player 1, and hence s
is a winning state for player 1 in GSt.

Case (2): Let en2(s) = ∅. Assume that s is a winning state for player 1 in G with
a strategy σ with a depth of n. We want to show that there exists a strategy σ′ s.t. s
is a winning state for player 1 in GSt with σ′. Let π ∈ Πmax

G,σ (s) be any run and π0 = s.
Since s is a winning state for player 1 in G with σ we know there exists an m ≤ n s.t.
π0

a1−→ π1
a2−→ · · · am−−→ πm and πm ∈ Goal . Let w = a1 · · · am. We start by showing that there

exists i, 1 ≤ i ≤ m, such that ai ∈ St(s). Assume that w ∈ St(s)∗ is true. Then we have
πm /∈ Goal due to Condition R, a contradiction. Therefore there must exist i, 1 ≤ i ≤ m,
s.t. ai ∈ St(s). Let i be minimal in the sense that for all j, 1 ≤ j < i, we have aj /∈ St(s).
We can then divide w s.t. w = vaiu, v ∈ St(s)

∗
and we have s ai−→ s′0

v−→ πi
u−→ πm due

to Condition W as well as s ai−→
St

s′0. There are two subcases: (2.1) ai ∈ safe(s) or (2.2)

ai /∈ safe(s).

• Case (2.1): Let ai ∈ safe(s). For all 1 ≤ j < i we have en2(πj) = ∅ due to i being
minimal and Condition G1. From that, if ai ∈ safe(s) then for all intermediate states
in s

aiv−−→ πi we only have player 1 states otherwise ai is not a safe action due to the
definition of safe actions. We have that s′0 is a player 1 state and let v = a1a2 · · · ai−1 s.t.
s′0

a1−→ s′1
a2−→ · · · ai−1−−−→ πi and for all k, 1 ≤ k < i − 1, we have en2(s′k) = ∅. Let σ′′ be

defined such that for all j, 0 < j < i− 1, we have σ′′(s′j−1) = aj , and let σ′′ from πi be
defined as σ. Clearly, σ′′ is a winning strategy for player 1 at s′0 in G. Due to property 2
of Lemma 2.7 the depth of σ′′ at πi in G is at most k ≤ n− i. Since G is deterministic by
following the strategy σ′′ from s′0 we always reach πi in i− 1 actions. From this we can
infer that the depth of σ′′ at s′0 in G is at most k + i− 1 which is clearly smaller than n.
Therefore s′0 is a winning state for player 1 in G with at most k + i− 1 < n as the depth
of σ′′ at s′0 in G. By the induction hypothesis s′0 is a winning state for player 1 in GSt and
there exists a strategy σ′ s.t. σ′ is a winning strategy for player 1 at s′0 in GSt. Player 1
can then choose ai in the reduced game such that σ′(s) = ai and s is a winning state for
player 1 in GSt.
• Case (2.2): Let ai /∈ safe(s). Since ai /∈ safe(s) we have St(s) ∩ en1(s) * safe(s) and

en1(s) ⊆ St(s) by Condition S. If s
σ(s)−−→ s′ then s′ is a winning state for player 1 in G with

m < n as the depth of σ at s′ in G, following property 2 of Lemma 2.7. By the induction
hypothesis s′ is a winning state for player 1 in GSt and there exists a strategy σ′ s.t. σ′ is

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:9

a winning strategy for player 1 at s′ in GSt. Player 1 can choose the same action proposed
in the original game such that σ′(s) = σ(s) and s is a winning state for player 1 in GSt.
Case (3): Let en1(s) = ∅. Assume that s is a winning state for player 1 in G with σ as

the winning strategy. We want to show that there exists a strategy σ′ s.t. s is a winning state
for player 1 in GSt with σ′. Since en1(s) = ∅ we have σ(s) = σ′(s) = ⊥ by the definition of
strategies. We have from the definition of a winning strategy that no matter what action
player 2 chooses, the resulting state is a winning state for player 1. What remains to be
shown is that at least one enabled player 2 action is included in St(s). As en2(s) 6= ∅,
due to Condition D we get that there exists a ∈ en2(s) ∩ St(s), and this last case is also
established.

Lemma 3.5. Let G = (S, A1, A2,→,Goal) be a GLTS and St a stable reduction. If a state
s ∈ S is winning for player 1 in GSt then s is also winning for player 1 in G.

Proof. Assume that s ∈ S is a winning state for player 1 in GSt. By definition we have that
there exists a strategy σ s.t. for all π ∈ Πmax

GSt,σ
(s) there exists a position i s.t. πi ∈ Goal . Let

σ be fixed for the remainder of the proof. Let n be the depth of σ at s in GSt. By induction
on n we prove the induction hypothesis IH (n): “If s is a winning state for player 1 in GSt
with a strategy with a depth of n then s is a winning state for player 1 in G.”

Base step. If n = 0 then since n is the depth at s in GSt we must have s ∈ Goal , implying
that s is a winning state for player 1 also in G.

Induction step. Let n > 0 and let s be a winning state for player 1 in GSt with a strategy
with a depth of n. There are three cases: (1) en1(s) ∩ St(s) 6= ∅ and en2(s) ∩ St(s) 6= ∅,
(2) en2(s) ∩ St(s) = ∅, and (3) en1(s) ∩ St(s) = ∅. A deadlock at s in GSt such that
en(s) ∩ St(s) = ∅ is not possible as otherwise we have the case where n = 0.

Case (1): Let en1(s) ∩ St(s) 6= ∅ and en2(s) ∩ St(s) 6= ∅. We assume that s is a winning
state for player 1 in GSt with a strategy σ with a depth of n. We want to show that there
exists a strategy σ′ s.t. s is a winning state for player 1 in G with σ′. Since s is a winning

state for player 1 in GSt with σ, whenever s
σ(s)−−→
St

s′ or s a−→
St

s′ where a ∈ en2(s)∩St(s) then

s′ is a winning state for player 1 in GSt with m < n as the depth of σ at s′ in GSt, following
property 2 of Lemma 2.7. By the induction hypothesis s′ is a winning state for player 1 in G
and there exists a strategy σ′ s.t. σ′ is a winning strategy for player 1 at s′ in G. Since s is a
mixed state in GSt then s must also be a mixed state in G due to −→

St
⊆ →. This implies that

s
σ(s)−−→ s′. Therefore player 1 can choose the same action proposed in the reduced game such

that σ′(s) = σ(s). Furthermore we have en2(s)∩St(s) = en2(s) from Condition I. From this
we can conclude that s is a winning state for player 1 in G with strategy σ′.

Case (2): Let en2(s) ∩ St(s) = ∅. Assume that s is a winning state for player 1 in GSt
with a strategy σ with a depth of n. We want to show that there exists a strategy σ′ s.t. s is
a winning state for player 1 in G with σ′. Since s is a winning state for player 1 in GSt with

σ we have s
σ(s)−−→
St

s′ and s′ is a winning state for player 1 in GSt with m < n as the depth

of σ at s′ in GSt, following property 2 of Lemma 2.7. By the induction hypothesis s′ is a
winning state for player 1 in G and there exists a strategy σ′ s.t. σ′ is a winning strategy for

player 1 at s′ in G. Trivially we have that s
σ(s)−−→ s′ since we have −→

St
⊆ →. Therefore player

1 can choose the same action proposed in the reduced game σ′(s) = σ(s). Next we show by
contradiction that s is a player 1 state also in G. Assume en2(s) 6= ∅, i.e. that s is a mixed

21:10 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

state in G. From this we can infer by Condition I that en(s) ⊆ St(s) and en2(s)∩St(s) 6= ∅,
which is a contradiction. Therefore we have en2(s) = ∅, i.e. s is a player 1 state also in G,
and s is a winning state for player 1 in G with strategy σ′.

