
Logical Methods in Computer Science
Vol. 5 (4:2) 2009, pp. 1–48
www.lmcs-online.org

Submitted Mar. 3, 2009
Published Dec. 17, 2009

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS ∗

CĂTĂLIN HRIŢCU a AND JAN SCHWINGHAMMER b

a Department of Computer Science, Saarland University, Saarbrücken, Germany
e-mail address: hritcu@cs.uni-sb.de

b Programming Systems Lab, Saarland University, Saarbrücken, Germany
e-mail address: jan@ps.uni-sb.de

Abstract. Step-indexed semantic interpretations of types were proposed as an alternative
to purely syntactic proofs of type safety using subject reduction. The types are interpreted
as sets of values indexed by the number of computation steps for which these values are
guaranteed to behave like proper elements of the type. Building on work by Ahmed, Appel
and others, we introduce a step-indexed semantics for the imperative object calculus of
Abadi and Cardelli. Providing a semantic account of this calculus using more ‘traditional’,
domain-theoretic approaches has proved challenging due to the combination of dynamically
allocated objects, higher-order store, and an expressive type system. Here we show that,
using step-indexing, one can interpret a rich type discipline with object types, subtyping,
recursive and bounded quantified types in the presence of state.

1. Introduction

The imperative object calculus of Abadi and Cardelli is a very small, yet very expressive
object-oriented language [2]. Despite the extreme simplicity of its syntax, the calculus
models many important concepts of object-oriented programming, as well as the often subtle
interaction between them. In particular it raises interesting and non-trivial questions with
respect to typing.

In contrast to the more common class-based object-oriented languages, in the impera-
tive object calculus every object comes equipped with its own set of methods that can be
updated at run-time. As a consequence, the methods need to reside in the store, i.e., the
store is higher-order. Moreover, objects are allocated dynamically and aliasing is possible.
Dynamically-allocated, higher-order store is present in different forms in many practical
programming languages (e.g., pointers to functions in C and general references in SML),
but it considerably complicates the construction of adequate semantic models in which one
can reason about the behaviour of programs (as pointed out for instance by Reus [40]).

Purely syntactic arguments such as subject reduction suffice for proving the soundness
of traditional type systems. However, once such type systems are turned into powerful

1998 ACM Subject Classification: D.3.1, F.3.2.
Key words and phrases: Formal calculi, objects, type systems, programming language semantics.

∗ A preliminary version of this paper was presented at the International Workshop on Foundations of
Object-Oriented Languages (FOOL’08), 13 January 2008, San Francisco, California.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (4:2) 2009

c© C. Hriţcu and J. Schwinghammer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 C. HRIŢCU AND J. SCHWINGHAMMER

specification languages, like the logic of objects of Abadi and Leino [4] or the hybrid type
system of Flanagan et al. [24], purely syntactic arguments seem no longer appropriate. The
meaning of assertions is no longer obvious, since they have to describe the code on the heap.
We believe that specifications of program behaviour should have a meaning independent of
the particular proof system on which syntactic preservation proofs rely, as also argued by
Benton [13] and by Reus and Schwinghammer [41].

In the case of specifications one would ideally prove soundness with respect to a seman-
tic model that makes a clear distinction between semantic validity and derivability using
the syntactic rules. However, building such semantic models is challenging, and there is
currently no fully satisfactory semantic account of the imperative object calculus:

Denotational semantics: Domain-theoretic models have been employed in proving the
soundness of the logic of Abadi and Leino [41, 42]. However, the existing techniques fall
short of providing convincing models of typed objects: Reus and Streicher [42] consider an
untyped semantics, and the model presented by Reus and Schwinghammer [41] handles
neither second-order types, nor subtyping in depth. Due to the dynamically-allocated
higher-order store present in the imperative object calculus, the models rely on techniques
for recursively defined domains in functor categories [31, 36]. This makes them complex,
and establishing properties even for specific programs often requires a substantial effort.

Equational reasoning: Gordon et al. [25] develop reasoning principles for establishing
the contextual equivalence of untyped objects, and apply them to prove correctness of
a compiler optimization. Jeffrey and Rathke [29] consider a concurrent variant of the
calculus and characterize may-testing equivalence in terms of the trace sets generated
by a labeled transition system. In both cases the semantics is limited to equational
reasoning, i.e., establishing contextual equivalences between programs. In theory, this
can be used to verify a program by showing it equivalent to one that is trivially correct
and acts as a specification. However, this can be more cumbersome in practice than using
program logics, the established formalism for specifying and proving the correctness of
programs.

Translations: Abadi et al. [3] give an adequate encoding of the imperative object calcu-
lus into a lambda calculus with records, references, recursive and existential types and
subtyping. Together with an interpretation of this target language, an adequate model
for the imperative object calculus could, in principle, be obtained. However, we are
not aware of any worked-out adequate domain-theoretic models for general references
and impredicative second-order types. Even if such a model was given, it would still be
preferable to have a self-contained semantics for the object calculus, without the added
complexity of the (non-trivial) translation.

A solution to the problem of finding adequate models of objects could be the step-indexed
semantic models of types, introduced by Appel and McAllester [10] as an alternative to
subject reduction proofs. Such models are based directly on the operational semantics, and
are more easy to construct than the existing domain-theoretic models. The types are simply
interpreted as sets of syntactic values indexed by a number of computation steps. Intuitively,
a term belongs to a certain type if it behaves like an element of that type for any number of
steps. Every type is built as a sequence of increasingly accurate semantic approximations,
which allows one to easily deal with recursion. Type safety is an immediate consequence
of this interpretation of types, and the semantic counterparts of the usual typing rules
are proved as independent lemmas, either directly or by induction on the index. Ahmed

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 3

et al. [6, 9] successfully applied this generic technique to a lambda calculus with general
references, impredicative polymorphism and recursive types.

In this paper we further extend the semantics of Ahmed et al. with object types and
subtyping, and we use the resulting interpretation to prove the soundness of an expressive
type system for the imperative object calculus. The main contribution of our work is the
novel semantics of object types. We extend this semantics in two orthogonal ways. First,
we adapt it to self types, i.e., recursive object types that validate the usual subtyping rules
as well as strong typing rules with structural assumptions. Second, we study a natural
generalization of object types that results in simpler and more expressive typing rules.

Even though in this paper we are concerned with the safety of a type system, the
step-indexing technique is not restricted to types, and has already been used for equational
reasoning [5, 7, 10] and for proving the soundness of Hoare-style program logics of low-level
languages [13, 14]. We expect therefore that it will eventually become possible to use a step-
indexed model to prove the soundness of more expressive program logics for the imperative
object calculus.

Outline. The next section introduces the syntax, operational semantics, and type system
that we consider for the imperative object calculus. In Section 3 we present a step-indexed
semantics for this calculus. In particular, we define the interpretations of types and estab-
lish their semantic properties. In Section 4 these properties are used to prove the soundness
of the type system. Section 5 studies self types, while Section 6 discusses a natural gen-
eralization of object types. Section 7 gives a comparison to related work and Section 8
concludes. The Appendix presents the proofs of the most interesting typing and subtyping
lemmas for object types, while an earlier technical report contains additional proofs [28].

2. The Imperative Object Calculus

We recall the syntax of the imperative object calculus with recursive and second-order types,
and introduce a small-step operational semantics for this calculus that is equivalent to the
big-step semantics given by Abadi and Cardelli [2].

2.1. Syntax. Let Var,TVar and Meth be pairwise disjoint, countably infinite sets of vari-

ables, type variables and method names, respectively. Let x, y range over Var, X,Y range
over TVar, and let m range over Meth. Figure 1 defines the syntax of the types and terms
of the imperative object calculus.

Objects are unordered collections of named methods, written as [md=ς(xd:A)bd]d∈D.
In a method m = ς(x:A)b, ς is a binder that binds the ‘self’ argument x in the method
body b. The self argument can be used inside the method body for invoking the methods of
the containing object. Methods with arguments other than self can be obtained by having
a procedure as the method body. The methods of an object can be invoked or updated,
but no new methods can be added, and the existing methods cannot be deleted. The type
of objects with methods named md that return results of type Ad, for d in some set D, is
written as [md :νd

Ad]d∈D, where ν ∈ {◦,+,−} is a variance annotation that indicates if
the method is considered invoke-only (+), update-only (−), or if it may be used without
restriction (◦).

While procedural abstractions are sometimes defined in the imperative object calculus
using an additional let construct, we include them as primitives. We write procedures

4 C. HRIŢCU AND J. SCHWINGHAMMER

A,B,C ::= X | Top | Bot | A → B (type expressions)

| [md :νd
Ad]d∈D | µ(X)A

| ∀(X6A)B | ∃(X6A)B

ν ::= ◦ | + | − (variance annotations)

a, b ::= x (variable)

| [md=ς(xd:A)bd]d∈D (object creation)

| a.m (method invocation)

| a.m := ς(x:A)b (method update)

| clone a (shallow copy)

| λ(x:A)b (procedure)

| a b (application)

| foldA b (recursive folding)

| unfoldA b (recursive unfolding)

| Λ(X6A)b (type abstraction)

| a[A] (type application)

| pack X6A = C in a :B (existential package)

| open a as X6A,x:B in b :C (package opening)

Figure 1: Syntax of types and terms

with type A → B as λ(x:A)b and applications as a b, respectively. We use foldA and
unfoldA to denote the isomorphism between a recursive type µ(X)B and its unfolding
{{X 7→ µ(X)B}}(B). Finally, we consider bounded universal and existential types ∀(X6A)B
and ∃(X6A)B along with their introduction and elimination forms [21].

The set of free variables of a term a is denoted by fv(a), and similarly the free type
variables in a type A by fv(A). We identify types and terms up to the consistent renaming of
bound variables. We use {{t 7→ r}} to denote the singleton map that maps t to r. For a finite
map σ from variables to terms, σ(a) denotes the result of capture-avoiding substitution of
all x ∈ fv(a) ∩ dom(σ) by σ(x). The same notation is used for the substitution of type
variables. Generally, for any function f , the notation f [t := r] denotes the function that
maps t to r, and otherwise agrees with f .

2.2. Operational Semantics. Let Loc be a countably infinite set of heap locations ranged
over by l . We extend the set of terms by run-time representations of objects {md=ld}d∈D,
associating heap locations to a set of method names. Values are given by the grammar:

v ∈ Val ::= {md=ld}d∈D | λ(x:A)b | foldA v | Λ(X6A)b | pack X6A = C in v :B

Apart from run-time objects, values consist of procedures, values of recursive type, type
abstractions and existential packages as in the call-by-value lambda calculus. We often only
consider terms and values without free variables, and denote the set of these closed terms

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 5

E [·] ::= [·] | E .m | E .m := ς(x:A)b | clone E | E b | v E | foldA E | unfoldA E

| E [A] | pack X6A = C in E :B | open E as X6A,x:B in b :C

Figure 2: Evaluation contexts

(Red-Obj) 〈h, [md=ς(xd:A)bd]d∈D〉 → 〈h [ld := λ(xd:A)bd]d∈D , {md=ld}d∈D〉

where ∀d ∈ D. ld /∈ dom(h)

(Red-Inv) 〈h, {md=ld}d∈D .me〉 → 〈h, h(le) {md=ld}d∈D〉, if e∈D

(Red-Upd) 〈h, {md=ld}d∈D .me := ς(x:A)b〉 → 〈h [le := λ(x:A)b], {md=ld}d∈D〉, if e∈D

(Red-Clone) 〈h, clone {md=ld}d∈D〉 → 〈h
[

l′d := h(ld)
]

d∈D
,
{

md=l′d
}

d∈D
〉

where ∀d ∈ D. l′d /∈ dom(h)

(Red-Beta) 〈h, (λ(x:A)b) v〉 → 〈h, {{x 7→ v}}(b)〉

(Red-Unfold) 〈h,unfoldA (foldB v)〉 → 〈h, v〉

(Red-TBeta) 〈h, (Λ(X6A)b)[B]〉 → 〈h, {{X 7→ B}}(b)〉

(Red-Open) 〈h, open v as X6A,x:B in b :C〉 → 〈h, {{x 7→ v′,X 7→ C ′}}(b)〉

where v ≡ pack X ′
6A′ = C ′ in v′ :B′

Figure 3: One-step reduction relation

and closed values by CTerm and CVal, respectively. A program is a closed term that does
not contain any locations, and we denote the set of all programs by Prog. A heap h is a
finite map from Loc to CVal1, and we write Heap for the set of all heaps.

Figure 2 defines the set of evaluation contexts, formalizing a left-to-right, call-by-value
strategy. We write E [a] for the term obtained by plugging a into the hole [·] of E . The
one-step reduction relation → is defined as the least relation on configurations 〈h, a〉 ∈
Heap × CTerm generated by the rules in Figure 3 and closed under the following context
rule:

〈h, a〉 → 〈h ′, a′〉 =⇒ 〈h, E [a]〉 → 〈h ′, E [a′]〉 (Red-Ctx)

The methods are actually stored in the heap as procedures. Object construction al-
locates new heap storage for these procedures and returns a record of references to them
(Red-Obj). Upon method invocation the corresponding stored procedure is retrieved from
the heap and applied to the enclosing object (Red-Inv). The self parameter is thus passed
just like any other procedure argument. Identifying methods and procedures makes the
‘self-application’ semantics of method invocation explicit, while technically it allows us to
use the step-indexed model of Ahmed et al. [6, 9] with only few modifications.

