
Logical Methods in Computer Science
Volume 17, Issue 2, 2021, pp. 9:1–9:61
https://lmcs.episciences.org/

Submitted Aug. 22, 2019
Published Apr. 22, 2021

LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS ∗

BERT LINDENHOVIUS a, MICHAEL MISLOVE a, AND VLADIMIR ZAMDZHIEV b

a Tulane University, New Orleans, USA

b Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract. We describe a type system with mixed linear and non-linear recursive types
called LNL-FPC (the linear/non-linear fixpoint calculus). The type system supports linear
typing, which enhances the safety properties of programs, but also supports non-linear
typing as well, which makes the type system more convenient for programming. Just
as in FPC, we show that LNL-FPC supports type-level recursion, which in turn induces
term-level recursion. We also provide sound and computationally adequate categorical
models for LNL-FPC that describe the categorical structure of the substructural operations
of Intuitionistic Linear Logic at all non-linear types, including the recursive ones. In order to
do so, we describe a new technique for solving recursive domain equations within cartesian
categories by constructing the solutions over pre-embeddings. The type system also enjoys
implicit weakening and contraction rules that we are able to model by identifying the
canonical comonoid structure of all non-linear types. We also show that the requirements
of our abstract model are reasonable by constructing a large class of concrete models that
have found applications not only in classical functional programming, but also in emerging
programming paradigms that incorporate linear types, such as quantum programming and
circuit description programming languages.

1. Introduction

The Fixpoint Calculus (FPC) is a type system that has been extensively studied as a
foundation for functional programming languages with recursive types. Originally proposed
by Plotkin [Plo85], FPC was the focus of Fiore’s celebrated PhD thesis [Fio94]. The seminal
paper [FP94] gives a summary account of how axiomatic domain theory can be used to
characterize sound and computationally adequate denotational models of FPC.

Girard’s introduction of linear logic [Gir87] initiated a parallel line of research into the
logics underpinning functional programming languages [Abr93], focusing on the analysis of
intuitionistic logic in terms of how hypotheses are consumed as resources for proofs. Attempts
to bring linear types into functional programming languages soon followed [Wad90]. Recently,
there has been a concrete proposal for extending Haskell with linear types [BBN+17], and
new languages are proposed that provide both linear and non-linear types with convenience
for programming a design goal [TP11, Mor16]. One of the main benefits of linear types

Key words and phrases: recursive types, intuitionistic linear logic, categorical semantics.
∗ This is an extended version of the ICFP paper [LMZ19].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(2:9)2021
© Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

9:2 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

is the enhanced safety properties of programs, which results from the more fine-grained
control of resources, e.g., safe in-place updates of mutable data and safe access control to
external resources such as files, sockets, etc. (see [BBN+17]). Linear types also appear in
concurrent settings where session types can be used to model the π-calculus [CPT16]; in
quantum programming languages where they are used to ensure error-freeness by enforcing
compliance with the laws of quantum mechanics [PSV14]; and in circuit description program-
ming languages where they are used to ensure that wires do not split and do not remain
unconnected [RS18, LMZ18].

In this paper we present a foundational treatment of mixed linear and non-linear recursive
types. We formulate a denotational semantics that shows how solutions to a large class of
domain equations may be interpreted in both a cartesian category and a linear one and that
the solutions are strongly related.

Overview and summary of results. To illustrate our results, we present a type system
called LNL-FPC (the linear/non-linear fixpoint calculus). The syntax of our language (§2)
can roughly be understood as adding linear features to FPC, or alternatively, as adding
recursive types to a linear/non-linear lambda calculus (such as DILL [Bar96] or LNL [Ben95]).
More precisely, it is an extension with recursive types of the circuit-free fragment of Proto-
Quipper-M [RS17] that is referred to as the CLNL calculus in [LMZ18]. The type system has
implicit weakening and contraction rules: non-linear variables are automatically copied and
discarded whenever necessary by the language (without requiring user input). The non-linear
terms, types and contexts form subsets of the terms, types and contexts of LNL-FPC. There
is no strict separation between linear and non-linear primitives in LNL-FPC. Instead, we view
the non-linear primitives as having the additional property of being compatible with respect
to the substructural operations of contraction and weakening (copying and discarding), and
the remaining primitives are necessarily treated linearly by the type system. This leads to
greater convenience for programming, because our type system reduces the need for applying
promotion (lifting) and dereliction (forcing) operations, essentially only to linear function
types. We also equip LNL-FPC with a call-by-value big-step operational semantics and
show that type-level recursion induces term-level recursion (§3), thus recreating a well-known
result from FPC.

The primary difficulties in designing LNL-FPC are on the denotational side. Our
categorical model (§5) is a CPO-enriched linear/non-linear (LNL) model [Ben95] that
has suitable ω-colimits. It is given by a CPO-enriched symmetric monoidal adjunction

C L
F

`

G
. We show that the category L (representing the linear world), is CPO-

algebraically compact in the sense of [FP94] and thus one can solve recursive domain equations
in L by constructing limits and colimits over embedding-projection pairs using the famous
limit-colimit coincidence theorem [SP82]. The same paper shows any mixed-variance CPO-
functor T : Lop × L → L may be seen as a covariant functor Te : Le × Le → Le on the
subcategory Le of embeddings and we use this as a basis for the interpretation of types.

However, since we work in a mixed linear/non-linear setting, we also have to explain
how to solve certain recursive domain equations involving mixed-variance functors within
the category C, which is a more challenging problem. We do so by reflecting the solutions
from Le via the left adjoint F into the subcategory of pre-embeddings Cpe, where a pre-
embedding f ∈ C is a morphism, s.t. Ff is an embedding in Le. Unlike the subcategory

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:3

of embeddings Ce, the subcategory of pre-embeddings Cpe has sufficient structure for
constructing (parameterised) initial algebras, which moreover satisfy important coherence
properties with respect to the (parameterised) initial algebras constructed in Le (§4).

Then, the (standard) interpretation of an (arbitrary) type Θ ` A is a covariant functor
denoted JΘ ` AK : L

|Θ|
e → Le. A non-linear type Θ ` P admits an additional non-linear

interpretation as a covariant functor LΘ ` P M : C
|Θ|
pe → Cpe that is strongly related to its

standard interpretation via a natural isomorphism

αΘ`P : JΘ ` P K ◦ F×|Θ|pe
∼= Fpe ◦ LΘ ` P M : C|Θ|pe → Le,

where Fpe is the restriction of F to Cpe. By exploiting this natural isomorphism and the
strong coherence properties that it enjoys, we provide a coherent interpretation of the
substructural operations of ILL at all non-linear types, including the recursive ones. This
then allows us to characterise the canonical comonoid structure of non-linear (recursive) types
and we prove our semantics sound (§6). We emphasize that even though our recursive type
expressions allow use of(, the reason we can interpret these types as covariant functors is
because we have identified suitable well-behaved subcategories of C and L in our model.

We also show that the requirements of our abstract model are reasonable by constructing
a large class of concrete models that have been used in different programming paradigms
ranging from classical to quantum (§5.4). In addition, we present a computational adequacy
result for a (non-empty) class of models that satisfy certain additional conditions (§7).

Our semantic contribution can be split into two main parts. The first one is the two-tier
semantics (one linear and one non-linear), together with the coherence properties relating
them, that show how to rigorously construct the comonoids we need for non-linear types in
the linear category. However, in order to achieve this in the presence of recursive types, our
second main contribution is fundamental. It shows how the solutions to recursive domain
equations on the linear side, which are constructed over embeddings (and that are well-
understood), can be reflected onto the cartesian side in a coherent way by constructing them
over pre-embeddings (which is novel).

Our results presented here also carry over to two-judgement calculi, such as LNL
[Ben95, BW96], and it is not hard to see that our two-tier semantics presented here allows
one to extend such two-judgement calculi with recursive types on both the linear side and
the non-linear side. More specifically, if we adopt this view, then our semantics allows for a
full range of recursive types on the linear side and for all recursive types on the non-linear
side that do not involve non-linear function space (but which do allow linear function space
followed by the right-adjoint type constructor, making the composite type non-linear).

Publication History. This article is an extended version of the ICFP paper [LMZ19].
Compared to that version, extensive additions and improvements have been made, including:
• A more general notion of model where we no longer assume C = CPO.
• Adding an entire subsection devoted to showing that the formal approximation relations
(needed for the adequacy proof) exist (§7.1).
• Improving the presentation of parameterised initial algebras (§4).
• Adding omitted proofs and lemmas throughout the entire paper.
• Adding an example program for the factorial function (Example 2.9) that illustrates the
presence of non-linear types other than those of the form !A.

9:4 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

2. Syntax of LNL-FPC

We begin by describing the syntax of LNL-FPC. The type-level syntax is very similar to
that of FPC [AF96] and the term-level syntax can be seen as an extension with recursive
types of either the circuit-free fragment of Proto-Quipper-M [RS17], or the CLNL calculus
in [LMZ18, LMZ20].

2.1. LNL-FPC Types. We use X,Y, Z to range over type variables, which are needed in
order to form recursive types. We use Θ to range over type contexts (see Figure 1). A
type context Θ = X1, . . . , Xn is simply a finite list of type variables. A type context Θ is
well-formed, denoted ` Θ, if it can be derived from the rules:

Θ
` ·

` Θ X 6∈ Θ,` Θ, X

that is, if all the variables of Θ are distinct.
We use A,B,C to range over (arbitrary) types of our language (see Figure 1 for their

grammar). A type A is well-formed in type context Θ, denoted Θ ` A, if the judgement can
be derived according to the following rules:
` Θ 1 ≤ i ≤ |Θ|

Θ ` Θi

Θ ` A
Θ `!A

Θ ` A Θ ` B ? ∈ {+,⊗,(}
Θ ` A ? B

Θ, X ` A
Θ ` µX.A

Note that if Θ ` A is derivable, then so is ` Θ. A well-formed type A is closed if · ` A.
The non-linear types form a subset of our types and we use P,R to range over them (see

Figure 1 for their grammar). Of course, they are governed by the same formation rules as
those for (arbitrary) types. A type that is not non-linear is called linear. Note that we do
not provide a separate grammar for linear types. This is because we will mostly be working
with arbitrary types (which we do not assume we may copy/discard/promote) and with
non-linear types (which we may always copy/discard/promote). In particular, it is possible
for a non-linear type to be treated as arbitrary, but not vice versa. Thus, when we write
Θ ` A, the type A may or may not be non-linear, but when we write Θ ` P , then P can be
only non-linear. In particular, we do not introduce specific notation for linear types.

Example 2.1. We list some important closed types that are definable in LNL-FPC. The
empty type is 0 ≡ µX.X, which is non-linear. Another non-linear type is the unit type, which
is defined by I ≡ !(0(0). The type of natural numbers is Nat ≡ µX.I +X, which is also
non-linear. Given a closed type A, then lists of type A are defined by List A ≡ µX.I+A⊗X.
The type List A is non-linear iff A is non-linear. Lazy datatypes can be defined by making
use of the ! and the (connectives. For instance, streams of type A can be defined by
Stream A ≡ µX.A⊗!X, which is a non-linear type iff A is non-linear. The ability to form
recursive types using both(and ! is a powerful feature and it allows us to derive a term-level
recursion operator (see §2.3). Notice that we do not allow non-linear function space A→ B,
but by using both(and ! we may still define recursion for non-linear functions.

For any types A and B and type variable X, we denote with A[B/X] the type where all
free occurrences of X in A are replaced by B (which is defined in the standard way).

Lemma 2.2. If Θ, X ` A and Θ ` B, then Θ ` A[B/X]. Moreover, if A and B are
non-linear, then so is A[B/X].

Remark 2.3. Like FPC, our language allows nested type recursion (e.g. µX.µY.I+(X⊗Y)).

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:5

Type variables X,Y, Z
Term variables x, y, z
Types A,B,C ::= X | A+B | A⊗B | A(B | !A | µX.A
Non-linear types P,R ::= X | P +R | P ⊗R | !A | µX.P
Type contexts Θ ::= X1, X2, . . . , Xn

Term contexts Γ,Σ ::= x1 : A1, x2 : A2, . . . , xn : An
Non-linear term contexts Φ ::= x1 : P1, x2 : P2, . . . , xn : Pn
Terms m,n, p ::= x | leftA,Bm | rightA,Bm

| case m of {left x→ n right y → p}
| 〈m,n〉 | let 〈x, y〉 = m in n | λxA.m | mn
| lift m | force m | foldµX.Am | unfold m

Values v, w ::= x | leftA,Bv | rightA,Bv | 〈v, w〉 | λxA.m
| lift m | foldµX.Av

Figure 1: Syntax of the LNL-FPC Calculus.

2.2. LNL-FPC Terms. We use x, y, z to range over term variables. We use Γ,Σ to range
over (arbitrary) term contexts. A term context is a list of term variables with types, written
as Γ = x1 : A1, . . . , xn : An. A term context is well-formed in type context Θ, denoted Θ ` Γ,
if the judgement can be derived from the rules:

` Θ
Θ ` ·

Θ ` Γ Θ ` A x 6∈ Γ,
Θ ` Γ, x : A

that is, if Γ is a list of distinct variables with well-formed types. A non-linear term context
is a term context whose types are all non-linear. We use Φ to range over non-linear term
contexts. Just as with types, we do not introduce specific notation for purely linear contexts.

The terms and values of our language are defined in Figure 1. A term judgement has the
form Θ; Γ ` m : A and indicates that m is a well-formed term of type A in type context Θ
and term context Γ. The formation rules are shown in Figure 2, under the condition that the
Γ and Σ contexts do not have any variables in common (one can deduce Φ∩Γ = ∅ = Φ∩Σ).
The formation rules for fold and unfold are the same as in FPC (cf. [AF96]). Observe that
if Θ; Γ ` m : A, then also Θ ` Γ and Θ ` A. Note that there is only one kind of term context
and we do not have explicit notation to separate the linear variables from the non-linear
ones. Thus, when we write Θ; Γ ` m : A, then the context Γ could contain both linear and
non-linear variables. However, when we write Θ; Φ ` m : A, then the context Φ contains
only non-linear variables. The type system enforces that a linear variable is used exactly
once, whereas a non-linear variable may be used any number of times, including zero.

Type assignment to terms is unique, but derivations of term judgements in LNL-FPC
are in general not unique, because non-linear variables may be part of an arbitrary context
Γ, that is, our type system allows for non-linear variables to be treated as if they were linear
(but not vice versa). For example, if Θ ` P1 and Θ ` P2 are non-linear types, then:

Θ;x : P1 ` x : P1 Θ; y : P2 ` y : P2

Θ;x : P1, y : P2 ` 〈x, y〉 : P1 ⊗ P2

Θ;x : P1 ` x : P1 Θ;x : P1, y : P2 ` y : P2

Θ;x : P1, y : P2 ` 〈x, y〉 : P1 ⊗ P2

are two different derivations of the same judgement. In both of these derivations, the variable
y is treated as if it were linear and it is propagated up into only one judgement. The variable
x we treat non-linearly in one case (propagated up twice) and in other case we treat it as if

9:6 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Θ ` Φ, x : A

Θ; Φ, x : A ` x : A

Θ; Γ ` m : A Θ ` B
Θ; Γ ` leftA,Bm : A+B

Θ; Γ ` m : B Θ ` A
Θ; Γ ` rightA,Bm : A+B

Θ; Φ,Γ ` m : A+B Θ; Φ,Σ, x : A ` n : C Θ; Φ,Σ, y : B ` p : C

Θ; Φ,Γ,Σ ` case m of {left x→ n | right y → p} : C

Θ; Φ,Γ ` m : A Θ; Φ,Σ ` n : B

Θ; Φ,Γ,Σ ` 〈m,n〉 : A⊗B
Θ; Φ,Γ ` m : A⊗B Θ; Φ,Σ, x : A, y : B ` n : C

Θ; Φ,Γ,Σ ` let 〈x, y〉 = m in n : C

Θ; Γ, x : A ` m : B

Θ; Γ ` λxA.m : A(B

Θ; Φ,Γ ` m : A(B Θ; Φ,Σ ` n : A

Θ; Φ,Γ,Σ ` mn : B

Θ; Φ ` m : A

Θ; Φ ` lift m : !A

Θ; Γ ` m : !A

Θ; Γ ` force m : A

Θ; Γ ` m : A[µX.A/X] Θ, X ` A
Θ; Γ ` foldµX.Am : µX.A

Θ; Γ ` m : µX.A

Θ; Γ ` unfold m : A[µX.A/X]

where Γ ∩ Σ = ∅.

Figure 2: Formation rules for LNL-FPC terms.

it were linear (propagated up once). This is because non-linear variables are allowed to be
part of arbitrary contexts (see formation rule for pairing).

This non-uniqueness is a result of the design choice to have only one kind of pairing, one
kind of conditional branching, etc. (instead of having separate linear and non-linear ones),
which we think results in a more convenient syntax for programming. We note that the
interpretation of any two derivations of the same judgement are equal (see Theorem 6.12).

Example 2.4. The term ·; · ` λx.〈x, x〉 : A (A ⊗ A is well-formed iff A is a non-linear
type. Indeed, if A is a linear type, then the term ·;x : A ` 〈x, x〉 : A⊗A is not well-formed,
because the variable x is part of a linear context and contraction is not admissible.

A term of closed type is a term m, such that · ; Γ ` m : A for some type A and context
Γ. In such a situation we simply write Γ ` m : A. Naturally, we are primarily interested in
these terms (observe that the term formation rules are invariant with respect to the type
context). A program is a term p, such that · ; · ` p : A for some type A and we simply write
p : A to indicate this.

Example 2.5. We list some important programs. We define ∗ ≡ lift λx0.x : I, which
is the canonical value of unit type. The zero natural number is defined by the program
zero ≡ foldNat leftI,Nat ∗ : Nat. The successor function can be defined by the program
succ ≡ λnNat.foldNat rightI,Natn : Nat(Nat.

Given terms m, n and a variable x, we denote with m[n/x] the term obtained from m
by replacing all free occurrences of x with n (which is defined in the standard way).

Lemma 2.6 (Substitution). If Θ; Φ,Γ, x : A ` m : B and Θ; Φ,Σ ` n : A and Γ ∩ Σ = ∅,
then Θ; Φ,Γ,Σ ` m[n/x] : B.

We say a value Θ; Γ ` v : P is non-linear whenever the type P is non-linear.

Lemma 2.7. If Θ; Γ ` v : P is a non-linear value, then Γ is also non-linear.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:7

2.3. Term Recursion in LNL-FPC. Recall that in FPC, general recursion on terms may
be implemented using the fold and unfold terms. The same is also true for LNL-FPC.
Moreover, the derived term for recursion has exactly the same syntax as the one in [LMZ18],
where the authors showed how to extend a mixed linear/non-linear type system with recursion.
In the next section we show it has the same operational behaviour as well. We also note that
our recursion term is very similar to one of the recursive terms in [Epp03, Chapter 8].

Theorem 2.8. The rule
Θ; Φ, z :!A ` m : A

Θ; Φ ` rec z!A.m : A
is derivable in LNL-FPC, where Φ is

non-linear,

rec z!A.m ≡ (unfold force αzm)αzm and

αzm ≡ lift fold λx!µX.(!X(A).(λz!A.m)(lift (unfold force x)x),

such that X 6∈ Θ and x 6∈ Φ.

Proof. Since Θ; Φ, z : !A ` m : A, then Θ ` A (see §2.2) and since X 6∈ Θ, then

Θ, X ` !X (A and Θ ` x : !µX.(!X (A) (2.1)

We will first show that:

Θ;x : !µX.(!X (A) ` lift (unfold force x)x : !A (2.2)

For brevity, we write R ≡ µX.(!X (A). Then, we have:
(2.1)

Θ ` x : !R
Θ;x : !R ` x : !R

Θ;x : !R ` force x : R
Θ;x : !R ` unfold force x :

(
!R
)
(A

(2.1)
Θ ` x : !R

Θ;x : !R ` x : !R
Θ;x : !R ` (unfold force x)x : A

Θ;x : !R ` lift (unfold force x)x : !A

Next, we show that:
Θ; Φ, z : !A ` m : A

Θ; Φ ` αzm : !R
(2.3)

Indeed, we have:

Θ; Φ, z : !A ` m : A

Θ; Φ ` (λz!A.m) : !A(A
(2.2)

Θ;x : !R ` lift (unfold force x)x : !A

Θ; Φ, x : !R ` (λz!A.m)(lift (unfold force x)x) : A

Θ; Φ ` λx!R.(λz!A.m)(lift (unfold force x)x) : (!R)(A
(2.1)

Θ, X ` !X (A

Θ; Φ ` fold λx!R.(λz!A.m)(lift (unfold force x)x) : R
Θ; Φ ` lift fold λx!R.(λz!A.m)(lift (unfold force x)x) : !R

Finally:

Θ; Φ, z : !A ` m : A
(2.3)

Θ; Φ ` αzm : !R
Θ; Φ ` force αzm : R

Θ; Φ ` unfold force αzm : (!R)(A

Θ; Φ, z : !A ` m : A
(2.3)

Θ; Φ ` αzm : !R
Θ; Φ ` (unfold force αzm)αzm : A

9:8 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

⇓
x ⇓ x

m ⇓ v
left m ⇓ left v

m ⇓ v
right m ⇓ right v

m ⇓ left v n[v/x] ⇓ w
case m of {left x→ n | right y → p} ⇓ w

m ⇓ v n ⇓ w
〈m,n〉 ⇓ 〈v, w〉

m ⇓ right v p[v/y] ⇓ w
case m of {left x→ n | right y → p} ⇓ w

m ⇓ 〈v, v′〉 n[v/x, v′/y] ⇓ w
let 〈x, y〉 = m in n ⇓ w

⇓
λx.m ⇓ λx.m

m ⇓ λx.m′ n ⇓ v m′[v/x] ⇓ w
mn ⇓ w

⇓
lift m ⇓ lift m

m ⇓ lift m′ m′ ⇓ v
force m ⇓ v

m ⇓ v
fold m ⇓ fold v

m ⇓ fold v
unfold m ⇓ v

Figure 3: Operational semantics of the LNL-FPC calculus.

and therefore:
Θ; Φ, z : !A ` m : A

Θ; Φ ` rec z!A.m : A

We now consider an example that highlights some of the advantages of the ambivalence
of our typing system.

Example 2.9. The factorial function on natural numbers may be defined by:
rec fact. λ n.
case unfold n of
left u –> succ zero
right n’ –> mult(n, (force fact) n’)
where mult is the multiplication function (which also can be easily defined). Note that
copying and discarding of the non-linear variables is implicit. In more traditional linear
typing systems, the variables for which contraction and weakening (copying and discarding)
are admissible are those of type !A. But, notice that the variable n above is of type Nat,
which is not of the form !A. We are able to implicitly copy it above, because we have
extended the non-linear types to include more types than just those of the form !A. This
means that lift and force are mostly needed for promotion and dereliction of terms of
function types (as can be seen above).