Case (3): Let en1(s) ∩ St(s) = ∅. Assume that s is a winning state for player 1 in GSt
with a strategy σ with a depth of n. We want to show that there exists a strategy σ′ s.t. s is
a winning state for player 1 in G with σ′. Since en1(s) ∩ St(s) = ∅ then we have σ(s) = ⊥.
Furthermore, we have en1(s) = ∅ since otherwise with Condition I we will be able to infer
that en1(s) ∩ St(s) 6= ∅, which is a contradiction. We define σ′ = σ.

What remains to be shown is that s is a winning state for player 1 in G. For the sake of
contradiction assume that this is not the case, i.e. that there exists π ∈ Πmax

G,σ′(s) such that

s = π0
a1−→ π1

a2−→ π2
a3−→ · · ·

and πi /∈ Goal for all positions i. We shal first argue that a1 /∈ St(s). If this is not the case,
then π0

a1−→
St

π1 also in the reduced game GSt. Due to our assumption that s = π0 is a winning
state for player 1 in GSt and a1 ∈ A2, we know that also π1 is a winning state for player 1 in
GSt with m < n as the depth of σ at π1 in GSt, following property 2 of Lemma 2.7. By the
induction hypothesis π1 is a winning state for player 1 in G, which contradicts the existence
of the maximal path π with no goal states.

Let us so assume that a1 /∈ St(s). Let j > 1 be the smallest index such that aj ∈ St(s)
and a1a2 · · · aj−1aj ∈ A∗2. Such index must exist because of the following case analysis.
• Either the sequence a1a2 · · · contains an action that belongs to A1 (we note that because
of our assumption a1 /∈ A1). Due to Condition G2 there must exist an action aj that is
stubborn in s and let j > 1 be the smallest index such that aj ∈ St(s). As aj is the first
action that is stubborn, we get that a1a2 · · · aj−1aj ∈ A∗2 as otherwise the existence of
i ≤ j where ai ∈ A1 contradicts the minimality of j due to Condition G2.
• Otherwise the sequence a1a2 · · · consists solely of actions from A2. If the sequence contains
a stubborn action then we are done and similarly, if the sequence is finite and ends in a
deadlock, we get by Condition D that there must be an j > 1 where aj ∈ St(s) as required.
The last option is that the sequence a1a2 · · · is infinite and does not contain any stubborn
action. By Condition D there exists a ∈ en2(s) ∩ St(s) such that for all i > 0 we have
s

a1···ai−−−−→ πi
a−→ π′i and then by Condition W we get s a−→ π′0

a1···ai−−−−→ π′i. This implies that
from π′0 we can also execute the infinite sequence of actions a1a2 · · · while Condition V
guarantees that none of the states visited during this execution is a goal state. Hence the
state π′0 must be losing for player 1 in G, which however contradicts that by induction
hypothesis π′0 is winning for player 1 in G as s a−→ π′0 with a ∈ St(s) and the depth of
player 1 winning strategy at π′0 in GSt is smaller than the depth at s in GSt. Hence there
cannot be any infinite sequence of nonstubborn actions starting from s.

As we have now established that there is the smallest index j > 1 such that aj ∈ St(s) and
a1a2 · · · aj−1aj ∈ A∗2, the minimality of j implies that a1a2 · · · aj−1 ∈ St(s)

∗
. This means

that we can apply Condition W and conclude that there exists a maximal run π′ given by

s
aj−→ s′

a1a2···aj−1−−−−−−−→ πj
aj+1−−−→ πj+1

aj+2−−−→ · · ·

that is from πj identical to the run of π. Hence πi /∈ Goal for all i ≥ j. We notice that also
the intermediate states in the prefix of the run π′ may not be goal states, which is implied by
Condition V and the fact that a1 ∈ en2(s), a1a2 · · · aj−1aj ∈ A∗2, and a1 /∈ St(s). However,

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:11

s1 s2

s3 s4

∈ Goal
a

b b

a

Figure 3: Example showing the importance of Condition V

as aj ∈ St(s) we get s
aj−→
St

s′ and because aj ∈ A2 we know that s′ is a winning state for

player 1 in GSt with m < n as the depth of σ at s′ in GSt, following property 2 of Lemma 2.7.
By the induction hypothesis s′ is a winning state for player 1 in G, which contradicts the
existence of a maximal run from s′ that contains no goal states. Hence the proof of Case (3)
is finished.

We can now present the main theorem showing that stable reductions preserve the
winning strategies of both players in the game.

Theorem 3.6 (Strategy Preservation for GLTS). Let G = (S, A1, A2,→,Goal) be a GLTS
and St a stable reduction. A state s ∈ S is winning for player 1 in G iff s is winning for
player 1 in GSt.

Proof. Follows from Lemma 3.4 and 3.5.

Remark 3.7. In [BJL+19] we omitted Condition V from the definition of stable reduction
and this implied that Lemma 3.5 (as it was stated in [BJL+19]) did not hold. We illustrate
this in Figure 3 where all actions are player 2 actions and the goal state is s2. Clearly, player
1 does not have a winning strategy as player 2 can play the action b followed by a and reach
the deadlock state s4 without visiting the goal state. The stubborn set St(s1) = {a} on the
other hand satisfies all conditions of the stable reduction, except for V, however, it breaks
Lemma 3.5 because in the reduced system the action b in s1 is now exluded and the (only)
stubborn action a for the environment brings us to a goal state. It is therefore the case that
in the original game s1 is not a winning state for player 1 but in the reduced game it is. The
extra Condition V introduced in this article forces us to include all enabled actions in s1
into the stubborn set, and hence the validity of Lemma 3.5 is recovered.

Finally, we notice that for non-mixed games we can simplify the conditions of stable
reductions by removing the requirement on safe actions.

Theorem 3.8 (Strategy Preservation for Non-Mixed GLTS). Let G = (S, A1, A2,→,Goal)
be a non-mixed GLTS and St a stable reduction with Condition S excluded. A state s ∈ S is
winning for player 1 in G iff s is winning for player 1 in GSt.

Proof. In Lemma 3.5 the condition S is not used at all. In Lemma 3.4 the subcase (2.2) is
the only one that relies on S. Because there are no mixed states, the arguments in subcase
(2.1) are valid irrelevant of whether ai is safe or not.

21:12 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

4. Stable Reductions on Petri Net Games

We now introduce the formalism of Petri net games and show how to algorithmically construct
stable reductions in a syntax-driven manner.

Definition 4.1 (Petri Net Game). A Petri net game is a tuple N = (P, T1, T2,W, I) where
• P and T = T1]T2 are finite sets of places and transitions, respectively, such that P ∩T = ∅
and where transitions are partitioned into player 1 and player 2 transitions,
• W : (P × T) ∪ (T × P)→ N0 is a weight function for regular arcs, and
• I : (P × T)→ N∞ is a weight function for inhibitor arcs.
A marking M is a function M : P → N0 andM(N) denotes the set of all markings for N .

For the rest of this section, let N = (P, T1, T2,W, I) be a fixed Petri net game such
that T = T1] T2. Let us first fix some useful notation. For a place or transition x,
we denote the preset of x as •x = {y ∈ P ∪ T | W (y, x) > 0}, and the postset of x as
x• = {y ∈ P ∪ T | W (x, y) > 0}. For a transition t, we denote the inhibitor preset of t as
◦t = {p ∈ P | I(p, t) 6=∞}, and the inhibitor postset of a place p as p◦ = {t ∈ T | I(p, t) 6=∞}.
For a place p we define the increasing preset of p, containing all transitions that increase the
number of tokens in p, as +p = {t ∈ •p | W (t, p) > W (p, t)}, and similarly the decreasing
postset of p as p− = {t ∈ p• | W (t, p) < W (p, t)}. For a transition t we define the
decreasing preset of t, containing all places that have their number of tokens decreased
by t, as −t = {p ∈ •t | W (p, t) > W (t, p)}, and similarly the increasing postset of t as
t+ = {p ∈ t• |W (p, t) < W (t, p)}. For a set X of either places or transitions, we extend the
notation as •X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•, and similarly for the other operators.
A Petri net N = (P, T1, T2,W, I) defines a GLTS G(N) = (S, A1, A2,→,Goal) where

• S =M(N) is the set of all markings,
• A1 = T1 is the set of player 1 actions,
• A2 = T2 is the set of player 2 actions,
• M t−→ M ′ whenever for all p ∈ P we have M(p) ≥ W (p, t), M(p) < I(p, t) and M ′(p) =
M(p)−W (p, t) +W (t, p), and
• Goal ∈M(N) is the set of goal markings, described by a simple reachability logic formula
defined below.

