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Abstract. In reactive synthesis, the goal is to automatically generate an implementation
from a specification of the reactive and non-terminating input/output behaviours of a
system. Specifications are usually modelled as logical formulae or automata over infinite
sequences of signals (ω-words), while implementations are represented as transducers. In the
classical setting, the set of signals is assumed to be finite. In this paper, we consider data ω-
words instead, i.e., words over an infinite alphabet. In this context, we study specifications
and implementations respectively given as automata and transducers extended with a finite
set of registers. We consider different instances, depending on whether the specification
is nondeterministic, universal or deterministic, and depending on whether the number of
registers of the implementation is given or not.

In the unbounded setting, we show undecidability for both universal and nondeterministic
specifications, while decidability is recovered in the deterministic case. In the bounded
setting, undecidability still holds for nondeterministic specifications, but can be recovered
by disallowing tests over input data. The generic technique we use to show the latter
result allows us to reprove some known result, namely decidability of bounded synthesis for
universal specifications.

Introduction

Reactive synthesis is an active research domain whose goal is to design algorithmic methods
able to automatically construct a reactive system from a specification of its admissible
behaviours. Such systems are notoriously difficult to design correctly, and the main appeal-
ing idea of synthesis is to automatically generate systems that are correct by construction.
Reactive systems are non-terminating systems that continuously interact with the environ-
ment in which they are executed, through input and output signals. At each time step,
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the system receives an input signal from a set In and produces an output signal from a set
Out. An execution is then modelled as an infinite sequence alternating between input and
output signals, i.e., an ω-word in (In · Out)ω. Classically, the sets In and Out are assumed
to be finite and reactive systems are modelled as (sequential) transducers. Transducers are
simple finite-state machines with transitions of type States× In→ States× Out, which, at
any state, can process any input signal and deterministically produce some output signal,
while possibly moving, again deterministically, to a new state. A specification is then a
language S ⊆ (In · Out)ω telling which are the acceptable behaviours of the system. It is
also classically represented as an automaton, or as a logical formula then converted into an
automaton. Some regular specifications may not be realisable by any transducer, and the
realisability problem asks, given a regular specification S, whether there exists a transducer T
whose behaviours satisfy S (i.e., are included in S). The synthesis problem asks to construct
T if it exists.

A typical example of reactive system is that of a server granting requests from a finite set
of clients C. Requests are represented as the set of input signals In = {(r, i) | i ∈ C} ∪ {idle}
(client i requests the resource) and grants by the set of output signals Out = {(g, i) | i ∈
C} ∪ {idle} (server grants client i’s request). A typical constraint to be imposed on such a
system is that every request is eventually granted, which can be represented by the LTL
formula

∧
i∈C G((r, i)→ F (g, i)). The latter specification is realisable for instance by the

transducer which outputs (g, i) whenever it reads (r, i) and idle whenever it reads idle.
It is well-known that the realisability problem is decidable for ω-regular specifications.

It is ExpTime-complete when represented by parity automata [BL69, PR89, FJLW16]; and
2ExpTime-complete for LTL specifications [PR89]. Such positive results have triggered a
recent and very active research interest in efficient symbolic methods and tools for reactive
synthesis (see e.g. [BCJ18]). Extensions of this classical setting have been proposed to
capture more realistic scenarios [BCJ18]. However, only a few works have considered infinite
sets of input and output signals. In the previous example, the number of clients is assumed
to be finite, and small. To the best of our knowledge, existing synthesis tools do not handle
large alphabets, although it is more realistic to consider an unbounded (infinite) set of client
identifiers, e.g. C = N. The goal of this paper is to investigate how reactive synthesis can be
extended to handle infinite sets of signals.

Data words are infinite sequences x1x2 . . . of labelled data, i.e., pairs (σ, d) with σ a
label from a finite alphabet and d is a data from a countably infinite alphabet D. They can
naturally model executions of reactive systems over an infinite set of signals. Among other
models, register automata are one of the main extensions of automata recognising languages
of data words [KF94, Seg06]. They can use a finite set of registers in which to store data
that are read, and to compare the current data with the content of some of the registers
(in this paper, we allow comparison of equality). Likewise, transducers can be extended to
register transducers as a model of reactive systems over data words: a register transducer is
equipped with a set of registers, and when reading an input labelled data (σ, d), it can test d
for equality with the content of some of its registers, and depending on the result of this test,
deterministically assign some of its registers to d and output a finite label β along with the
content of one of its registers. Its executions are then data words alternating between input
and output labelled data, and register automata can thus be used to represent specifications,
as languages of such data words.
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Contributions. We consider two classical semantics for register automata, nondeterministic
and universal, both with a parity acceptance condition, which give two classes of register
automata respectively denoted NRA and URA. We study the parity acceptance condition
because it can express the other classical acceptance conditions; e.g., Büchi and co-Büchi can
be expressed with a 2-colours parity condition. Since NRA are not closed under complement
(already over finite data words), NRA and URA define incomparable classes of specifications.
The request-grant specification, as defined above, can be generalised to an infinite number
of clients, and it is then expressible by an URA [KMB18]: whenever a request is made by
client i (labelled data (r, i)), universally trigger a run which stores i in some register and
verifies that the labelled data (g, i) eventually occurs in the data word. In contrast, no
NRA can define it. On the other hand, consider the specification S0: “all input data but
one are copied on the output, the missing one being replaced by some data which occurred
before it”, modelled as the set of data sequences d1d1d2d2 . . . didjdi+1di+1 . . . for all i ≥ 0
and j < i (finite labels are irrelevant and not represented). S0 is not definable by any URA,
as it would require to guess j, which can be arbitrarily smaller than i, but it is expressible
by some NRA making this guess.

However, we show (unsurprisingly) that the realisability problem by register transducers
of specifications defined by NRA is undecidable. The same negative result also holds for URA,
solving an open question raised in [KMB18]. On the positive side, we show that decidability
is recovered for deterministic (parity) register automata (DRA) in which the output is driven
by the input (meaning that it is contained in some register). We call this class the DRA
with input-driven outputs, denoted by DRAido. One of the difficulties of register transducer
synthesis is that the number of registers needed to realise the specification is, a priori,
unbounded with regards to the number of registers of the specification. We show it is in fact
not the case for DRAido: any specification expressed as a DRAido with r registers is realisable
by a register transducer iff it is realisable by a transducer with r registers.

A way to obtain decidability is to fix a bound k and to target register transducers with at
most k registers. This setting is called bounded synthesis in [KMB18], which establishes that
bounded synthesis is decidable in 2ExpTime for URA. We show that unfortunately, bounded
synthesis is still undecidable for NRA specifications (even when targetting implementations
with a single register). To recover decidability for NRA, we disallow equality tests on the
input data and add a syntactic requirement which entails that on any accepted word, each
output data is the content of some register which has been assigned an input data occurring
before. This defines a subclass of NRA that we call (input) test-free NRA (NRAtf). NRAtf

can express how output data can be obtained from input data (by copying, moving or
duplicating them), although they do not have the whole power of register automata on the
input nor the output side. Note that the specification S0 given before is NRAtf-definable. To
show that bounded synthesis is decidable for NRAtf, we establish a generic transfer property
characterising realisable data word specifications in terms of realisability of corresponding
specifications over a finite alphabet, thus reducing to the well-known synthesis problem over
a finite alphabet. Such property also allows us to reprove the result of [KMB18], with a
rather short proof based on standard results from the theory of register automata, indicating
that it might allow to establish decidability for other classes of data specifications. Our
results are summarised in Table 1.

Related Work. As already mentioned, bounded synthesis of register transducers is considered
in [KMB18] where it is shown to be decidable for URA. We reprove this result in a shorter way.
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DRAido NRA URA NRAtf

Bounded 2ExpTime Undecidable (k ≥ 1) 2ExpTime 2ExpTime
Synthesis (Thm. 4.6) (Thm. 3.2) ([KMB18] and Thm. 4.6) (Thm. 4.11)

General ExpTime-c Undecidable Undecidable
Open

Case (Thm. 3.7) (Thm. 3.1) (Thm. 3.3)

Table 1. Decidability status of the problems studied. As observed in
Corollary 3.8, the bounded synthesis for DRAido is in ExpTime if the target
number of registers is larger than or equal to the number of registers of the
specification.

Our proof bears some similarities with that of [KMB18], but it seems that our formulation
benefits more from the use of existing results. The technique is also more generic and
we instantiate it to NRAtf. NRAtf correspond to the one-way, nondeterministic version of
the expressive transducer model of [DH16], which however does not consider the synthesis
problem.

The synthesis problem over infinite alphabets is also considered in [ESK14], in which
data represent identifiers and specifications (given as particular automata close to register
automata) can depend on equality between identifiers. However, the class of implementations
is very expressive: it allows for unbounded memory through a queue data structure. The
synthesis problem is shown to be undecidable and a sound but incomplete algorithm is given.

Finally, classical reactive synthesis has strong connections with game theory on finite
graphs. Some extension of games to infinite graphs whose vertices are valuations of variables
in an infinite data domain have been considered in [FP18]. Such games are shown to be
undecidable and a decidable restriction is proposed, which however does not seem to match
our context.

1. Data Words and Register Automata

For a (possibly infinite) set S, we denote by Sω the set of infinite words over this alphabet.
For 1 ≤ i ≤ j, we let u[i:j] = uiui+1 . . . uj and u[i] = u[i:i] the ith letter of u. For u, v ∈ Sω,
we define their interleaving 〈u, v〉 = u[1]v[1]u[2]v[2] . . .