3. Operational Semantics

The operational semantics of LNL-FPC is standard. We use a big-step call-by-value evaluation
relation whose rules are shown in Figure 3.

As usual, the values are terms v such that v ⇓ v (see Figure 1). The evaluation relation
(− ⇓ −) is, in fact, a partial function from terms to values. Of course, it is not a total
function, because the language supports a general recursion operator, as we show next.

Theorem 3.1. The evaluation rule m[lift rec z!A.m / z] ⇓ v
rec z!A.m ⇓ v

is derivable within LNL-

FPC, where rec z!A.m is defined as in Theorem 2.8.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:9

Proof. First, we introduce the term

m′ ≡ (λz!A.m)(lift (unfold force x)x),

so that
αzm = lift fold λx!µX.(!X(A).m′,

and

m′[αzm / x] = (λz!A.m)(lift (unfold force αzm)αzm) = (λz!A.m)(lift rec z!A.m).

Then

λz!A.m ⇓ λz!A.m lift rec z!A.m ⇓ lift rec z!A.m m[lift rec z!A.m / z] ⇓ v
(λz!A.m)(lift rec z!A.m) ⇓ v

hence
m[lift rec z!A.m / z] ⇓ v

m′[αzm / x] ⇓ v
(3.1)

Moreover,

lift fold λx.m′ ⇓ lift fold λx.m′
λx.m′ ⇓ λx.m′

fold λx.m′ ⇓ fold λx.m′

force lift fold λx.m′ ⇓ fold λx.m′

unfold force lift fold λx.m′ ⇓ λx.m′

hence we obtain
unfold force αzm ⇓ λx.m′ (3.2)

Then

(3.2)
unfold force αzm ⇓ λx.m′ αzm ⇓ αzm

m[lift rec z!A.m / z] ⇓ v
(3.1)

m′[αzm / x] ⇓ v
(unfold force αzm)αzm ⇓ v,

and therefore:
m[lift rec z!A.m / z] ⇓ v

rec z!A.m ⇓ v
This theorem shows that our derived general recursion operator is exactly the same as

the one in [LMZ18], where it was added as an axiom.

Notation 3.2. A term m is said to terminate, denoted by m ⇓, if there exists a value v,
such that m ⇓ v.

The simplest non-terminating program of type A is given by rec z!A. force z : A.

Example 3.3. The constant stream of zero natural numbers can be defined by

const0 ≡ rec s!(Stream Nat)foldStream Nat 〈zero, s〉 : Stream Nat.

Remark 3.4. Streams of type P should not be defined as µX.P ⊗X, because there are
no closed values of this type. This is a consequence of Theorem 7.10 and the fact that
JµX.P ⊗XK = 0 (see §6).

Theorem 3.5 (Subject reduction). If Θ; Γ ` m : A and m ⇓ v, then Θ; Γ ` v : A.

Assumption 3.6. Throughout the remainder of the paper, we implicitly assume that all
types, contexts and terms are well-formed.

9:10 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

4. ω-categories and (Parameterised) Initial Algebras

In this section we recall the theory of ω-categories introduced in [LS81] and develop new results
of our own. In §4.1, we introduce some notation for operations on natural transformations
that we use throughout the paper. In §4.2, we recall how initial algebras are constructed in
ω-categories. In §4.3, we show how to construct parameterised initial algebras in ω-categories
that we use to model recursive types that may potentially be defined by nested recursion.
In §4.4, we present new results that show how (parameterised) initial algebras of functors
acting on different categories may be related to one another, provided there exist suitable
mediating functors between the two categories. The type-level semantics makes heavy use of
this relationship in order to present coherent non-linear type interpretations that are strongly
related to the standard type interpretations.

4.1. Operations on natural transformations. Given natural transformations τ and σ
and a functor F , we denote: vertical composition by σ ◦ τ ; horizontal composition by σ ∗ τ ;
whiskering by Fτ and τF , whenever these operations are admissible.

If τ : T ⇒ H : C→ C is a natural transformation between two endofunctors, then we
define τ∗n := τ ∗ · · · ∗ τ : Tn ⇒ Hn : C → C to be the n-fold horizontal composition of τ
with itself (if n = 0, then τ∗0 is the identity id : Id⇒ Id : C→ C).

If τ : T ⇒ T ′ : A→ B and σ : H ⇒ H ′ : C→ D are natural transformations, we define
a natural transformation τ × σ : T ×H ⇒ T ′ ×H ′ : A×C→ B×D via the assignment
(τ × σ)(A,C) := (τA, σC).

If τ : T ⇒ T ′ : A→ B and σ : H ⇒ H ′ : A→ C are natural transformations, we define
a natural transformation 〈τ, σ〉 : 〈T,H〉 ⇒ 〈T ′, H ′〉 : A→ B×C by 〈τ, σ〉A := (τA, σA).

We denote with ω the poset of natural numbers when viewed as a category. A functor
D : ω → C is then an ω-diagram. We let [A,B] denote the functor category from A to B.
Given a functor M : A→ B, we define a functor M .− : [ω,A]→ [ω,B] by:

M .D = M ◦D and M . τ = Mτ.

So, the functor M .− is just whiskering with M .

4.2. Initial algebras in ω-categories. We now recall some definitions and facts about
ω-categories and ω-functors that are stated in [LS81]. A functor F : A→ C is an ω-functor
if F preserves all existing colimits of ω-diagrams. If, in addition, A has an initial object and
F preserves it, then we say that F is a strict ω-functor. Of course, ω-functors are closed
under composition and pairing, that is, if F and G are ω-functors, then so are F ◦G and
〈F,G〉 whenever composition and pairing are admissible.

A category C is an ω-category if it has an initial object and all ω-colimits. We denote
with [A→ω C] the full subcategory of [A,C] consisting of ω-functors. If C is an ω-category,
then so are [A,C] and [A→ω C].

Definition 4.1 ([LS81]). Given an ω-category C with an initial object ∅, we define a functor
S : [C→ω C]→ [ω,C] in the following way:

• Given an ω-functor T : C→ C, then S(T) is the ω-diagram ∅ ι−→ T∅ Tι−→ T 2∅ T 2ι−−→ · · · .
More specifically, S(T)(n) := Tn∅ and S(T)(n ≤ n+ 1) := Tnι, where ι : ∅→ T∅ is the
initial map.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:11

• Given τ : T ⇒ H : C→ C, then S(τ) : S(T)⇒ S(H) : ω → C is given by

S(τ)n := (τ∗n)∅ : Tn∅→ Hn∅.

We also define a functor Y := colim ◦ S : [C→ω C]→ C, where colim : [ω,C] → C is the
colimiting functor, which is the left-adjoint of the ω-ary diagonal functor ∆ : C→ [ω,C].

Theorem 4.2. [LS81] Let C be an arbitrary ω-category. Then both S : [C→ω C]→ [ω,C]
and Y : [C→ω C]→ C are ω-functors.

Therefore, for an ω-functor T : C→ C on an ω-category C, its initial sequence is given
by S(T) and the carrier of its initial algebra is given by Y (T), thanks to a famous result
in [Adá74]. To describe its initial algebra structure we need an additional definition.

Theorem 4.3 ([AMM18]). Let T : C → C be an ω-endofunctor on an ω-category C. We
define a natural transformation sT : S(T)⇒ T ◦ S(T) : ω → C by (sT)n := Tn(ιT∅), where
ιT∅ : ∅→ T∅ is the initial morphism. Then one can define an isomorphism:

yT : T (Y (T))→ Y (T)

yT :=

(
TY (T) = T colim(S(T)) = colim(TS(T))

(colim(sT))−1

−−−−−−−−→ colim(S(T)) = Y (T)

)
and the pair (Y (T), yT) forms the initial T -algebra.

4.3. Parameterised initial algebras. Initial algebras can be used to model recursive types
where the type recursion is done over a single type variable. In order to model recursive
types defined by nested recursion, one has to allow recursive types to depend on several type
variables. The interpretation of these more general recursive types requires a more general
notion, namely parameterised initial algebras, which we introduce next.

Definition 4.4 (cf. [Fio94, §6.1]). Given categories A and B and a functor T : A×B→ B,
a parameterised initial algebra for T is a pair (T †, φT), such that:
• T † : A→ B is a functor;
• φT : T ◦ 〈Id, T †〉 ⇒ T † : A→ B is a natural isomorphism;
• For every A ∈ Ob(A), the pair (T †A, φTA) is an initial T (A,−)-algebra.

Remark 4.5. Notice that by trivialising the category A, we recover the usual notion of
initial algebra. Because of this, parameterised initial algebras are a more general notion.

Remark 4.6. The naturality of φ (4.1) in fact determines the action of T † on morphisms.
Indeed, for every f : A1 → A2 in A, T †f is the unique T (A1,−)-algebra morphism making
(4.2) commute. To see this, notice that (4.1) and (4.2) are equivalent diagrams.

T (A1, T
†A1)

T (A2, T
†A2)

T (f, T †f)

T †A1

T †A2

φTA1

φTA2

T †f (4.1)

9:12 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

T (A1, T
†A1)

T (A1, T
†A2)

T (A1, T
†f)

T †A1

T †A2

φTA1

T (A2, T
†A2)

T (f, T †A2) φTA2

T †f
(4.2)

Next, we aim to show that the class of ω-functors on an ω-category is closed under
formation of parameterised initial algebras (Theorem 4.12). In order to do so, we have to
establish a few additional lemmas.

Lemma 4.7. Let B be an ω-category and let T : A×B→ B be an ω-functor. The mapping

S(T (A,−))
sT (A,−)

=====⇒ T (A,−) ◦ S(T (A,−)) : ω → B

is natural in A. More specifically, the following diagram:

S(T (A,−)) T (A,−) ◦ S(T (A,−))

T (B,−) ◦ S(T (B,−))S(T (B,−))

S(T (f,−)) T (f,−) ∗ S(T (f,−))

sT (A,−)

sT (B,−)

commutes for any f : A→ B in A.

Proof. In Appendix A.1.

Notation 4.8. Given an ω-diagram D : ω → A, we denote objects D(n) by Dn, the colimit
of D (if it exists) by Dω and its colimiting cocone morphisms by dn : Dn → Dω.

We proceed with two simple lemmas that show that the colim : [ω,C]→ C functor is
quite well-behaved on ω-categories and ω-functors, as one would expect.

Lemma 4.9. Let T : A → B be an ω-functor between ω-categories A and B. Assume
further D,D′ : ω → A are ω-diagrams and τ : D ⇒ D′ a natural transformation. Then the
following diagram commutes:

T (colim(τ))

T (colim(D))colim(T ◦D)

colim(Tτ)

T (colim(D′))colim(T ◦D′)

Proof. In Appendix A.2.

Lemma 4.10. Let T,H : A → B be ω-functors between ω-categories A and B, and let
τ : T ⇒ H be a natural transformation. Given an ω-diagram D : ω → A, the following
diagram commutes:

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:13

τcolim(D)

T (colim(D))colim(T ◦D)

colim(τD)

H(colim(D))colim(H ◦D)

Proof. In Appendix A.3.

We now recall an important lemma that shows that ω-functors on ω-categories are closed
under currying.

Lemma 4.11 ([LS81]). Given an ω-category C and an ω-functor T : A×B→ C, we define
a functor λB.T (−, B) : A→ [B→ω C] by:

λB.T (A,B) := T (A,−) : B→ C, for A ∈ Ob(A);

λB.T (f,B) := T (f,−) : T (A1,−)⇒ T (A2,−) : B→ C, for f : A1 → A2.

Then λB.T (−, B) : A→ [B→ω C] is an ω-functor.

The main result from this subsection follows.

Theorem 4.12. Let B be an ω-category and let T : A×B→ B be an ω-functor. Then:
(1) The functor T † := Y ◦ λB.T (−, B) : A→ B is an ω-functor;
(2) There exists a natural isomorphism φT : T ◦ 〈Id, T †〉 ⇒ T † : A→ B given by:

φTA :=

(
T (A, T †A) = T (A, Y (T (A,−)))

yT (A,−)

−−−−−→ Y (T (A,−)) = T †A

)
;

(3) The pair (T †, φT) is a parameterised initial algebra of T .

Proof.
(1) Because T † is the composition of two ω-functors.
(2) Every component of φT is an isomorphism by Theorem 4.3. It remains to show

naturality. So let f : A → B be a morphism in A. For brevity we write TA, TB, Tf for
T (A,−), T (B,−), T (f,−), respectively. By definition

(φTA)−1 =

(
T †A = colim(S(TA))

colim(sT (A,−))−−−−−−−−−→ colim(TAS(TA)) = TA(colim(S(TA))) = T (A, T †A)

)
and naturality of φT comes down to the commutativity of the outer square of the diagram:

T †A colim(S(TA)) colim(TA ◦ S(TA)) TAcolim(S(TA)) T (A, T †A)

T †B colim(S(TB)) colim(TB ◦ S(TB)) TBcolim(S(TB)) T (B, T †B)

colim(sTA)

T (f, T †f)colim(Tf ∗ S(Tf))colim(S(Tf))T †f

colim(sTB)

Tfcolim(S(Tf))

(1) (4)(3)(2)

This is indeed the case, since squares (1) and (4) commute by definition of T †, and diagram
(2) commutes by the functoriality of colim and Lemma 4.7. By definition of horizontal

9:14 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

composition, we have Tf ∗ S(Tf) = TfS(TB) ◦ TAS(Tf). Since colim is a functor, it follows
from the latter equality that the commutativity of square (3) comes down to the commutativity
of the outer square of the following diagram:

TAcolim(S(Tf))

TA(colim(S(TA)))colim(TA ◦ S(TA)

colim(TAS(Tf))

TA(colim(S(TB)))colim(TAS(TB))

colim(TfS(TB)) Tfcolim(S(TB))

TB(colim(S(TB)))colim(TB ◦ S(TB))

Here the upper square commutes by Lemma 4.9 and the lower one by Lemma 4.10.
(3) For every A ∈ Ob(A), we have (T †A, φTA) = (Y (TA), yTA), which is the initial

T (A,−)-algebra by Theorem 4.3.

Remark 4.13. In the situation of the above theorem, we sometimes simply write φ instead
of φT whenever T is clear from the context. Moreover, in the special case when A = Bn,
we see that both T : Bn+1 → B and T † : Bn → B are ω-functors. In fact, in our semantic
treatment, the interpretation of a type Θ ` A is given by an ω-functor that is of the form
H : B|Θ| → B.

We conclude the subsection by showing an important proposition for proving the type
substitution lemma.

Proposition 4.14. Let C be an ω-category, T : B×C→ C an ω-functor and H : A→ B
an ω-functor. Then (T ◦ (H × Id))† = T † ◦H : A→ C.

Proof. For any object A ∈ Ob(A) and for any morphism f ∈ Mor(A), we have:

(T ◦ (H × Id))†(A) = Y (T (HA,−))

= (Y ◦ λB.T (−, B))(HA)

= T †(HA)

= (T † ◦H)(A)

(T ◦ (H × Id))†(f) = Y (T (Hf,−))

= (Y ◦ λB.T (−, B))(Hf)

= T †(Hf)

= (T † ◦H)(f).

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:15

4.4. Coherence properties of (parameterised) initial algebras. We model (arbitrary)
recursive types within a linear category that is algebraically compact in a strong sense and
that allows us to model recursive types involving the(connective. The non-linear recursive
types form a subset of our types for which we have to, in addition, provide categorical
structure that allows for them to be copied, discarded and promoted (the substructural
rules of intuitionistic linear logic). We do this by providing a non-linear interpretation of
these types within a cartesian category. The two interpretations live in different categories,
but they are strongly related to each other via suitable mediating functors and a natural
isomorphism. In order to show this, we first explain how parameterised initial algebras can
be related to each other in such a strong sense. The current subsection is devoted to this.

Notation 4.15. For a functor F : A×B→ B, we define a functor

F ∗ := S ◦ λB.F (−, B) : A→ [ω,B],

so that F † = colim ◦ F ∗.

Assumption 4.16. Throughout the remainder of the section, we assume we are given the
following data. Let A and C be categories and let B and D be ω-categories with initial
objects ∅ and 0, respectively. Let α : T ◦ (N ×M)⇒M ◦H be a natural isomorphism, as in:

C×DA×B

DB

T

M

N ×M

H
α

where H and T are ω-functors and where M is a strict ω-functor with z : 0 → M∅ the
required (unique) isomorphism. The functor N need not be an ω-functor.

Lemma 4.17. The assignment

α∗ : T ∗ ◦N ⇒ (M .−) ◦H∗ : A→ [ω,D] given by

(α∗A)0 :=
(

0
z−→M∅

)
(α∗A)n+1 :=

(
T (NA,−)n+10

T (NA,(α∗A)n)−−−−−−−−−→ T (NA,MH(A,−)n∅)
αA,H(A,−)n∅−−−−−−−−→MH(A,−)n+1∅

)
.

defines a natural isomorphism.

Proof. In Appendix A.4.

The next theorem shows how to extend the action of (−)† to natural transformations.

Theorem 4.18. The natural isomorphism α induces a natural isomorphism

α† : T † ◦N ⇒M ◦H† : A→ D defined by

α†A :=

(
T †NA = colim(T ∗NA)

colim(α∗A)
−−−−−−→ colim(MH∗A) = Mcolim(H∗A) = MH†A

)
.

9:16 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Proof. By Lemma 4.17, α∗A is an isomorphism and thus so is α†A. Naturality follows from:

T †NA colim(T ∗NA) colim(MH∗A) Mcolim(H∗A) MH†A

T †NB colim(T ∗NB) colim(MH∗B) Mcolim(H∗B) MH†B

colim(α∗A)

MH†fcolim(MH∗f)colim(T ∗Nf)T †Nf

colim(α∗B)

Mcolim(H∗f)

(1) (4)(3)(2)

where (1) and (4) commute by definition, (2) commutes by naturality of α∗ and functoriality of
colim, and (3) commutes because M preserves ω-colimits (more specifically, Lemma 4.9).

Remark 4.19. The above construction generalises the operation (−)† from [Fio94, Corollary
7.3.13] to the context of ω-categories.

Corollary 4.20. If A = Bn, C = Dn, N = M×n and α : T ◦M×n+1 ⇒M ◦H : Bn+1 → D
is a natural isomorphism, then so is α† : T † ◦M×n ⇒M ◦H† : Bn → D.

By reading off the proof of Theorem 4.18, we obtain another corollary that we use in
our adequacy proof.

Corollary 4.21. In the special case where α = id and z = id, then α† = id and thus
T † ◦N = M ◦H†.

We need two lemmas that establish some properties of the (−)∗ and (−)† operations.

Lemma 4.22. The operation (−)∗ defined in Lemma 4.17 enjoys the following properties:
(1) If β : H ⇒ H ′ : A×B→ B is a natural isomorphism, then for any A ∈ A :

(Mβ ◦ α)∗A = Mβ∗A ◦ α∗A.
(2) Given functors P : E→ C and Q : E→ A and given a natural isomorphism

γ : P ⇒ N ◦Q : E→ C, then for any E ∈ E :

(α(Q× Id) ◦ T (γ ×M))∗E = α∗QE ◦ T ∗γE .

Proof. In Appendix A.5.

Lemma 4.23. The operation (−)† enjoys the following properties:
(1) If β : H ⇒ H ′ : A×B→ B is a natural isomorphism, then (Mβ ◦ α)† = Mβ† ◦ α†.
(2) Given functors P : E→ C and Q : E→ A and given a natural isomorphism

γ : P ⇒ N ◦Q : E→ C, then (α(Q× Id) ◦ T (γ ×M))† = α†Q ◦ T †γ.

Proof. (1) We have:

(Mβ ◦ α)†A = colim((Mβ ◦ α)∗A) (Definition)
= colim(Mβ∗A ◦ α∗A) (Lemma 4.22)
= colim(Mβ∗A) ◦ colim(α∗A) (Functoriality)
= Mcolim(β∗A) ◦ colim(α∗A) (Lemma 4.9)

= Mβ†A ◦ α
†
A (Definition)

= (Mβ† ◦ α†)A

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:17

(2) We have:

(α(Q× Id) ◦ T (γ ×M))†E = colim((α(Q× Id) ◦ T (γ ×M))∗E) (Definition)

= colim(α∗QE ◦ T ∗γE) (Lemma 4.22)

= colim(α∗QE) ◦ colim(T ∗γE) (Functoriality)

= α†QE ◦ T
†γE (Definition)

= (α†Q ◦ T †γ)E

Remark 4.24. As a special case, if one takes N and M to be identity functors, then given
a natural isomorphism α : T ⇒ H : A×B→ B, it follows α† : T † ⇒ H† : A→ B is also a
natural isomorphism and Lemma 4.23 (1) shows the operation (−)† is functorial.

We need one more lemma before we may prove the main coherence property.

Lemma 4.25. In the special case where categories A, C and the functor N are trivial in
Assumption 4.16, the following diagram of natural transformations:

S(T)

MS(H)

MHS(H)

TS(T)

TMS(H)

sT

α∗

MsH

Tα∗

α ∗ S(H)

commutes, where we regard H and T as functors H : B→ B and T : D→ D and we regard
α as a natural isomorphism α : T ◦M ⇒M ◦H.

Proof. In Appendix A.6.

The main result from this section follows. It shows how parameterised initial algebras
may be related in the situation of Assumption 4.16. We will later use this theorem in order
to show our semantics is sound.

Theorem 4.26. The following diagram of natural isomorphisms:

M ◦H ◦ 〈Id, H†〉

T ◦ 〈N,T † ◦N〉 T ◦ 〈N,M ◦H†〉

T ◦ 〈Id, T †〉 ◦N

T ◦ (N ×M) ◦ 〈Id, H†〉

M ◦H†T † ◦N

α〈Id, H†〉

MφHφTN

T 〈N,α†〉

α†

commutes.

Proof. Fix an object A ∈ A. We have to show:

9:18 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

MH ′Y (H ′)

T ′Y (T ′)
T ′α†A

T ′MY (H ′)

αA,Y (H′)

MY (H ′)Y (T ′)

yT
′

MyH
′

α†A

where T ′ := T (NA,−) : D→ D and H ′ := H(A,−) : B→ B. Note that we then have a
natural isomorphism α′ : T ′ ◦M ⇒M ◦H ′ given by α′ := αA,−. Using Lemma 4.25, we get:

colim(MsH
′
) ◦ colim(α∗A) = colim(α′ ∗ S(H ′)) ◦ colim(T ′α∗A) ◦ colim(sT

′
) (4.3)

Using Lemma 4.10 and the fact that M and T preserve ω-colimits, we get:

Mcolim(sH
′
) ◦ colim(α∗A) = αA,Y (H′) ◦ T ′colim(α∗A) ◦ colim(sT

′
) (4.4)

Since colim(sH
′
) and colim(sT

′
) are isomorphisms, the above is equivalent to:

colim(α∗A) ◦ colim(sT
′
)−1 = Mcolim(sH

′
)−1 ◦ αA,Y (H′) ◦ T ′colim(α∗A) (4.5)

Finally, by definition of α† and y, we get: α†A ◦ yT
′

= MyH
′ ◦ αA,Y (H′) ◦ T ′α

†
A.

