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Abstract. For the additive real BSS machines using only constants 0 and 1 and or-
der tests we consider the corresponding Turing reducibility and characterize some semi-
decidable decision problems over the reals. In order to refine, step-by-step, a linear hier-
archy of Turing degrees with respect to this model, we define several halting problems for
classes of additive machines with different abilities and construct further suitable decision
problems. In the construction we use methods of the classical recursion theory as well as
techniques for proving bounds resulting from algebraic properties. In this way we extend
a known hierarchy of problems below the halting problem for the additive machines using
only equality tests and we present a further subhierarchy of semi-decidable problems be-
tween the halting problems for the additive machines using only equality tests and using
order tests, respectively.

1. Introduction

The real additive BSS RAM’s considered here present a class of random access machines
(RAM’s) where each storage location can hold a real number. We want to investigate
questions of decidability and undecidability for this model of computation and we hope
that this research can also help to provide answers to questions such as the following.

First, the additive BSS RAM is a special variant of a model of computation over an
algebraic structure. We are convinced that the investigation of models of computation on a
high algebraic level can help to understand the reasons for the non-computability or unde-
cidability of certain algorithmic problems and to realize whether the model of computation,
the algebraic structure of the underlying data type, or the used intuitive algorithm is the
cause of special undesired phenomena. Using the additive machines, we are able to demon-
strate the possibility to transfer and extend numerous results from the classical theory to
the theory of computation over arbitrary structures. We believe that such transfers can
contribute to a better understanding of the universality of several methods and techniques
developed for characterizing the classical notion of computation and, thus, that this study
will contribute to answer questions such as the following (cf. [Shepherdson 1994], p. 582):
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”What becomes of the concepts and results of elementary recursion theory if,
instead of considering only computations on natural numbers, we consider
computations on data objects from any relational structure?”

Second, for describing the practical efficiency of algorithms in theoretical terms, a
higher level of abstraction can be useful in order to more adequately reflect the high-
level programming languages. For that reason the use of real RAM’s was proposed in
[Preparata and Shamos 1985], and today areas as the computational geometry cannot be
imagined without various different types of such machines. Depending on the problem,
suitable operations of a real RAM (like addition, multiplication, the k-roots and so on) are
chosen and are assumed as primitive operations that are available at unit cost. The first used
models of this kind were additive or linear real RAM’s that are able to execute additions
and subtractions. They were introduced by D.Dobkin and R. J. Lipton, explicitly described
in [Dobkin and Lipton 1978], and are often used for determining better upper and lower
bounds for the time that is necessary to solve a problem by a certain algorithm in the worst
case and giving the asymptotic worst-case complexity of problems. However, the calculated
bounds of complexity of the problems result, in most cases, from the algebraic structure of
the underlying data type so that, for an intuitively given algorithm, one can find different up-
per and lower bounds of complexity for different models (cf. [Preparata and Shamos 1985],
p. 29). To address the question regarding the difference between several models, it is im-
portant to give a characterization of the individual models and to present typical features
in detail. Since questions on the complexity of problems can be closely related to the de-
cidability of decision problems (cf. [Gaßner 2009]), it appears reasonable, also, to study the
decidability and the reducibility of problems in the context of each single model.

Third, there is no doubt that it is possible to realize the addition of real numbers in
special situations exactly. Only the comparison of two real quantities will remains a difficult
problem. However, regardless of the current possibilities to solve problems over the reals
exactly, we want to consider some questions: Which kind of problems and in which time
such problems are exactly solvable if we had a machine being able to execute the addition
and the subtraction of reals and to evaluate every order test in a finite (or in a fixed) time?

These issues also motivated us to deal with a question raised in [Meer and Ziegler 2008]
and to define a hierarchy of semi-decidable problems above the set of rational numbers and
below the Halting Problem for additive BSS machines over R1

add =df (R; 0, 1;+,−;≥). Here,
we want to continue the study of semi-decidable problems over the reals in the framework
of additive BSS RAM’s that fit best with the general model of computation considered e. g.
in [Gaßner 2009]. In particular, we want to explore the following question: Is it possible to
extend this hierarchy below the Halting Problem for additive machines over R1

add?
Whereas Turing machines only process a finite number of symbols and yield a uniform

complexity theory, most register machines operate on a fixed number of integers or real
numbers and provide non-uniform complexity classes. In proving a lower complexity bound
for a problem, the size of the considered inputs is often an arbitrary fixed number, and in
such cases the results are relevant for the uniform and the non-uniform complexity of the
investigated problem. On the other hand, for determining the uniform complexity of an
algorithm solving a simple problem such as the real Knapsack problem by means of the
addition on real numbers we need a uniform model, for instance, an additive BSS model.
The suitability of these machines follows from the fact that an input procedure yields the size
of the input. It is typical for BSS machines that they can use this value in order to recognize
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the last input value in the infinite sequence of registers. Precisely this tiny extension implies
that the BSS machines over ({0, 1}; 0, 1; ;=) can do the same as Turing machines, and more
than most classical RAM’s over ({0, 1}; 0, 1; ;=). Thus, a combination of properties of these
models can lead to abstract machine models of computation over algebraic structures (BSS
RAM’s over algebraic structures) including the uniform BSS model of computation over
the reals. In the setting of real BSS RAM’s (whose definition has been inspired by classical
random access machines and whose power agrees with one of the BSS machines), any real
number can be considered as an algebraic object which can be stored in one register; the
permitted basic operations on the real numbers can be carried out within a fixed time
unit; and moreover uniform algorithms that desire to process each number of real input
values can be executed by a single machine. With regard to ability and efficiency, the
additive BSS RAM’s present a class of machines involving, for inputs over {0, 1}, the BSS
machines over {0, 1} and they are weaker than the BSS machines over the ring of reals (cf.
[Blum et al. 1998]). Moreover, the additive real BSS RAM’s differ, like most RAM’s, not
only from the machines over {0, 1}, but also from the classical RAM’s over the integers
(considered e. g. in [Schönhage 1979]). However, we will see that classical techniques can be
used also to characterize the power of BSS RAM’s.

Although all reducibility notions as for instance many-one reductions, truth table reduc-
tions or weak truth table reductions defined for Turing machines and studied in the classical
recursion theory (cf. [Rogers 1967], [Börger 1992]) have an analogue in the theory of compu-
tation dealing with (additive) BSS RAM’s over the real numbers, we will only consider the
Turing reduction, i. e. the weakest of the mentioned reduction notions. This implies that
non-reducibility results like the following are very general statements and remain valid for
the other mentioned reduction notions, too. However, for structures over the reals it is use-
ful to distinguish between a weak Turing reduction produced by oracle machines with real
machine constants and a strong Turing reduction computed by means of the only constant
1. For both types of reduction we can consider the corresponding equivalence relation and
the resulting partition of decision problems over the reals into equivalence classes that we
call the weak Turing degrees and the strong Turing degrees, respectively. It is not difficult
to see that the partition into strong Turing degrees is a finer refinement of the partition
created by the weak Turing reduction. Also because of these properties, the strong Turing
reduction will be the main subject in the following.