1.1. Data Words. Let Σ be a finite alphabet and D a countably infinite set, denoting,
all over this paper, a set of elements called data. We also distinguish an (arbitrary) data
value d0 ∈ D. Given a set R, let τR0 be the constant function defined by τR0 (r) = d0 for all
r ∈ R. A labelled data (or l-data for short) is a pair x = (σ, d) ∈ Σ×D, where σ is the label
and d the data. We define the projections lab(x) = σ and dt(x) = d. A data word over Σ
and D is an infinite sequence of labelled data, i.e. a word w ∈ (Σ×D)ω. We extend the
projections lab and dt to data words naturally, i.e. lab(w) ∈ Σω and dt(w) ∈ Dω. We denote
the set of data words over Σ and D by DW(Σ,D) (DW when clear from the context). A data
word language is a subset L ⊆ DW(Σ,D). Note that in this paper, data words are infinite,
otherwise they are called finite data words, and we denote by DWf (Σ,D) the set of finite
data words.
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1.2. Register Automata. Register automata are automata recognising data word lan-
guages. They were first introduced in [KF94] as finite-memory automata. Here, we define
them in a spirit close to [LTV15], but over infinite words, with a parity acceptance condition.
The current data can be compared for equality with the register contents via tests. Our
tests are symbolic and defined via Boolean formulas of the following form. Given R a set of
registers, a test is a formula φ satisfying the following syntax:

φ ::= > | ⊥ | r= | r 6= | φ ∧ φ | φ ∨ φ | ¬φ

where r ∈ R. Given a valuation τ : R → D, a test φ and a data d, we denote by τ, d |= φ
the satisfiability of φ by d in valuation τ , defined as τ, d |= r= if τ(r) = d and τ, d |= r 6=

if τ(r) 6= d. The Boolean combinators behave as usual. We denote by TstR the set of
(symbolic) tests over R.

Definition 1.1. A register automaton (RA) is a tuple A = (Σ,D, Q, q0, δ, R, c), where:

• Σ is a finite alphabet of labels, D is an infinite alphabet of data
• Q is a finite set of states and q0 ∈ Q is the initial state
• R is a finite set of registers. We denote AsgnR = 2R.
• c : Q→ {1, . . . , d}, where d ∈ N is the number of priorities, is the colouring function, used

to define the acceptance condition
• δ ⊆ Q× Σ× TstR × AsgnR ×Q is a set of transitions.

A transition (q, σ, φ, asgn, q′) is also written q
σ,φ,asgn−−−−−→
A

q′. We may omit A in the latter

notation. Intuitively such transition means that on input (σ, d) in state q the automaton:

(1) checks that φ is satisfied by the current register contents and the current data
(2) assigns d to all the registers in asgn (asgn might be empty)
(3) transitions to state q′.

A is said to be deterministic if the tests are mutually exclusive, i.e., for any two distinct

transitions of the form q
σ,φ,asgn−−−−−→ q′ and q

σ′,φ′,asgn′−−−−−−→ q′′, then either σ 6= σ′ or φ ∧ φ′ is not
satisfiable. The automaton A is said to be complete if for any given state q, any label σ,

any data d and any register valuation τ , there exists a transition q
σ,φ,asgn−−−−−→ q′ ∈ δ such that

τ, d |= φ.

1.3. Configurations and Runs. A configuration is a pair (q, τ) ∈ Q × (R → D). Fix

a transition t = p
σ,φ,asgn−−−−−→ p′. We say that (q, τ) enables t on reading (σ′, d) if q = p,

σ′ = σ and τ, d |= φ. Let next(τ, asgn, d) be the valuation τ ′ defined by τ ′(i) = d if
i ∈ asgn, and τ ′(i) = τ(i) otherwise. We extend this notation to configurations as follows: if
γ = (q, τ) enables t on input (σ, d), the successor configuration of (q, τ) by t on input (σ, d) is
next(γ, asgn, d, t) = (p′, next(τ, asgn, d)). We also write next(γ, t, σ, d) to denote the successor
of (q, τ) by transition t when (q, τ) enables t on input (σ, d). The initial configuration is
(q0, τ

R
0 ). Then, a run over a data word (σ1, d1)(σ2, d2) . . . is an infinite sequence of transitions

t0t1 . . . such that there exists a sequence of configurations γ0γ1 · · · = (q0, τ0)(q1, τ1) . . . such
that γ0 is initial and for all i ≥ 0, γi+1 = next(γi, ti, σi, di). With a run ρ, we associate its
sequence of states states(ρ) = q0q1 . . .
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1.4. Languages Defined by RA. Given a run ρ, we denote, by a slight abuse of no-
tation, c(ρ) = max{j | c(ql) = j for infinitely many ql ∈ states(ρ)} the maximum color
that occurs infinitely often in ρ. Then, in the parity acceptance condition, ρ is accept-
ing whenever c(ρ) is even. We consider two dual semantics for RA: nondeterministic (N)
and universal (U). Given a RA A, depending on whether it is considered nondetermin-
istic or universal, it recognises LN (A) = {w | there exists an accepting run ρ on w} or
LU (A) = {w | all runs ρ on w are accepting}. Note that those semantics are dual: for a
RA A, by letting A be a copy of A with colouring function c : q 7→ c(q) + 1, we have that

LU (A) = LN (A).
We denote by NRA (resp. URA) the class of register automata interpreted with a

nondeterministic (resp. universal) parity acceptance condition, and given A ∈ NRA (resp.
A ∈ URA), we write L(A) instead of LN (A) (resp. LU (A)). We also denote by DRA the
class of deterministic parity register automata.

2. Synthesis of Register Transducers

2.1. Specifications, Implementations and the Realisability Problem. Let Σi and
Σo be two finite alphabets of labels, and D a countable set of data. A relational data
word is an element of w ∈ [(Σi ×D) · (Σo ×D)]ω. Such a word is called relational as it
defines a pair of data words in DW(Σi,D)× DW(Σo,D) through the following projections.
If w = x1

i
x1ox

2
i
x2o . . . , we let inp(w) = x1

i
x2
i
. . . and out(w) = x1ox

2
o . . . We denote by

RW(Σi,Σo,D) (just RW when clear from the context) the set of relational data words. A
specification is simply a language S ⊆ RW(Σi,Σo,D). An implementation is a total function
I : (Σi ×D)∗ → Σo ×D. From I, we define another function fI : DW(Σi,D)→ DW(Σo,D)
which, with an input data word wi = x1

i
x2
i
· · · ∈ Σi ×D, associates the output data word

fI(wi) = x1ox
2
o . . . such that ∀i ≥ 1, xio = I(x1

i
. . . xi−1

i
). I also defines a language of

relational data words L(I) = {〈wi, fI(wi)〉 | wi ∈ DW(Σi,D)}.
We say that I realises S when L(I) ⊆ S, and that S is realisable if there exists an

implementation realising it. Note that since fI is a total function, we have that if S is
realisable, then in particular its domain is total, i.e. for all wi ∈ DW(Σi,D), there exists
wo ∈ DW(Σo,D) such that 〈wi, wo〉 ∈ S. Therefore, any specification whose domain is not
total is not realisable according to this definition. For a discussion on this definition, see
Section 5.

The realisability problem consists, given a (finite representation of a) specification S,
in checking whether S is realisable. In general, we parameterise this problem by classes
of specifications S and of implementations I, defining the (S, I)-realisability problem,
denoted Real(S, I). Given a specification S ∈ S, it asks whether S is realisable by some
implementation I ∈ I. We now introduce the classes S and I we consider.

2.2. Specification Register Automata. In this paper, we consider specifications defined
by register automata (hence alternately reading input and output labelled data). We assume
that the set of states is partitioned into Qi (called input states, reading only labels in Σi)
and Qo (called output states, reading only labels in Σo), where q0 ∈ Qi, and such that the
transition relation δ alternates between these two sets, i.e.

δ ⊆
⋃

α=i,o
(Qα × Σα × TstR × AsgnR ×Qα),
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where i = o (resp. o = i). We denote by DRA (resp. NRA, URA) the class of specifications
defined by deterministic (resp. nondeterministic, universal) parity register automata.

Example 2.1. Remember the setting described in the introduction of a server granting
requests from an unbounded set of clients C. The input (resp. output) finite alphabets are
Σi = {req, idle} and Σo = {grt, idle}, while the set of data is any countably infinite set D
containing C. Without loss of generality, C ⊆ N is a set of client ids, so we can take D = N.
Then, as stated in the introduction, the specification that for all i ∈ C, every request of
client i is eventually granted can be expressed with the URA of Figure 1.

wi

wo

po

pi

si
req, ↓ r grt, r=

*
idle,>
grt, r 6= **

Figure 1. A universal register automaton checking that every request is
eventually granted. Input is in red (states are squares), output is in green
(states are circles). Finite labels are sans serif. All states have priority 0,
except the doubly circled state po, which has priority 1. This corresponds
to a co-Büchi acceptance condition with rejecting state po. The automaton
always loops between wi and wo (the ∗ symbol means that the transition is
taken, no matter the labelled-data received). Whenever it receives a request
as input, it universally spawns a run which stores the corresponding id in
its single register r (depicted as ↓ r), and transitions to p0. Then, it loops
between pi and po while it does not receive the corresponding grant, with
matching id, as output (i.e. either reads idle or receives a grant with wrong id:
d 6= r). When it receives a grant with the right id (d = r), it transitions to si,
then the run dies at the next step (which favors acceptance in the universal
semantics).