By combining this theorem together with Corollary 4.21, we obtain another corollary
that is important for the adequacy proof.

Corollary 4.27. In the special case where α = id and z = id, the 2-categorical diagram

C

D

T ◦ 〈Id, T †〉 T †
φT

A

B

H ◦ 〈Id, H†〉 H†
φH

M

N

commutes, i.e. φTN = MφH .

We also see that φ is natural in the choice of functor.

Corollary 4.28. In the special case where N = M = Id, then α† ◦ φT = φH ◦ α〈Id, α†〉, i.e.,
φX is natural in X.

5. Categorical Model

In this section we introduce our categorical model for LNL-FPC and describe its categorical
properties. A CPO-LNL model is a CPO-enriched model of intuitionistic linear logic (also
known as linear/non-linear model [Ben95, BW96]) that has suitable ω-colimits.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:19

5.1. CPO-categories and Algebraic Compactness. A cpo (complete partial order) is
a poset that has suprema of all increasing chains. If, in addition, the cpo has a least element,
then we say it is pointed. A monotone function between two cpo’s is Scott continuous if it
preserves all suprema of increasing chains. If, in addition, the two cpo’s are pointed and the
function preserves the least element, then we say the function is strict.

We denote with CPO the category of cpo’s and Scott continuous functions and with
CPO⊥! the category of pointed cpo’s and strict Scott continuous functions. Both categories
are complete and cocomplete, CPO is cartesian closed and CPO⊥! is symmetric monoidal
closed when equipped with the smash product and the strict function space [AJ94].

Our categorical model makes heavy use of enriched category theory. In particular, we
use CPO-enriched and CPO⊥!-enriched categories. We only provide a brief introduction to
CPO-categories and we suggest the reader consults [Fio94, Chapter 2] for a more detailed
introduction.

A CPO-category C is a category C whose homsets have the additional structure
of a cpo and composition of morphisms is a Scott continuous function (in both argu-
ments). A CPO-functor F : C → D between CPO-categories is a functor whose action
on hom-cpo’s FX,Y : C(X,Y)→ D(FX,FY) is Scott continuous for each pair of objects
X,Y ∈ C. A CPO-adjunction Φ : F a G : D → C is given by CPO-categories C and
D, CPO-functors F : C → D and G : D → C, together with a natural isomorphism
Φ : C(−, G−) ∼= D(F−,−) : Cop ×D→ CPO. A CPO-symmetric monoidal closed cate-
gory C(I,⊗,() is a CPO-category C together with CPO-functors ⊗ : C×C → C and
(: Cop ×C→ C that form a symmetric monoidal closed category in the usual sense (one
can then conclude Currying is a CPO-adjunction). Similarly, CPO⊥!-enriched versions of
these notions may be defined by requiring the hom-cpo’s to be pointed and Scott continuity
to be strict.

Definition 5.1. In a CPO-category C, a morphism e : A → B is called an embedding if
there is a morphism p : B → A, called a projection, such that p ◦ e = idA and e ◦ p ≤ idB.
The pair (e, p) is said to form an embedding-projection (e-p) pair.

It is well-known that one component of an e-p pair uniquely determines the other, so we
shall write e• to indicate the projection counterpart of an embedding e. Every isomorphism
is an embedding and embeddings are closed under composition with (e1 ◦ e2)• = e•2 ◦ e•1,
which allows us to make the next definition.

Definition 5.2. Given a CPO-category C, its subcategory of embeddings, denoted Ce, is
the full-on-objects subcategory of C whose morphisms are exactly the embeddings of C.

By duality, one can also define Cp to be the subcategory of projections. The notion of an
e-p pair is of fundamental importance for establishing the famous limit-colimit coincidence
theorem [SP82]. Before we can state it, we need to define a few additional notions.

Definition 5.3. In a CPO-category C, an ω-diagram over embeddings is an ω-diagram
D : ω → C, such that all D(i ≤ j) are embeddings. Given such a diagram, we define
D• : ωop → C, to be the ωop-diagram given by D•(n) := D(n) and D•(i ≤ j) := D(i ≤ j)•.
Given a cocone µ : D → A in C, we define a cone µ• : A→ D• in C by (µ•)i := (µi)

•. We
shall say that C has all ω-colimits over embeddings if every ω-diagram over embeddings has
a colimit in C.

By combining several results from [SP82], one can show the next theorem.

9:20 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Theorem 5.4 (Limit-colimit coincidence). Let C be a CPO-category with all ω-colimits
over embeddings. Let D : ω → C be an ω-diagram over embeddings and let µ : D → A be a
cocone of D. The following are equivalent:
(1) µ is a colimiting cocone of D in C,
(2) µ is a colimiting cocone of D in Ce,
(3) Each µi is an embedding, (µi ◦ µ•i)i is an increasing chain and

∨
i µi ◦ µ•i = idA,

(4) µ• is a limiting cone of D• in C,
(5) µ• is a limiting cone of D• in Cp.

Proof. In Appendix A.7.

Remark 5.5. This theorem applies to both categories CPO and CPO⊥!. However, when
constructing an initial algebra for an endofunctor T : CPO → CPO, the theorem is not
useful, because the initial map ι : ∅ → T∅ is not an embedding (unless T∅ = ∅) and
therefore the initial sequence of T is not necessarily computed over embeddings. Also, observe
that CPOe has ω-colimits, but has no initial object and thus it is not a good setting for
constructing initial algebras.

On the other hand, this theorem is very useful for constructing initial (and final)
(co)algebras for many categories like CPO⊥! that have some additional structure, which we
explain next.

Definition 5.6 ([Fio94, Definition 7.1.1]). In a CPO-category, an e-initial object is an
initial object such that every morphism with it as source is an embedding. The dual notion
is called a p-terminal object. An object that is both e-initial and p-terminal is called an
ep-zero object.

The category CPO has an initial object given by ∅, but it does not have an e-initial
object. The category CPO⊥! has an ep-zero object that is the one-element cpo {⊥}.

An endofunctor T : C→ C is algebraically compact if T has an initial T -algebra (Ω, τ),
such that (Ω, τ−1) is a final T -coalgebra. In this situation we say (Ω, τ) is a free T -algebra.
A CPO-category C is CPO-algebraically compact if every CPO-endofunctor T : C→ C
has a free T -algebra. CPO-algebraic compactness also implies the existence of parameterised
free algebras [Fio94].

Theorem 5.7 ([Fio94, Corollary 7.2.4]). A CPO-category with ep-zero and colimits of
ω-chains over embeddings is CPO-algebraically compact.

Therefore, categories that enjoy this structure are an ideal setting for solving recursive
domain equations. In particular, algebraic compactness is crucial for interpreting isorecursive
types involving(. We will see that the linear category of our model is indeed such a category
and that we can very easily interpret (arbitrary) types within it. Non-linear types, however,
need to admit an additional non-linear interpretation within a cartesian category that does
not enjoy such a strong property. To resolve this problem, our type interpretations will be
based on the following theorem, which combines results of [SP82].

Theorem 5.8. Let A,B and C be CPO-categories where A and B have ω-colimits over
embeddings. If T : Aop ×B→ C is a CPO-functor, then the covariant functor

Te : Ae ×Be → Ce given by Te(A,B) = T (A,B) and Te(e1, e2) = T ((e•1)op, e2)

is an ω-functor.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:21

Proof. This follows from [SP82, Theorem 3], because both categories A and B have locally
determined ω-colimits of embeddings thanks to Theorem 5.4.

Therefore, this theorem allows us to consider mixed-variance CPO-functors on CPO-
categories as covariant ones on subcategories of embeddings. By trivialising the category A,
we get:

Corollary 5.9. Let T : B→ C be a CPO-functor between CPO-categories B and C where
B has ω-colimits over embeddings. Then T restricts to an ω-functor Te : Be → Ce.

5.2. Models of Intuitionistic Linear Logic. Our type system has both linear and non-
linear features, so naturally, it should be interpreted within a model of Intuitionistic Linear
Logic, also known as a linear/non-linear (LNL) model (see [BW96, Ben95] for more details).

Definition 5.10. A model of Intuitionistic Linear Logic is given by the following data: a
cartesian monoidal category with finite coproducts (C, ", 1,q,∅); a symmetric monoidal
closed category with finite coproducts (L,⊗,(, I,+, 0); and a symmetric monoidal adjunction

C L
F

`

G
. We also adopt the following notation. The comonad-endofunctor is

! := F ◦G : L→ L; the unit and counit of the adjunction are η : Id⇒ G ◦ F : C→ C and
ε : !⇒ Id : L→ L, respectively.

Moreover, in this situation, the left-adjoint F is both cocontinuous and strong symmetric
monoidal. Thus, there exist isomorphisms I u−→ F (1) and 0

z−→ F (∅) in L, together with
natural isomorphisms

⊗ ◦ (F × F)
m
==⇒ F ◦ " : C×C→ L and + ◦ (F × F)

c
=⇒ F ◦ q : C×C→ L

that satisfy some coherence conditions, which we omit here. Observe, that the structure of
the natural isomorphisms m and c is very similar. In fact, most of our propositions involving
these natural isomorphisms can be proven in a uniform way, so we introduce some notation
for brevity.

Notation 5.11. We write � for either the ⊗ or + bifunctor; � for the bifunctor " or q
respectively; β for the natural isomorphisms m or c, respectively. Then, we have a natural
isomorphism:

� ◦ (F × F)
β
==⇒ F ◦� : C×C→ L.

5.3. Models of LNL-FPC. Before we may define our categorical model, we first introduce
the notion of a pre-embedding, which is novel (to the best of our knowledge). Pre-embeddings
are of fundamental importance for defining the non-linear interpretations of non-linear types.

Definition 5.12. Let T : A → B be a CPO-functor between CPO-categories A and B.
Then a morphism f in A is called a pre-embedding with respect to T if T (f) is an embedding
in B.

We can now describe our categorical model by combining results from the previous
two subsections. Our categorical model is a model of Intuitionistic Linear Logic with some
additional structure for solving recursive domain equations. Because of that, we shall use
the same notation for it as introduced in the previous subsection.

9:22 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Definition 5.13. A CPO-LNL model is given by the following data:
1. A CPO-symmetric monoidal closed category (L,⊗,(, I) with finite CPO-coproducts

(L,+, 0);
2. A CPO-cartesian monoidal category (C,", 1) with finite CPO-coproducts (C,q,∅);

3. A CPO-symmetric monoidal adjunction C L
F

`

G
, such that:

4. L has an e-initial object 0 and all ω-colimits over embeddings; C has all ω-colimits over
pre-embeddings, w.r.t F , and the product functor (− "−) : C×C→ C preserves them.

Assumption 5.14. Throughout the rest of the paper we assume we are working with an
arbitrary, but fixed, CPO-LNL model as in Definition 5.13.

While not immediately obvious, L is CPO-algebraically compact. We reason as follows.

Theorem 5.15. In every CPO-LNL model:
(1) The initial object 0 ∈ L is an ep-zero object;
(2) Each zero morphism ⊥A,B is least in L(A,B);
(3) L is CPO⊥!-enriched;
(4) L is CPO-algebraically compact.

Proof. (1) For every object A ∈ L, define a morphism ⊥A:= I
e•I−→ 0

eA−→ A, where eX : 0→ X
is unique and e•X : X → 0 is its projection counterpart. Then, for every h : A→ B, we have
h ◦ ⊥A=⊥B . This means the category L is weakly pointed in the sense of [Bra97, Definition
9]. One can now define morphisms

⊥A,B:= A
λ−1
A−−→ I ⊗A uncurry(⊥A(B)−−−−−−−−−−−→ B

and prove that:

g ◦ ⊥A,B =⊥A,C for g : B → C [Bra97, Proposition 11]
⊥B,C ◦ f =⊥A,C for f : A→ B [Bra97, Proposition 12]

In the presence of an initial object, this then implies that 0 is a zero object; ⊥A=⊥I,A and
that the morphisms ⊥A,B are zero morphisms [LMZ18, Lemma 4.8]. Therefore 0 is an ep-zero,

because (eX , e
•
X) forms an e-p pair for every object X and also ⊥A,B= A

e•A−→ 0
eB−→ B.

(2) For any f : A→ B, we have ⊥A,B=⊥B,B ◦f = eB ◦ e•B ◦ f ≤ idB ◦ f = f.
(3) is now immediate from (2) and (4) follows by Theorem 5.7.

Every embedding in C is a pre-embedding (because CPO-functors preserve embeddings)
and pre-embeddings are closed under composition, so one can form the full-on-objects
subcategory of C of all pre-embeddings. We define such a subcategory within our model.

Definition 5.16. Let Cpe be the full-on-objects subcategory of C of pre-embeddings with
respect to the functor F .

The importance of this subcategory is that it allows us to reflect solutions of certain
recursive domain equations from the category Le into the category Cpe. As we have
previously explained, the construction of initial algebras of endofunctors on C is not done
over embeddings, in general (e.g. if C = CPO), because the initial map ι : ∅→ X usually is
not an embedding. Observe, however, that ι : ∅→ X always is a pre-embedding with respect

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:23

to F . In fact, we shall see that the initial algebras for all non-linear type interpretations are
constructed over initial sequences consisting of pre-embeddings.

We proceed with a simple lemma.

Lemma 5.17. Let A be a CPO-category that has ω-colimits over embeddings. Then Ae has
all ω-colimits, and the inclusion functor Ae ↪→ A is an ω-functor that reflects ω-colimits.

Proof. This follows immediately by Theorem 5.4 (1) – (2).

Our next theorem shows Cpe is a suitable setting for constructing initial algebras.

Theorem 5.18. In every CPO-LNL model:
(1) Le is an ω-category, and the subcategory inclusion Le ↪→ L is a strict ω-functor that also

reflects ω-colimits.
(2) Cpe is an ω-category and the subcategory inclusion Cpe ↪→ C is a strict ω-functor that

also reflects ω-colimits.
(3) The subcategory inclusion Ce ↪→ Cpe preserves and reflects ω-colimits (Ce does not

necessarily have an initial object).

Proof. (1) follows from Lemma 5.17 and the fact that L has an e-initial object 0.
(2) Let A : Cpe ↪→ C be the inclusion, and let D : ω → Cpe be an ω-diagram. Let

µ : D → X be a cocone in Cpe and assume that it is colimiting in C. We aim to show that
µ is also colimiting in Cpe, since this would imply that the inclusion A reflects ω-colimits.
So let ν : D → Y be another cocone in Cpe, then ν is a cocone in C, hence there is a
unique morphism f : X → Y in C such that f ◦ µ = ν. Now, both Fµ : F ◦D → FX and
Fν : F ◦D → FY are cocones of F ◦D in Le. Since µ is colimiting in C, and F (as a left
adjoint) preserves colimits, it follows that Fµ is the colimiting cocone of F ◦D in L. Hence
there is a unique e : FX → FY in L such that e ◦ Fµ = Fν. Since f ◦ µ = ν, we obtain
Ff ◦ Fµ = Fν, so Ff = e. By (1), the inclusion Le ↪→ L reflects ω-colimits, hence e must
be a morphism in Le, hence an embedding. We conclude that Ff is an embedding, so f is a
pre-embedding, which shows that µ is indeed colimiting in Cpe.

Next, we have to show that Cpe has all ω-colimits, so we have to show that the colimit of
D exists. First, since C has ω-colimits over pre-embeddings, the colimiting cocone µ : D → X
of D in C exists. We have to show that µ is actually a cocone in Cpe. Since F is a left adjoint,
it preserves colimits, hence Fµ : F ◦D → FX is colimiting in L. Now F ◦D : ω → Le is
an ω-diagram, hence by (1), it follows that Fµ is also the colimiting cocone of F ◦D in Le,
meaning that Fµ consists of embeddings. Hence µ consists of pre-embeddings, so is a cocone
in Cpe. Since we already showed that the inclusion A reflects ω-colimits, it follows that µ is
colimiting in Cpe, so the colimit of D exists in Cpe, and is clearly preserved by A. So the
inclusion A is an ω-functor.

Let ∅ be the initial object of C, and let X be some other object of C. Let i : ∅→ X
be the unique initial map in C. As a left adjoint, F preserves initial objects, hence F∅ ∈ L
is initial, and Fi : F∅→ FX is unique. Since F∅ ∼= 0 is e-initial, it follows that Fi is an
embedding. Hence i is a pre-embedding, so a morphism in Cpe. It follows that also Cpe is
an ω-category, and since we showed that ∅ is also initial in Cpe, it follows that A is strict.

(3) We aim to show that the inclusion B : Ce ↪→ Cpe preserves and reflects ω-colimits.
Note that A ◦ B : Ce ↪→ C is the inclusion into C. It follows from Lemma 5.17 that Ce

has all ω-colimits, and the inclusion A ◦B : Ce ↪→ C preserves and reflects ω-colimits. Let
D : ω → Ce be a diagram, and let µ : D → X be a cocone in Ce such that Bµ is colimiting
in Cpe. Since A preserves ω-colimits, it follows that (A ◦ B)µ is colimiting in C. Since

9:24 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

A ◦B reflects ω-colimits, it follows that µ is colimiting in Ce so B indeed reflects ω-colimits.
In order to show that B also preserves ω-colimits, let µ be the colimiting cocone of D in
Ce. Since A ◦B preserves ω-colimits, it follows that A(Bµ) = (A ◦B)µ is colimiting in C.
Since A reflects ω-colimits by (2), it follows that Bµ is colimiting, hence B indeed preserves
ω-colimits.

By definition, the functor F : C→ L restricts to a functor Fpe : Cpe → Le. By Corollary
5.9 the functor G : L→ C restricts to an ω-functor Ge : Le → Ce. Let Gpe : Le → Cpe be
the functor given by Gpe :=

(
Le

Ge−−→ Ce ↪→ Cpe

)
. The next theorem shows our model has

suitable mediating functors for relating initial algebras.

Theorem 5.19. In any CPO-LNL model, Fpe : Cpe → Le is a strict ω-functor. In addition,
Gpe : Le → Cpe is an ω-functor.

Proof. Let D : ω → Cpe be an ω-diagram and let µ : D → A be its colimit in Cpe. Since Fpe
is simply a restriction of F , then its action on D and µ is simply F ◦D and Fµ, respectively.
By Theorem 5.18 (1), µ is also a colimit of D in C and since F : C → L is a left adjoint,
it follows Fµ is a colimit of F ◦ D in L. However, F ◦ D is a diagram over embeddings
(in L) and Fµ is its colimit over embeddings (in L) and therefore by Theorem 5.18 (1),
Fµ is a colimit of F ◦ D in Le. Thus, Fpe is an ω-functor and strictness follows because
z : 0→ F∅ is an isomorphism. By Corollary 5.9 and by Theorem 5.18 (3), we see that Gpe
is the composition of two ω-functors and is therefore an ω-functor itself.

By Notation 5.11, � ◦ (F × F)
β
==⇒ F ◦� : C×C→ L is a natural isomorphism and by

Corollary 5.9, we see that � : L× L→ L restricts to an ω-functor �e : Le × Le → Le. The
final theorem of this subsection, together with the previous two, show that Cpe is a good
setting for the non-linear interpretation of non-linear types.

Theorem 5.20. In any CPO-LNL model, the bifunctor � : C × C → C restricts to an
ω-bifunctor �pe : Cpe ×Cpe → Cpe. Moreover, the natural isomorphism β restricts to a

natural isomorphism �e ◦ (Fpe × Fpe)
βpe

==⇒ Fpe ◦�pe : Cpe ×Cpe → Le.

Proof. Let f : X1 → Y1 and g : X2 → Y2 be morphisms in Cpe, so Ff and Fg are embeddings.
Naturality of β gives us :

β(Y1,Y2) ◦ (Ff � Fg) = F (f � g) ◦ β(X1,X2),

hence
F (f � g) = β(Y1,Y2) ◦ (Ff � Fg) ◦ β−1

(X1,X2).

As a natural isomorphism, each component of β is an embedding. Since � : C×C→ C is a
CPO-functor, it preserves embeddings, hence Ff � Fg is an embedding. We conclude that
F (f � g) is an embedding, so � restricts to a functor �pe : Cpe ×Cpe → Cpe.

Let D : ω → Cpe × Cpe be an ω-diagram and let µ : D → (A,B) be its colimiting
cocone in Cpe × Cpe. Since �pe is simply a restriction of �, then its action on D and µ
is simply � ◦D and �µ, respectively. By Theorem 5.18 (2) and the fact that colimits are
calculated pointwise in product categories, it follows µ is also a colimit of D in C×C. Since
� : C × C → C preserves ω-colimits over pre-embeddings (" by assumption and q is a
colimit), it follows �µ is a colimit of � ◦D in C. Therefore by Theorem 5.18 (2), it may be
reflected, so that �µ is a colimit of � ◦D in Cpe. Thus, �pe is an ω-functor. Finally, every

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:25

isomorphism is an embedding and therefore every component of β is an embedding (in L),
so that indeed β restricts to a natural isomorphism

�e ◦ (Fpe × Fpe)
βpe

==⇒ Fpe ◦�pe : Cpe ×Cpe → Le.

5.4. Concrete CPO-LNL Models. We now describe some concrete CPO-LNL models.

Theorem 5.21. The adjunction CPO CPO⊥!

(−)⊥

`

U
, where the left adjoint is given

by (domain-theoretic) lifting and the right adjoint U is the forgetful functor, is a CPO-LNL
model.

We will also show this model is computationally adequate in §7. This concrete model
actually arises from a more general class of CPO-LNL models, as we shall now explain.

Let M be a small CPO⊥!-symmetric monoidal category and let M̂ be the category
of CPO⊥!-presheafs, that is, the category whose objects are the CPO⊥!-enriched functors
T : Mop → CPO⊥! and whose morphisms are natural transformations between them (the
notion of a CPO⊥!-natural transformation coincides with the ordinary notion). Then, by the
enriched Yoneda Lemma, the category M̂ is complete and cocomplete and it has a CPO⊥!-
symmetric monoidal closed structure when equipped with the Day convolution [Day74]. In

this situation there exists an adjunction CPO⊥! M̂
−} I

`

M̂(I,−)

, where the left adjoint is

given by taking the CPO⊥!-copower with the tensor unit I and the right adjoint is the
representable functor (see [Bor94, §6]).

