
Logical Methods in Computer Science
Volume 17, Issue 2, 2021, pp. 12:1–12:31
https://lmcs.episciences.org/

Submitted Sep. 07, 2019
Published Apr. 23, 2021

DRAT AND PROPAGATION REDUNDANCY PROOFS

WITHOUT NEW VARIABLES ∗

SAM BUSS a AND NEIL THAPEN b

a Department of Mathematics, University of California, San Diego, La Jolla, CA 92093–0112, USA
e-mail address: sbuss@ucsd.edu

b Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic
e-mail address: thapen@math.cas.cz

Abstract. We study the complexity of a range of propositional proof systems which
allow inference rules of the form: from a set of clauses Γ derive the set of clauses Γ ∪ {C}
where, due to some syntactic condition, Γ ∪ {C} is satisfiable if Γ is, but where Γ does not
necessarily imply C. These inference rules include BC, RAT, SPR and PR (respectively
short for blocked clauses, resolution asymmetric tautologies, subset propagation redundancy
and propagation redundancy), which arose from work in satisfiability (SAT) solving. We
introduce a new, more general rule SR (substitution redundancy).

If the new clause C is allowed to include new variables then the systems based on these
rules are all equivalent to extended resolution. We focus on restricted systems that do not
allow new variables. The systems with deletion, where we can delete a clause from our
set at any time, are denoted DBC−, DRAT−, DSPR−, DPR− and DSR−. The systems
without deletion are BC−, RAT−, SPR−, PR− and SR−.

With deletion, we show that DRAT−, DSPR− and DPR− are equivalent. By earlier
work of Kiesl, Rebola-Pardo and Heule [KRPH18], they are also equivalent to DBC−.
Without deletion, we show that SPR− can simulate PR− provided only short clauses are
inferred by SPR inferences. We also show that many of the well-known “hard” principles
have small SPR− refutations. These include the pigeonhole principle, bit pigeonhole
principle, parity principle, Tseitin tautologies and clique-coloring tautologies. SPR− can
also handle or-fication and xor-ification, and lifting with an index gadget. Our final result
is an exponential size lower bound for RAT− refutations, giving exponential separations
between RAT− and both DRAT− and SPR−.

Key words and phrases: DRAT, extension, pigeonhole principle, proof logging, propagation redundancy,
propositional proofs, resolution, satisfiability.
∗ A preliminary version [BT19] of this paper appeared in the Proceedings of the 2019 Conference on Theory

and Applications of Satisfiability Testing (SAT)..
This work was initiated on a visit of the first author to the Czech Academy of Sciences in July 2018,

supported by ERC advanced grant 339691 (FEALORA). The first author was also supported by Simons
Foundation grant 578919. The second author was partially supported by GA ČR project 19–05497S. The
Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(2:12)2021
© S. Buss and N. Thapen
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

12:2 S. Buss and N. Thapen Vol. 17:2

1. Introduction

SAT solvers are routinely used for a range of large-scale instances of satisfiability. It is
widely realized that when a solver reports that a SAT instance Γ is unsatisfiable, it should
also produce a proof that it is unsatisfiable. This is of particular importance as SAT solvers
become increasingly complex, combining many techniques, and thus are more subject to
software bugs or even design problems.

The first proof systems proposed for SAT solvers were based on reverse unit propagation
(RUP, or `1 in the notation of this paper) inferences [GN03, Van08] as this is sufficient to
handle both resolution inferences and the usual CDCL clause learning schemes. However,
RUP inferences only support logical implication, and in particular do not accommodate
many “inprocessing” rules. Inprocessing rules support inferences which do not respect logical
implication; instead they only guarantee equisatisfiability where the (un)satisfiability of the
set of clauses is preserved [JHB12]. Inprocessing inferences have been formalized in terms
of sophisticated inference rules including DRAT (deletion, reverse asymmetric tautology),
PR (propagation redundancy), SPR (subset PR) in a series of papers including [JHB12,
HHJW13b, HHJW13a, WHHJ14] — see Section 1.2 for definitions. These inference rules
can be viewed as introducing clauses that hold “without loss of generality” [RS18], and
thus preserve (un)satisfiability. An important feature of these systems is that they can be
used both as proof systems to verify unsatisfiability, and as inference systems to facilitate
searching for either a satisfying assignment or a proof of unsatisfiability.1

The DRAT system is very powerful as it can simulate extended resolution [Kul99b,
KRPH18]. This simulation is straightforward, but depends on DRAT’s ability to introduce
new variables; we simply show that the usual extension axioms are RAT. However, there
are a number of results [HB18, HKSB17, HKB17, HKB19] indicating that DRAT and PR
are still powerful when restricted to use few new variables, or even no new variables. In
particular, [HKSB17, HKB17, HKB19] showed that the pigeonhole principle clauses have
short (polynomial size) refutations in the PR proof system. The paper [HKSB17] showed
that Satisfaction Driven Clause Learning (SDCL) can discover PR proofs of the pigeonhole
principle automatically; in the application studied by [HKSB17], the SDCL search appears
to have exponential runtime, but is much more efficient than the usual CDCL search. There
are at present no broadly applicable proof search heuristics for how to usefully introduce
new variables with the extension rule. It is possible however that there are useful heuristics
for searching for proofs that do not use new variables in DRAT and PR and related systems.
For these reasons, DRAT and PR and related systems (even when new variables are not
allowed) hold the potential for substantial improvements in the power of SAT solvers.

The present paper extends the theoretical knowledge of these proof systems viewed as
refutation systems. We pay particular attention to proof systems that do not allow new
variables. The remainder of Section 1 introduces the proof systems BC (blocked clauses),
RAT, SPR, PR and SR (substitution redundancy). (Only SR is new to this paper.) These
systems have variants which allow deletion, called DBC, DRAT, DSPR, DPR and DSR.
There are also variants of all these systems restricted to not allow new variables: we denote
these with a superscript “−” as BC−, DBC−, RAT−, DRAT−, etc.

1The deletion rule is very helpful to improve proof search and can extend the power of the inferences rules,
see Corollary 5.5; however, it must be used carefully to preserve equisatisfiabity. The present paper only
considers refutation systems, and thus the deletion rule can be used without restriction.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:3

Section 2 studies the relation between these systems and extended resolution. We show
in particular that any proof system containing BC− and closed under restrictions simulates
extended resolution. Here a proof system P is said to simulate a proof system Q if any
Q-proof can be converted, in polynomial time, into a P-proof of the same result. Two
systems are equivalent if they simulate each other; otherwise they are separated. We also
show that the systems discussed above all have equivalent canonical NP pairs (a coarser
notion of equivalence).

Section 3 extends known results that DBC− simulates DRAT− [KRPH18] and that
DRAT, limited to only one extra variable, simulates DPR− [HB18]. Theorem 3.3 proves
that DRAT− simulates DPR−. As a consequence, DBC− can also simulate DPR−. We then
give a partial simulation of PR− by SPR− — our size bound is exponential in the size of the
“discrepancy” of the PR inferences, but in many cases, the discrepancy will be logarithmic or
even smaller.

Section 4 proves new polynomial upper bounds on the size of SPR− proofs for many of
the “hard” tautologies from proof complexity. (Recall that SPR− allows neither deletion
nor the use of new variables.) These include the pigeonhole principle, the bit pigeonhole
principle, the parity principle, the clique-coloring principle, and the Tseitin tautologies.
We also show that obfuscation by or-fication, xor-ification and lifting with a indexing
gadget do not work against SPR−. Prior results gave SPR− proofs for the pigeonhole
principle (PHP) [HKB17, HKB19], and PR− proofs for the Tseitin tautologies and the 2–1
PHP [HB18]. These results raise the question of whether SPR− (with no new variables!) can
simulate Frege systems, for instance. Some possible principles that might separate SPR−

from Frege systems are the graph PHP principle, 3-XOR tautologies and the even coloring
principle; these are discussed at the end of Section 4. However, the even coloring principle
does have short DSPR− proofs, and it is plausible that the graph PHP principle has short
SPR− proofs.

Section 5 shows that RAT− (with neither new variables nor deletion) cannot simulate
either DRAT− (without new variables, but with deletion) or SPR− (with neither new
variables nor deletion). This follows from a size lower bound for RAT− proofs of the bit
pigeonhole principle (BPHP). We first prove a width lower bound, by showing that any
RAT inference in a small-width refutation of BPHP can be replaced with a small-width
resolution derivation, and then derive the size bound. We use that BPHP behaves well when
the sign of a variable is flipped.

The known relationships between these systems, including our results, are summarized
in Figure 1. Recall that e.g. BC is the full system, DBC− is the system with deletion
but no new variables, and BC− is the system with neither deletion nor new variables. An
arrow shows that the upper system simulates the lower one. Equivalence ≡ indicates that
the systems simulate each other. The arrow from PR− and SPR− is marked ∗ to indicate
that there is a simulation in the other direction under the additional assumption that the
discrepancies (see Definition 3.9) of PR inferences are logarithmically bounded.

We summarize the rules underlying these systems in Table 1. The details and the
necessary definitions are in Section 1.2 below — in particular see Theorem 1.10 for this
definition of RAT.

As presented here the rules (except for BC) have the form: derive C from Γ, if there is a
substitution τ satisfying Γ|α `1 Γ|τ plus the conditions shown, where α is C. The implication
`1 is defined below in terms of reverse unit propagation (RUP).

12:4 S. Buss and N. Thapen Vol. 17:2

ER ≡ SR ≡ PR ≡ SPR ≡ RAT ≡ BC

DSR−

DPR− ≡ DSPR− ≡ DRAT− ≡ DBC− SR−

PR−

SPR−

RAT−

BC−

Res

∗

6≡

6≡

Figure 1: Relationships between proof systems.

BC (a restriction of RAT) blocked clause

RAT τ is α with one variable flipped reverse asymmetric tautology

SPR τ is a partial assignment, dom(τ)=dom(α) subset propagation redundant

PR τ is a partial assignment propagation redundant

SR no extra conditions substitution redundant

Table 1: Summary of rules of inference.

We remark that the question of whether new variables help reasoning with blocked
clause inferences was already studied by Kullmann in the context of the system Generalized
Extended Resolution (GER) [Kul99b]. As far as we know, GER does not correspond exactly
to any of the systems we consider. [Kul99b] showed thatallowing new variables does not
reduce GER proof length when the blocked clause rule is restricted to introducing clauses of
length at most two.

1.1. Preliminaries. We use the usual conventions for clauses, variables, literals, truth
assignments, satisfaction, etc. Var and Lit denote the sets of all variables and all literals. A
set of literals is called tautological if it contains a pair of complementary literals p and p. A
clause is a non-tautological2 set of literals; we use C,D, . . . to denote clauses. The empty
clause is denoted ⊥, and is always false. 0 and 1 denote respectively False and True; and 0

2Disallowing tautological clauses makes the rest of the definitions more natural. In particular, we can
identify clauses with the negations of partial assignments.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:5

and 1 are respectively 1 and 0. We use both C ∪D or C ∨D to denote unions of clauses,
but usually write C ∨D when the union is a clause. The notation C = D ∨̇E indicates that
C = D ∨E is a clause and D and E have no variables in common. If Γ is a set of clauses,
C ∨ Γ is the set {C ∨D : D ∈ Γ and C ∨D is a clause}.

A partial assignment τ is a mapping with domain a set of variables and range contained
in {0, 1}. It acts on literals by letting τ(p) = τ(p). It is called a total assignment if it sets
all variables. We sometimes identify a partial assignment τ with the set of unit clauses
asserting that τ holds. For C a clause, C denotes the partial assignment whose domain is
the variables of C and which asserts that C is false. For example, if C = x ∨ y ∨ z then,
depending on context, C will denote either the set containing the three unit clauses x and y
and z, or the partial assignment α with domain dom(α) = {x, y, z} such that α(x) = 0,
α(y) = 1 and α(z) = 0.

A substitution generalizes the notion of a partial assignment by allowing variables to be
mapped also to literals. Formally, a substitution σ is a map from Var ∪ {0, 1} to Lit ∪ {0, 1}
which is the identity on {0, 1}. Note that a substitution may cause different literals to
become identified.3 A partial assignment τ can be viewed as a substitution, by defining
τ(x) = x for all variables x outside the domain of τ . The domain of a substitution σ is the
set of variables x for which σ(x) 6= x.

Suppose C is a clause and σ is a substitution (or a partial assigment viewed as a
substitution). Let σ(C) = {σ(p) : p ∈ C}. We say σ satisfies C, written σ � C, if 1 ∈ σ(C)
or σ(C) is tautological. When σ 2 C, the restriction C|σ is defined by letting C|σ equal
σ(C) \ {0}. Thus C|σ is a clause expressing the meaning of C under σ. For Γ a set of clauses,
the restriction of Γ under σ is

Γ|σ = {C|σ : C ∈ Γ and σ 2 C }.