Let EN be the set of marking expressions in N given by the abstract syntax (here e ranges
over EN):

e ::= c | p | e1 ⊕ e2
where c ∈ N0, p ∈ P , and ⊕ ∈ {+,−, ∗}. An expression e ∈ EN is evaluated relative to a
markingM ∈M(N) by the function evalM : EN → Z where evalM (c) = c, evalM (p) = M(p)
and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

In Table 1 we define the functions incrM : EN → 2T and decrM : EN → 2T that, given
an expression e ∈ EN , return the set of transitions that can (when fired) increase resp.
decrease the evaluation of e. We note that transitions in incrM (e) and decrM (e) are not
necessarily enabled in M , however, due to Lemma 4.2, if a transition firing increases the
evaluation of e then the transition must be in incrM (e), and similarly for decrM (e).

Lemma 4.2 [BJL+18]. Let N = (P, T1, T2,W, I) be a Petri net and M ∈M(N) a marking.
Let e ∈ EN and let M w−→M ′ where w = t1t2 . . . tn ∈ T ∗.
• If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ incrM (e).
• If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ decrM (e).

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:13

Expression e incrM (e) decrM (e)

c ∅ ∅
p +p p−

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 · e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2) incrM (e2) ∪ decrM (e2)

Table 1: Increasing and decreasing transitions for expression e ∈ EN

We can now define the set of reachability formulae ΦN that evaluate over the markings
in N as follows:

ϕ ::= true | false | t | e1 ./ e2 | deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ
where e1, e2 ∈ EN , t ∈ T and ./ ∈ {<,≤,=, 6=, >,≥}.

The satisfaction relation for a formula ϕ ∈ ΦN in a marking M is defined as expected:

M |= true

M |= t iff t ∈ en(M)

M |= e1 ./ e2 iff evalM (e1) ./ evalM (e2)

M |= deadlock iff en(M) = ∅
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2

M |= ¬ϕ iff M 6|= ϕ

We want to be able to preserve at least one execution to the set Goal = {M ∈M(N) |
M |= ϕ} for a given formula ϕ describing the set of goal markings. In order to achieve this,
we define the set of interesting transitions AM (ϕ) for a formula ϕ so that any firing sequence
of transitions from a marking that does not satisfy ϕ leading to a marking that satisfies ϕ
must contain at least one interesting transition. Table 2 provides the definition of AM (ϕ)
that is similar to the one presented in [BJL+18] for the non-game setting, except for the
conjunction where we in our setting use Equation (4.1) that provides an optimisation for
Condition S and possibly ends with a smaller set of interesting transitions.

AM (ϕ1 ∧ ϕ2) =

AM (ϕ1) if M |= ϕ2

AM (ϕ2) if M |= ϕ1

AM (ϕ1) if M 6|= ϕ1 and AM (ϕ1) ⊆ safe(M)

AM (ϕ2) if M 6|= ϕ2 and AM (ϕ2) ⊆ safe(M)

AM (ϕi) otherwise where i ∈ {1, 2}

(4.1)

The desired property of the set of interesting transitions is formulated below.

Lemma 4.3. Let N = (P, T1, T2,W, I) be a Petri net, M ∈M(N) a marking, and ϕ ∈ ΦN

a formula. If M 6|= ϕ and M w−→M ′ where w ∈ AM (ϕ)
∗
then M ′ 6|= ϕ.

Proof. Assume that M 6|= ϕ. The proof proceeds by structural induction on ϕ. All cases,
with the exception of ϕ1∧ϕ2, are proved in Lemma 2 presented in [BJL+18]. Let ϕ = ϕ1∧ϕ2.

21:14 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

ϕ AM (ϕ) AM (¬ϕ)

deadlock t ∪ (•t)− ∪ +(◦t) for some selected t ∈ en(M) ∅

t
+p for some selected p ∈ •t where M(p) < W (p, t), or
p− for some selected p ∈ ◦t where M(p) ≥ I(p, t)

(•t)− ∪ +(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)
e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)

e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)
e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2)

AM (e1 6= e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)

ϕ1 ∧ ϕ2 Defined in Equation (4.1) AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

Table 2: Interesting transitions of ϕ (assuming M 6|= ϕ, otherwise AM (ϕ) = ∅)

There are five subcases defined by Equation 4.1: (1) M |= ϕ2, (2) M |= ϕ1, (3) M 6|= ϕ1 and
AM (ϕ1) ⊆ safe(M), (4) M 6|= ϕ2 and AM (ϕ2) ⊆ safe(M), and (5) the default case.
• Case (1): Let M |= ϕ2. Since we have M 6|= ϕ and M |= ϕ2 we must therefore have that
M 6|= ϕ1 by the semantics of ϕ. By Equation 4.1, since M |= ϕ2, we have AM (ϕ1 ∧ ϕ2) =
AM (ϕ1). By the induction hypothesis this implies M ′ 6|= ϕ1, and from this and the
semantics of ϕ we have M ′ 6|= ϕ.
• Case (2): Let M |= ϕ1. This case is symmetric to Case (1) and follows the same approach.
• Case (3): Let M 6|= ϕ1 and AM (ϕ1) ⊆ safe(M). By Equation 4.1 we have AM (ϕ1 ∧ ϕ2) =
AM (ϕ1). By the induction hypothesis this implies M ′ 6|= ϕ1, and from this and the
semantics of ϕ we have M ′ 6|= ϕ.
• Case (4): Let M 6|= ϕ2 and AM (ϕ2) ⊆ safe(M). This case is symmetric to Case (3) and
follows the same approach.
• Case (5): Default case. We have M 6|= ϕ1 and M 6|= ϕ2 due to Equation 4.1 and
AM (ϕ1 ∧ ϕ2) = AM (ϕi) for some i ∈ {1, 2}. By the induction hypothesis this implies
M ′ 6|= ϕi, and from this and the semantics of ϕ we have M ′ 6|= ϕ.

As a next step, we provide an algorithm that returns true whenever there is a sequence of player
2 actions that leads to a marking satisfying a given formula ϕ (and hence overapproximates
ConditionV from the definition of a stable reduction). The pseudocode is given in Algorithm 1.
The algorithm uses an extended definition of formula satisfiability that, instead of asking
whether a formula holds in a given marking, specifies instead a range of markings by two
functions lb : P → N0 for fixing a lower bound on the number of tokens in places and
ub : P → N0 ∪ {∞} for specifying an upper bound. A marking M belongs to the range lb, ub
iff for all places p ∈ P we have lb(p) ≤M(p) ≤ ub(p). The extended satisfability predicate
lb, ub |= ϕ is given in Table 3 and it must hold whenever there is a marking in the range
specified by lb and ub such that the marking satisfies the formula ϕ. Finally, Algorithm 1
computes a safe overapproximation of the lower and upper bounds such that if M w−→M ′ for
some w ∈ T ∗2 then lb(p) ≤M ′(p) ≤ ub(p) for all p ∈ P .

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:15

Algorithm 1: reach(N,M,ϕ): Overapproximation for checking if ϕ can be satisfied
by performing only player 2 transitions, assuming that min ∅ =∞ and

∑
∅ = 0

input :N = (P, T1, T2,W, I) with M ∈M(N) and a formula ϕ ∈ ΦN

output : If there is w ∈ A∗2 s.t. M w−→M ′ and M ′ |= ϕ then the algorithm
returns true.