Theorem 5.22. Composing the two adjunctions CPO CPO⊥!

(−)⊥

`

U
M̂

−} I

`

M̂(I,−)

yields a CPO-LNL model.

Observe that any CPO⊥!-functor necessarily preserves least morphisms and therefore
also ep-zero objects. Thus, if M = 1, then M̂ ' 1 and we recover the trivial (or completely
degenerate) CPO-LNL model. If M = 1⊥ (the category with a unique object and two
morphisms id and ⊥, where ⊥ is least), then M̂ ∼= CPO⊥! and we recover the CPO-LNL
model from Theorem 5.21. Choosing M to be a suitable category of quantum computation,
we recover a model of Proto-Quipper-M, a quantum programming language [RS17]. Choosing
M to be a suitable category of string diagrams, we recover a model of ECLNL, a programming
language for string diagrams [LMZ18]. Similar presheaf models have been used to model
Ewire, a circuit description language [RS18], and the quantum lambda calculus [MSS13]. All
of these languages have mixed linear/non-linear features and therefore our results presented
here could help with design decisions on introducing recursive (or inductive) datatypes.

9:26 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

JΘ ` AK : L
|Θ|
e → Le

JΘ ` ΘiK := Πi

JΘ `!AK := !e ◦ JΘ ` AK
JΘ ` A+BK := +e ◦ 〈JΘ ` AK, JΘ ` BK〉
JΘ ` A⊗BK := ⊗e ◦ 〈JΘ ` AK, JΘ ` BK〉
JΘ ` A(BK := (e ◦ 〈JΘ ` AK, JΘ ` BK〉

JΘ ` µX.AK := JΘ, X ` AK†

LΘ ` P M : C|Θ|pe → Cpe

LΘ ` ΘiM := Πi

LΘ `!AM := Gpe ◦ JΘ ` AK ◦ F×|Θ|pe

LΘ ` P +QM := qpe ◦ 〈LΘ ` P M, LΘ ` QM〉
LΘ ` P ⊗QM := "pe ◦ 〈LΘ ` P M, LΘ ` QM〉

LΘ ` µX.P M := LΘ, X ` P M†

Figure 4: Standard interpretation of types (left) and non-linear interpretation of non-linear
types (right).

6. Denotational Semantics

We now describe the denotational semantics of LNL-FPC. Every type Θ ` A admits a
(standard) interpretation as an ω-functor JΘ ` AK : L

|Θ|
e → Le. Every non-linear type Θ ` P

admits an additional non-linear interpretation as an ω-functor LΘ ` P M : C
|Θ|
pe → Cpe that is

related to its standard interpretation via a natural isomorphism (see Figure 5)

αΘ`P : JΘ ` P K ◦ F×|Θ|pe ⇒ Fpe ◦ LΘ ` P M : C|Θ|pe → Le.

It is precisely the existence of this natural isomorphism that allows us to define the substruc-
tural operations (copying, discarding and promotion) on non-linear types.

As in FPC, the interpretation of a term Θ; Γ ` m : A is a family of morphisms of L

JΘ; Γ ` m : AK =
{
JΘ; Γ ` m : AK~Z : JΘ ` ΓK(F×|Θ| ~Z)→ JΘ ` AK(F×|Θ| ~Z) | ~Z ∈ Ob(C|Θ|)

}
indexed by objects ~Z of C|Θ|. In the special case when Θ = · the interpretation can be seen
as a morphism of L. In order to show the semantics is sound, we also provide a non-linear
interpretation of non-linear values that is compatible with the substructural operations. We
remark that types are interpreted as functors on Le, which is a subcategory of L, the category
in which terms are interpreted. Doing so is crucial for defining the semantics.

6.1. Interpretation of LNL-FPC Types. The (standard) interpretation of a well-formed
type Θ ` A is a functor JΘ ` AK : L

|Θ|
e → Le defined by induction on the derivation of

Θ ` A (Figure 4, left). The non-linear interpretation of a non-linear type Θ ` P is a functor
LΘ ` P M : C

|Θ|
pe → Cpe defined by induction on the derivation of Θ ` P (Figure 4, right).

The non-linear interpretation of non-linear types depends on the standard interpretation,
so the latter needs to be defined first, as we have done. Both assignments are ω-functors
defined on ω-categories, as we show next, and so the assignments are well-defined, i.e., the
parameterised initial algebras we need to interpret recursive types exist.

Theorem 6.1. For any well-formed types Θ ` A and Θ ` P , where P is non-linear:

(1) The assignment JΘ ` AK : L
|Θ|
e → Le is an ω-functor.

(2) The assignment LΘ ` P M : C
|Θ|
pe → Cpe is an ω-functor.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:27

JΘ ` P K

F
×|Θ|
pe

Cpe Le

C
|Θ|
pe

LΘ ` P M

Fpe

L
|Θ|
e

α

Figure 5: Relationship between standard and non-linear interpretations of non-linear types.

Proof. Both statements are proved by induction one after the other. The functor Πi is
obviously an ω-functor. The functors !e,+e,⊗e,(e are ω-functors because of Theorem 5.8.
The functors Gpe, Fpe, "pe,qpe are ω-functors (Theorems 5.19 and 5.20). Moreover ω-functors
are closed under composition and tupling. Finally, the µ-case follows from Theorem 4.12.

The next theorem shows that the standard and non-linear interpretations of non-linear
types are strongly related via a natural isomorphism (see Figure 5).

Theorem 6.2. For any non-linear type Θ ` P, there exists a natural isomorphism

αΘ`P : JΘ ` P K ◦ F×|Θ|pe ⇒ Fpe ◦ LΘ ` P M : C|Θ|pe → Le inductively defined by

αΘ`Θi := id

αΘ`!A := id

αΘ`P�Q := βpe〈LΘ ` P M, LΘ ` QM〉 ◦ �e〈αΘ`P , αΘ`Q〉 (see Theorem 5.20)

αΘ`µX.P := (αΘ,X`P)† (see Theorem 4.18).

Proof. In Appendix A.8.

In FPC, one has to prove a substitution lemma that shows the interpretation of types
respects type substitution. In LNL-FPC, we have to prove three such lemmas: one for the
standard interpretation JΘ ` AK of (arbitrary) types, one for the non-linear interpretation
LΘ ` P M of non-linear types, and one for the natural isomorphism αΘ`P that relates them.
In order to do this, one first has to show a permutation and a contraction lemma.

Lemma 6.3 (Permutation). Given types Θ, X, Y,Θ′ ` A and Θ, X, Y,Θ′ ` P , with P
non-linear:
(1) JΘ, Y,X,Θ′ ` AK = JΘ, X, Y,Θ′ ` AK ◦ swapm,m′
(2) LΘ, Y,X,Θ′ ` P M = LΘ, X, Y,Θ′ ` P M ◦ swapm,m′
(3) αΘ,Y,X,Θ′`P = αΘ,X,Y,Θ′`P swapm,m′
where |Θ| = m, |Θ′| = m′ and swapm,m′ = 〈Π1, . . . ,Πm,Πm+2,Πm+1,Πm+3, . . . ,Πm+m′+2〉.

Proof. Essentially the same as [Fio94, Lemma C.0.1].

Lemma 6.4 (Contraction). Given types Θ,Θ′ ` A and Θ,Θ′ ` P , with P non-linear:
(1) JΘ, X,Θ′ ` AK = JΘ,Θ′ ` AK ◦ dropm,m′
(2) LΘ, X,Θ′ ` P M = LΘ,Θ′ ` P M ◦ dropm,m′
(3) αΘ,X,Θ′`P = αΘ,Θ′`Pdropm,m′
where X 6∈ Θ ∪Θ′, |Θ| = m, |Θ′| = m′ and dropm,m′ = 〈Π1, . . . ,Πm,Πm+2, . . . ,Πm+m′+1〉.

Proof. Essentially the same as [Fio94, Lemma C.0.2].

9:28 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

JΘ ` P [R/X]K ◦ F×|Θ|pe Fpe ◦ LΘ ` P [R/X]M

Fpe ◦ LΘ, X ` P M ◦ 〈Id, LΘ ` RM〉

JΘ, X ` P K ◦ 〈F×|Θ|pe , JΘ ` RK ◦ F×|Θ|pe 〉

JΘ, X ` P K ◦ 〈F×|Θ|pe , Fpe ◦ LΘ ` RM〉

JΘ, X ` P K ◦ 〈Id, JΘ ` RK〉 ◦ F×|Θ|pe

JΘ, X ` P K ◦ F×(|Θ|+1)
pe ◦ 〈Id, LΘ ` RM〉

α〈Id, LΘ ` RM〉
JΘ, X ` P K〈F×|Θ|pe , α〉

α

Fpeγ
−1

Figure 6: The commuting diagram of natural isomorphisms for Lemma 6.5 (3).

In all models of FPC, the substitution lemma (and also the permutation and contraction
lemmas) hold up to isomorphism. However, in models where the equality of Proposition 4.14
holds, this can be strengthened to an equality (cf. [Fio94, pp. 181]). Indeed, in LNL-FPC
the same is true for the standard substitution lemma, but the non-linear substitution lemma
holds only up to isomorphism, which is induced by the isomorphism α.

Lemma 6.5 (Substitution). Given types Θ, X ` A and Θ ` B and Θ, X ` P and Θ ` R
with P and R non-linear:

(1) JΘ ` A[B/X]K = JΘ, X ` AK ◦ 〈Id, JΘ ` BK〉
(2) LΘ ` P [R/X]M ∼= LΘ, X ` P M ◦ 〈Id, LΘ ` RM〉, where the natural isomorphism, denoted

γΘ`P [R/X] is given by:

γΘ`Θi[R/X] = id

γΘ`X[R/X] = id

γΘ`!A[R/X] = GpeJΘ, X ` AK〈F×|Θ|pe , αΘ`R〉

γΘ`(P�Q)[R/X] = �pe〈γΘ`P [R/X], γΘ`Q[R/X]〉

γΘ`µY.P [R/X] = (γΘ,Y `P [R/X])†

(3) αΘ`P [R/X] = (Fpeγ
Θ`P [R/X])−1 ◦ αΘ,X`P 〈Id, LΘ ` RM〉 ◦ JΘ, X ` P K〈F×|Θ|pe , αΘ`R〉, (see

Figure 6).

Proof. In Appendix A.9.

The most important type isomorphism in FPC is the folding and unfolding of recursive
types. Denotationally, this is modelled using the properties of parameterised initial algebras
and the substitution lemma. The same is true in LNL-FPC, but, in addition to the standard
folding and unfolding of recursive types, we also have a non-linear interpretation for folding
and unfolding of non-linear recursive types.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:29

Definition 6.6. Given types Θ ` µX.A and Θ ` µX.P, with P non-linear, let

foldΘ`µX.A : JΘ ` A[µX.A/X]K⇒ JΘ ` µX.AK : L|Θ|e → Le

fold Θ`µX.P : LΘ ` P [µX.P/X]M⇒ LΘ ` µX.P M : C|Θ|pe → Cpe

be the natural isomorphisms given by

foldΘ`µX.A :=
(
JΘ ` A[µX.A/X]K = JΘ, X ` AK ◦ 〈Id, JΘ ` µX.AK〉 φ=⇒ JΘ ` µX.AK

)
fold Θ`µX.P :=

(
LΘ ` P [µX.P/X]M γ

=⇒ LΘ, X ` P M ◦ 〈Id, LΘ ` µX.P M〉 φ=⇒ LΘ ` µX.P M
)
.

We denote their inverses by unfoldΘ`µX.A and unfold Θ`µX.P , respectively.

We now show that given a non-linear recursive type, the standard and non-linear
interpretations of its folding and unfolding are also strongly related. We shall use this
theorem later in order to prove that values Θ; Γ ` fold v : P with P non-linear admit a
non-linear interpretation.

Theorem 6.7. Let Θ ` µX.P be a non-linear type. Then the diagram of natural isomor-
phisms

JΘ ` P [µX.P/X]K ◦ F×|Θ|pe Fpe ◦ LΘ ` P [µX.P/X]M
α

JΘ ` µX.P K ◦ F×|Θ|pe Fpe ◦ LΘ ` µX.P Mα

foldF
×|Θ|
pe Fpefold

commutes.

Proof.

Fpefold Θ`µX.P ◦ αΘ`P [µX.P/X]

= Fpeφ ◦ FpeγΘ`P [µX.P/X] ◦ αΘ`P [µX.P/X] (Definition)

= Fpeφ ◦ αΘ,X`P 〈Id, LΘ ` µX.P M〉 ◦ JΘ, X ` P K〈F×|Θ|pe , αΘ`µX.P 〉 (Lemma 6.5 (3))

= Fpeφ ◦ αΘ,X`P 〈Id, LΘ, X ` P M†〉 ◦ JΘ, X ` P K〈F×|Θ|pe , (αΘ,X`P)†〉 (Definition)

= (αΘ,X`P)† ◦ φF×|Θ|pe (Theorem 4.26)

= αΘ`µX.P ◦ foldΘ`µX.PF×|Θ|pe (Definition)

6.2. Interpretation of LNL-FPC Term Contexts. The interpretation of term contexts
is straightforward. The interpretation of an (arbitrary) term context Θ ` Γ is an ω-functor
JΘ ` ΓK : L

|Θ|
e → Le (see Figure 7, left). A non-linear term context Θ ` Φ admits an

additional non-linear interpretation as an ω-functor LΘ ` ΦM : C
|Θ|
pe → Cpe (see Figure 7,

right). Just like with the interpretation of types, the two are strongly related.

9:30 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

JΘ ` ΓK : L|Θ|e → Le LΘ ` ΦM : C|Θ|pe → Cpe

JΘ ` ·K := KI LΘ ` ·M := K1

JΘ ` Γ, x : AK := ⊗e ◦ 〈JΘ ` ΓK, JΘ ` AK〉 LΘ ` Φ, x : P M := "pe ◦ 〈LΘ ` ΦM, LΘ ` P M〉

Figure 7: Interpretation of term contexts (left); non-linear interpretation of non-linear term
contexts (right). KX is the constant X functor.

Theorem 6.8. For any non-linear term context Θ ` Φ, there exists a natural isomorphism

αΘ`Φ : JΘ ` ΦK ◦ F×|Θ|pe ⇒ Fpe ◦ LΘ ` ΦM : C|Θ|pe → Le

that is given by:

αΘ`· := ku (the constant u natural transformation)

αΘ`Φ,x:P := mpe〈LΘ ` ΦM, LΘ ` P M〉 ◦ ⊗e〈αΘ`Φ, αΘ`P 〉 (see Theorem 5.20).

Proof. Straightforward verification.

6.3. Interpretation of LNL-FPC Terms. We introduce some notation for brevity that
we use throughout the rest of the section. Given a type context Θ, we use ~Z to range over
Ob(C

|Θ|
pe) = Ob(C|Θ|). We write

„

FZ for F×|Θ|pe
~Z = F×|Θ| ~Z. We use Υ to range over both

types and term contexts and we use Ψ to range over non-linear types and non-linear term
contexts. Then, let

JΥKΘ~Z := JΘ ` ΥK
(

„

FZ
)
∈ Ob(L), LΨMΘ~Z := LΘ ` ΨM

(
~Z
)
∈ Ob(C).

With this notation in place, from the previous two subsections we have isomorphisms (in L)

unfoldΘ`µX.A
„
FZ

: JµX.AKΘ~Z
∼= JA[µX.A/X]KΘ~Z : foldΘ`µX.A

„
FZ

, αΘ`Ψ
~Z

: JΨKΘ~Z
∼= F LΨMΘ~Z .

Remark 6.9. The isomorphisms above are natural in C
|Θ|
pe , which we saw is crucial for

defining the type interpretations. However, as in FPC, this naturality is irrelevant for the
term interpretations – we only need the fact that each component is an isomorphism in L.
Thus, there is no danger in working within C and L, instead of Cpe and Le.

Next, we show how to interpret the substructural rules of Intuitionistic Linear Logic in a
CPO-LNL model. The isomorphism α plays a fundamental part.

Definition 6.10. We define discarding (�), copying (4) and promotion (�) morphisms:

�Θ`Ψ
~Z

:= JΨKΘ~Z
α−→ F LΨMΘ~Z

F1−−→ F1
u−1

−−→ I

4Θ`Ψ
~Z

:= JΨKΘ~Z
α−→ F LΨMΘ~Z

F 〈id,id〉−−−−−→ F
(
LΨMΘ~Z " LΨM

Θ
~Z

)
m−1

−−−→ F LΨMΘ~Z ⊗ F LΨM
Θ
~Z

α−1⊗α−1

−−−−−−→ JΨKΘ~Z ⊗ JΨK
Θ
~Z

�Θ`Ψ
~Z

:= JΨKΘ~Z
α−→ F LΨMΘ~Z

Fη−−→ !F LΨMΘ~Z
!α−1

−−−→ !JΨKΘ~Z
where, for brevity, we have written α instead of αΘ`Ψ

~Z
.

Proposition 6.11. The triple
(
JΨKΘ~Z ,4

Θ`Ψ
~Z

, �Θ`Ψ
~Z

)
forms a cocommutative comonoid in L.

Proof. By the axioms of monoidal adjunctions and the cartesian structure of C.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:31

JΦ, x : A ` x : AK := JΦK⊗ JAK �⊗id−−−→ I ⊗ JAK
∼=−→ JAK

JΓ ` leftA,Bm : A+BK := JΓK
JmK−−→ JAK left−−→ JAK + JBK = JA+BK

JΓ ` rightA,Bm : A+BK := JΓK
JmK−−→ JBK right−−−→ JAK + JBK = JA+BK

JΦ,Γ,Σ ` case m of {left x→ n | right y → p} : CK := JΦK⊗ JΓK⊗ JΣK 4⊗id−−−→

JΦK⊗ JΦK⊗ JΓK⊗ JΣK
∼=−→ JΦK⊗ JΣK⊗ JΦK⊗ JΓK id⊗JmK−−−−→ JΦK⊗ JΣK⊗ JA+BK

∼=−→

(JΦK⊗ JΣK⊗ JAK) + (JΦK⊗ JΣK⊗ JBK) [JnK,JpK]−−−−−→ JCK

JΦ,Γ,Σ ` 〈m,n〉 : A⊗BK := JΦK⊗ JΓK⊗ JΣK 4⊗id−−−→ JΦK⊗ JΦK⊗ JΓK⊗ JΣK
∼=−→

JΦK⊗ JΓK⊗ JΦK⊗ JΣK JmK⊗JnK−−−−−→ JAK⊗ JBK = JA⊗BK

JΦ,Γ,Σ ` let 〈x, y〉 = m in n : CK := JΦK⊗ JΓK⊗ JΣK 4⊗id−−−→ JΦK⊗ JΦK⊗ JΓK⊗ JΣK
∼=−→

JΦK⊗ JΓK⊗ JΦK⊗ JΣK JmK⊗id−−−−→ JA⊗BK⊗ JΦK⊗ JΣK
∼=−→ JΦK⊗ JΣK⊗ JAK⊗ JBK JnK−−→ JCK

JΓ ` λxA.m : A(BK := JΓK
curry(JmK)−−−−−−−→ (JAK(JBK) = JA(BK

JΦ,Γ,Σ ` mn : BK := JΦK⊗ JΓK⊗ JΣK 4⊗id−−−→ JΦK⊗ JΦK⊗ JΓK⊗ JΣK
∼=−→

JΦK⊗ JΓK⊗ JΦK⊗ JΣK JmK⊗JnK−−−−−→ (JAK(JBK)⊗ JAK eval−−→ JBK

JΦ ` lift m : !AK := JΦK �−→ !JΦK
!JmK−−−→ !JAK = J!AK

JΓ ` force m : AK := JΓK
JmK−−→ !JAK ε−→ JAK

JΓ ` foldµX.Am : µX.AK := JΓK
JmK−−→ JA[µX.A/X]K fold−−→ JµX.AK

JΓ ` unfold m : A[µX.A/X]K := JΓK
JmK−−→ JµX.AK unfold−−−−→ JA[µX.A/X]K

where, for brevity, we write JΥK for JΥKΘ~Z for all types or term contexts Υ and where we
omit the subscripts and type superscripts of some morphisms (which can be easily inferred).

Figure 8: Interpretation of LNL-FPC terms.

We can now define the interpretation of LNL-FPC terms. A term Θ; Γ ` m : A is
interpreted as a family morphisms of L indexed by ~Z. That is

JΘ; Γ ` m : AK :=
{
JΓ ` m : AKΘ~Z : JΓKΘ~Z → JAKΘ~Z | ~Z ∈ Ob(C|Θ|)

}
,

where JΓ ` m : AKΘ~Z is defined by induction on the derivation of Θ; Γ ` m : A in Figure 8
(notice the remark). Just as in FPC, the interpretation of terms is invariant with respect
to both Θ and ~Z, so omitting the subscript and superscript annotations (as we have done)
should not lead to confusion, but on the other hand it improves readability. For brevity, we
also informally write JmK instead of JΓ ` m : AKΘ~Z , which can be inferred from context.

The careful reader might have noticed that the above notation is not completely precise,
because terms do not have unique derivations. Technically, the definition should be read as

9:32 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

providing an interpretation for a derivation D of Θ; Γ ` m : A. However, the next theorem
justifies our notation.

Theorem 6.12. Let D1 and D2 be two derivations of a judgement Θ; Γ ` m : A. Then
JD1KΘ~Z = JD2KΘ~Z .

Proof. As previously explained, two derivations may only differ in whether some non-linear
variables are propagated up into both premises or just one. Variables that are propagated up
but not used are always discarded. The proof follows by induction using Proposition 6.11.

In order to prove our semantics sound, we have to first formulate a substitution lemma
for terms. This lemma, in turn, requires that the interpretation of non-linear values behave
well with respect to the substructural morphisms of Definition 6.10. To show this, we reason
as follows.

Definition 6.13. Given a non-linear term context Θ ` Φ and a non-linear type Θ ` P , a
morphism f : JΦKΘ~Z → JP KΘ~Z in L is called non-linear, whenever there exists a morphism

f ′ : LΦMΘ~Z → LP MΘ~Z in C, with f =

JΦKΘ~Z αΘ`Φ
~Z−−−→ F LΦMΘ~Z

Ff ′−−→ F LP MΘ~Z

(
αΘ`P

~Z

)−1

−−−−−−−→ JP KΘ~Z

 .

Proposition 6.14. If f : JΦKΘ~Z → JP KΘ~Z is non-linear, then:

�Θ`P~Z
◦ f = �Θ`Φ

~Z
;

4Θ`P
~Z
◦ f = (f ⊗ f) ◦ 4Θ`Φ

~Z
;

�Θ`P
~Z
◦ f = !f ◦�Θ`Φ

~Z
.

In particular, non-linear morphisms are comonoid homomorphisms (with respect to Proposi-
tion 6.11).