The composition of two substitutions is denoted τ ◦π, meaning that (τ ◦π)(x) = τ(π(x)),
and in particular (τ ◦ π)(x) = π(x) if π(x) ∈ {0, 1}. For partial assignments τ and π, this
means that dom(τ ◦ π) = dom(τ) ∪ dom(π) and

(τ ◦ π)(x) =

{
π(x) if x ∈ dom(π)
τ(x) if x ∈ dom(τ) \ dom(π).

Lemma 1.1. For a set of clauses Γ and substitutions τ and π, Γ|τ◦π = (Γ|π)|τ . In particular,

τ � Γ|π if and only if τ ◦ π � Γ.

Proof. Notice τ ◦ π � C if and only if π � C or (π 6� C ∧ τ � C|π). Thus

(Γ|π)|τ =
{

(C|π)|τ : C ∈ Γ, π 6� C, τ 6� C|π
}

=
{
τ ◦ π(C) \ {0} : C ∈ Γ, π 6� C, τ 6� C|π

}
=
{
C|τ◦π : C ∈ Γ, τ ◦ π 6� C

}
= Γ|τ◦π.

A set of clauses Γ semantically implies a clause C, written Γ � C, if every total
assignment satisfying Γ also satisfies C. As is well-known, Γ � C holds if and only if there
is a resolution derivation of some C ′ ⊆ C; that is, C ′ is derived from Γ using resolution

3[Sze03] defined a notion of “homomorphisms” that is similar to substitutions. Substitutions, however,
allow variables to be mapped also to constants. Our SR inference, defined below, uses `1; this was not used
with homomorphisms in [Sze03].

12:6 S. Buss and N. Thapen Vol. 17:2

inferences of the form

p ∨̇D p ∨̇E
D ∨ E

. (1.1)

If the derived clause C ′ is the empty clause ⊥, then the derivation is called a resolution
refutation of Γ. By the soundness and completeness of resolution, Γ �⊥, that is, Γ is
unsatisfiable, if and only if there is a resolution refutation of Γ.

If either D or E is empty, then the resolution inference (1.1) is an instance of unit
propagation. A refutation using only such inferences is called a unit propagation refutation.
Recall that we can write C for the set of unit clauses {p : p ∈ C}.

Definition 1.2. We write Γ `1 ⊥ to denote that there is a unit propagation refutation of Γ.
We define Γ `1 C to mean Γ ∪ C `1 ⊥. For a set of clauses ∆, we write Γ `1 ∆ to mean
Γ `1 C for every C ∈ ∆.

Fact 1.3. If Γ `1 ⊥ and α is any partial assignment or substitution, then Γ|α `1 ⊥.

In the literature, when Γ `1 C then C is said to be derivable from Γ by reverse unit
propagation (RUP), or is called an asymmetric tautology (AT) with respect to Γ [Van08,
JHB12, HHJW13b]. Of course, Γ `1 C implies that Γ � C. The advantage of working with
`1 is that there is a simple polynomial time algorithm to determine whether Γ `1 C. We
have the following basic property of `1 (going back to [Cha70]):

Lemma 1.4. If C is derivable from Γ by a single resolution inference, then Γ `1 C.
Conversely, if Γ `1 C, then some C ′ ⊆ C has a resolution derivation from Γ of length at
most n, where n is the total number of literals occurring in clauses in Γ.

Proof. First suppose that C = D ∨ E and clauses p ∨̇D and p ∨̇E appear in Γ. Then by
resolving these with the unit clauses in C we can derive the two unit clauses p and p, then
resolve these together to get the empty clause.

Now suppose that Γ `1 C. Then there is a unit propagation derivation of ⊥ from Γ∪C,
which is of length at most n. Removing all resolutions against unit clauses p for p ∈ C, this
can be turned into a resolution derivation of C or of some C ′ ⊆ C from Γ.

Lemma 1.5. Let C ∨D be a clause (so C ∪D is not tautological), and set α = C. Then

Γ|α `1 D \ C ⇐⇒ Γ|α `1 D ⇐⇒ Γ `1 C ∨D.

Proof. The left-to-right directions are immediate from the definitions, since Γ|α is derivable
from Γ ∪ α using unit propagation. To show that Γ `1 C ∨D implies Γ|α `1 D \ C, suppose

Γ ∪ α ∪D `1 ⊥ and apply Fact 1.3.

1.2. Inference rules. We will describe a series if inference rules which can be used to add
a clause C to a set of clauses Γ. In increasing order of strength the rules are

BC← RAT← SPR← PR← SR.

We will show that in each case the sets Γ and Γ∪ {C} are equisatisfiable, that is, either they
are both satisfiable or both unsatisfiable. The definitions follow [JHB12, HHJW13b, HKB19],

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:7

except for the new notion SR of “substitution redundancy”.4 All of these rules can be viewed
as allowing the introduction of clauses that hold “without loss of generality” [RS18]. The
rules are summarized in a table earlier in this section.

Let Γ be a set of clauses and C a clause with a distinguished literal p, so that C has the
form p ∨̇C ′.

Definition 1.6 [Kul97, Kul99a]. The clause C is a blocked clause (BC) with respect to p
and Γ if, for every clause D of the form p ∨̇D′ in Γ, the set C ′ ∪D′ is tautological.

Notice that the condition “C ′ ∪ D′ is tautological” above would be equivalent to
∅ `1 C ′ ∨D′, except that our notation does not allow us to write the expression C ′ ∨D′
if C ′ ∪D′ is tautological, since it is not a clause. Since p does not appear in C ′ or D′, it
would also be equivalent to ∅ `1 p ∨ C ′ ∨D′. Compare with the definition of RAT below.

Definition 1.7 [JHB12, HB18, WHHJ14]. A clause C is a resolution asymmetric tautology
(RAT) with respect to p and Γ if, for every clause D of the form p ∨̇D′ in Γ, either C ′ ∪D′
is tautological or

Γ `1 p ∨ C ′ ∨D′.

Here we write p ∨ C ′ instead of C to emphasize that we include the literal p (some
definitions of RAT omit it). Clearly, being BC implies being RAT.

Example 1.8 [Kul99b]. Let Γ be a set of clauses in which the variable x does not occur,
but the variables p and q may occur. Consider the three clauses

x ∨ p ∨ q x ∨ p x ∨ q
which together express that x ↔ (p ∧ q). Let Γ1 ⊂ Γ2 ⊂ Γ3 be Γ with the three clauses
above successively added. Then x ∨ p ∨ q is BC with respect to Γ and x, because no clause
in Γ contains x, so there is nothing to check. The second clause x ∨ p is BC with respect to
Γ1 and x because the only clause in Γ1 containing x is x ∨ p ∨ q, and resolving this with
x ∨ p gives a tautological conclusion. The third clause x ∨ q is BC with respect to Γ2 and x
in a similar way.

It follows from the example that we can use the BC rule to simulate extended resolution
if we are allowed to introduce new variables; see Section 2.1.

We say the clause C is RAT with respect to Γ if it is RAT with respect to p and Γ for
some literal p in C, and similarly for BC.

Theorem 1.9 [Kul99b, JHB12]. If C is BC or RAT with respect to Γ, then Γ and Γ∪ {C}
are equisatisfiable.

Proof. It suffices to show that if Γ is satisfiable, then so is Γ ∪ {C}. Let τ be any total
assignment satisfying Γ. We may assume τ � C, as otherwise we are done. Let τ ′ be τ with
the value of τ(p) switched to satisfy p. Then τ ′ satisfies C, along with every clause in Γ
which does not contain p. Let D = p ∨̇D′ be any clause in Γ which contains p. It follows
from the RAT assumption that Γ � C ∨D′, so τ � D′ since τ � C. Hence τ ′ � D′ and thus
τ ′ � D. This shows that τ ′ � Γ ∪ {C}.

4M. Heule [personal communication, 2018] has independently formulated an inference rule “permutation
redundancy” (πPR) which allows only substitutions which set some variables to constants and acts as a
permutation on the remaining literals. This is a special case of SR; but unlike SR, πPR does not allow
identifying distinct literals. However, we do not know the strength of πPR− relative to SR− (even if deletion
is allowed for both systems).

12:8 S. Buss and N. Thapen Vol. 17:2

For the rest of this section, let α be the partial assignment C. In a moment we will
introduce the rules SPR, PR and SR. These are variants of a common form, and we begin
by showing that RAT can also be expressed in a similar way (in the literature this form of
RAT is called literal propagation redundant or LPR).

Theorem 1.10 [HKB19]. A clause C is RAT with respect to p and Γ if and only if Γ|α `1 Γ|τ
where τ is the partial assignment identical to α except at p, with τ(p) = 1.

Proof. First suppose that C satifies the second condition. Consider any clause D of the form
p ∨̇D′ in Γ. We need to show that either C ∪D′ is tautological or Γ `1 C ∨D′. Suppose
C ∪D′ is not tautological. Then α 6� D′, τ 6� D, and by Lemma 1.5 it is enough to show
Γ|α `1 D′. But this now follows from Γ|α `1 D|τ , since D|τ = D′|α ⊆ D′.

Now suppose C is RAT with respect to p and Γ. Consider any D ∈ Γ such that τ 6� D
and thus D|τ ∈ Γ|τ . We must show that Γ|α `1 D|τ . If p /∈ D this is trivial, since then

D|τ = D|α ∈ Γ|α. Otherwise D = p ∨̇D′, where α 6� D′ since τ 6� D, so C ∪ D′ is not
tautological. By the RAT property, Γ `1 C ∨D′. By Lemma 1.5 this implies Γ|α `1 D′ \ C.
But D′ \ C = D′|α = D|τ .

Definition 1.11 [HKB19]. A clause C is subset propagation redundant (SPR) with respect
to Γ if there is a partial assignment τ with dom(τ) = dom(α) such that τ � C and Γ|α `1 Γ|τ .

Definition 1.12 [HKB19]. A clause C is propagation redundant (PR) with respect to Γ if
there is a partial assignment τ such that τ � C and Γ|α `1 Γ|τ .

Definition 1.13. A clause C is substitution redundant (SR) with respect to Γ if there is a
substitution τ such that τ � C and Γ|α `1 Γ|τ .

Example 1.14 based on [HKB19]. Let Γ be the pigeonhole principle PHPn (see Section 4.1)
in variables pi,j expressing that pigeon i goes to hole j. Let C be the clause p1,0 ∨ p0,0 so
that α is the partial assignment p1,0 ∧ p0,0.

Let π be the substitution which swaps pigeons 0 and 1; that is, π(p0,j) = p1,j and
π(p1,j) = p0,j for every hole j, and π is otherwise the identity. Notice that, by the symmetries
of the pigeonhole principle, Γ|π = Γ and thus Γ|α = (Γ|π)|α = Γ|α◦π. Let τ = α ◦ π, so τ is

the same as π except that τ(p0,0) = 1 and τ(p1,0) = 0.
Then τ � C and Γ|α `1 Γ|τ (since they are the same set of clauses). Hence we have

shown that C is SR with respect to Γ.
We go on to sketch a polynomial size DSR− refutation of Γ, that is, one that uses SR

inferences, resolution and deletion but introduces no new variables (see Section 1.4 below).
Resolve C with the hole axiom p1,0 ∨ p0,0 to derive the unit clause p1,0. Delete C, so that
we are now working with the set of clauses Γ ∪ {p1,0}. Let C ′ be the clause p2,0 ∨ p0,0 and
let α′ be its negation p2,0 ∧ p0,0. Let π′ be the substitution which swaps pigeons 0 and 2
and let τ ′ = α′ ◦ π′. As before τ ′ � C ′ and (Γ ∪ {p1,0})|α′ `1 (Γ ∪ {p1,0})|τ ′ , since neither α′

nor τ ′ affects p1,0 so these are again the same set of clauses. Hence we may derive C ′ by a
SR inference, then resolve with the hole axiom p2,0 ∨ p0,0 to get p2,0.

Carrying on in this way, we eventually derive Γ∪{p1,0}∪ · · · ∪ {pn−1,0}. We now resolve
each unit clause pi,0 with the pigeon axiom for pigeon i, for i = 1, . . . , n − 1. After some
deletions, we are left with clauses asserting that pigeons 1, . . . , n− 1 map injectively to holes
1, . . . , n − 2. This is essentially PHPn−1. We carry on inductively to derive PHPn−2 etc.
and can easily derive a contradiction when we get to PHP2.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:9

Section 4.1 contains a more careful version of this argument, refuting PHPn using SPR
inferences and no deletion.

Theorem 1.15. If C is SR with respect to Γ, then Γ and Γ∪{C} are equisatisfiable. Hence
the same is true for SPR and PR.

Theorem 1.15 trivially implies the same statement for BC and RAT (this was Theorem 1.9
above).

Proof. Again it is sufficient to show that if Γ is satisfiable, then so is Γ ∪ {C}. Suppose
we have a substitution τ such that τ � C and Γ|α `1 Γ|τ . Let π be any total assignment

satisfying Γ. If π � C then we are done. Otherwise π � C, so π ⊇ α and π satisfies Γ|α by
Lemma 1.1. Thus, by the assumption, π � Γ|τ . Therefore π ◦ τ � Γ by Lemma 1.1, and
π ◦ τ � C since τ � C.