1 We assume that all negations in ϕ are only in front of atomic propositions (if not, we
can use De Morgan’s laws in order to guarantee this).

2 ub(x) :=∞ for all x ∈ P ∪ T2;
3 ub(p) := M(p) for all p ∈ P such that W (p, t) ≥W (t, p) for every t ∈ •p ∩ T2;
4 repeat
5 foreach t ∈ T2 do

6 ub(t) := min
p∈−t
b ub(p)

W (p, t)−W (t, p)
c

7 foreach p ∈ P do
8 ub(p) := M(p) +

∑
t∈ •p ∩ T2

W (t,p)>W (p,t)

ub(t) ·
(
W (t, p)−W (p, t)

)
9 until ub(x) stabilises for all x ∈ P ∪ T2

10 foreach p ∈ P do
11 lb(p) := M(p)−

∑
t∈T2

W (p,t)>W (t,p)

ub(t) ·
(
W (p, t)−W (t, p)

)
12 return lb, ub |= ϕ; *** See definition in Table 3

Lemma 4.4. Let N = (P, T1, T2,W, I) be a Petri net game, M ∈M(N) a marking on N and
ϕ ∈ ΦN a formula. If there is w ∈ A∗2 s.t. M

w−→M ′ andM ′ |= ϕ then reach(N,M,ϕ) = true.

Proof. Algorithm 1 first computes for each place p ∈ P the upper bound ub(p) and lower
bound lb(p) on the number of tokens that can appear in p by performing any sequence of
player 2 transitions, starting from the marking M . The bounds are then used to return the
value of the expression lb, ub |= ϕ that is defined in Table 3.

We shall first notice if there is a marking M ′ such that lb(p) ≤ M ′(p) ≤ ub(p) for all
p ∈ P and M ′ |= ϕ then lb, ub |= ϕ holds. This can be proved by a straightforward structural
induction on ϕ while following the cases in Table 3 where the functions lb and ub are extended
to arithmetical expressions used in the query language such that for every marking M ′ (as
given above) and for every arithmetical expressions e we have lb(e) ≤ evalM ′(e) ≤ ub(e).

What remains to be established is the property that Algorithm 1 correctly computes the
lower and upper bounds for all places in the net. We do this by proving the invariant for the
repeat-until loop that claims that for every w ∈ A∗2 such that M w−→M ′ we have

(1) M(p) +
∑
t∈w

W (t,p)>W (p,t)

(
W (t, p)−W (p, t)

)
≤ ub(p) for all p ∈ P , and

(2) #t(w) ≤ ub(t) for all t ∈ T2 where #t(w) denotes the number of occurences of the
transition t in the sequence w.

21:16 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

lb, ub |= true

lb, ub |= t iff ub(p) ≥W (p, t) for all p ∈ •t and lb(p) < I(p, t) for all p ∈ ◦t
lb, ub |= ¬t iff lb(p) < W (p, t) for some p ∈ •t or ub(p) ≥ I(p, t) for some p ∈ ◦t
lb, ub |= e1 < e2 iff lb(e1) < ub(e2)

lb, ub |= e1 ≤ e2 iff lb(e1) ≤ ub(e2)

lb, ub |= e1 = e2 iff max{lb(e1), lb(e2)} ≤ min{ub(e1), ub(e2)}
lb, ub |= e1 6= e2 iff it is not the case that lb(e1) = lb(e2) = ub(e1) = ub(e2)

lb, ub |= e1 ≥ e2 iff ub(e1) ≥ lb(e2)

lb, ub |= e1 > e2 iff ub(e1) > lb(e2)

lb, ub |= deadlock iff lb, ub 6|= t for all t ∈ T
lb, ub |= ¬deadlock iff lb, ub |= t for some t ∈ T
lb, ub |= ϕ1 ∧ ϕ2 iff lb, ub |= ϕ1 and lb, ub |= ϕ2

lb, ub |= ϕ1 ∨ ϕ2 iff lb, ub |= ϕ1 or lb, ub |= ϕ2

lb(c) = c where c is a constant
ub(c) = c where c is a constant

lb(e1 + e2) = lb(e1) + lb(e2)

ub(e1 + e2) = ub(e1) + ub(e2)

lb(e1 − e2) = lb(e1)− ub(e2)

ub(e1 − e2) = ub(e1)− lb(e2)

lb(e1 ∗ e2) = min{lb(e1) · lb(e2), lb(e1) · ub(e2), ub(e1) · lb(e2), ub(e1) · ub(e2)}
ub(e1 ∗ e2) = max{lb(e1) · lb(e2), lb(e1) · ub(e2), ub(e1) · lb(e2), ub(e1) · ub(e2)}

Table 3: Definition of lb, ub |= ϕ assuming that lb(p) and ub(p) are given for all p ∈ P

Here the notation t ∈ w means that a summand is added for every occurence of t in the
sequence w. We note that invariant (1) clearly implies that whenever M w−→M ′ for w ∈ A∗2
then M ′(p) ≤ ub(p) for all p ∈ P . Notice that the repeat-until loop in Algorithm 1 clearly
terminates since during the iteration of the loop ub can only become smaller.

First, we notice that before entering the repeat-until loop, the invariant holds because
intitially the upper bound values are all set to ∞ and only at line 3 the upper bound for a
place p is set to M(p) provided that the firing of any transition t ∈ T2 can never increase the
number of tokens in p. This clearly satisfies invariant (1).

Let us now assume that both (1) and (2) hold at the beginning of the execution of the
repeat-until loop. Suppose that the value ub(t) is decreased for some transition t by the
assignment at line 6. This means that there is a place p ∈ −t such that W (p, t) > W (t, p),
meaning that firing of t removes W (t, p)−W (p, t) tokens from p. As there can be at most

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:17

ub(p) tokens added to the place p due to invariant (1), this limits the number of times that
the transition t can fire to b ub(p)

W (t,p)−W (p,t)c and hence it preserves invariant (2). Similarly,
suppose that the value of ub(p) is decreased for some place p by the assignment at line 8.
Due to invariant (2), we know that every transition t ∈ T2 can be fired at most ub(t) times
and hence adds at most ub(t) ·

(
W (t, p)−W (p, t)

)
tokens to p. As we add those contributions

for all such transitions together with the number M(p) of tokens in the starting marking M ,
we satisfy also invariant (1).

Finally, the assignment at line 11 provides a safe lower bound on the number of tokens
that can be in the place p, as due to invariant (2) we know that ub(t) is the maximum
number of times a transition t can fire, and we subtract the number of tokens that each t
removes from p by ub(t). Hence, we can conclude that whenever M w−→M ′ for w ∈ A∗2 then
lb(p) ≤M ′(p) ≤ ub(p) for all p ∈ P and the correctness of the lemma is established.

Example 4.5. In Figure 4 we see a Petri net consisting of four places P = {p1, p2, p3, p4}
and three player 2 transitions T2 = {t1, t2, t3}. The weights are given as seen in the figure
(arcs without any annotations have the default weight 1) and the initial marking contains
three tokens in the place p1. Initially, for all x ∈ P ∪ T we have ub(x) =∞ as seen in line 2
of Algorithm 1. In line 3 we can set the upper bound of some places if the number of tokens
are non-increasing, i.e. for all t ∈ •p ∩ T2 we have W (p, t) ≥W (t, p). In Figure 4 this is the
case only for p1, we therefore have ub(p1) = M(p1) = 3. Next, the upper bound for all places
and transitions are calculated through a repeat-until loop. The upper bound for transitions
are found by checking, given the current upper bound on places, how many times we can fire
a transition. In line 6 we get

ub(t1) =

⌊
ub(p1)

W (p1, t1)−W (t1, p1)

⌋
=

⌊
3

1− 0

⌋
= 3

and

ub(t2) = min

{⌊
ub(p1)

W (p1, t2)−W (t2, p1)

⌋
,

⌊
ub(p3)

W (p3, t2)−W (t2, p3)

⌋}
= min

{⌊
3

2− 0

⌋
,

⌊
∞

1− 0

⌋}
= min{1,∞} = 1.