The papers [Meer and Ziegler 2008], [Gaßner 2008], and [Calvert et al. 2011] present
some hierarchies of semi-decidable problems below the halting problems for several types of
BSS machines where most of the non-reducibility results follow from the algebraic properties
of the real numbers. We want to continue and deepen the study by investigating the strong
reductions without arbitrary real parameters in order to even better understand the degrees
of undecidability of decision problems over the reals. Here, for additive machines over
R1
add we will extend an infinite hierarchy constructed by means of semi-decidable sets of

tuples in Rn (n ≥ 1), whose components satisfy a certain kind of linear dependence, in
[Gaßner 2008]. For this purpose, we give the most important definitions in Section 2. In
Section 3 we present a construction that is based on the enumerability of machines without
irrational constants and their halting sets. Under these assumptions it is possible to transfer
results from the classical recursion theory and use logical proof techniques. We will apply
diagonalization techniques including the injury priority method that was used by Friedberg
(in [Friedberg 1957]) and Muchnik in order to show that there are degrees between the
Turing degrees ∅ and ∅′ of decidable and complete semi-decidable problems. Section 3
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offers a further subhierarchy between the halting problems for the additive machines using
only the equality tests and using the order tests, respectively. In this construction we will
again use algebraic and topological properties of the real numbers. In Section 4 we give a
summary.

2. The Model of Computation and the strong Turing reduction

The uniform BSS model of computation was introduced in [Blum et al. 1989] and the addi-
tive BSS machines were considered, for instance, in [Koiran 1994], [Cucker and Koiran 1995],
and [Meer and Ziegler 2008]. We will give a short definition of an additive machine in accor-
dance with a model suitable for the computation over an arbitrary algebraic structure (cf.
also [Gaßner 2009]). The considered underlying algebraic structure over the real numbers
will be the structure with addition and subtraction as basic operations and order as relation.
Analogously to the general case where it is useful to distinguish between addresses of the
registers and the individuals of the underlying structure and as introduced in [Gaßner 1997],
every machine M is equipped with an infinite number of registers Z1, Z2, . . . for the real
numbers and a finite number of index registers I1, I2, . . . , IkM . The latter registers serve
the uniform implementation of algorithms over arbitrary structures since they make it pos-
sible to process inputs of any length. First, they are used in copy instructions in analogy
with those classical RAM’s that are equipped with an accumulator (cf. [Aho et al. 1974],
[Mehlhorn ’84]). Second, they obtain the size of every input tuple by an input procedure
in analogy with the BSS model and they can be used in order to determine the length of
the output. Third, they allow to copy values without using individuals of the underlying
structure as indices or addresses in copy instructions and – in contrast to the model in
[Blum et al. 1989] – to calculate all addresses without the help of the operations of the
underlying structure.

The additive BSS RAM’s can perform labeled instructions of the form Zi := Zj + Zk,
Zi := Zj − Zk, Zj := c, if Zj = 0 then goto l1 else goto l2, if Zj ≥ 0 then goto l1 else
goto l2, ZIj := ZIk , Ij := 1, Ij := Ij + 1, and if Ij = Ik then goto l1 else goto l2. Each

assignment of an input (x1, . . . , xn) ∈ R∞ =df
⋃

i≥1R
i to the registers of a machineM can

be realized by Z1 := x1; . . . ;Zn := xn; I1 := n; . . . ; IkM := n. We denote the class of all
additive BSS machines by Madd. A problem P ⊆ R∞ is Madd-semi-decidable if its partial
characteristic function is computable by a machine in Madd, and a set is Madd-decidable if
its characteristic function is computable by a machine in Madd. Thus the halting sets of
machines in Madd are Madd-semi-decidable, and a set is Madd-decidable if and only if the
set itself and its complement are Madd-semi-decidable. A set S ⊆ R∞ is recursively (or
effectively) enumerable by a machine in Madd (or Madd-enumerable) if a surjective function
f : N → S is computable by an Madd-machine. Note that this definition of the notion
effectively enumerable set differs from the definition of recursively enumerable sets given in
[Blum et al. 1989].

A significant difference between the Turing model and the BSS (RAM) model becomes
clear by considering the relation between semi-decidability and enumerability. In the classi-
cal theory of recursive functions and in the theory of recursive reducibility, we mainly speak
about recursive and recursively enumerable sets. The recursive sets S ⊆ N are decidable by
Turing machines and the recursively enumerable problems S ⊆ N are the sets for which a
bijective function f : N → S is computable by a Turing machine. The sets semi-decidable
by Turing machines are the halting sets of Turing machines – and consequently reducible to
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the Halting Problem for Turing machines with respect to many-one reducibility – and they
are recursively enumerable by Turing machines. Thus, a set of positive integers is decidable
by a Turing machine if and only if the set itself and its complement are effectively enumer-
able. The halting sets of machines in Madd can also be reduced to the Halting Problem for
machines in Madd. However, there are halting sets S ⊆ R∞ (e. g. S = R) which are not
effectively Madd-enumerable.

Let M
1,=
add and M

1
add be the classes of the additive BSS machines over (R; 0, 1;+,−; =)

and R1
add, respectively, using only the constants 0 and 1 in instructions of the form Zj := c

and only the equality tests and order tests, respectively. Let notions such as M1,=
add-decidable

be defined analogously to the definitions given above.
The subsets of R semi-decidable or decidable by additive machines are easy to character-

ize (cf. Proposition 1 in [Blum et al. 1989], where the authors call all halting sets recursively
enumerable) since, for any input x ∈ R, at any time of the computation the content of any
register of an additive machine using only constants 1 and 0 can be described by a term
kx + l with k, l ∈ Z and, according to this, tests along a computation path correspond
to questions of the form kx + l = 0? and kx + l ≥ 0?, respectively. The class of M1,=

add-
semi-decidable problems P ⊆ R contains countable sets ⊆ Q and the co-finite sets S with
S ⊇ R \ Q, the class of M1,=

add-decidable problems P ⊆ R contains the finite sets ⊆ Q and
the co-finite sets S with S ⊇ R \ Q, the problems P ⊆ R semi-decidable by a machine in
M

1
add are countable unions of intervals, and, for any M

1
add-decidable problem P ⊆ R, the

sets P and R \P are countable unions of disjoint intervals with end points in Q∪{−∞,∞}.
The latter holds since any set S of inputs for which an additive machine in M

1
add follows a

computation path is convex and, consequently, an interval if S ⊆ R. If the machine decides
a problem, then each of these computation paths is finite and, thus, there are only a count-
able number of paths. In case of machines over R1

add and inputs from R, we can order the
paths such that a path B1 is ”left” from another path B2 if and only if the inputs for which
a machine goes through B1 are less than the inputs for which the machine goes through B2.
Because we assume that any computation path is either an accepting or a rejecting path,
any path corresponds to an interval of accepted inputs or to one of rejected inputs. The
M