Recall that by Lemma 2.7, non-linear values necessarily have a non-linear term context.

Proposition 6.15. Let Θ; Φ ` v : P be a non-linear value. Then JΦ ` v : P KΘ~Z is non-linear.

Proof. We define a non-linear interpretation

LΦ ` v : P MΘ~Z : LΦMΘ~Z → LP MΘ~Z
in C by induction on the derivation of Θ; Φ ` v : P as follows:

LΦ, x : P ` x : P M := LΦM× LP M π2−→ LP M

LΦ ` leftP,Rv : P +RM := LΦM
LvM−−→ LP M inl−→ LP Mq LRM = LP +RM

LΦ ` rightP,Rv : P +RM := LΦM
LvM−−→ LRM inr−→ LP Mq LRM = LP +RM

LΦ ` 〈v, w〉 : P ⊗RM := LΦM
〈LvM,LwM〉−−−−−→ LP M× LRM = LP ⊗RM

LΦ ` lift m : !AM := LΦM η−→ GF LΦM Gα−1

−−−→ GJΦK
GJmK−−−→ GJAK = L!AM

LΦ ` foldµX.P v : µX.P M := LΦM
LvM−−→ LP [µX.P/X]M

fold
−−→ LµX.P M,

where π2 is the second projection in C; inl and inr are the coproduct injections in C; 〈f, g〉
is the unique map induced by the product in C and fold is defined in Definition 6.6. The

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:33

definition is invariant with respect to Θ and ~Z, so again, we omit them from the subscript
and superscript to improve readability.

To complete the proof, one has to show

JΦ ` v : P KΘ~Z =

JΦKΘ~Z αΘ`Φ
~Z−−−→ F LΦMΘ~Z

F LΦ`v:P MΘ
~Z−−−−−−−→ F LP MΘ~Z

(
αΘ`P

~Z

)−1

−−−−−−−→ JP KΘ~Z

 ,

which follows by simple verification using the available categorical data. The fold case is
the most complicated (in general), but because of the preparatory work we have done, it
may be established simply by using Theorem 6.7.

Next, as usual, we also have to formulate a substitution lemma for terms. Before we do
so, recall Lemma 2.6.

Lemma 6.16 (Substitution). Let Θ; Φ,Γ, x : A ` m : B be a term and Θ; Φ,Σ ` v : A a
value with Γ ∩ Σ = ∅. Then

Jm[v/x]K =

(
JΦK⊗ JΓK⊗ JΣK

∼=◦(4⊗id)−−−−−−→ JΦK⊗ JΓK⊗ JΦK⊗ JΣK id⊗JvK−−−−→ JΦK⊗ JΓK⊗ JAK JmK−−→ JBK
)

where we have omitted the obvious subscript and superscript annotations, for brevity.

Proof. By induction using Lemma 2.6 and Propositions 6.14 - 6.15.

With this in place, we may now show our semantics is sound.

Theorem 6.17 (Soundness). If Θ; Γ ` m : A and m ⇓ v, then JΓ ` m : AKΘ~Z = JΓ ` v : AKΘ~Z .

Proof. Straightforward induction.

6.4. Notation for closed types. In the special case when Θ = ·, the notation for terms
and term contexts can be simplified, as we showed in §2.2. The same is also true for the
denotational semantics and we will use this simplified notation for the proof of adequacy in
the next section. We denote with ∗ the unique object of the terminal category 1.

Let JΥK := J· ` ΥK(∗) ∈ Ob(L). Let LΨM := L· ` ΨM(∗) ∈ Ob(C). For χ ∈ {α, �,4,�},
we write χΨ := χ·`Ψ

∗ . Then, we have isomorphisms αΨ : JΨK ∼= F LΨM, and substructural
morphisms �Ψ : JΨK→ I, 4Ψ : JΨK→ JΨK⊗ JΨK and �Ψ : JΨK→!JΨK.

Writing foldµX.A for fold·`µX.A∗ and unfoldµX.A for its inverse, we get an isomorphism
unfoldµX.A : JµX.AK ∼= JA[µX.A/X]K : foldµX.A.

For the interpretation of terms, we write JΓ ` m : AK := JΓ ` m : AK·∗ : JΓK→ JAK, which
is a morphism in L and its definition can be simply read off from Figure 8, disregarding the
remark at the bottom.

7. Computational Adequacy

In this section we show that computational adequacy holds at non-linear types for a class of
CPO-LNL models that satisfy some additional conditions (Theorem 7.10). In the process,
we also provide sufficient conditions for program termination at any type (Theorem 7.9).
The main difficulty is showing that the formal approximation relations exist (Lemma 7.6),
the proof of which is presented in §7.1.

We begin by specifying the additional properties of CPO-LNL models that we use in
the proof of adequacy.

9:34 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Definition 7.1. A computationally adequate CPO-LNL model is a CPO-LNL model where:
(1) idI 6= ⊥I,I (or equivalently I 6∼= 0).
(2) For any two pairs of parallel morphisms f1, g1 : I → A and f2, g2 : I → B, such that

f1 6=⊥6= g1 and f2 6=⊥6= g2 : f1 ⊗ f2 ≤ g1 ⊗ g2 ⇒ f1 ≤ g1 and f2 ≤ g2.

For instance, the CPO-LNL model of Theorem 5.21 is computationally adequate.

Remark 7.2. Condition (1) is clearly necessary for adequacy. If I ∼= 0, then L ' 1, and
since L is completely degenerate, then clearly adequacy cannot hold. Condition (2) is a
strong assumption that requires the tensor product of L to behave like the smash product
of domain theory. This is a sufficient condition, but we do not know if it is necessary.
However, it appears to be unavoidable when using the standard proof strategy based on
formal approximation relations, just as we do (see Remark 7.22). In principle, there could be
a different proof strategy that does not make this assumption, but we do not know of such a
strategy that works in our setting.

Assumption 7.3. Throughout the rest of the section we consider an arbitrary, but fixed,
computationally adequate CPO-LNL model.

We begin by showing that non-linear values correspond to non-zero morphisms.

Lemma 7.4. Let · ` v : P be a non-linear value. Then JvK 6= ⊥.

Proof. Assume for contradiction JvK = ⊥. Therefore �P ◦ JvK =⊥I,I . Since · ` v : P is a
non-linear value, it may be discarded so that �P ◦ JvK = �· = idI (Propositions 6.14-6.15).
But then ⊥I,I = idI , which contradicts Definition 7.1.

Notation 7.5. Given morphisms f1 : I → A1, . . . , fn : I → An, we write 〈〈f1, . . . , fn〉〉 for
the morphism

〈〈f1, . . . , fn〉〉 :=
(
I
∼=−→ I ⊗ · · · ⊗ I f1⊗···⊗fn−−−−−−→ A1 ⊗ · · · ⊗An

)
.

For example, 〈〈f1, f2〉〉 = (f1 ⊗ f2) ◦ λ−1
I .

Let Values(A) := {v | v is a value and · ` v : A} and Programs(A) := {p | · ` p : A}
for any closed type · ` A. We prove adequacy using the standard method based on formal
approximation relations, a notion first devised in [Plo85].

Lemma 7.6. For each closed type · ` A, there exist formal approximation relations:

EA ⊆ (L(I, JAK)− {⊥})× Values(A)

vA ⊆ L(I, JAK)× Programs(A)

with the properties:
(A1.1): f EA+B left v iff ∃f ′. f = left ◦ f ′ and f ′ EA v;
(A1.2): f EA+B right v iff ∃f ′. f = right ◦ f ′ and f ′ EB v;
(A2): f EA⊗B 〈v, w〉 iff ∃f ′, f ′′. f = 〈〈f ′, f ′′〉〉 and f ′ EA v and f ′′ EB w;
(A3): f EA(B λxA. p iff ∀f ′ ∈ L(I, JAK),∀v ∈ Values(A). f ′ EA v ⇒ eval ◦ 〈〈f, f ′〉〉 vB

p[v/x];

(A4): f E!A lift p iff ∃g ∈ C(1, GJAK). f = I
u−→ F (1)

F (g)−−−→!JAK and ε ◦ f vA p;
(A5): f EµX.A fold v iff unfoldµX.A ◦ f EA[µX.A/X] v;
(B): f vA p iff f 6=⊥ ⇒ ∃v ∈ Values(A). p ⇓ v and f EA v.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:35

Proof. Because of (A5), the relations are defined by recursion and proving their existence
requires considerable effort. The full proof is presented in §7.1.

Lemma 7.7. If f EP v, where P is a non-linear type, then f is a non-linear morphism.

Proof. By induction on · ` v : P , essentially the same as Proposition 6.15.

The next proposition is fundamental for the proof of adequacy.

Proposition 7.8. Let Γ ` m : A, where Γ = x1 : A1, . . . , xn : An. Assume further we are
given vi and fi, such that fi EAi vi. Then JmK ◦ 〈〈f1, . . . , fn〉〉 vA m[~v / ~x].

Proof. By induction on Γ ` m : A, using Lemma 7.7 where necessary.

The next theorem establishes sufficient conditions for termination at any type.

Theorem 7.9 (Termination). Let · ` p : A be a well-typed program. If JpK 6=⊥, then p ⇓ .
Proof. This is a special case of the previous proposition when Γ = ·. We get J· ` p : AK vA p,
and thus p ⇓ by definition of vA.
Theorem 7.10 (Adequacy). Let · ` p : P be a well-typed program, with P non-linear. Then

p ⇓ iff JpK 6=⊥ .
Proof. (⇒) By soundness and Lemma 7.4; (⇐) by Theorem 7.9.

This formulation of adequacy immediately implies another one that some readers might
be more familiar with. We shall say that a closed type · ` P is ground if it is formed without
any usage of ! or((note that such a type is necessarily non-linear)1. By using soundness,
adequacy, Lemma 7.4 and injectivity of J−K on values of ground type, we get:

Corollary 7.11. Let · ` p : P and · ` v : P be a term and a value of ground type P . Then

p ⇓ v iff JpK = JvK.

7.1. Existence of the formal approximation relations. Our proof strategy is very
similar to the one in [Fio94, Chapter 9] and we now provide an overview. We define
a category where the objects are pairs (X,E) of objects X of L and binary relations
E⊆ (L(I,X)− {⊥})× Values(A) together with a suitable notion of morphism that respects
these relations (Definitions 7.12 – 7.14). We show that the constructed category has sufficient
structure to solve recursive domain equations (Theorem 7.17) and that the functors we
use to interpret types can be lifted to this category (Theorem 7.21), while respecting the
obvious forgetful functor. Then, we provide a non-standard interpretation of types that
contains not only the standard interpretation of types, but also the logical relations needed
for the adequacy proof (Proposition 7.26). We also show that this augmented interpretation
is appropriate by showing that (parameterised) initial algebras are computed in the same
way as for the standard interpretation (Corollary 7.27) and that it also respects substitution
(Lemma 7.30). This then allows us to prove the existence of the required relations.

Definition 7.12. Given a closed type · ` A, an object X ∈ Ob(L) and given a relation
E⊆ (L(I,X)− {⊥})×Values(A), we define another relation v⊆ L(I,X)× Programs(A) by
g v p iff g 6=⊥⇒ ∃ v ∈ Values(A). p ⇓ v ∧ g E v.

1To make ground types inhabited, we also have to hardcode the unit type I in the language (see Example 2.1,
where we defined I ≡ !(0(0)), so that I has a unique value. This is trivial and causes no problems.

9:36 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Definition 7.13. For any closed type · ` A, we define a Poset-category Rel(A) with:
• Objects (X,E), where X ∈ Ob(L) and E⊆ (L(I,X)− {⊥})× Values(A) is a relation;
• Morphisms f : (X,EX)→ (Y,EY) are exactly the morphisms f : X → Y in L, such that:

g EX v ⇒ f ◦ g vY v;

• Composition and identities as in L;
• Order inherited from L, i.e. f ≤ g (in Rel(A)) iff f ≤ g (in L).

Unfortunately, the category Rel(A) is not CPO-enriched (in general) and therefore it is
unsuitable for our purposes. Because of this, we consider a full subcategory that has the
desired structure.

Definition 7.14. Let R(A) be the full subcategory of Rel(A) consisting of objects (X,E),
such that for any v ∈ Values(A), the predicate (− E v) is closed under suprema of ascending
chains in L(I,X)− {⊥}. More specifically, if {gi}ωi=1 is an increasing sequence and gi E v
for every i ∈ ω, then

∨
gi E v.

Next, we list some useful properties of the categories R(A).

Lemma 7.15. Let · ` A be a closed type. In the category R(A) :

(1) For any object (X,E) and v ∈ Values(A) and g 6=⊥, it follows g E v iff g v v.
(2) For any morphism f : (X,EX)→ (Y,EY), if g vX p then f ◦ g vY p.
(3) For any object (X,E) and p ∈ Programs(A), the predicate (− v p) is closed under taking

suprema of increasing sequences in L(I,X).

Proof. (1) Because v ⇓ v and then by definition.
(2) Assume f ◦ g 6=⊥. Then g 6=⊥ and therefore ∃v. p ⇓ v ∧ g EX v. Since

f : (X,EX)→ (Y,EY) is a morphism, it follows f ◦ g vY v and therefore f ◦ g EY v.
This now implies f ◦ g vY p.

(3) Let (fi)i∈ω be an increasing sequence in L(I,X), such that for each i ∈ ω we have
fi v p. Assume

∨
i fi 6=⊥ . Then, there exists k, such that for l ≥ k : fl 6=⊥ and fl v p.

Therefore, ∃v ∈ Values(A), such that p ⇓ v and fl E v, for every l ≥ k. Since (− E v) is
closed under taking suprema of increasing sequences, we conclude

∨
i≥k fi E v. But then

also
∨
i≥k fi v p, by definition. To finish the proof, observe that

∨
i≥0 fi =

∨
i≥k fi.

There is an obvious forgetful functor UA : R(A)→ L, defined by:

UA(X,E) := X and UA(f) := f (7.1)

The next lemma establishes some crucial properties of the categories R(A).

Lemma 7.16. For any closed type · ` A :

(1) The category R(A) is CPO-enriched.
(2) R(A) has an ep-zero object (0,∅).
(3) R(A) is CPO⊥!-enriched.
(4) UA : R(A)→ L is a CPO⊥!-functor.
(5) R(A) has all ω-colimits of embeddings.
(6) UAe : R(A)e → Le is a strict ω-functor (cf. Theorem 5.8).

Proof. (1) It is obvious thatR(A) is Poset-enriched. We will show that suprema of ascending
chains in R(A) exist and coincide with those in L. Assume that {fi}ωi=1 is an increasing
sequence, where fi : (X,EX)→ (Y,EY). Assume g and v are arbitrary, such that g EX v.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:37

We have to show (
∨
i≥0 fi) ◦ g vY v. Towards that end, assume (

∨
i≥0 fi) ◦ g 6=⊥ . Therefore

there exists k ∈ ω, such that for every l ≥ k : fl ◦ g 6=⊥ . By definition, fl ◦ g vY v and since
fl ◦ g 6=⊥ and v ⇓ v, it follows fl ◦ g E v. Since (− EY v) is closed under suprema, it follows∨
i≥k fi ◦ g = (

∨
i≥k fi) ◦ g = (

∨
i≥0 fi) ◦ g EY v and therefore it follows (

∨
i≥0 fi) ◦ g vY v.

Finally, observe that composition in R(A) is a Scott-continuous operation, because it
coincides with composition in L, which is itself a Scott-continuous operation.

(2) Let (X,EX) be an arbitrary object of R(A). (0,∅) is initial, because the unique
L-morphism ⊥0,X : 0→ X is also a R(A)-morphism (the additional required condition is
trivially satisfied for the empty relation). Moreover, (0,∅) is terminal, because the unique
L-morphism ⊥X,0: X → 0 is also a R(A)-morphism (if g EX v then ⊥X,0 ◦g =⊥I,0v∅ v,
where v∅ is constructed via Definition 7.12 when E= ∅). Finally, ⊥X,0 ◦ ⊥0,X=⊥0,0= id0

and ⊥0,X ◦ ⊥X,0=⊥X,X≤ idX because the order in R(A) is inherited from L. Thus, (0,∅)
is an ep-zero.

(3) Combine (1), (2) and the fact that ⊥X,Y is least in its hom-cpo.
(4) True by construction (the order and suprema in R(A) coincide with those in L).
(5) Let D = ((Xk,Ek), ek)k∈ω be an ω-diagram, s.t. each ek : (Xk,Ek)→ (Xk+1,Ek+1)

is an embedding. Let µ : UD → Xω be the colimiting cocone in L of the ω-diagram
UD = (Xk, ek)k∈ω. Define a relation Eω⊆ (L(I,Xω)− {⊥})×Values(A) by:

f Eω v iff ∀k ∈ ω. µ•k ◦ f vk v,

where µk : Xk → Xω is the colimiting embedding and µ•k : Xω → Xk is its corresponding
projection. We will show that (Xω,Eω) is the colimit of D in R(A) with colimiting cocone
given by µ.

We have to show (− Eω v) is closed under suprema of ascending chains, for arbitrary v.
Let (fi)i∈ω be an increasing sequence, s.t. fi Eω v. Then ∀k.∀i. µ•k ◦ fi vk v. But (− vk v)
is closed under suprema of increasing sequences, thus ∀k.

∨
i µ
•
k ◦ fi = µ•k ◦

∨
i fi vk v. Then,

by definition
∨
i fi Eω v.

Next, we show that µk : (Xk,Ek)→ (Xω,Eω) is a morphism of R(A). Towards that end,
assume that g Ek v. We have to show µk ◦ g vω v. To do this, assume further µk ◦ g 6=⊥ .
Now, µk ◦ g vω v is equivalent to µk ◦ g Eω v, which is equivalent to ∀l. µ•l ◦ µk ◦ g vl v. For
l ≤ k, we have

µ•l ◦ µk ◦ g = e•l,k ◦ µ•k ◦ µk ◦ g = e•l,k ◦ g

and since e•l,k : (Xk,Ek)→ (Xl,El) is a morphism, then it follows e•l,k ◦ g vl v. For l ≥ k, we
have:

µ•l ◦ µk ◦ g = µ•l ◦ µl ◦ ek,l ◦ g = ek,l ◦ g

and since ek,l : (Xk,Ek)→ (Xl,El) is a morphism, then it follows ek,l ◦ g vl v. Combining
both cases, we conclude that µk : (Xk,Ek)→ (Xω,Eω) is a morphism of R(A).

Next, observe that µ•k : (Xω,Eω) → (Xk,Ek) is a morphism of R(A), by definition
of Eω.

Therefore, µ : D → (Xω,Eω) is a cocone over embeddings in R(A). Clearly, (µ•i ◦ µi)i∈ω
forms an increasing sequence of morphisms in R(A) and

∨
i µ
•
i ◦µi = id, because the order and

suprema in R(A) coincide with those of L. By the limit-colimit coincidence theorem [SP82],
it follows µ : D → (Xω,Eω) is a colimiting cocone, as required.

(6) Combining (4), (5) and Theorem 5.8 shows UAe is an ω-functor. Strictness is
obvious.

9:38 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Note that by the above lemma, the categories R(A)e are ω-categories. Even better, we
can show they are suitable categories for interpreting recursive types.

Theorem 7.17. Let · ` A be a closed type. Then R(A) is CPO-algebraically compact.

Proof. Combine Theorem 5.7 with Lemma 7.16 (1) (2) (5).

Next, we show that the functors we use to interpret type expressions may be defined on
the categories R(A) by extending their action to relations as well.

Definition 7.18. Let · ` A and · ` B be two closed types. We define functors as follows:
(1) !A : R(A)→ R(!A) given by:

!A(X,E) := (!X, ! E) and !Af :=!f,

where the relation (! E) ⊆ (L(I, !X)− {⊥})×Values(!A) is given by:

g (! E) lift p iff ∃h ∈ C(1, GX). g = I
u−→ F (1)

F (h)−−−→!X and ε ◦ g v p

(2) ⊗A,B : R(A)×R(B)→ R(A⊗B) given by :

(X,EX)⊗A,B (Y,EY) := (X ⊗ Y,EX ⊗ EY) and f ⊗A,B h := f ⊗ h,

where the relation (EX ⊗ EY) ⊆ (L(I,X ⊗ Y)− {⊥})×Values(A⊗B) is given by:

g (EX ⊗ EY) 〈v, w〉 iff ∃g′, g′′. g = (g′ ⊗ g′′) ◦ λ−1
I ∧ g′ EX v ∧ g′′ EY w

(3) (A,B: R(A)op ×R(B)→ R(A(B) given by :

(X,EX)(A,B (Y,EY) := (X (Y,EX(EY) and fop (A,B h := fop (h,

where the relation (EX(EY) ⊆ (L(I,X (Y)− {⊥})×Values(A(B) is given by:

g (EX(EY) λx.p iff ∀g′ ∈ L(I,X), ∀v ∈ Values(A) : g′ EX v ⇒ eval◦〈〈g, g′〉〉 vY p[v/x]

(4) +A,B : R(A)×R(B)→ R(A+B) given by :

(X,EX) +A,B (Y,EY) := (X + Y,EX + EY) and f +A,B h := f + h,

where the relation (EX + EY) ⊆ (L(I,X + Y)− {⊥})×Values(A+B) is given by:

g (EX + EY) left v iff ∃g′. g = left ◦ g′ ∧ g′ EX v

and
g (EX + EY) right v iff ∃g′. g = right ◦ g′ ∧ g′ EY v

Before we prove our next theorem, we need a couple of lemmas that allow us to establish
some order-reflection properties of our models that will be used in its proof.

Lemma 7.19. The coproduct injections in L are split monomorphisms.

Proof. Let A left−−→ A + B
right←−−− B be two coproduct injections. Since the category L is

pointed:
[idA,⊥B,A] ◦ left = idA and [⊥A,B, idB] ◦ right = idB.

Lemma 7.20 (Order-reflection via adjunction). Let f : X → GA and h : X → GA be two
parallel morphisms in C, where A ∈ Ob(L) and X ∈ Ob(C). Then F (f) ≤ F (h) iff f ≤ h.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:39

Proof. The right-to-left direction follows because F is aCPO-functor. For the other direction:

F (f) ≤ F (h)⇒ Gε ◦GF (f) ◦ η ≤ Gε ◦GF (h) ◦ η (G and (− ◦ −) are Scott-continuous)
⇔ Gε ◦ η ◦ f ≤ Gε ◦ η ◦ h (Naturality of η)

⇔ f ≤ h (counit-unit equation)

Theorem 7.21. All functors from Definition 7.18 are well-defined and are moreover CPO-
functors. In addition, the following diagrams:

R(A)e ×R(B)e R(A ? B)e
?A,Be

Le × Le Le?e

UA?BeUAe × UBe

!e

R(!A)e

UAe

Le

R(A)e
!Ae

U !A
e

Le

commute, where ? ∈ {+,⊗,(}.