While variables are immutable identifiers, methods can be updated destructively. Such
updates only modify the heap and leave the run-time object unchanged (Red-Upd). Object

1In fact, for the purpose of modelling the imperative object calculus it would suffice to regard procedures
as the only kind of storable value.

6 C. HRIŢCU AND J. SCHWINGHAMMER

Subtyping Γ ⊢ A 6 B

(SubRefl)
Γ ⊢ A

Γ ⊢ A 6 A
(SubTrans)

Γ ⊢ A 6 A′ Γ ⊢ A′
6 B

Γ ⊢ A 6 B

(SubTop)
Γ ⊢ A

Γ ⊢ A 6 Top
(SubBot)

Γ ⊢ A

Γ ⊢ Bot 6 A
(SubVar)

Γ1,X6A,Γ2 ⊢ ⋄

Γ1,X6A,Γ2 ⊢ X 6 A

(SubProc)
Γ ⊢ A′

6 A Γ ⊢ B 6 B′

Γ ⊢ A → B 6 A′ → B′

(SubObj)

E ⊆ D ∀e∈E. (νe ∈ {+, ◦} ⇒ Γ ⊢ Ae 6 Be)
∧ (νe ∈ {−, ◦} ⇒ Γ ⊢ Be 6 Ae)

Γ ⊢ [md :νd
Ad]d∈D 6 [me :νe Be]e∈E

(SubObjVar)
∀d ∈ D. νd = ◦ ∨ νd = ν ′

d

Γ ⊢ [md :νd
Ad]d∈D 6 [md :ν′

d
Ad]d∈D

(SubRec)
Γ ⊢ µ(X)A Γ ⊢ µ(Y)B Γ, Y 6Top,X6Y ⊢ A 6 B

Γ ⊢ µ(X)A 6 µ(Y)B

(SubUniv)
Γ ⊢ A′

6 A Γ,X6A′ ⊢ B 6 B′

Γ ⊢ ∀(X6A)B 6 ∀(X6A′)B′

(SubExist)
Γ ⊢ A 6 A′ Γ,X6A ⊢ B 6 B′

Γ ⊢ ∃(X6A)B 6 ∃(X6A′)B′

Figure 4: Subtyping

cloning generates a shallow copy of an object in the heap (Red-Clone). The last four rules
in Figure 3 are as in the lambda calculus.

For k ∈ N, →k denotes the k-step reduction relation. We write 〈h, a〉9 if the configura-
tion 〈h, a〉 is irreducible (i.e., there exists no configuration 〈h ′, a′〉 such that 〈h, a〉 → 〈h ′, a′〉).

Note that reduction is not deterministic, due to the arbitrarily chosen fresh locations
in (Red-Obj) and (Red-Clone). However, we still have that there is always at most one,
uniquely determined redex. This has the important consequence that the reduction order
is fixed. For example, if there is a reduction sequence beginning with a method invocation
and ending in an irreducible configuration: 〈h1, a.m〉 →k 〈h2, b〉9, then this sequence can
be split into

〈h1, a.m〉 →i 〈h ′
1, a

′.m〉 →k−i 〈h2, b〉

where 〈h1, a〉 →
i 〈h ′

1, a
′〉9 for some i ≥ 0. Similar decompositions into subsequences hold

for reductions starting from the other term forms.
It is easy to see that the operational semantics is independent of the type annotations

inside terms. Also the semantic types that we define in Section 3 will not depend on the
syntactic type expressions in the terms. In order to reduce the notational overhead and to
prevent confusion between the syntax and semantics of types we will omit type annotations

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 7

Subsumption and axioms Γ ⊢ a : A

(Sub)
Γ ⊢ a : A Γ ⊢ A 6 B

Γ ⊢ a : B
(Var)

Γ1, x:A,Γ2 ⊢ ⋄

Γ1, x:A,Γ2 ⊢ x : A

Procedure types

(Lam)
Γ, x:A ⊢ b : B

Γ ⊢ λ(x:A)b : A → B
(App)

Γ ⊢ a : B → A Γ ⊢ b : B

Γ ⊢ a b : A

Object types (where A ≡ [md :νd
Ad]d∈D)

(Obj)
∀d∈D. Γ, xd:A ⊢ bd : Ad

Γ ⊢ [md=ς(xd:A)bd]d∈D : A
(Clone)

Γ ⊢ a : A

Γ ⊢ clone a : A

(Inv)
Γ ⊢ a : A e ∈ D νe ∈ {+, ◦}

Γ ⊢ a.me : Ae

(Upd)
Γ ⊢ a : A e ∈ D Γ, x:A ⊢ b : Ae νe ∈ {−, ◦}

Γ ⊢ a.me := ς(x:A)b : A

Recursive types

(Unfold)
Γ ⊢ a : µ(X)A

Γ ⊢ unfoldµ(X)A a : {{X 7→ µ(X)A}}(A)

(Fold)
Γ ⊢ a : {{X 7→ µ(X)A}}(A)

Γ ⊢ foldµ(X)A a : µ(X)A

Bounded quantified types

(TAbs)
Γ,X6A ⊢ b : B

Γ ⊢ Λ(X6A)b : ∀(X6A)B
(TApp)

Γ ⊢ a : ∀(X6A)B Γ ⊢ A′
6 A

Γ ⊢ a[A′] : {{X 7→ A′}}(B)

(Pack)
Γ ⊢ C 6 A Γ ⊢ {{X 7→ C}}(a) : {{X 7→ C}}(B)

Γ ⊢ (pack X6A = C in a :B) : ∃(X6A)B

(Open)
Γ ⊢ a : ∃(X6A)B Γ ⊢ C Γ,X6A,x:B ⊢ b : C

Γ ⊢ (open a as X6A,x:B in b :C) : C

Figure 5: Typing of terms

when presenting the step-indexed semantics. For example, instead of the type application
a[A] we will merely write a[].

2.3. Type System. The type system we consider features procedure, object, iso-recursive
and (impredicative, bounded) quantified types, as well as subtyping, and corresponds to
FOb<:µ from [2]. It is fairly standard and consists of four inductively defined typing
judgments:

• Γ ⊢ ⋄, describing well-formed typing contexts,
• Γ ⊢ A, defining well-formed types,

8 C. HRIŢCU AND J. SCHWINGHAMMER

• Γ ⊢ A 6 B, for subtyping between well-formed types, and
• Γ ⊢ a : A, for typing terms.

The typing context Γ is a list containing type bindings for the (term) variables x:A and
upper bounds for the type variables X6A. A typing context is well-formed if it does not
contain duplicate bindings for (term or type) variables and all types appearing in it are
well-formed. A type is well-formed with respect to a well-formed context Γ if all its type
variables appear in Γ.

Figure 4 defines the subtyping relation. For the object types it allows subtyping in
width: an object type with more methods is a subtype of an object type with fewer meth-
ods, as long as the types of the common methods agree. For the invoke-only (+) and
update-only methods (−) in object types, covariant respectively contravariant subtyping in
depth is allowed (SubObj). Furthermore, the unrestricted methods (◦) can be regarded, by
subtyping, as either invoke-only or update-only (SubObjVar). Since the annotations can
be conveniently chosen at creation time (Obj) this brings much flexibility. As explained by
Abadi and Cardelli [2], this allows us to distinguish in the type system between the invo-
cations and updates done through the self argument, and the ones done from the outside.
The main idea is to type an object creation with an object type where all methods are
considered invariant, so that all invocations and updates through the self argument (inter-
nal) are allowed, but have to be type preserving. Then rules (Sub) and (SubObjVar) are
applied and some of the methods can become invoke-only, some others update-only. This
enables the subsequent weakening of the types of these methods using (SubObj). In effect,
this allows for safe and flexible subtyping of methods, at the price of restricting update
and invocation of the methods from the outside. Nevertheless, the internal updates and
invocations remain unrestricted.

Figure 5 defines the typing relation. The applicability of the rules for method invocation
(Inv), and for method update (Upd), depends on the variance annotation. Also notice that
only type-preserving updates are allowed in (Upd). Finally, it is important to note that we
do not give types to heap locations, since the type system is only used to check programs, and
programs do not contain locations. In contrast, a proof of type safety using the preservation
and progress properties would require the syntactic judgement to also depend on a heap
typing since partially evaluated terms would also need to be typed.

3. A Step-indexed Semantics of Objects

Modelling higher-order store is necessarily more involved than the treatment of first-
order storage since the semantic domains become mutually recursive. Recall that heaps
store values that may be procedures. These in turn can be modeled as functions that take
a value and the initial heap as input, and return a value and the possibly modified heap
upon termination. This suggests the following semantic domains for values and heaps, re-
spectively:

DVal = (DHeaps × DVal ⇀ DHeaps × DVal) + . . .

DHeaps = Loc ⇀fin DVal

(3.1)

A simple cardinality argument shows that there are no set-theoretic solutions (i.e., where
D ⇀ E denotes the set of all partial functions from D to E) satisfying the equations in (3.1).
A possible solution is to use a domain-theoretic approach, as done for the imperative object
calculus by Reus and Streicher [42], building on earlier work by Kamin and Reddy [30].

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 9

In a model of a typed calculus one also wants to interpret the types. But naively taking
a collection Type of subsets τ ⊆ DVal as interpretations of syntactic types does not work,
since values generally depend on the heap and a typed model should guarantee that all heap
access operations are type-correct. We are led to the following approach: first, in order to
ensure that updates are type-preserving, we also consider heap typings. Heap typings are
partial maps Ψ ∈ HeapTyping = Loc ⇀fin Type that track the set of values that may be
stored in each heap location. Second, the collection of types is refined to take heap typings
into account: a type will now consist of values paired with heap typings that describe the
necessary requirements on heaps. These ideas suggest that we take

Type = P(HeapTyping × DVal)

HeapTyping = Loc ⇀fin Type
(3.2)

Again, a cardinality argument shows the impossibility of defining these sets.
A final obstacle to modelling the object calculus, albeit independent of the higher-order

nature of heaps, is due to dynamic allocation in the heap. This results in heap typings that
may vary in the course of a computation, reflecting the changing ‘shape’ of the heap.
However, as is the case for many high-level languages, the object calculus is well-behaved
in this respect:

• inside the language, there is no possibility of deallocating heap locations; and
• only weak (i.e., type-preserving) updates are allowed.

As a consequence, extensions are the only changes that need to be considered for heap
typings. Intuitively, values that rely on heaps with typing Ψ will also be type-correct for
extended heaps, with an extended heap typing Ψ′ ⊒ Ψ. For this reason, semantic models
of dynamic allocation typically lend themselves to a Kripke-style presentation, where all
semantic entities are indexed by possible worlds drawn from the set of heap typings, partially
(pre-) ordered by heap typing extension [31, 33, 34, 37, 39].

Rather than trying to extend the already complex domain-theoretic models to heap
typings and dynamic allocation, we will use the step-indexing technique. Since this tech-
nique is based directly on the operational semantics, it provides an alternative that has less
mathematical overhead. In particular, there is no need to find semantic domains satisfying
(3.1); we can simply have DVal be the set of closed values and use syntactic procedures in
place of set-theoretic functions. Moreover, it is relatively easy to also model impredicative
second-order types in the step-indexed model of Ahmed et al. [6, 9], which is crucial for the
interpretation of object types we develop below. Although recently there has been progress
in finding domain-theoretic models of languages that combine references and polymorphic
types [15, 16, 17], the constructions are more involved.

The circularity in (3.2) is resolved by considering a stratification based on a notion of
‘k-step execution safety’. The central idea is that a term has type τ with approximation k
if this assumption cannot be proved wrong (in the sense of reaching a stuck state) in any
context by executing fewer than k steps. The key insight for constructing the sets satisfying
(3.2) is that all operations on the heap consume one step. Thus, in order to determine
whether a pair 〈Ψ, v〉, where Ψ is a heap typing and v a value, belongs to a type τ with
approximation k it is sufficient to know the types of the stored values on which v relies (as
recorded by Ψ) only up to level k − 1. The true meaning of types and heap typings is then
obtained by taking the limit over all such approximations.

For instance, if a heap typing Ψ asserts that a Bool-returning procedure is stored at
location l, i.e., Ψ(l) = [m:Bool] → Bool, then it is certainly not safe to assume that the

10 C. HRIŢCU AND J. SCHWINGHAMMER

pair 〈Ψ, λ(y){m=l}.m〉 belongs to the type of Int-returning procedures. However, it is not
possible to contradict this assumption by taking only two reduction steps: the first step is
consumed by the beta reduction, the second one by the method selection {m=l}.m in the
procedure body, which involves a heap access. In this case, there are no steps left to observe
that the result of the computation is a boolean rather than an integer. Consequently, the
value λ(y){m=l}.m is in the type of Int-returning procedures for two computation steps,
even though it does not actually return an integer. One can of course distinguish such ‘false
positives’ by taking more reduction steps.

The preceding considerations are now formalized, building on the model originally de-
veloped by Ahmed et al. for an ML-like language with general references and impredicative
second-order types [6, 9]. Apart from some notational differences, the definitions in Sec-
tion 3.1 are the same as in [6]. Section 3.2 adds subtyping, while Section 3.3 deals with
procedure types, and Section 3.4 revisits reference types. The semantics of object types is
presented in Section 3.5 and constitutes the main contribution of this paper. We further
deviate from [6] by adding bounds to the second-order types in Section 3.6, and by using
iso-recursive instead of equi-recursive types in Section 3.7.