1
add-semi-decidable subsets of R are countable unions of disjoint intervals with limits of

computable increasing or decreasing sequences as end points.
By analogy with the classical Turing reduction, we want to consider reductions by means

of oracle machines that possess an oracle O ⊆ R∞ and are able to make tests whether a
given tuple ~x ∈ R∞ belongs to O or not. To realize the evaluation of queries of the form
~x ∈ O? we allow to use oracle instructions of the form

if (Z1, . . . , ZI1) ∈O then goto l1 else goto l2 (2.1)

where the length of any tuple in a query is determined by the content of the index register
I1. Note that we prefer to use this form of oracle instructions explicitly introduced in
[Gaßner 1997] in order to take into account the possibility to use the same form also in a
general model of computation over arbitrary structures. Accordingly, let M

1
add(O) be the

class of the additive machines over R1
add which can additionally execute instructions of the

form (2.1). Like in [Meer and Ziegler 2008], we say that a problem A ⊆ R∞ is easier than
a problem B ⊆ R∞ (denoted by A �1

add B) if A is decidable by a machine in M
1
add(B). If A

is easier than B, then B is harder than A. The problem A is strictly easier than B (denoted
by A �6 1

add B) if A �1
add B holds and B cannot be decided by a machine in M

1
add(A). We

say that A can be Turing reduced to B by a machine in M
1
add – or we could also say that
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A can be BSS reduced to B by a machine in M
1
add – if A is easier than B. Let A ≡1

add B
if and only if A �1

add B and B �1
add A. Thus, for all decision problems A,B ⊆ R∞ and

Ac =df R∞ \A, we have A ≡1
add Ac, A �1

add {1}×A∪{2}×B, and if A and B are disjoint

and M
1
add-semi-decidable, then we have A �1

add A ∪ B. M
1,=
add(O) and �

1,=
add can similarly be

defined. To simplify matters, we will write A � B, A �6 B, and A ≡ B for and only for

A �1
add B, A �6 1

add B, and A ≡1
add B, respectively.

For the classes M1
add, M

1,=
add, and Madd we will now consider the halting problems defined

by

H
[1[,=]]
add =

⋃

n≥1

{(n . ~x . code(M)) | ~x ∈ Rn &M∈ M
[1[,=]]
add &M(~x) ↓}

where we write (n . ~x . code(M)) instead of (n, x1, . . . , xn, s1, . . . , sm) if ~x = (x1, . . . , xn) and
code(M) = (s1, . . . , sm). M(~x) ↓ and M(~x) ↑ will be used to express the facts that M
halts on ~x or not. The codes code(M) of the machinesM ∈ M

1
add are sequences of the codes

of the single symbols of their programs (in analogy with [Blum et al. 1989], p. 34) and, for
some k, each of the single symbols is encoded by k symbols in {0, 1} unambiguously (in
analogy with the classical setting where Turing machines are considered). For every other
BSS machine M ∈ Madd, let code(M) be the usual code of its program where any real
constant is encoded by itself and the other single symbols are encoded by k zeros and ones
(for some k). Consequently, it is easy to see that we have

H
1,=
add � H1

add ≡ Hadd.

The latter is valid since Hadd is semi-decidable by a machine in M
1
add.

Since N =df {0, 1, . . .} is effectively enumerable by a machine in M
1,=
add, N and N+ =df

{1, 2, . . .} are M
1
add-decidable and M

1,=
add-semi-decidable. Therefore, with respect to the ma-

chines in M
1,=
add, we have N �1,=

add H
1,=
add which means that N and {(x, y) ∈ N2 | x ≥ y} are

decidable by machines in M
1,=
add(H

1,=
add). If an input ~x is in N∞, then a machine in M

1,=
add can

determine the binary representation of ~x and simulate a given Turing machine. On the
other hand, any addition of integers and, for any x, y ∈ N, the test x ≥ y? can be simulated
by Turing machines. Therefore, the Halting problem for Turing machines is M

1,=
add-semi-

decidable and H
1,=
add ∩N∞ is semi-decidable by a Turing machine. Moreover, every problem

P ⊆ N is semi-decidable by a Turing machine if and only if it is M
1,=
add-semi-decidable and

the problem is decidable by a Turing machine if and only if it is M1
add-decidable. We have

also the following.

Proposition 2.1. For all P ⊆ N+, P is decidable by an oracle Turing machine using the

Halting Problem for Turing machines as oracle if and only if P �1,=
add H

1,=
add and if and only

if P � H1
add.

Corollary 2.2. We have (H1,=
add ∩ N∞) ≡1,=

add (H1
add ∩ N∞) �1,=

add H1
add.

For any problem Q ⊆ N+ below the Halting Problem for Turing machines, there is no

guarantee that N �1,=
add Q holds. For this reason we restrict the following statement to the

relation �.
Proposition 2.3. For all P,Q ⊆ N+, P is decidable by an oracle Turing machine using Q

as oracle if and only if P � Q.
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That means that the classical Turing degrees form a substructure of the structure of
the degrees with respect to the machines in M

1
add. However, no classical degree is equal to

the corresponding degree with respect to �. Among others, we have, for instance, {n
k
| n ∈

Z} ≡ N ≡ ∅ for any k ∈ N+. Moreover, we are able to show that {n
k
∈ Q \ Z | n ∈ P} �6 P

holds for any k ∈ N+ and any undecidable P ⊆ N+. The latter means that there are further
degrees.

Corollary 2.4. The class of all Turing degrees resulting from the classical Turing reduction
represent a proper subclass of Turing degrees defined by the relation ≡.

Since additive machines are able to evaluate several properties of rational as well as
irrational inputs, there are further real Turing degrees such as the degrees represented by
L1,L2, . . . in (2.2). The answer of the question about the decidability of these problems is
dependent on the algebraic properties of the underlying structure and we will show that
the M

1
add-semi-decidable problems ⊆ N+ and L1,L2, . . . are incomparable with respect to

the relation �. In [Gaßner 2008] we showed

Q = L1 �6 L2 �6 · · · �6 Lk �6 · · · �6 L � H1
add (2.2)

where Ln = {(x1, . . . , xn) ∈ Rn | (∃(q0, . . . , qn−1) ∈ Qn)(q0 +
∑n−1

i=1 qixi = xn)} and L =
⋃

k≥1Lk are subsets of R∞ whose elements can be described by certain linear equations.

And a closer look reveals that L is even easier than H
1,=
add. Consequently, this raises the

question whether H
1,=
add and H1

add define the same Turing degree with respect to ≡, and
so on. Therefore, we shall now extend our results to a refinement of this hierarchy by
presenting a subhierarchy between H

1,=
add and H1

add and constructing decision problems that

are easier than H
1,=
add and harder the L.

