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Abstract. We give a formalization of Pratt’s intuitive sculpting process for higher-
dimensional automata (HDA). Intuitively, an HDA is a sculpture if it can be embedded in
(i.e., sculpted from) a single higher dimensional cell (hypercube). A first important result
of this paper is that not all HDA can be sculpted, exemplified through several natural
acyclic HDA, one being the famous “broken box” example of van Glabbeek. Moreover, we
show that even the natural operation of unfolding is completely unrelated to sculpting, e.g.,
there are sculptures whose unfoldings cannot be sculpted. We investigate the expressiveness
of sculptures, as a proper subclass of HDA, by showing them to be equivalent to regular
ST-structures (an event-based counterpart of HDA) and to (regular) Chu spaces over 3
(in their concurrent interpretation given by Pratt). We believe that our results shed new
light on the intuitions behind sculpting as a method of modeling concurrent behavior,
showing the precise reaches of its expressiveness. Besides expressiveness, we also develop
an algorithm to decide whether an HDA can be sculpted. More importantly, we show that
sculptures are equivalent to Euclidean cubical complexes (being the geometrical counterpart
of our combinatorial definition), which include the popular PV models used for deadlock
detection. This exposes a close connection between geometric and combinatorial models
for concurrency which may be of use for both areas.

1. Introduction

In approaches to non-interleaving concurrency, more than one event may happen si-
multaneously. There is a plethora of formalisms for modeling and analyzing such con-
current systems, e.g. Petri nets [Pet62], event structures [NPW81], configuration struc-
tures [vGP09,vGP95], or more recent variations such as dynamic event structures [AKPN15]
or ST-structures [Joh16,Pri12]. They all share the idea of differentiating between concurrent
and interleaving executions; i.e., in CCS notation [Mil89], a | b is not the same as a.b+ b.a.

In [vG06a], van Glabbeek shows that (up to history-preserving bisimilarity) higher-
dimensional automata (HDA), introduced by Pratt and van Glabbeek in [Pra91, vG91],
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Figure 1: A geometric sculpture: David Umemoto, Cubic Geometry ix-vi.

encompass all other commonly used models for concurrency. However, their generality
make HDA quite difficult to work with, and so the quest for useful and general models for
concurrency continues.

In [Pra00], Pratt introduces sculpting as a process to manage the complexity of HDA.
Intuitively, sculpting takes one single hypercube, having enough concurrency (i.e., enough
events), and removes cells until the desired concurrent behavior is obtained. This is orthogonal
to composition, where a system is built by putting together smaller systems, which in HDA
is done by gluing cubes. Pratt finishes the introduction of [Pra00] saying that “sculpture on
its own suffices [. . . ] for the abstract modeling of concurrent behavior.”

In this paper we make precise the intuition of Pratt [Pra00] and give a definition of
sculptures. We show that there is a close correspondence between sculptures, Chu spaces
over 3 [Pra95], and ST-structures. We develop an algorithm to decide whether an HDA can
be sculpted and show in Theorem 6.1 several natural examples of acyclic HDA that cannot
be sculpted. We will carefully introduce these concepts later, but spend some time here to
motivate our developments.

Figure 2: A combinatorial sculpture, the upside-down open box, or “Fahrenberg’s match-
box” [DGG15] (left), and its unfolding (right), the “broken box” which cannot
be sculpted (this was the example of van Glabbeek [vG06a, Fig. 11], though not
named as we do).
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Figure 3: Two PV processes sharing two mutexes. The forbidden area is grayed out.

Combinatorial sculpting as described above is not to be confused with geometric sculpting,
which consists of taking a geometric cube of some dimension and chiseling away hypercubes
which one does not want to be part of the structure. Figure 1 shows a geometric sculpture;
for a combinatorial sculpture see Figure 2.

Geometric sculpting has been used by Fajstrup et al. in [FRG06, FGR98] and other
papers to model and analyze so-called PV programs: processes which interact by locking
and releasing shared resources. In the simplest case of linear processes without choice or
iteration this defines a hypercube with forbidden hyperrectangles, which cannot be accessed
due to resources’ access limits. See Figure 3 for an example.

Technically, geometric sculptures are Euclidean cubical complexes; rewriting a proof
in [Zie18] we show that such complexes are precisely (combinatorial) sculptures. In other
words, an HDA is Euclidean iff it can be sculpted, so that the geometric models for
concurrency [FRG06,FGR98] are closely related to the combinatorial ones [Pra91,vG91],
through the notion of sculptures. Much work has been done in the geometric analysis of
Euclidean HDA [FRGH04,GH07,FGR98,MR17,RZ14,Zie18]; through our equivalences these
results are made available for the combinatorial models.

The notion of unfolding is commonly used to turn a complicated model into a simpler,
but potentially infinite one. It may thus be expected that even if an HDA cannot be sculpted,
then at least its unfolding can, as illustrated by the two examples in Figure 4. However, this
is not always the case, as witnessed by the example in Figure 5 which shows an HDA which
cannot be sculpted and which is its own unfolding. This concurrent system, introduced
in [Joh16], cannot be modeled as an ST-structure, but can be modeled as an ST-structure
with cancellation [Joh16, Sec. 5].
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a

Figure 4: Two simple HDA which cannot be sculpted (left) and their unfoldings (right)
which can. (The top-right sculpture is infinite.)
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Figure 5: The speed game of angelic vs. demonic choice [Joh16].

Even more concerning is the fact that there are HDA which can be sculpted, but their
unfoldings cannot; in fact, Figure 2 exposes one such example. This shows that for HDA,
unfolding does not always return a simpler model.

In the geometric setting, this means that there are Euclidean cubical complexes whose
unfoldings are not Euclidean. Since Goubault and Jensen’s seminal paper [GJ92], di-
rected topology has been developed in order to analyze concurrent systems as geometric
objects [Gra09, FRG06, FGH+16]. Directed topology has been developed largely in anal-
ogy to algebraic topology, but the analogy sometimes breaks. The mismatch we discover
here, between Euclidean complexes and unfoldings, shows such a broken analogy. Un-
foldings of HDA are directed analogues of universal covering spaces in algebraic topol-
ogy [vG91,Fah05a,Fah05b]. There are several other problems with this notion, and finding
better definitions of directed coverings is active ongoing research [Dub19,FL15].

Another motivation for Pratt’s [Pra00] is that HDA have no explicit notion of events.
From the work in [Joh16] on ST-structures, introduced as event-based counterparts of HDA,
we know that it is not always possible to identify the events in an HDA. The example in
Figure 6 shows the (strong) asymmetric conflict from [vGP09,Pra03,Joh16], with two events
a, b such that occurrence of a disables b. This can be modeled as a general event structure,
but not as a pure event structure, hence also not as a configuration structure [vGP09]. It
can also be modeled as an ST-structure, but when using HDA, one faces the problem that
HDA transition labels do not carry events. The right part of Figure 6 shows two different
ways of sculpting the corresponding structure from an HDA, one in which the two a-labeled
transitions denote the same event and one in which they do not; a priori there is no way to
tell which HDA is the “right” model. This also shows that the same HDA may be sculpted
in several different ways.
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Structure of the paper. We start in Section 2 by recalling the definitions of HDA, ST-
structures, and Chu spaces. In Section 3 we introduce sculptures and show that they are
isomorphic to regular ST-structures. The triple equivalence

regular ST-structures — regular Chu spaces — sculptures

embodies Pratt’s event-state duality [Pra92]. Regularity is a geometric closure condition
introduced for ST-structures in [Joh16] which ensures that for any ST-configuration, also
all its faces are part of the structure, and they are all distinct. If regularity is dropped,
then one has to pass to partial HDA [FL15] on the geometric side, and then the above
equivalence becomes one between ST-structures and sculptures from partial HDA. For clarity
of exposition we do not pursue this here, but also in that case, there will be acyclic partial
HDA which cannot be sculpted.

Section 4 contains our main contribution, an algorithm to decide whether a given HDA
Q can be sculpted. The algorithm essentially works by covering Q with the ST-structure
STπ(Q) which is built out of all paths in Q, and then trying to find a quotient of STπ(Q)
which is isomorphic to Q. We show that such a quotient exists iff Q can be sculpted.

Figure 7 shows a simple example: the empty square, a one-dimensional HDA with
two interleaving transitions. The covering STπ(H) splits the upper-right corner, and the
algorithm finds an equivalence on the four events which recovers (an ST-structure isomorphic
to) H: in this case we equate q1 ∼ q3 and q2 ∼ q4, which corresponds to the standard way
of identifying events in HDA as opposite sides of a filled-in square when it exists.

Another example is shown in Figure 8. This one-dimensional acyclic HDA cannot be
sculpted, and the algorithm detects this by noting that (1) all the a-labeled transitions
indeed need to be the same event, but then (2) the two states connected with a dashed line
need to be identified, so that the ST-structure covering cannot be isomorphic to the original
HDA model.

In Section 5 we make the connection between the combinatorial and geometric models
and show that HDA can be sculpted precisely if they are Euclidean. This necessitates a few
notions from directed topology which can be found in appendix.

Figure 9 sums up the relations between the different models which we expose in this
paper. (The dashed line indicates the common belief that Chu spaces over 3 and acyclic
HDA are equivalent, which we prove not to be the case.)

∅ {a}

{b} {b, a}

`

`

`

(∅, ∅) (a, ∅) (a, a)

(b, ∅)

(b, b) (ba, b) (ba, ba)

a

b

a

a

b

a

Figure 6: Asymmetric conflict as an (impure) event structure (left), an ST-structure (center),
and two different interpretations as HDA (right).



5:6 U. Fahrenberg, C. Johansen, C.A. Trotter, and K. Ziemiański Vol. 17:2
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Figure 7: A simple HDA and its path-based ST-structure covering.

2. HDA, ST-Structures, and Chu Spaces

HDA are automata in which independence of events is indicated by higher-dimensional
structure. HDA consist of states, transitions, and cubes of different dimensions which
represent events running concurrently.

Precubical sets. A precubical set is a graded set Q =
⋃
n∈NQn, with Qn ∩Qm = ∅ for all

n 6= m, together with mappings sk,n, tk,n : Qn → Qn−1, k = 1, . . . , n, satisfying the following
precubical identities, for α, β ∈ {s, t},

αk,n−1β`,n = β`−1,n−1αk,n (k < `) (2.1)

Elements of Qn are called n-cells (or simply cells), and for q ∈ Qn, n = dim q is its
dimension. The mappings sk,n and tk,n are called face maps, and we will usually omit the
extra subscript n and simply write sk and tk. Intuitively, each n-cell q ∈ Qn has n lower
faces s1q, . . . , snq and n upper faces t1q, . . . , tnq, whereas the precubical identity expresses
the fact that (n− 1)-faces of an n-cell meet in common (n− 2)-faces; see Figure 10 for an
example.