Proof. Case ! :
We first show !A is a well-defined functor. We begin by showing that (− (! E) lift p)

is closed under suprema of increasing sequences. Let (gi)i∈ω be an increasing sequence,
such that gi (! E) lift p. Then there exist hi ∈ C(1, GX), such that gi = F (hi) ◦ u and
ε ◦ gi v p. By Lemma 7.15 (3) it follows ε ◦

∨
i gi =

∨
i ε ◦ gi v p. Since u is an isomorphism

and (gi)i∈ω forms an increasing sequence, then (Fhi)i∈ω also forms an increasing sequence.
The functor F reflects the order of this sequence (Lemma 7.20) and therefore (hi)i∈ω also
forms an increasing sequence. Moreover,

∨
i gi =

∨
i F (hi) ◦u = (

∨
i F (hi)) ◦u = F (

∨
i hi) ◦u

and it follows by definition that
∨
i gi(! E) lift p. Therefore !A is well-defined on objects.

Next, we show !A is well-defined on morphisms. Let f : (X,EX) → (Y,EY) be a
morphism in R(A). Assume that g (! EX) lift p and that !f ◦ g 6=⊥ . We have to show
!f ◦ g (! EY) lift p. Then ∃h. g = Fh ◦ u and ε ◦ g vX p. We have

!f ◦ g = FGf ◦ Fh ◦ u = F (Gf ◦ h) ◦ u

and also
ε◦!f ◦ g = f ◦ ε ◦ g vY p

because of Lemma 7.15 (2). Therefore, by definition !f ◦ g (! EY) lift p. Therefore !A is
well-defined on morphisms.

Finally, it immediately follows by definition of !A that it preserves identities and compo-
sition, that it is a CPO-functor and that the required diagram commutes.

Case ? = ⊗ :
We first show ⊗A,B is a well-defined functor. We show (− (EX ⊗ EY) 〈v, w〉) is closed

under suprema of increasing sequences. Let (gi)i∈ω be an increasing sequence, such that
gi (EX ⊗ EY) 〈v, w〉. Then there exist g′i, g

′′
i , such that gi = (g′i ⊗ g′′i) ◦ λ−1

I and such that
g′i EX v and g′′i EY w. Since λ−1

I is an isomorphism, (g′i ⊗ g′′i)i∈ω is an increasing sequence
and by Definition 7.1(2) it follows that both (g′i)i∈ω and (g′′i)i∈ω are increasing sequences.
Therefore

∨
i g
′
i EX v and

∨
i g
′′
i EY w. Also:∨

i

gi =
∨
i

(g′i ⊗ g′′i) ◦ λ−1
I = ((

∨
i

g′i)⊗ (
∨
i

g′′i)) ◦ λ−1
I

so that by definition
∨
i gi (EX ⊗ EY) 〈v, w〉. Therefore ⊗A,B is well-defined on objects.

9:40 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Next, we show ⊗A,B is well-defined on morphisms. Let

f1 : (X1,EX1)→ (Y1,EY1)

f2 : (X2,EX2)→ (Y2,EY2)

be two morphisms in R(A) and R(B) respectively. Assume that g (EX1 ⊗ EX2) 〈v, w〉
and that (f1 ⊗ f2) ◦ g 6=⊥ . We have to show (f1 ⊗ f2) ◦ g (EY1 ⊗ EY2) 〈v, w〉. Then there
exist g′, g′′, such that g = (g′ ⊗ g′′) ◦ λ−1

I and such that g′ EX1 v and g′′ EX2 w. Therefore,
f1 ◦ g′ vY1 v and f2 ◦ g′′ vY2 w. It’s easy to see that f1 6=⊥6= g′ and f2 6=⊥6= g′′. Therefore,
f1 ◦ g′ EY1 v and f2 ◦ g′′ EY2 w. Also:

(f1 ⊗ f2) ◦ g = (f1 ⊗ f2) ◦ (g′ ⊗ g′′) ◦ λ−1
I = ((f1 ◦ g′)⊗ (f2 ◦ g′′)) ◦ λ−1

I

By definition, (f1 ⊗ f2) ◦ g (EY1 ⊗ EY2) 〈v, w〉. Therefore, ⊗A,B is well-defined on mor-
phisms.

Finally, it immediately follows by definition of ⊗A,B that it preserves identities and
composition, that it is a CPO-functor and that the required diagram commutes.

Case ? =(:
We first show(A,B is a well-defined functor. We show (− (EX(EY) λx.p) is closed

under suprema of increasing sequences. Let (gi)i∈ω be an increasing sequence, such that
gi (EX(EY) λx.p. Let g′ and v be arbitrary, such that g′ EX v. It now follows that
eval ◦ 〈〈gi, g′〉〉 vY p[v/x]. From Lemma 7.15 we get:

eval ◦ 〈〈
∨
i

gi, g
′〉〉 =

∨
i

eval ◦ 〈〈gi, g′〉〉 vY p[v/x]

so that by definition
∨
i gi (EX(EY) λx.p. Therefore(A,B is well-defined on objects.

Next, we show(A,B is well-defined on morphisms. Let

fop
1 : (X1,EX1)→ (Y1,EY1)

f2 : (X2,EX2)→ (Y2,EY2)

be two morphisms in R(A)op and R(B) respectively. Assume that g (EX1(EX2) λx.p and
that (fop

1 (f2) ◦ g 6=⊥ . We have to show (fop
1 (f2) ◦ g (EY1(EY2) λx.p. Let g′ and v

be arbitrary such that g′ EY1 v. Since

f1 : (Y1,EY1)→ (X1,EX1)

it follows f1 ◦ g′ vX1 v.
If f1 ◦ g′ =⊥, then it trivially follows that eval ◦ 〈〈g, f1 ◦ g′〉〉 vX2 p[v/x].
If f1 ◦ g′ 6=⊥, then f1 ◦ g′ EX1 v and therefore eval ◦ 〈〈g, f1 ◦ g′〉〉 vX2 p[v/x].
Therefore, in both cases, eval ◦ 〈〈g, f1 ◦ g′〉〉 vX2 p[v/x]. This then implies:

f2 ◦ eval ◦ 〈〈g, f1 ◦ g′〉〉 vY2 p[v/x],

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:41

because f2 : (X2,EX2)→ (Y2,EY2). And therefore:

eval ◦ 〈〈(fop
1 (f2) ◦ g, g′〉〉 =

= eval ◦ (((fop
1 (f2) ◦ g)⊗ g′) ◦ λ−1

I

= eval ◦ ((fop
1 (f2)⊗ id) ◦ (g ⊗ g′) ◦ λ−1

I

= eval ◦ ((idop (f2)⊗ id) ◦ ((fop
1 (id)⊗ id) ◦ (g ⊗ g′) ◦ λ−1

I

= f2 ◦ eval ◦ ((fop
1 (id)⊗ id) ◦ (g ⊗ g′) ◦ λ−1

I (Naturality of eval)

= f2 ◦ eval ◦ (id⊗ f1) ◦ (g ⊗ g′) ◦ λ−1
I (Parameterised adjunction [ML98, pp. 102])

= f2 ◦ eval ◦ 〈〈g, f1 ◦ g′〉〉
vY2 p[v/x]

By definition, (fop
1 (f2) ◦ g (EY1(EY2) λx.p. Therefore,(A,B is well-defined on mor-

phisms.
Finally, it immediately follows by definition of (A,B that it preserves identities and

composition, that it is a CPO-functor and that the required diagram commutes.
Case ? = + :
We first show +A,B is a well-defined functor. We show (− (EX + EY) left v) is closed

under suprema of increasing sequences. Let (gi)i∈ω be an increasing sequence, such that
gi (EX + EY) left v. Then there exist g′i, such that gi = left ◦ g′i ∧ g′i EX v. Since left is a
split monomorphism (Lemma 7.19), it follows (g′i)i∈ω is an increasing sequence and therefore∨
i g
′
i EX v. Since

∨
i gi = left ◦

∨
i g
′
i then by definition

∨
i gi (EX + EY) left v. Similarly,

it follows that (− (EX + EY) right v) is also closed under suprema of increasing sequences.
Therefore +A,B is well-defined on objects.

Next, we show +A,B is well-defined on morphisms. Let

f1 : (X1,EX1)→ (Y1,EY1)

f2 : (X2,EX2)→ (Y2,EY2)

be two morphisms in R(A) and R(B) respectively. Assume that g (EX1 + EX2) v and that
(f1 + f2) ◦ g 6=⊥ . We have to show (f1 + f2) ◦ g (EY1 + EY2) v. There are two cases for
v: either v = left w or v = right w. We show the first one and the other one follows by
complete analogy. Thus, assume v = left w. Then ∃g′. g = left ◦ g′ ∧ g′ EX1 w. Therefore,
f1◦g′ vY1 w. Since left◦f1◦g′ = (f1 +f2)◦ left◦g′ = (f1 +f2)◦g 6=⊥ it follows f1◦g′ 6=⊥ and
therefore f1 ◦ g′ EY1 w. By definition, (f1 + f2) ◦ g (EY1 + EY2) left w. Therefore, +A,B is
well-defined on morphisms.

Finally, it immediately follows by definition of +A,B that it preserves identities and
composition, that it is a CPO-functor and that the required diagram commutes.

Remark 7.22. In the proof above, condition (2) of Definition 7.1 is used to show ⊗A,B is
well-defined. This is the only place where this assumption is used in the paper.

So far, we have defined operations (and functors) that show how to construct appropriate
logical relations for types of the form !A,A + B,A ⊗ B and A(B. Next, we show how
to fold and unfold logical relations via the functors I and E below. I should be thought of
as the introduction (fold) and E as the elimination (unfold) for logical relations involving
recursive types.

9:42 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Lemma 7.23. For every closed type · ` µX.A, there exists an isomorphism of categories

IµX.A : R(A[µX.A/X]) ∼= R(µX.A) : EµX.A

given by:

IµX.A : R(A[µX.A/X])→ R(µX.A) EµX.A : R(µX.A)→ R(A[µX.A/X])

IµX.A(Y,E) = (Y, IµX.A E) EµX.A(Y,E) = (Y,EµX.A E)

IµX.A(f) = f EµX.A(f) = f

where the folded relation (IµX.A E) is defined by:

(IµX.A E) ⊆ (L(I, Y)− {⊥})× Values(µX.A)

g (IµX.A E) fold v ⇐⇒ g E v

and the unfolded relation (EµX.A E) is defined by:

(EµX.A E) ⊆ (L(I, Y)− {⊥})× Values(A[µX.A/X])

g (EµX.A E) v ⇐⇒ g E fold v

Moreover, the functors IµX.A and EµX.A are CPO⊥!-functors.

Proof. We first show that the functor IµX.A is well-defined on objects. This is equiva-
lent to showing (− (IµX.A E) fold v) is closed under suprema of increasing sequences in
L(I, Y)− {⊥}. This, by definition, is equivalent to showing that (− E v) is also closed
under the same suprema, which is true by assumption.

Next, we show the functor IµX.A is well-defined on morphisms. Let f : (Y,EY)→ (Z,EZ)
be a morphism in R(A[µX.A/X]). Assume g (IµX.A EY) fold v and assume f ◦g 6=⊥ . From
the former it follows g EY v and therefore f ◦ g vZ v. Since f ◦ g 6=⊥ it follows f ◦ g EZ v
and by definition f ◦ g (IµX.A EZ) fold v. Therefore, IµX.A is well-defined on morphisms.

Next, we show that the functor EµX.A is well-defined on objects. This is equivalent to
showing (− (EµX.A E) v) is closed under suprema of increasing sequences in L(I, Y)− {⊥}.
This, by definition, is equivalent to showing that (− E fold v) is also closed under the
same suprema, which is true by assumption.

Next, we show EµX.A is well-defined on morphisms. Let f : (Y,EY) → (Z,EZ) be a
morphism in R(µX.A). Assume g (EµX.A EY) v and assume f ◦ g 6=⊥ . From the former it
follows g EY fold v and therefore f ◦ g vZ fold v. Since f ◦ g 6=⊥ it follows f ◦ g EZ fold v
and by definition it follows f ◦g (EµX.A EZ) v. Therefore, EµX.A is well-defined on morphisms.

Obviously, both functors preserve identities and composition.
Next, we show that for any relation E, we have that IµX.A(EµX.A E) =E. This is true,

because:

g (IµX.A(EµX.A E)) fold v ⇐⇒ g (EµX.A E) v ⇐⇒ g E fold v.

Also, we show that for any relation E, we have that EµX.A(IµX.A E) =E. This is true,
because:

g (EµX.A(IµX.A E)) v ⇐⇒ g (IµX.A E) fold v ⇐⇒ g E v.

Therefore IµX.A ◦ EµX.A = IdR(µX.A) and EµX.A ◦ IµX.A = IdR(A[µX.A/X]), which shows the
two functors are isomorphisms. Since both functors are identity on morphisms, it follows
that they are both CPO⊥!-functors.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:43

This finishes the categorical development of the categories R(A). Next, we define a non-
standard type interpretation on the categories R(A)e. When we compose this interpretation
with the forgetful functor, we get exactly the standard type interpretation (Proposition 7.26).
Since the new interpretation carries additional information (the logical relations needed for
the proof of adequacy), we shall refer to it as the augmented interpretation.

Notation 7.24. In what follows, given a type context Θ = X1, . . . , Xn and closed types
· ` Ci (1 ≤ i ≤ n), we write ~C for C1, . . . , Cn and [~C/Θ] for [C1/X1, . . . , Cn/Xn].

Definition 7.25. Given a well-formed type Θ ` A and closed types ~C as in Notation 7.24,
we define the augmented interpretation to be the functor

‖Θ ` A‖ ~C : R(C1)e × · · · ×R(Cn)e → R(A[~C/Θ])e

defined inductively by:

‖Θ ` Θi‖
~C := Πi

‖Θ `!A‖ ~C := !A[~C/Θ]
e ◦ ‖Θ ` A‖ ~C

‖Θ ` A ? B‖ ~C := ?A[~C/Θ],B[~C/Θ]
e ◦ 〈‖Θ ` A‖ ~C , ‖Θ ` B‖ ~C〉 (where ? ∈ {+,⊗,(})

‖Θ ` µX.A‖ ~C :=
(
IµX.A[~C/Θ]
e ◦ ‖Θ, X ` A‖ ~C,µX.A[~C/Θ]

)†
Proposition 7.26. Every functor ‖Θ ` A‖ ~C is an ω-functor and the following diagram:

R(C1)e × · · · ×R(Cn)e R(A[~C/Θ])e
‖Θ ` A‖ ~C

Le × · · · × Le Le
JΘ ` AK

U
A[~C/Θ]
e

UC1
e × · · · × UCn

e

commutes.

Proof. By induction on Θ ` A.
Case Θ ` Θi. Obvious.
Case Θ `!A.
By induction ‖Θ ` A‖ ~C is an ω-functor. ω-functors are closed under composition and

!
A[~C/Θ]
e is an ω-functor because of Theorem 5.8 and Theorem 7.21. Therefore ‖Θ `!A‖ ~C is
an ω-functor. Moreover:

U !A[~C/Θ]
e ◦ ‖Θ `!A‖ ~C = U !A[~C/Θ]

e ◦!A[~C/Θ]
e ◦ ‖Θ ` A‖ ~C (Definition)

= !e ◦ UA[~C/Θ]
e ◦ ‖Θ ` A‖ ~C (Theorem 7.21)

= !e ◦ JΘ ` AK ◦ (UC1
e × · · · × UCn

e) (IH)

= JΘ `!AK ◦ (UC1
e × · · · × UCn

e), (Definition)

which shows the required diagram commutes.

9:44 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Case Θ ` A ? B.
By induction ‖Θ ` A‖ ~C and ‖Θ ` B‖ ~C are ω-functors. ω-functors are closed under

composition and pairing (§4.2) and ?A[~C/Θ],B[~C/Θ]
e is an ω-functor because of Theorem 5.8

and Theorem 7.21. Therefore ‖Θ ` A ? B‖ ~C is an ω-functor. Moreover:

UA?B[~C/Θ]
e ◦ ‖Θ ` A ? B‖ ~C =

= UA?B[~C/Θ]
e ◦ ?A[~C/Θ],B[~C/Θ]

e ◦ 〈‖Θ ` A‖ ~C , ‖Θ ` B‖ ~C〉 (Definition)

= ?e ◦ (UA[~C/Θ]
e × UB[~C/Θ]

e) ◦ 〈‖Θ ` A‖ ~C , ‖Θ ` B‖ ~C〉 (Theorem 7.21)

= ?e ◦ 〈UA[~C/Θ]
e ◦ ‖Θ ` A‖ ~C , UB[~C/Θ]

e ◦ ‖Θ ` B‖ ~C〉
= ?e ◦ 〈JΘ ` AK ◦ (UC1

e × · · · × UCn
e), JΘ ` BK ◦ (UC1

e × · · · × UCn
e)〉 (IH)

= ?e ◦ 〈JΘ ` AK, JΘ ` BK〉 ◦ (UC1
e × · · · × UCn

e)

= JΘ ` A ? BK ◦ (UC1
e × · · · × UCn

e), (Definition)

which shows the required diagram commutes.
Case Θ ` µX.A.
By induction ‖Θ, X ` A‖ ~C,µX.A[~C/Θ] is an ω-functor. ω-functors are closed under com-

position and IµX.A[~C/Θ]
e is an ω-functor because of Theorem 5.8 and Theorem 7.21. Therefore

‖Θ ` µX.A‖ ~C is an ω-functor, because of Theorem 4.12.
Next, observe that for any closed type · ` µY.B, we have:

UµY.B ◦ IµY.B = UB[µY.B/Y] (7.2)

which follows immediately from the definition of I. Then:

UµX.A[~C/Θ]
e ◦ IµX.A[~C/Θ]

e ◦ ‖Θ, X ` A‖ ~C,µX.A[~C/Θ] =

= UA[~C/Θ][µX.A[~C/Θ]/X]
e ◦ ‖Θ, X ` A‖ ~C,µX.A[~C/Θ] (7.2)

= UA[~C/Θ,µX.A[~C/Θ]/X]
e ◦ ‖Θ, X ` A‖ ~C,µX.A[~C/Θ] (Type identity)

= JΘ, X ` AK ◦ (UC1
e × · · · × UCn

e × UµX.A[~C/Θ]
e), (IH)

which shows that all of the conditions of Assumption 4.16 are satisfied. Therefore, by
Corollary 4.21 :

UµX.A[~C/Θ]
e ◦

(
IµX.A[~C/Θ]
e ◦ ‖Θ, X ` A‖ ~C,µX.A[~C/Θ]

)†
= JΘ, X ` AK† ◦ (UC1

e × · · · × UCn
e)

and then by definition:

UµX.A[~C/Θ]
e ◦ ‖Θ ` µX.A‖ ~C = JΘ ` µX.AK ◦ (UC1

e × · · · × UCn
e),

which shows the required diagram commutes.

By considering the proof of the above proposition for type Θ ` µX.A, we get an important
corollary which shows that for any recursive type, the parameterised initial algebra for the
augmented interpretation is exactly the same as the one for the standard interpretation.

Corollary 7.27. The following (2-categorical) diagram:

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:45

R(C1)e × · · · ×R(Cn)e R(A[~C/Θ])eφ

Le × · · · × Le Le

JΘ, X ` AK ◦ 〈Id, JΘ ` µX.AK〉

φ

‖Θ ` µX.A‖ ~C

JΘ ` µX.AK

U
A[~C/Θ]
e

UC1
e × · · · × UCn

e

IµX.A[~C/Θ]
e ◦ ‖Θ, X ` A‖~C,µX.A[~C/Θ] ◦ 〈Id, ‖Θ ` µX.A‖~C〉

commutes (see Theorem 4.12 for φ).

Proof. In Proposition 7.26, we have shown

UµX.A[~C/Θ]
e ◦

(
IµX.A[~C/Θ]
e ◦ ‖Θ, X ` A‖ ~C,µX.A[~C/Θ]

)
=

= JΘ, X ` AK ◦ (UC1
e × · · · × UCn

e × UµX.A[~C/Θ]
e),

which satisfies the conditions of Assumption 4.16 (with M and N given by the (products of)
forgetful functors). Therefore, by Corollary 4.27 we complete the proof.

Next, we prove a substitution lemma for the augmented interpretations which shows
that they behave as expected. Its proof depends on a permutation and a contraction lemma.

Lemma 7.28 (Permutation). For any well-formed type Θ, X, Y,Θ′ ` A and closed types
C1, . . . , Cm+m′+2 :

‖Θ, Y,X,Θ′ ` A‖ ~C,Cm+2,Cm+1, ~C′ = ‖Θ, X, Y,Θ′ ` A‖ ~C,Cm+1,Cm+2, ~C′ ◦ swapm,m′

where |Θ| = m, |Θ′| = m′, swapm,m′ = 〈Π1, . . . ,Πm,Πm+2,Πm+1,Πm+3, . . . ,Πm+m′+2〉 and
where ~C = C1, . . . , Cm and ~C ′ = Cm+3, . . . , Cm+m′+2.

Proof. Straightforward induction, essentially the same as Lemma 6.3 (1).

Lemma 7.29 (Contraction). For any well-formed type Θ,Θ′ ` A, such that X 6∈ Θ ∪Θ′,
and closed types C1, . . . , Cm+m′+1 :

‖Θ, X,Θ′ ` A‖ ~C,Cm+1, ~C′ = ‖Θ,Θ′ ` A‖ ~C, ~C′ ◦ dropm,m′

where |Θ| = m, |Θ′| = m′, dropm,m′ = 〈Π1, . . . ,Πm,Πm+2, . . . ,Πm+m′+1〉 and where we have
~C = C1, . . . , Cm and ~C ′ = Cm+2, . . . , Cm+m′+1.

Proof. Straightforward induction, essentially the same as Lemma 6.4 (1).

Lemma 7.30 (Substitution). For any well-formed types Θ, X ` A and Θ ` B and closed
types C1, . . . , Cm:

‖Θ ` A[B/X]‖ ~C = ‖Θ, X ` A‖ ~C,B[~C/Θ] ◦ 〈Id, ‖Θ ` B‖ ~C〉.

Proof. Straightforward induction, essentially the same as Lemma 6.5 (1).

9:46 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

We may now finally prove the existence of the formal approximation relations as promised
in Lemma 7.6. First, we introduce some additional notation for convenience when dealing with
closed types and their augmented interpretations. Recall that the augmented interpretation of
a closed type · ` A is a functor ‖· ` A‖· : 1→ R(A). Therefore let ‖A‖ := ‖· ` A‖·(∗), where
∗ is the unique object of 1. Then ‖A‖ is an object of R(A). For the standard interpretation
of types we use the notation from §6.4.