2.3. Register Transducers As Implementations. We consider implementations rep-
resented as transducers processing data words. A register transducer is a tuple T =
(Σi,Σo, Q, q0, δ, R) where Q is a finite set of states with initial state q0, R is a finite set
of registers, and δ : Q × Σi × TstR → AsgnR × Σo × R × Q is the transition function
(as before, AsgnR = 2R), assumed to be complete in the sense that, as for RA, for every
state q and label σi, for every data d and register valuation τ , there exists a transition
δ(q, σi, φ) = (asgn, σo, r, q

′) such that τ, d |= φ. When processing an l-data (σi, d), T com-
pares d with the content of some of its registers, and depending on the result, moves to
another state, stores d in some registers, and outputs some label in Σo along with the content
of some register r ∈ R.
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Let us formally define the semantics of a register transducer T , as an implementation IT .
First, for a finite input data word w = (σ1

i
, d1

i
) . . . (σn

i
, dn

i
) in (Σi ×D)∗, we denote by (qi, τi)

the ith configuration reached by T on w, where (q0, τ0) is initial and for all 0 < i < n, (qi, τi)
is the unique configuration such that there exists a transition δ(qi−1, σ

i
i
, φ) = (asgn, σo, r, qi)

such that τi−1, d
i
i
|= φ and τi = next(τi−1, d

i
i
, asgn). We let (σio, d

i
o) = (σo, τi(r)) and

IT (w) = (σno , d
n
o). Then, we denote fT = fIT and L(T ) = L(IT ). Note that if T is

interpreted as a DRA with exactly one transition per output state and whose states are
all accepting (i.e. have even maximal parity 0), then L(IT ) is indeed the language of such
register automaton. We denote by RT[k] the class of implementations defined by register
transducers with at most k registers, and by RT =

⋃
k≥0 RT[k] the class of implementations

defined by register transducers.

Example 2.2. Consider again the specification of Example 2.1. Such specification is
realisable for instance by the transducer which outputs (grt, i) whenever it reads (req, i) and
(idle, d) (d does not matter) whenever it reads idle, which is depicted in Figure 2.

req,> | ↓ r, grt, ↑ r

idle,> | idle, ↑ r

Figure 2. A register transducer immediately granting each request. The
notations are the same as in Figure 1. Additionally, here, ↑ r means that the
transducer outputs the content of r.

2.4. Synthesis from Data-Free Specifications. If in the latter definitions of the synthesis
problem, one considers specifications defined by RA with no registers (i.e. parity automata),
and implementations defined by RT with no registers, then the data in data-words can be
ignored and we are back to the classical reactive synthesis setting, for which important
results are known:

Theorem 2.3 [BL69]. The realisability problem of (data-free) specifications given as (register-
free) nondeterministic parity automata by (register-free) transducers is ExpTime-complete.

Proof. The upper bound was first established in [BL69] and [PR89]. Hardness is folklore,
but a proof in the particular case of finite words (easily adapted to the ω-word setting) can
be found in [FJLW16, Proposition 6].

3. Unbounded Synthesis

In this section, we consider the unbounded synthesis problem Real(RA,RT). Thus, we do
not fix a priori the number of registers of the implementation.
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3.1. Undecidability Results. Let us first consider the case of NRA and URA, which are,
in our setting, the most natural devices to express data word specifications. Unfortunately,
the two corresponding problems happen to be undecidable:

Theorem 3.1. Real(NRA,RT) is undecidable.

Proof. We reduce the problem from the universality of NRA over finite words, which is
undecidable [NSV04]. Let A be a (finite data-word) NRA. Let S be a specification which
first reads some finite data word w, then a separator # (its associated data is arbitrary and
not represented), then allows for swapping the first and second l-data on any input read
later on, while also allowing to behave like the identity whenever w ∈ L(A). S is also equal
to the identity over any word not containing # so that its domain is total. Formally, let
S = S1 ∪ S2 ∪ T , where:

S1 =

{
(w#(σ1, d1)(σ2, d2)u,w#(σ2, d1)(σ1, d2)u)

∣∣∣∣ d1, d2 ∈ D, σ1, σ2 ∈ Σ
w ∈ DWf , u ∈ DW

}
S2 = {(w#u,w#u) | w ∈ L(A), u ∈ DW}
T = {(w,w) | w /∈ DWf#DW}

S is definable by a NRA running over relational data words, because each component is and
NRA are closed under union. Recognising the interversion of the first two labels σ1 and σ2
after the # in S1 is easily done using nondeterminism, and the behaviour on data is the
identity, so S1 is NRA-definable. Then, emulating the identity over some NRA-definable
domain is easy, so S2 and T are also NRA-definable.

Now, if A is universal, ie L(A) = DWf , then the identity idDW over DW realises S,
since then idDW ⊆ S and has total domain. Conversely, if L(A) ( DWf , assume by
contradiction that S is realisable by a register transducer I. Let w ∈ DWf\L(A). Then,
for any (σ1, d1)(σ2, d2)u ∈ DW, we must have I(w#(σ1, d1)(σ2, d2)u) = w#(σ2, d1)(σ1, d2)u;
but this implies guessing the second label while having only read the first one, which is not
doable by any transducer as long as σ1 6= σ2.

Actually, we can observe that such undecidability proof extends to Real(NRA,RT[1]),
and to all Real(NRA,RT[k]) for k ≥ 1. Indeed, A is universal iff S is realisable by the
identity over data words, which is implementable using a 1-register transducer:

Theorem 3.2. For all k ≥ 1, Real(NRA,RT[k]) is undecidable.

Now, we can show that the unbounded synthesis problem is also undecidable for URA,
answering a question left open in [KMB18].

Theorem 3.3. Real(URA,RT) is undecidable.

Proof. We present a reduction to our synthesis problem from the emptiness problem of URA
over finite words. The latter is undecidable by a direct reduction from the universality
problem of NRA, which is undecidable by [NSV04].

First, consider the relation S1 = {(u#v, u#w) | u ∈ DWf , v ∈ DW, each data of u
appears infinitely often in w}. S1 is recognised by a 1-register URA which, upon reading a
data d in u, stores it in its register and checks that it appears infinitely often in w by visiting
a state with maximal parity 2 every time it sees d (all other states have parity 1). Note that
for all k ≥ 1, S1 ∩ {(u#v, u#w) | u ∈ DWf , v, w ∈ DW and u has at most k distinct data}
is realisable by a k-register transducer: on reading u, store each distinct data in one register,
and after the # output them in turn in a round-robin fashion. However, S1 is not realisable:
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on reading the # separator, any implementation must have all the data of u in its registers,
but the number of such data is not bounded (u can have pairwise distinct data and be of
arbitrary length).

Then, let A be a URA over finite data words. Consider the specification S = S1 ∪S2 ∪T ,
where S2 = {(u#v, u#w#(a, d0)

ω) | u ∈ DWf , v ∈ DW, w ∈ L(A)} and T = {(u,w) | u /∈
DWf#DW, w ∈ DW}. S has total domain, and is recognisable by a URA. Indeed, URA are
closed under union, by the same product construction as for the intersection of NRA [KF94],
and each part is URA-recognisable: S1 is, as described above, S2 is by simulating A on the
output to check w ∈ L(A) then looping over (a, d0), and T simply checks a regular property.

Now, if L(A) 6= ∅, let w ∈ L(A) and let Dw = {d1, . . . , dk} be the set of data distinct
from d0 that occur in w. As a consequence of the closure under automorphisms of register
automata [KF94, Proposition 2], we have: for any set D ⊆ D such that |D| ≥ k, and
for any injection π : Dw ∪ {d0} → D ∪ {d0} such that π(d0) = d0, by extending π to a
morphism π̂ over data words in the usual way (and behaving as the identity over the finite
labels), π̂(w) ∈ L(A). Indeed, as register automata can only test for equality, acceptance
is determined by the equality relations between the different data of the input, so we can
rename them (with the exception of d0, which is a distinguished data).

Then, S is realisable by a register transducer I with k + 2 registers. While it has not
read a #, I reads its input u and outputs it along the way, using one register to store
the current data and output it immediately. Meanwhile, it also stores the first k distinct
data of u in its registers. Its last register is used to keep d0 in memory. If there is no
# in the input, then I(u) = u, so (u, I(u)) ∈ T . Now, if some # is read, I outputs #
(along with an arbitrary data), and there are two cases: if the number of data in u is lower
than or equal to k, I realises S1, as described above. Otherwise, let Du = {e1, . . . , el} be
the set of data of u distinct from d0, indexed by order of appearance (l ≥ k). Then, let
π : Dw ∪ {d0} → Du ∪ {d0} be such that for all 1 ≤ i ≤ k, π(di) = ei and π(d0) = d0: π is
injective. Now, I can output π̂(w)#(a, d0)

ω since it stored {e1, . . . , ek} in its registers, hence
realising S2. Conversely, if L(A) = ∅, then S is not realisable. If it were, S∩DWf#DW = S1
would be too, as a regular domain restriction, but we have seen above that this is not the
case. Thus, S is realisable iff L(A) 6= ∅.

3.2. A Decidable Subclass: DRAido. However, we show that restricting to DRA allows to
recover decidability, modulo one additional assumption, namely that the output data of a
transition has to be the content of some register. We formally define this class as follows:

Definition 3.4 (DRAido). Let A = (Σ,D, Q, q0, δ, R, c) be a DRA. We say that A is with

input-driven outputs if for any output transition p
σ,φ,asgn−−−−−→ q, the test φ is of the form r= for

some r ∈ R. We denote by DRAido the class of DRA with input-driven outputs.