Morphisms f : Q→ R of precubical sets are graded functions f = {fn : Qn → Rn}n∈N
which commute with the face maps: αk ◦ fn = fn−1 ◦ αk for all n ∈ N, k ∈ {1, . . . , n}, and
α ∈ {s, t}. This defines a category pCub of precubical sets. A precubical morphism is an
embedding if it is injective; in that case we write f : Q ↪→ R. Q and R are isomorphic,
denoted Q ∼= R, if there is a bijective morphism Q→ R.

If two cells q, q′ ∈ Q are in a face relation q = α1
i1
· · ·αninq

′, for α1, . . . , αn ∈ {s, t}, then
this sequence can be rewritten in a unique way, using the precubical identities (2.1), so that
the indices i1 < · · · < in, see [GM03]. Q is said to be non-selflinked if up to this rewriting,
there is at most one face relation between any of its cells, that is, it holds for all q, q′ ∈ Q
that there exists at most one index sequence i1 < . . . < in such that q = α1

i1
· · ·αninq

′ for

α1, . . . , αn ∈ {s, t}.

a a

a

a a

Figure 8: A one-dimensional acyclic HDA which cannot be sculpted.
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reg. Chu spaces over 3 Chu spaces over 3

regular ST-structures ST-structures

Euclidean complexes Sculptures acyclic HDA HDA
Thm. 5.3 Thm. 6.1

[Joh16] [Joh16]

Thm. 3.8

Figure 9: Contributions of this paper. (All inclusions are strict.)

In other words, Q is non-selflinked iff any q ∈ Q is embedded in Q, hence iff all q’s
iterated faces are genuinely different. This conveys a geometric intuition of regularity and
is frequently assumed [Faj05,FRG06], also in algebraic topology [Bre93, Def. IV.21.1]. It
means that for all cells in Q, each of their faces (and faces of faces etc.) are present in Q as
distinct cells.

Higher-dimensional automata. A precubical set Q is finite if Q is finite as a set. This
means that Qn is finite for each n ∈ N and that Q is finite-dimensional : there exists N ∈ N
such that Qn = ∅ for all n > N (equivalently, dim q ≤ N for all q ∈ Q). In that case, the
smallest such N is called the dimension of Q and denoted dimQ = max{dim q | q ∈ Q}. A
higher-dimensional automaton (HDA) is a finite precubical set Q with a designated initial
cell I ∈ Q0. Morphisms f : Q→ Q′ of HDA are precubical morphisms that fix the initial cell,
i.e., have f(I) = I ′. We often call cells from Q0 and Q1 respectively states and transitions.

Note that we only deal with unlabeled HDA here, i.e., HDA without labellings on
transitions and/or higher cells. We are interested here in the events, not in their labeling.

A step in an HDA, with qn ∈ Qn, qn−1 ∈ Qn−1, and 1 ≤ i ≤ n, is either

qn−1
si−→ qn with si(qn) = qn−1 or qn

ti−→ qn−1 with ti(qn) = qn−1 .

A path π
4
= q0

α1

−→ q1
α2

−→ q2
α3

−→ . . . is a sequence of steps qj−1
αj−→ qj , with αj ∈ {s, t}. The

first cell is denoted st(π) and the ending cell in a finite path is en(π). The string α1 . . . αn

consisting of letters s, t is the type of the path π.

Two paths are elementary homotopic [vG06a], denoted π
hom←→π′, if one can be obtained

from the other by replacing, for q ∈ Q and i < j, either (1) a segment
si−→ q

sj−→ by
sj−1−−−→ q′

si−→,

(2) a segment
tj−→ q

ti−→ by
ti−→ q′

tj−1−−→, (3) a segment
si−→ q

tj−→ by
tj−1−−→ q′

si−→, or (4) a segment

qs1q t1q

s2q

t2q

s1s2q = s1s1q

s1t2q = t1s1q

t1s2q = s1t1q

t1t2q = t1t1q

Figure 10: A 2-cell q with its four faces s1q, t1q, s2q, t2q and four corners.
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sj−→ q
ti−→ by

ti−→ q′
sj−1−−−→. Homotopy is the reflexive and transitive closure of the above and is

denoted the same. Two homotopic paths thus share their respective start and end cells.
A cell q′ in an HDA Q is reachable from another cell q if there exists a path π with

st(π) = q and en(π) = q′. Q is said to be connected if any cell is reachable from the initial
state I. Q is acyclic if there are no two different cells q, q′ in Q such that q′ is reachable
from q and q is reachable from q′.

If an HDA is not connected, then it contains cells which are not reachable during any
computation. We will hence assume all HDA to be connected.

Universal event labeling. Let Q be a precubical set and define
ev∼ to be the equivalence

relation on Q1 spanned by {(siq, tiq) | q ∈ Q2, i ∈ {1, 2}}. Let UE (Q) = Q1/
ev∼ be the set of

equivalence classes; this is called the set of universal labels of Q. The universal label of a
transition q1 will be denoted by λ(q1).

For every precubical morphism f : Q → R and transitions e, e′ ∈ Q1, e
ev∼ e′ implies

f(e)
ev∼ f(e′). As a consequence, f induces a map between the sets of universal labels fitting

into the diagram:

Q
f

//

λ
��

R

λ
��

UE (Q)
UE(f)

// UE (R)

This makes UE a functor from the category of precubical sets pCub into the category of
sets.

Q is said to be inherently self-concurrent if there is q ∈ Q2 for which s1q
ev∼ s2q or

(equivalently) t1q
ev∼ t2q. In that case, UE (Q) does not identify events, as there are cells in

which more than one occurrence of an event is active. We say that Q is consistent if it is
not inherently self-concurrent.

Example 2.1. The examples (1) and (2) are not consistent, though the first one is selflinked,
whereas the second one is non-selflinked. Example (3) is consistent and selflinked.

(1) Consider the HDA with three cells {Q0 = {q0}, Q1 = {q1}, Q2 = {q2}} where all the
four maps of the square point to the same transition αi(q2) = q1, for α ∈ {s, t} and
i ∈ {1, 2} and the two maps of the transition point to the same state α1(q1) = q0, which
is also the initial state. For visual help we draw states as circles, transitions as squares,
and 2-cells as hexagons.

q0q1q2

s1

t1

s1

t1

s2

t2

(2) Consider the HDA formed of three squares q2, q
′
2, q
′′
2 ∈ Q2 that are adjacent, i.e., t1(q2) =

s1(q
′
2) and t1(q

′
2) = s1(q

′′
2), but the first square shares with the third one a transition,

namely s1(q2) = s2(q
′′
2) = e.



Vol. 17:2 SCULPTURES IN CONCURRENCY 5:9

q2 q′2 q′′2

e

e

(3) Consider the HDA formed of a single 2-cell q2 having two of its vertices identified,
i.e., t1(s1(q2)) = v = t1(s2(q2)).

v

v

q2 q2a b

d

cx

yv

s1 t1

s1 t1

s1

t1

t1

s1

t2

s2

t1s1

Let
ev
< ⊆ UE (Q)×UE (Q) be the transitive closure of the relation

{(λ(s2(q)), λ(s1(q))) | q ∈ Q2}.

We say that Q is ordered if for every a, b ∈ UE (Q) the conditions a
ev
< b and b

ev
< a cannot

hold simultaneously or, equivalently,
ev
< is antisymmetric and a 6

ev
< a for all a ∈ UE (Q). For

a precubical morphism f : Q→ R, the induced map UE (f) : UE (Q)→ UE (R) preserves

the relation
ev
<. This makes UE a functor into the category of sets with a transitive relation

and relation-preserving maps.
If Q is not consistent, then it is not ordered. Indeed, if a = λ(s1(q)) = λ(s2(q)) for some

q ∈ Q2, then a
ev
< a, which excludes ordered.

For every square q we can assign a pair of universal labels (λ(α2(q)), λ(β1(q))), which
does not depend on the choice α, β ∈ {s, t}. This generalizes for higher-dimensional cubes:
for q ∈ Qn and i ∈ {1, . . . , n} let

λi(q) = λ(s1(s2(. . . (si−1(si+1(. . . (sn(q)) . . . )).

Again, we can replace some of s’s with t’s and get the same result. Denote λ(q) =
(λ1(q), . . . , λn(q)).

Lemma 2.2. Some properties:

(1) For q ∈ Qn, α ∈ {s, t},
λ(αi(q)) = (λ1(q), . . . , λi−1(q), λi+1(q), . . . , λn(q)).

(2) λ1(q)
ev
< λ2(q)

ev
< · · ·

ev
< λn(q).

(3) Q is consistent iff for every n and q ∈ Qn, all λi(q) are different.

(4) If Q is ordered, then λi(q)
ev
< λj(q) implies i < j.
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Proof. (1) For j ≥ i we have

λi(αj(q)) = λ(s1s2 . . . si−1si+1 . . . sn−2sn−1αj(q)) = λ(s1s2 . . . si−1si+1 . . . sn−2αjsn(q))

= λ(s1s2 . . . si−1si+1 . . . αjsn−1sn(q)) = · · · = λ(s1s2 . . . si−1si+1 . . . sj−1αjsj+1 . . . sn−1sn(q))

= λ(s1s2 . . . si−1si+1 . . . sj−1sjsj+1 . . . sn−1sn(q)) = λi(q)

For j < i,

λi(αj(q)) = λ(s1s2 . . . si−1si+1 . . . sn−2sn−1αj(q)) = · · · = λ(s1s2 . . . si−1αjsi+2 . . . sn−1sn(q))

= λ(s1s2 . . . αjsisi+2 . . . sn−1sn(q)) = · · · = λ(s1s2 . . . sj−1αjsj+1 . . . sisi+2 . . . sn−1sn(q))

= λ(s1s2 . . . sisi+2 . . . sn−1sn(q)) = λi+1(q).

(2) Fix q ∈ Qn and i ∈ {1, . . . , n − 1} and let z = s1s2 . . . si−1si+2 . . . sn(q). Using (1) we

obtain that λ1(z) = λi(q), λ2(z) = λi+1(q); therefore, λi(q)
ev
< λi+1(q).