3. The construction of a further problem below H
1,=
add by a priority method

By properties which we recalled above and classical results there are various semi-decidable
problems P ⊆ R and among them some halting problems P ⊆ N that are all not decidable
by an additive machine without irrational constants. Here, we construct an M

1,=
add-semi-

decidable problem A ⊆ N below H
1,=
add by means of a priority method often used in the

classical recursion theory for constructing recursively enumerable sets (cf. [Soare 1987],
[Börger 1992], and [Kozen 2006]) and then we extend the results. This construction serves
two goals. On one hand, we want to contribute to a classification of the M1

add-semi-decidable
problems, and on the other hand we want to take the question into account whether it is
possible to transfer results of elementary recursion theory. We will show that the transfer of
ideas is possible if the proofs are carefully analyzed and semantic and syntactic techniques
that are usually combined become clearly separated. In particular, semantic techniques can,
in our experience, be successfully applied to discuss fundamental questions on the power
of random access machines for several underlying structures. This is also confirmed by the
following application of the priority method that provides a general way of constructing
semi-decidable problems below the halting problem over several structures of finite signa-
ture. Constructions such as the following are also possible in cases where all problems that
are semi-decidable with respect to Turing machines are decidable by machines over the
considered algebraic structure (see also the remark after Proposition 3.13).

We want to define the set A recursively such that A has the following properties.
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(1) A is M1,=
add-enumerable and thus M1,=

add-semi-decidable.
(2) N \A is infinite.

(3) The intersection of A and each infinite M
1,=
add-enumerable subset of N is not empty.

(4) The halting problem H
1,=
add cannot be reduced to A by a machine in M

1[,=]
add .

Thus, by (2) and (3), A is not decidable by a machine in M
1,=
add. Moreover, we will see that

this statement also remains true if, for deciding A, we allow all additive oracle machines in
M

1
add(Q) for which the problem Q ∩ Z∞ is M

1
add-decidable. The reason is that, for inputs

in Z∞, the oracle queries x ∈ Q? have no benefit since they can be simulated by machines
in M

1
add without oracle queries. That means that we will, in such a situation, get A 6� Q.
Provided that a structure of finite signature such as R

1,=
add contains a set N̄ that is

decidable and effectively enumerable over this structure, then it is possible to construct a
set Ā ⊆ N̄ with properties corresponding to (1), . . . , (4). Other algebraic properties of the
underlying structure are irrelevant. From this point of view, semi-decidable sets such as Ā
are very simple in the double sense of the word. By analogy with the classical theory of
computation we also want to say that a set is simple (with respect to the underlying structure)
if it is effectively enumerable and its complement related to N̄ is infinite and contains no
infinite effectively enumerable set, over this structure. In this context, the simplicity of a
set that follows, for A, from (1), (2), and (3) implies its undecidability. The property (4)
follows from the lowness of A where we say that an effectively enumerable set S is low (with
respect to the underlying structure) if KS � K∅ holds for special halting problems KS and

K∅ that we want to define now.
The fact that the codes of the machines in M

1
add(O) as well as in M

1,=
add can be effec-

tively enumerated by additive machines in M
1,=
add and the next lemma will be of particular

importance in the following.

Lemma 3.1. The intersection of the halting set of any machine in M
1,=
add and N is effectively

enumerable and, consequently, it is also a halting set of a machine in M
1,=
add.

Proof. Let HM be the halting set of a machine M ∈ M
1,=
add. Then, a machine in M

1,=
add can

enumerate all pairs (n1, t1), (n2, t2), . . . ∈ N2 for whichM halts on ni after exactly ti steps.

Thus, there is also an enumeration machine M̄ ∈ M
1,=
add computing, for the input j, the

first pair (n1, t1) from 1 and each further pair (ni+1, ti+1) step-by-step from its enumerated
predecessor (ni, ti) for all i < j, and outputting the integer nj . Consequently, HM ∩ N is

semi-decidable by a machine in M
1,=
add using the program of M̄ as subprogram.

For any M ∈ M
1
add(O), let KM = 2|code(M)| + cM, where cM is the integer whose

binary code matches essentially (apart from leading zeros) with code(M) ∈ {0, 1}∞ (that

means, more precisely, that KM =
∑l

i=0 ci2
l−i if c0 = 1 and code(M) = (c1, . . . , cl)) and

letMO
KM =M. If a number i is not in {KM | M ∈ M

1
add(O)}, then let the corresponding

machineMO
i be a simple machine that halts in any case. In this way, for any O ⊆ N, we get

a list of all additive oracle machines byMO
1 ,MO

2 , . . .. Let N1,N2, . . . be a list of all additive

machines in M
1,=
add and let N̄i enumerate the set Wi of all positive integers ni,1, ni,2, . . . that

belong to the halting set of Ni. For any oracle set O ⊆ R∞ we will use the following special
halting problem.

KO = Hspec(M
1
add(O)) =df {k ∈ N+ | MO

k ∈ M
1
add(O) &MO

k (k) ↓}.
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Then, both following relations are trivial since, on integers, each order test can be simulated
by means of equality tests.

Lemma 3.2. K∅ � H
1,=
add and K∅ � H1

add.

By using the ideas of the proof of Proposition 6 in [Gaßner 2009] we get the following.

Lemma 3.3. K∅ ≡ H
1,=
add ∩ N∞ ≡ H1

add ∩ N∞.

By Proposition 2.1, the following corollary states that the power of K∅ in the class of
decision problems P ⊆ N∞ with respect to the relation � (that means to �1

add) corresponds
to one of the Halting Problem for Turing machines within the classical theory. This is
easy to show since N is M

1
add-decidable and, consequently, we can use the relationship

N � K∅. But, with respect to the relation �1,=
add the power of K∅ is weaker; we have, for any

O ⊆ R∞, N 6�1,=
add KO. The latter can be shown as follows. Since KO is not M1

add-decidable

(cf. Lemma 3.5), N \ KO is not finite. That means that any oracle machine in M
1,=
add(K

O)
goes, for all irrational inputs and for an infinite number of positive integers, through the
finite computation path that results from answering nontrivial tests kx + l = 0? (where
k 6= 0) and queries x ∈ KO? in the negative.

Corollary 3.4. For any P ⊆ N, P � K∅ if and only if P � H
1,=
add and if and only if

P � H1
add.

In analogy with the classical setting, we have also the following.

Lemma 3.5. For any oracle set O ⊆ R∞, we have KO 6� O.
Now, the set A =

⋃

s≥1As will be defined in stages where, for any machineM and any

input ~x,M(~x) ↓t means thatM halts on ~x within t steps andM(~x) ↑t means thatM does
not halt on ~x within t steps. Let A1 = ∅. Assume that, for s ≥ 1, As is already defined.
Then, for any j ≤ s, let a(j, s) be defined as follows. IfMAs

j (j) ↓s, then let a(j, s) be the

greatest integer which is used in a query byMAs

j on input j within the first s steps, and if

MAs

j (j) ↑s, then let a(j, s) be 0. Moreover, let Wi,s ⊆Wi be the set of the positive integers

enumerated by N̄i for the input s within the first s steps and let

Is = {i ≤ s | As ∩Wi,s = ∅ & (∃x ∈Wi,s)φ(i, s, x)}
where φ(i, s, x) =df 2i < x & (∀j ≤ i)(a(j, s) < x). If Is 6= ∅, then let is = min Is be the
active index for extending As by xis = min{x ∈Wis,s | φ(is, s, x)}. Finally let

As+1 =df

{
As if Is = ∅,
As ∪ {xis} otherwise.