Such assumption rules out pathological, and to our opinion uninteresting and technical
cases stemming from the asymmetry between the class of specifications and implementations.
E.g., consider the single-register DRA in Fig. 3a (finite labels are arbitrary and not depicted).
It starts by reading one input data d and stores it in r, asks that the corresponding output
data is different from the content d of r, then accepts any output over any input (transitions
> are always takeable). It is not realisable because transducers necessarily output the
content of some register (hence producing a data which already appeared). On the other
hand, having tests of the form φ = r 6= for instance does not imply unrealisability, as shown
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by the DRA of Fig. 3b: it starts by reading one data d1, asks to copy it on the output, then
reads another data d2, and requires that the output is either distinct from d1 or equal to
it, depending on whether d2 6= d1. It happens that such specification is realisable by the
identity.

1 2 3

4

>, ↓ r r 6=

> >

(a) An unrealisable DRA.

1 2 3 5

4

6

7

>, ↓ r r=

r
6=

r=, ↓ r

r 6=

r=

> >

(b) A similar DRA, suprisingly realisable.

Figure 3. Pathological DRA specifications.

We reduce the realisability of DRAido-specifications to solving a finite parity game.
To ease its construction, we first need to confer additional properties to the specification
automaton.

A RA A is said to be locally concretisable if for every finite sequence of transitions
ρ = t1 . . . tn, for every finite data word w ∈ DWf such that ρ is a partial run of A on w, we
have that for all transitions t ∈ δ which are compatible with ρ (i.e. such that the source
state of t is equal to the end state of ρ), there exists d ∈ D such that ρt is a partial run of A
on wd. Note in particular that when ρ is not a partial run, such condition trivially holds.

We say that a RA A is in good form if

(1) it is locally concretisable
(2) it is complete on its input states
(3) its tests φ are maximally consistent conjunctions of atoms
(4) any transition t whose test is different from

∧
r∈R r

6= does not conduct an assignment
(asgn = ∅)

Lemma 3.5. For all RA A, there exists an equivalent RA A′ in good form with exponentially
many more states and transitions, and the same number of priorities and registers. Moreover
if A is a DRAido, so is A′.

Proof. Let A = (Σ,D, Q, q0, δ, R, c) be a RA. First, we can assume that A is complete
on its input states: add two sink states si and so with transitions (si, σi,>,∅, so) and
(so, σo, r

=,∅, si) for all σi ∈ Σi, σo ∈ Σo, r ∈ R, each with odd priority c(si) = c(so) = 1.

Then, for all qi ∈ Qi, and all finite label σi ∈ Σi, add a transition qi
σi,ψ,∅−−−−→ so where

ψ = ¬
∨
qi

σi,φ,asgn−−−−−→qo
φ is a test which is satisfied by a data if and only if such data satisfies

no other possible test. This does not affect determinism nor the recognised language (as
each added state has odd priority), and preserves the fact of being ido.

Now, we enrich the states with information on the equalities between registers in the
current register valuation. Formally, we define constraints1 as equivalence relations on R. In
the following, we denote by ER(R) the set of equivalence relations on R. Given a valuation τ
of registers in R, we can associate to it an equivalence relation on R in the natural way (two
registers r, r′ ∈ R are equivalent iff τ(r) = τ(r′)). We denote it by [τ ]. We use the letter C
to denote an element of ER(R), and we call it a constraint.

1The notion of constraint is pervasive in the study of registers automata, e.g. to recognise the projection
over finite labels.
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We let A′ = (Σ,D, Q′, q′0, δ′, R, c′) be defined as follows:

• Q′ = Q× ER(R)
• q′0 =

(
q0, [τ

R
0 ]
)

• c′(q, C) = c(q), for every (q, C) ∈ Q× ER(R)
• δ′ will be defined in the sequel.

Given a constraint C, and a set E ⊆ R corresponding to an equivalence class of C, we define
a test corresponding to a maximally consistent conjunction of equalities and inequalities:
αE =

∧
r∈E r

= ∧
∧
r 6∈E r

6=. A data value satisfies this test iff it is equal to the (common)

value stored in registers of R. We also consider the test α∅ =
∧
r∈R r

6= which corresponds to
the case of a fresh data value, i.e. a data value distinct from all the values stored in registers.

Consider a transition (p, σ, φ, asgn, q) ∈ δ. Given a formula αE as defined above, one
can decide whether the formula αE ⇒ φ is valid or not. If this is the case, then we add the
following transition to δ′:

(p, C)
σ,αE ,asgn−−−−−−→ (q, C ′)

where C ′ is defined as follows: two registers r, r′ are in relation with respect to C ′ if and
only if one of the following cases holds:

• they are in relation in C, and not in asgn
• they are both in asgn
• r belongs to E and r′ belongs to asgn, or vice versa.

First, observe that since A is complete on its input states, so is A′ and property (2) holds.
Moreover, by definition, A′ satisfies property (3).

Now, one can show by induction on the length n of the partial run that every partial
run ρ = t1 . . . tn of A′ over some finite data word w ∈ DWf reaching some configuration
((p, C), τ) satisfies C = [τ ]. Thus, for every run of A′, by denoting {((qi, Ci), τi)}i∈N its
sequence of configurations, we have Ci = [τi].

Additionally, for each run of A, we can build a run of A′ in a deterministic manner: let ρ =
t1t2 . . . be a run of A over some data word w = (σ1, d1)(σ2, d2) . . . , where for all i ∈ N, ti+1 =

qi
σi,φi,asgni−−−−−−→ qi+1 and let {(qi, τi)}i∈N be its sequence of configurations. Correspondingly,

let ρ′ = t′1t
′
2 . . . , where for each i ∈ N t′i+1 = (qi, Ci)

σi,αEi ,asgni−−−−−−−→
A′

(qi+1, Ci+1), with Ci = [τi]

and Ei = {r ∈ R | τi(r) = di}. Then, again by induction, we can show that ρ′ is a run of
A′ over w, whose sequence of configurations is {((qi, Ci), τi)}i∈N. Moreover, ρ′ is accepting
if and only if ρ is accepting, since c′(qi, Ci) = c(qi). Reciprocally, every run ρ′ of A′ can
be projected to a run of A by removing the Ci, and this preserves acceptance. Overall,
L(A) = L(A′).

Now, let ρ = t1 . . . tn be a partial run of A′ over some finite data word w ∈ DWf ending

in some configuration ((q, C), τ); recall that C = [τ ]. Let t = q
σ,αE ,asgn−−−−−−→ q′ be a transition

compatible with ρ, i.e. such that q is the end state of ρ. If E = ∅, then αE =
∧
r∈R r

6=, so
any d ∈ D\τ(R) (where τ(R) denotes the image of R by τ) is such that τ, d |= αE . If E 6= ∅,
then by construction E corresponds to an equivalence class of C, so ∀r, r′ ∈ E, τ(r) = τ(r′)
and ∀r ∈ E,∀r′ /∈ E, τ(r) 6= τ(r′). Thus, by letting d = τ(r) for some r ∈ E (its choice
does not matter), we have that ρt is a partial run of A′ over wd. Overall, A′ is locally
concretisable, i.e. property (1) holds.

The last step concerns property (4). Intuitively, the idea is that if the data read
corresponds to a data stored in some register, then the assignment can be replaced by
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keeping in memory a relation between registers. This idea is merely an adaptation of the
conversion from register automata (“M -automata”, in their terminology) to finite-memory
automata [KF94]. The states can be enriched with the right information to deal with these
additional relations.

In order to solve the unbounded register synthesis problem, we resort to a synthesis
problem for data-free specifications. In that framework, when specifications are described
by means of parity automata, synthesis problems can be solved using reductions to parity
games. We thus quickly recall the notion of parity game. For a complete presentation, we
refer the reader to [AG11].

A two-player parity game is given as a finite graph, in which vertices are partitioned
among the two players, together with an initial vertex. A colouring function associates with
each vertex an integer. It is used to define the winning plays as follows: a play is winning iff
the maximum colour appearing infinitely often is even.

In the sequel, we will use the parity game associated with a DRA A, which is denoted
as GA. It is is defined as follows: its set of vertices is exactly that of A. Player Adam
owns input vertices, and the associated input transitions, while player Eve owns output
vertices/transitions. The colouring function is that of A, and the initial vertex is the initial
state of A.

Proposition 3.6. Let A be a DRAido in good form. Then, the following are equivalent:

(1) L(A) is realisable by a register transducer with as many registers as A
(2) L(A) is realisable by an implementation2 I : (Σi ×D)∗ → Σo ×D
(3) Eve wins the parity game GA associated with A

Proof. We start with a preliminary remark on DRAido. As A is a DRAido, every output
transition has a test with at least one equality constraint (r= for some r), and thus, as A is
in good form (property (4)), the assignment of output transitions are all empty. Note that 1
⇒ 2 is immediate.

From the parity game GA to the realisability of L(A): 3 ⇒ 1. Assume Eve wins the
game GA. Parity games admit memoryless strategies, i.e. strategies whose actions only
depend on the current state of the game. We can thus consider a memoryless winning
strategy for Eve, which we denote by a mapping χ from output vertices to output edges of
the game, i.e. from output states to output transitions of A.