3.1. The Semantic Model. To make the (circular) definition of types and heap typings
from (3.2) work, the step-indexed semantics considers triples with an additional natural
number component, representing the step index, rather than just pairs. First, we induc-
tively define two families (PreTypek)k∈N of pre-types, and (HeapPreTypingk)k∈N of heap

pre-typings, by

τ ∈ PreType0 ⇔ τ = ∅

τ ∈ PreTypek+1 ⇔ τ ∈ P(N × (
⋃

j≤k HeapPreTypingj) × CVal)

∧ ∀〈j,Ψ, v〉 ∈ τ. j ≤ k ∧ Ψ ∈ HeapPreTypingj

where HeapPreTypingk = Loc ⇀fin PreTypek. That is, each τ ∈ PreTypek is a set of
triples 〈j,Ψ, v〉 where the set HeapPreTypingj from which the heap pre-typing Ψ is drawn
depends on the index j < k. Clearly PreTypek ⊆ PreTypek+1 and thus HeapPreTypingk ⊆
HeapPreTypingk+1 for all k. Now it is possible to set

τ ∈ PreType ⇔ τ ∈ P(N × (
⋃

j HeapPreTypingj) × CVal)

∧ ∀〈j,Ψ, v〉 ∈ τ. Ψ ∈ HeapPreTypingj

We call the elements of this set pre-types, rather than types, since there will be a further
condition that proper types must satisfy (this is done in Definition 3.4 below). From now
on, when writing 〈k,Ψ, v〉, we always implicitly assume that Ψ ∈ HeapPreTypingk. By
HeapPreTyping we denote the set Loc ⇀fin PreType of finite maps into pre-types.

Each pre-type τ is a union of sets τk ∈ PreTypek where the index appearing in ele-
ments of τk is bounded by k. This is made explicit by the following notion of semantic
approximation and the stratification invariant below.

Definition 3.1 (Semantic approximation). For any pre-type τ we call ⌊τ⌋k the k-th ap-

proximation of τ and define it as the subset containing all elements of τ that have an index
strictly less than k: ⌊τ⌋k = {〈j,Ψ, v〉 ∈ τ | j < k}. This definition is lifted pointwise to the
(partial) functions in HeapPreTyping: ⌊Ψ⌋k = λl ∈ dom(Ψ). ⌊Ψ(l)⌋k.

Proposition 3.2 (Stratification). For all τ ∈ PreType and k ∈ N, ⌊τ⌋k ∈ PreTypek.

Moreover, τ =
⋃

k ⌊τ⌋k.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 11

So in particular, if 〈k,Ψ, v〉 ∈ τ and l ∈ dom(Ψ) then Ψ(l) ∈ PreTypej for some j ≤ k.
This is captured by the following ‘stratification invariant’, which will be satisfied by all
the constructions on (pre-) types, and which ensures the well-foundedness of the whole
construction:

Stratification invariant. For all pre-types τ , ⌊τ⌋k+1 cannot depend on any
pre-type beyond approximation k.

As indicated above, in order to take dynamic allocation into account we consider a possible
worlds model. Intuitively we think of a pair (k,Ψ) as describing the state of a heap h,
where Ψ lists locations in h that are guaranteed to be allocated, and contains the types of
the stored values up to approximation k. In the course of a computation, there are three
different situations where the heap state changes:

• New objects are allocated on the heap, which is reflected by a heap pre-typing Ψ′ with
additional locations compared to Ψ. This operation does not affect any of the previously
stored objects, so Ψ′ will be an extension of Ψ.

• The program executes for k − j steps, for some j ≤ k, without accessing the heap.
This is reflected by a heap state (j, ⌊Ψ⌋j) that ‘forgets’ that we have a more precise
approximation, and guarantees that the heap is safe only for j execution steps.

• The heap is updated, but in such a way that all typing guarantees of Ψ are preserved.
Thus updates will be reflected by an information forgetting extension, as in the previous
case. However, because of the step taken by the update itself, in this case we necessarily
have that j < k.

The following definition of state extension captures these possible evolutions of a state.

Definition 3.3 (State extension). State extension ⊑ is the relation on N×HeapPreTyping

defined by

(k,Ψ) ⊑ (j,Ψ′) ⇔ j ≤ k ∧ dom(Ψ) ⊆ dom(Ψ′)

∧ ∀l ∈ dom(Ψ).
⌊

Ψ′
⌋

j
(l) = ⌊Ψ⌋j (l)

The step-indexing technique relies on the approximation of the ‘true’ set of values that
constitute a type, by all those values that behave accordingly unless a certain number of
computation steps are taken. Limiting the number of available steps, we will only be able to
make fewer distinctions. Moreover, if for instance a procedure relies on locations in the heap
as described by a state (k,Ψ), we can safely apply the procedure after further allocations.
In fact, if we are only interested in safely executing the procedure for j < k steps, a heap
described by state (j, ⌊Ψ⌋j) will suffice. These conditions are captured precisely by state
extension, so we require our semantic types to be closed under state extension:

Definition 3.4 (Semantic types and heap typings). The set Type of semantic types is the
subset of PreType defined by

τ ∈ Type ⇔ ∀k, j ≥ 0. ∀Ψ,Ψ′. ∀v ∈ CVal.

(k,Ψ) ⊑ (j,Ψ′) ∧ 〈k,Ψ, v〉 ∈ τ ⇒ 〈j,Ψ′, v〉 ∈ τ

We also define the set HeapTyping = Loc ⇀fin Type of heap typings, ranged over by Ψ in
the following, as the subset of heap pre-typings that map to semantic types.

As explained by Ahmed [6], this structure may be viewed as an instance of Kripke
models of intuitionistic logic where states are the possible worlds, state extension is the

12 C. HRIŢCU AND J. SCHWINGHAMMER

reachability relation between worlds, and where closure under state extension corresponds
to Kripke monotonicity.

Next we define when a particular heap h conforms to the requirements expressed by a
heap typing Ψ. This is done with respect to an approximation index.

Definition 3.5 (Well-typed heap). A heap h is well-typed with respect to Ψ with approx-
imation k, written as h :k Ψ, if dom(Ψ) ⊆ dom(h) and

∀j < k. ∀l ∈ dom(Ψ). 〈j, ⌊Ψ⌋j , h(l)〉 ∈ Ψ(l)

Semantic types only contain values, but we also need to associate types with terms that
are not values. We do this in two steps, first for closed terms, then for arbitrary ones. A
closed term has a certain type to approximation k with respect to some heap typing Ψ, if
in all heaps that are well-typed with respect to Ψ the term behaves like an element of the
type for k computation steps. In general, before reducing to a value the term will execute
for j steps, and possibly allocate some new heap locations in doing so. The state describing
the final heap will therefore be an extension of the state describing the initial heap, and it
only needs to be safe for the remaining k − j steps. Similarly, the final value needs to be in
the original type only for another k − j steps. The next definition makes this precise.

Definition 3.6 (Closed term has semantic type). We say that a closed term a has type τ
with respect to the state (k,Ψ), denoted as a :k,Ψ τ , if and only if

∀j < k, h, h ′, b. (h :k Ψ ∧ 〈h, a〉 →j 〈h ′, b〉 ∧ 〈h ′, b〉9)

⇒ ∃Ψ′. (k,Ψ) ⊑ (k − j,Ψ′) ∧ h ′ :k−j Ψ′ ∧ 〈k − j,Ψ′, b〉 ∈ τ

Even though the terms we evaluate are closed, when type-checking their subterms we
also have to reason about open terms. Typing open terms is done with respect to a semantic
type environment Σ that maps variables to semantic types. We reduce typing open terms to
typing their closed instances obtained by substituting all free variables with appropriately
typed, closed values. This is done by a value environment σ (a finite map from variables to
closed values) that agrees with the type environment.

Definition 3.7 (Value environment agrees with type environment). We say that value

environment σ agrees with semantic type environment Σ, with respect to the state (k,Ψ), if
∀x ∈ dom(Σ). σ(x) :k,Ψ Σ(x). We denote this by σ :k,Ψ Σ.

Definition 3.8 (Semantic typing judgement). We say that a term a (possibly with free
variables, but not containing locations), has type τ with respect to a semantic type environ-
ment Σ, written as Σ |= a : τ , if after substituting well-typed values for the free variables
of a, we obtain a closed term that has type τ for any number of computation steps. More
precisely:

Σ |= a : τ ⇔ fv(a) ⊆ dom(Σ) ∧ ∀k ≥ 0. ∀Ψ. ∀σ :k,Ψ Σ. σ(a) :k,Ψ τ

By construction, the semantic typing judgment enforces that all terms that are typable
with respect to it do not produce type errors when evaluated.

Definition 3.9 (Safe for k steps). We call a configuration 〈h, a〉 safe for k steps, if the
term a does not get stuck in less than k steps when evaluated in the heap h, i.e., we define
the set of all such configurations by

Safek = {〈h, a〉 | ∀j < k. ∀h ′, b. 〈h, a〉 →j 〈h ′, b〉 ∧ 〈h ′, b〉9 ⇒ b ∈ Val}

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 13

Definition 3.10 (Safety). We call a configuration safe if it does not get stuck in any number
of steps, and let Safe =

⋂

k∈N
Safek.

Theorem 3.11 (Safety). For all programs a such that ∅ |= a : τ and for all heaps h we

have that 〈h, a〉 ∈ Safe.

Proof. One first easily shows that, if a :k,Ψ τ and h :k Ψ, then 〈h, a〉 ∈ Safek. The theorem
then follows by observing that any h is well-typed with respect to the empty heap typing,
to any approximation k.

This is much more direct than a subject reduction proof [46]. However, unlike with
subject reduction, the validity of the typing rules still needs to be proved with respect to
the semantics. We do this in two steps. In the remainder of this section we introduce
the specific semantic interpretations of types, and prove that they satisfy certain semantic
typing lemmas. These proofs are similar in spirit to proving the ‘fundamental theorem’ of
Kripke logical relations [32]. Then, in Section 4 we prove the soundness of the rules of the
initial type system with respect to these typing lemmas.

Even though the semantic typing lemmas are constructed so that they directly corre-
spond to the rules of the original type system, there is a big difference between the two.
While the semantic typing lemmas allow us to logically derive valid semantic judgments
using other valid judgments as premises, the typing rules are just syntax that is used in the
inductive definitions of the typing and subtyping relations.

3.2. Subtyping. Since types in the step-indexed interpretation are sets (satisfying some
additional constraints), the natural subtyping relation is set inclusion. This subtyping
relation forms a complete lattice on semantic types, where infima and suprema are given
by set-theoretic intersections and unions, respectively. The least element is ⊥ = ∅, while
the greatest is

⊤ = {〈j,Ψ, v〉 | j ∈ N,Ψ ∈ HeapTypingj, v ∈ CVal}.

Obviously ⊥ and ⊤ satisfy both the stratification invariant (i.e., they are pre-types) and
the closure under state extension condition, so they are indeed semantic types.

We can easily show the standard subsumption property

Lemma 3.12 (Subsumption). If Σ |= a : α and α ⊆ β then Σ |= a : β.

While it is very easy to define subtyping in this way, the interaction between subtyping
and the other features of the type system, in particular the object types, is far from trivial.
This point will be discussed further in Section 3.5.

3.3. Procedure Types. Intuitively, a procedure has type α → β for k computation steps
if, when applied to any well-typed argument of type α, it produces a result that has type β for
another k− 1 steps. This is because the procedure application itself takes one computation
step, and the only way to use a procedure is by applying it to some argument.

Additionally, we have to take into account that the procedure can also be applied after
some computation steps that extend the heap. So, for every j < k and for every heap
typing Ψ′ such that (k,Ψ) ⊑ (j,Ψ′), when applying the procedure to a value in type α
for j steps with respect to Ψ′, the result must have type β for j steps with respect to Ψ′.
This computational intuition nicely fits the possible worlds reading of procedure types as
intuitionistic implication.

14 C. HRIŢCU AND J. SCHWINGHAMMER

Σ[x := α] |= b : β =⇒ Σ |= λx. b : α → β (SemLam)

(Σ |= a : β → α ∧ Σ |= b : β =⇒ Σ |= a b : α (SemApp)

α′ ⊆ α ∧ β ⊆ β′ =⇒ α → β ⊆ α′ → β′ (SemSubProc)

Figure 6: Typing lemmas: procedure types

Definition 3.13 (Procedure types). If α and β are semantic types, then α → β consists of
those triples 〈k,Ψ, λx. b〉 such that for all j < k, heap typings Ψ′ and closed values v:

((k,Ψ) ⊑ (j,Ψ′) ∧ 〈j,Ψ′, v〉 ∈ α) ⇒ {{x 7→ v}}(b) :j,Ψ′ β

Proposition 3.14. If α and β are semantic types, then α → β is also a semantic type.

Figure 6 contains the semantic typing lemmas associated with procedure types. The
procedure type constructor is of course contravariant in the argument type and covariant
in the result type.

Lemma 3.15 (Procedure types). The three semantic typing lemmas shown in Figure 6 are

valid implications.

Proof sketch. The validity of (SemApp) and (SemLam) is proved in [6]. Verifying (Sem-
SubProc) is simply a matter of unfolding the definitions.

3.4. Revisiting Reference Types. While our calculus does not have references syntac-
tically, we will use the model of references from [6, 9] in our construction underlying object
types. In order to interpret the variance annotations in object types, we additionally intro-
duce readable reference types and writable reference types, with covariant and contravariant
subtyping, respectively [35, 43].

A heap typing associates with each allocated location the precise type that can be used
when reading from it and writing to it. So all heap locations support both reading and
writing at a certain type, and we do not have read-only or write-only locations. Intuitively,
for the readable reference types and the writable ones the precise type of the locations is
only partially known, so that without additional information only one of the two operations
is safe at a meaningful type.