Lemma 3.6. A is effectively enumerable by an additive machine in M
1,=
add.

Proof. For s ≥ 1, let us assume that As is M1,=
add-enumerable and let us consider

W1,s = {n1,1, n1,2, . . . , n1,t1},
W2,s = {n2,1, n2,2, . . . , n2,t2},

. . . ,

Ws,s = {ns,1, ns,2, . . . , ns,ts}
where t1, . . . , ts < s. Then, for any i = 1, . . . , s and k = 1, . . . , ti, the inequalities φ(i, s, ni,k)

can be checked by an additive machine in M
1,=
add since eachMAs

j computes only integers on
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input j and, for all integers x, any query x ∈ As? and any test x ≥ 0? are decidable by a
machine in M

1,=
add. If we have the inequalities φ(i

′, s, ni′,k) for some i′ ≤ s with As∩Wi′,s = ∅,
then Is 6= ∅ and we can fix is and enumerate the next xis ∈ As+1 \ As. Note that, in the
following steps, the index is will not be considered further since we have As+1∩Wis,s = {xis}.

Lemma 3.7. N \A is infinite.

Proof. By definition of A, there is a sequence of active indices im1 < im2 < · · · such that
A = {xim1

, xim2
, . . .} and 2imr < xims

for all r ≤ s. Therefore, we have |A∩ {0, . . . , 2i}| < i

and thus |{0, . . . , 2i} \ A| > i for all i.

In the following we will need that the intersection of A and any infinite halting set
Wi ⊆ N is not empty. Let us show it in two stages by proving the conditions for lowness
and simplicity for A.

Lemma 3.8 (Conditions for lowness). For all n > 0, (Nn) holds.

(Nn) IfMAt
n (n) ↓t for infinitely many t, then MA

n(n) ↓.
Proof. Let us assume that, for an n = j, there is an infinite sequence t1 < t2 < · · · such
that

MAt1
j (j) ↓t1 ,MAt2

j (j) ↓t2 , . . . . (3.1)

Let s be great enough such that, for each t ≥ s, either It = ∅ or j ≤ it = min It. The
existence of s is ensured since the active indices form a sequence (it)t≥1 without repetition.

It follows from (3.1) that there is at least one tν ≥ s such thatMAtν

j (j) ↓tν . Consequently,
for any t = tν , tν + 1, . . . for which It 6= ∅ and xit is defined, we have xit > a(j, tν) and
a(j, tν) = a(j, tν + 1) = · · · since the set A \ Atν contains, by definition, no elements
appearing in a query of MO

j on j if O = Atν+1,Atν+2, . . .. Therefore, the computation

of MA
j on j proceeds in exactly the same manner as one of MAtν+1

j , MAtν+2

j , . . ., receives
the same answer to its oracle queries, and halts with the same output in the same number
(≤ tν) of steps.

Lemma 3.9 (Conditions for simplicity). For all n > 0, (Pn) holds.

(Pn) If Wn =
⋃

i≥1Wn,i is infinite, then A ∩Wn 6= ∅.
Proof. Let us assume that (Pn) does not hold for an n > 0. Then, let i be the smallest index
such that the property (Pi) fails. Consequently, Wi is infinite and A∩Wi = ∅. Moreover, for
any i′ < i, let ri′ be a positive integer satisfying A∩Wi′,ri′ 6= ∅ if A∩Wi′ 6= ∅ – regardless of
whether Wi′ =

⋃

s≥1Wi′,s is a finite or an infinite set. Moreover, let ri be a positive integer

with Wi,ri \ {0, . . . , 2i} 6= ∅. Then, by definition of A and because of A ∩Wi = ∅, there is
some s0 ≥ max{ri′ | i′ ≤ i} such that for any s ≥ s0 and any x ∈ Wi,s with x > 2i, there
is some js ≤ i such that a(js, s) ≥ x. Consequently, there is an element k in the subset
⋃

s≥s0
{js} of the finite set {1, . . . , i} such that k = js holds for infinitely many s ≥ s0 and

a(k, s1) ≥ max(Wi,s1), a(k, s2) ≥ max(Wi,s2), . . . (3.2)

hold for an infinite sequence s1, s2, . . . with increasing maxima max(Wi,s1) < max(Wi,s2) <
· · · . The maxima of Wi,s1 ,Wi,s2 , . . . in (3.2) are greater than 0 (because of s1, s2, . . . ≥ ri),
and therefore it follows from the definition of a(j, s) that the k-th oracle machine on input

k halts for an infinite number of subsets of A. The reason is that we have MAs1
k (k) ↓s1 ,
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MAs2
k (k) ↓s2 , . . .. By (Nk) this means that MA

k (k) ↓ and, consequently, MA
k (k) ↓t for

some t. This implies that there is a t′ such that any query of MA
k on k does not refer to

A\At′ and thus we haveMAt′
k (k) ↓t. Moreover,MAt′

k , . . . ,MAmax{t′,t}
k , andMAmax{t′,t}+1

k , . . .

perform the same computation on input k. In this way we getMAmax{t′,t}
k (k) ↓max{t′,t} and

{a(k, s1), a(k, s2), . . .} is therefore finite. Thus, there is an l such that a(k, sl) < max(Wi,sl)
since max(Wi,s1) < max(Wi,s2) < · · · is properly increasing. But, this contradicts (3.2) and,
thus, our assumption is wrong and we must have A ∩Wi 6= ∅.

Thus, A has the usual properties of a low and a simple set. Since the intersection of A
and any infinite halting set Wi ⊆ N is not empty and the intersection of the complement
Ac and N is an infinite set (with Ac ∩A = ∅), Ac ∩ N is not M1,=

add-semi-decidable.

Lemma 3.10. Ac ∩ N and Ac are not semi-decidable by a machine in M
1,=
add.

Corollary 3.11. A is not decidable by a machine in M
1,=
add.

Although, in analogy with the classical setting, we could syntactically prove the follow-
ing lemma, we will give a semantic proof that shows in detail the possibility to transfer the
construction idea to machines over an arbitrary structure of finite signature if there is an
effectively enumerable and decidable set N̄ of elements of the structure like N.

Lemma 3.12. KA � K∅.

Proof. Since N isM1
add-decidable, it is enough to show that KA and N\KA are semi-decidable

by a machine in M
1
add(K

∅). To simplify matters, we will give corresponding algorithms for
inputs k ∈ R in a short form where at the beginning the machines enumerate all positive
integers and compare any enumerated number with the input k. If the input k is not a
positive integer, then the enumeration of integers will not be stopped.

a) KA is semi-decidable by:

• Input: k ∈ R.
• Put n := 0.
• Repeat n := n+ 1 until k = n.
• For k ∈ N+, simulate MA

k ∈ M
1
add(A) on k where the simulation of the queries whether

x ∈ A is done as follows:
Compute KLx for the following Lx ∈ M

1
add and ask whether KLx ∈ K∅.