We now detail how we define from χ a register transducer Tχ with RA as set of registers:

• States are those of A
• The initial state is that of A
• Transitions are defined as follows. Consider some input state p and some transition ti

from p to q. By definition of A, q is an output state, and we let to = χ(q) be the transition
given by Eve’s strategy.

We write ti = (p, σ, φ, asgn, q) and to = (q, σ′, φ′, asgn′, q′). Thanks to our initial
comment on the form of output transitions of DRAido in good form, there exists a register
r appearing with an equality constraint in the test φ′ of the transition to, and we have

asgn′ = ∅. Then, we add to Tχ the transition p
σ,φ|asgn,σ′,r−−−−−−−−→ q′.

2Recall that implementations are defined in subsection 2.1.
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Observe that T is indeed a register transducer as for each state p, it only uses transitions
outgoing from p in A, hence it is deterministic as A was.

We claim that Tχ realises L(A). Consider some input data word, and the behaviour of
Tχ on this data word. As A is in good form, it is complete on its input states. This entails
that this run is infinite. It corresponds to a play in GA compatible with Eve’s strategy χ.
As χ is a winning strategy, this implies that the run is accepting, hence corresponds to some
accepting run of A, yielding the result.

From the realisability of L(A) to the parity game GA: 2 ⇒ 3. Assume that L(A)
is realisable by an implementation I : (Σi ×D)∗ → Σo × D. We let fI : DW(Σi,D) →
DW(Σo,D) be the function it implements, and naturally extend it to finite words: for
wi ∈ DWf (Σi,D), fI(wi) = I(wi[1])I(wi[1 : 2]) . . . I(wi[1 : |wi|]). Let us build from I a

winning strategy χI in GA, with memory (Σi ×D)∗ × (QS ×DRA).
We define χI by induction, and show that when χI is in memory state (wi, (q, τ)), the

finite sequence of transitions constructed so far is a partial run of A over 〈wi, fI(wi)〉 ending
in configuration (q, τ). Initially, χI has memory (ε, (q0, τ0)).

Now, assume χI is in state (wi, (q, τ)), and Adam just played (σi, φ, asgn). Then, Eve
picks some data di ∈ D such that τ, di |= φ. Such data exists since A is locally concretisable
and the finite sequence of transitions constructed so far is the partial run over some data word.

Let (q′′, τ ′′) be the successor configuration of (q, τ) in A on reading di, i.e. (q, τ)
σi,di−−−→
A

(q′′, τ ′′),

and let w′
i

= wi(σi, di). Now, let (σo, do) = I(w′
i
). Correspondingly, let to be the transition

taken from (q′′, τ ′′) on reading (σo, do), i.e. such that (q′′, τ ′′)
σo,do−−−→
to

(q′, τ ′). Such transition

exists: let w ∈ DW(Σi,D) be some infinite suffix that we append to w′
i
. Since I is an

implementation, fI is total and we know that 〈w′
i
w, fI(w

′
i
w)〉 ∈ L(A), which means that

〈w′
i
w, fI(w

′
i
w)〉 admits an accepting run in A. In particular, its prefix 〈w′

i
, fI(w

′
i
)〉 admits

a partial run in A, and its last transition is to (such partial run is unique since A is
deterministic).

Then, Eve plays to in GA and updates her memory to (w′
i
, (q′, τ ′)). The invariant

indeed holds, as the play constructed so far is a partial run of A over 〈w′
i
, fI(w

′
i
)〉 ending in

configuration (q′, τ ′).
χI is indeed a strategy, as it is defined for any possible sequence of actions of Adam. It

remains to show that it is winning. Let ρ be a play consistent with χI , which is also a run
of A by definition of GA. We need to show that ρ is accepting. We define w ∈ (Σi ×D)ω as
w[i] = wi

i
[i], where wi

i
is the input word stored in memory at step i of the play (i.e. such

that χI is in state (wi
i
, (qi, τi)) for some (qi, τi) after receiving i actions of Adam). We then

know that for all i ∈ N, ρ[: i] is a partial run of A over 〈w[: i], fI(w[: i])〉, so ρ is a run of A
over 〈w, fI(w)〉. Since I is an implementation, such run is accepting, i.e. satisfies the parity
condition, which means that ρ also satisfies the parity condition; it is thus winning. As a
consequence, χI is a winning strategy in GA.

Theorem 3.7. Real(DRAido,RT) is ExpTime-c.

Proof. First, we put A in good form thanks to Lemma 3.5, resulting in some DRAido B
exponentially bigger. Then, by Proposition 3.6, it suffices to solve the parity game GB . It is
well-known to be possible in time O(nd) where n is the number of states and d the number
of priorities. If nA denotes the number of states of A and d its number of priorities, then B
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has nA · 2|R|
2

states and the same number of priorities d, hence checking the realisability of

A can be done in time O(ndA · 2d·|R|
2
), which is exponential with respect to the size of the

input.

Hardness. The following proof is an adaptation of the one establishing PSpace-hardness of
the nonemptiness problem for DRA presented in [DL09, Theorem 5.1]. Here, we use the input
part to simulate universal transitions, and the output part to simulate nondeterministic
ones, hence simulating alternation, which yields an ExpTime lower bound.

Thus, we reduce from the halting problem of alternating Turing machines over a
binary alphabet with a linearly bounded tape. An alternating Turing machine is a tuple
M = 〈Q, qi, δ〉, where:

• Q is a finite set of states, partitioned into existential (Q∃) and universal (Q∀) states:
Q = Q∃ ]Q∀, where qi ∈ Q∀ is the initial state
• δ : Q× {0, 1} → 2Q×{0,1}×{−1,1} is the transition function.

A configuration of M is then a triple c = (q, i, w), where q ∈ Q is the machine state,

i ∈ {0, . . . , |M| − 1} is the head position, and w ∈ {0, 1}|M| is the tape content. It is
existential if q ∈ Q∃ and universal if q ∈ Q∀. A configuration (q′, i′, w′) is a successor of
(q, i, w) if there exists (p, a,m) ∈ δ(q, w[i]), p = q′, i′ = i + m ∈ {0, . . . , |M| − 1} and w′

is such that ∀j 6= i, w′[j] = w[j] and w[i] = a. t = q
w[i],a,m−−−−−→ p is called the associated

transition. A run of M is then a tree whose nodes are configurations and whose branches
can be finite or infinite, rooted in the initial configuration (qi, 0, 0

|M|), and whose nodes
satisfy the following properties:

(1) If the node is an existential configuration c∃, then it has exactly one child, which is a
successor configuration of c∃.

(2) If the node is a universal configuration c∀, then its children are all its successor configu-
rations.

Note that a branch is finite if and only if it ends in a universal configuration with no
successor. The machine M halts if it admits a run which is a finite tree (i.e. whose
branches all end in a universal configuration with no successors). The following problem is
ExpTime-hard [CKS81]: given an alternating Turing machine M, decide whether M halts.

Finally, a computation is a finite sequence of successive configurations (i.e. a finite
path in a run). Let (q0, i0, w0) . . . (qn, in, wn) be a computation of M, and t0 . . . tn−1 the
sequence of associated transitions. We encode such computation by the following data word
over the alphabet Q ] δ ] {−}:

(−, d0)(−, d1)a00a01 . . . a0|M|−1t0a
1
0a

1
1 . . . a

1
|M|−1t1 . . . tn−1a

n
0a

n
1 . . . a

n
|M|−1

where d0 6= d1 ∈ D are two distinct data respectively encoding letters 0 and 1, and we
have lab(akl ) = qk if l = ik and lab(akl ) = − otherwise. Then, dt(akl ) = d0 if wk[l] = 0 and

dt(akl ) = d1 if wk[l] = 1. dt(tk) does not matter.
Now, as in [DL09], we can construct a DRA AM which accepts a data word iff it has a

prefix that encodes a computation of M from the initial state to a state with no successor.
Indeed, the transitions are part of the input, so they do not have to be guessed: neither
nondeterministic nor universal branching is needed here (they will respectively be simulated
by the output and input player). For completeness, we describe the construction: AM has
memory Q, along with an |M|-bounded counter l to keep track of the position of the reading
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head in wk, a variable i taking its values in {0, . . . , |M|− 1} used to store the value of ik and
a variable t taking its values in δ to memorise tk; which overall yields a O(|M|4) memory. Its
finite alphabet is Q]δ]{−}, and it has |M|+2 registers: r0 and r1 respectively store d0 and
d1, and, for all 0 ≤ l < |M|, r′l successively stores the different values of wk[l] for 0 ≤ k ≤ n.
Then, a run of AM is as follows: initially, AM stores d0 and d1, while checking that they
are distinct. Then, it checks that w0 = 0|M|. To check successorship, while maintaining the

invariant that at any step k, r′l contains wk[l], the automaton, when reading tk = q
c,a,m−−−→ p,

checks that q = qk (it was stored as the target of tk−1), c = wk[ik] (i.e. that r′ik contains dc),

and updates the value of ik to ik+1 = ik + mk, while checking that ik ∈ {0, . . . , |M| − 1}.
Then, with the help of its registers and its counter l, it checks that wk+1[l] = wk[l] for all
l 6= ik+1, and that wk+1[ik+1] = da.