(3) If Q is not consistent, then there exists q ∈ Q2 such that

λ1(q) = λ(s2(q)) = λ(s1(q)) = λ2(q).

If λi(q) = λj(q) for some q ∈ Qn, i < j, then

λ(s2(s1 . . . si−1si+1 . . . sj−1sj+1 . . . sn(q))) = λ(s1 . . . sj−1sj+1 . . . sn(q)) = λj(q)

= λi(q) = λ(s1 . . . si−1si+1 . . . sn(q)) = λ(s1(s1 . . . si−1si+1 . . . sj−1sj+1 . . . sn(q))).

(4) If λi(q)
ev
< λj(q) for j ≤ i, then either λj(q)

ev
< λi(q) (if j < i) or λi(q)

ev
< λi(q) (if i = j).

In both cases Q cannot be ordered.

Example 2.3. The following HDA is not ordered (due to a “wrong” numbering of the face
maps), but we can swap the directions of one of the squares to obtain an ordered HDA.
Consider the following HDA Q:

• Q2 = {A,B,C},
• Q1 = {a, b, c, d, e, f, g, h, i}
• Q0 = {0, 1, 2, 3, 4, 5, 6, 7}, 0 being the initial state,

with the following face maps:

• s2(A) = s1(B) = a,
• s2(B) = s1(C) = b,
• s2(C) = s1(A) = c,
• s1(a) = s1(b) = s1(c) = 0
• the other face maps are not of importance for the example.

This is not ordered because antisymmetry is broken by the following: λ(a) = λ1(A)
ev
<

λ2(A) = λ(c) and λ(b) = λ1(B)
ev
< λ2(B) = λ(a) and λ(c) = λ1(C)

ev
< λ2(C) = λ(b). Note

that Q is almost the union of the three start faces of a 3-cell, except that the face maps of
A are in the “wrong” order, i.e., in a cube we would have the following:

• s1(A) = s1(B) = a,
• s2(B) = s1(C) = b,
• s2(C) = s2(A) = c.

However, we can create a slightly different HDA (called symmetric variant) that would be
ordered, by only changing the maps of one of the offending squares, i.e., take the HDA
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i
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s1
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s2

s1

t1

t1

t1

t2

t1

s1s2s1

s1

s1

t1t2t1

t1

t1s1s1s1

s2

s1

t1t1t1

t2

t1

a

c

b

A

B

C

from above only with A′ instead of A, such that s1(A
′) = a and s2(A

′) = c. We could have,
alternatively, reordered the maps of B or C to obtain other ordered symmetric variants.

In the rest of the paper we consider only ordered HDAs. As we show later, in Propo-
sition 3.5, only ordered HDAs can be sculpted. The result below shows that this is not a
restriction, as any consistent precubical set can be ordered by re-arranging its face maps.

Proposition 2.4. For every consistent precubical set Q there exists an ordered precubical
set Q′ that is a symmetric variant of Q.

By a “symmetric variant” we mean that Q and Q′ are isomorphic when regarded as
symmetric precubical sets [GM03]. In particular, there is a bijection between the set of
paths on Q and the set of paths on Q′ (see the proof details in Appendix A).

ST-structures. An ST-configuration over a finite set E of events is a pair (S, T ) of sets
T ⊆ S ⊆ E. An ST-structure is a pair ST = (E,C ) consisting of a finite set E of events
and a set C of ST-configurations over E.

Intuitively, in an ST-configuration (S, T ) the set S contains events which have started
and T contains events which have terminated. Hence the condition T ⊆ S: only events
which have already started can terminate. The events in S \ T are running concurrently,
and we call |S \ T | the concurrency degree of (S, T ).

The notion of having events which are currently running, i.e., started but not terminated,
is a key aspect captured by ST-structures and also by HDA through their higher dimensional
cells. Other event-based formalisms such as configuration structures [vGP95, vGP09] or
event structures [NPW81,Win86] cannot express this.

A step between two ST-configurations is either

s-step: (S, T )
e−→
s

(S′, T ′) with T = T ′, e /∈ S and S′ = S ∪ {e}, or

t-step: (S, T )
e−→
t

(S′, T ′) with S = S′, e /∈ T , and T ′ = T ∪ {e}.
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When the type is unimportant we write
e−→. A path of an ST-structure, denoted π, is a

sequence of steps, where the end of one is the beginning of the next, i.e.,

π
4
= (S, T )

e−→ (S′, T ′)
e′−→ (S′′, T ′′) . . .

A path is rooted if it starts in (∅, ∅). An ST-structure ST = (E,C ) is said to be

(A) rooted if (∅, ∅) ∈ C ;
(B) connected if for any (S, T ) ∈ C there exists a rooted path ending in (S, T );
(C) closed under single events if, for all (S, T ) ∈ C and all e ∈ S \ T , also (S, T ∪ {e}) ∈ C

and (S \ {e}, T ) ∈ C .

ST is regular if it satisfies all three conditions above. Figure 6(center) shows a regular
ST-structure.

ST-structures were introduced in [Joh16] as an event-based counterpart of HDA that
are also a natural extension of configuration structures and event structures.

The notions of rootedness and connectedness for ST-structures are similar to connected-
ness for HDA. The notion of being closed under single events mirrors the fact that cells in
HDA have all their faces, and (by non-selflinkedness) these are all distinct. Thus regularity
is assumed in some of the results below.

A morphism of ST-structures (E,C ) → (E′,C ′) is a partial function f : E ⇀ E′

of events which preserves ST-configurations (i.e., for all (S, T ) ∈ C we have f(S, T ) :=
(f(S), f(T )) ∈ C ′) and is locally total and injective (i.e., for all (S, T ) ∈ C , the restriction
f�S : S → E′ is a total and injective function). This defines a category ST of ST-structures.
Two ST-structures are isomorphic, denoted ST ∼= ST′, if there exists a bijective morphism
between them.

Definition 2.5. Let ST = (E,C ) be an ST-structure and ∼ ⊆ E × E an equivalence
relation. The quotient of ST under ∼ is the ST-structure ST/∼ = (E/∼,C/∼), with C/∼ =
{(S/∼, T/∼) | (S, T ) ∈ C}.

It is clear that ST/∼ is again an ST-structure. To ease notation we will sometimes
denote (S/∼, T/∼) = (S, T )/∼. The quotient map γ : ST→ ST/∼ : e 7→ [e]∼ is generally not

an ST-morphism, failing local injectivity.

Definition 2.6. An equivalence relation ∼ ⊆ E × E on an ST-structure ST = (E,C ) is
collapsing if there is (S, T ) ∈ C and e, e′ ∈ S with e 6= e′ and e ∼ e′. Otherwise, ∼ is
non-collapsing.

Lemma 2.7. ∼ ⊆ E × E is non-collapsing iff the quotient map γ : ST→ ST/∼ : e 7→ [e]∼
is an ST-morphism.

Proof. If ∼ is collapsing, then γ is not locally injective. For the other direction, assume that
γ is not locally injective, then there is (S, T ) ∈ C and e, e′ ∈ S with e 6= e′ and γ(e) = γ(e′),
thus e ∼ e′: ergo ∼ is collapsing.

We want to compare sculptures and ST-structures. To this end, we introduce a small
but important modification to ST-structures which consists in ordering the events.

Let E be a totally ordered set of events with ordering <. An ordered ST-structure is an
ST-structure on E, and morphisms f : (E,C )→ (E′,C ′) of ordered ST-structures respect
the ordering, i.e., if f(e1) and f(e2) are defined and e1 < e2, then f(e1) < f(e2). This
defines a category of ordered ST-structures.
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Chu spaces. The model of Chu spaces has been developed by Gupta and Pratt [Gup94,
Pra95] in order to study the event-state duality [Pra92]. A Chu space over a finite set K is
a triple Chu = (E, r,X) with E and X sets and r : E ×X → K a function called the matrix
of the Chu space.

Chu spaces can be viewed in various equivalent ways [Gup94, Chap. 5]. For our setting,
we take the view of E as the set of events and X as the set of configurations. The structure
K is representing the possible values the events may take, e.g.: K = 2 = {0, 1} is the
classical case of an event being either not started (0) or terminated (1), hence Chu spaces
over 2 correspond to configuration structures [vGP95,vGP09] where an order of 0 < 1 is
used to define the steps in the system, i.e., steps between states must respect the increasing
order when lifted pointwise from K to X.

ST-structures capture the “during” aspect in the event-based setting, extending configu-
ration structures with this notion. Therefore we need another structure K = 3 = {0, , 1}
with the order 0 < < 1, introducing the value to stand for during, or in transition. Note
that [Gup94] studies Chu spaces over 2, whereas Pratt proposed to study Chu spaces over 3
and other structures in [Pra03].

A Chu space is extensional [Gup94] if it holds for every x 6= x′ that there exists e ∈ E
such that r(e, x) 6= r(e, x′). We assume extensionality. Using currying, we can view a Chu
space (E, r,X) over K as a structure X ⊆ KE (this needs extensionality). Consequently,
we will often write x(e) instead of r(e, x) below. A Chu space is separable [Pra02] (called T0
in [Gup94]) if no two events are the same, that is, for all e 6= e′ there is x ∈ X such that
r(e, x) 6= r(e′, x).

Definition 2.8 (translations between ST and Chu). For an ST-structure ST = (E,C )
construct (E,X)ST the associated Chu space over 3 with E the set of events from ST, and

X ⊆ 3E containing for each ST-configuration (S, T ) ∈ C the state x(S,T ) ∈ X formed by
assigning to each e ∈ E:

• e→ 0 if e 6∈ S and e 6∈ T ;
• e→ if e ∈ S and e 6∈ T ;
• e→ 1 if e ∈ S and e ∈ T .1

Call this mapping ChuST(S, T ) when applied to an ST-configuration and ChuST(ST) when
applied to an ST-structure. The other way, we translate an extensional Chu space (E,X)
into an ST-structure over E with one ST-configuration (S, T )x for each state x ∈ X using
the inverse of the above mapping. We use STChu(x) for the ST-configuration obtained from
the event listing x.

Theorem 2.9 [Joh16, Sec. 3.4]. For any ST-structure ST, STChu(ChuST(ST)) ∼= ST. For
any (extensional) Chu space Chu over 3, ChuST(STChu(Chu) ∼= Chu.

3. Sculptures

Inspired by the Chu notation for states, we define a bulk in two equivalent ways, both of
which can be seen as the complete Chu over 3.