Lx: Enumerate the elements of A until an enumerated element is equal to x.

b) By condition (Nk) we know thatMA
k (k) ↓ holds if for every i there is a j > i such that

MAj

k (k) ↓j . Moreover, as shown in the proof of Lemma 3.9,MA
k (k) ↓ holds only if there is

an s such that MAj

k (k) ↓j holds for all j > s. Consequently, MA
k (k) ↑ holds if and only if

there is an i such that the following machine L(k)i ∈ M
1
add does not halt and thus KL(k)

i

6∈ K∅.

L(k)i : Input: x ∈ R.
Put j := i.
Repeat (1), (2), and (3) until an output instruction is simulated

(that means untilMAj

k (k) ↓j for some j > i).
(1) Compute the elements xi1 , . . . , xij of the set A.
(2) Increment j by 1.
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(3) Simulate j steps of the execution ofMAj

k on k.

L(k)i ∈ M
1
add halts if and only ifMAj

k (k) ↓j for some j > i. This means that there is an i for

that L(k)i does not halt and thus KL(k)
i

6∈ K∅ holds if and only ifMA
k (k) ↑ and, thus, k 6∈ KA

are valid.

Consequently, N \KA is semi-decidable by:

• Input: k ∈ R.
• Put n := 0.
• Repeat n := n+ 1 until k = n.
• For k ∈ N+, enumerate the positive integers i, compute, for every i, KL(k)

i

and ask whether

KL(k)
i

∈ K∅. Halt if the answer is no.

Consequently, we get the following.

Proposition 3.13. A �6 K∅.

Proof. A � K∅ follows from Corollary 3.4 and Lemma 3.6. Let us assume K∅ � A. Then,

we would have KK∅ � KA � K∅ by Lemma 3.12 and the halting problem KK∅
would be

decidable by a machine in M
1
add(K

∅) in contradiction to Lemma 3.5.

Let us remark that the algorithms given in the proof of Lemma 3.12 are sufficient to
show KA �6

1,=
add H

1,=
add (KA �1,=

add H
1,=
add holds since N �1,=

add H
1,=
add and H

1,=
add 6�

1,=
add KA follows

from N 6�1,=
add KA), but they are not sufficient to show KA �1,=

add K∅ (since N 6�1,=
add K∅).

Moreover, the construction of A and the proofs show clearly that a similar construction
can be done for the BSS RAM’s over an arbitrary algebraic structure of finite signature
if there is an infinite set that is enumerable and decidable over this structure like the
set N. The restriction to a finite number of operations, constants, and relations allows
the enumeration and the simulation of all BSS RAM’s over such a structure by a universal
machine and the definition of undecidable semi-decidable problems below the corresponding
halting problem in the same way as above. As the following example shows, the transfer
is also possible, even if K∅ = Hspec(M

1
add(∅)) and, consequently, the Halting Problem for

Turing machines are decidable over the considered structure. Let us consider the BSS
RAM’s over R

1,r1
add =df (R; 0, 1, r1; +,−;≥) where the digits α1, α2, . . . ∈ {0, 1} of the real

number r1 =
∑∞

j=1 αj10
−j are defined by αj = 1 if j ∈ K∅ and by αj = 0 otherwise. Then,

on one hand, K∅ is decidable by means of r1 and, on the other hand, R1,r1
add allows to apply

the priority method for constructing new semi-decidable sets since it is a structure of finite
signature containing N.

In order to extend the hierarchy (2.2), we want to use that, for all inputs in Z∞,
problems such as L ∩ Z∞ ⊆ R∞ are decidable in the classical sense. More precisely, the
decidability of L ⊆ R∞ for inputs in Z∞ means that L ∩ Z∞ is M

1
add-decidable and, thus,

the oracle L has no benefit for the computation of additive machines in M
1
add(L) on the

input space Z∞. This implies that the next lemma allows to transfer and generalize several
results from the recursion theory and to show the incomparability of certain problems.

Lemma 3.14. Let Q be M
1
add-decidable for all inputs in Z∞ and P ⊆ N. Then, we have

P 6� Q if (R∞ \ P ) ∩ N is not semi-decidable by a machine in M
1,=
add.
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Proof. Let us assume that P is decidable by a machine in M
1
add(Q). Consequently, R \P is

semi-decidable by a machineM ∈ M
1
add(Q). Let us modifyM such that at the beginning

the machineM enumerates all non-negative integers and compares any enumerated number
with the input. If the input is a non-negative integer, then the further instructions of M
can be simulated by a machine in M

1,=
add since each order test can be simulated by means

of few equality tests and all queries of M can be replaced by a decision procedure. Thus
(R \ P ) ∩ N is semi-decidable by a machine in M

1,=
add. Consequently, if (R∞ \ P ) ∩ N is not

semi-decidable by a machine in M
1,=
add, then the assumption is wrong.

Proposition 3.15. Let Q be decidable for all inputs in Z∞ and P ⊆ N. Then, we have
P 6� Q if P or (R∞ \ P ) ∩ N is not semi-decidable by a machine in M

1,=
add.

Therefore, we can extend the hierarchy (2.2) since we have P 6� L for any P ⊆ N

satisfying the conditions in accordance with Proposition 3.15 and, moreover, we have L 6� P

for any P ⊆ N. The latter holds since L2 6� P can be shown in analogy with L2 6� Q (cf.
[Gaßner 2008]) and, furthermore, L1 6� P can be shown in a similar way by proving that,
for any machine M ∈ M

1
add(P ) that decides a problem, there is a rational number q such

that M goes through the same computation path for both inputs q and π. (For more
information about this kind of proofs see also the proof of Lemma 4.7.)

Hence, for any problem P ⊆ N that is M
1,=
add-semi-decidable, L is incomparable with

P if (R∞ \ P ) ∩ N is not semi-decidable by a machine in M
1,=
add. Under consideration of

Proposition 2.1 and Corollary 3.4 we get the following.

Proposition 3.16. L is incomparable with the Halting Problem for Turing machines and
the problems K∅ and A with respect to the strong Turing reduction �.
Corollary 3.17. K∅ �6 H

1,=
add and A �6 H

1,=
add.

Since the positive integers can be unary encoded, for any P ⊆ N we also want to
consider the decision problem

OP =df

⋃

n∈P
Rn =

∞⋃

n=1

{(x1, . . . , xn) ∈ Rn | n ∈ P}.

Then, we have OA 6� L and L 6� OA. On the other hand, for any n ∈ N, Ln is decidable
by an additive oracle machine using the oracle set OP ∩ L =

⋃

k∈P Lk if P ⊆ N is infinite,

M
1,=
add-semi-decidable, and thus M1,=

add-enumerable. This implies the following by Proposition
3.13 and Proposition 3.16.

Theorem 3.18. We have

L �6
⋃

k∈ALk �6
⋃

k∈K∅ Lk � H
1,=
add.