In the next iteration, at line 8 we get

ub(p2) = M(p2) + ub(t1) · (W (t1, p2)−W (p2, t1)) = 0 + 3 · (1− 0) = 3

and similarly

ub(p4) = M(p4) + ub(t2) · (W (t2, p4)−W (p4, t2)) = 0 + 1 · (1− 0) = 1.

Afterwards, there are no further changes to be made to the upper bounds and the repeat-until
loop terminates. Finally, the calculated lower bounds for all places are 0 in our example.

Before we can state our main theorem, we need to find an overapproximation method
for determining safe transitions. This can be done by analysing the increasing presets and
postsets of transitions as demonstrated in the following lemma.

Lemma 4.6 (Safe Transition). Let N = (P, T1, T2,W, I) be a Petri net game and t ∈ T a
transition. If t+ ∩ •T2 = ∅ and −t ∩ ◦T2 = ∅ then t is safe in any marking of N .

21:18 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

• • •

p1 t1

t2

p2

p3t3 p4

2

Figure 4: Example Petri Net for Algorithm 1

Proof. Assume t+ ∩ •T2 = ∅ and −t ∩ ◦T2 = ∅. We prove directly that t is safe in M . Let
w ∈ (T1 \ {t})∗ s.t. M

w−→ M ′, en2(M ′) = ∅, and M tw−→ M ′′. The only difference between
M ′ and M ′′ is that t is fired first and we have M ′′(p′) = M ′(p′) +W (t, p′)−W (p′, t) for all
p ∈ P . Then for all t′ ∈ T2 we have that there either exists p ∈ •t′ s.t. M ′(p) < W (p, t′),
or there exists p′ ∈ ◦t′ s.t. M ′(p′) ≥ I(p′, t′). In the first case, since t+ ∩ •T2 = ∅, we must
have W (t, p) ≤W (p, t) which implies M ′′(p) ≤M ′(p) and t′ /∈ en(M ′′). In the second case,
since −t ∩ ◦T2 = ∅, we must have W (t, p′) ≥ W (p′, t), which implies M ′′(p′) ≥ M ′(p′) and
t′ /∈ en(M ′′). Therefore t is safe in M .

We can now provide a list of syntactic conditions that guarantee the stability of a given
reduction and state the main theorem of this section.

Theorem 4.7 (Stable Reduction Preserving Closure). Let N = (P, T1, T2,W, I) be a Petri
net game, ϕ a formula, and St a reduction of G(N) such that for all M ∈M(N) the following
conditions hold.
(1) If en1(M) 6= ∅ and en2(M) 6= ∅ then en(M) ⊆ St(M).
(2) If en1(M) ∩ St(M) * safe(M) then en1(M) ⊆ St(M).
(3) AM (ϕ) ⊆ St(M)
(4) If en1(M) = ∅ then T1 ⊆ St(M).
(5) If en2(M) = ∅ then T2 ⊆ St(M).
(6) For all t ∈ St(M) if t /∈ en(M) then either

(a) there exists p ∈ •t s.t. M(p) < W (p, t) and +p ⊆ St(s), or
(b) there exists p ∈ ◦t s.t. M(p) ≥ I(p, t) and p− ⊆ St(s).

(7) For all t ∈ St(M) if t ∈ en(M) then
(a) for all p ∈ −t we have p• ⊆ St(M), and
(b) for all p ∈ t+ we have p◦ ⊆ St(M).

(8) If en2(M) 6= ∅ then there exists t ∈ en2(M) ∩ St(M) s.t. (•t)− ∪ +(◦t) ⊆ St(M).
(9) If en1(M) = ∅ and reach(N,M,ϕ) = true then en(M) ⊆ St(M).
Then St satisfies I, W, R, G1, G2, S, V and D.

Proof. We shall argue that any reduction St satisfying the conditions of the theorem also
satisfies the I, W, R, G1, G2, S, V, and D conditions.
(I) Follows from Condition 1.

(W) Let M,M ′ ∈M(N) be markings, t ∈ St(M), and w ∈ St(M)
∗
. We will show that if

M
wt−→M ′ thenM tw−→M ′. LetMw ∈M(N) be a marking s.t. M w−→Mw. Assume for

the sake of contradiction that t /∈ en(M). As t is disabled in M , there must be p ∈ •t
such that M(p) < W (p, t) or there is p ∈ ◦t such that M(p) ≥ I(p, t). In the first case,

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:19

due to Condition 6a all the transitions that can add tokens to p are included in St(M).
Since w ∈ St(M)

∗
this implies that Mw(p) < W (p, t) and t /∈ en(Mw) contradicting

our assumption that Mw
t−→ M ′. In the second case, due to Condition 6b all the

transitions that can remove tokens from p are included in St(M). Since w ∈ St(M)
∗

this implies that Mw(p) ≥ I(p, t) and t /∈ en(Mw) contradicting our assumption that
Mw

t−→M ′. Therefore we must have that t ∈ en(M).
Since t ∈ en(M) there is Mt ∈ M(N) s.t. M

t−→ Mt. We have to show that
Mt

w−→M ′ is possible. For the sake of contradiction, assume that this is not the case.
Then there must exist a transition t′ that occurs in w that became disabled because t
was fired. There are two cases: t removed one or more tokens from a shared pre-place
p ∈ −t∩ •t′ or added one or more tokens to a place p ∈ t+∩ ◦t′. In the first case, due to
Condition 7a all the transitions that can remove tokens from p are included in St(M),
implying that t′ ∈ St(M). Since w ∈ St(M)

∗
such a t′ cannot exist. In the second

case, due to Condition 7b all the transitions that can add tokens to p are included in
St(M), implying that t′ ∈ St(M). Since w ∈ St(M)

∗
such a t′ cannot exist. Therefore

we must have that Mt
w−→M ′ and we can conclude with M tw−→M ′.

(R) Follows from Condition 3 and Lemma 4.3.
(G1) Let M ∈ M(N) be a marking and w ∈ St(M)

∗
s.t. M w−→ M ′. We will show that if

en2(M) = ∅ then en2(M ′) = ∅. Assume that en2(M) = ∅. Then by Condition 5 we
have T2 ⊆ St(M). Let t ∈ T2 be a player 2 transition. By Condition 6 we know that
either there exists p ∈ •t s.t. M(p) < W (p, t) and +p ⊆ St(s), or there exists p ∈ ◦t
s.t. M(p) ≥ I(p, t) and p− ⊆ St(s). In the first case, in order to enable t at least one
transition from +p has to be fired. However, we know +p ⊆ St(s) is true, and therefore
none of the transitions in +p can occur in w, which implies t /∈ en2(M ′). In the second
case, in order to enable t at least one transition from p− has to be fired. However, we
know p− ⊆ St(s) is true, and therefore none of the transitions in p− can occur in w,
which implies t /∈ en2(M ′). These two cases together imply that en2(M ′) = ∅.

(G2) Follows the same approach as G1.
(S) Follows from Condition 2.
(V) Follows from Condition 9 and Lemma 4.4. Notice that if en1(M) 6= ∅ then the

antecedent of Condition V never holds if en2(M) = ∅ unless M is already a goal
marking, or M is a mixed state and the consequent of Condition V always holds due
to Condition I.