We first recall the definition of reference types from [6, 9].

Definition 3.16 (Reference types). If τ is a semantic type then

ref◦τ = {〈k,Ψ, l〉 | ⌊Ψ(l)⌋k = ⌊τ⌋k}

According to this definition, a location l has type ref◦τ if the type associated with l
by the heap typing Ψ is approximately τ . Semantic approximation is used to satisfy the
stratification invariant, and is operationally justified by the fact that reading from a location
or writing to it takes one computation step. So, l has type ref◦τ for k steps if all values
that are read from l or written to l have type τ for k − 1 steps.

The readable reference type ref+τ is similar to ref◦τ , but poses less constraints on
the heap typing Ψ: it only requires that Ψ(l) is a subtype of τ , as before up to some
approximation.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 15

α ⊆ β =⇒ ref+α ⊆ ref+β (SemSubCovRef)

β ⊆ α =⇒ ref−α ⊆ ref−β (SemSubConRef)

ref◦α ⊆ refνα, where ν ∈ {◦,+,−} (SemSubVarRef)

Figure 7: Subtyping reference types

Definition 3.17 (Readable reference types). If τ is a semantic type then

ref+τ = {〈k,Ψ, l〉 | ⌊Ψ⌋k (l) ⊆ ⌊τ⌋k}

The value stored at location l also has type τ by subsumption, and therefore can be
read and safely used as a value of type τ . However, the true type of location l is in general
unknown, so writing any value to it could be unsafe (the true type of l might be the empty
type ⊥). Nevertheless, knowing that a location has type ref+τ does not mean that we
cannot write to it: it simply means that we do not know the type of the values that can be
written to it, so in the absence of further information no writing can be guaranteed to be
type safe2.

Dually, the type ref−τ of writable references contains all those locations l whose type
associated by Ψ is a supertype of τ .

Definition 3.18 (Writable reference types). If τ is a semantic type then

ref−τ = {〈k,Ψ, l〉 | ⌊τ⌋k ⊆ ⌊Ψ⌋k (l)}

We can safely write a value of type τ to a location of type ref−τ , since this value also
has the real type of location l by subsumption. However, the real type of such locations
can be arbitrarily general. In particular it can be ⊤, the type of all values. Thus a location
about which we only know that it has type ref−τ can only be read safely at type ⊤.

With these definitions in place, the usual reference type from Definition 3.16 can be
recovered as the intersection of a readable and a writable reference type:

ref◦τ = ref+τ ∩ ref−τ

Hence ref+τ and ref−τ are both supertypes of ref◦τ . It can also be easily shown that the
readable reference type constructor is covariant, the writable reference type constructor is
contravariant (Figure 7), while the usual reference types are obviously invariant. For a
variance annotation ν ∈ {◦,+,−} we use refν to stand for the reference type constructor
with this variance.

Note that, strictly speaking, the set refντ is not a semantic type since for our calculus
locations are not values (although locations appear in object values {md=ld}d∈D; see Sec-
tion 2.2). In fact, the definition of object types (Definition 3.20 in the next section) will not
depend on refντ being a semantic type. However, in order for the object type constructor
to yield semantic types, it is crucial that refντ is closed under state extension.

Proposition 3.19. If τ is a semantic type, then refντ is closed under state extension.

2This is conceptually different from the immutable reference types modeled in [6] using singleton types.

16 C. HRIŢCU AND J. SCHWINGHAMMER

3.5. Object Types. Giving a semantics to object types is much more challenging than for
the other types. The typing rules from Section 2 indicate why this is the case. First, an
adequate interpretation of object types must permit subtyping both in width and in depth,
taking the variance annotations into account. Second, in contrast to all the other types we
consider that have just a single elimination rule, once constructed, objects support three
different operations: invocation, update, and cloning. The definition of object types must
ensure the consistent use of an object through all possible future operations. That is, all
the requirements on which invocation, update or cloning rely must already be established
at object creation time.

Before defining the object types, it is instructive to consider some simpler variants that
do not fulfill all the requirements we have for object types.

Our decision to store methods in the heap as procedures, together with the ‘self-
application’ semantics of method invocation (Red-Inv in Figure 3), suggest that object
types are somewhat similar to recursive types of records of references holding procedures
that take the enclosing record as argument:

[md : τd]d∈D

?
= µ(α).{md : ref◦(α → τd)}d∈D

However, the invariance of the reference type constructor blocks any form of subtyping,
even in width. A look at typing rules for subtyping recursive types, such as Cardelli’s
Amber rule [20] (which appears as rule SubRec in Figure 4), suggests that the position
of the recursion variable should be covariant. For instance, when attempting to establish
the subtyping [m1 : τ1,m2 : τ2] ⊆ [m1 : τ1] by the Amber rule one needs to show that
ref◦(α → τ1) ⊆ ref◦(β → τ1), for any α and β such that α ⊆ β. Clearly this does not
hold. Even in a simpler setting without the reference types (e.g., for the functional object
calculus) the contravariance of the procedure type constructor in its first argument would
cause subtyping to fail.

A combination of type recursion and an existential quantifier that uses the recursion
variable as bound would allow us to enforce covariance for the positions of the recursion
variable, and thus have subtyping in width:

[md : τd]d∈D

?
= µ(α).∃α′⊆α.{md : ref◦(α

′ → τd)}d∈D

Intuitively α′ can be viewed as the ‘true’ (i.e., most precise) type of the object, while α is
a more general type that can be given to it by subtyping. This is essentially the idea of the
encodings of object types explored by Abadi et al. [2, 3].

For subtyping in depth with respect to the variance annotations we simply use the
readable and writable reference types we defined in the previous section:

[md :νd
τd]d∈D

?
= µ(α).∃α′⊆α.{md : refνd

(α′ → τd)}d∈D

Still, by keeping α′ abstract, neither the typing rule for method invocation (Inv in Figure 5),
nor the one for object cloning (Clone) is validated.

By explicitly enforcing in the definition of object types that the object value itself in
fact belongs to this existentially quantified α′, the assumptions become sufficiently strong
to repair the invocation case. This is consistent with seeing α′ as the ‘true’ type of the
object. Semantically, we can express this using an intersection of types:

[md :νd
τd]d∈D

?
= µ(α).∃α′⊆α.({md : refνd

(α′ → τd)}d∈D ∩ α′)

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 17

Forcing not only the current object value to be in α′, but also all the ‘sufficiently similar’
values (maybe not even created yet), covers the case of cloning. The following definition
formalizes this construction.

Definition 3.20 (Object types). Let α = [md :νd
τd]d∈D be defined as the set of all triples

〈k,Ψ, {me=le}e∈E〉 such that D ⊆ E and

∃α′. α′ ∈ Type ∧
⌊

α′
⌋

k
⊆ ⌊α⌋k (Obj-1)

∧ (∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd
(α′ → τd)) (Obj-2)

∧ (∀j < k. ∀Ψ′. ∀
{

me=l′e
}

e∈E
. (Obj-3)

(k,Ψ) ⊑ (j,Ψ′) ∧ (∀e ∈ E.
⌊

Ψ′
⌋

j
(l′e) = ⌊Ψ⌋j (le))

⇒ 〈j,
⌊

Ψ′
⌋

j
,
{

me=l′e
}

e∈E
〉 ∈ α′)

The condition stating that D ⊆ E ensures that all values in an object type provide
at least the required methods listed by this type, but can also provide more. Clearly this
is necessary for subtyping in width. Condition (Obj-1) postulates the existence of a more
specific type α′, the ‘true’ type of the object {me=le}e∈E (up to approximation k), and the
subsequent conditions are all stated in terms of α′ rather than α. Condition (Obj-2) states
the requirements for the methods in terms of the reference type constructors introduced in
Section 3.4. Since the existentially quantified α′ might equal α, one must take care that
(Obj-2) does not introduce a circularity. However, due to the use of approximation in the
definition of the reference type constructors, the condition only depends on ⌊α′⌋k, rather
than α′. This will ensure the well-foundedness of the construction.

As explained above, in order to invoke methods we must know that {me=le}e∈E belongs
to the more specific type α′ for j < k steps (which suffices since application consumes a
step). In the particular case where Ψ′ is Ψ and {me=l′e}e∈E is {me=le}e∈E condition (Obj-
3) states exactly this. We need the more general formulation in order to ensure that the
clones of the considered object also belong to the same type α′. Therefore we enforce that no
matter how an object value {me=l′e}e∈E is constructed, it belongs to type α′ provided that
it satisfies the same typing assumptions as {me=le}e∈E, with respect to a possibly extended
heap typing Ψ′. Allowing for state extension is necessary since cloning itself allocates new
locations not present in the original Ψ, and also because cloning can be performed after
some intermediate computation steps that result in further allocations.

We show that this definition of object types actually makes sense, in that it defines a
semantic type. This is not immediately obvious because of the recursion.

Proposition 3.21. If τd ∈ Type for all d ∈ D, then we also have that [md :νd
τd]d∈D ∈ Type.

Proof sketch. We must show (1) that [md :νd
τd]d∈D is well-defined, i.e., that the recursive

definition is well-founded, and (2) that it is closed under state extension.
To prove the well-definedness one can use general results about recursive types in step-

indexed semantics [10], since the object type constructor is ‘contractive’. Alternatively,
from the observation that τ =

⋃

k ⌊τ⌋k for all types τ , it suffices to directly argue that
Definition 3.20 defines

⌊

[md :νd
τd]d∈D

⌋

k
only in terms of

⌊

[md :νd
τd]d∈D

⌋

j
for j < k. The

closure under state extension follows from the corresponding property of the types α′ → τd

(Proposition 3.14) and of the sets refνd
(α′ → τd) (Proposition 3.19), and from the transitivity

of state extension.

18 C. HRIŢCU AND J. SCHWINGHAMMER

Let α = [md :νd
τd]d∈D.

(∀d ∈ D. Σ[xd := α] |= bd : τd) =⇒ Σ |= [md=ς(xd)bd]d∈D : α (SemObj)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {+, ◦}) =⇒ Σ |= a.me : τe (SemInv)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {−, ◦} (SemUpd)

∧ Σ[x := α] |= b : τe) =⇒ Σ |= a.me := ς(x)b : α

Σ |= a : α =⇒ Σ |= clone a : α (SemClone)

(E ⊆ D ∧ (∀e ∈ E. νe ∈ {+, ◦} ⇒ αe ⊆ βe) (SemSubObj)

∧ (∀e ∈ E. νd ∈ {−, ◦} ⇒ βe ⊆ αe)) =⇒ [md :νd
αd]d∈D ⊆ [me :νe

βe]e∈E

(∀d ∈ D. νd = ◦ ∨ νd = ν′

d) =⇒ [md :νd
αd]d∈D ⊆ [md :ν′

d
αd]d∈D

(SemSubObjVar)

Figure 8: Typing lemmas: object types

Figure 8 presents the semantic typing and subtyping lemmas for object types.

Lemma 3.22 (Object types). All the semantic typing lemmas shown in Figure 8 are valid

implications.

Proof sketch. The semantic typing lemmas are proved independently. We sketch this for
(SemObj). A detailed proof, as well as the proofs of the other typing lemmas are given in
the Appendix.

For α = [md :νd
τd]d∈D and assuming Σ[xd := α] |= bd : τd for all d ∈ D, we must

show that Σ |= [md=ς(xd)bd]d∈D : α. So let k ≥ 0, σ and Ψ be such that σ :k,Ψ Σ. By
Definition 3.8 (Semantic typing judgement) we must prove that σ([md=ς(xd)bd]d∈D) :k,Ψ α,
or equivalently (after suitable α-renaming), that [md=ς(xd)σ(bd)]d∈D :k,Ψ α holds. Now let
h, h′ and b′ be such that h :k Ψ and

〈h, [md=ς(xd)σ(bd)]d∈D〉 →j 〈h′, b′〉

for some j < k, and assume that 〈h′, b′〉 is irreducible. From the operational semantics it is
clear that j = 1, b′ ≡ {md=ld}d∈D and that, for some locations ld /∈ dom(h),

h′ = h [ld := λ(xd)σ(bd)]d∈D

Choosing Ψ′ =
⌊

Ψ [ld := (α → τd)]d∈D

⌋

k−1
it is easily seen that (k,Ψ) ⊑ (k − 1,Ψ′). Fur-

thermore, from the hypothesis by (SemLam) we have that Σ |= λ(xd)bd : α → τd for all
d ∈ D. From this and the assumption that h :k Ψ it follows that h′ :k−1 Ψ′.

By Definition 3.6 it remains to establish that 〈k − 1,Ψ′, {md=ld}d∈D〉 ∈ α. This is
achieved by proving the following more general claim by induction on j0:
Claim 3.23. For all j0 ≥ 0, Ψ∗ and {md=l∗d}d∈D

we have that

(k − 1,Ψ′) ⊑ (j0,Ψ
∗) ∧ (∀d∈D. ⌊Ψ∗⌋j0

(l∗d) =
⌊

Ψ′
⌋

j0
(ld)) ⇒ 〈j0, ⌊Ψ

∗⌋j0
, {md=l∗d}d∈D〉 ∈ α

The key step is in choosing α′ equal to ⌊α⌋j0
, then verifying the three conditions of Defini-

tion 3.20 (Object types), where the inductive hypothesis is used for showing (Obj-3).