Proof of Lemma 7.6.
First, observe that by Proposition 7.26, ‖A‖ = (JAK,EA) for some

EA⊆ (L(I, JAK)− {⊥})×Values(A).

We will show that these relations EA have the required properties. Next, recall that by
Theorem 5.8, Te(A,B) = T (A,B), for any (bi)functor T and objects A,B. Then:

Property (B) holds by construction (cf. Definitions 7.12, 7.13 and 7.14).
Properties (A1.1), (A1.2), (A2) and (A3) hold, because:

‖A ? B‖ = ‖A‖ ?A,B ‖B‖ = (JA ? BK,EA ?A,B EB) (? ∈ {+,⊗,(})

and then by Definition 7.18.
Property (A4) holds, because: ‖!A‖ =!A(‖A‖) = (J!AK, ! EA) and then by Definition 7.18.
To prove property (A5), we reason as follows. By using Corollary 7.27 and Lemma 7.30

in the special case where Θ = ·, we get an isomorphism (in the category R(µX.A))

φ−1
∗ : ‖µX.A‖ ∼= IµX.A

(
‖X ` A‖µX.A (‖µX.A‖)

)
= IµX.A (‖A[µX.A/X]‖) : φ∗,

where ∗ is the unique object of the category 1. But by Corollary 7.27 and the notation
from §6.4, it follows φ−1

∗ = unfoldµX.A and so we have an isomorphism in R(µX.A)

unfoldµX.A : (JµX.AK,EµX.A) = ‖µX.A‖
∼= IµX.A (‖A[µX.A/X]‖)
= (JA[µX.A/X]K, IµX.A EA[µX.A/X]) : foldµX.A

(7.3)

We may now easily complete the proof. For the left-to-right direction of (A5):

f EµX.A fold v

⇒ unfoldµX.A ◦ f (IµX.A EA[µX.A/X]) fold v ((7.3) and Lemma 7.15 (1))

⇒ unfoldµX.A ◦ f EA[µX.A/X] v (Lemma 7.23)

And for the right-to-left direction of (A5):

unfoldµX.A ◦ f EA[µX.A/X] v

⇒ unfoldµX.A ◦ f (IµX.A EA[µX.A/X]) fold v (Lemma 7.23)

⇒ f = foldµX.A ◦ unfoldµX.A ◦ f EµX.A fold v ((7.3) and Lemma 7.15 (1))

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:47

8. Related Work

LNL-FPC can be seen as an extension with recursive types of the circuit-free fragment of
Proto-Quipper-M [RS17], which corresponds to the CLNL calculus in [LMZ18]. The present
paper adds a syntactic, operational and denotational treatment of recursive types to these
type systems.

Our work is also closely related to the LNL calculus [Ben95] (also known as the adjoint
calculus [BW96]). The LNL type assignment system has two kinds of term judgements – a
linear one and a non-linear one, which are interpreted in a monoidal category and a cartesian
category, respectively. However, LNL-FPC differs syntactically, because it has only one kind
of term judgement, which we believe results in a more convenient syntax for programming.

Eppendahl [Epp03] extends LNL with recursive types only for the linear judgements.
In that work, recursive types are treated linearly and are interpreted in the linear category
only. In LNL-FPC, we also show how to add non-linear recursive types. We are able to treat
them non-linearly, because we present new techniques for solving recursive domain equations
within CPO-enriched cartesian categories that we use for their interpretation. Moreover,
in LNL-FPC, both term-level recursion and type-level recursion are handled elegantly and
agnostically with respect to the linearity of the type/term in question, which we think is a
point in favor of our syntax. In contrast, term recursion in LNL and the adjoint calculus
seems to be less elegant [BW96, pp. 11]. In an LNL-style syntax, it is also natural to add
type recursion over the non-linear types, including non-linear function space, but it is an
open problem how to interpret this in the cartesian category. Indeed, even if we assume
(C,×, [− → −], 1) is cartesian closed, then the methods presented here do not explain how
to compute fixpoints involving the [− → −] bifunctor, because it is unclear how to see it
as a covariant functor on C while still being able to form initial algebras. In LNL-FPC, we
do not assume our cartesian category is closed and so we do not expose any syntax for the
internal-hom of the cartesian category and we have shown how to interpret the remaining
non-linear recursive types (in both categories, see Figure 4).

Some mixed linear/non-linear type systems, such as the adjoint calculus [BW96], also
support additive conjunction. We did not include additive conjunction in our type system,
because we do not think it is interesting from a programming perspective. However, it
appears it could be included without causing problems – on the denotational side we merely
have to assume that our linear category has CPO-products, which is true in all of our
concrete models.

The Lily language [BPR00] is a polymorphic linear/non-linear lambda calculus where
recursive types may be encoded using polymorphism. The non-linear types in Lily are those
of the form !A, whereas in LNL-FPC the non-linear types are also closed under sums, pairs
and formation of recursive types, which is a major focus of our paper and that we believe
improves the usability of the language. A version of Lily where the function space A(B is
strict, rather than linear, was considered in [RS04] and the language was equipped with a
denotational model based on synthetic domain theory. The authors prove two computational
adequacy results (one for call-by-name and one for call-by-value evaluation) that hold at
all types of the form !A. Computational adequacy for Lily at types !A was established
in [MBR08], again using a model based on synthetic domain theory. These are the only
adequacy results, that we know of, for languages with a similar feature set to LNL-FPC. Our
adequacy result, however, covers a larger range of types (all non-linear types, rather than

9:48 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

only those of the form !A) and our categorical model is considerably simpler and easier to
understand. LNL-FPC does not support polymorphism, however.

LNL-FPC is also related to Barber’s Dual Intuitionistic Linear Logic (DILL) [Bar96],
which, like LNL-FPC, also has one kind of term judgement, but it enforces a strict separation
between linear and non-linear contexts. As a result, for a lambda abstraction λxA.p in DILL,
the variable x is always treated as a linear variable, whereas LNL-FPC allows it to be treated
as non-linear, provided A is, resulting in increased convenience for programming.

Other type systems like λq→ [BBN+17], aλms [TP11] and Quill [Mor16] support linear
or affine types where the substructural operations are implicit, whereas in LNL-FPC only
the weakening and contraction rules are implicit. However, none of them have so far been
equipped with a categorical semantics (which is the main contribution of this paper).

Fiore and Plotkin model recursive types within FPC using categories that are algebraically
compact in an enriched sense [Fio94, FP94]. Any category that is algebraically compact in
such a sense and is also cartesian closed is necessarily degenerate. In a mixed linear/non-linear
setting, we also have to solve recursive domain equations within the cartesian closed category,
and because of this we cannot model recursive types using these techniques.

Another approach to modeling recursive types involves bilimit compact categories [Lev04]
where type expressions are modelled as functors T : Aop ×Bop ×A×B→ B for which one
can solve recursive domain equations by using domain-theoretic methods [Pit96]. We do not
know if these techniques would also work in a mixed linear/non-linear setting like ours, but
we think that our presentation is simpler and more compact, because we simply interpret
type expressions as functors T : Ae ×Be → Be. In addition, our categorical models can be
easily simplified for languages that have only inductive datatypes (recursive types allowing
only ⊗ and +). In such a case, CPO-enrichment from the model may be removed and our
semantics can be adapted quite easily.

In [PPRZ20a, PPRZ20b], the authors present a denotational semantics for the first-order
quantum programming language QPL extended with inductive datatypes (i.e., datatypes
formed using ⊗ and +, but not (and !). This type system is not equipped with (and
! types and in order to model copying of classical information, the authors use methods
based on the work reported here (and in [LMZ19]) that shows how to construct the required
comonoids.

9. Conclusion and Future Work

We introduced a new language called LNL-FPC, which can be seen as extending FPC with a
mixed linear/non-linear typing discipline (§2). An interesting feature of our type system is
that it has implicit weakening and contraction rules – the users of the language do not have
to explicitly specify when to copy and discard non-linear variables, while still enjoying linear
type checking for the linear variables.

We presented a big-step call-by-value operational semantics for the language and showed
that a previously known canonical fixpoint operator on terms [LMZ18] may be derived via
the isorecursive type structure, thereby recreating an important result from FPC (§3).

In preparation for the denotational semantics of the language, we first had to establish
some new coherence properties between (parameterised) initial algebras defined in potentially
different categories and related by appropriate mediating functors (§4).

We then described our categorical model, which is aCPO-enriched model of Intuitionistic
Linear Logic with suitable ω-colimits (§5). A crucial insight of our approach and of our

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:49

model, is that non-linear types that correspond to mixed-variance functors can be seen as
covariant functors both on the linear category of embeddings, but also on the non-linear
category of pre-embeddings. We also presented an entire class of concrete models that have
found applications not only in classical functional programming, but also in programming
languages for certain emerging fields (quantum computation and diagrammatic languages).

We proved our denotational semantics sound (§6) and cemented our results by demonstrat-
ing a computational adequacy result (§7). In doing so, we provided two kinds of denotational
interpretations for non-linear types, terms and contexts – a standard interpretation within
the linear category, and one within the cartesian category – that we showed are very strongly
related to one another via a coherent natural isomorphism. This isomorphism, in turn,
allowed us to elegantly interpret the substructural operations of Intuitionistic Linear Logic
and in particular we precisely described the canonical comonoid structure of the non-linear
(recursive) types. This, in turn, required developing new techniques for solving recursive
domain equations within a cartesian category, which is perhaps the main contribution of this
paper. More specifically, we showed that the solution of many (mixed-variance) recursive
domain equations on the linear side (constructed over embeddings) can be reflected onto the
cartesian side (by constructing them over pre-embeddings) and this result can be of interest
even without our sound and adequate semantics.

As part of future work we would like to investigate what additional categorical structure
(if any) is required in order to design and model a type system similar to ours, but where the
substructural rules for promotion and dereliction are also implicit. In practical terms, this
would result in a programming language that is more convenient for use, while still retaining
the benefits of linear type checking. In theoretical terms, the categorical treatment could
lead to a better understanding of the underlying design principles.

Another line of future work is to consider a more abstract model of LNL-FPC where the
CPO-enrichment of our model is axiomatised away. This is a challenging problem, but if
resolved, this could help to discover additional models of LNL-FPC.

Acknowledgments

We thank Samson Abramsky, Chris Heunen, Mathys Rennela, Francisco Rios and Peter
Selinger for discussions regarding this paper. We also thank the anonymous ICFP and LMCS
referees for their feedback, which led to multiple improvements of the paper. We thank the
Simons Institute for the Theory of Computing where the initial part of this work took place.
We also thank Schloss Dagstuhl - Leibniz Center for Informatics for hosting us during the
Quantum Programming Languages seminar where another part of the work took place.

This work was partially funded by the AFOSR under the MURI grant number FA9550-16-
1-0082 entitled, "Semantics, Formal Reasoning, and Tool Support for Quantum Programming".
Vladimir Zamdzhiev is also supported by the French projects ANR-17-CE25-0009 SoftQPro
and PIA-GDN/Quantex.

9:50 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

References

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci., 111(1&2):3–
57, 1993.

[Adá74] Jiří Adámek. Free algebras and automata realizations in the language of categories. Commenta-
tiones Mathematicae Universitatis Carolinae, 15(4):589–602, 1974.

[AF96] M. Abadi and M. P. Fiore. Syntactic considerations on recursive types. In Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science, pages 242–252, July 1996.

[AJ94] S. Abramsky and A. Jung. Handbook of logic in computer science (vol. 3). chapter Domain
Theory, pages 1–168. Oxford University Press, Oxford, UK, 1994.

[AMM18] Jiří Adámek, Stefan Milius, and Lawrence S Moss. Fixed points of functors. Journal of Logical
and Algebraic Methods in Programming, 95:41–81, 2018.

[Bar96] Andrew Barber. Dual intuitionistic linear logic, 1996. Technical Report, University of Edinburgh.
[BBN+17] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud

Spiwack. Linear haskell: Practical linearity in a higher-order polymorphic language. Proc. ACM
Program. Lang., 2(POPL):5:1–5:29, December 2017.

[Ben95] P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Computer Science
Logic: 8th Workshop, CSL ’94, Selected Papaers, 1995.

[Bor94] F. Borceux. Handbook of Categorical Algebra 2: Categories and Structures. Cambridge University
Press, 1994.

[BPR00] Gavin M. Bierman, Andrew M. Pitts, and Claudio V. Russo. Operational properties of lily, a
polymorphic linear lambda calculus with recursion. Electr. Notes Theor. Comput. Sci., 41(3):70–
88, 2000.

[Bra97] T. Braüner. A general adequacy result for a linear funcitonal language. Theoretical Computer
Science, 177:27–58, 1997.

[BW96] P. N. Benton and P. Wadler. Linear logic, monads and the lambda calculus. In LICS 1996, 1996.
[CPT16] L. Caires, F. Pfenning, and B. Toninho. Linear logic propositions as session types. Mathematical

Structures in Computer Science, 26(3):367–423, 2016.
[Day74] B. Day. On closed categories of functors ii. In Category Seminar: Proceedings Sydney Category

Theory Seminar 1972/1973, pages 20–54, 1974.
[Epp03] Adam Eppendahl. Categories and types for axiomatic domain theory. PhD thesis, Queen Mary

University of London, UK, 2003.
[Fio94] M. P. Fiore. Axiomatic domain theory in categories of partial maps. PhD thesis, University of

Edinburgh, UK, 1994.
[FP94] Marcelo Fiore and Gordon Plotkin. An axiomatization of computationally adequate domain

theoretic models of FPC. In LICS, pages 92–102. IEEE Computer Society, 1994.
[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1 – 101, 1987.
[Lev04] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Springer, 2004.
[LMZ18] Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. Enriching a linear/non-linear

lambda calculus: A programming language for string diagrams. In Anuj Dawar and Erich Grädel,
editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, pages 659–668. ACM, 2018.

[LMZ19] Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. Mixed linear and non-linear
recursive types. Proc. ACM Program. Lang., 3(ICFP):111:1–111:29, August 2019.

[LMZ20] Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. Semantics for a lambda calculus
for string diagrams, 2020. Preprint.

[LS81] Daniel J Lehmann and Michael B Smyth. Algebraic specification of data types: A synthetic
approach. Mathematical Systems Theory, 1981.

[MBR08] Rasmus Ejlers Møgelberg, Lars Birkedal, and Giuseppe Rosolini. Synthetic domain theory and
models of linear abadi & plotkin logic. Ann. Pure Appl. Logic, 155(2):115–133, 2008.

[ML98] Saunders Mac Lane. Categories for the Working Mathematician (2nd ed.). Springer, 1998.
[Mor16] J. Garrett Morris. The best of both worlds: Linear functional programming without compromise.

SIGPLAN Not., 51(9):448–461, September 2016.
[MSS13] Octavio Malherbe, Philip Scott, and Peter Selinger. Presheaf Models of Quantum Computation:

An Outline, pages 178–194. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
[Pit96] Andrew M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90, 1996.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:51

[Plo85] G. D. Plotkin. Lectures on predomains and partial functions. notes for a course given at csli
stanford university., 1985.

[PPRZ20a] Romain Péchoux, Simon Perdrix, Mathys Rennela, and Vladimir Zamdzhiev. Quantum program-
ming with inductive datatypes, 2020. Preprint.

[PPRZ20b] Romain Péchoux, Simon Perdrix, Mathys Rennela, and Vladimir Zamdzhiev. Quantum program-
ming with inductive datatypes: Causality and affine type theory. In Foundations of Software
Science and Computation Structures - 23rd International Conference, FOSSACS 2020, volume
12077 of Lecture Notes in Computer Science, pages 562–581. Springer, 2020.

[PSV14] Michele Pagani, Peter Selinger, and Benoît Valiron. Applying quantitative semantics to higher-
order quantum computing. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 647–658. ACM, 2014.

[RS04] Giuseppe Rosolini and Alex Simpson. Using synthetic domain theory to prove operational
properties of a polymorphic programming language based on strictness, 2004. Manuscript.

[RS17] Francisco Rios and Peter Selinger. A categorical model for a quantum circuit description language.
In QPL 2017, volume 266 of EPTCS, 2017.

[RS18] Mathys Rennela and Sam Staton. Classical control and quantum circuits in enriched category
theory. Electr. Notes Theor. Comput. Sci., 336:257–279, 2018.

[SP82] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equations.
Siam J. Comput., 1982.

[TP11] Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL ’11, 2011.
[Wad90] Philip Wadler. Linear types can change the world! In PROGRAMMING CONCEPTS AND

METHODS. North, 1990.

9:52 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Appendix A. Omitted Proofs

A.1. Proof of Lemma 4.7.

Proof. For brevity we write TA, TB, Tf for T (A,−), T (B,−), T (f,−) respectively.
First, observe that (T ∗nf)X = T (f, T (f, · · ·T (f,X) · · ·).
Therefore, (S(Tf))n = (T ∗nf)∅ = T (f, T (f, · · ·T (f,∅) · · ·).
Next, observe that TnA(g) = T (A, T (A, · · ·T (A, g) · · ·).
Next, we have

(Tf ∗ S(Tf))n = ((Tf ∗ S(TB)) ◦ (TA ∗ S(Tf)))n = T (f, TnB(∅)) ◦ T (A, (T ∗nf)∅)

= T (f, (T ∗nf)∅) = (T ∗n+1
f)∅.

And therefore

((Tf ∗ S(Tf)) ◦ sTA)n = (T ∗n+1
f)∅ ◦ TnA(ιTA∅)

= T (f, T (f, · · ·T (f, T (f,∅)) · · ·) ◦ T (A, T (A, · · ·T (A, ιTA∅) · · ·)
= T (f, T (f, · · ·T (f, T (f,∅) ◦ ιTA∅) · · ·)
= T (f, T (f, · · ·T (f, ιTB∅) · · ·)
= TnB(ιTB∅) ◦ (T ∗nf)∅

= (sTB ◦ S(Tf))n

A.2. Proof of Lemma 4.9.

Proof. Composing τn : Dn → D′n with d′n : D′n → D′ω yields a morphism d′n ◦ τn : Dn → D′ω
for each n ∈ ω, which forms a cocone of the diagram D. Since Dω is the colimit of D, then
colim(τ) : Dω → D′ω is by definition the unique map such that

colim(τ) ◦ dn = d′n ◦ τn,

hence by functoriality of T , we obtain

T colim(τ) ◦ Tdn = Td′n ◦ Tτn (A.1)

for each n ∈ ω. Now, T ◦D : ω → B is an ω-diagram and since T preserves the colimit of D,
it follows TDω is the colimit of T ◦D with colimiting morphisms Tdn : TDn → TDω for each
n ∈ ω. Similarly, TD′ω is the colimit of T ◦D′ with colimiting morphisms Td′n : TD′n → TD′ω.
Then Td′n ◦ Tτn : TDn → TD′ω forms a cocone of the diagram T ◦ D, and by definition
colim(Tτ) : TDω → TD′ω is the unique morphism such that

colim(Tτ) ◦ Tdn = Td′n ◦ Tτn.

It follows now from (A.1) that T colim(τ) = colim(Tτ).

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:53

A.3. Proof of Lemma 4.10.

Proof. By Notation 4.8, (Dω, dn)n∈ω is the colimiting cocone of D. By definition of ω-
functors, it follows that (TDω, Tdn)n∈ω and (HDω, Hdn)n∈ω are the colimiting cocones of
T ◦ D and H ◦ D, respectively. Then (HDω, Hdn ◦ τDn)n∈ω is a cocone of TD, and by
definition colim(τD) : TDω → HDω is the unique morphism such that

colim(τD) ◦ Tdn = Hdn ◦ τDn

for each n ∈ ω. On the other hand, by naturality of τ : T ⇒ H, we have

τDω ◦ Tdn = Hdn ◦ τDn ,

for each n ∈ ω, hence we must have colim(τD) = τDω .

A.4. Proof of Lemma 4.17.

Proof. First, we have to show that for each A ∈ A, we have that

α∗A : S(T (NA,−))⇒M ◦ S(H(A,−) : ω → D

is natural in ω, i.e., we have to show that

MS(H(A,−))(n ≤ n+ 1) ◦ (α∗A)n = (α∗A)n+1 ◦ S(T (NA,−)(n ≤ n+ 1)) (A.2)

for each n ∈ ω. Let ι1 : 0 → T (NA, 0) and ι2 : ∅ → H(A,∅) be the indicated unique
morphisms. By definition, equation (A.2) is then equivalent to:

MH(A,−)nι2 ◦ (α∗A)n = (α∗A)n+1 ◦ T (NA,−)nι1. (A.3)

When n = 0, the equality becomes Mι2 ◦ z = (α∗A)1 ◦ ι1, which is true by initiality. We
proceed by induction, so assume that (A.3) holds for n. Expanding the equality for n+ 1, by
definition of α∗A, we get following diagram:

MH(A,−)n+2∅MH(A,−)n+1∅

T (NA,MH(A,−)n+1∅)

αA,H(A,−)n∅

T (NA,MH(A,−)nι2)

αA,H(A,−)n+1∅

T (NA, (α∗A)n) T (NA, (α∗A)n+1)

T (NA,−)n+10 T (NA,−)n+20

MH(A,−)n+1ι2

T (NA,−)n+1ι1

(2)

(1)

T (NA,MH(A,−)n∅)

9:54 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Here the outer square is just equation (A.3) for n+1. Subdiagram (2) commutes by naturality
of α, whereas (1) commutes because it is T (NA,−) applied to equation (A.3), which is the
induction step. We conclude that (α∗A)n is indeed natural in n.

Next, we have to show that α∗A is also natural in A. Hence let f : A1 → A2 be a
morphism in A. Then we need to show that

MS(H(f,−)) ◦ α∗A1
= α∗A2

◦ S(T (Nf,−)).

This equality holds if and only it holds for all its components n, i.e., if

MH(f,−)n∅ ◦ (α∗A1
)n = (α∗A2

)n ◦ T (Nf,−)n0 (A.4)

holds for each n ∈ ω. For n = 0, it reduces to id ◦ z = z ◦ id, which indeed holds. We proceed
by induction. Assume that (A.4) holds for n. Consider the following diagram:

MH(A2,−)n+1∅

MH(A1,−)n+1∅

T (NA2,MH(A2,−)n∅)

αA1,H(A1,−)n∅

αA2,H(A2,−)n∅

T (NA1,MH(f,−)n∅)

T (NA2, (α
∗
A2

)n)

T (NA1,−)n+10 T (NA1,MH(A1,−)n∅)

T (NA1, T (NA2,−)n0) MH(f,−)n+1∅T (NA1,MH(A2,−)n∅)

(2)

(1)

T (NA2,−)n+10

T (NA1, T (Nf,−)n0)

T (Nf,MH(A2,−)n∅)

T (NA1, (α
∗
A1

)n)

(3)

T (Nf, T (NA2,−)n0)

T (NA1, (α
∗
A2

)n)

Here the outer square is just (A.4) for n + 1. Subdiagram (1) commutes because it is
TN(A1,−) acting on equation (A.4) for n, the induction step. Subdiagram (2) because T
is a bifunctor. Subdiagram (3) commutes by naturality of α. We conclude that (A.4) also
holds for n+ 1 and therefore α∗ is a natural transformation.