1The case e /∈ S ∧ e ∈ T is dismissed by the requirement T ⊆ S of ST-configurations.
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Definition 3.1. Let d ∈ N. The d-dimensional bulk Bd is the precubical set defined as
follows. For n = 0, . . . , d, let

Bd
n =

{
(x1, . . . , xd) ∈ {0, , 1}d

∣∣ |{i | xi = }| = n
}

be the set of tuples with precisely n occurrences of . For n = 1, . . . , d and k = 1, . . . , n, define
face maps sk, tk : Bd

n → Bd
n−1 as follows: for x = (x1, . . . , xd) ∈ Bd

n with xi1 = · · · = xin = ,
let skx = (x1, . . . , 0ik , . . . , xd) and tkx = (x1, . . . , 1ik , . . . , xd) be the tuples with the k-th
occurrence of set to 0 or 1, respectively.

The initial state IBd of the bulk Bd is the cell (0, . . . , 0). This turns bulks into HDA.

Let Sd = ( ~E,C ) be the complete ordered ST-structure on ~E = (1, . . . , d), with C =

{(S, T ) | T ⊆ S ⊆ ~E}. There is a bijection between Sd and the bulk Bd which maps a
configuration (S, T ) to the cell (x1, . . . , xd) given by

xi =


0 if i /∈ S ,

if i ∈ S \ T ,
1 if i ∈ T ,

cf. Def. 2.8, and using the inverse of the above when mapping the other way. This bijection
induces face maps in Sd as follows: for x = (x1, . . . , xd) ∈ Bd

n with xi1 = · · · = xin = and
skx = (x1, . . . , 0ik , . . . , xd), i.e., with the k-th occurrence of set to 0, then for the respective

ST-configuration (S, T )x the map is sk((S, T )x) = (S, T )(x1,...,0ik ,...,xd) = (Sx \ {ik}, T x).
Conversely, Sd can be equipped with face maps as sk((S, T )) = (S \{ik}, T ) and tk((S, T )) =

(S, T ∪ {ik}) with ik ∈ ~E being the kth event in the subset listing ~E�S\T . We will use these

two notions of bulk interchangeably and denote this bijection as Sd ↔ Bd.
Let d ≤ d′ and b : {1, . . . , d} → {1, . . . , d′} a strictly increasing function. This defines an

embedding, also denoted b : Bd ↪→ Bd′ , mapping any cell (t1, . . . , td) to (u1, . . . , ud′) given
by

ui =

{
tj if i = b(j) ,

0 if i /∈ im(b) .

Every HDA morphism Bd → Bd′ is of this form (but not every precubical morphism because

these do not need to preserve the initial state), and there are no morphisms Bd → Bd′ for
d > d′.

Lemma 3.2. Fix a bulk Bd and take two transitions (t1, . . . , td) and (u1, . . . , ud), and let k
be the unique index s.t. tk = , and the same for ul = . Then the two transitions represent

the same event, i.e., (t1, . . . , td)
ev∼ (u1, . . . , ud), iff k = l. Therefore, the set of universal

events is UE (Bd) = {1, . . . , d}. Moreover, the order
ev
< on UE (Bd) agrees with the natural

order on {1, . . . , d}.

Proof. For a transition t = (t1, . . . , td) in Bd let dir(t) be the unique index such that
tdir(t) = . Let y = (y1, . . . , yd) be an arbitrary 2-cube and its two unique indices k < l
such that yk = yl = . We have dir(s1(y)) = dir(t1(y)) = l and dir(s2(y)) = dir(t2(y)) = k.

Therefore, t
ev∼ u implies dir(t) = dir(u).

We will show that t
ev∼ u for any two transitions t, u with dir(t) = dir(u) = k. Induction

with respect to the number m of indices i such that ti 6= ui. If m = 0, then t = u and there
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is nothing to prove. If m > 0, then choose any index j such that tj 6= uj ; the square

(t1, . . . , tj−1, , tj+1, . . . , td)

assures that t
ev∼ (t1, . . . , tj−1, uj , tj+1, . . . , td) = t′, and t′

ev∼ u by the inductive hypothesis.

As a consequence, dir : UE (Bd)→ {1, . . . , d} is a bijection.
For a square y with yk = yl = , k < l, we have dir(s2(y)) = k < l = dir(s1(y))

and λ(s2(y))
ev
< λ(s1(y)). Therefore, the order

ev
< on UE (Bd) agrees with the order on

{1, . . . , d}.

Definition 3.3. A sculpture, denoted Q
em
↪→Bd, is an HDA Q together with a bulk Bd and

an HDA embedding em : Q ↪→ Bd. A morphism of sculptures Q
em
↪→Bd, Q′

em′
↪→Bd′ is a pair

of HDA morphisms f : Q→ Q′, b : Bd → Bd′ such that the square

Q

em
��

f
// Q′

em′
��

Bd b // Bd′

commutes, i.e., b ◦ em = em′ ◦ f .

We say that an HDA Q is sculptable if there exists a sculpture Q
em
↪→Bd.

For a morphism (f, b) as above, we must have d′ ≥ d and b injective, hence also f
is injective. Two sculptures are isomorphic, denoted ∼=, when f and b are isomorphisms
(implying d = d′ and b = id).

For the special case of Q = Q′ above, we see that any sculpture Q
em
↪→ Bd can be

over-embedded into a sculpture Q
b◦em
↪→ Bd′ for d′ > d. Conversely, any sculpture Q

em
↪→Bd

admits a minimal bulk Bdmin for which Q
em′
↪→Bdmin

b′
↪→Bd with b′ ◦ em′ = em, i.e., such that

there is no factorization of the embedding of Q through Bd′ for any d′ < dmin. We call such
a minimal embedding simplistic.

Remark 3.4. One precubical set can be seen as sculpted from two different-dimensional
bulks, in both cases being a simplistic sculpture, i.e., it all depends on the embedding
morphism (cf. Figure 6). Because of this we cannot determine from an HDA alone in which
sculpture it enters (if any).

Working with unfoldings is not particularly good either. The interleaving square from
Figure 7 (left) can be sculpted from B2, but its unfolding may be sculpted simplistically
from B3 or B4; we cannot decide which.

All the sculptures in Figs. 6 and 7 are simplistic.

Proposition 3.5. If an HDA Q is not ordered, then it is not sculptable.

Proof. Any precubical morphism em : Q→ Bd induces a map

UE (Q)
UE(em)−−−−−→ UE (Bd) ' {1 < 2 < · · · < d}.

If Q is not ordered, then there exists a ∈ UE (Q) such that a
ev
< a, which implies UE (em)(a)

ev
<

UE (em)(a), which is a contradiction.

We show that sculptures and regular ordered ST-structures are in bijective correspon-
dence while also respecting the computation steps. This result also resolves the open problem
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noticed in [Joh16, Sec. 3.3] that there is no adjunction between ST-structures and general
HDA.

Recall that an ST-structure is regular if it is rooted, connected, and closed under single
events. Through the observation from Section 2 the results in this section extend to (regular)
Chu spaces over 3 as well.

Definition 3.6 (from ordered regular ST-structures to sculptures). We define a mapping

H that for any regular ordered ST-structure S on events ~E = {e1, . . . , ed}, generates an
HDA, as well as a bulk and an embedding, thus a sculpture, H(S), as follows. By the

bijection between the complete ST-structure Sd on events ~E and Bd, there is an embedding

S ↪→ Sd ↔ Bd, where ↪→ simply maps ei ∈ ~E to i ∈ Sd. H(S) is given by the composed
embedding.

Definition 3.7 (from sculptures to ordered regular ST-structures). Define a mapping ST

which to a sculpture Q
em
↪→Bd associates the ST-structure ST(Q

em
↪→Bd) as follows. By the

bijection between Bd and the complete ST-structure Sd on events {1, . . . , d}, there is an

embedding Q
em
↪→ Bd ↔ Sd. ST(Q

em
↪→Bd) is given by the composed embedding.

It is clear that ST(Q
em
↪→ Bd) is rooted, connected and closed under single events,

i.e., regular.
The following result shows a one-to-one correspondence between regular ordered ST-

structures and sculptures; the proof is clear by composition of the mappings above.

Theorem 3.8. For any regular ordered ST-structure ST, ST(H(ST)) ∼= ST. For any

sculpture Q
em
↪→Bd, H(ST(Q

em
↪→Bd)) ∼= Q

em
↪→Bd.

We can also understand ST as labeling every cell of the sculpture with an ST-configuration,
or equivalently (because of Theorem 2.9) with a Chu state.

Lemma 3.9. The mapping H is functorial, in the sense that an ordered ST-morphism
f : ST1 → ST2 is translated into an HDA morphism H(f) : H(ST1) → H(ST2), given
by H(f)((S, T )) = H(f(S, T )). If f is total and injective, then H(f) is also a sculpture
morphism.

Proof. The first part of the lemma is trivial.
For the second part we denote S1 = (E1,C1) and S2 = (E2,C2). The morphism

b : Bd1 ∼= S|E1| → S|E2| ∼= Bd2 is defined by the map f : E1 → E2, which makes the
sculptures morphism diagram commute.

H(ST1)

em1

��

H(f)
// H(ST2)

em2

��

Bd1 b // Bd2

4. Decidability for the Class of Sculptures

We proceed to develop an algorithm to decide whether a given HDA can be sculpted. At first
one could simply search for embedding into bulks of any dimension limited by the number of
edges in the HDA. But a naive calculation reveals this to be more than doubly exponential
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in the number of edges.2 In this section we work out a more algorithmic approach which is
also more efficient. First we define a way of translating HDA into ST-structures without the
need of a bulk and an embedding. Instead we give an inductive construction that works
with rooted paths.

Definition 4.1. A path having the following form, for vi ∈ Q0 and ej ∈ Q1,

v0
s−→ e1

t−→ v1
s−→ e2

t−→ v2
s−→ . . .

s−→ en
t−→ vn (4.1)

will be called sequential. An HDA Q has non-repeating events if for every sequential path
all universal labels λ(e1), λ(e2), . . . , λ(en) are different.

Proposition 4.2. If Q has repeating events, then it cannot be sculpted.

Proof. If a path π in Q repeats events, then its image em(π) in Bd also repeats events, by
the functoriality of UE ; but bulks have non-repeating events.

Proposition 4.3. If Q has non-repeating events, then it is consistent.

Proof. Easy.