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 19

Remark 3.24. In the above proof, establishing 〈k−1,Ψ′, {md=ld}d∈D〉 ∈ α directly does
not seem possible, and the generalization to Claim 3.23 arises naturally from a failed proof
attempt: in order to prove the three conditions of Definition 3.20 a sensible choice for α′ is
α, and for E is D, after which (Obj-1) and (Obj-2) follow easily. But (Obj-3) requires
us to show that 〈j, ⌊Ψ′′⌋j , {md=l′d}d∈D

〉 ∈ α, for any j < k, any l′d, and any extension Ψ′′

of Ψ′ with ⌊Ψ′′⌋j (l′d) = ⌊Ψ′⌋j (ld). This is just what Claim 3.23 states.
The fact that there is an inductive argument hidden in this proof does not come as a

surprise: the induction on the step index j0 resolves the recursion that is inherent to objects
due to the self application semantics of method invocation.

3.6. Bounded Quantified Types. Impredicative quantified types were previously stud-
ied in a step-indexed setting by Ahmed et al. [6, 9] for a lambda-calculus with general
references, and we follow their presentation. However, unlike in the work of Ahmed et al.

our quantifiers have bounds, and we are also studying subtyping. It is important to note
that the impredicative second-order types were the reason why a semantic stratification of
types was needed in the presence of general references [6], as opposed to a syntactic one
based on the nesting of reference types [8]. In the setting we consider in this paper we need
the semantic stratification not only to explicitly accommodate quantified types, but also
because our interpretation of object types uses existential types implicitly.

As in Appel and McAllester’s work [10], a type constructor F (i.e., a function from
semantic types to semantic types) is non-expansive if in order to determine whether a term
has type F (τ) with approximation k, it suffices to know the type τ only to approximation
k. As we will later show (Lemma 3.33), all the type constructors we define in this paper
are non-expansive.

Definition 3.25 (Non-expansiveness). A type constructor F : Type → Type is non-

expansive if for all types τ and for all k ≥ 0 we have that ⌊F (τ)⌋k = ⌊F (⌊τ⌋k)⌋k
.

The definitions of second-order types require that ∀ and ∃ are only applied to non-
expansive type constructors. The non-expansiveness condition ensures that in order to
determine level k of a universal or existential type, quantification over the types in PreTypek

suffices. This helps avoid the circularity that is otherwise introduced by the impredicative

quantification.

Definition 3.26 (Bounded universal types). If F : Type → Type is non-expansive and
α ∈ Type, then we define ∀αF by 〈k,Ψ,Λ. a〉 ∈ ∀αF if and only if

∀j,Ψ′. ∀τ. (k,Ψ) ⊑ (j,Ψ′) ∧ τ ∈ Type ∧ ⌊τ⌋j ⊆ ⌊α⌋j ⇒ ∀i < j. a :i,⌊Ψ′⌋i
F (τ)

Definition 3.27 (Bounded existential types). For all non-expansive F : Type → Type and
α ∈ Type, the set ∃αF is defined by 〈k,Ψ,pack v〉 ∈ ∃αF if and only if

∃τ.τ ∈ Type ∧ ⌊τ⌋k ⊆ ⌊α⌋k ∧ ∀j < k. 〈j, ⌊Ψ⌋j , v〉 ∈ F (τ)

Proposition 3.28. If α ∈ Type and F : Type → Type is non-expansive, then ∀αF and ∃αF
are also types.

Proof sketch. The proofs are minor modifications of those given in [6], to additionally take
the bounds into account.

20 C. HRIŢCU AND J. SCHWINGHAMMER

For all non-expansive F,G : Type → Type,

(∀τ ∈ Type. τ ⊆ α ⇒ Σ |= a : F (τ)) =⇒ Σ |= Λ. a : ∀αF (SemTAbs)

(Σ |= a : ∀αF ∧ τ ∈ Type ∧ τ ⊆ α) =⇒ Σ |= a[] : F (τ) (SemTApp)

(∃τ ∈ Type. τ ⊆ α ∧ Σ |= a : F (τ)) =⇒ Σ |= pack a : ∃αF (SemPack)

(Σ |= a : ∃αF ∧ ∀τ∈Type. (SemOpen)

τ ⊆ α ⇒ Σ[x := F (τ)] |= b : β) =⇒ Σ |= open a as x in b : β

(β ⊆ α ∧ ∀τ ∈ Type. τ ⊆ β ⇒ F (τ) ⊆ G(τ)) =⇒ ∀αF ⊆ ∀βG (SemSubUniv)

(α ⊆ β ∧ ∀τ ∈ Type. τ ⊆ α ⇒ F (τ) ⊆ G(τ)) =⇒ ∃αF ⊆ ∃βG (SemSubExist)

Figure 9: Typing lemmas: bounded quantified types

Lemma 3.29 (Bounded quantified types). All the semantic typing lemmas shown in Fig-

ure 9 are valid implications.

Proof sketch. The first four implications are proved as in [6]; the additional precondition
τ ⊆ α in (SemTApp) and (SemPack) serves to establish the requirements for the bounds.
The two subtyping lemmas (SemSubUniv) and (SemSubExist) are easily proved by just
unfolding the definitions.

3.7. Recursive Types. In contrast to most previous work on step-indexed models, we
consider iso-recursive rather than equi-recursive types, so folds and unfolds are explicit in our
syntax and consume computation steps. Iso-recursive types have been previously considered
by Ahmed for a step-indexed relational model of the lambda calculus [7]. Iso-recursion is
simpler, and sufficient for our purpose. As a consequence, we require type constructors to
be only non-expansive, as opposed to the stronger ‘contractiveness’ requirement [10].

Definition 3.30 (Recursive types). Let F : Type → Type be a non-expansive function. We
define the set µF by

〈k,Ψ, fold v〉 ∈ µF ⇔ ∀j < k. 〈j,Ψ′, v〉 ∈ F (µF)

Proposition 3.31. For all non-expansive F : Type → Type, µF ∈ Type is well-defined.

Proof sketch. The well-definedness follows from the observation that ⌊µF ⌋k is defined only
in terms of ⌊F (µF)⌋j for j < k, which by the non-expansiveness of F means that ⌊µF ⌋k

relies only on ⌊µF ⌋j. The closure under state extension is established by an induction,

proving that for each k ≥ 0, ⌊µF ⌋k ∈ Type.

Figure 10 presents the semantic typing lemmas for recursive types. As a consequence,
we have the expected fixed point property |= a : F (µF) ⇔ |= fold a : µF .

Lemma 3.32 (Recursive types). All the semantic typing lemmas shown in Figure 10 are

valid implications.

Proof sketch. The validity of (SemFold) and (SemUnfold) are easy consequences of Def-
inition 3.30. For (SemSubRec), one shows by induction on k that ⌊µF ⌋k ⊆ ⌊µG⌋k, using
the precondition of the rule and the non-expansiveness of F and G.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 21

For all non-expansive F,G : Type → Type,

Σ |= a : µF =⇒ Σ |= unfolda : F (µF) (SemUnfold)

Σ |= a : F (µF) =⇒ Σ |= fold a : µF (SemFold)

(∀α, β. α ⊆ β ⇒ F (α) ⊆ G(β)) =⇒ µF ⊆ µG (SemSubRec)

Figure 10: Typing lemmas: recursive types

JXKη = η(X)
q
[md :νd

Ad]d∈D

y
η

=
[

md :νd
JAdKη

]

d∈D

JBotKη = ⊥ Jµ(X)AKη = µ(λα∈Type. JAKη[X:=α])

JTopKη = ⊤ J∀(X6A)BKη = ∀JAKη
(λα∈Type. JBKη[X:=α])

JA → BKη = JAKη → JBKη J∃(X6A)BKη = ∃JAKη
(λα∈Type. JBKη[X:=α])

Figure 11: Interpretation of types

Lemma 3.33 (Non-expansiveness). All the considered type constructors are non-expansive.

Proof sketch. It is easily seen that the definition of ⌊α → β⌋k uses only ⌊α⌋j and ⌊β⌋j for

j < k, and therefore that ⌊α → β⌋k = ⌊⌊α⌋k → ⌊β⌋k⌋k
. A similar statement holds for the

k-th approximation of quantified types ∀αF and ∃αF , since their definition only depends
on ⌊α⌋j and ⌊F ⌋j for j < k. In the case of object and recursive types, the properties
⌊

[md :νd
τd]d∈D

⌋

k
=

⌊

[md :νd
⌊τd⌋k]d∈D

⌋

k
and ⌊µF ⌋k = ⌊µ ⌊F ⌋k⌋k

can be established by
induction on k, using the non-expansiveness of F in the latter case.

4. Semantic Soundness

In order to prove that well-typed terms are safe to evaluate we relate the syntactic types
to their semantic counterparts, and then use the fact that the semantic typing judgement
enforces safety by construction (Theorem 3.11). This approach is standard in denotational
semantics. In fact, none of the main statements or proofs in this section mentions step-
indices explicitly.

Definition 4.1 (Interpretation of types and typing contexts). Let η be a total function
from type variables to semantic types.

(1) The interpretation JAKη of a type A is given by the structurally recursive meaning
function defined in Figure 11.

(2) The interpretation of a well-formed typing context Γ with respect to η is given by the
function that maps x to JAKη, for every x:A ∈ Γ.

Note that in Figure 11 the type constructors used on the left-hand sides of the equations
are simply syntax, while those on the right hand-sides refer to the corresponding semantic
constructions, as defined in the previous section.

Recall that non-expansiveness is a necessary precondition for some of the semantic
typing lemmas. In particular, the well-definedness of JAKη depends on non-expansiveness,

22 C. HRIŢCU AND J. SCHWINGHAMMER

due to the use of µ, ∀(·) and ∃(·) in Figure 11. So we begin by showing that the interpretation
of types is a non-expansive map.

Lemma 4.2 (Non-expansiveness). JAKη is non-expansive in η.

Proof sketch. We show that
⌊

JAKη

⌋

k
=

⌊

JAK⌊η⌋k

⌋

k
holds by induction on the structure of

A, relying on Lemma 3.33 for the non-expansiveness of the semantic type constructions.

Definition 4.3 (η |= Γ). Let Γ be a well-formed typing context. We say that η satisfies

Γ, written as η |= Γ, if η(X) ⊆ JAKη holds for all X6A appearing in Γ.

We show the soundness of the subtyping relation.

Lemma 4.4 (Soundness of subtyping). If Γ ⊢ A 6 B and η |= Γ then JAKη ⊆ JBKη.

Proof sketch. By induction on the derivation of Γ ⊢ A 6 B and case analysis on the
last applied rule. Each case is immediately reduced to one of the subtyping lemmas from
Section 3.

Finally, we prove the semantic soundness of the syntactic type system with respect to
the model.

Theorem 4.5 (Semantic soundness). Whenever Γ ⊢ a : A and η |= Γ it follows that

JΓKη |= a : JAKη.

Proof sketch. By induction on the derivation of Γ ⊢ a : A and case analysis on the last rule
applied. Each case is easily reduced to one of the semantic typing lemmas from Section 3,
using a standard type substitution lemma for derivations ending with an application of
(Fold), (Unfold), (TApp), or (Pack).

By Theorems 4.5 (Semantic soundness) and 3.11 (Safety), we have a proof of safety for
the type system from Section 2.3.

Corollary 4.6 (Type safety). Well-typed terms are safe to evaluate.

5. Self Types

Self types have been proposed by Abadi and Cardelli [2] as a means to reconcile recursive
object types with ‘proper’ subtyping. Self types are interesting because they allow us to
type methods that return the possibly modified host object, or a clone of it. For instance,
a type of list nodes, with a filter method that produces the sublist of all elements satisfying
a given predicate, is

ListA = Obj(X)[hd :◦ A, tl :◦ X+Unit, filter :+ (A → Bool) → X, . . .]

Note that the similar recursive type

µ(X)[hd :◦ A, tl :◦ X+Unit,filter :+ (A → Bool) → X, . . .]

does not satisfy the usual subtyping for object types because of the invariance of the hd
and tl fields.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 23

Let α = [md :νd
Fd]d∈D and β = [me :νe Ge]e∈E with E ⊆ D.

(∀d ∈ D. Σ[xd := α] |= bd : Fd(α)) =⇒ Σ |= [md=ς(xd)bd]d∈D : α

(SemObj-Self)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {+, ◦}) =⇒ Σ |= a.me : Fe(α) (SemInv-Self)

(Σ |= a : α ∧ e ∈ D ∧ νe ∈ {−, ◦} (SemUpd-Self)

∧ ∀ξ ⊆ α. Σ[x := ξ] |= b : Fe(ξ)) =⇒ Σ |= a.me := ς(x)b : α

Σ |= a : α =⇒ Σ |= clone a : α (SemClone-Self)

(∀e ∈ E. (νe ∈ {+, ◦} ⇒ ∀ξ ⊆ α. Fe(ξ) ⊆ Ge(ξ)) (SemSubObj-Self)

∧ (νe ∈ {−, ◦} ⇒ ∀ξ ⊆ α. Ge(ξ) ⊆ Fe(ξ))) =⇒ α ⊆ β

(∀d ∈ D. νd = ◦ ∨ νd = ν′

d) =⇒ [md :νd
Fd]d∈D ⊆ [md :ν′

d
Fd]d∈D

(SemSubObjVar-Self)

Figure 12: Typing lemmas: self types

5.1. Semantics of Self Types. Abadi and Cardelli [2, Ch. 15] show how self types can be
understood in terms of recursive and existentially quantified object types via an encoding.
More precisely, the type Obj(X)[md :νd

Bd]d∈D where X may occur positively in Bd, stands
for the recursive type µ(Y)∃(X6Y)[md :νd

Bd]d∈D. The bounded existential quantifier in-
troduced by this encoding gives rise to the desired subtyping in width and depth, despite
the type recursion.