This proof of Theorem 1.15 still goes through if we replace Γ|α `1 Γ|τ with the weaker
assumption that Γ|α � Γ|τ . The advantage of using `1 is that it is efficiently checkable.
Consequently, the conditions of being BC, RAT, SPR, PR or SR with respect to Γ are all
polynomial-time checkable, as long as we include the partial assignment or substitution τ as
part of the input.

1.3. Proof systems with new variables. This section introduces proof systems based
on the BC, RAT, SPR, PR and SR inferences. Some of the systems also allow the use
of the deletion rule: these systems are denoted DBC, DRAT, etc. All the proof systems
are refutation systems. They start with a set of clauses Γ, and successively derive sets Γi
of clauses, first Γ0 = Γ, then Γ1,Γ2, . . . ,Γm until reaching a set Γm containing the empty
clause. It will always be the case that if Γi is satisfiable, then Γi+1 is satisfiable. Since the
empty clause ⊥ is in Γm, this last set is not satisfiable. This suffices to show that Γ is not
satisfiable.

Definition 1.16. A BC, RAT, SPR, PR or SR proof (a refutation) of Γ is a sequence
Γ0, . . . ,Γm such that Γ0 = Γ, ⊥∈ Γm and each Γi+1 = Γi ∪ {C}, where either

• Γi `1 C or
• C is BC, RAT, SPR, PR, or SR (respectively) with respect to Γi.

For BC or RAT steps, the proof must specify which p is used, and for SPR, PR or SR, it
must specify which τ .

There is no constraint on the variables that appear in clauses C introduced in BC, RAT,
etc. steps. They are free to include new variables that did not occur in Γ0, . . . ,Γi.

Definition 1.17. A DBC, DRAT, DSPR, DPR or DSR proof allows the same rules of
inference (respectively) as Definition 1.16, plus the deletion inference rule:

• Γi+1 = Γi \ {C} for some C ∈ Γi.

Resolution can be simulated by RUP inferences (Lemma 1.4), so all the systems introduced
in this and the next subsection simulate resolution. Furthermore, by Theorems 1.9 and 1.15,
they are sound. Since the inferences are defined using `1, they are polynomial time verifiable,
as the description of τ is included with every SPR, PR or SR inference. Hence they are all
proof systems in the sense of Cook-Reckhow [CR74, CR79].

The deletion rule deserves more explanation. First, we allow any clause to be deleted,
even the initial clauses from Γ. So it is possible that Γi is unsatisfiable but Γi+1 is satisfiable

12:10 S. Buss and N. Thapen Vol. 17:2

after a deletion. For us, this is okay since we focus on refuting sets of unsatisfiable clauses,
not on finding satisfying assignments of satisfiable sets of clauses. SAT solvers generally
wish to maintain the equisatisfiability property: they use deletion extensively to prune the
search time, but are careful only to perform deletions that preserve both satisfiability and
unsatisfiability, generally as justified by the BC or RAT rules. Since applying RAT, or more
generally PR or SR, can change the satisfying assignment, a SAT solver may also need
to keep a proof log with information about how to reverse the steps of the proof once a
satisfying assignment is found (see [JHB12]).

Second, deletion is important for us because the property of being BC, RAT etc. involves
a universal quantification over the current set of clauses Γi. So deletion can make the systems
more powerful, as removing clauses from Γi can make more inferences possible. For example,
the unit clause x is BC with respect to the set {x ∨ y}, since the literal x does not appear,
but is not even SR with respect to the set {x ∨ y, x}, since {x ∨ y, x} and {x ∨ y, x, x} are
not equisatisfiable. An early paper on this by Kullmann [Kul99b] exploited deletions to
generalize the power of BC inferences.

As we will show in Section 2, all the systems defined so far are equivalent to extended
resolution, because of the ability to freely introduce new variables. The main topic of the
paper is the systems we introduce next, which lack this ability.

1.4. Proof systems without new variables.

Definition 1.18. A BC refutation of Γ without new variables, or, for short, a BC− refutation
of Γ, is a BC refutation of Γ in which only variables from Γ appear. The systems RAT−,
PR− etc. and DBC−, DRAT−, DPR− etc. are defined similarly.

There is an alternative natural definition of “without new variables”, which requires
not just that a refutation of Γ uses only variables that are used in Γ, but also that once
a variable has been eliminated from all clauses through the use of deletion, it may not be
reused subsequently in the refutation. An equivalent way to state this is that a clause C
inferred by a BC, RAT, SPR, PR or SR inference cannot involve any variable which does
not occur in the current set of clauses.

This stronger definition is in fact essentially equivalent to Definition 1.18, for a somewhat
trivial reason. More precisely, any refutation that satisfies Definition 1.18 can be converted
into a refutation that satisfies the stronger condition with at worst a polynomial increase
in the size of the refutation. We state the proof for DBC−, but the same argument works
verbatim for the other systems DRAT−, DSPR−, DPR− and DSR−.

Suppose Π is a DBC− refutation of Γ in the sense of Definition 1.17, and consider a
variable x. Suppose x is present in Γ = Γ0 and in Γi, is not present in Γi+1 through Γj , but
is present again in Γj+1. The derivation of Γi+1 from Γi deleted a single clause x ∨ C; for
definiteness we assume this clause contains x positively. The derivation of Γj+1 introduced
a clause x ∨D with a BC inference; we may assume without loss of generality that x occurs
with the same sign in x ∨ D as in x ∨ C, since otherwise the sign of x could be changed
throughout the refutation from Γj+1 onwards.

The refutation Π is modified as follows. Before deleting the clause x ∨ C, infer the unit
clause x by a BC inference; this is valid trivially, since x does not occur in Γi. Then continue
the derivation with the unit clause x added to Γi, . . . ,Γj . Since there are no other uses
of x in Γi, . . . ,Γj , these steps in the refutation remain valid (by part (b) of Lemma 1.20
below). Upon reaching Γj , infer x ∨D with a BC inference relative to the variable x. This

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:11

is allowed since x does not appear in Γj . Then delete the unit clause x to obtain again Γj+1.
Repeating this for every gap in Π where x disappears, and then doing the same construction
for every variable, yields a DBC− refutation that satisfies the stronger condition.

1.5. Two useful lemmas. We conclude this subsection with two technical lemmas, which
we will use in several places to simplify the construction of proofs.

All the inference rules BC, RAT, SPR, PR and SR are “non-monotone”, in the sense
that it is possible that Γ|α `1 Γ|τ holds but Γ′|α `1 Γ′|τ fails, for Γ ⊆ Γ′. In particular,

adding more clauses to Γ may invalidate a BC, RAT, SPR, PR or SR inference. Conversely,
removing clauses from Γ may allow new clauses to be inferred by one of these inferences.
This is one reason for the importance of the deletion rule.

The next lemma is a useful technical tool that will sometimes let us avoid using deletion.
It states conditions under which the extra clauses in Γ′ do not invalidate a RAT, SPR, PR
or SR inference.5

Definition 1.19. A clause C subsumes a clause D if C ⊆ D. A set Γ of clauses subsumes
a set Γ′ if each clause of Γ′ is subsumed by some clause of Γ.

Lemma 1.20. Suppose α and τ are substitutions and Γ|α `1 Γ|τ holds. Also suppose Γ ⊆ Γ′.

(a) If Γ subsumes Γ′, then Γ′|α `1 Γ′|τ .

(b) If Γ′ is Γ plus one or more clauses involving only variables that are not in the domain
of either α or τ , then Γ′|α `1 Γ′|τ .

Consequently, in either case, if C can be inferred from Γ by a RAT, SPR, PR or SR rule,
then C can also be inferred from Γ′ by the same rule.

Proof. We prove (a). Suppose D ∈ Γ′ and τ 6� D. We must show Γ′|α `1 D|τ . Let E ∈ Γ

with E ⊆ D. Then τ 6� E, so by assumption Γ|α `1 E|τ . Also E|τ ⊆ D|τ , so Γ|α `1 D|τ . It
follows that Γ′|α `1 D|τ , since Γ ⊆ Γ′.

The proof of (b) is immediate from the definitions.

Our last lemma gives a kind of normal form for propagation redundancy. Namely, it
implies that when C is PR with respect to Γ, we may assume without loss of generality
that dom(τ) includes dom(α). We will use this later to show a limited simulation of PR
by SPR.

Lemma 1.21. Suppose C is PR with respect to Γ, witnessed by a partial assignment τ .
Then we have Γ|α `1 Γ|α◦τ , where α is the partial assignment C.

Proof. Let π = α ◦ τ . Suppose E ∈ Γ is such that π 6� E. We must show that Γ|α `1 E|π.
We can decompose E as E1 ∨E2 ∨E3 where E1 contains the literals in dom(τ), E2 contains
the literals in dom(α) \ dom(τ) and E3 contains the remaining literals. Then E|τ = E2 ∨E3

and by the PR assumption Γ|α `1 E|τ , so there is a derivation Γ|α ∪ E2 ∪ E3 `1 ⊥. But

neither Γ|α nor E3 contain any variables from dom(α), so the literals in E2 are not used in

this derivation. Hence Γ|α ∪ E3 `1 ⊥, which completes the proof since E3 = E|π.

5The conclusion of Lemma 1.20 is true also for BC inferences.

12:12 S. Buss and N. Thapen Vol. 17:2

2. Relations with extended resolution

2.1. With new variables. It is known that RAT, and even BC, can simulate extended
resolution if new variables are allowed [Kul99b]. In extended resolution for any variables
p, q we are allowed to introduce a new variable x together with three clauses expressing
that x↔ (p ∧ q). As shown in Example 1.8, we can instead introduce these clauses using
BC inferences. Thus all the systems described above which allow new variables simulate
extended resolution. The converse holds as well:

Theorem 2.1. The system ER simulates DSR, and hence every other system above.

Proof. (Sketch) It is known that the theorem holds for DPR in place of DSR. Namely,
[KRPH18] gives an explicit simulation of DRAT by extended resolution, and [HB18] gives
an explicit simulation of DPR by DRAT. Thus extended resolution simulates DPR.

We sketch a direct proof of the simulation of DSR by extended resolution. Suppose
Γ0, . . . ,Γm is a DSR proof and in particular Γi+1 = Γi∪{C} is introduced by an SR inference
from Γi with a substitution τ . Let x1, . . . , xs be all variables occurring in Γi+1 including any
new variables introduced in C. Using the extension rule, introduce new variables x′1, . . . , x

′
s

along with extension variables and extension axioms expressing

x′j ↔ (xj ∧ C) ∨ (τ(xj) ∧ ¬C).

Here τ(xj) stands for a fixed symbol from Lit ∪ {0, 1}. Let Γi+1(~x/~x
′) be the set of clauses

obtained from Γi by replacing each variable xj with x′j . It can be proved using only resolution,

using the extension axioms, that if all clauses in Γi hold then all clauses in Γi+1(~x/~x
′) hold.

The extended resolution proof then proceeds inductively on i using the new variables x′j in
place of the old variables xj .

Another way to prove the full theorem is via the theories of bounded arithmetic
S1
2 [Bus86] and PV [Coo75]. Namely, suppose we are given a DSR proof Γ0, . . . ,Γm and

a satisfying assignment π0 for Γ0. By induction, there exists a satisfying assignment πi
for each Γi. The inductive step, for an SR rule deriving Γi+1 = Γi ∪ {C}, witnessed by
a substitution τ , is to set πi+1 = πi if πi � C and otherwise to set πi+1 = πi ◦ τ , as in
the proof of Theorem 1.15. The inductive hypothesis can be written as a Σb

1 formulas and
the induction has m steps, so this is formally Σb

1 length-induction (or Σb
1-LIND) which is

available in S1
2 . Thus S1

2 can prove the soundness of DSR. By conservativity of S1
2 over

PV [Bus86], the theory PV also proves the soundness of DSR. A fundamental property of
PV is that PV proofs translate into uniform families of polynomial size extended resolution
refutations [Coo75]. Thus ER efficiently proves the soundness of DSR. It follows that ER
simulates DSR.

2.2. Without new variables. In the systems without the ability to freely add new variables,
we can still imitate extended resolution by adding dummy variables to the formula we want
to refute. This was observed already in [Kul99b].

For m ≥ 1, define Xm to be the set consisting of only the two clauses

y ∨ x1 ∨ · · · ∨ xm and y.

Lemma 2.2. Suppose Γ has an ER refutation Π of size m, and that Γ and Xm have no
variables in common. Then Γ ∪ Xm has a BC−-refutation Π∗ of size O(m), which can
furthermore be constructed from Π in polynomial time.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:13

Proof. We describe how to change Π into Π∗. We first rename all extension variables to use
names from {x1, . . . , xm} and replace all resolution steps with `1 inferences. Now consider an
extension rule in Π which introduces the three extension clauses (1.8) expressing xi ↔ (p∧q),
where we may assume that p and q are either variables of Γ or from {x1, . . . , xi−1}. We
simulate this by introducing successively the three clauses

xi ∨ p ∨ q xi ∨ p ∨ y xi ∨ q ∨ y
using the BC rule. The first clause, xi ∨ p ∨ q, is BC with respect to xi, because xi has not
appeared yet. The second clause is BC with respect to xi, because xi appears only in two
earlier clauses, namely y ∨ x1 ∨ · · · ∨ xm, which contains y, and xi ∨ p ∨ q, which contains p.
In both cases the resolvent with xi ∨ p ∨ y is tautological. The third clause is similar. The
unit clause y is in Xm, so we can then derive the remaining two needed extension clauses
xi ∨ p and xi ∨ q by two `1 inferences.