Example 4.4. An HDA that has repeating events is the full square, q,
to the right which has the upper-left and lower-right corners identified

into q0. We find the sequential path I
s−→ s2(q)

t−→ q0
s−→ t2(q)

t−→ q′0 on
which the same label λ1(q) appears twice. This example is acyclic;
otherwise, the non-repeating property implies acyclicity.

q

I

q0

q0

q′0

s2q

t2q

Definition 4.5 (from HDA to ST-structures through paths). Define a map STπ : HDA→ ST
which builds an ST-structure STπ(Q) = (UE (Q),C ) in the following way. For every path

π = π′
α−→ q we assign an ST-configuration STπ(π) = (Sπ, Tπ) in the following way.

(1) For the minimal rooted path we associate STπ(I) = (∅, ∅).
(2) If α = si, then we put STπ(π) = STπ(π′) ∪ ({λi(q)}, ∅) = (Sπ ∪ {λi(q)}, Tπ), i.e., we

start the event λi(q).
(3) If α = ti, then we put STπ(π) = STπ(π′)∪ (∅, {λi(en(π′))}), i.e., we terminate the event

λi(en(π′)).

Finally, C is the set of all these ST-configurations, i.e.,

STπ(Q) =
⋃

π∈Path(Q)∗

STπ(π)

where Path(Q)∗ denotes the set of all rooted paths of Q.

The construction is similar to an unfolding [FL15]; see [Joh16, Def. 3.39] for a related
construction.

The next lemmas are used to establish that for every path π the pair (Sπ, Tπ) is indeed
an ST-configuration.

2For an HDA Q with |Q1| = n it is enough to check for embeddings into the single bulk of the largest

dimension n, because any sculpture can be over-embedded. There are |Bn||Q| maps to check, which is larger

than focusing on maps between transitions only, i.e., larger than |Bn
1 |n = (n ∗ 2(n−1))n. This should also

be multiplied with the amount of time it takes to check whether an individual map is an embedding, i.e.,
checking injectivity, cubical laws, face maps preservation for all higher cells, etc.
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Lemma 4.6. If π is a sequential path (4.1), then

Sπ = Tπ = {λ(e1), . . . , λ(en)}.

Proof. Obvious induction.

Lemma 4.7. Homotopic paths have the same associated ST-configurations (i.e., if π ∼ %,
then Sπ = S%, Tπ = T%).

Proof. It is enough to consider the case when π and % are elementary homotopic and that
the homotopy changes the final segments of these paths. Thus

π = σ
αi−→ q

βj−→ r, % = σ
βk−→ q′

αl−→ r,

where one of the following cases holds (denote s = en(σ)).

• α = β = s, i < j, k = j − 1, l = i. Then Tπ = Tσ = T% and

Sπ = Sσ ∪ {λi(q)} ∪ {λj(r)} = Sσ ∪ {λi(sj(r))} ∪ {λj(r)} = Sσ ∪ {λi(r), λj(r)}
S% = Sσ ∪ {λj−1(q′)} ∪ {λi(r)} = Sσ ∪ {λj−1(si(r))} ∪ {λi(r)} = Sσ ∪ {λi(r), λj(r)}.

• α = s, β = t, i > k = j, l = i− 1. Then

Sπ = Sσ ∪ {λi(q)} = Sσ ∪ {λi−1(tj(q))} = Sσ ∪ {λl(r)} = S%,

Tπ = Tσ ∪ {λj(q)} = Tσ ∪ {λj(si(q))} = Tσ ∪ {λk(s)} = T%.

• α = s, β = t, i = l < j, k = j − 1.
• α = β = t, k = j < i, l = i− 1.

Calculations in the last two cases are similar.

Lemma 4.8 [Fah05b, Lem.4.38]. Every rooted path is homotopic to a path of the type
(st)ksn, for any n, k ≥ 0.

Proof. Assume that π has a segment of type sst, namely

si(sj(r))
si−→ sj(r)

sj−→ r
tl−→ tl(r).

If j = l, then we replace it by a homotopic segment

• si(sj(r)) = sj−1(si(r))
sj−1−−−→ si(r)

si−→ r
tl−→ tl(r) if i < j

• si(sj(r)) = sjsi+1(r)
sj−→ si+1(r)

si+1−−→ r
tl−→ tl(r) if i ≥ j

to assure that j 6= l. Next, we replace it by

(1) si(sj(r))
si−→ sj(r)

tl−1−−→ tl−1(sj(r)) = sj(tl(r))
sj−→ tl(r) if j < l,

(2) si(sj(r))
si−→ sj(r)

tl−→ tl(sj(r)) = sj−1(tl(r))
sj−1−−−→ tl(r) if j > l,

and obtain a homotopic segment of type sts. We repeat this procedure as long as there is a
type sst subpath (which is finitely many times). Eventually we obtain a path homotopic to
π having the required type.

Lemma 4.9. Fix n ≥ 1 and i ∈ {1, . . . , n}. Every path of type sn, starting in a vertex, is
homotopic to a path of type s1s2 . . . sn−2sn−1si.

Proof. For i = n this follows from the canonical presentation of an iterated face map. In
general, we start with s1 . . . sn and move si to the rightmost place using precubical identities,
i.e., s1 . . . si−1sisi+1si+2 . . . sn = s1 . . . si−1sisisi+2 . . . sn = s1 . . . si−1sisi+1sisi+3 . . . sn =
· · · = s1 . . . sn−2sisn = s1 . . . sn−2sn−1si.
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Lemma 4.10. For every n, k ≥ 0, every rooted path π ending in q ∈ Qn, and any i ∈
{1, . . . , n}, there exists a path that is homotopic to π and has the type (s1t1)ks1s2 . . . sn−2sn−1si.

Proof. This follows from the two preceding lemmas.

Proposition 4.11. For every rooted path π, (Sπ, Tπ) is an ST-configuration (i.e., Sπ ⊇ Tπ).

Proof. Induction with respect to π; enough to check the case when π = π′
ti−→ ti(q), q = en(π′).

By Lemma 4.10 there exists a path %′ = %′′
si−→ q homotopic to π′. Thus,

Tπ = Tπ′ ∪ {λi(q)}
L.4.7
= T%′ ∪ {λi(q)} = T%′′ ∪ {λi(q)}

ind
⊆ S%′′ ∪ {λi(q)} = S%′ = Sπ.

Proposition 4.12. Assume that an HDA Q has non-repeating events. Then Sπ \ Tπ =
λ(en(π)) for every rooted path π.

Proof. Note that λ(en(π)) is a tuple, thus a set of universal labels with an order on them;
and similarly, the set of events on the left are ordered. We use induction with respect to the
structure of π. If π = I — obvious. By Lemmas 4.10 and 4.7 we can assume that π has the
type (s1t1)

ls1 . . . sn. Denote q = en(π) ∈ Qn. Consider two cases:

• n = 0. Then π = π′
t1−→ q, with λ(q) = ∅. Using the inductive hypothesis we obtain

Sπ
def
= Sπ′

ind
= Tπ′ ∪ {λ(en(π′))} def

= Tπ.

• n > 0. Let π′ be the prefix of π of length 2l. Since en(π′) is a state, then Sπ′ = Tπ′ (by
the previous case) and Sπ = Sπ′ ∪ λ(q), Tπ = Tπ′ (by Definition 4.5). It remains to show
that λ(q) ∩ Sπ′ = ∅. For every i

λ(s1 . . . si−1si+1 . . . sn(q)) = λi(q)

and the path π′
s1−→ s1 . . . si−1si+1 . . . sn(q)

t1−→ s1 . . . si−1tisi+1 . . . sn(q) is sequential. Since
Q has non-repeating events, Lemma 4.6 implies that λi(q) 6∈ Sπ′ .

Corollary 4.13. Assume that Q has non-repeating events. Then for every i and q ∈ Q and

every rooted path π ∈ Path(Q)∗ that can be extended to π
si−→ q, then λi(q) 6∈ Sπ.

Proof. Otherwise, S
π
si−→q

= Sπ, which implies that λ(si(q)) = λ(q).

Proposition 4.14. If Q has non-repeating events, then STπ(Q) is a regular ST-structure.

Proof. Conditions (A) and (B) are obvious. To prove (C), fix π ∈ Path(Q)∗ and

e = λi(q) ∈ λ(q) = Sπ \ Tπ,

where q = en(π). Let % be a rooted path such that %
si−→ q is homotopic to π and let

%′ = π
ti−→ ti(q). Then

(Sπ, Tπ ∪ {e}) = (Sπ, Tπ ∪ λi(q)) = (S%′ , T%′) ∈ STπ(Q)

and

(Sπ, Tπ) = (S% ∪ {λi(q)}, T%) = (S% ∪ {e}, T%).
But e 6∈ S% by Corollary 4.13, so (S%, T%) = (Sπ \ {e}, Tπ) ∈ STπ(Q).

If the HDA in question is a sculpture, then there is a natural equivalence relation on its
cells which captures the notion of event better than the universal event labelling.
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Definition 4.15. For a sculpture Q
em
↪→Bd, define UE (em) : UE (Q)→ UE (Bd) ' UE (Sd) '

{1, . . . , d} to be the map induced by em, i.e., UE (em)(λ(q)) = λ(em(q)). This induces an

equivalence relation on UE (Q) which we denote
em∼ , i.e., λ(q)

em∼ λ(q′) iff UE (em)(λ(q)) =
UE (em)(λ(q′)).

Lemma 4.16. Let Q
em
↪→Sd be a sculpture, then (Sπ, Tπ)

/
em∼ = em(en(π)) for every rooted

path π.

Proof. Note that we work with a sculpture that is embedded directly in the Sd, which is
isomorphic to Bd. We do this to simplify the arguments, for otherwise we would have
had to go through the isomorphism using the STChu to translate between tuples and
ST-configurations.

We use induction on the length of the path π. By Lemmas 4.10 and 4.7 we may assume
that π has type (s1t1)

ns1 . . . sk, q = en(π) ∈ Qk. For π = I, (Sπ, Tπ) = (∅, ∅) = em(I).