Since our type system features recursive and bounded existential types, self types could
be accommodated via this encoding. However a treatment of self types can be achieved
even more directly, without relying on the encoding. In fact, almost everything is in place
already: recall that the semantics of object types (Definition 3.20) employs recursion and
an existential quantification to refer to the ‘true’ type of an object. Condition Obj-2 in
Definition 3.20 can be changed to take advantage of this type:

Definition 5.1 (Self types). Assume Fd : Type → Type are monotonic and non-expansive
type constructors, for all d ∈ D. Then let α = [md :νd

Fd]d∈D be defined as the set of all
triples 〈k,Ψ, {me=le}e∈E〉 such that D ⊆ E and

∃α′. α′ ∈ Type ∧
⌊

α′
⌋

k
⊆ ⌊α⌋k (Obj-1)

∧ (∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd
(α′ → Fd(α

′))) (Obj-2-self)

∧ (∀j < k. ∀Ψ′. ∀
{

me=l′e
}

e∈E
. (Obj-3)

(k,Ψ) ⊑ (j,Ψ′) ∧ (∀e ∈ E.
⌊

Ψ′
⌋

j
(l′e) = ⌊Ψ⌋j (le))

⇒ 〈j,
⌊

Ψ′
⌋

j
,
{

me=l′e
}

e∈E
〉 ∈ α′)

As in Section 3.5 one shows that Definition 5.1 uniquely determines a type. In this
proof, the non-expansiveness of the type functions Fd is necessary in order to ensure that
⌊

[md :νd
Fd]d∈D

⌋

k
is defined in terms of

⌊

[md :νd
Fd]d∈D

⌋

j
for j < k only. Moreover, the

proofs of the typing lemmas for object types (see Section A.2 in the Appendix) carry over
with minor modifications, to show that the semantic typing lemmas in Figure 12 hold. Most

24 C. HRIŢCU AND J. SCHWINGHAMMER

cases are obtained by replacing the result type τd by Fd(α
′) throughout the proof, for α′

the existentially quantified type from condition (Obj-1) of Definition 5.1. The proof of
(SemInv-Self) uses the monotonicity of Fe, to conclude that the result of the invocation
has type Fe(α) from the fact that it has type Fe(α

′), as given by condition (Obj-2-Self). In
the proofs of (SemUpd-Self) and (SemSubObj-Self), the universally quantified ξ from
the respective assumptions is instantiated by α′. Since (Obj-1) only gives that ⌊α′⌋k ⊆ ⌊α⌋k

but not necessarily α′ ⊆ α, these three proofs also use the non-expansiveness of Fd in an
essential way. Finally, given the non-expansiveness of each Fd, an induction shows that
⌊

[md :νd
Fd]d∈D

⌋

k
=

⌊

[md :νd
⌊Fd⌋k]d∈D

⌋

k
for all k. In other words, [md :νd

Fd]d∈D, viewed
as a type constructor, is non-expansive and Lemma 3.33 still holds.

The interpretation of syntactic type expressions given in Figure 11 extends straightfor-
wardly to self types using the new type constructor:

q
Obj(X)[md :νd

Ad]d∈D

y
η

=
[

md :νd
λ(α∈Type) JAdKη[X:=α]

]

d∈D

With this interpretation and the semantic typing lemmas from Figure 12, the soundness
theorem from Section 4 should extend to a syntactic type system for objects with self types
similar to the one derived by Abadi and Cardelli [2, Ch. 15] for their encoding (but also
including variance annotations and a typing rule for cloning).

5.2. Limitations. Note that with the exception of SemUpd-Self, all the semantic typing
lemmas for self types are stronger than their counterparts from Figure 8. This is already
enough to typecheck many examples involving self types [2, Ch. 15].

However, as for the encoding of Abadi and Cardelli, when updating methods one usually
does not have full information about the precise self type α′ of the host object, which may be
a proper subtype of α. Therefore the statement (SemUpd-Self) about method update in
Figure 12 includes a quantification over all subtypes ξ of the known type α of the object a, to
ensure that the updated method also works correctly for the precise type. As a consequence
the new method body b must be sufficiently parametric in the type of its self parameter x,
which can be overly restrictive. Abadi and Cardelli [2, Ch. 17] demonstrate this limitation
with an example of objects that provide a backup and a retrieve method:

Bk = Obj(X)[retrieve :◦ X, backup :◦ X, . . .]

A sensible definition of the backup method updates the retrieve method so that a subsequent
invocation of retrieve yields a clone of the current object x:

backup(x) = let z = clone x in x.retrieve := ς(y)z

Here, the ‘ let z = a in b ’ stands for the usual syntactic sugar (λ(z)b) a. Let β = JBkKη

denote the interpretation of the syntactic type Bk. While the backup method has the correct
operational behaviour, to typecheck the method update to x in its body using (SemUpd-
Self) we would need the statement Σ [x:=β, z:=β, y:=ξ] |= z : ξ. But this statement does
not hold for an arbitrary subtype ξ ⊆ β. Therefore the semantic typing lemmas stated
above are not strong enough to prove that Σ [x:=β, z:=β] |= x.retrieve := ς(y)z : β, and
thus that Σ [x:=β] |= backup(x) : β holds for the method body. This prevents us from
typing an object that contains this method (e.g., [backup = ς(x)backup(x), . . .]) to type β
using the semantic typing lemmas.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 25

Abadi and Cardelli [2, Ch. 17] address this lack of expressiveness by modifying the
calculus in two respects. First, they introduce a new syntax for method update, a.m :=
(y, z = c)ς(x)b. Operationally this new construct behaves just like

let y = a in let z = c in y.m := ς(x)b (5.1)

but its typing rule is more powerful than the one induced by this encoding. When typing
c and the method body b, y can be assumed to have the precise type of the object:

(Upd-Self)

A ≡ Obj(Y)[md :νd
Ad]d∈D Γ ⊢ a : A e ∈ D νe ∈ {−, ◦}

Γ,X6A, y:X ⊢ c : C Γ,X6A, y:X, z:C, x:X ⊢ b : Ae

Γ ⊢ a.me := (y, z = c)ς(x)b : A

Second, in order to propagate this information, typing rules with ‘structural’ assumptions
are introduced. For instance, the inference rule for object cloning takes the form

(Clone-Str)
A6Obj(Y)[md :νd

Ad]d∈D Γ ⊢ a : A

Γ ⊢ clone a : A

thus applying also in the case where A is a type variable. In this modified system, the body
of the backup method can be rewritten as

backupmod(x) = x.retrieve := (y, z = clone y)ς(x)z (5.2)

and the judgement Γ, x:Bk ⊢ backupmod(x) : Bk is derivable.
Even in the purely syntactic setting, the ad hoc character of the syntax extension is

not entirely satisfactory, but for the step-indexed semantics of types both modifications are
in fact problematic. First, although it seems reasonable to expect that all the semantic
typing lemmas from Section 3 continue to hold, a change of the calculus and its operational
semantics would require us to recheck the proofs about object types in detail. Fortunately,
the syntax extension does not seem necessary from the semantic typing point of view; we
can already prove the semantic soundness of rule (Upd-Self) with respect to the encoding
of the new method update construct from (5.1):
If α = [md :νd

Fd]d∈D, e ∈ D, and νe ∈ {−, ◦} then

Σ |= a : α ∧ ∀ξ ⊆ α. Σ[y := ξ] |= c : γ ∧ ∀ξ ⊆ α. Σ [y := ξ, z := γ, x := ξ] |= b : Fe(ξ)

=⇒ Σ |= let y = a in let z = c in y.m := ς(x)b : α

However, by itself this rule does not help in typing the body of the backup method, and the
introduction of rules with structural assumptions presents a more severe difficulty. Sound-
ness of these rules relies on the fact that every subtype of an object type is another object
type. In other words, in the (Clone-Str) rule the type A is assumed to range only over
object types. Such structural assumptions are usually not valid in semantic models, and
they are certainly not justified with respect to our semantically defined subtype relation,
which is just set inclusion.

5.3. Self Types with Structural Assumptions. To sum up the previous subsection, the
problem is that the semantic typing lemmas from Figure 12 are too weak to type certain
examples such as the body of the backup method, but the usual way to strengthen these rules
in a syntactic setting is not semantically sound in our model. Still, Σ[x := β] |= backup(x) : β
is a valid typing judgement about the method body. This can be seen by taking a closer

26 C. HRIŢCU AND J. SCHWINGHAMMER

Let α = [md :νd
Fd]d∈D.

(∀d∈D. ∀ξ∈Type. ξ ⊳ α ⇒ Σ[xd := ξ] |= bd : Fd(ξ)) =⇒ Σ |= [md=ς(xd)bd]d∈D : α
(SemObj-Str)

(α′
⊳ α ∧ Σ |= a : α′ ∧ e ∈ D ∧ νe ∈ {+, ◦}) =⇒ Σ |= a.me : Fe(α

′) (SemInv-Str)

(α′
⊳ α ∧ Σ |= a : α′ ∧ e ∈ D ∧ νe ∈ {−, ◦} (SemUpd-Str)

∧ Σ[x := α′] |= b : Fe(α
′)) =⇒ Σ |= a.me := ς(x)b : α′

α′
⊳ α ∧ Σ |= a : α′ =⇒ Σ |= clone a : α′ (SemClone-Str)

Σ |= a : α ∧ (∀ξ∈Type. ξ ⊳ α ⇒ Σ[x := ξ] |= b : β) =⇒ Σ |= let x = a in b : β
(SemLet-Str)

Figure 13: Typing lemmas with structural assumptions: self types

look at the semantic definition of the self type β = JBkKη: essentially, if for a suitable

substitution σ :k,Ψ Σ[x := β] the substitution instance

σ(backup(x)) = let z = clone σ(x) in σ(x).retrieve := ς(y)z

becomes irreducible in less than k steps, then σ(x) must be an object value v = {md=ld}d∈D

such that 〈k,Ψ, v〉 ∈ β. Property (Obj-1) of β asserts the existence of a type α′ such that
⌊α′⌋k ⊆ ⌊β⌋k, and property (Obj-3) entails that z becomes bound to a value v′ of this type
α′. Thus by (Obj-2-self) the eventual update of the retrieve field of v is valid, since the
new method λ(y)v′ has the expected type α′ → α′ to sufficient approximation.

Similar ‘manual’ reasoning seems possible in other cases, but a more principled ap-
proach will let us use typing lemmas that are strong enough and avoid explicit reasoning
about the operational semantics and step indices. To facilitate this, we develop a semantic
counterpart to the structural assumptions that appear in the syntactic type system of Abadi
and Cardelli [2, Ch. 17]. More precisely, we introduce a relation α′ ⊳ α between semantic
types that strengthens the subtype relation: intuitively α′ is the precise, recursive type of
some collection of object values from the object type α. The type α acts as an interface
that lists the permitted operations on these object values.

Definition 5.2 (Self type exposure). For α = [md :νd
Fd]d∈D and α′ ∈ Type the relation

α′ ⊳ α holds if and only if α′ ⊆ α and for all E ⊇ D and 〈k,Ψ, {me=le}e∈E〉 ∈ α′,

(∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd
(α′ → Fd(α

′))) (Obj-2-self)

∧ (∀j < k. ∀Ψ′. ∀
{

me=l′e
}

e∈E
. (Obj-3)

(k,Ψ) ⊑ (j,Ψ′) ∧ (∀e ∈ E.
⌊

Ψ′
⌋

j
(l′e) = ⌊Ψ⌋j (le))

⇒ 〈j,
⌊

Ψ′
⌋

j
,
{

me=l′e
}

e∈E
〉 ∈ α′)

Notice that α′ ⊳ α essentially states that α′ is a type that can take the place of the
existentially quantified ‘self type’ in an object type (see Definition 5.1). It is immediate
from this definition that α′ ⊳ α implies α′ ⊆ α. Note however that ⊳ is not reflexive: in
general, α′ is not an object type (e.g., α′ could be empty). Intuitively, the object type α is
obtained as a union of such α′.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 27

Figure 13 lists new typing lemmas for self types that exploit the relation ⊳. Compared
to (SemInv-Self) and (SemClone-Self) from Figure 12, the typing lemmas (SemInv-
Str) and (SemClone-Str) use the additional assumptions α′ ⊳ α and Σ |= a : α′ to
establish a more precise typing for the result. Similarly, while (SemUpd-Self) universally
quantifies over all ξ ⊆ α in its premise, (SemUpd-Str) limits this to those ξ ∈ Type for
which ξ ⊳ α holds. Finally, (SemLet-Str) lets us use an object a within b with the more
precise type ξ where ξ ⊳ α, and similarly (SemObj-Str) lets us type the method bodies
under the more informative assumption that ξ ⊳ α. The latter two are the key lemmas to
introduce an assumption α′ ⊳ α in proofs using these semantic typing lemmas.

As an illustration, consider the example of the backup method again. In order to
construct objects with the backup method, we will establish that

∀ξ∈Type. ξ ⊳ β ⇒ Σ[x := ξ] |= backup(x) : ξ (5.3)

holds, where β = JBkKη and backup(x) abbreviates ‘let z = clone x in x.retrieve := ς(y)z’ as

before. From this, by (SemObj-Str) it will follow that

Σ |= [backup = ς(x)backup(x), retrieve = . . .] : β

If we desugar the let construct in backup(x) and apply lemmas (SemApp) and (SemLam),
we notice that in order to show (5.3) it suffices to prove that Σ[x:=ξ] |= clone x : ξ and
Σ[x:=ξ, z:=ξ] |= x.retrieve := ς(y)z : ξ. Using ξ ⊳ β and Σ[x:=ξ] |= x : ξ, the validity
of the former judgement is immediate by (SemClone-Str). Similarly, the latter follows
by (SemUpd-Str) from the fact that ξ ⊳ β and since the retrieve method is listed with
variance annotation ‘◦’ in β.