From such automaton, by adding #s to enforce the alternation between input and
output, we can build a specification automaton such that the input player provides the
encoding of the successive configurations, and resolves the universal branching, and the
output player has to resolve nondeterminism (i.e. chooses which nondeterministic transition
to take). Then, if the input player can force the computation to go on ad infinitum, he wins,
otherwise (if either the provided encoding is not correct, or if the computation is finite), the
output player wins. Formally:

S ={(−, d0)#(−, d1)#〈c0,#|M|〉t0#〈c1,#|M|〉#t1〈c2,#|M|〉t2# . . . 〈cn,#|M|〉#ω |
d0 6= d1 and c0t0c1t1c2t2 . . . tn−1cn is the encoding of a computation of M}

∪
{
〈w,w′〉

∣∣∣∣ there exists a prefix of w which is not
the encoding of a computation of M

}
∪ {〈(−, d0)#(−, d1)w,w′〉 | d0 = d1}

The data corresponding to the # and ti do not matter, and are not depicted. Note that
the even (i.e. universal) transitions are picked by the input player, while the odd (i.e.
nondeterministic) transitions are picked by the output player.

Now, if M halts, A admits an implementation, which behaves as follows: it first checks
that the d0 and d1 given as input are indeed distinct. Then, it checks on-the-fly that the
given input is indeed an encoding of the initial configuration, while outputting #s. It then
checks that c1 is indeed a successor of c0 following t0, again while outputting #s. Then, if it
receives a # as input, it picks some t1 which is a witness that c0 is indeed accepting, and so
on. If, at some point, the given input is not a valid encoding, then it behaves arbitrarily
(e.g. by outputting only #s).

Conversely, if M does not halt, then, by choosing an input whose universal transitions
are witnesses that c0 is not accepting, then either the implementation provides some non-
admissible output at some point, or the computation goes ad infinitum, which breaks the
specification.

For readers familiar with game-theoretic formulations, winning strategies in the synthesis
game of AM are in one-to-one correspondence with halting runs of M.

As a consequence of the fact that if a DRAido is realisable, then it is so by a register
transducer with the same number of registers, we obtain the following corollary:

Corollary 3.8. Let k ≥ r be two integers. We denote by DRAido[r] the class of DRAido

with r registers. Real(DRAido[r],RT[k]) is in ExpTime.
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4. Bounded Synthesis: A Generic Approach

In this section, we study the setting where target implementations are register transducers
in the class RT[k], for some k ≥ 0 that we now fix for the whole section. For the complexity
analysis, we assume k is given as input, in unary. Indeed, describing a k-register automaton
in general requires O(k) bits, and not O(log k) bits. We prove the decidable cases of the first
line of Table 1 (page 4), by reducing the problems to realisability problems for data-free
specifications.

4.1. Abstract Actions. We let Rk = {1, . . . , k} be a set of k registers. Our aim is to
reduce the problem to a finite alphabet problem. First, since the set of test formulas over
Rk is infinite and there are doubly exponentially many non-equivalent formulas over Rk, we
rather synthesise transducers whose tests are maximally consistent conjunctions of atoms of
the form r= or r 6=. Such conjunctions can be identified as subsets of Rk in a natural way,

e.g. for k = 3, the test r=1 ∧ r
6=
2 ∧ r=3 is identified with the set {1, 3}. We call them explicit

tests and denote them by the capital letter E. An explicit test E ⊆ Rk is converted into the
(implicit) test φE =

∧
r∈E r

= ∧
∧
r 6∈E r

6=. Explicit tests are for instance used in [Seg06].

We let Tstk = Asgnk = 2Rk . The finite input actions are Ak
i

= Σi × Tstk which
corresponds to picking a label and a test over the k registers, and the output actions are
Ako = Σo×Asgnk ×Rk, corresponding to picking some output symbol, some assignment and
some register whose content is to be output.

An alternating sequence of actions a = (σ1
i
, E1)(σ

1
o, asgn1, r1) · · · ∈ (Ak

i
Ako)

ω
abstracts

a set of relational data words of the form w = (σ1
i
, d1

i
)(σ1o, d

1
o) · · · ∈ RW(Σi,Σo,D) via a

compatibility relation that we now define. We say that w is compatible with a if there exists

a sequence of register configurations τ0τ1 · · · ∈ (Rk → D)ω such that τ0 = τRk0 and for all
i ≥ 1, τi, d

i
i
|= Ei, d

i
o = τi(ri) and τi+1 = next(τi, d

i
i
, asgni). In other words, w is compatible

with a if there exists some k-register transducer and a run ρ = t0t1 . . . such that for all i, ti

is of the form ti = qi
σi
i
,Ei|σio,asgni,ri−−−−−−−−−−→ qi+1 for some qi, qi+1 ∈ QT . Note that this sequence

is unique if it exists. We denote by Comp(a) the set of relational data words compatible
with a. Given a specification S, we let WS,k = {a | Comp(a) ⊆ S}. The set WS,k is then a

specification over the finite input and output alphabets Ak
i

and Ako.

Theorem 4.1 (Transfer). Let S be a data word specification. The following are equivalent:

(1) S is realisable by a transducer with k registers.
(2) The (data-free) word specification WS,k is realisable by a (register-free) finite transducer.

Proof. Let T be a transducer with k registers realising S. The tests of T are implicit tests,
so in a first step we explicit them, possibly by adding new transitions to T . Formally, a

transition q
σi,φ|σo,asgn,r−−−−−−−−→

T
q′ is replaced by all the transitions q

σi,E|σo,asgn,r−−−−−−−−−→
T

q′ for all E ⊆ Rk
such that φE ⇒ φ is true. The resulting transducer can be seen as a finite transducer T ′

over input alphabet Ak
i

and output alphabet Ako. Moreover, since the transition function
of T is complete, it is also the case of T ′ (this is required by the definition of transducer
defining implementations).

Let us show that WS,k is realisable by T ′, i.e. L(T ′) ⊆ WS,k. Take a sequence a =
a1e1a2e2 · · · ∈ L(T ′). We show that Comp(a) ⊆ S. Let w ∈ Comp(a). Then, there exists a
run q0q1q2 . . . of T ′ on a since a ∈ L(T ′). By definition of compatibility for w, there exists
a sequence of register configurations τ0τ1 · · · ∈ (Rk → D)ω satisfying the conditions in the
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definition of compatibility. From this we can deduce that (q0, τ0)(q1, τ1) . . . is an initial
sequence of configurations of T over w, so w ∈ L(T ). Finally, T realises S, and therefore
L(T ) ⊆ S.

Conversely, suppose that WS,k is realisable by some finite transducer T ′ over the input

(output) alphabets Ak
i

(Ako). Again, the transducer T ′ can be seen as a transducer T with
k registers over data words with explicit tests. We show that T realises S, i.e., L(T ) ⊆ S.
Let w ∈ L(T ). The run of T over w induces a sequence of actions a in (Ak

i
Ako)

ω
which, by

definition of compatibility, satisfies w ∈ Comp(a). Moreover, a ∈ L(T ′). Hence, since T ′

realises WS,k, we get Comp(a) ⊆ S, so w ∈ S, concluding the proof.

4.2. The case of URA specifications. In this section, we show that for any S a data
word specification given as some URA, the language WS,k is effectively ω-regular, entailing
the decidability of Real(URA,RT[k]), by Theorem 4.1 and the decidability of (data-free)
synthesis. Let us first prove a series of intermediate lemmas.

We define an operation ⊗ between relational data words w ∈ RW(Σi,Σo,D) and
sequences of actions a ∈ (Ak

i
Ako)

ω
as follows: w ⊗ a ∈ RW(Ak

i
, Ako,D) is defined only if

for all i ≥ 1, lab(w[i]) = lab(a[i]) where lab(a[i]) is the first component of a[i] (a label in
Σi ∪ Σo), by (w ⊗ a)[i] = (a[i], dt(w[i])). Note that such operation is always defined when
w ∈ Comp(a).

Lemma 4.2. The language Lk = {w ⊗ a | w ∈ Comp(a)} is definable by some NRA.

Proof. We define an NRA with k registers which roughly follows the actions it reads on its
input. Its set of states is {q}∪AsgnR, with initial state q. In state q, it is only allowed to read
labelled data in Ak

i
×D. On reading (σi, φ, d), it guesses some assignment asgn, performs

the test φ and the assignment asgn and goes to state asgn. In any state asgn ∈ AsgnR, it is
only allowed to read labelled data of the form (σo, asgn, r, d), for which it tests whether d is
equal to the content of r. It does no assignment and moves back to state q. All states are

accepting (i.e. have parity 0). Such NRA has size O(2k
2
).

Let S be a specification defined by some URA AS with set of states Q. The following
subset of Lk is definable by some NRA, where S denotes the complement of S:

Lemma 4.3. The language LS,k = {w ⊗ a | w ∈ Comp(a) ∩ S} is definable by some NRA.

Proof. Since S is definable by the URA AS , S is NRA-definable with AS , a copy of AS with
colouring function c : q 7→ c(q) + 1, interpreted as an NRA. Let B be some NRA defining
Lk (it exists by Lemma 4.2). It now suffices to take a product of AS and B to get an NRA
defining LS,k.

Given a data word language L, we denote by lab(L) = {lab(w) | w ∈ L} its projection
on labels. The language WS,k is obtained as the complement of the label projection of LS,k:

Lemma 4.4. WS,k = lab(LS,k).

Proof. Let a ∈ (Ak
i
Ako)

ω
. Then, a /∈WS,k ⇔ Comp(a) 6⊆ S ⇔ ∃w ∈ RW, w ∈ Comp(a)∩S ⇔

∃w ∈ RW, w ⊗ a ∈ LS,k ⇔ a ∈ lab(LS,k).