In the terminology of [PS10], Lemma 2.2 shows that BC− effectively simulates ER, in
that we are allowed to transform the formula as well as the refutation when we move from
ER to BC−.

The next corollary is essentially from [Kul99b]. It shows how to use the lemma to
construct examples of usually-hard formulas which have short proofs in BC−. (We will give
less artificial examples of short SPR− proofs in Section 4.) Let m(n) be the polynomial size
upper bound on ER refutations of the pigeonhole principle PHPn which follows from [CR79]

— see Section 4.1 for the definition of the PHPn clauses.

Corollary 2.3. The set of clauses PHPn ∪Xm(n) has polynomial size proofs in BC−, but
requires exponential size proofs in constant depth Frege.

Proof. The upper bound follows from Lemma 2.2. For the lower bound, let Π be a refutation
in depth-d Frege. Then we can restrict Π by setting y = 1 to obtain a depth-d refutation of
PHPn of the same size. By [KPW95, PBI93], this must have exponential size.

The same argument can give a more general result. A propositional proof system P
is closed under restrictions if, given any P-refutation of Γ and any partial assignment ρ,
we can construct a P-refutation of Γ|ρ in polynomial time. ([BKS04] called such systems
“natural”.) Most of the commonly-studied proof systems such as resolution, Frege, etc. are
closed under restrictions. On the other hand, it follows from results in this paper that BC−

and RAT− are not closed under restrictions. To see this, let Γ be BPHPn ∪Xm(n) where
BPHPn is the bit pigeonhole principle (see Section 4.2) and m is a suitable function. Then
Γ has short BC− refutations, since BPHPn has short refutations in ER. But BPHPn is a
restriction of Γ, as in Corollary 2.3, and has no short RAT− refutations by Theorem 5.4
below.

Theorem 2.4. Let P be any propositional proof system which is closed under restrictions.
If P simulates BC−, then P simulates ER.

Proof. Suppose Γ has a refutation Π in ER of length m. Take a copy of Xm in disjoint
variables from Γ. By Lemma 2.2 we can construct a BC−-refutation of Γ ∪Xm. Since P
simulates BC−, we can then construct a P-refutation of Γ ∪Xm. Let ρ be the restriction
which just sets y = 1, so that (Γ ∪Xm)|ρ = Γ. By the assumption that P is closed under

restrictions, we can construct a P refutation of Γ. All constructions are polynomial time.

Corollary 2.5. If the Frege proof system simulates BC−, then Frege and ER are equivalent.

12:14 S. Buss and N. Thapen Vol. 17:2

Hence it is unlikely that Frege simulates BC−, since Frege is expected to be strictly
weaker than ER.

2.3. Canonical NP pairs. The notion of disjoint NP pairs was first introduced by Groll-
mann and Selman [GS88]. Razborov [Raz94] showed how a propositional proof system P
gives rise to a canonical disjoint NP pair, which gives a measure of the strength of the
system. It is known that if a propositional proof system P1 simulates a system P2, then
there is a many-one reduction from the canonical NP pair for P2 to the canonical NP pair
for P1 [Raz94, Pud03]. We can use Lemma 2.2 to prove that the systems BC− through
DSR− cannot be distinguished from each other or ER by their canonical NP pairs, even
though they do not all simulate each other.

Definition 2.6. A disjoint NP pair is a pair (U, V) of NP sets such that U ∩ V = ∅.
A many-one reduction from a disjoint NP pair (U, V) to a disjoint NP pair (U ′, V ′) is a
polynomial time function f mapping U to U ′ and mapping V to V ′.

To motivate this definition a little, a disjoint NP pair (U, V) is said to be polynomially
separable if there is a polynomial time function f which, given x ∈ U ∪ V , correctly identifies
whether x ∈ U or x ∈ V . Clearly if (U, V) is many-one reducible to (U ′, V ′), then if (U ′, V ′)
is polynomially separable so is (U, V).

Definition 2.7. SAT is the set of pairs (Γ, 1m) such that Γ is a satisfiable set of clauses
and m ≥ 1 is an arbitrary integer. Let P be a propositional proof system for refuting sets of
clauses. Then REF(P) is the set of pairs (Γ, 1m) such that Γ has a P-refutation of length at
most m. Notice that SAT and REF(P) are both NP. We define the canonical disjoint NP
pair, or canonical NP pair, associated with P to be (REF(P),SAT).

The canonical NP pair for a proof system P defines the following problem. Given a pair
(Γ, 1m), the soundness of P implies that it is impossible that both (a) Γ is satisfiable and
(b) Γ has a proof in P of length ≤ m. The promise problem is to identify one of (a) and (b)
which does not hold. (If neither (a) nor (b) holds, then either answer may be given.)

Theorem 2.8. There are many-one reductions in both directions between the canonical NP
pair for ER and the canonical NP pairs for all the systems in Section 1.3.

Proof. As a simulation implies a reduction between canonical NP pairs, all we need to show
is a reduction of the canonical NP pair for ER to the canonical NP pair for the weakest
system BC−, that is, of (REF(ER),SAT) to (REF(BC−), SAT). Suppose (Γ, 1m) is given
as a query to (REF(ER), SAT). We must produce some Γ∗ and m∗ such that

(1) Γ∗ is satisfiable if Γ is,
(2) Γ∗ has a BC−-refutation of size m∗ if Γ has an ER-refutation of size m, and
(3) m∗ is bounded by a polynomial in m.

We use Lemma 2.2, letting Γ∗ be Γ ∪Xm for Xm in variables disjoint from Γ, and letting
m∗ be the bound on the size of the BC−-refutation of Γ∗.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:15

3. Simulations

3.1. DRAT− simulates DPR−. The following relations were known between DBC−, DRAT−

and DPR−.

Theorem 3.1 [KRPH18]. DBC− simulates DRAT−. (Hence they are equivalent).

Theorem 3.2 [HB18]. Suppose Γ has a DPR refutation Π. Then it has a DRAT refutation
constructible in polynomial time from Π, using at most one variable not appearing in Π.

We prove:

Theorem 3.3. DRAT− simulates DPR−.

Hence the systems DBC−, DRAT−, DSPR− and DPR− are all equivalent. The theorem
relies on the following main lemma used in the proof of Theorem 3.2. We include a proof for
completeness.

Lemma 3.4 [HB18]. Suppose C is PR with respect to Γ. Then there is a polynomial size
DRAT derivation of Γ ∪ {C} from Γ, using at most one variable not appearing in Γ or C.

Proof. We have Γ|α `1 Γ|τ , where α = C and τ � C. Let x be a new variable. We describe
the construction step-by-step.

Step 1. For each D ∈ Γ which is not satisfied by τ , derive D|τ ∨ x by RAT on x. This is
possible, as x does not appear anywhere yet.

Step 2. Derive C ∨x by RAT on x. The only clauses in which x appears are those of the
form D|τ ∨ x introduced in step 1, and from Lemma 1.5 and the assumption that Γ|α `1 Γ|τ
we have that Γ `1 D|τ ∨ C.

Step 3. For each E ∈ Γ satisfied by τ , derive E ∨ x by a `1 step and delete E.
Step 4. For each literal p in τ , derive x ∨ p by RAT on p. To see that this satisfies the

RAT condition, consider any clause G = G′ ∨̇ p with which x∨ p could be resolved. If τ � G,
then by steps 2 and 3 above, G must also contain x, so the resolvent G′ ∪ x is a tautology.
If τ 6� G, then G must be one of the clauses D ∈ Γ or D|τ ∨ x from step 1, which means that
we have already derived G|τ ∨ x, which subsumes the resolvent G′ ∨ x.

Step 5. Consider each clause E ∨ x introduced in step 2 or 3. In either case τ � E, so E
contains some literal p in τ . Therefore we can derive E by resolving E ∨ x with x ∨ p. Thus
we derive C and all clauses from Γ deleted in step 3.

Finally delete all the new clauses except for C.

Definition 3.5. Let Γ be a set of clauses and x any variable. Then Γ(x) consists of every
clause in Γ which does not mention x, together with every clause of the form E ∨ F where
both x ∨̇E and x ∨̇F are in Γ.

In other words, Γ(x) is formed from Γ by doing all possible resolutions with respect to x
and then deleting all clauses containing either x or x. (This is exactly like the first step of

the Davis-Putnam procedure. In [Kul99b] the notation DPx is used instead of Γ(x).)

Lemma 3.6. There is a polynomial size DRAT derivation of Γ from Γ(x), using only
variables from Γ.

Proof. We first derive every clause of the form E ∨̇x in Γ, by RAT on x. As x has not
appeared yet, the RAT condition is satisfied. Then we derive each clause of the form F ∨̇x
in Γ, by RAT on x. The only possible resolutions are with clauses of the form E ∨̇x which

12:16 S. Buss and N. Thapen Vol. 17:2

we have just introduced, but in this case either E ∪ F is tautological or E ∨ F is in Γ(x) so
Γ(x) `1 x ∨ F ∨ E. Finally we delete all clauses not in Γ.

The next two lemmas show that, under suitable conditions, if we can derive C from Γ in
DPR−, then we can derive it from Γ(x). We will use a kind of normal form for PR inferences.
Say that a clause C is PR0 with respect to Γ if there is a partial assignment τ such that
τ � C, all variables in C are in dom(τ), and

C ∨ Γ|τ ⊆ Γ. (3.1)

(Recall that the notation C ∨ Γ|τ means the set of clauses C ∨D for D ∈ Γ|τ .) The PR0

inference rule lets us derive Γ ∪ {C} from Γ when (3.1) holds. Letting α = C it is easy to
see that (3.1) implies Γ|τ ⊆ Γ|α, so in particular Γ|α `1 Γ|τ , and hence this is a special case
of the PR rule.

Lemma 3.7. Any PR inference can be replaced with a PR0 inference together with polyno-
mially many `1 and deletion steps, using no new variables.

Proof. Suppose Γ|α `1 Γ|τ , where α = C and τ � C. By Lemma 1.21 we may assume that
dom(α) ⊆ dom(τ) so dom(τ) contains all variables in C. Let ∆ = C ∨ Γ|τ and Γ∗ = Γ ∪∆.
Note that ∆|τ is empty, as τ satisfies C. This implies that C ∨ Γ∗|τ = C ∨ Γ|τ ⊆ Γ∗, so C

is PR0 with respect to Γ∗. Furthermore the condition Γ|α `1 Γ|τ and Lemma 1.5 imply
that every clause in ∆ is derivable from Γ by a `1 step. Thus we can derive Γ∗ from Γ by
`1 steps, then introduce C by the PR0 rule, and recover Γ ∪ {C} by deleting everything
else.

Lemma 3.8. Suppose C is PR0 with respect to Γ, witnessed by τ with x /∈ dom(τ). Then

C is PR0 with respect to Γ(x).

Proof. The PR0 condition implies that the variable x does not occur in C. We are given that

C∨Γ|τ ⊆ Γ and want to show that C∨Γ
(x)
|τ ⊆ Γ(x). So let D ∈ Γ(x) with τ 6� D. First suppose

D is in Γ and x does not occur in D. Then C ∨D|τ ∈ Γ by assumption, so C ∨D|τ ∈ Γ(x).

Otherwise, D = E ∨ F where both E ∨̇x and F ∨̇x are in Γ. Then by assumption both
C ∨ E|τ ∨ x and C ∨ F|τ ∨ x are in Γ. Hence C ∨D|τ = C ∨ E|τ ∨ F|τ ∈ Γ(x).

We can now prove Theorem 3.3, that DRAT− simulates DPR−.

Proof of Theorem 3.3. We are given a DPR− refutation of some set ∆, using only the
variables in ∆. By Lemma 3.7 we may assume without loss of generality that the refutation
uses only `1, deletion and PR0 steps. Consider a PR0 inference in this refutation, which
derives Γ ∪ {C} from a set of clauses Γ, witnessed by a partial assignment τ . We want to
derive Γ ∪ {C} from Γ in DRAT using only variables in ∆.

Suppose τ is a total assignment to all variables in Γ. The set Γ is necessarily unsatisfiable,
as otherwise it could not occur as a line in a refutation. Therefore Γ|τ is simply ⊥, so the
PR0 condition tells us that C ∈ Γ and we do not need to do anything.