(D) Let M ∈ M(N) be a marking and w ∈ St(M)
∗
s.t. M w−→ M ′. We will show that

if en2(M) 6= ∅ then there exists t ∈ en2(M) ∩ St(M) s.t. t ∈ en2(M ′). Assume that
en2(M) 6= ∅. From Condition 8 we know that there exists t ∈ en2(M) ∩ St(M) s.t.
(•t)− ∪ +(◦t) ⊆ St(M). Assume for the sake of contradiction that t /∈ en2(M ′). In
this case there must either exist p ∈ •t s.t. M ′(p) < W (p, t), or there exists p ∈ ◦t
s.t. M ′(p) ≥ I(p, t). In the first case, since t ∈ en2(M) we have that M(p) ≥W (p, t).
Therefore at least one transition from p− has to have been fired. However, we know
(•t)− ⊆ St(M) is true, and therefore none of the transitions in p− can occur in w, which
impliesM ′(p) ≥W (p, t), a contradiction. In the second case, since t ∈ en2(M) we have
that M(p) < I(p, t). Therefore at least one transition from +p has to have been fired.
However, we know +(•t) ⊆ St(M) is true, and therefore none of the transitions in +p

21:20 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

Algorithm 2: Computation of St(M) for some stable reduction St
input :A Petri net game N = (P, T1, T2,W, I) and M ∈M(N) and formula ϕ
output :X ⊆ T where X is a stable stubborn set for M

1 if en(M) = ∅ then
2 return T ;
3 if en1(M) 6= ∅ ∧ en2(M) 6= ∅ then
4 return T ;
5 Y := ∅;
6 if en1(M) = ∅ then
7 if reach(N,M,ϕ) then
8 return T ;
9 Pick any t ∈ en2(M);

10 Y := T1 ∪ t ∪ (•t)− ∪ +(◦t);
11 else
12 Y := T2;
13 Y := Y ∪AM (ϕ);
14 X := Saturate(Y);
15 if X ∩ en1(M) * safe(M) then
16 return T ;
17 return X;

can occur in w, which implies M ′(p) < I(p, t), a contradiction. Therefore t /∈ en2(M ′)
cannot be true, and we must have that t ∈ en2(M ′).

This completes the proof of the theorem.

In Algorithm 2 we provide a pseudocode for calculating stubborn sets for a given marking.
It essentially rephrases Theorem 4.7 into an executable code. The algorithm calls Algorithm 3
that saturates a given set to satisfy Conditions 6 and 7 of Theorem 4.7.

Theorem 4.8. Algorithm 2 terminates and returns St(M) for some stable reduction St.

Proof. Termination. If en1(M) 6= ∅ and en2(M) 6= ∅ then we terminate in line 4. Otherwise
Y 6= ∅ and we enter the while-loop in Algorithm 3. Notice that X ∩ Y = ∅ is always the case
in the execution of Algorithm 3. We never remove transitions from X after they have been
added. Therefore, since in line 13 of Algorithm 3 a new transition is added to X at the end
of each loop iteration, the loop can iterate at most once for each transition. Since T is finite
by the Petri Net Game definition, the loop iterates a finite number of times, and Algorithm 3
terminates. If en1(M) ∩ X * safe(M) then we terminate in line 16 of Algorithm 2, and
otherwise we return in line 17 and Algorithm 2 terminates.

Correctness. It was shown that the construction in Theorem 4.7 results in a set that
is a stubborn set of a stable reduction. It is therefore sufficient to show that Algorithm 2
replicates the construction. Notice that every transition that is added to Y is eventually
added to X in line 13 and returned in line 15 of Algorithm 3. Let t ∈ Y and we discuss that
all conditions of Theorem 4.7 hold upon termination.
• Condition 1: If en1(M) 6= ∅ and en2(M) 6= ∅ then we return T in line 4 of Algorithm 2.

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:21

Algorithm 3: Saturate(Y)

1 X := ∅;
2 while Y 6= ∅ do
3 Pick any t ∈ Y ;
4 if t /∈ en(M) then
5 if ∃p ∈ •t. M(p) < W (p, t) then
6 Pick any p ∈ •t s.t. M(p) < W (p, t);
7 Y := Y ∪ (+p \X);
8 else
9 Pick any p ∈ ◦t s.t. M(p) ≥ I(p, t);

10 Y := Y ∪ (p− \X);

11 else
12 Y := Y ∪ (((−t)• ∪ (t+)◦) \X);
13 X := X ∪ {t};
14 Y := Y \ {t};
15 return X;

• Condition 2: If en1(M) ∩ St(M) * safe(M) then we return T in line 16 of Algorithm 2.
• Condition 3: We have AM (ϕ) ⊆ Y in line 13 of Algorithm 2.
• Condition 4: We have T1 ⊆ Y in line 10 of Algorithm 2.
• Condition 5: We have T2 ⊆ Y in line 12 of Algorithm 2.
• Condition 6a: In line 6 we pick any p ∈ •t s.t. M(p) < W (p, t), and in line 7 of Algorithm 3
we add +p to Y .
• Condition 6b: In line 9 we pick any p ∈ ◦t s.t. M(p) ≥ I(p, t), and in line 10 of Algorithm 3
we add p− to Y .
• Condition 7a: In line 12 of Algorithm 3 we add (−t)• to Y .
• Condition 7b: In line 12 of Algorithm 3 we add (t+)◦ to Y .
• Condition 8: In line 9 of Algorithm 2 we pick any t′ ∈ en2(M) and in line 10 we add

(•t)− ∪ +(◦t) to Y .
• Condition 9: If en1(M) = ∅ and reach(N,M,ϕ) = true then we return T at line 8 of
Algorithm 2.

Remark 4.9. In the actual implementation of the algorithm, we first saturate only over the
set of interesting transitions and in the case that Saturate(AM (ϕ)) ∩ en(M) = ∅, we do not
explore any of the successors of the marking M as we know that no goal marking can be
reached from M (this follows from Lemma 3.3).

5. Implementation and Experiments

We extend the Petri net verification engine verifypn [JNOS16], a part of the TAPAAL tool
suite [DJJ+12], to experimentally demonstrate the viability of our approach. The synthesis
algorithm for solving Petri net games is an adaptation of the dependency graph fixed-point
computation from [JLS18, JLS16] that we reimplement in C++ while utilising PTries [JLS17]
for efficient state storage. The source code is available under GPLv3 [BJL+20]. We conduct
a series of experiments using the following scalable case studies.

21:22 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

• In Autonomous Intersection Management (AIM) vehicles move at different speeds towards
an intersection and we want to ensure the absence of collisions. We model the problem as
a Petri net game and refer to each instance as AIM-W -X-Y -Z where W is the number
of intersections with lanes of length X, Z is the number of cars, and Y is the number of
different speeds for each car. The controller assign speeds to cars while the environment
aims to cause a collision. The goal marking is where all cars reach their destinations while
there are no collisions.
• We reformulate the classical Producer Consumer System (PCS) as a Petri net game. In
each instance PCS-N -K the total of N consumers (controlled by the environment) and N
producers (controlled by the controller) share N buffers. Each consumer and producer has
a fixed buffer to consume/produce from/to, and each consumer/producer has K different
randomly chosen consumption/production rates. The game alternates in rounds where the
players choose for each consumer/producer appropriate buffers and rates. The goal of the
game is to ensure that the consumers have always enough products in the selected buffers
while at the same time the buffers have limited capacity and may not overflow.
• The Railway Scheduling Problem contains four instances modeling the Danish train station
Lyngby and three of its smaller variants. The scheduling problem, including the station
layout, was originally described as a game in [KHV16] and each instance is annotated by
a number N representing the number of trains that migrate through the railway network.
The controller controls the lights and switches, while the environment moves the trains.
The goal of the controller is to make sure that all trains reach (without any collisions)
their final destinations.
• The Nim (NIM-K-S) Petri net game was described in [Tag08] as a two player game where
the players in rounds repeatedly remove between 1 and K pebbles from an initial stack
containing S pebbles. The player that has a turn and an empty stack of pebbles loses. In
our (equivalent) model, we are instead adding pebbles to an initially empty stack and the
player that first adds to or above the given number S loses.
• The Manufacturing Workflow (MW) contains instances of a software product line Petri net
model presented in [QKCC13]. The net describes a series of possible ways of configuring a
product (performed by the environment) while the controller aims to construct a requested
product. The model instance MW-N contains N possible choices of product features.
• The Order Workflow (OW) Petri net game model is taken from [DZ04] and the goal of
the game is to synthesise a strategy that guarantees workflow soundness, irrelevant of the
choices made by the environment. We scale the workflow by repeatedly re-initialising the
workflow N times (denoted by OW-N).
• In Flexible Manufacturing Systems (FMS) we use the Petri net models from [LZ04, AE98]
modeling different production lines with shared resources. The Petri nets FMS-D [AE98]
and FMS-C [LZ04] both contain a deadlock and the problem is to control a small subset
of transitions so that the deadlock can be avoided. The models are scaled by the number
of resources and products in the line. The goal in the FMS-N [LZ04] model is to control
a subset of transitions in the net in order to guarantee that a given resource (Petri net
place) never becomes empty.