For k = 0, then π = π′
s1−→ e

t1−→ q is sequential. By Definition 4.5 Sπ = Sπ′ ∪ {λ(e)}
and Tπ = Tπ′ ∪ {λ(e)} with λ(e) 6∈ Sπ′ (because of Corollary 4.13 since a sculpture has

non-repeating events). On the right side, the path em(π) = em(π′)
s1−→ em(e)

t1−→ em(en(π))
has all universal labels different too, thus λ(em(e)) 6∈ S′ for (S′, T ′) = em(en(π′)), and
by construction (S′ ∪ {λ(em(e))}, T ′ ∪ {λ(em(e))}) = em(en(π)). We finish this case by
applying the induction hypothesis to obtain (Sπ, Tπ)

/
em∼ = (Sπ′/em∼ ∪ {UE (em)(λ(e))}, Tπ′/em∼ ∪

{UE (em)(λ(e))}) ind= (S′∪{UE (em)(λ(e))}, T ′∪{UE (em)(λ(e))}) 4.15
= (S′∪{λ(em(e))}, T ′∪

{λ(em(e))}).
For k > 0, then π = π′

s1−→ q1 . . .
sk−→ q = π′′

sk−→ q with π′ sequential. From
Proposition 4.12 we have Sπ = Tπ ∪ {λ(q)} and Tπ′′ = Tπ = Tπ′ = Sπ′ . Denote by
(S, T ) = em(en(π)) = em(q) and by (S′′, T ′′) = em(en(π′′)) = em(sk(q)). By construction,

(S, T ) = (S′′ ∪ {λk(q)}, T ′′) and by the induction hypothesis we have (S′′ ∪ {λk(q)}, T ′′)
ind
=

(Sπ′′/em∼ ∪{λk(q)}, Tπ′′/em∼) = (Sπ′/em∼ ∪{λ(sk(q))}∪{λk(q)}, Tπ′/em∼) = (Sπ′/em∼ ∪{λ(q)}, Tπ′/em∼) =

(Sπ/em∼ , Tπ/em∼), since by the consistency and non-repeated events properties we know that

λk(q) 6∈ Sπ′′/em∼ .

Proposition 4.17. For a (connected) simplistic sculpture Q
em
↪→Bn we have

ST(Q
em
↪→Bn) ∼= STπ(Q)

/
em∼ .

Proof. Note that the requirement of being simplistic is only needed in order to have the same
set of events on both sides. The events generated on the left side by ST are {1, . . . , n} =

UE (Bn) which are the events obtained on the right side due to the application of
em∼ , having

the same order.
The isomorphism is then exhibited by the identity map f on the above sets of events.

Showing that f preserves ST-configurations is easy by using the previous Lemma 4.16 since
every ST-configuration is generated as em(q), but since all cells are reachable then there
exists a path π ending in q so that we need to show f(em(en(π))) = (Sπ, Tπ)

/
em∼ , which is

done by the lemma.

Corollary 4.18. For a sculpture Q
em
↪→Sd the equivalence

em∼ is non-collapsing.

Definition 4.19. Let Q be an HDA. A proper event identification on Q is an equivalence
relation ‖ on UE (Q) such that
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(1) The quotient preorder on UE (Q)/‖ induced from UE (Q) is antisymmetric. Equivalently,

if a
ev
< b, c

ev
< d, a ‖ d, b ‖ c for a, b, c, d ∈ UE (Q), then a ‖ b ‖ c ‖ d.

(2) If en(π) = en(π′), then (Sπ/‖, Tπ/‖) = (Sπ′/‖, Tπ′/‖).
(3) If (Sπ/‖, Tπ/‖) = (Sπ′/‖, Tπ′/‖), then en(π) = en(π′).

Remark 4.20. An equivalence relation ‖ is a proper event identification if the sequence of
relations

Q
en−1

−−−→ Path(Q)∗
STπ−−→ STπ(Q)

⊆−→ S|UE(Q)| → S|UE(Q)/‖|

forms an injective function. Note that the right-most map is not (in general) an ST-map.

Lemma 4.21. Let ‖ be a proper event identification on Q. Then for every π ∈ Path(Q)∗, ‖
is trivial when restricted to Sπ.

Proof. Assume that there exists a path π ∈ Path(Q)∗ and a 6= b ∈ Sπ such that a ‖ b.
Without loss of generality we may assume that en(π) is a state (extending π with some
t1–type segments if needed), and also that π is sequential (by Lemma 4.7 and 4.10). Denote

π = v0
s−→ e1

t−→ v1
s−→ e2

t−→ v2
s−→ . . .

s−→ en
t−→ vn

and let πj denote the prefix of π ending at vj . Since Sπ = {λ(ei)}ni=1, then there exist k < l
integers such that λ(ek) ‖ λ(el). But then

(Sπl/‖, Tπl/‖) = (Sπl−1
/‖, Tπl−1

/‖),

so ‖ is not a proper identification, breaking 4.19(3).

Corollary 4.22. A proper event identification equivalence on Q is non-collapsing.

Theorem 4.23. Let Q be a connected HDA with non-repeating events. The following are
equivalent:

(1) Q can be sculpted.
(2) There exists a proper event identification on Q.

Proof. (2)⇒(1). Let ‖ be a proper event identification equivalence. Fix an order-preserving
bijective map j : UE (Q)/‖ → {1, . . . , d}, which exists by Definition 4.19(1), with d being
the dimension of the quotient. For q ∈ Qn choose a path π ending at q and put

em(q) = (j(Sπ/‖), j(Tπ/‖)).

Lemma 4.21 tells that the equivalence classes in Sπ/‖ and Tπ/‖ are singletons, thus making
em(q) = (j(Sπ), j(Tπ)). We abused the notation here, as the map j should be applied to an
equivalence class, but instead we apply it to elements of UE (Q), since for a particular path
as we have here, the equivalence classes are singletons. Condition 4.19(2) assures that em(q)
does not depend on the choice of π as long as en(π) = q. It remains to prove that em is a
morphism of precubical sets, i.e., it preserves the precubical maps.

Let q ∈ Qn, i ∈ {1, . . . , n}, π = π′
si−→ q; then em(q) = (j(Sπ), j(Tπ)). Since j is injective

and order-preserving, we have

si(em(q)) = si(j(Sπ), j(Tπ))
P.4.12

= si(j(Tπ) ∪ j(λ(q)), j(Tπ)) =

(j(Tπ) ∪ j(λ(q) \ {λi(q)}), j(Tπ)) = (j(Tπ) ∪ j(λ(si(q))), j(Tπ)) =

(j(Tπ′) ∪ j(λ(si(q))), j(Tπ′)) = (j(Sπ′), j(Tπ′)) = em(si(q)).
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Now let π′′ = π
ti−→ ti(q). A similar calculation shows that

ti(em(q)) = ti(j(Sπ), j(Tπ)) = (j(Sπ′′), j(Tπ′′)) = em(ti(q)).

As a consequence, em is a precubical map Q→ Sd.

(1)⇒(2). Let Q
em
↪→Sd be a sculpture involving Q. Consider the equivalence relation

em∼
from Definition 4.15. Since this was defined using the functor UE then we know that it
preserves the order, thus respecting property 4.19(1) of being a proper event identification.
The other two properties are derived using Lemma 4.16. For two paths with en(π) =

q = en(π′) we have (Sπ, Tπ)
/
em∼

L.4.16
= em(en(π)) = em(en(π′))

L.4.16
= (Sπ′ , Tπ′)/em∼ . For the

last property, start with em(en(π))
L.4.16

= (Sπ, Tπ)
/
em∼ = (Sπ′ , Tπ′)/em∼

L.4.16
= em(en(π′)), and

because of the injectivity of em we have en(π) = en(π′).

Since the number of equivalence relations on UE (Q)×UE (Q) is finite, then Theorem 4.23
translates into an algorithm to determine whether Q is a sculpture: First apply STπ(Q);
then choose some equivalence relation on UE (Q)×UE (Q) and check whether it is a proper
event identification. The dimension m = |UE (Q)| is smaller than or equal (when there is
no concurrency) to the number of edges |Q1| = n. Therefore, the number of relations on

UE (Q) that need to be checked is 2m
2
< 2n

2
, which in the worst case can be more than

exponential in the number of edges of Q. For each relation we need to check both that it is
an equivalence and the proper event identification properties. If we know how to pick only
the equivalence relations, which are exponential in number (i.e., using the Bell numbers3

they are exactly ( m
e·lnm)m < Bm < ( 0.792·m

ln (m+1))
m, see [BT10]) then we have to check these

only for proper event identification. But we can do better by constructing a proper event
identification (when it exists) while we traverse the HDA with the STπ.

In the following we give a more intuitive algorithm, using constructions which iteratively
repair STπ(Q) by constructing a finite sequence of increasing equivalence relations, in the
end reaching a proper event identification.

For an HDA Q, using the notation of Def. 4.5, let ρ0 ⊆ Q × STπ(Q) be the relation
ρ0 = {(q,STπ(π)) | en(π) = q}. We call this an ST-labeling, forming the composition of the
first two relations from Remark 4.20. For an equivalence relation ∼ ⊆ UE (Q)×UE (Q), let
ρ∼ = {(q, (S, T )/∼) | (q, (S, T )) ∈ ρ0}.

First, the following lemma shows that we can restrict our attention to only ST-labellings
of 0-cells (and because of the previous results, it is enough to apply STπ only to sequential
paths).

Lemma 4.24. If |{σ | (q, σ) ∈ ρ0}| > 1 for some q ∈ Qk, k ≥ 1, then also |{σ′ | (q′, σ′) ∈
ρ0}| > 1 for some q′ ∈ Q0.

Proof. Assume |{σ | (q, σ) ∈ ρ0}| > 1, then there exist two different paths π, π′ ending
in q s.t. (q, (Sπ, Tπ)), (q, (Sπ′ , Tπ′)) ∈ ρ0 with Tπ 6= Tπ′ ; this being the only case since, by
Proposition 4.12, Sπ \ Tπ = λ(en(π)) = Sπ′ \ Tπ′ . We can complete both π and π′ by the

same sequence of t-steps from q to its upper corner, i.e., there exist π0 = π
tk−→ . . .

t1−→ q0

and π′0 = π′
tk−→ . . .

t1−→ q0, with en(π0), en(π′0) ∈ Q0. By definition Tπ0 = Tπ ∪ λ(q) and
Tπ′0 = Tπ′ ∪ λ(q), which are different, meaning that we found the state q0 for the lemma.

3See the Bell numbers sequence as https://oeis.org/A000110 in the OEIS.

https://oeis.org/A000110
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We can immediately rule out ST-labellings in which a cell receives ST-configurations
with different numbers of events (this would break the property 4.19(2) of a proper event
identification in an irreparable way, cf. Lemmas 4.21 and 4.6):

Lemma 4.25. If there is q ∈ Q0 and (q, (S, S)), (q, (S′, S′)) ∈ ρ0 with |S| 6= |S′|, then Q
cannot be sculpted.