4. A hierarchy between H
1,=
add and H1

add

The aim of this section is to show H
1,=
add �6 H1

add and to define an infinite hierarchy between

H
1,=
add and H1

add by using the properties of prime numbers and their square roots and the fact

that the set R\{r} is semi-decidable by a machine in M
1
add if r is Turing computable. That

means, we can use that, for every prime number p, the set R \ {√p} is M1
add-semi-decidable.
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On the other hand, R \ {√p} is not M
1
add-decidable and we can even show that R \ {√p}

cannot be BSS reduced to H
1,=
add with respect to �. Before we start the construction of a

hierarchy between H
1,=
add and H1

add, let us mention that the latter fact implies also that the

sets R \{√p} and H
1,=
add define incomparable strong Turing degrees since L2 6� R \{√p} can

also be shown in analogy with L2 6� Q.
Let p1 = 2, p2 = 3, . . . be an enumeration of the prime numbers and let K be an additive

machine in M
1
add that semi-decides

⋃∞
i=1{i} × (R \ {√pi}) by checking, for any input (i, x),

the condition (x < r
q
and r2

q2
< pi) or (x > r

q
and r2

q2
> pi) for all enumerated (r, q) ∈ N×N+

until the condition is satisfied. Note, that the machine K can compute the prime number
p = pj from j by executing instructions realizing the algorithm k := 1; p := 2; while k < j

{p := p+ 1; if (∀(t, s) ∈ {2, . . . , p− 1}2)(p 6= t · s) then k := k + 1;}. Therefore, we get

Pi =df {(2 . (i, x) . code(K)) | x ∈ R \ {√pi}} ⊆ H1
add

for i ≥ 1 and, for the halting problems

Hi =df H
1,=
add ∪

⋃

j≤i

Pj

(including H0 = H
1,=
add), the following hierarchy.

Lemma 4.1. H
1,=
add = H0 � H1 � H2 � · · · � H1

add.

The following lemmas are useful for giving further incomparable Turing degrees with
respect to �.
Lemma 4.2. For any 1 ≤ k ≤ i, {√pk} � {

√
p1, . . . ,

√
pi}.

Proof. Let us give, for the oracle Oi = {√p1, . . . ,
√
pi}, a machine L in M

1
add(Oi) that

outputs 1 if and only if the input is
√
pk and otherwise 0. At the beginning L queries the

oracle Oi whether the input x belongs to this oracle and outputs 0 if the answer is in the
negative. Otherwise, x is in Oi and there is an index j0 ≤ i for which we have x =

√
pj0 .

In this case, the index j0 is searched by means of comparisons of x2 with the squares of the
elements of Oi and a procedure of excluding members from the set {1, . . . , i} as follows.

Let I := {1, . . . , i} be the set of the indices of the first i prime numbers and let L
simulate the machine K for the inputs (1, x), . . . (i, x) simultaneously. For all enumerated

(r, q), L checks x < r
q
and r2

q2
< pj as well as x > r

q
and r2

q2
> pj for any j ∈ I. If one of

both conditions is satisfied for some j and, consequently, x 6= √pj , then j is deleted in I by
putting I := I \ {j}. If k = j, then the machine halts and the output is 0. Otherwise, the
machine continues its operations. If I contains only one element, then this member of I
can be only the index j0 = k and should not be deleted, and in this case the output is 1.

Since relationships as {√p1, . . . ,
√
pi} ≡ R \ {√p1, . . . ,

√
pi} are characteristic for the

Turing reducibility relation and {√pj} ≡ Pj is also easy to see, we even have the following.

Lemma 4.3. For any i ≥ 1, {√p1, . . . ,
√
pi} ≡

⋃

j≤i Pj.

Proof. 1. R \ {√p1, . . . ,√pi} �
⋃

j≤i Pj holds since x ∈ R \ {√p1, . . . ,√pi} is satis-

fied if and only if {(2 . (1, x) . code(K)), . . . , (2 . (i, x) . code(K))} ⊂ ⋃

j≤i Pj holds. 2. For

any input (2 . (j, x) . code(K)) with j ≤ i, we can check whether x 6= √pj by using the
oracle {(1,√p1), . . . , (i,√pi)}. By Lemma 4.2 {(1,√p1), . . . , (i,√pi)} can be reduced to
{√p1, . . . ,√pi}. Thus, we also obtain

⋃

j≤i Pj � {√p1, . . . ,√pi}.
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Therefore, the decidability of the set {code(K)} implies also the following.

Lemma 4.4. Let i ≥ 1 and O ⊆ R∞. If Hi is decidable by an oracle machine in M
1
add(O),

then the problems
⋃

j≤i Pj and {√p1, . . . ,√pi} are also decidable by some machines in

M
1
add(O).
Together with Lemma 4.2 this means that the problem Pi+1 as well as the problem

{√pi+1} would be decidable by machines in M
1
add(Hi) if Hi+1 would be decidable by a

machine in M
1
add(Hi). In the following we will use it.

Corollary 4.5. For any i ≥ 0, if {√pi+1} 6� Hi, then Hi+1 6� Hi.

First, let us consider the machines in M
1
add(H

1,=
add) and in this context, in particular,

queries for inputs in R. Recall that, for inputs x ∈ R, at any time of the computation the
content of a register of these machines can be described by a term kx+ l with integers k and
l that have the following features. k and l are integers that result only from the execution
of the computation instructions along the traversed path, and, for any fixed computation
path, k and l are independent of the input values. In the following, we will consider only
this type of terms and we will use that, for any fixed computation path and inputs x ∈ R,
any oracle query coincides with a question of the form

(k0x+ l0, k1x+ l1, . . . , kmx+ lm) ∈ H
1,=
add? (4.1)

where ki, li ∈ Z (i = 0, . . . ,m) are independent of the input values in the described sense.
Moreover, we use that, in case of k 6= 0, we have kx+ l ∈ R \Q if and only if x ∈ R \Q.

Lemma 4.6. Let M be a machine in M
1
add(H

1,=
add).

1. For all inputs x ∈ R, the oracle queries ~z ∈ H
1,=
add? of M which are not of the form

(j . (k1x+ l1, . . . , kjx+ lj) . code(N )) ∈ H
1,=
add? (4.2)

for some j, ki, li ∈ Z and N ∈ M
1,=
add are always answered in the negative.

2. If, for some input x0 ∈ R \Q, an oracle query of the form (4.1) coincides with

(j . (k1x0 + l1, . . . , kjx0 + lj) . code(N )) ∈ H
1,=
add? (4.3)

for some j, ki, li ∈ Z and N ∈ M
1,=
add, then this oracle query has the same form (4.2) (with

the same ki, li ∈ Z) for all inputs x ∈ R for which M goes through the same computation
path as for x0 until this query is executed.