Otherwise, there is some variable x which occurs in Γ but is outside the domain of τ ,
and thus in particular does not occur in C. We first use `1 and deletion steps to replace
Γ with Γ(x). By Lemma 3.8, C is PR0, and thus PR, with respect to Γ(x). By Lemma 3.4
there is a short DRAT derivation of Γ(x) ∪ {C} from Γ(x), using one new variable which

does not occur in Γ(x) or C. We choose x for this variable. Finally, observing that here

Γ(x) ∪ {C} = (Γ ∪ {C})(x), we recover Γ ∪ {C} using Lemma 3.6.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:17

3.2. Towards a simulation of PR− by SPR−. Our next result shows how to replace a
PR inference with SPR inferences, without additional variables. It is not a polynomial
simulation of PR− by SPR− however, as it depends exponentially on the “discrepancy” as
defined next. Recall that C is PR with respect to Γ if Γ|α `1 Γ|τ , where α = C and τ is a
partial assignment satisfying C. We will keep this notation throughout this section. C is
SPR with respect to Γ if additionally dom(τ) = dom(α).

Definition 3.9. The discrepancy of a PR inference is |dom(τ) \ dom(α)|. That is, it is the
number of variables which are assigned by τ but not by α.

Theorem 3.10. Suppose that Γ has a PR refutation Π of size S in which every PR inference
has discrepancy bounded by δ. Then Γ has a SPR refutation of size O(2δS) which does not
use any variables not present in Π.

When the discrepancy is logarithmically bounded, Theorem 3.10 gives polynomial size
SPR refutations automatically. We need a couple of lemmas before proving the theorem.

Lemma 3.11. Suppose Γ|α `1 Γ|τ and β is a partial assignment extending α, such that
dom(β) ⊆ dom(τ). Then Γ|β `1 Γ|τ

Proof. Suppose E ∈ Γ|τ . Then E contains no variables from β, so E|β = E, and by

assumption there is a refutation Γ|α, E `1 ⊥. Thus Γ|β, E `1 ⊥ by Fact 1.3.

Proof of Theorem 3.10. Our main task is to show that a PR inference with discrepancy
bounded by δ can be simulated by multiple SPR inferences, while bounding the increase in
proof size in terms of δ. Suppose C is derivable from Γ by a PR inference. That is, Γ|α `1 Γ|τ
where α = C and τ � C, and by Lemma 1.21 we may assume that dom(τ) ⊇ dom(α). List
the variables in dom(τ) \ dom(α) as p1, . . . , ps, where s ≤ δ.

Enumerate as D1, . . . , D2s all clauses containing exactly the variables p1, . . . , ps with
some pattern of negations. Let σi = C ∨Di, so that σi ⊇ α and dom(σi) = dom(τ). By
Lemma 3.11, Γ|σi `1 Γ|τ . Since τ � C ∨Dj for every j, in fact

Γ|σi `1 (Γ ∪ {C ∨D1, . . . , C ∨Di−1})|τ .
Thus we may introduce all clauses C ∨D1, . . . , C ∨D2s one after another by SPR inferences.
We can then use 2s − 1 resolution steps to derive C.

The result is a set Γ′ ⊇ Γ which contains C plus many extra clauses subsumed by C,
which must be carried through the rest of the refutation, as we do not have the deletion rule.
But by Lemma 1.20(a) this is not a problem, as the presence of these additional subsumed
clauses does not affect the validity of later PR inferences.

4. Upper bounds for some hard tautologies

This section proves that SPR− — without new variables — can give polynomial size
refutations for many of the usual “hard” propositional principles. Heule, Kiesl and
Biere [HKB19, HKB17] showed that the tautologies based on the pigeonhole principle
(PHP) have polynomial size SPR− proofs, and Heule and Biere discuss polynomial size PR−

proofs of the Tseitin tautologies and the 2–1 pigeonhole principle in [HB18]. The SPR−

proof of the PHP tautologies can be viewed as a version of the original extended resolution
proof of PHP given by Cook and Reckhow [CR79]; see also [Kul99b] for an adaptation of
the original proof to use BC inferences.

12:18 S. Buss and N. Thapen Vol. 17:2

Here we describe polynomial size SPR− proofs for several well-known principles, namely
the pigeonhole principle, the bit pigeonhole principle, the parity principle, the clique-coloring
principles, and the Tseitin tautologies. We also show that orification, xorification, and
typical cases of lifting can be handled in SPR−.

The existence of such small proofs is surprising, since they use only clauses in the
original literals, and it is well-known that such clauses are limited in what they can express.
However, SPR− proofs can exploit the underlying symmetries of the principles to introduce
new clauses, in effect arguing that properties can be assumed to hold “without loss of
generality” (see [RS18]).

It is open whether extended resolution, or the Frege proof system, can be simulated by
PR− or DPR−, or more generally by DSR−. The examples below show that any separation
of these systems must involve a new technique.

Our proofs use the same basic idea as the sketch in Example 1.14. One complication is
that we are now working with SPR rather than SR inferences. This requires us to make the
individual inferences more complicated – for example the assignments α in Example 1.14
set one pigeon, while those in Section 4.1 below set two pigeons. Another is that we want
to avoid using any deletion steps. This means that, when showing that an SPR inference
is valid, we have to consider every clause introduced so far. For this reason we will do all
necessary SPR inferences at the start, in a careful order, before we do any resolution steps.
This is the purpose of Lemma 4.2.

Definition 4.1. A Γ-symmetry is an invertible substitution π such that Γ|π = Γ.

We will use the observation that, if π is a Γ-symmetry and α = C is a partial assignment,
then by Lemma 1.1 we have

Γ|α = (Γ|π)|α = Γ|α◦π.

Hence, if α ◦π � C, we can infer C from Γ by an SR inference with τ = α ◦π. If furthermore
all literals in the domain and image of π are in dom(α), then α ◦ π behaves as a partial
assignment and dom(α ◦ π) = dom(α), so this becomes an SPR inference.

We introduce one new piece of notation, writing α for the clause expressing that the
partial assignment α does not hold (so C = α if and only if α = C). Two partial assignments
are called disjoint if their domains are disjoint. The next lemma describes sufficient conditions
for introducing, successively, the clauses αi for i = 0, 1, 2, . . . using only SPR inferences.

Lemma 4.2. Suppose (α0, τ0), . . . , (αm, τm) is a sequence of pairs of partial assignments
such that for each i,

(1) Γ|αi
= Γ|τi

(2) αi and τi are contradictory and have the same domain
(3) for all j < i, the assignments αj and τi are either disjoint or contradictory.

Then we can derive Γ ∪ {αi : i = 0, . . . ,m} from Γ by a sequence of SPR inferences.

Proof. We write Ci for αi. By item 2, τi � Ci. Thus it is enough to show that for each i,(
Γ ∪ {C0, . . . , Ci−1}

)
|αi
⊇
(
Γ ∪ {C0, . . . , Ci−1}

)
|τi
.

We have Γ|αi
= Γ|τi . For j < i, either αj and τi are disjoint and consequently (Cj)|αi

=

(Cj)|τi = Cj , or they are contradictory and so τi � Cj and Cj vanishes from the right hand

side.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:19

In the lemma, if we added to (2) the condition that αi and τi disagree on only a single
variable, then by Theorem 1.10 we could derive the clauses αi by RAT inferences rather
than needing SPR inferences. However in the applications below they typically differ on
more than one variable, so our proofs are in SPR−, not in RAT−.

4.1. Pigeonhole principle. Let n ≥ 1 and [n] denote {0, . . . , n−1}. The pigeonhole
principle PHPn consists of the clauses∨

j∈[n]

pi,j for each fixed i ∈ [n+ 1] (pigeon axioms)

pi,j ∨ pi′,j for all i < i′ ∈ [n+ 1] and j ∈ [n] (hole axioms).

Theorem 4.3 [HKB19]. PHPn has polynomial size SPR− refutations.

Proof. Our strategy is to first derive all unit clauses pj,0 for j > 0, which effectively takes
pigeon 0 and hole 0 out of the picture and reduces PHPn to a renamed instance of PHPn−1.
We repeat this construction to reduce to a renamed instance of PHPn−2, etc. At each step,
we will need to use several clauses introduced by SPR inferences. We use Lemma 4.2 to
introduce all necessary clauses at one go at the start of the construction.

Let αi,j,k be the assignment setting pi,k = 1, pj,i = 1 and all other variables p`,k, p`,i
for holes k and i to 0. Let πk,i be the PHPn-symmetry which switches holes k and i,
that is, maps p`,i 7→ p`,k and p`,k 7→ p`,i for every pigeon `. Let τi,j,k be αi,j,k ◦ πk,i, so
in particular τi,j,k sets pi,i = 1 and pj,k = 1. By the properties of symmetries, we have
(PHPn)|αi,j,k

= (PHPn)|τi,j,k .

For i = 0, . . . , n− 2 define

Ai := {(αi,j,k, τi,j,k) : i < j < n+ 1, i < k < n}.

Any τi,j,k appearing in Ai contradicts every αi,j′,k′ appearing in Ai, since they disagree about
which pigeon maps to hole i. On the other hand, if i′ < i and αi′,j′,k′ appears in Ai′ and is
not disjoint from τi,j,k, then they must share some hole. So either i = k′ or k = k′, and in
either case they disagree about hole k′.

Hence we can apply Lemma 4.2 to derive all clauses αi,j,k such that i < j < n+ 1 and
i < k < n. Note αi,j,k is the clause pi,k ∨

∨
` 6=i p`,k ∨ pj,i ∨

∨
` 6=j p`,i, which we resolve with

hole axioms to get pi,k ∨ pj,i.
Now we use induction on i = 0, . . . , n − 1 to derive all unit clauses pj,i for all j with

i < j < n+ 1. Fix j > i. For each hole k > i we have pi,k ∨ pj,i (or if i = n− 1 there is no
such k). We have pi,i ∨ pj,i since it is a hole axiom, and for each k < i, we have pi,k from
the inductive hypothesis. Resolving all these with the axiom

∨
k pi,k gives pj,i.

Finally the unit clauses pn,i for i < n together contradict the axiom
∨
i pn,i.

4.2. Bit pigeonhole principle. Let n = 2k. The bit pigeonhole principle contradiction,
BPHPn, asserts that each of n + 1 pigeons can be assigned a distinct k-bit binary string.
For each pigeon x, with 0 ≤ x < n+ 1, it has variables px1 , . . . , p

x
k for the bits of the string

assigned to x. We think of strings y ∈ {0, 1}k as holes. When convenient we will identify
holes with numbers y < n. We write (x→y) for the conjunction

∧
i(p

x
i = yi) asserting that

pigeon x goes to hole y, where pxi = 1 is the literal pxi and pxi = 0 is the literal pxi , and where

12:20 S. Buss and N. Thapen Vol. 17:2

yi is the i-th bit of y. We write (x9y) for its negation:
∨
i(p

x
i 6= yi). The axioms of BPHPn

are then
(x9y) ∨ (x′9y) for all holes y and all distinct pigeons x, x′.

Notice that the set {(x9y) : y < n} consists of the 2k clauses containing the variables
px1 , . . . , p

x
k with all patterns of negations. We can derive ⊥ from this set in 2k−1 resolution

steps.

Theorem 4.4. The BPHPn clauses have polynomial size SPR− refutations.

The theorem is proved below. It is essentially the same as the proof of PHP in [HKB19]
(or Theorem 4.3 above). For each m < n− 1 and each pair x, y > m, we define a clause

Cm,x,y := (m9y) ∨ (x9m).

Note we allow x = y. Let Γ be the set of all such clauses Cm,x,y. We will show these clauses
can be introduced by SPR inferences, but first we show they suffice to derive BPHPn.

Lemma 4.5. BPHPn ∪ Γ has a polynomial size resolution refutation.

Proof. Using induction on m = 0, 1, 2, . . . , n−1 we derive all clauses (x9m) such that x > m.
So suppose m < n and x > m. For each y > m, we have the clause (m9y) ∨ (x9m), as
this is Cm,x,y. We also have the clause (m9m) ∨ (x9m), as this is an axiom of BPHPn.
Finally, for each m′ < m, we have (m9m′) by the inductive hypothesis (or, in the base case
m = 0, there are no such clauses). Resolving all these together gives (x9m).

At the end we have in particular derived all the clauses (n9m) such that m < n.
Resolving all these clauses together yields ⊥.

Thus it is enough to show that we can introduce all clauses in Γ using SPR inferences.
We use Lemma 4.2. For m < n− 1 and each pair x, y > m, define partial assignments

αm,x,y := (m→y) ∧ (x→m)

τm,x,y := (m→m) ∧ (x→y)

so that Cm,x,y = αm,x,y and τm,x,y = αm,x,y ◦ π where π swaps all variables for pigeons m
and x. Hence (BPHPn)|αm,x,y

= (BPHPn)|τm,x,y
as required.

For the other conditions for Lemma 4.2, first observe that assignments αm,x,y and τm,x′,y′
are always inconsistent, since they map m to different places. Now suppose that m < m′

and αm,x,y and τm′,x′,y′ are not disjoint. Then they must have some pigeon in common, so
either m′ = x or x′ = x. In both cases τm′,x′,y′ contradicts (x→m), in the first case because
it maps x to m′, and in the second because it maps x to y′ with y′ > m′.