Proof. Assume to the contrary that Q is in a sculpture with embedding em : Q→ Bn. By
construction of ρ0, there are two rooted paths π, π′ in Q which both end in q, but with
different lengths. By injectivity of em, the images of these paths under em, here denoted
em(π) and em(π′), are paths in Bn from the initial state to em(q). But inside the bulk
em(π) and em(π′) are homotopic, in contradiction to them having different lengths.

We will inductively construct equivalence relations ∼n, with the property that ∼n (
∼n+1. This procedure will either lead to a relation ∼N = ‖ that is a proper event identification
equivalence as required in Theorem 4.23 or to an irreparable conflict as explained below.

Let ∼1 = {(λ(q), λ(q)) | λ(q) ∈ UE (Q)}, the minimal equivalence relation on UE (Q). If

Q is a sculpture, then ∼1 ⊆
em∼ , hence we can safely start our procedure with ∼1. Moreover,

this minimal equivalence is antisymmetric (preserving the order of Q).
Assume, inductively, that ∼n has been constructed for some n ≥ 1. The next lemma

shows that if there are two different cells which receive the same labeling under ρ∼n , then
either Q is not a sculpture or we need to backtrack, i.e., we would break property 4.19(3)
since we have equated too much.

Lemma 4.26. If there are (q, σ), (q′, σ) ∈ ρ∼n with q 6= q′, and Q can be sculpted, then

∼n 6⊆
em∼ for any embedding em : Q ↪→ Bk.

Proof. The proof is by reductio ad absurdum; suppose that there is an embedding for which

∼n ⊆
em∼ . However, since according to Proposition 4.17 STπ(Q)

/
em∼ produces the same labels

as ST(Q
em
↪→Bd), and since ST labels each different cell with a different label (because of the

injectivity of the embedding), we have a contradiction.

We construct ∼n+1 from ∼n by finding and repairing homotopy pairs, which consist of
two paths of the form

π
s−→ e1

t−→ v1 · · · vn−1
s−→ en

t−→ q π
s−→ e′1

t−→ v′1 · · · v′n−1
s−→ e′n

t−→ q .

The shortest homotopy pair is an interleaving, a pair of two transitions.

Lemma 4.27. If q ∈ Q0 is such that |{σ | (q, σ) ∈ ρn}| > 1, then there exists a homotopy
pair with final state q.

Proof. We have |{STπ(π) | en(π) = q}| ≥ |{σ | (q, σ) ∈ ρn}| ≥ 2, hence at least two different
rooted paths must lead to q. These might share a common prefix π, which can also be the
empty path, i.e., starting at the root. According to Lemma 4.24 we look only at states, and
because of Lemma 4.10 we can look only at sequential paths, which according to Lemma 4.6
the corresponding ST-configuration is formed of summing up their events, and since by
Lemma 4.25 these have the same number of events, the paths have the same length.

Now if the homotopy pair is an interleaving π
s−→ ea

t−→ v
s−→ eb

t−→ q, π
s−→ ec

t−→ v′
s−→ ed

t−→ q,
then we must repair by identifying λ(ea) with λ(ed) and λ(ec) with λ(eb). If it is not, then
there are several choices for identifying events, and some of them may lead into situations like
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Figure 11: A backtracking example of a sculpture where a homotopy pair is treated.

in Lemma 4.26. Let τ be any permutation on {1, . . . , n} with τ(1) 6= 1 and τ(n) 6= n, then
we can identify λ(ei) with λ(e′τ(i)) for all i = 1, . . . , n. The restriction on the permutation is
imposed by the fact that we only identify transitions that can possibly be concurrent, which
is not the case for two transitions starting from, or ending in, the same cell.

Let ∼n+1 ) ∼n be the equivalence relation thus generated which should still be antisym-
metric (otherwise choose another permutation). As this inclusion is proper, it is clear that
the described process either stops with a Lemma 4.26 situation, which cannot be resolved
without backtracking, or with a relation ρN which satisfies Theorem 4.23.

Example 4.28. We give an example to illustrate why backtracking might be necessary
when applying the algorithm. Figure 11 is a variation of the example in Figure 8 which, as
the labeling on the top right shows, can be sculpted. However, if we start our procedure by
resolving the homotopy pair on the left in a “wrong” way, see the bottom of the figure, then
we get into a contradiction in the top right corner and must backtrack.

Remark 4.29. In conclusion, our final algorithm has the following steps:

(1) Traverse the HDA using the STπ, but because of Lemma 4.24 we can restrict to only
states from Q0, and because of Lemmas 4.7 and 4.8 we can look only at sequential paths.
This means that applying STπ is like traversing the graph formed of the Q0 ∪Q1. This
forms the ρ0.

(2) During the graph traversal, at each state check the Lemma 4.25 in constant time. The
algorithm can stop here if the check does not succeed.

(3) Form the minimal equivalence relation on UE (Q), called ∼1 which produces the coarser
labeling ρ1. This is the same way as the definition of proper event identification starts,
i.e., with an equivalence relation on UE (Q). To build ∼1 we need to also traverse all
the concurrency 2-cells from Q2.

(4) Check in each state the Lemma 4.26 in constant time. The algorithm can stop here if
the check for ρ1 does not succeed.
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(5) Traverse one more time the graph formed of the Q0 ∪Q1 to find any homotopy pair, as
in Lemma 4.27.
(a) For each homotopy pair add more equivalences to the previous ρn resulting from

choosing one of the permutations of the transitions of this pair, as explained before.
(b) For all states that have their ST-labels changed by the new equated transitions,

check again the Lemma 4.26. If the check fails, then either backtrack and try
another permutation, or the algorithm stops.

(c) For each homotopy pair we may need to try out all the possible permutations,
which are (k − 1)!, with k the length of the homotopy pair.

The complexity of this simple algorithm is mostly influenced by the backtracking that needs
to be done for each homotopy pair in step (5). Therefore, the complexity increases with the
number of homotopy pairs that exist in the graph, their respective lengths, and the amount
of relabeling which triggers checking of Lemma 4.26. Note that the less concurrency is in
the HDA, the more homotopy pairs might exist, which at the same time reduces the amount
of work done in step (3), since this decreases with the decrease in amount of concurrency.
The length of the homotopy pairs contributes the most, since this induces a factorial amount
of backtracking. For the minimal homotopy pair of length 2 (the interleaving square) there
is only one choice of permutation. Whereas, the worst case is for a 1-dimensional HDA
consisting of a single homotopy pair of length |Q1|/2. Calculating precisely the complexity
is left as future work, the same as finding more efficient algorithms (e.g., how to combine all
into a single traversal).

5. Euclidean Cubical Complexes are Sculptures

This section provides a connection between the combinatorial intuition of sculptures and the
geometric intuition of Euclidean HDA. It thus gives a concrete way of identifying precisely
the events that a grid imposes on any of its subsets. This is how several works on deadlock
detection model their studied systems, as “grids with holes”, which are geometric sculptures
in our terminology. We give below only strictly necessary definitions, and one is kindly
pointed to [Gra09,FGH+16] for background in directed topology.

Directed topological spaces. A directed topological space, or d-space, is a pair (X, ~PX)

consisting of a topological space X and a set ~PX ⊆ XI of directed paths in X which contains
all constant paths and is closed under concatenation, monotone reparametrization, and
subpath.

Prominent examples of d-spaces are the directed interval ~I = [0, 1] with the usual

ordering and its cousins, the directed n-cubes ~In for n ≥ 0. Similarly, we have the directed

Euclidean spaces ~Rn, with the usual ordering, for n ≥ 0.

Morphisms f : (X, ~PX) → (Y, ~PY ) of d-spaces are those continuous functions that

are also directed, that is, satisfy f ◦ γ ∈ ~PY for all γ ∈ ~PX. It can be shown that for an

arbitrary d-space (X, ~PX), ~PX = X
~I .
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Figure 12: A two-dimensional grid.

Geometric realization. The geometric realization of a precubical set Q is the d-space

|Q| =
⊔
n≥0Qn × ~In/∼, where the equivalence relation ∼ is generated by

(siq, (u1, . . . , un−1)) ∼ (q, (u1, . . . , ui−1, 0, ui+1, . . . , un−1)) ,

(tiq, (u1, . . . , un−1)) ∼ (q, (u1, . . . , ui−1, 1, ui+1, . . . , un−1)) .

(Technically, this requires us to define disjoint unions and quotients of d-spaces, but there is
nothing surprising about these definitions, see [Fah05b].)

Geometric realization is naturally extended to morphisms of precubical sets: if f :
Q → R is a precubical morphism, then |f | : |Q| → |R| is the directed map given by
|f |(q, (u1, . . . , un)) = (f(q), (u1, . . . , un)). Geometric realization then becomes a functor
from the category of precubical sets to the category of d-spaces.

Euclidean Precubical Sets. Intuitively, a precubical set is Euclidean if its geometric
realization can be embedded into a hypercube lattice in some ~Rd. We make this precise
below.

Definition 5.1. A non-selflinked precubical set Q with dimQ = d <∞ is a grid if there
exist M1, . . . ,Md ∈ N and a bijection Φ : {1, . . . ,M1} × · · · × {1, . . . ,Md} → Qd, such that
for all k ∈ {1, . . . , d} and all (i1, . . . , id) ∈ {1, . . . ,M1}× · · · × {1, . . . ,Mk−1}× {1, . . . ,Mk −
1} × {1, . . . ,Mk+1} × · · · × {1, . . . ,Md},

tkΦ(i1, . . . , id) = skΦ(i1, . . . , ik−1, ik + 1, ik+1, . . . , id) , (5.1)

and there are no other face relations between cubes in Q.

Hence a grid is a product4 of long intervals : one-dimensional precubical sets with 1-cells
1, . . . ,Mj which are connected such that the upper face of Mi is the lower face of Mi+1 for
all i = 1, . . . , j − 1. Figure 12 shows an example of a two-dimensional grid with M1 = 4 and
M2 = 2. The geometric realization of a grid is a subdivided cube: it can be embedded into
~Rd as the product of intervals [0,M1]× · · · × [0,Md].

Definition 5.2. A precubical set Q is Euclidean if there exists a grid G and an embedding
Q ↪→ G.

Intuitively, these are precisely the “geometric sculptures” referred to in the introduction:
subcomplexes of subdivided cubes. The next theorem shows that geometric sculptures and
combinatorial sculptures are the same.