We are now able to show the regularity of WS,k.
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Lemma 4.5. Let S be a data word specification, k ≥ 0. If S is definable by some URA with
n states and r registers, then WS,k is effectively ω-regular, definable by some deterministic

parity automaton with O(2n
2·16(r+k)2 ) states and O(n · 4(r+k)

2

) priorities.

Proof. First, LS,k is definable by some NRA with O(2k
2
n) states and O(r + k) registers

by Lemma 4.4, obtained as product between the NRA AS and the automaton obtained in

Lemma 4.2, of size O(2k
2
). It is known that the projection on the alphabet of labels of a

language of data words recognised by some NRA is effectively regular [KF94]. The same
construction, which is based on extending the state space with register equality types, carries

over to ω-words, and one obtains a nondeterministic parity automaton with O(n · 4(r+k)
2

)
states and d priorities recognising lab(LS,k). It can be complemented into a deterministic

parity automaton with O(2n
2·16(r+k)2 ) states and O(n · 4(r+k)

2

) priorities using standard
constructions [Pit07].

We are now able to reprove the following result, known from [KMB18]:

Theorem 4.6. For all k ≥ 0, Real(URA,RT[k]) is in 2ExpTime.

Proof. By Lemma 4.5, we construct a deterministic parity automaton PS,k for WS,k. Then,
according to Theorem 4.1, it suffices to check whether it is realisable by a (register-free) trans-
ducer. The way to decide it is to see PS,k as a two-player parity game and check whether the

protagonist has a winning strategy. Parity games can be solved in time O(mlog d) [CJK+17]
where m is the number of states of the game and d the number of priorities. Overall, solving

it requires doubly exponential time, more precisely in O(2n
3·16(r+k)2 ).

4.3. The case of test-free NRA specifications. Unfortunately, by Theorem 3.2, the
synthesis problem for specifications expressed as NRA is undecidable, even when the number
of registers of the implementation is bounded. And indeed, if we mimic the reasoning of the
previous section, we get that LS,k is definable by a URA, but Lemma 4.4 does not allow to
conclude because:

Proposition 4.7. There exists a data word language L which is URA-definable and whose
string projection is not ω-regular.

Proof. Consider

L = {(r, d1) . . . (r, dn)(g, d′1) . . . (g, d
′
m)(#, d)ω | ∀i 6= j, di 6= dj ∧ ∀1 ≤ i ≤ n,∃j, d′j = di},

which consists in a word w ∈ rn with pairwise distinct data followed by a word w′ ∈ gm
which contains at least all the data of w, and extended with (#, d)ω to make it infinite (here,
the choice of d does not matter). Such language can be interpreted as the request-grant
specification, restricted to the case where all requests are made first, and are all made by
pairwise distinct clients (plus a # infinite padding). L is recognised by an URA which, on
reading (r, di), universally triggers a run checking that

(1) Once a label g is read, only gs are read; and after the last g, only # are read (this is an
ω-regular property)

(2) (r, di) does not appear again
(3) (g, di) appears at least once.

Now, we have lab(L) = {rngm#ω | m ≥ n}, which is not ω-regular.
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In this section, we consider the class of NRA which do not perform tests on input
data, which we call test-free nondeterministic register automata (NRAtf for short). Such
restriction is inspired from [DH16], which defines transformations of data words using
MSO interpretations with an MSO origin relation. The MSO interpretation describes the
transformation over the finite alphabet (called the string transduction), as in [Cou94], while
the MSO origin relation describes the relation between input and output data. Such relation
does not depend on (un)equalities between different input data: it uniquely maps each
output position to an input position, expressing that the output data at this position is
equal to the corresponding input data. They then show that such model is equivalent to
two-way deterministic transducers with data variables3. Such data variables are used to
implement the MSO origin relation: they are registers in which the transducer can store
the input data values and output them, but it is not allowed to perform any test on the
stored data, contrary to our model of register automata. To define NRAtf, we apply the same
restriction to NRA: they correspond to nondeterministic one-way transducers with data
variables. Such machines can only rearrange input data (duplicate, erase, copy) regardless
of the actual data values (as there are no tests). This way, as stated in Proposition 4.9,
registers induce an origin relation between input and output data.

To avoid confusion between the nature of specifications and implementations, we prefer
to define them as register automata, instead of transducers.

Definition 4.8 (Test-free register automaton). A NRA is test-free if:

(1) Its input transitions do not depend on equality relations between input data: for all

t ∈ δ, if t = q
σ,φ,asgn−−−−−→ q′ is an input transition, then φ = >.

(2) Its output transitions consist in outputting the content of some register: for all t ∈ δ, if

t = q
σ,φ,asgn−−−−−→ q′ is an output transition, then φ = r= for some r ∈ R and asgn = ∅.

We now make the relation with the notion of origin precise: as shown in [DFL18], there is
a tight connection between origin graphs and data words. Here, the encoding is slightly
different, as we do not necessarily ask that the data labelling input position n is equal to n.
However, as long as the input data are all pairwise distinct, such encoding carries to our
setting: the output data at position j is equal to di

i
, where i is the (input) origin position.

Thus, in the following, we let AllDiff denote the set of relational data words whose input
data are pairwise distinct:

AllDiff = {w = (σ1i , d
1
i )(σ

1
o, d

1
o) · · · ∈ RW | ∀0 ≤ i < i′, dii 6= di

′
i }

where, by convention d0
i

= d0. Then, as we will show, the behaviour of an NRAtf over
AllDiff determines its origin relation, and hence its behaviour over the entire data domain.

To a run ρ = q0
σ1
i
,asgn1,r1,σ1

o−−−−−−−−−→ q1
σ2
i
,asgn2,r2,σ2

o−−−−−−−−−→ q2 . . . , we associate the origin function
oρ : j 7→ max{i ≤ j | rj ∈ asgni}, with the convention max∅ = 0. In other words, oρ(j)
is the last input position at which the register output at position j was assigned, so the
corresponding input data is the one which is output (if the register has never been assigned,
it contains d0, which, by convention, is the data associated with input position 0).

Now, for an origin function o : N\{0} → N and for a relational data word w ∈ RW,
we say w is compatible with the origin function o, denoted w |= o, whenever for all j ≥ 1,
dt(out(w)[j]) = dt(inp(w)[o(j)]), with the convention dt(inp(w)[0]) = d0.

3Themselves equivalent to one-way streaming string transducers with data variables and parameters; such
parameters are reminiscent of the guessing mechanism described in [KZ10].
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The following proposition shows that actual data values in a word w do not matter with
respect to membership in some NRAtf, only the compatibility with origin functions does:

Proposition 4.9. Let w ∈ RW and ρ a sequence of transitions of some NRAtf. Then,

(1) If ρ is a run over w, then w |= oρ.
(2) If ρ is a run over w and w ∈ AllDiff, then for all o : N\{0} → N, w |= o⇔ o = oρ.
(3) If w and ρ have the same finite labels and if w |= oρ, then ρ is a run over w.

Proof. (1) and (3) follow from the semantics of NRAtf, which do not conduct any test on the
input data. The ⇐ direction of (2) is exactly (1). Now, assume w ∈ AllDiff admits ρ as a
run, and let o such that w |= o. Then, let j ≥ 1 be such that dt(out(w)[j]) = dt(inp(w)[o(j)]).
By (1) we know that dt(out(w)[j]) = dt(inp(w)[oρ(j)]), so dt(inp(w)[o(j)]) = dt(inp(w)[oρ(j)]).
Since w ∈ AllDiff, this implies o(j) = oρ(j), so, overall, o = oρ.

It is not clear whether WS,k is regular for NRAtf specifications, but we show that it

suffices to consider another set denoted W tf
S,k which is easier to analyse (and can be proven

regular), which describes the behaviour of S over input with pairwise distinct data. Indeed,
as expressed by the above proposition, NRAtf cannot conduct tests on input data, and
their behaviour only depends on the input labels. Thus, it suffices to study runs on input
words whose data are all distinct; such choice ensures that two equal input data will not
ease the task of the implementation. Otherwise, it could be that on reading a data word,
two registers r1 and r2 are equal, and then the implementation can simultaneously take
transitions labelled with out(r1) and out(r2). An interesting side-product of this approach is
that it implies that we can restrict to test-free implementations. A test-free transducer is a
transducer whose transitions do not depend on tests over input data, i.e., for all transitions

t = q
σi,φ|asgn,σo,r−−−−−−−−→ q′ ∈ δ, we have φ = >.

Proposition 4.10. Let S be a NRAtf specification, and A∅
i

= Σi × {∅}. The following are
equivalent:

(1) S is realisable
(2) W tf

S,k = {a ∈ (A∅
i
Ako)

ω | Comp(a) ∩ S ∩AllDiff 6= ∅} is realisable by a (register-free)

transducer with input alphabet A∅
i

(3) S is realisable by a test-free transducer

Proof. (3)⇒ (1) is trivial.
(1) ⇒ (2): If S is realisable, then, by Theorem 4.1, WS,k is realisable by some trans-

ducer I. Now, since transducers are closed under regular domain restriction, W∅
S,k =

WS,k ∩ (A∅
i
Ako)

ω
is realisable by I restricted to the input alphabet A∅

i
; more precisely,

by the transducer I ′ with the same set of states as I and transition function δ′ = δ ∩(
QI × Σi × {∅} → AsgnRk × Σo ×Rk ×QI

)
. Moreover, W∅

S,k ⊆W
tf
S,k. Indeed, let a ∈W∅

S,k.