Lemma 5.3 (Self types: lemmas with structural assumptions). All the semantic typing

lemmas shown in Figure 13 are valid implications.

Proof sketch. The proofs of (SemInv-Str), (SemClone-Str), and (SemUpd-Str) are
straightforward adaptations of those for (SemInv), (SemClone), and (SemUpd). As an
example, we give the proof of (SemUpd-Str) as Lemma A.10 in the Appendix. More
interestingly, (SemLet-Str) relies on the following property of object types α:

〈k,Ψ, v〉 ∈ α =⇒ ∃α′ ∈ Type. α′
⊳ α ∧ 〈k − 1, ⌊Ψ⌋k−1 , v〉 ∈ α′

In the proof of (SemLet-Str), this α′ is used to instantiate the universally quantified ξ
in the premise ξ ⊳ α ⇒ Σ[x := ξ] |= b : β. The full proof is given as Lemma A.12 in the
Appendix.

The proof of (SemObj-Str) is similar to the one of (SemObj) (Lemma A.4 in the Ap-
pendix), except that we use the heap typing extension Ψ′ =

⌊

Ψ [ld := (β → Fd(β))]d∈D

⌋

k−1
,

where β is a recursive record type satisfying conditions (Obj-2-self) and (Obj-3), but not
validating any subtyping property. In verifying that the extended heap is well-typed with
respect to this Ψ′, one uses that β ⊳ α, in order to instantiate the assumptions on the
method bodies and obtain Σ[xd := β] |= bd : Fd(β). Finally, to show that the generated
object value has type α, Claim 3.23 is strengthened to show that the object value is in fact
in β, which is a subtype of α since β ⊳ α (see Proposition A.14 and Lemma A.15 in the
Appendix for the full proof).

28 C. HRIŢCU AND J. SCHWINGHAMMER

Remark 5.4. The implication Σ |= a : α =⇒ ∃α′ ∈ Type. α′ ⊳ α ∧ Σ |= a : α′

for α = [md :νd
Fd]d∈D may appear reasonable (and would entail both (SemLet-Str) and

(SemObj-Str)), but we do not believe that it holds. The problem is that, while the premise
Σ |= a : α guarantees for each k ≥ 0 the existence of a type α′

k that satisfies the requirement
α′

k ⊳ α, it is in general not possible to construct a type α′ ‘in the limit’ from this sequence.
For the same reason, the implication Σ |= pack a : ∃αF =⇒ ∃α′ ⊆ α.Σ |= a : F (α′) is not
valid. The typing lemma (SemLet-Str) avoids this problem since α′ is only needed up to
a fixed approximation, and so the choice of α′

k for sufficiently large k suffices (cf. proof of
Lemma A.12 in the Appendix). On the other hand, the (SemObj-Str) lemma avoids the
problem by instantiating ξ with a particular type β, for which β ⊳ α is already known.

In this section we showed that our semantics of object types naturally extends to self
types, while avoiding any change to the syntax and operational semantics of the calculus.
We proved a first set of typing lemmas that are natural and apply to many examples
(Figure 12). These lemmas are however not sufficient to typecheck self-returning methods.
To achieve this, we developed a second set of typing lemmas that involve the object’s precise
type, through the relation α′ ⊳ α (Figure 13). Note that these latter lemmas do not fully
subsume the former ones, since the ⊳ relation is not reflexive. We leave open the problem
of relating the lemmas in Figure 13 to a syntactic type system.

6. Generalizing Reference and Object Types

The semantics described in this paper generalizes the reference types from [6, 9] to readable
and writable reference types. This can be generalized even further. We can have a reference
type constructor that takes two types as arguments: one that represents the most general
type that can be used when writing to the reference, and another for the most specific type
that can be read from it [38]. This can be easily expressed using our readable and writable
reference types together with intersection types:

ref(τw, τ r) = ref−τw ∩ ref+τ r

After unfolding the definitions, this yields

ref(τw, τ r) = {〈k,Ψ, l〉 | ⌊τw⌋k ⊆ ⌊Ψ(l)⌋k ⊆ ⌊τ r⌋k}.

As one would expect, this generalized reference type constructor is contravariant in the first
argument and covariant in the second one:

βw ⊆ αw ∧ αr ⊆ βr =⇒ ref(αw, αr) ⊆ ref(βw, βr) (SemSubRef-Gen)

Note that, if one takes these generalized reference types as primitive, then the three reference
types from Section 3.4 are obtained as special cases:

ref◦τ = ref(τ, τ), ref+τ = ref(⊥, τ), ref−τ = ref(τ,⊤),

and the subtyping properties from Figure 7 are still valid.
Figures 14 and 15 give a graphical representation of the different reference type con-

structors. In both figures the horizontal axis represents the type at which a reference can be
read, while the vertical one gives the type at which it can be written. Notice that because
of the different variance the read axis goes from ⊥ to ⊤ while the write axis from ⊤ to ⊥.

Figure 14 represents the usual, as well as the readable, and the writable reference types
as points on the three edges of a triangle. Notice that the usual references can be read
and written at the same type. Without additional information, the readable references

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 29

Figure 14: Readable/writable reference types Figure 15: Generalized reference types

Let α = [md : (τw
d , τ r

d)]
d∈D

and α′ = [md : (τd, τd)]d∈D.

(∀d ∈ D. Σ[xd := α′] |= bd : τd) =⇒ Σ |= [md=ς(xd)bd]d∈D : α′ (SemObj-Gen)

(Σ |= a : α ∧ e ∈ D) =⇒ Σ |= a.me : τr
e (SemInv-Gen)

(Σ |= a : α ∧ e ∈ D ∧ Σ[x := α] |= b : τw
e) =⇒ Σ |= a.me := ς(x)b : α (SemUpd-Gen)

Σ |= a : α =⇒ Σ |= clone a : α (SemClone-Gen)

(E ⊆ D ∧ (∀e ∈ E. βw
e ⊆ αw

e ∧ αr
e ⊆ βr

e)) =⇒ [md : (αw
d , αr

d)]d∈D ⊆ [me : (βw
e , βr

e)]e∈E

(SemSubObj-Gen)

Figure 16: Typing lemmas: generalized object types

can only be written safely at type ⊥, and the writable ones can only be read at type ⊤.
Subtyping is represented by arrows: covariant on the edge of the readable reference types
and contravariant on the writable reference types’ edge. An invariant reference type can
only be subtyped either to a readable or to a writable reference type.

Figure 15 illustrates that our generalization of reference types is indeed very natural.
When generalizing, we take not only the points on the edges of the triangle, but also the
points inside it to be reference types. Furthermore, instead of having three different kinds of
reference types, we only have one. Subtyping is also more natural: the set of all supertypes
of a reference type cover the area of a rectangle which goes from the point corresponding
to this reference type to the ‘top’ reference type ref(⊥,⊤). For instance, the dark gray
rectangle in Figure 15 contains all supertypes of ref(τ, τ).

Applying this idea in the context of the imperative object calculus leads not only to
more expressive subtyping but also to simplifications, since the variance annotations are no
longer needed. The extended object type [md : (τw

d , τ r
d)]

d∈D
has two types for each method

md: τw
d is the most general type that can be used to update the given method, and τ r

d is
the most specific type that can be expected as a result when invoking the method. When
defining the semantics of these generalized object types, the only difference with respect
to Definition 3.20 (Object types) is that condition (Obj-2) is changed to use an extended
reference type:

∀d ∈ D. 〈k,Ψ, ld〉 ∈ ref(α′ → τw
d , α′ → τ r

d). (Obj-2-Gen)

30 C. HRIŢCU AND J. SCHWINGHAMMER

Let A = [md : (Aw
d , Ar

d)]
d∈D

and A′ = [md : (Ad, Ad)]d∈D.

(Obj-Gen)
∀d ∈ D. Γ, xd : A′ ⊢ bd : Ad

Γ ⊢
[

md=ς(xd:A
′)bd

]

d∈D
: A′ (Clone-Gen)

Γ ⊢ a : A

Γ ⊢ clone a : A

(Inv-Gen)
Γ ⊢ a : A e ∈ D

Γ ⊢ a.me : Ar
e

(Upd-Gen)
Γ ⊢ a : A e ∈ D Γ, x : A ⊢ b : Aw

e

Γ ⊢ a.me := ς(x:A)b : A

(SubObj-Gen)
E ⊆ D ∀e ∈ E. Γ ⊢ Bw

e 6 Aw
e ∀e ∈ E. Γ ⊢ Ar

e 6 Br
e

Γ ⊢ [md : (Aw
d , Ar

d)]d∈D 6 [me : (Bw
e , Br

e)]e∈E

Figure 17: The typing rules for generalized object types

Figure 16 presents the semantic typing lemmas that are validated by this definition of
object types, while Figure 17 gives the corresponding syntactic typing rules. Note that the
complex and seemingly ad-hoc rules for subtyping object types given in Figure 4 or in [2]
are replaced by only one rule (SubObj-Gen).

Lemma 6.1 (Generalized object types). All the semantic typing lemmas shown in Figure 16

are valid implications.

Proof sketch. The proof of the subtyping lemma (SemSubObj-Gen) follows easily from the
lemma for subtyping generalized reference types (SemSubRef-Gen above), and is therefore
significantly simpler than when variance annotations are involved (see Lemma A.16 in the
Appendix). For all the other semantic typing lemmas the proofs are basically unchanged
(see Section A.2 in the Appendix).

Note that the generalization of object types presented in this section is orthogonal to
the extension to self types from the previous section. The generalized object types lead to
a type system that is both simpler and more expressive than the usual type systems for
objects [2]. Our generalized object types directly correspond to the split types of Bugliesi
and Pericás-Geertsen [19], who have shown that these types are strictly more expressive
than object types with variance annotations [19, Example 4.3].

7. Comparison to Related Work

7.1. Domain-theoretic Models. Abadi and Cardelli give a semantic model for the func-
tional object calculus in [1, 2]. Their type system is comparable to the one we consider
here. Types are interpreted as certain partial equivalence relations over an untyped domain-
theoretic model of the calculus. No indication is given on how to adapt this to the imperative
execution model.

Based on earlier work by Kamin and Reddy [30], Reus et al. [41, 42, 44] construct
domain-theoretic models for the imperative object calculus, with the goal of proving sound-
ness for the logic of Abadi and Leino [4]. The higher-order store exhibited by the object
calculus requires defining the semantic domains by mixed-variant recursive equations. The
dynamic allocation is then addressed by interpreting specifications of the logic as Kripke
relations, indexed by store specifications, which are similar to the heap typings used here.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 31

Building on work by Levy [31], an ‘intrinsically typed’ model of the imperative object
calculus is presented in the second author’s PhD thesis [44], by solving the domain equations
in a suitable category of functors. However, only first-order types are considered.

Compared to these domain-theoretic models, the step-indexed model we present not
only soundly interprets a richer type language, but is also easier to work with. The way it
is based on the operational semantics eliminates the need for explicit continuity conditions,
and the admissibility conditions are replaced by the closure under state extension, which
is usually very easy to check. All that is needed for the definition of iso-recursive and
second-order types are non-expansiveness and the stratification invariant. What is missing
from our model is a semantic notion of equality that approximates program equivalence.
For reasoning about program equivalence in an ML-like language, Ahmed et al. [5] have
recently developed a relational step-indexed model, and it could be interesting to adapt
their work to an object-oriented setting.

Recently proposed models for polymorphism and general references [15, 16, 17] suggest
that an adequate semantics for imperative objects with expressive typing could in principle
be developed also in a domain-theoretic setting. A detailed comparison between step-
indexed semantics and domain-theoretic models would be useful, to make the similarities
and differences between the two approaches more precise.

It is interesting to see how the object construction rule (Obj) is proved correct in
each of the models described above. In the domain-theoretic self-application models [41,
42], it directly corresponds to a recursive predicate whose well-definedness (i.e., existence
and uniqueness) must be established. This proof exploits properties of the underlying,
recursively defined domain, and imposes some further restrictions on the semantic types:
besides admissibility, types appearing in the defining equation of a recursive predicate need
to satisfy an analogue of the contractiveness property [36]. In the typed functor category
model [44], object construction is interpreted using a recursively defined function, and
correspondingly (Obj) is proved by fixed point induction. In the step-indexed case, the
essence of the proof is a more elementary induction on the step index, with a suitably
generalized induction hypothesis (see Claim 3.23 in the proof sketch of Lemma 3.22 on page
18, or the full proof in the Appendix).

7.2. Interpretations of Object Types. Our main contribution in this paper is the novel
interpretation of object types in the step-indexed model. The step-index-induced stratifica-
tion permits the construction of mixed-variance recursive as well as impredicative, second-
order types. Both are key ingredients in our interpretation of object types. The use of
recursive and existentially quantified types is in line with the type-theoretic work on object
encodings, which however has mainly focused on object calculi with a functional execution
model [18].