Finally, a simple induction argument shows that every component α∗A is an isomorphism
and therefore α∗ is a natural isomorphism.

A.5. Proof of Lemma 4.22.

Proof. For (1), notice β can be seen as a natural transformation β : H ◦ (Id× Id)⇒ Id ◦H ′,
hence β∗ becomes a natural transformation β∗ : H∗ ◦ Id⇒ (Id .−) ◦ (H ′)∗, defined by

(β∗A)0 :=
(
∅ id∅−−→ ∅

)
(β∗A)n+1 :=

(
H(A,−)n+1∅

H(A,(β∗A)n)
−−−−−−−→ H(A,H ′(A,−)n∅)

βA,H′(A,−)n∅−−−−−−−−→ H ′(A,−)n+1∅
)
.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:55

Furthermore, we have a natural transformation Mβ ◦ α : T ◦ (N ×M) ⇒ M ◦H ′, hence
(Mβ ◦ α)∗ : T ∗ ◦N ⇒ (M .−) ◦ (H ′)∗ is a natural transformation defined by

((Mβ ◦ α)∗A)0 :=
(

0
z−→M∅

)
((Mβ ◦ α)∗A)n+1 :=(

T (NA,−)n+10
T (NA,(δ∗A)n)−−−−−−−−→ T (NA,MH ′(A,−)n∅)

δA,H′(A,−)n∅−−−−−−−−−→MH ′(A,−)n+1∅
)
.

where δ = Mβ ◦ α. We have to show that we have (Mβ ◦ α)∗A = Mβ∗A ◦ α∗A. Base case:

((Mβ ◦ α)∗A)0 = z = M(id∅) ◦ z = M(β∗A)0 ◦ (α∗A)0.

Assume as an induction hypothesis that ((Mβ ◦ α)∗A)n = (Mβ∗A ◦ α∗A)n, and consider the
following diagram.

T (NA,MH ′(A,−)n∅)T (NA,MH(A,−)n∅)

T (NA,−)n+10

MH(A,−)n+1∅

T (NA, (α∗A)n)

T (NA,−)n+10

T (NA, ((Mβ ◦ α)∗A)n)

MH(A,H ′(A,−)n∅)

MH ′(A,−)n+1∅

T (NA,M(β∗A)n)

MβA,H′(A,−)n∅

M(β∗A)n+1

(1)

MH(A, (β∗A)n)

αA,H(A,−)n∅ αA,H′(A,−)n∅

(α∗A)n+1

(2)

(3)

(4)

Here (1) commutes, because it is T (NA,−) applied to the induction hypothesis, (2) commutes
by definition of α∗A, (3) commutes by naturality of α, and (4) commutes by definition of β∗A.
The outer right column of the diagram equals by definition ((Mβ ◦ α)∗A)n+1. It follows that

((Mβ ◦ α)∗A)n+1 = (Mβ∗A ◦ α∗A)n+1,

which concludes the proof of the first statement.
For the second statement, base case:

((α(Q× Id) ◦ T (γ ×M))∗E)0 = z (Definition of (−)∗)

= z ◦ id0

= (α∗QE)0 ◦ (T ∗γE)0 (Definition of (−)∗ and T ∗)

For the induction step, assume that ((α(Q× Id) ◦ T (γ ×M))∗E)n = (α∗QE)n ◦ (T ∗γE)n. Using
the induction hypothesis, then ((α(Q× Id) ◦ T (γ ×M))∗E)n+1 is given by the composition of

9:56 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

the right and top sides of the diagram:

T (PE,−)n+10 T (PE, T (NQE,−)n0)
T (PE, (T ∗γE)n)

T (PE,MH(QE,−)n∅)
T (PE, (α∗QE)n)

T (NQE,MH(QE,−)n∅)

T (γE ,MH(QE,−)n∅)

T (NQE,T (NQE,−)n0)

T (γE , T (NQE,−)n0)

T (NQE, (α∗QE)n)

MH(QE,−)n+1∅

α(QE,H(QE,−)n∅)

(α∗QE)n+1

(T ∗γE)n+1

(1)
(2)

(3)

Triangle (1) commutes by definition of T ∗ and the Godement product:

(T ∗γE)n+1 = T (γE ,−)∗(n+1) = T (γE ,−) ∗ T (γE ,−)∗n = T (γE , T (NQE,−)n0) ◦ T (PE, (T ∗γE)n).

Square (2) commutes by bifunctoriality of T and (3) commutes by definition of α∗.

A.6. Proof of Lemma 4.25.

Proof. The two compositions are natural transformations of ω-diagrams in D, so we prove
this by induction on n ∈ ω. We first note that if A is taken to be trivial, then T ∗ = S(T)
and H∗ = S(H). Recall that S(T)(n) = Tn0, and S(H)(n) = Hn∅. Let ιT0 : 0 → T0
and ιH∅ : ∅ → H∅ be the unique initial maps. Then we have (sT)n = Tn(ιT0) and
(sH)n = Hn(ιH∅). Then α∗ : T ∗ ⇒MH∗ : ω → D is a natural transformation given by:

α∗0 :=
(

0
z−→M∅

)
α∗n+1 :=

(
Tn+10

Tα∗n−−−→ TMHn∅
αHn∅−−−−→MHn+1∅

)
.

In order to check that the diagram of natural transformations commutes, we first consider
the 0-component as a basis step. Then we have to show that

(MsH ◦ α∗)0 = (α ∗ S(H) ◦ Tα∗ ◦ sT)0.

Since the object S(T)(0) that is the source of both sides of the last equality is the initial
object 0, it follows that the last equality indeed holds. Next, as an induction hypothesis, we
assume that the n-component of the diagram commutes, hence

(MsH ◦ α∗)n = (α ∗ S(H) ◦ Tα∗ ◦ sT)n, (A.5)

and we aim to show that the (n+ 1)-component commutes as well. Note that

(α ∗ S(H) ◦ Tα∗ ◦ sT)n = (α ∗ S(H))n ◦ Tα∗n ◦ sTn = αS(H)(n) ◦ Tα∗n ◦ sTn
= αHn∅ ◦ Tα∗n ◦ sTn = α∗n+1 ◦ sTn ,

hence (A.5) becomes
MsHn ◦ α∗n = α∗n+1 ◦ sTn . (A.6)

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:57

Consider now the following diagram:

TMHn∅Tn+10

Tn+20 TMHn+1∅

Tα∗n

Tα∗n+1

sTn+1 = TsTn TMsHn(2)

αHn∅

αS(H)(n) = αHn+1∅

MsHn+1 = MHsHn(3)

MHn+1∅

MHn+2∅

α∗n+1

(1)

Here the outside of the diagram is exactly the identity we aim to show, namely the (n+ 1)-
component. (1) commutes by definition of α∗n+1, (2) commutes, since this is T applied to
equation (A.6), and finally (3) commutes since α is natural.

A.7. Proof of Theorem 5.4.

Proof. Using [SP82, Theorem 2], we get the following implications:

(4) ⇐⇒ (3) ⇐⇒ (1)⇒ (2) ⇐⇒ (5).

To finish the proof we will show (2)⇒ (3), which is stated in a slightly weaker form in the
same paper (but its proof is the same).

Assume µ is a colimiting cocone of D in Ce. Let ν : D → B be a colimiting cocone of D
in C. Since (1)⇒ (3) and (1)⇒ (2) it follows that:
1. Each νi is an embedding, (νi ◦ ν•i)i is an increasing sequence and

∨
i νi ◦ ν•i = idB;

2. ν is a colimiting cocone of D in Ce.
Therefore, µ and ν are isomorphic as cocones and therefore there exists an isomorphism

h : B → A, such that µi = h ◦ νi. Therefore µi is an embedding (for every i) and for i ≤ j,
we have:

µi ◦ µ•i = h ◦ νi ◦ ν•i ◦ h• ≤ h ◦ νj ◦ ν•j ◦ h• = µj ◦ µ•j
so that (µi ◦ µ•i)i forms an increasing sequence and:∨

i

µi ◦ µ•i =
∨
i

h ◦ νi ◦ ν•i ◦ h• = h ◦

(∨
i

νi ◦ ν•i

)
◦ h• = h ◦ idB ◦ h−1 = idA.

A.8. Proof of Theorem 6.2.

Proof. By induction on the derivation of Θ ` P. Let |Θ| = n. The case Θ ` Θi is given by:

JΘ ` ΘiK ◦ F×npe = Πi ◦ F×npe = Fpe ◦Πi = Fpe ◦ LΘ ` ΘiM.

So that αΘ`Θi = id, as required. The case Θ `!A is given by:

JΘ `!AK ◦ F×npe = !e ◦ JΘ ` AK ◦ F×npe = Fpe ◦Gpe ◦ JΘ ` AK ◦ F×npe = Fpe ◦ LΘ `!AM

So that αΘ`!A = id, as required.

9:58 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

The case Θ ` P �Q is given by:

JΘ ` P �QK ◦ F×npe = �e ◦ 〈JΘ ` P K, JΘ ` QK〉 ◦ F×npe (Definition)

= �e ◦ 〈JΘ ` P K ◦ F×npe , JΘ ` QK ◦ F×npe 〉
∼= �e ◦ 〈Fpe ◦ LΘ ` P M, Fpe ◦ LΘ ` QM〉 (IH)

= �e ◦ (Fpe × Fpe) ◦ 〈LΘ ` P M, LΘ ` QM〉
∼= Fpe ◦�pe ◦ 〈LΘ ` P M, LΘ ` QM〉 (Theorem 5.20)

= Fpe ◦ LΘ ` P �QM (Definition)

Reading off the morphism, we get αΘ`P�Q = βpe〈LΘ ` P M, LΘ ` QM〉 ◦ �e〈αΘ`P , αΘ`Q〉, as
required.

The case Θ ` µX.P is given by:

JΘ ` µX.P K ◦ F×npe = JΘ, X ` P K† ◦ F×npe
∼= Fpe ◦ LΘ, X ` P M† (Theorem 4.18)
= Fpe ◦ LΘ ` µX.P M

Reading off the morphism, we get αΘ`µX.P = (αΘ,X`P)†, as required.

A.9. Proof of Lemma 6.5.

Proof. For (1): Essentially the same as [Fio94, Lemma C.0.3].
For (2): By induction on the derivation of Θ, X ` P. Let |Θ| = n.
Case Θ, X ` Θi:

LΘ ` Θi[R/X]M = LΘ ` ΘiM = Πi = Πi◦〈Π1, . . . ,Πn, LΘ ` RM〉 = LΘ, X ` ΘiM◦〈Id, LΘ ` RM〉.

so that γΘ`Θi[R/X] = id, as required.
Case Θ, X ` X:

LΘ ` X[R/X]M = LΘ ` RM = Πn+1 ◦ 〈Id, LΘ ` RM〉 = LΘ, X ` XM ◦ 〈Id, LΘ ` RM〉

so that γΘ`X[R/X] = id, as required.
Case Θ, X `!A:

LΘ `!A[R/X]M = LΘ `!(A[R/X])M

= Gpe ◦ JΘ ` A[R/X]K ◦ F×npe
= Gpe ◦ JΘ, X ` AK ◦ 〈Id, JΘ ` RK〉 ◦ F×npe (Lemma 6.5 (1))

= Gpe ◦ JΘ, X ` AK ◦ 〈F×npe , JΘ ` RK ◦ F×npe 〉
∼= Gpe ◦ JΘ, X ` AK ◦ 〈F×npe , Fpe ◦ LΘ ` RM〉 (Theorem 6.2)

= Gpe ◦ JΘ, X ` AK ◦ F×(n+1)
pe ◦ 〈Id, LΘ ` RM〉

= LΘ, X `!AM ◦ 〈Id, LΘ ` RM〉

so that γΘ`!A[R/X] = GpeJΘ, X ` AK〈F×npe , αΘ`R〉.

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:59

Case Θ, X ` P �Q:

LΘ ` (P �Q)[R/X]M = LΘ ` P [R/X]�Q[R/X]M
= �pe ◦ 〈LΘ ` P [R/X]M, LΘ ` Q[R/X]M〉
∼= �pe ◦ 〈LΘ, X ` P M ◦ 〈Id, LΘ ` RM〉, LΘ, X ` QM ◦ 〈Id, LΘ ` RM〉〉 (IH)

= �pe ◦ 〈LΘ, X ` P M, LΘ, X ` QM〉 ◦ 〈Id, LΘ ` RM〉
= LΘ, X ` P �QM ◦ 〈Id, LΘ ` RM〉

so that γΘ`(P�Q)[R/X] = �pe〈γΘ`P [R/X], γΘ`Q[R/X]〉.
Case Θ, X ` µY.P :

LΘ ` µY.P [R/X]M

= LΘ, Y ` P [R/X]M†

∼= (LΘ, Y,X ` P M ◦ 〈Id, LΘ, Y ` RM〉)† (IH and Remark 4.24)

=
(
LΘ, X, Y ` P M ◦ swapn,0 ◦ 〈Id, LΘ, Y ` RM〉

)†
(Lemma 6.3 (2))

= (LΘ, X, Y ` P M ◦ 〈Id, LΘ, Y ` RM,Πn+1〉)†

=
(
LΘ, X, Y ` P M ◦ 〈Id, LΘ ` RM ◦ dropn,0,Πn+1〉

)†
(Lemma 6.4 (2))

= (LΘ, X, Y ` P M ◦ (〈Id, LΘ ` RM〉 × Id))†

= LΘ, X, Y ` P M† ◦ 〈Id, LΘ ` RM〉 (Proposition 4.14)

= LΘ, X ` µY.P M ◦ 〈Id, LΘ ` RM〉

so that γΘ`µY.P [R/X] = (γΘ,Y `P [R/X])†.
For (3): Let |Θ| = n and let ~Z := (Z1, . . . , Zn) ∈ Ob(C×npe) be an arbitrary object. We

shall prove the equivalent statement

Fpeγ
Θ`P [R/X] ◦ αΘ`P [R/X] = αΘ,X`P 〈Id, LΘ ` RM〉 ◦ JΘ, X ` P K〈F×npe , αΘ`R〉.

We do so by induction on the derivation of Θ, X ` P.
Case Θ, X ` Θi:

(Fpeγ
Θ`Θi[R/X] ◦ αΘ`Θi[R/X])~Z = idF (Zi)

= (αΘ,X`Θi〈Id, LΘ ` RM〉 ◦ JΘ, X ` ΘiK〈F×npe , αΘ`R〉)~Z

Case Θ, X ` X:

(Fpeγ
Θ`X[R/X] ◦ αΘ`X[R/X])~Z = αΘ`R

~Z

= (αΘ,X`X〈Id, LΘ ` RM〉 ◦ JΘ, X ` XK〈F×npe , αΘ`R〉)~Z

9:60 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev Vol. 17:2

Case Θ, X `!A:

Fpeγ
Θ`!A[R/X] ◦ αΘ`!A[R/X] = FpeGpeJΘ, X ` AK〈F×npe , αΘ`R〉 ◦ id

=!eJΘ, X ` AK〈F×npe , αΘ`R〉

= JΘ, X `!AK〈F×npe , αΘ`R〉

= id ◦ JΘ, X `!AK〈F×npe , αΘ`R〉

= αΘ,X`!A〈Id, LΘ ` RM〉 ◦ JΘ, X `!AK〈F×npe , αΘ`R〉.
Case Θ, X ` P �Q :

Let |Θ| = n and let ~Z := (Z1, . . . , Zn) ∈ Ob(C×npe) be an arbitrary object. Then the ~Z
component of γΘ`P [R/X] is a morphism

γ
Θ`P [R/X]
~Z

: LΘ ` P [R/X]M~Z → LΘ, X ` P M〈Id, LΘ ` RM〉~Z

hence we obtain from Theorem 5.20:

Fpe
(
γ

Θ`P [R/X]
~Z

�pe γ
Θ`Q[R/X]
~Z

)
◦ βpe

LΘ`P [R/X]M~Z,LΘ`Q[R/X]M~Z

= βpe
LΘ,X`P M〈Id,LΘ`RM〉~Z,LΘ,X`QM〈Id,LΘ`RM〉~Z

◦
(
Fpeγ

Θ`P [R/X]
~Z

�e FpeγΘ`Q[R/X]
~Z

)
,

hence we find

Fpe � 〈γΘ`P [R/X], γΘ`Q[R/X]〉 ◦ βpe〈LΘ ` P [R/X]M, LΘ ` Q[R/X]M〉
= βpe〈LΘ, X ` P M ◦ 〈Id, LΘ ` RM〉, LΘ, X ` QM ◦ 〈Id, LΘ ` RM〉〉◦

�e 〈FpeγΘ`P [R/X], Fpeγ
Θ`Q[R/X]〉

= βpe〈LΘ, X ` P M, LΘ, X ` QM〉〈Id, LΘ ` RM〉 ◦ �e〈FpeγΘ`P [R/X], Fpeγ
Θ`Q[R/X]〉, (A.7)

Then, surpressing superscripts to improve readability:

Fpeγ ◦ α
= Fpe �pe 〈γ, γ〉 ◦ βpe〈LΘ ` P [R/X]M, LΘ ` Q[R/X]M〉 ◦ �e〈α, α〉
= βpe〈LΘ, X ` P M, LΘ, X ` QM〉〈Id, LΘ ` RM〉 ◦ �e〈Fpeγ, Fpeγ〉 ◦ �e〈α, α〉
= βpe〈LΘ, X ` P M, LΘ, X ` QM〉〈Id, LΘ ` RM〉 ◦ �e〈Fpeγ ◦ α, Fpeγ ◦ α〉
= βpe〈LΘ, X ` P M, LΘ, X ` QM〉〈Id, LΘ ` RM〉◦
�e
〈
α〈Id, LΘ ` RM〉 ◦ JΘ, X ` P K〈F×npe , α〉, α〈Id, LΘ ` RM〉 ◦ JΘ, X ` QK〈F×npe , α〉

〉
= βpe〈LΘ, X ` P M, LΘ, X ` QM〉〈Id, LΘ ` RM〉◦
�e
〈
α〈Id, LΘ ` RM〉, α〈Id, LΘ ` RM〉

〉
◦ �e

〈
JΘ, X ` P K〈F×npe , α〉, JΘ, X ` QK〈F×npe , α〉

〉
= βpe〈LΘ, X ` P M, LΘ, X ` QM〉〈Id, LΘ ` RM〉 ◦ �e〈α, α〉〈Id, LΘ ` RM〉◦
�e 〈JΘ, X ` P K, JΘ, X ` QK〉〈F×npe , α〉

= (βpe〈LΘ, X ` P M, LΘ, X ` QM〉 ◦ �e〈α, α〉) 〈Id, LΘ ` RM〉◦
�e 〈JΘ, X ` P K, JΘ, X ` QK〉〈F×npe , α〉

= α〈Id, LΘ ` RM〉 ◦ JΘ, X ` P �QK〈F×npe , α〉
where the first and the last equalities are by definition, the second equality is (A.7), the

third and the fifth equalities are by functoriality of �, the fourth equality is the induction

Vol. 17:2 LNL-FPC: THE LINEAR/NON-LINEAR FIXPOINT CALCULUS 9:61

hypothesis, and the penultimate equality follows from (ρ◦σ)K = ρK ◦σK for any composable
functor K and natural transformations ρ and σ.

Case Θ, X ` µY.P :
Fpeγ

Θ`µY.P [R/X] ◦ αΘ`µY.P [R/X]

= Fpe(γ
Θ,Y `P [R/X])† ◦ (αΘ,Y `P [R/X])† (Definition)

= (Fpeγ
Θ,Y `P [R/X] ◦ αΘ,Y `P [R/X])† (Lemma 4.23 (1))

= (αΘ,Y,X`P 〈Id, LΘ, Y ` RM〉 ◦ JΘ, Y,X ` P K〈F×n+1
pe , αΘ,Y `R〉)† (IH)

= (αΘ,X,Y `P swapn,0〈Id, LΘ, Y ` RM〉◦

JΘ, X, Y ` P Kswapn,0〈F×n+1
pe , αΘ,Y `R〉)† (Lemma 6.3)

= (αΘ,X,Y `P 〈Π1, . . . ,Πn, LΘ, Y ` RM,Πn+1〉◦

JΘ, X, Y ` P K〈FpeΠ1, . . . , FpeΠn, α
Θ,Y `R, FpeΠn+1〉)†

= (αΘ,X,Y `P (〈Id, LΘ ` RM〉 × Id) ◦ JΘ, X, Y ` P K(〈F×npe , αΘ`R〉 × Fpe))† (Lemma 6.4)

= (αΘ,X,Y `P)†〈Id, LΘ ` RM〉 ◦ JΘ, X, Y ` P K†〈F×npe , αΘ`R〉 (Lemma 4.23 (2))

= αΘ,X`µY.P 〈Id, LΘ ` RM〉 ◦ JΘ, X ` µY.P K〈F×npe , αΘ`R〉 (Definition)

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	Overview and summary of results
	Publication History

	2. Syntax of LNL-FPC
	2.1. LNL-FPC Types
	2.2. LNL-FPC Terms
	2.3. Term Recursion in LNL-FPC

	3. Operational Semantics
	4. -categories and (Parameterised) Initial Algebras
	4.1. Operations on natural transformations
	4.2. Initial algebras in -categories
	4.3. Parameterised initial algebras
	4.4. Coherence properties of (parameterised) initial algebras

	5. Categorical Model
	5.1. CPO-categories and Algebraic Compactness
	5.2. Models of Intuitionistic Linear Logic
	5.3. Models of LNL-FPC
	5.4. Concrete CPO-LNL Models

	6. Denotational Semantics
	6.1. Interpretation of LNL-FPC Types
	6.2. Interpretation of LNL-FPC Term Contexts
	6.3. Interpretation of LNL-FPC Terms
	6.4. Notation for closed types

	7. Computational Adequacy
	7.1. Existence of the formal approximation relations

	8. Related Work
	9. Conclusion and Future Work
	Acknowledgments
	References
	Appendix A. Omitted Proofs
	A.1. Proof of Lemma 4.7
	A.2. Proof of Lemma 4.9
	A.3. Proof of Lemma 4.10
	A.4. Proof of Lemma 4.17
	A.5. Proof of Lemma 4.22
	A.6. Proof of Lemma 4.25
	A.7. Proof of Theorem 5.4
	A.8. Proof of Theorem 6.2
	A.9. Proof of Lemma 6.5