Proof. Let Bx0 be the computation path traversed byM on x0 ∈ R \ Q. Then, for inputs
x ∈ R, any query of Bx0 has the general form

(k0x+ l0 . (k1x+ l1, . . . , kjx+ lj) . (kj+1x+ lj+1, . . . , kj+rx+ lj+r
︸ ︷︷ ︸

=~y

)) ∈ H
1,=
add?. (4.4)

Let us assume that a query Q of the form (4.4) corresponds, for the input x0, to (4.3). Then,

we have k0x0 + l0 = j and there is a machine N ∈ M
1,=
add such that ~y is its code code(N ) ∈

{0, 1}∞. Since x0 satisfies equations of the form f(x) =df k0x+l0 = j, gν(x) =df kνx+lν = 0,
and hµ(x) =df kµx + lµ = 1 only if k0 = kν = kµ = 0 holds, the number j and code(N )
are determined by constant functions f(x) = j, gν(x) = 0, and hµ(x) = 1 and thus, for all
x ∈ R for which M goes through the computation path Bx0 , the query Q has the same
form (4.2).
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Lemma 4.7. Let M ∈ M
1
add(H

1,=
add) be a machine deciding a problem S ⊆ R. Then, there

are n,m ∈ N+ such that M rejects the inputs
√
2 and n

m
π orM accepts both inputs.

Proof. By Lemma 4.6, for any computation path B of an M ∈ M
1
add(H

1,=
add), there is a

system SB of conditions of the form

kνx+ lν ≥ 0 and kµx+ lµ > 0, (4.5)

(j . (k1x+ l1, . . . , kjx+ lj) . code(N )) ∈ H
1,=
add, (4.6)

(j . (k1x+ l1, . . . , kjx+ lj) . code(N )) 6∈ H
1,=
add (4.7)

(ki, li ∈ Z, N ∈ M
1,=
add) that is satisfied by an input x ∈ R \ Q if and only if this path B is

traversed byM on x.
Moreover, every computation path of a machine N in M

1,=
add on an input of the form

(k1x+ l1, . . . , kjx+ lj) can be described by equations and inequalities of the form

kνx+ lν = 0 and kµx+ lµ 6= 0.

Since, for any n,m ∈ N+,
n
m
π and

√
2 satisfy the same equations of the form kνx+ lν = 0,

every N ∈ M
1,=
add halts on (k1

n
m
π + l1, . . . , kj

n
m
π + lj) if and only if it halts on (k1

√
2 +

l1, . . . , kj
√
2 + lj). Moreover, since the computation path B√

2 of M on input
√
2 is finite,

the system SB√
2
contains only a finite number of inequalities of the form (4.5) and, thus,

these inequalities can be described by some (kν , lν), (kµ, lµ) ∈ K×L where K ⊆ Z\{0} and
L ⊆ Z are finite sets. From this it follows that there is a real number ε with k

√
2+ l > ε > 0

for all (k, l) ∈ K × L. Moreover, we also have integers nε,mε ∈ N+ with | nε

mε
−

√
2
π
| < ε

|kπ|
for k ∈ K such that |k nε

mε
π − k

√
2| < ε and, consequently, k

√
2− k nε

mε
π < ε and

k
nε

mε
π + l = k

√
2 + l + k

nε

mε
π − k

√
2 = k

√
2 + l

︸ ︷︷ ︸

>ε

−(k
√
2− k

nε

mε
π

︸ ︷︷ ︸

<ε

) > 0

hold for all (k, l) ∈ K × L. That means that nε

mε
π and

√
2 satisfy the same system SB√

2

and B√
2 is traversed byM for both inputs

√
2 and nε

mε
π.

Thus, we get the following corollaries.

Corollary 4.8. The problem {
√
2} is not decidable by a machine in M

1
add(H

1,=
add).

Corollary 4.9. H
1,=
add �6 H1.

Our next goal is to show that Hi is strictly easier than Hi+1 for any i ≥ 1 by using
Corollary 4.5.

Lemma 4.10. Let M ∈ M
1
add(Hi) be a machine deciding a problem S ⊆ R. Then, there

are n,m ∈ N+ such that M rejects
√
pi+1 and n

m
π orM accepts the both inputs.

Proof. In analogy with the proof of Lemma 4.7, we can show that for any finite system of
conditions of the form (4.5), (4.6), and (4.7), there are n,m ∈ N+ such that both

√
pi+1

and n
m
π satisfy this system. Moreover, we have k2

√
pi+1 + l2 6= √pj and k2

n
m
π + l2 6= √pj

for any k2 6= 0, j ≤ i, and m,n ∈ N+. Hence, for all j ≤ i, questions of the form
(2 . (j, k2

n
m
π + l2) . code(K)) ∈ Hi? and (2 . (j, k2

√
pi+1 + l2) . code(K)) ∈ Hi? are answered

in the positive.
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From this lemma we deduce that {√pi+1} is not decidable by a machine in M
1
add(Hi).

Corollary 4.11. For any i ≥ 1, {√pi+1} 6� Hi.

Moreover, the proof of Lemma 4.10 is also suitable for showing that {√pi+1} is not
decidable by machines using only

⋃

j≤i Pj as oracle. Thus, by Lemma 4.3 we get the
following.

Proposition 4.12. For any i ≥ 1, {√pi+1} 6�
⋃

j≤i Pj and {√pi+1} 6� {
√
p1, . . . ,

√
pi}.

Since these results are independent of the order of the prime numbers, we get incompa-
rable Turing degrees with respect to �.
Proposition 4.13. For any i, j ≥ 1 where i 6= j, we have Pi 6� Pj and Pj 6� Pi.

Moreover, for i ≥ 1, we have Pi 6� H
1,=
add and thus Pi 6� P for any P � H

1,=
add. Therefore,

for P = K∅ and P = A, the problems Pi and P are incomparable by Proposition 3.15 and,
since Q 6� {√pi} is easy to show, Pi and Q as well as Pi and H

1,=
add are incomparable.

By Corollary 4.5 we get the following relation.

Lemma 4.14. For any i ≥ 0, Hi �6 Hi+1.

Consequently, we have the following.

Theorem 4.15. Let k ∈ N.

H
1,=
add �6 H1 �6 · · · �6 Hk �6 · · · �6

⋃

i≥1Hi � H1
add.

5. Summary

We have defined a number of problems that are not decidable by additive BSS machines
without irrational numbers in order to give an initial characterization of the strong Turing
reduction by additive machines and some resulting Turing degrees below the halting problem
H1

add.

H1
add ≡ Hadd
...

...
↑
H2 = H

1,=
add ∪ P1 ∪ P2 ← P2

↑
H1 = H

1,=
add ∪ P1 ← P1

↑
H

1,=
add ← ⋃

k∈A Lk ← L · · · ← L5 ← L4 ← L3 ← L2 ← L1 ≡ Q

↑ ↑
K∅ ← A

Figure 1: Hierarchies below H1
add

In Figure 1 we summarize the results of this paper. The arrow→ stands for the relation
�6 (that means for �6 1

add) and ≡ stands for the equivalence relation ≡1
add. The picture is
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complete up to transitivity. Two problems are incomparable with respect to �1
add if there

is no directed sequence of arrows from one problem to the other.
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