4.3. Parity principle. The parity principle states that there is no (undirected) graph on
an odd number of vertices in which each vertex has degree exactly one (see [Ajt90, BIK+96]).
For n odd, let PARn be a set of clauses expressing (a violation of) the parity principle on n
vertices, with variables xi,j for the

(
n
2

)
many values 0 ≤ i < j < n, where we identify the

variable xi,j with xj,i. We write [n] for {0, . . . , n−1}. PARn consists of the clauses∨
j 6=i

xi,j for each fixed i ∈ [n] (“pigeon” axioms)

xi,j ∨ xi,j′ for all distinct i, j, j′ ∈ [n] (“hole” axioms).

Theorem 4.6. The PARn clauses have polynomial size SPR− refutations.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:21

Proof. Let n = 2m+ 1. For i < m and distinct j, k with 2i+ 1 < j, k < n define αi,j,k to be
the partial assignment which matches 2i to j and 2i+ 1 to k, and sets all other adjacent
variables to 0. That is, x2i,j = 1 and x2i,j′ = 0 for all j′ 6= j, and x2i+1,k = 1 and x2i+1,k′ = 0
for all k′ 6= k. Similarly define τi,j,k to be the partial assignment which matches 2i to 2i+ 1
and j to k, and sets all other adjacent variables to 0, so that τi,j,k = αi,j,k ◦ π where π
swaps vertices 2i+ 1 and j. It is easy to see that the conditions of Lemma 4.2 are satisfied.
Therefore, we can introduce all clauses αi,j,k by SPR inferences.

We now inductively derive the unit clauses x2i,2i+1 for i = 0, 1, . . . ,m− 1. Once we have
these, refuting PARn becomes trivial. So suppose we have x2i′,2i′+1 for all i′ < i and want
to derive x2i,2i+1. Consider any r < 2i. First suppose r is even, so r = 2m for some m < i.
We resolve the “hole” axiom x2m,2i ∨ x2m,2m+1 with x2m,2m+1 to get x2m,2i, which is the
same clause as x2i,r. A similar argument works for r odd, and we can also obtain x2i+1,r in
a similar way.

Resolving the clauses x2i,r and x2i+1,r for r < 2i with the “pigeon” axioms for vertices
2i and 2i+ 1 gives clauses

x2i,2i+1 ∨
∨

r>2i+1

x2i,r and x2i,2i+1 ∨
∨

r>2i+1

x2i+1,r.

Now by resolving clauses αi,j,k with suitable “hole” axioms we can get x2i,j ∨ x2i+1,k for all
distinct j, k > 2i+ 1. Resolving these with the clauses above gives x2i,2i+1, as required.

4.4. Clique-coloring principle. The clique-coloring principle CCn,m states, informally,
that a graph with n vertices cannot have both a clique of size m and a coloring of size m− 1
(see [Kra97, Pud97]). For m ≤ n integers, CCn,m uses variables pa,i, qi,c and xi,j where
a ∈ [m] and c ∈ [m−1] and i, j ∈ [n] with i 6= j. Again, xi,j is identified with xj,i. The
intuition is that xi,j indicates that vertices i and j are joined by an edge, pa,i asserts that i
is the a-th vertex of a clique, and qi,c indicates that vertex i is assigned color c. We list the
clauses of CCn,m as

(i)
∨
i pa,i for each a ∈ [m]

(ii) pa,i ∨ pa′,i for distinct a, a′ ∈ [m] and each i ∈ [n]
(iii)

∨
c qi,c for each i ∈ [n]

(iv) qi,c ∨ qi,c′ for each i ∈ [n] and distinct c, c′ ∈ [m−1]
(v) pa,i ∨ pa′,j ∨ xi,j for each distinct a, a′ ∈ [m] and distinct i, j ∈ [n]
(vi) qi,c ∨ qj,c ∨ xi,j for each c ∈ [m−1] and distinct i, j ∈ [n].

Theorem 4.7. The CCn,m clauses have polynomial size SPR− refutations.

Proof. The intuition for the SPR− proof is that we introduce clauses stating that the first r
clique members are assigned vertices that are colored by the first r colors; iteratively for
r = 1, 2,

Write (a→i→c) for the assignment which sets

pa,i = 1 and pa′,i = 0 for all a′ 6= a

qi,c = 1 and qi,c′ = 0 for all c′ 6= c.

For all r < m− 2, all indices a > r, all colors c > r and all distinct vertices i, j ∈ [n], define

αra,i,j,c := (a→j→r) ∧ (r→i→c)
τ ra,i,j,c := (a→j→c) ∧ (r→i→r).

12:22 S. Buss and N. Thapen Vol. 17:2

Let Γ consist of axioms (i), (ii) and (v), containing p and x variables but no q variables,
and let ∆ consist of the remaining axioms (iii), (iv) and (vi), containing q and x variables
but no p variables. Let us write α for αra,i,j,c and τ for τ ra,i,j,c. Then Γ|α = Γ|τ since α and τ

are the same on p variables. Let α′ and τ ′ be respectively α and τ restricted to q variables.
Then ∆|α′ = ∆|τ ′ since τ ′ = α′ ◦ π where π is the ∆-symmetry which swaps vertices i and j.
Hence also ∆|α = ∆|τ .

We will show that the conditions of Lemma 4.2 are satisfied, so we can introduce all
clauses αra,i,j,c by SPR inferences. The first condition was just discussed. For the second
condition, first notice that αra,i,j,c and τ ra,i,j,c set the same variables.

Now suppose r, a, c, i, j are such that r < a < m, that r < c < m−1, and that i, j ∈ [n]
are distinct. Suppose r′, a′, c′, i′, j′ satisfy the same conditions, with r′ ≤ r. We want to
show that if τ := τ ra,i,j,c and α := αr

′
a′,i′,j′,c′ are not disjoint, then they are contradictory.

Notice that showing this will necessarily use the literals pa′,i and qi,c′ in the definition of our
assignments, and that it will be enough to show that α and τ disagree about either which
index or which color is assigned to a vertex i. First suppose r′ = r. Assuming α and τ are
not disjoint, we must be in one of the following four cases.

(1) i′ = i. Then α maps vertex i to color c′ > r while τ maps i to color r.
(2) i′ = j. Then α maps index r < a to vertex j while τ maps index a to j.
(3) j′ = i. Then α maps index a′ > r to vertex i while τ maps index r to i.
(4) j′ = j. Then α maps vertex j to color r < c while τ maps j to color c.

Now suppose r′ < r. Assuming α and τ are not disjoint, we have the same cases.

(1) i′ = i. Then α maps index r′ < r to vertex i while τ maps index r to i.
(2) i′ = j. Then α maps index r′ < a to vertex j while τ maps index a to j.
(3) j′ = i. Then α maps vertex i to color r′ < r while τ maps i to color r.
(4) j′ = j. Then α maps vertex j to color r′ < c while τ maps j to color c.

Thus the conditions are met and we can introduce the clauses αra,i,j,c, that is,

pa,j ∨
∨
a′ 6=a

pa′,j ∨ qj,r ∨
∨
r′ 6=r

qj,r′ ∨ pr,i ∨
∨
r′ 6=r

pr′,i ∨ qi,c ∨
∨
c′ 6=c

qi,c′ ,

for all r < a < m, all r < c < m−1 and all distinct i, j ∈ [n]. Now let Cra,i,j,c be the clause

pa,j ∨ qj,r ∨ pr,i ∨ qi,c.

We derive this by resolving αra,i,j,c with instances of axiom (ii) to remove the literals pa′,j
and pr′,i and then with instances of axiom (iv) to remove the literals qj,r′ and qi,c′ . We now
want to derive, for each r, each a with r < a < m and each j ∈ [n], the clause

pa,j ∨
∨
c>r

qj,c (4.1)

which can be read as “if a > r goes to j, then j goes to some c > r”. Intuitively, this removes
indices and colors 0, . . . , r from CCn,m, thus reducing it to a CNF isomorphic to CCn,m−r−1.

Suppose inductively that we have already derived (4.1) for all r′ < r. In particular we
have derived pa,j ∨

∨
c>r−1 qj,c, or for r = 0 we use the axiom

∨
c qj,c. We resolve this with

the clauses Cra,i,j,c for all c > r to get

pa,j ∨ qj,r ∨ pr,i ∨ qi,r. (4.2)

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:23

By resolving together suitable instances of axioms (v) and (vi) we obtain

pa,j ∨ pr,i ∨ qj,r ∨ qi,r
and resolving this with (4.2) removes the variable qi,r to give pa,j ∨ qj,r ∨ pr,i. We derive
this for every i, and then resolve with the axiom

∨
i pr,i to get pa,j ∨ qj,r, and finally again

with our inductively given clause pa,j ∨
∨
c>r−1 qj,c to get pa,j ∨

∨
c>r qj,c as required.

4.5. Tseitin tautologies. The Tseitin tautologies TSG,γ are well-studied hard examples
for many proof systems (see [Tse68, Urq87]). Let G be an undirected graph with n vertices,
with each vertex i labelled with a charge γ(i) ∈ {0, 1} such that the total charge on G is
odd. For each edge e of G there is a variable xe. Then TSG,γ consists of clauses expressing
that, for each vertex i, the parity of the values xe over the edges e touching i is equal to the
charge γ(i). For a vertex i of degree d, this requires 2d−1 clauses, using one clause to rule
out each assignment to the edges touching i with the wrong parity. If G has constant degree
then this has size polynomial in n, but in general the size may be exponential in n. It is
well-known to be unsatisfiable.

The next lemma is a basic property of Tseitin contradictions. Note that it does not
depend on γ. By cycle we mean a simple cycle, with no repeated vertices.

Lemma 4.8. Let K be any cycle in G. Then the substitution πK which flips the sign of
every literal on K is a TSG,γ-symmetry.

Lemma 4.9. If every node in G has degree at least 3, then G contains a cycle of length at
most 2 log n.

Proof. Pick any vertex i and let H be the subgraph consisting of all vertices reachable from i
in at most log n steps. Then H cannot be a tree, as otherwise by the assumption on degree
it would contain more than n vertices. Hence it must contain some vertex reachable from i
in two different ways.

Theorem 4.10. The TSG,γ clauses have polynomial size SPR− refutations.

Proof. We will construct a sequence of triples (G0, γ0, `0), . . . , (Gm, γm, `m) where (G0, γ0)
is (G, γ), each Gi+1 is a subgraph of Gi formed by deleting one edge and removing any
isolated vertices, γi is an odd assignment of charges to Gi, and `i is a literal corresponding
to an edge in Gi \Gi+1. Let

Γi = TSG0,γ0 ∪ {`0} ∪ · · · ∪ TSGi,γi ∪ {`i}.

As we go we will construct an SPR− derivation containing sets of clauses Γ′i extending and
subsumed by Γi, and we will eventually reach a stage m where Γm is trivially refutable. The
values of `i, Gi+1 and γi+1 are defined from Gi and γi according to the next three cases.

Case 1: Gi contains a vertex j of degree 1. Let {j, k} be the edge touching j. If k has
degree 2 or more, we define (Gi+1, γi+1) by letting Gi+1 be Gi with edge {j, k} and vertex j
removed, and letting γi+1 be γi restricted to Gi+1 and with γi+1(k) = γi(k) + γi(j). If k has
degree 1 and the same charge as j, then we let Gi+1 be Gi with both j and k removed (with
unchanged charges). In both cases, every clause in TSGi+1,γi+1 is derivable from TSGi,γi by
a `1 step, as the Tseitin condition on j in TSGi,γi is a unit clause; we set `i to be the literal
contained in this clause. If k has degree 1 and opposite charge from j, then we can already
derive a contradiction from TSGi,γi by one `1 step.

12:24 S. Buss and N. Thapen Vol. 17:2

Case 2: Gi contains no vertices of degree 1 or 2. Apply Lemma 4.9 to find a cycle K in
Gi of length at most 2 log n and let e be the first edge in K. Our goal is to derive the unit
clause xe and remove e from Gi.

Let α be any assignment to the variables on K which sets xe to 1, and let τ be the
opposite assignment. Using Lemma 4.8 applied simultaneously to all graphs G0, . . . , Gi we
have (Γi)|α = (Γi)|τ , as the unit clauses `i are unaffected by these restrictions. Hence by

Lemma 4.2, SPR− inferences can be used to introduce all clauses α, of which there are at
most 22 logn−1. We resolve them all together to get the unit clause xe. This subsumes all
other clauses introduced so far in this step; we set `i to be xe, and by Lemma 1.20(a), we
may ignore these subsumed clauses in future inferences. (Therefore we avoid needing the
deletion rule.) We define (Gi+1, γi+1) by deleting edge e from Gi and leaving γi unchanged.
All clauses in TSGi+1,γi+1 can now be derived from TSGi,γi and xe by single `1 steps.

Case 3: Gi contains no vertices of degree 1, but may contain vertices of degree 2. We
will adapt the argument of case 2. Redefine a path to be a sequence of edges connected by
degree-2 vertices. By temporarily replacing paths in Gi with edges, we can apply Lemma 4.9
to find a cycle K in Gi consisting of edge-disjoint paths p1, . . . , pm where m ≤ 2 log n. Let
xj be the variable associated with the first edge in pj . For each j, there are precisely two
assignments to the variables in pj which do not immediately falsify some axiom of TSGi,γi .
Let α be a partial assignment which picks one of these two assignments for each pj , and
such that α(x1) = 1. As in case 2, SPR− inferences can be used to introduce α for each α
of this form.