4Technically, a tensor product, see [Fah05b].
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Theorem 5.3. A precubical set can be sculpted iff it is Euclidean.

Proof. First off, any bulk is a grid, hence any sculpture can be embedded into a grid. For
the reverse direction, it suffices to show that any grid is a sculpture.

Consider a grid of dimension d with M1, . . . ,Md as the number of grid positions in any
dimension. We develop a naming scheme using Chu-style labels as in the canonical naming
of bulks from Section 3. We use the following list of events: (e11, . . . , e

M1
1 , e12, . . . , e

M2
2 , . . . ,

e1d, . . . , e
Md
d ) and to each event we give values from {0, , 1}. The tuples have dimension

m =
∑

1≤i≤dMi. Construct the bulk Bm of dimension m using the canonical naming
starting with the m-tuple of the events ordered as above containing only values. Each
d-cell of Xd is identified by one of the grid cells (i.e., the bijection of the grid) as a d-tuple
of indices (i1, . . . , id) to which we give an m-tuple label constructed as follows:

eik = 1 ∀i < ik ,

eikk =

eik = 0 ∀i : ik < i ≤Mk ,

for 1 ≤ k ≤ d.
We then label all the faces of each d-cell with the canonical naming starting from

the above. This face labeling is consistent with the face equality restrictions (5.1) of
the grid. Indeed, take two d-cells of the grid that have faces equated, i.e., pick two
d-tuples differing in only one index (. . . , ik, . . . ) and (. . . , ik + 1, . . . ) which are named

by the m-tuples (. . . , 1, eikk = , 0, . . . ) respectively (. . . , 1, 1, eik+1
k = , . . . ) called qikd

respectively qik+1
d . The face maps are named as: tk(q

ik
d ) = (. . . , 1, eikk = 1, 0, . . . ) and

sk(qik+1
d ) = (. . . , 1, 1, eik+1

k = 0, . . . ) which are the same, thus the equality (5.1) is respected.
Using the above naming, it is easy to construct an embedding from the grid (M1, . . . ,Md)

into the bulk Bm: it maps each cell of the grid named by some m-tuple into the cell from
the bulk that has the same name. All the cells are uniquely named in the grid, and thus the
mapping is correctly defined.

6. Conclusion

Using a precise definition of sculptures as higher-dimensional automata (HDA), we have
shown that sculptures are isomorphic to regular ST-structures and also to regular Chu spaces.
This nicely captures Pratt’s event-state duality [Pra92]. We have also shown that sculptures
are isomorphic to Euclidean cubical complexes, providing a link between geometric and
combinatorial approaches to concurrency.

We have made several claims in the introduction about HDA that can or cannot be
sculpted. We sum these up in the next theorem; detailed proofs are in Appendix B.

Theorem 6.1. (1) There are acyclic HDA which cannot be sculpted.
(2) There is an HDA which cannot be sculpted, but whose unfolding can be sculpted.
(3) There is an HDA which can be sculpted, but whose unfolding cannot be sculpted.
(4) There is an HDA which can be sculpted and whose unfolding can be sculpted.
(5) There is an HDA which cannot be sculpted and whose unfolding cannot be sculpted.

The HDA from Figs. 2 (right) and 5 are acyclic but cannot be sculpted. It is enough to
apply the minimal equivalence of the decision algorithm to obtain two cells with the same
ST-label, cf. Lemma 4.26. This proves part (1) of the theorem.
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Both these examples are also their own unfoldings, which proves part (5). Part (2)
is proven by the triangle in Figure 4, which cannot be sculpted due to Lemma 4.25. For
part (4) we can use the triangle’s unfolding and the fact that this is its own unfolding.
Part (3) is proven by Figure 2. Finally, also the one-dimensional HDA from Figure 8 cannot
be sculpted. There are several interleaving squares (Lemma 4.27), so the algorithm has to
identify all transitions labeled a, which leads to a contradiction à la Lemma 4.26.

Acknowledgements. The authors are grateful to Lisbeth Fajstrup, Samuel Mimram and
Emmanuel Haucourt for multiple fruitful discussions on the subject of this paper, and to
Martin Steffen and Olaf Owe for help with an early version of this paper.
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Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Lan-
guages, and Programming - 42nd International Colloquium, ICALP 2015, Proceedings, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 171–183. Springer-Verlag, 2015.
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Appendix A. Ordered precubical sets

Fix a consistent precubical set Q and an order
ev
< on the set UE (Q) of universal labels of Q.

For every n > 0 and every n–cell q ∈ Qn let σ(q) : {1, . . . , n} → {1, . . . , n} be the unique
permutation such that

λσ(q)(1)(q)
ev
< λσ(q)(2)(q)

ev
< · · ·

ev
< λσ(q)(n)(q).

Let Q′ be a precubical set that has the same cells as Q, i.e., Q′n = Qn for all n ≥ 0, and
face maps given by

s′i(q) = sσ(q)(i)(q), t′i(q) = tσ(q)(i)(q).

It remains to check that the face maps s′i and t′i satisfy the precubical relations.
Define functions di : {1, . . . , n− 1} → {1, . . . , n}:

di(k) =

{
k for k < i,

k + 1 for k ≥ i,

Lemma A.1. Let Qn, n ≥ 0 be a family of sets and for every n let si, ti : Qn → Qn−1,
i ∈ {1, . . . , n} be maps. The following conditions are equivalent:

• The maps si, ti satisfy the precubical relations (i.e., Qn with the maps si, ti form a precubical
set);
• αiβj = βkαl for α, β ∈ {s, t} and all integers i, j, k, l such that {dj(i), j} = {dl(k), l}.

Proof. The latter condition is satisfied only when (i, j, k, l) = (i, j, i, j) (for any i, j) or when
(i, j, k, l) = (i, j, j − 1, i) or (j − 1, i, i, j) (for i < j).

Lemma A.2. For q ∈ Qn, α ∈ {s, t} and k ∈ {1, . . . , n}
σ(q) ◦ dk = dσ(q)(k) ◦ σ(ασ(q)(k)(q)).

Proof. Both maps have the same image {1, . . . , n} \ {σ(q)(k)} so it is enough to show that
they both are increasing. The compositions of both sides with λ(q), which when seen as a
function from {1 . . . n} → UE (Q), it is increasing, are

λ(q) ◦ σ(q) ◦ dk
and

λ(q) ◦ dσ(q)(k) ◦ σ(ασ(q)(k)(q)) = λ(ασ(q)(k)(q)) ◦ σ(ασ(q)(k)(q)).

They are increasing since λ(x) ◦σ(x) is increasing for all x. The equation above follows from
Lemma 2.2.(1).

Lemma A.3. The maps s′i and t′i satisfy the precubical relations.

Proof. We will use the criterion in Lemma A.1. Choose i, j, k, l such that (dj(i), j) = (l, dl(k)).
We have

α′i(β
′
j(q)) = α′i(βσ(q)(j)(q)) = ασ(βσ(q)(j)(q))(i)(βσ(q)(j)(q))

and

β′k(α
′
l(q)) = β′k(ασ(q)(l)(q)) = βσ(ασ(q)(l)(q))(k)(βσ(q)(l)(q))

Since (Lemma A.2)

dσ(q)(j)(σ(βσ(q)(j)(q))(i)) = σ(q)(dj(i)) = σ(q)(l),
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q11
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q31

Figure 13: The broken box example of non-
sculpture with needed annotations.

c1 b2

b1

c2
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q10
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c3

a2 a1

a5

a3 a4

Figure 14: A one-dimensional acyclic
HDA which cannot be
sculpted.

and

dσ(q)(l)(σ(ασ(q)(l)(q))(k)) = σ(q)(dl(k)) = σ(q)(j),

the conclusion follows.

Appendix B. Proofs for Sec. 6

Proof of Theorem 6.1. The two first examples of the theorem are 2-dimensional HDAs which
are also their own history unfoldings.

To show that the broken box cannot be sculpted (refer to Figure 13 for annotations) we
apply the labeling strategy described in Section 4. First we apply the unfolding procedure STπ
and for the two problematic corner states q10 and q20 we obtain the following ST-configurations
STπ(π1) = ({q11, q41}, {q11, q41}) respectively STπ(π2) = ({q21, q31}, {q21, q31}), where π1 is the
lower rooted path ending in q10 and π2 is the other lower path ending in q20.

The second step is to apply the minimal equivalence
ev∼, since this is required for any

HDA. Applying
ev∼ on our example equates q11

ev∼ q31 because of the three squares: front, top,
back, which share horizontal faces. (Transitivity of the equivalence was applied.) The same

argument equates q21
ev∼ q41, this time going through the squares left-side, top, right-side.

We now see that through ρev∼ we have labeled both q10 and q20 with the same label

({[q21], [q31]}, {[q21], [q31]}), made of equivalence classes. However, for a sculpture we cannot
have two cells labeled the same.

Showing that the example of Fig. 5 is similar and is enough to look at the transitions
labeled with d. After applying the minimal equivalence the first two lower states where the
lower d-transitions (call these q11 and q21) end are labeled with ([q11], [q11]) and ([q21], [q21]). But
these are equated by the minimal equivalence due to the two squares that share the upper
d-transition.

The example from Fig. 8 is a one-dimensional acyclic HDA that cannot be sculpted
(refer to Figure 14 for annotations used in this argument), which also shows that no two-
dimensional structure is needed for things to turn problematic: already in dimension 1 there
are acyclic HDA which cannot be sculpted. Our algorithm detects this without using the

minimal equivalence
ev∼, because this is not applicable for this example. However, there are

several homotopy pairs of length 2, i.e., called interleaving squares. Each interleaving square
forces the equating of their parallel transitions. In this example, the horisontal transitions
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of the inner interleaving square, as well as the two ones (upper and lower) connected to
it equate the four transition cells that we named b1 ∼ b2 ∼ b3 ∼ b4. Similarly, we must
equate the vertical transitions of the inner interleaving square, and the two (left and right)
connected to it, making c1 ∼ c2 ∼ c3 ∼ c4. Now the four outer interleaving squares that
we already treated the b and c transitions have in common the parallel transitions labeled
by a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. This necessary equivalence makes the two states connected
with a dashed line to be identified because they now receive the same ST-configuration as
label ({[a1], [b1], [c1]}, {[a1], [b1], [c1]}), which cannot be. Moreover, there is no backtracking
possible because for the interleaving squares there is only one possible way to equate their
transitions; unlike for longer homotopy pairs where we can try several possible equating
alternatives, as it was the case in Example 4.28 with Figure 11.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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