All experimental evaluation is run on AMD Epyc 7551 Processors with 110 GB memory
limitation and 12 hours timeout (we measure only the execution time without the parsing
time of the models). We use for all experiments the depth first search strategy and we only
report the examples where the algorithms both with and without partial order reduction

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:23

returned a result within the time and memory limits. We provide a reproducibility package
with all models and experimental data [BJL+20].

Results. Table 4 shows the experimental evaluation, displaying the relative gain in compu-
tation time (in seconds) without (NORMAL) and with (POR) partial order reduction as well
in the number of unique markings (in thousands) that were stored during the fixed-point
computation on the constructed dependency graph. The results demonstrate significant
reductions across all models, in some cases like in NIM and MW even of several degrees
of magnitude due to the exponential speed up when using partial order reduction. The
case studies FMS-N and FMS-C show a large and consistent reduction in time across all
instance sizes. Other models like AIM, PCS, OW and FMS-D show a moderate but significant
reduction. We observe that the time reduction is generally only few percent different from
the reduction in the number of explored markings, indicating only a few percent overhead for
computing (on-the-fly) the stubborn sets. In the FMS-C and in particular the FMS-N model
we can see that we achieve significantly larger reduction in running time than in the reduced
number of stored markings. This is caused by the fact that the partial order reduction
reduces also the number of possible paths in which a certain marking can be discovered.

Our partial order technique noticably speeds up the computation in Lyngby2 model, but
there are also two instances of the LyngbySmall models where the reduction both in time
and size of the state space is less significant. We conjecture that this is because the search
strategy changes when partial order reduction is applied and this results in the fact that we
have to search in these two instances a larger portion of the generated dependency graph
before we obtain a conclusive answer. Nevertheless, in general the experiments confirm the
high practical applicability of partial order reduction for 2-player games with only minimal
overhead for computing the stubborn sets. exponential

6. Conclusion

We generalised the partial order reduction technique based on stubborn sets from plain
reachability to a game theoretical setting. This required a nontrivial extension of the classical
conditions on stubborn sets so that a state space reduction can be achieved for both players
in the game. In particular, the computation of the stubborn sets for player 2 (uncontrollable
transitions) needed a new technique for interval approximation on the number of tokens in
reachable markings. We proved the correctness of our approach and instantiated it to the
case of Petri net games. We provided (to the best of our knowledge) the first implementation
of partial order reduction for Petri net games and made it available as a part of the model
checker TAPAAL. The experiments show promising results on a number of case studies,
achieving in general a substantial state space reduction with only a small overhead for
computing the stubborn sets. In the future work, we plan to combine our contribution with a
recent insight on how to effectively use partial order reduction in the timed setting [BJL+18]
in order to extend our framework to general timed games.

Acknowledgments. We are grateful to Thomas Neele from Eindhoven University of
Technology for letting us know about the false claim in Lemma 3.5 that was presented in
the conference version of this article. The counterexample, presented in Remark 3.7, is
attributed to him. We are obliged to Antti Valmari for noticing that condition C in our
conference paper is redundant and can be substituted by conditions W and D, as it is done
in this article. We also thank the anonymous reviewers for their numerous suggestions that

21:24 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

Time (seconds) Markings ×1000 Reduction
Model NORMAL POR NORMAL POR %Time %Markings
AIM-13-100-6-11 54.15 19.86 1702 510 63 70
AIM-13-100-6-16 76.07 28.71 2464 740 62 70
AIM-13-150-9-16 162.10 115.30 3696 2455 29 34
AIM-13-150-9-21 212.80 153.00 4853 3331 28 31
AIM-14-150-9-16 200.30 142.90 4259 2865 29 33
AIM-15-150-9-16 243.30 172.50 4861 3205 29 34

PCS-2-3 49.71 37.86 13660 9839 24 28
PCS-2-4 181.50 126.60 37580 25625 30 32
PCS-2-5 488.40 331.90 84059 55049 32 35
PCS-2-6 1226.00 756.50 164096 104185 38 37

LyngbySmall2 1.47 0.01 359 2 99 99
LyngbySmall3 9.79 5.59 2118 1165 43 45
LyngbySmall4 60.66 45.32 11605 7407 25 36
Lyngby2 1440.00 116.00 137169 11213 92 92

NIM-5-49500 3.88 1.24 1635 595 68 64
NIM-7-49500 14.40 1.78 5282 753 88 86
NIM-9-49500 65.36 2.42 17326 963 96 94
NIM-11-49500 326.40 3.28 59491 1167 99 98

MW-20 18.03 0.02 4333 4 100 100
MW-30 93.71 0.04 14643 6 100 100
MW-40 311.50 0.06 34733 9 100 100
MW-50 795.30 0.09 67869 11 100 100
MW-60 1749.00 0.13 117313 13 100 100

OW-100000 4.20 3.25 2300 1800 23 22
OW-1000000 52.04 40.37 23000 18000 22 22
OW-10000000 591.30 435.60 230000 180000 26 22

FMS-D-4 40.81 35.38 7145 6682 13 6
FMS-D-5 98.74 90.98 15735 15156 8 4
FMS-D-6 170.20 159.90 25873 25265 6 2
FMS-D-7 246.80 238.20 36569 35918 3 2

FMS-C-300 218.50 105.40 24730 16103 52 35
FMS-C-400 349.50 170.40 32877 21411 51 35
FMS-C-500 471.30 239.90 41026 26718 49 35
FMS-C-600 587.10 285.60 49173 32024 51 35

FMS-N-9000 52.84 16.69 10423 8579 68 18
FMS-N-29000 201.90 64.08 33583 27639 68 18
FMS-N-49000 372.50 119.00 56743 46699 68 18
FMS-N-69000 538.70 179.70 79903 65759 67 18

Table 4: Experiments with and without partial order reduction (POR and NORMAL)

Vol. 17:1 STUBBORN SET REDUCTION FOR TWO-PLAYER REACHABILITY GAMES 21:25

helped us to improve the quality of the presentation. The research leading to these results
has received funding from the project DiCyPS funded by the Innovation Fund Denmark, the
ERC Advanced Grant LASSO and DFF project QASNET.

References

[ABDL16] N. Alechina, N. Bulling, S. Demri, and B. Logan. On the Complexity of Resource-Bounded Logics.
In Reachability Problems, volume 9899 of LNCS, pages 36–50. Springer Berlin Heidelberg, 2016.

[AE98] I. B. Abdallah and H. A. ElMaraghy. Deadlock Prevention and Avoidance in FMS: A Petri Net
Based Approach. The International Journal of Advanced Manufacturing Technology, 14(10):704–
715, 1998. Springer.

[BHSS12] B. Bérard, S. Haddad, M. Sassolas, and N. Sznajder. Concurrent Games on VASS with Inhibition.
In International Conference on Concurrency Theory, volume 7454 of LNCS, pages 39–52. Springer
Berlin Heidelberg, 2012.