Let us look at the part of α consisting of literals from path pj . This has the form

zj1 ∨ · · · ∨ z
j
r , where zj1 is xj with positive or negative sign and for each k, by the choice of α,

there are Tseitin axioms expressing that zjk and zjk+1 have the same value. Hence if we set

zj1 = 0 we can set all literals in this clause to 0 by unit propagation. Applying the same
argument to all parts of α shows that we can derive z11 ∨ · · · ∨ zm1 from α and TSGi,γi with a
single `1 step. We introduce all 2m−1 such clauses, one for each α, all with z11 = x1. We
resolve them together to get the unit clause x1, then proceed as in case 2.

For the size bound, each case above requires us to derive at most n·|TSG,γ | clauses, and
the refutation can take at most n steps.

4.6. Or-ification and xor-ification. Orification and xorification have been widely used to
make hard instances of propositional tautologies, see [BSIW04, BS09, Urq11]. This and the
next section discuss how SPR− inferences can be used to “undo” the effects of orification,
xorification, and lifting without using any new variables. As a consequence, these techniques
are not likely to be helpful in establishing lower bounds for the size of PR− refutations.

Typically, one “orifies” many variables at once; however, for the purposes of this paper,
we describe orification of a single variable. Let Γ be a set of clauses, and x a variable.
For the m-fold orification of x, we introduce new variables x1, . . . , xm, with the intent of
replacing x with x1 ∨ x2 ∨ · · · ∨ xm. Specifically, each clause x ∨ C in Γ is replaced with
x1 ∨ · · · ∨ xm ∨ C, and each clause x ∨ C is replaced with the m-many clauses xj ∨ C. Let
Γ∨ denote the results of this orification of x. We claim that SPR− inferences may be used
to derive Γ (with x renamed to x1) from Γ∨, undoing the orification, as follows. We first
use SPR− inferences to derive each clause x1 ∨ xj for j > 1. This is done using Lemma 4.2,
with αj setting x1 to 0 and xj to 1, and τj setting x1 to 1 and xj to 0, so that τj is αj with

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:25

x1 and xj swapped. Thus any clause x1 ∨ · · · ∨ xm ∨ C in Γ∨ can be resolved with these to
yield x1 ∨ C, and for clauses x1 ∨ C in Γ∨ we do not need to change anything.

Xorification of x is a similar construction, but now we introduce m new variables with
the intent of letting x be expressed by x1⊕x2⊕· · ·⊕xm. Each clause x∨C in Γ (respectively,
x ∨ C in Γ) is replaced by 2m−1 many clauses xσ1 ∨ xσ2 ∨ · · · ∨ xσm ∨ C where σ is a partial
assignment setting an odd number (respectively, an even number) of the variables xj to 1. To
undo the xorification it is enough to derive the unit clauses xj for j > 1. So for each j > 1,
we first use Lemma 4.2 to introduce the clause x1 ∨ xj , using the same partial assignments
as in the previous paragraph, and the clause x1 ∨ xj , using assignments αj setting x1 and
xj both to 1, and τj setting x1 and xj both to 0, so that τj is αj with the signs of both
x1 and xj flipped. Resolving these gives xj . This subsumes x1 ∨ xj and x1 ∨ xj , so by
Lemma 1.20(a), we may ignore these two clauses in later SPR− steps, and can thus use the
same argument to derive the clauses xi for i 6= j, since αi and τi do not affect the clause xj .

4.7. Lifting. Lifting is a technique for leveraging lower bounds on decision trees to obtain
lower bounds in stronger computational models, see [RM99, BHP10, HN12].

The most common form of lifting is the “indexing gadget” where a single variable x is
replaced by `+ 2` new variables y1, . . . , y` and z0, . . . , z2`−1. The intent is that the variables

y1, . . . , y` specify an integer i ∈ [2`], and zi gives the value of x. As in Section 4.2, we write
(~y→i) for the conjunction

∧
j(yj = ij) where ij is the j-th bit of i, and write (~y9i) for its

negation
∨
j(yj 6= ij). Thus, x is equivalent to the CNF formula

∧
i∈[2`] ((~y9i) ∨ zi), and x

is equivalent to the CNF formula
∧
i∈[2`] ((~y9i) ∨ zi).

Let Γ is a set of clauses with an SPR− refutation. The indexing gadget applied to Γ on
the variable x does the following to modify Γ to produce set of lifted clauses Γ′: Each clause
x ∨̇C containing x is replaced by the 2` clauses (~y9i) ∨ zi ∨ C for i ∈ [2`], and each clause
x ∨̇C containing x is replaced by the 2` clauses (~y9i) ∨ zi ∨ C.

For all i 6= 0 and all a, b ∈ {0, 1}, let αi,a,b and τi,a,b be the partial assignments

αi,a,b := (~y→i) ∧ z0 = a ∧ zi = b

τi,a,b := (~y→0) ∧ z0 = b ∧ zi = a.

Since i 6= 0 always holds, it is immediate that conditions (2) and (3) of Lemma 4.2 hold.
For condition (1), observe that the set of clauses {(~y9j) ∨ zj ∨ C : j ∈ [2`]}, restricted by
(~y→i), becomes the single clause zi ∨ C, and restricted by (~y→0) becomes z0 ∨ C. In this
way Γ′|αi,a,b

= Γ′|τi,a,b and condition 1. also holds. Therefore by Lemma 4.2, SPR− inferences

can be used to derive all clauses αi,a,b, namely all the clauses (~y9i) ∨ z0 6=a ∨ zi 6= b. For
each fixed i 6= 0 this is four clauses, which can be resolved together to give the clause
(~y9i). Then from these 2` − 1 clauses we can obtain by resolution each unit clause yj for
j = 1, . . . , `. Finally, using unit propagation with these, we derive the clauses z0 ∨̇C and
z0 ∨̇C for all original clauses x ∨̇C and x ∨̇C in Γ. We have thus derived from Γ′, using
SPR− and resolution inferences, a copy Γ′′ of all the clauses in Γ, except with x replaced
with z0. The other clauses in in Γ′ or that were inferred during the process of deriving Γ′′

are subsumed by either the unit clauses yj or the clauses in Γ′′. Thus applying part (b) and
then part (a) of Lemma 1.20, they do not interfere with future SPR− inferences refuting Γ′′.

12:26 S. Buss and N. Thapen Vol. 17:2

5. Lower bounds

This section gives an exponential separation between DRAT− and RAT−, by showing that
the bit pigeonhole principle BPHPn requires exponential size refutations in RAT−. This
lower bound still holds if we allow some deletions, as long as no initial clause of BPHPn is
deleted. On the other hand, with unrestricted deletions, it follows from Theorems 3.1, 3.3
and 4.4 in this paper that it has polynomial size refutations in DRAT− and even in DBC−,
as well as in SPR−.

Kullmann [Kul99b] has already proved related separations for generalized extended
resolution (GER), which lies somewhere between DBC and BC in strength. That work shows
separations between various subsystems of GER, and in particular gives an exponential
lower bound on proofs of PHPn in the system GER with no new variables, by analyzing
which clauses are blocked with respect to PHPn.

We define the pigeon-width of a clause or assignment to equal the number of distinct
pigeons that it mentions. Our size lower bound for BPHPn uses a conventional strategy:
we first show a width lower bound (on pigeon-width), and then use a random restriction to
show that a proof of subexponential size can be made into one of small pigeon-width. We
do not aim for optimal constants.

We have to be careful about one technical point in the second step, which is that RAT−

refutation size does not in general behave well under restrictions, as discussed in Section 2.2.
So, rather than using restrictions as such to reduce width, we will define a partial random
matching ρ of pigeons to holes and show that if BPHPn has a RAT− refutation of small size,
then BPHPn ∪ ρ has one of small pigeon-width.

A useful tool in analyzing resolution derivations from a set of clauses Γ is the Prover-
Adversary game on Γ (see e.g. [Pud00, AD08]). In the game, the Adversary claims to know a
satisfying assignment for Γ, and the Prover tries to force her into a contradiction by querying
the values of variables; the Prover can also forget variable assignments to save memory
and simplify his strategy. A position in the game is a partial assignment α recording the
contents of the Prover’s memory. To fully specify the game we also need to specify the
starting position.

As the next lemma shows, a strategy for the Prover in this game is essentially the
same thing as a resolution derivation. But it is more intuitive to describe a strategy than a
derivation, and the game also gives a natural way to show width lower bounds.

Lemma 5.1. Consider a restriction of the Prover-Adversary game on a set of clauses Γ
starting from position C in which the Prover’s memory can hold information about at most m
pigeons simultaneously. If the Prover has a winning strategy in this game, then C is derivable
from Γ in pigeon-width m. If the Adversary has a winning strategy, then C is not derivable
from Γ in pigeon-width m− 1.

Proof. We can think of a winning strategy for the Prover as a tree in which the nodes are
labelled with a partial assignment (the position α) and with the Prover’s action in that
situation, that is: query a variable, forget a variable, or declare victory because α falsifies
a clause from Γ. We can make this into a resolution refutation by replacing each label α
with the clause negating it and interpreting the three actions as respectively resolution,
weakening, and deriving a clause from an axiom by weakening.

For the other direction, it is enough to construct a winning strategy for the Prover
from a derivation of pigeon-width m− 1. This is the reverse of the process described above,
except that we need to be careful with the resolution rule. Suppose an instance of the rule

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:27

is: from p ∨D and p ∨ E derive D ∨ E, where each clause mentions at most m− 1 pigeons.
In the Prover-strategy, this becomes: from position D∪E, query p. If it is false, forget some
variables from E to reach position p∪D. If it is true, forget some variables from D to reach
position p ∪E. Thus the Prover may be in a position mentioning m pigeons immediately
after p is queried.

Lemma 5.2. Let β be a partial assignment corresponding to a partial matching of m pigeons
to holes. Then BPHPn ∪ β requires pigeon-width n−m to refute in resolution.

Proof. BPHPn∪β is essentially an unusual encoding of the pigeonhole principle with n+1−m
pigeons and n−m holes. Thus, if the Prover is limited to remembering variables from at
most n−m pigeons, there is an easy strategy for the Adversary in the game starting from the
empty position. Namely, she can always maintain a matching between the pigeons mentioned
in the Prover’s memory and the available holes. The result follows by Lemma 5.1.

Theorem 5.3. Let ρ be a partial matching of size at most n/4. Let Π be a DRAT− refutation
of BPHPn ∪ ρ in which no clause of BPHPn is ever deleted. Then some clause in Π has
pigeon-width more than n/3.

Proof. Suppose for a contradiction there is a such a refutation Π in pigeon-width n/3. We
consider each RAT inference in Π in turn, and show it can be eliminated and replaced with
standard resolution reasoning, without increasing the pigeon-width.

Inductively suppose Γ is a set of clauses derivable from BPHPn ∪ ρ in pigeon-width n/3,
using only resolution and weakening. Suppose a clause C in Π of the form p ∨̇C ′ is RAT
with respect to Γ and p. Let α = C, so α(p) = 0 and α mentions at most n/3 pigeons. We
consider three cases.

Case 1: the assignment α is inconsistent with ρ. This means that ρ satisfies a literal
which appears in C, so C can be derived from ρ by a single weakening step.

Case 2: the assignment α ∪ ρ can be extended to a partial matching β of the pigeons
it mentions. We will show that this cannot happen. Let x be the pigeon associated with
the literal p. Let y = β(x) and let y′ be the hole β would map x to if the bit p were
flipped to 1. If y′ = β(x′) for some pigeon x′ in the domain of β, let β′ = β. Otherwise let
β′ = β ∪ {(x′, y′)} for some pigeon x′ outside the domain of β.

Let H be the hole axiom (x9y′)∨(x′9y′) in Γ. The clause (x9y′) contains the literal p,
since (x→y′) contains p. So H = p ∨̇H ′ for some clause H ′. By the RAT condition, either

C ′ ∪ H ′ is a tautology or Γ `1 C ∨ H ′. Either way, Γ ∪ C ∪ H ′ `1 ⊥. Since β′ ⊇ α, β′

falsifies C. It also falsifies H ′, since it satisfies (x→y′) ∧ (x′→y′) except at p. It follows
that Γ ∪ β′ `1 ⊥. By assumption, Γ is derivable from BPHPn ∪ ρ in pigeon-width n/3,
and β′ extends ρ. Since unit propagation does not increase pigeon-width, this implies that
BPHPn∪β′ is refutable in resolution in pigeon-width n/3, by first deriving Γ and then using
unit propagation. This contradicts Lemma 5.2 as β′ is a matching of at most n/3 + n/4 + 1
pigeons.