Then, Comp(a) ⊆ S. It is easy to build by induction a data word w ∈ Comp(a) ∩AllDiff,
so Comp(a) ∩ S ∩AllDiff 6= ∅. Thus, W tf

S,k is realisable by any transducer realising W∅
S,k.

(2) ⇒ (3): Now, assume W tf
S,k is realisable by some transducer I. We show that I,

when ignoring the ∅ input tests, is actually an implementation of S. Thus, let I ′ be the
same transducer as I except that all input tests ∅ have been replaced with >. Formally,

q
σi,>|asgn,σo,r−−−−−−−−−→

I′
q′ iff q

σi,∅|asgn,σo,r−−−−−−−−−→
I

q′ Note that I ′, interpreted as a register transducer, is

test-free. Let w ∈ DW, and ai = lab(w) × ∅ω be the input action in A∅
i

with same finite
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labels as w. Let a = I(ai), and let w′ ∈ Comp(a) ∩ S ∩AllDiff (such w′ exists because, as
above, Comp(a) ∩AllDiff 6= ∅). Then, since lab(w) = lab(w′), they admit the same run
ρI in I, so w,w′ |= oρI . Now, w′ ∈ S, so it admits an accepting run ρS in S, which implies
w′ |= oρS . Moreover, w′ ∈ AllDiff so, by Proposition 4.9 (2), we get oρI = oρS . Therefore,

w |= oρS , so, by Proposition 4.9 (3), w admits ρS as a run, i.e. w ∈ S. Overall, L(I) ⊆ S,
meaning that I is a (test-free) implementation of S.

Finally, W tf
S,k = {a ∈ (A∅

i
Ako)

ω | Comp(a) ∩ S ∩ AllDiff 6= ∅} is regular. Indeed,

W tf
S,k = {a ∈ (A∅

i
Ako)

ω | Comp(a) ∩ S∅ 6= ∅}, where S∅ is the same automaton as S except

that all input transitions q
σi,>,asgn−−−−−−→ q′ have been replaced with q

σi,
∧
r∈Rk

r 6=,asgn
−−−−−−−−−−−→ q′, because,

for all a ∈ (A∅
i
Ako)

ω
, Comp(a)∩S ∩AllDiff 6= ∅⇔ Comp(a)∩S∅ 6= ∅ (the⇒ direction is

trivial, and the ⇐ stems from the fact that an AllDiff input only takes φ = ∅ transitions).
Then, Ltf

S,k = {w⊗a ∈ RW⊗(A∅
i
Ako)

ω | w ∈ Comp(a)∩S∅} is NRA-definable. Indeed, S

is NRAtf-definable, so S∅ is NRA-definable, and by Lemma 4.2, Lk = {w⊗a | w ∈ Comp(a)}
is NRA-definable, so their product recognises Ltf

S,k. Finally, W tf
S,k = lab(Ltf

S,k), and the

projection of a NRA over some finite alphabet is regular [KF94].
Overall, by Theorem 4.1, we finally get (the complexity analysis is the same as for URA):

Theorem 4.11. For all k ≥ 0, Real(NRAtf,RT[k]) is decidable and in 2ExpTime.

5. Synthesis and Uniformisation

In this section, we discuss the connection between synthesis and uniformisation of relations,
which is a more general problem: as pointed out in Section 2, if S is realisable by a register
transducer, then, in particular, it has a total domain, i.e. inp(S) = DW(Σi,D), otherwise
it cannot be that L(T ) ⊆ S for T a register transducer, since by definition of transducers
inp(T ) = DW(Σi,D). However, when defining a specification, the user might be interested
only in a subset of behaviours (for instance, s/he knows that all input data will be pairwise
distinct). In the finite alphabet setting, since the formalisms used to express specifications are
closed under complement (whether it is LTL or ω-automata), it is actually not a restriction
to assume that the input domain of the specification is total: it suffices to complete the
specification by allowing any behaviour on the input not considered. However, since register
automata are not closed under complement, such approach is not possible here. Thus,
it is relevant to generalise the realisability problem to the case where the domain of the
specification is not total. This can be done by equipping register transducers with an
acceptance condition. It is also necessary to adapt the notion of realisability; otherwise,
any transducer accepting no words realises any specification. (since it is always the case
that ∅ ⊆ S). A natural way is to consider synthesis as a uniformisation problem [FJLW16].
An (implementation) function f : In→ Out is said to uniformise a (specification) relation
R ⊆ In× Out whenever:

(1) dom(f) = dom(R) and
(2) for all i ∈ dom(f), (i, f(i)) ∈ R
Note that constraint 1 is the main difference with the notion of realisability.

In the context of reactive synthesis, where f = fI is defined from an implementation I
and R is given as a language of relational words, it can be rephrased as

(1) inp(L(I)) = inp(R) and
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(2) for all wi ∈ inp(L(I)), 〈wi, fI(wi)〉 ∈ R
Note that such definition coincides with the one of realisability of Section 2 when the class
of implementations has total domain, because then it is equivalent to asking L(I) ⊆ R. In
the following, we denote by Unif(S, I) the uniformisation problem from specifications in S
to implementations in I. Unfortunately, this setting is actually much harder, as shown by
the next two theorems:

Theorem 5.1. Given S a specification represented by a DRA, checking whether inp(S) =
DW(Σi,D) is undecidable.

Proof. We reduce from the universality problem of NRA, which is undecidable [NSV04].
Let A = (Σ,D, Q, q0, δ, R, c) be an NRA. We encode L(A) as the domain of some DRA
specification: the input transitions are the same as the transitions of the original automaton,
but when there is some nondeterminism, its resolution is postponed to the corresponding
output transition, whose finite label corresponds to the chosen transition. In the vocabulary
of games, the input player chooses the finite input label and the equality relation of the
input data to the registers of A, and the output player resolves the nondeterminism. Thus,
we construct a DRA D accepting R(D) = {((σ1, d1)(σ2, d2) . . . , (t1, d1)(t2, d2) . . . ) | t1t2 . . .
is a run of A over (σ1, d1)(σ2, d2) . . . }.

Thus, define D = (Σ] δ,D, Q]Q× (Σ×TstR), q0, δ
′, R]{r0}, c′), where δ′ is defined as

follows: for all q ∈ Q, σ ∈ Σ and φ ∈ TstR, we define the input transition q
σ,φ,{r0}−−−−−→

D
(q, (σ, φ)).

Then, for all t = q
σ,φ,asgn−−−−−→

A
q′ ∈ δ, we define the output transition (q, (σ, φ))

t,φ∧r=0 ,asgn−−−−−−−→
D

q′.

Then, let c′ : q 7→ c(q) and (q, •) 7→ c(q). Such automaton is indeed deterministic, and it
recognises the relation R(D) = {((σ1, d1)(σ2, d2) . . . , (t1, d1)(t2, d2) . . . ) | t1t2 . . . is a run of
A over (σ1, d1)(σ2, d2) . . . }. Then, inp(R(D)) is universal iff L(A) is universal.

Such result extends to NRA and URA, whose DRA are a special case. Note that the
unbounded realisability problem for DRA is not reducible to deciding whether the domain is
total: if the specification S is not realisable, it is not possible to determine whether it is
because the domain of S is not total or because S is not realisable by a sequential machine
(e.g. S asks to output right away a data that will only be input in the future).

Then, while the uniformisation setting obviously preserves the undecidability results
from the synthesis setting, the above result allows to show that the somehow more general
uniformisation problem is undecidable. For instance, we can prove:

Theorem 5.2. For all k ≥ 1, Unif(URA,RT[k]) is undecidable.

Proof. Consider some unrealisable URA specification Su and the following specification S
mapping w1#w2 to w1#w

′
2 such that (w2, w

′
2) ∈ Su, defined only when w1 is a finite data

word accepted by some URA A. Clearly, S is URA-definable and realisable iff its domain is
empty, i.e. L(A) = ∅. However, emptiness of URA is an undecidable problem.

If the domain of the specification is DRA-recognisable, it is possible to reduce the
uniformisation problem to realisability, by allowing any behaviour on the complement of
the domain (which is then DRA-recognisable). However, such property is undecidable as a
direct corollary of Theorem 5.1.
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Conclusion

In this paper, we have given a picture of the decidability landscape of the synthesis of
register transducers from register automata specifications. We studied the parity acceptance
condition because of its generality, but our results allow to reduce the synthesis problem
for register automata specifications to the one for finite automata while preserving the
acceptance condition. We have also introduced and studied test-free NRA, which do not have
the ability to test their input, but still have the power of duplicating, removing or copying the
input data to form the output. We have shown that they allow to recover decidability in the
presence of non-determinism, in the bounded synthesis case. We leave open the unbounded
case, which we conjecture to be decidable. As future work, we want to study synthesis
problems for register automata which are able to test additional properties over the data. In
particular, allowing to compare data for an order over D [BLP10b, FHL16] looks promising.
Note that most other natural predicates immediately yield undecidability, e.g. adding +1.
Another direction is to study specifications given by logical formulae, for decidable data
words logics such as two-variable fragments of FO [BMS+06, SZ12, DFL18]. Such problem
is however much more challenging, as there do not exist good correspondence between logic
and automata in the realm of data words, except in very restricted settings [BLP10a].
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[AG11] Krzysztof R. Apt and Erich Grädel. Lectures in Game Theory for Computer Scientists. Cambridge
University Press, New York, NY, USA, 1st edition, 2011.

[BCJ18] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph Games and Reactive
Synthesis, pages 921–962. Springer International Publishing, Cham, 2018.
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