[BJL+18] F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba. Start Pruning When Time
Gets Urgent: Partial Order Reduction for Timed Systems. In Computer Aided Verification, volume
10981 of LNCS, pages 527–546. Springer-Verlag, 2018.

[BJL+19] F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba. Partial Order Reduction for
Reachability Games. In International Conference on Concurrency Theory, volume 140 of Leibniz
International Proceedings in Informatics, pages 23:1–23:15. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019.

[BJL+20] Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marco Mũniz, and Jiri
Srba. Artifact for "Partial Order Reduction for Reachability Games", September 2020.

[DEF+18] A.E. Dalsgaard, S. Enevoldsen, P. Fogh, L.S. Jensen, P.G. Jensen, T.S. Jepsen, I. Kaufmann,
K.G. Larsen, S.M. Nielsen, M.Chr. Olesen, S. Pastva, and J. Srba. A Distributed Fixed-Point
Algorithm for Extended Dependency Graphs. Fundamenta Informaticae, 161(4):351–381, 2018.
IOS Press.

[DJJ+12] A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and J. Srba. TAPAAL 2.0:
Integrated Development Environment for Timed-Arc Petri Nets. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 7214 of LNCS, pages 492–497. Springer Berlin
Heidelberg, 2012.

[DZ04] J. Dehnert and A. Zimmermann. Making Workflow Models Sound Using Petri Net Controller
Synthesis. In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE,
volume 3290 of LNCS, pages 139–154. Springer Berlin Heidelberg, 2004.

[Esp98] J. Esparza. Decidability and Complexity of Petri Net Problems — An Introduction, volume 1491
of LNCS, pages 374–428. Springer Berlin Heidelberg, 1998.

[GKPP99] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A Partial Order Approach to Branching Time
Logic Model Checking. Information and Computation, 150(2):132–152, 1999. Elsevier.

[God90] P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods. In Computer
Aided Verification, volume 531 of LNCS, pages 176–185. Springer Berlin Heidelberg, 1990.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An Approach
to the State-Explosion Problem, volume 1032 of LNCS. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1996.

[GW93] P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verification of Deadlock
Freedom and Safety Properties. Formal Methods in System Design, 2(2):149–164, 1993. Springer.

[HNW98] M. Huhn, P. Niebert, and H. Wehrheim. Partial Order Reductions for Bisimulation Checking. In
Foundations of Software Technology and Theoretical Computer Science, volume 1530 of LNCS,
pages 271–282. Springer Berlin Heidelberg, 1998.

[JLS16] P.G. Jensen, K.G. Larsen, and J. Srba. Real-Time Strategy Synthesis for Timed-Arc Petri Net
Games via Discretization. In Model Checking Software, volume 9641 of 10580, pages 129–146.
Springer International Publishing, 2016.

[JLS17] P. G. Jensen, K. G. Larsen, and J. Srba. PTrie: Data Structure for Compressing and Storing Sets
via Prefix Sharing. In Proceedings of the 14th International Colloquium on Theoretical Aspects of
Computing (ICTAC’17), volume 10580 of LNCS, pages 248–265. Springer Berlin Heidelberg, 2017.

21:26 F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba Vol. 17:1

[JLS18] P.G. Jensen, K.G. Larsen, and J. Srba. Discrete and Continuous Strategies for Timed-Arc Petri
Net Games. International Journal on Software Tools for Technology Transfer, 20(5):529–546,
2018. Springer Berlin Heidelberg.

[JNOS16] J.F Jensen, T. Nielsen, L.K. Oestergaard, and J. Srba. TAPAAL and Reachability Analysis of
P/T Nets. In Transactions on Petri Nets and Other Models of Concurrency XI, volume 9930 of
LNCS, pages 307–318. Springer Berlin Heidelberg, 2016.

[JPDM18] W. Jamroga, W. Penczek, P. Dembiński, and A. Mazurkiewicz. Towards Partial Order Reductions
for Strategic Ability. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2018, pages 156–165. ACM, 2018.

[KHV16] P. Kasting, M.R. Hansen, and S. Vester. Synthesis of Railway-Signaling Plans using Reachability
Games. In Proceedings of the 28th Symposium on the Implementation and Application of Functional
Programming Languages, IFL 2016, pages 9:1–9:13. ACM, 2016.

[LLW12] A. Lehmann, N. Lohmann, and K. Wolf. Stubborn Sets for Simple Linear Time Properties. In
Application and Theory of Petri Nets, volume 7347 of LNCS, pages 228–247. Springer-Verlag,
2012.

[LW14] A. Laarman and A. Wijs. Partial-Order Reduction for Multi-core LTL Model Checking. In
Hardware and Software: Verification and Testing, volume 8855 of LNCS, pages 267–283. Springer
Berlin Heidelberg, 2014.

[LZ04] Z.W. Li and M.C. Zhou. Elementary siphons of petri nets and their application to deadlock pre-
vention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, 34(1):38–51, 2004.

[NWW20] T. Neele, T.A.C. Willemse, and W. Wesselink. Partial-Order Reduction for Parity Games with
an Application on Parameterised Boolean Equation Systems. In Tools and Algorithms for the
Construction and Analysis of Systems", volume 12079 of LNCS, pages 307–324. Springer Berlin
Heidelberg, 2020.

[Pel93] D. Peled. All From One, One for All: On Model Checking Using Representatives. In Computer
Aided Verification, volume 697 of LNCS, pages 409–423. Springer Berlin Heidelberg, 1993.

[Pel96] D. Peled. Combining Partial Order Reductions With On-The-Fly Model-Checking. Formal Methods
in System Design, 8(1):39–64, 1996. Springer.

[Pel98] D. Peled. Ten Years of Partial Order Reduction. In Computer Aided Verification, volume 1427 of
LNCS, pages 17–28. Springer Berlin Heidelberg, 1998.

[QKCC13] F.G. Quintanilla, S. Kubler, O. Cardin, and P. Castagna. Product Specification in a Service-
Oriented Holonic Manufacturing System using Petri-Nets. IFAC Proceedings Volumes, 46(7):342–
347, 2013. Elsevier.

[RS97] Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal Mu-Calculus.
In Antoni Mazurkiewicz and Józef Winkowski, editors, International Conference on Concurrency
Theory, volume 1243 of LNCS, pages 5–24. Springer-Verlag, 1997.

[Tag08] R. Tagiew. Multi-Agent Petri-Games. In International Conference on Computational Intelligence
for Modeling Control Automation, volume 10981 of LNCS, pages 130–135. IEEE Computer Society,
2008.

[Val91] A. Valmari. Stubborn Sets for Reduced State Space Generation. In Grzegorz Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 of LNCS, pages 491–515. Springer, 1991.

[Val92] A. Valmari. A Stubborn Attack on State Explosion. Formal Methods in System Design, 1(4):297–
322, 1992. Springer Berlin Heidelberg.

[Val93] A. Valmari. On-The-Fly Verification with Stubborn Sets. In Computer Aided Verification, volume
697 of LNCS, pages 397–408. Springer Berlin Heidelberg, 1993.

[Val97] A. Valmari. Stubborn Set Methods for Process Algebras. In Proceedings of the DIMACS Workshop
on Partial Order Methods in Verification, POMIV’96, page 213–231. Association for Computing
Machinery, 1997.

[VH17] A. Valmari and H. Hansen. Stubborn Set Intuition Explained. In Transactions on Petri Nets
and Other Models of Concurrency XII, volume 10470 of LNCS, pages 140–165. Springer Berlin
Heidelberg, 2017.

[WW96] B. Willems and P. Wolper. Partial-Order Methods for Model Checking: From Linear Time to
Branching Time. In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,
pages 294–303, 1996.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Stable Reduction
	4. Stable Reductions on Petri Net Games
	5. Implementation and Experiments
	Results

	6. Conclusion
	References