Case 3: the assignment α ∪ ρ cannot be extended to a partial matching of the pigeons
it mentions. Consider the Prover-Adversary game on BPHPn ∪ ρ with starting position α.
The Prover can ask all remaining bits of the pigeons mentioned in α, and since there is
no suitable partial matching this forces the Adversary to reveal a collision and lose the
game. This strategy has pigeon-width n/3; it follows that C is derivable from BPHPn ∪ ρ in
resolution in this pigeon-width, as required.

12:28 S. Buss and N. Thapen Vol. 17:2

Theorem 5.4. Let Π be a DRAT− refutation of BPHPn in which no clause of BPHPn is
ever deleted. Then Π has size at least 2n/60.

Proof. Construct a random restriction ρ by selecting each pigeon independently with proba-
bility 1/5 and then randomly matching the selected pigeons with distinct holes (there is an

(1/5)n+1 chance that there is no matching, because we selected all the pigeons — in this
case we set all variables at random).

Let m = n/4. Let C be a clause mentioning at least m distinct pigeons x1, . . . , xm and
choose literals p1, . . . , pm in C such that pi belongs to pigeon xi. The probability that pi is
satisfied by ρ is 1/10. However, these events are not quite independent for different i, as the
holes used by other pigeons are blocked for pigeon xi. To deal with this, we may assume
that pigeons x1, . . . , xm, in that order, were the first pigeons considered in the construction
of ρ. When we come to xi, if we set it, then there are n/2 holes which would satisfy pi, at
least n/2−m ≥ n/4 of which are free; so of the free holes, the fraction which satisfy pi is
at least 1/3. So the probability that ρ satisfies pi, conditioned on it not satisfying any of
p1, . . . , pi−1, is at least 1/15. Therefore the probability that C is not satisfied by ρ is at

most (1− 1/15)m < e−m/15 = e−n/60.

Now suppose Π contains no more than 2n/60 clauses of pigeon width at least n/4. By
the union bound, for a random ρ, the probability that at least one of these clauses is not

satisfied by ρ is at most 2n/60e−n/60 = (2/e)n/60. Therefore most restrictions ρ satisfy all
clauses in Π of pigeon-width at least n/4, and by the Chernoff bound we may choose such a
ρ which also sets no more than n/4 pigeons.

We now observe inductively that for each clause C in Π, some subclause of C is derivable
from BPHPn ∪ ρ in resolution in pigeon-width n/3, ultimately contradicting Lemma 5.2. If
C has pigeon-width more than n/3, this follows because C is subsumed by ρ. Otherwise, if C
is derived by a RAT inference, we repeat the proof of Theorem 5.3; in case 2 we additionally
use the observation that if Γ `1 C ∨H ′ and Γ′ subsumes Γ, then Γ′ `1 C ∨H ′.

Corollary 5.5. RAT− does not simulate DRAT−. RAT− does not simulate SPR−.

Proof. By Theorem 4.4, BPHPn has short proofs in SPR−. Thus, by Theorem 3.3, this also
holds for DRAT− (and for DBC− by Theorem 3.1). On the other hand, Theorem 5.4 just
showed BPHPn requires exponential size RAT− proofs.

6. Open problems

There are a number of open questions about the systems with no new variables. Of particular
importance is the question of the relative strengths of DPR−, DSR− and related systems.
The results of [HB18, HKB17, HKB19] and the present paper show that DPR−, and even the
possibly weaker system SPR−, are strong. DPR− is a promising system for effective proof
search algorithms, but it is open whether practical proof search algorithms can effectively
exploit its strength. It is also open whether DPR− or DSR− simulates ER.

Another important question is to understand the strength of deletion for these systems.
Of course, deletion is well-known to help the performance of SAT solvers in practice, if for no
other reason, because unit propagation is faster when fewer clauses are present. In addition,
for systems such as RAT, it is known that deletion can allow new inferences. The results
in Sections 4 and 5 improve upon this by showing that RAT− does not simulate DRAT−.
This strengthens the case, at least in theory, for the importance of deletion.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:29

In Section 4 we described small SPR− proofs of many of the known “hard” tautologies
that have been shown to require exponential size proofs in constant depth Frege. It is open
whether SPR− simulates Frege; and by these results, any separation of SPR− and Frege
systems will likely require developing new techniques. Even more tantalizing, we can ask
whether SR− simulates Frege.

There are several hard tautologies for which we do not whether there are as polynomial
size SPR− proofs. Jakob Nordström [personal communication, 2019] suggested (random)
3-XOR SAT and the even coloring principle as examples. 3-XOR SAT has short cutting
planes proofs via Gaussian elimination; it is open whether SPR− or DSPR− or even DSR−

has polynomial size refutations for all unsatisfiable 3-XOR SAT principles. The even coloring
principle is a special case of the Tseitin principle [Mar06]: the graph has an odd number of
edges, each vertex has even degree, and the initial clauses assert that, for each vertex, exactly
one-half the incident edges are labeled 1. It is not hard to see that the even coloring principle
can be weakened to the Tseitin principle by removing some clauses with the deletion rule.
Hence there are polynomial size DSPR− refutations (with deletion) of the even coloring
principle. It is open whether SPR− (without deletion) has polynomial size refutations for
the even coloring principle.

Paul Beame [personal communication, 2018] suggested that the graph PHP principles
(see [BSW01]) may separate systems such as SPR− or even SR− from Frege systems. However,
there are reasons to suspect that in fact the graph PHP principles also have short SPR−

proofs. Namely, SPR inferences can infer a lot of clauses from the graph PHP clauses. If
an instance of graph PHP has every pigeon with outdegree ≥ 2, then there must be an
alternating cycle of pigeons i1, . . . i`+1 and holes j1, . . . j` such that i` = i1, the edges (is, js)
and (is+1, js) are all in the graph, and ` = O(log n). Then an SPR inference can be used to
learn the clause xi1,j1 ∨xi2,j2 ∨ · · · ∨xi`,j` , by using the fact that a satisfying assignment that
falsifies this clause can be replaced by the assignment that maps instead each pigeon is+1 to
hole js.

This construction clearly means that SPR inferences can infer many clauses from the
graph PHP clauses. However, we do not know how to use these to form a short SPR− proof
of the graph PHP principles. It remains open whether a polynomial size SPR− proof exists.

Acknowledgements. We thank the reviewers of the conference and journal versions of
this paper for suggestions and comments that improved the paper. We also thank Jakob
Nordström, Paul Beame, Marijn Heule, Thomas Kochmann and Oliver Kullmann for useful
comments, questions and suggestions.

References

[AD08] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. Journal of
Computer and System Sciences, 74(3):323–334, 2008.

[Ajt90] M. Ajtai. Parity and the pigeonhole principle. In Feasible Mathematics: A Mathematical Sciences
Institute Workshop held in Ithaca, New York, June 1989, pages 1–24. Birkhäuser, 1990.

[BHP10] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplification in proof complexity. In
Proc. 42nd Annual ACM Symposium on Theory of Computing (STOC’10), pages 87–96, 2010.

[BIK+96] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. Proceedings of the London Mathematical
Society, 73(3):1–26, 1996.

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351, 2004.

12:30 S. Buss and N. Thapen Vol. 17:2

[BS09] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing, 38(6):2511–2525,
2009.

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like
and general resolution. Combinatorica, 24(4):585–603, 2004.

[BSW01] Eli Ben-Sasson and Ave Wigderson. Short proofs are narrow — resolution made simple. Journal
of the ACM, 48:149–169, 2001.

[BT19] Sam Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution.
In Proc. 22nf Intl. Conference on Theory and Applications of Satisfiability Testing (SAT 2019),
Springer-Verlag Lecture Notes in Computer Science 11628, pages 71–89, 2019.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, Naples, Italy, 1986. Revision of 1985 Princeton
University Ph.D. thesis.

[Cha70] C. L. Chang. The unit proof and the input proof in theorem proving. J. ACM, 17(4):698–707,
1970.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings of
the Seventh Annual ACM Symposium on Theory of Computing, pages 83–97. Association for
Computing Machinery, 1975.

[CR74] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional calculus,
preliminary version. In Proceedings of the Sixth Annual ACM Symposium on the Theory of
Computing, pages 135–148, 1974.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:36–50, 1979.

[GN03] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891.
IEEE Computer Society, 2003.

[GS88] Joachim Grollmann and Alan Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988.

[HB18] Marijn J. H. Heule and Armin Biere. What a difference a variable makes. In Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference (TACAS 2018),
Lecture Notes in Computer Science 10806, pages 75–92. Springer Verlag, 2018.

[HHJW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design (FMCAD), pages 181–188. IEEE, 2013.

[HHJW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Automated Deduction - 24th International Conference (CADE), Lecture Notes in
Computer Science 7898, pages 345–359. Springer Verlag, 2013.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In
Automated Deduction - 26th International Conference (CADE), Lecture Notes in Computer
Science 10395, pages 130–147. Springer Verlag, 2017.

[HKB19] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof systems.
Journal of Automated Reasoning, pages 1–22, 2019. Extended version of [HKB17].

[HKSB17] Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. PRuning through satisfac-
tion. In Hardware and Software: Verification and Testing - 13th International Haifa Verification
Conference (HVC), Lecture Notes in Computer Science 10629, pages 179–194. Springer Verlag,
2017.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying communication
complexity hardness to time-space trade-offs in proof complexity (Extended abstract). In Proc.
44th Annual ACM Symposium on Theory of Computing (STOC’12), pages 233–248, 2012.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Automated Reasoning
- 6th International Joint Conference (IJCAR), Lecture Notes in Computer Science 7364, pages
355–270. Springer Verlag, 2012.

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. Exponential lower bound to the size of bounded
depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms, 7:15–39,
1995.

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and independence results
for bounded arithmetic. Journal of Symbolic Logic, 62:457–486, 1997.

Vol. 17:2 DRAT AND PROPAGATION REDUNDANCY PROOFSWITHOUT NEW VARIABLES 12:31

[KRPH18] Benjamin Kiesl, Adrián Rebola-Pardo, and Marijn J. H. Heule. Extended resolution simulates
DRAT. In Automated Reasoning - 6th International Joint Conference (IJCAR), Lecture Notes
in Computer Science 10900, pages 516–531. Springer Verlag, 2018.

[Kul97] Oliver Kullmann. Worst-case analysis, 3-SAT decision and lower bounds: Approaches for
improved SAT algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 35:261–313, 1997.

[Kul99a] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Computer
Science, 223(1):1–72, 1999.

[Kul99b] Oliver Kullmann. On a generalizaton of extended resolution. Discrete Applied Mathematics,
96-97:149–176, 1999.

[Mar06] Klas Markström. Locality and hard SAT-instances. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 2:221–227, 2006.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Computational Complexity, 3:97–140, 1993.

[PS10] Toniann Pitassi and Rahul Santhanam. Effectively polynomial simulations. In Innovations in
Computer Science (ICS), pages 370–381, 2010.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, 1997.

[Pud00] Pavel Pudlák. Proofs as games. American Mathematical Monthly, 107(6):541–550, 2000.
[Pud03] Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer Science,

205:323–339, 2003.
[Raz94] Alexander A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Electronic

Colloquium in Computational Complexity (ECCC), 1994. Also available as BRIC technical
report RS-94-36.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999.

[RS18] Adrián Rebola-Pardo and Martin Suda. A theory of satisfiability-preserving proofs in SAT solving.
In Proc., 22nd Intl. Conf. on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’22), EPiC Series in Computing 57, pages 583–603. EasyChair, 2018.

[SW83] Jorg Siekmann and Graham Wrightson. Automation of Reasoning, volume 1&2. Springer-Verlag,
Berlin, 1983.

[Sze03] Stefan Szeider. Homomorphisms of conjunctive normal forms. Discrete Applied Mathematics,
130:351–365, 2003.

[Tse68] G. S. Tsejtin. On the complexity of derivation in propositional logic. Studies in Constructive
Mathematics and Mathematical Logic, 2:115–125, 1968. Reprinted in: [SW83, vol 2], pp. 466-483.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34:209–219, 1987.
[Urq11] Alasdair Urquhart. A near-optimal separation of regular and general resolution. SIAM Journal

on Computing, 40(1):107–121, 2011.
[Van08] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th

International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.
http://isaim2008.unl.edu/index.php?page=proceedings.

[WHHJ14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing
- 17th International Conference (SAT), Lecture Notes in Computer Science 8561, pages 422–429.
Springer Verlag, 2014.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Preliminaries
	1.2. Inference rules
	1.3. Proof systems with new variables
	1.4. Proof systems without new variables
	1.5. Two useful lemmas

	2. Relations with extended resolution
	2.1. With new variables
	2.2. Without new variables
	2.3. Canonical NP pairs

	3. Simulations
	3.1. DRAT- simulates DPR-
	3.2. Towards a simulation of PR- by SPR-

	4. Upper bounds for some hard tautologies
	4.1. Pigeonhole principle
	4.2. Bit pigeonhole principle
	4.3. Parity principle
	4.4. Clique-coloring principle
	4.5. Tseitin tautologies
	4.6. Or-ification and xor-ification
	4.7. Lifting

	5. Lower bounds
	6. Open problems
	References