Closest to our work is the encoding of imperative objects into an imperative variant
of system F6µ with updatable records, proposed by Abadi et al. [3]. There, objects are
interpreted as records containing references to the procedures that represent the methods.
As in our case, these records have a recursive and existentially quantified record type. The
difference is that two additional record fields are included in order to achieve invocation and
cloning, and uninitialized fields are used to construct this recursive record. Subtyping in
depth is considered in [3] only for the encoding of the functional object calculus. However,
if one added to the target language the readable and writable reference types we use in this

32 C. HRIŢCU AND J. SCHWINGHAMMER

paper, the encoding of the imperative object calculus would extend to subtyping in depth
as well.

In the typing rules for self types, the structural assumptions about the subtype relation
play an important role [2]. In Section 5 we developed a semantic counterpart to such typing
rules with structural assumptions, in order to deal with the polymorphic update of self-
returning methods. This is, however, tailored specifically to object types. Hofmann and
Pierce [26] investigate the metatheory of subtyping with structural assumptions in general,
and give elementary presentations of two encodings of functional objects in a variant of
System F≤ with type destructors. It may be interesting to see if a step-indexed model of
this variant of System F≤ can be found.

7.3. Step-indexed Models. Step-indexed semantic models were introduced by Appel et

al. in the context of foundational proof-carrying code. Their goal was to construct more
elementary and modular proofs of type soundness that can be easily checked automatically.
They were primarily interested in low-level languages, however they also applied their tech-
nique to a pure λ-calculus with recursive types [10]. Later Ahmed et al. successfully
extended it to general references and impredicative polymorphism [6, 9]. The step-indexed
semantic model we present extends the one by Ahmed et al. with object types and subtyp-
ing. In order to achieve this, we refine the reference types from [6] to readable and writable
reference types.

Subtyping in a step-indexed semantic model was previously considered by Swadi who
studied Typed Machine Language [45]. Our setup is however much different. In particular,
the subtle issues concerning the subtyping of object types are original to our work.

The previous work on step-indexing focuses on ‘semantic type systems’, i.e., the seman-
tic typing lemmas can directly be used for type-checking programs [9, 10, 12]. However,
when one considers more complex type systems with subtyping, recursive types or poly-
morphism, the semantic typing lemmas no longer directly correspond to the usual syntactic
rules. These discrepancies can be fixed, but usually at the cost of more complex models, like
the one developed by Swadi to track type variables [12, 45]. In Swadi’s model an additional
‘semantic kind system’ is used to track the contractiveness and non-expansiveness of types
with free type variables. We avoid having a more complex model (e.g., one that tracks type
variables) by considering iso-recursive rather than equi-recursive types. An equi-recursive
type is well-defined if its argument is contractive, and some of the type constructors are not
contractive in general (e.g., the identity as well as the equi-recursive type constructor it-
self). On the other hand, an iso-recursive type is well-defined under the weaker assumption
that the argument is non-expansive, and all our type constructors are indeed non-expansive
(see Lemma 3.33). It is then relatively straightforward to use the semantic typing lemmas
in order to prove the soundness of the standard, syntactic type system we consider (see
Theorem 4.5).

7.4. Type Safety Proofs. Abadi and Cardelli use subject reduction to prove the safety
of several type systems very similar to the one considered in this paper [2]. Those purely
syntactic proofs are very different from the ‘semantic’ type safety proof we present (for
detailed discussions about the differences see [10, 46]). Since type safety is built into the
model, our safety proof neither relies on a preservation property, nor can preservation be
concluded from it.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 33

Constructing a step-indexed semantics is more challenging than proving progress and
preservation. However, for our particular semantics we could reuse the model by Ahmed
et al. and extend it to suit our needs, even though the calculus we are considering is
quite different. So one would expect that once enough general models are constructed
(e.g., [6, 10, 11]), it will become easier to build new models just by mixing and matching.
Assuming the existence of an adequate step-indexed model, the effort needed to prove
the semantic typing lemmas using ‘pencil-and-paper’ is somewhat comparable to the one
required for a subject reduction proof. Since each of the semantic typing lemmas is proved in
isolation, the resulting type soundness proof is more modular; the extensions we consider in
Sections 5 and 6 illustrate this aspect rather well. According to Appel’s original motivation,
the advantages of step-indexing should become even more apparent when formalizing the
proofs in a proof assistant [10].

7.5. Generalized Reference and Object Types. The readable and the writable refer-
ence types we define in Section 3.4 and use for modeling object types in Section 3.5 are
similar to the reference types in the Forsythe programming language [43] and to the channel
types of [22, 35]. The generalization to a reference type constructor taking two arguments
described in Section 6 is quite natural, and also appeared in Pottier’s thesis [38], where
it facilitated type inference by allowing meets and joins to distribute over reference types.
This idea has recently been applied by Craciun et al. for inferring variant parametric types
in Java [23].

The generalized object types we introduce in Section 6 directly correspond to the split

types of Bugliesi and Pericás-Geertsen [19]. Split types are also motivated by type in-
ference, since they guarantee the existence of more precise upper and lower bounds. In
particular, Bugliesi and Pericás-Geertsen show that split types are strictly more expressive
than first-order object types with variance annotations [19, Example 4.3]. They establish
the soundness of a type system with split types by subject reduction, with respect to a
functional semantics of the object calculus.

7.6. Functional Object Calculus. Our initial experiments on the current topic were done
in the context of the functional object calculus [27]. Even though in the functional setting
the semantic model is much simpler, both models satisfy the same semantic typing lemmas.
Even more, the syntactic type system we considered for the functional calculus is exactly the
same as the one in this paper, so all the results in Section 4 directly apply to the functional
object calculus: well-typed terms do not get stuck, no matter whether they are evaluated in
a functional or an imperative way. It would not be possible to directly prove such a result
using subject reduction, since for subject reduction the syntactic typing judgment for the
imperative calculus would also depend on a heap typing, and thus be different from the
judgment for the functional calculus. However, since we are not using subject reduction,
we do not need to type-check partially evaluated terms that contain heap locations.

8. Conclusion

We have presented a step-indexed semantics for Abadi and Cardelli’s imperative object
calculus, and used it to prove the safety of a type system with object types, recursive and
second-order types, as well as subtyping. We showed how this semantics can be extended
to self types and typing lemmas with structural assumptions; and generalized in a way that

34 C. HRIŢCU AND J. SCHWINGHAMMER

eliminates the need for variance annotations and at the same time simplifies the subtyping
rules for objects.

The step-indexing technique is however not limited to type safety proofs, and has al-
ready been employed for more general reasoning about programs. Based on previous work
by Appel and McAllester [10], Ahmed built a step-indexed partial equivalence relation model
for the lambda calculus with recursive and impredicative quantified types, and showed that
her relational interpretation of types is sound for proving contextual equivalences [7]. Re-
cently, this was extended significantly to reason about program equivalence in the presence
of general references [5]. Benton also used step-indexing as a technical device, together with
a notion of orthogonality relating expressions to contexts, to show the soundness of a com-
positional program logic for a simple stack-based abstract machine [13]. He also employed
step-indexing in a Floyd-Hoare-style framework based on relational parametricity for the
specification and verification of machine code programs [14].

We hope that our work paves the way for similarly compelling, semantic investigations
of program logics for the imperative object calculus: using a step-indexed model it should
be possible to prove the soundness of more expressive program logics for this calculus.

Acknowledgements

We express our gratitude to the anonymous reviewers for their detailed and constructive
comments on the preliminary versions of this article. We also thank Andreas Rossberg for
pointing us to the work of John C. Reynolds on Forsythe. Cătălin Hriţcu is supported by a
fellowship from Microsoft Research and the International Max Planck Research School for
Computer Science.

References

[1] Mart́ın Abadi and Luca Cardelli. A semantics of object types. In Proceedings Ninth Annual IEEE
Symposium on Logic in Computer Science, LICS’94, pages 332–341. IEEE Computer Society Press,
1994.

[2] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
[3] Mart́ın Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpretation of objects and object types.

In Proceedings 23rd Symposium on Principles of Programming Languages, POPL’96, pages 396–409.
ACM Press, 1996.

[4] Mart́ın Abadi and K. Rustan M. Leino. A logic of object-oriented programs. In Nachum Dershowitz,
editor, Verification: Theory and Practice. Essays Dedicated to Zohar Manna on the Occasion of his
64th Birthday, Lecture Notes in Computer Science, pages 11–41. Springer, 2004.

[5] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation independence. In
Zhong Shao and Benjamin C. Pierce, editors, Proceedings 36th Symposium on Principles of Programming
Languages, POPL’09, pages 340–353, 2009.

[6] Amal J. Ahmed. Semantics of types for mutable state. PhD thesis, Princeton University, 2004.
[7] Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In Peter

Sestoft, editor, Proceedings 15th European Symposium on Programming, ESOP’06, volume 3924 of
Lecture Notes in Computer Science, pages 69–83. Springer, 2006.

[8] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of general references
embeddable in higher-order logic. In Proceedings 17th Annual IEEE Symposium Logic in Computer
Science, LICS’02, pages 75–86. IEEE Computer Society Press, 2002.

[9] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. An indexed model of impredicative polymor-
phism and mutable references. Princeton University, January 2003.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 35

[10] Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-
carrying code. ACM Transactions on Programming Languages and Systems, 23(5):657–683, September
2001.

[11] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A very modal
model of a modern, major, general type system. In Proceedings 34th Symposium on Principles of Pro-
gramming Languages, POPL’07, pages 109–122, 2007.

[12] Andrew W. Appel, Christopher Richards, and Kedar Swadi. A kind system for typed machine language.
Technical report, Princeton University, September 2002.

[13] Nick Benton. A typed, compositional logic for a stack-based abstract machine. In Zoltán Ésik, editor,
Proceedings Asian Symposium on Programming Languages and Systems, APLAS’05, volume 3780 of
Lecture Notes in Computer Science, pages 182–196. Springer, 2005.

[14] Nick Benton. Abstracting allocation: the new new thing. In Zoltán Ésik, editor, Proceedings Computer
Science Logic, CSL’06, volume 4207 of Lecture Notes in Computer Science, pages 364–380. Springer,
2006.

[15] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realizability semantics of parametric poly-
morphism, general references, and recursive types. In Proceedings Foundations of Software Science and
Computation Structures, FOSSACS’09, volume 5504 of Lecture Notes in Computer Science, pages 456–
470. Springer, 2009.

[16] Nina Bohr. Advances in Reasoning Principles for Contextual Equivalence and Termination. PhD thesis,
IT University of Copenhagen, 2007.

[17] Nina Bohr and Lars Birkedal. Relational reasoning for recursive types and references. In Naoki
Kobayashi, editor, Proceedings Asian Symposium on Programming Languages, APLAS’06, volume 4279
of Lecture Notes in Computer Science, pages 79–96. Springer, 2006.

[18] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. Information and
Computation, 155(1/2):108–133, November 1999.

[19] Michele Bugliesi and Santiago M. Pericás-Geertsen. Type inference for variant object types. Information
and Computation, 177(1):2–27, 2002.

[20] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors, Com-
binators and Functional Programming Languages, volume 242 of Lecture Notes in Computer Science,
pages 21–47. Springer, 1985.

[21] Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science and Engineering Hand-
book, chapter 103, pages 2208–2236. CRC Press, 1997.

[22] Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping for the π-calculus.
Theoretical Computer Science, 398(1-3):217–242, 2008. Essays in honour of Mario Coppo, Mariangiola
Dezani-Ciancaglini and Simona Ronchi della Rocca.

[23] Florin Craciun, Wei-Ngan Chin, Guanhua He, and Shengchao Qin. An interval-based inference of variant
parametric types. In Giuseppe Castagna, editor, Proceedings 18th European Symposium on Program-
ming, ESOP ’09, volume 5502 of Lecture Notes in Computer Science, pages 112–127. Springer, 2009.

[24] Cormac Flanagan, Stephen Freund, and Aaron Tomb. Hybrid types, invariants, and refinements for
imperative objects. In Workshop on Foundations and Developments of Object-Oriented Languages,
FOOL/WOOD’06, 2006.

[25] Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen. Compilation and equivalence of imperative
objects. In S. Ramesh and G. Sivakumar, editors, Proceedings 17th Conference on Foundations of
Software Technology and Theoretical Computer Science, FST+TCS’97, volume 1346 of Lecture Notes
in Computer Science, pages 74–87. Springer, 1997.

[26] Martin Hofmann and Benjamin C. Pierce. Type destructors. Information and Computation, 172(1):29–
62, 2002.

[27] Cătălin Hriţcu. A step-indexed semantic model of types for the functional object calculus. Master’s
thesis, Programming Systems Lab, Saarland University, May 2007.

[28] Cătălin Hriţcu and Jan Schwinghammer. A step-indexed semantics of imperative objects. Extended
version, Programming Systems Lab, Saarland University, February 2008.

[29] Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for concurrent objects. Theo-
retical Computer Science, 338(1-3):17–63, 2005.

36 C. HRIŢCU AND J. SCHWINGHAMMER

[30] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-oriented languages. In Carl A.
Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, pages 464–495. MIT Press, 1994.

[31] Paul Blain Levy. Possible world semantics for general storage in call-by-value. In Julian Bradfield, editor,
Proceedings Computer Science Logic, CSL’02, volume 2471 of Lecture Notes in Computer Science, pages
232–246. Springer, 2002.

[32] John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calculus. Annals of Pure
and Applied Logic, 51(1–2):99–124, 1991.

[33] Eugenio Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1990.

[34] Frank J. Oles. Type algebras, functor categories, and block structure. In Maurice Nivat and John C.
Reynolds, editors, Algebraic Methods in Semantics. Cambrige University Press, 1985.

[35] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science, 6(5), 1996.

[36] Andrew M. Pitts. Relational properties of domains. Information and Computation, 127:66–90, 1996.
[37] Andrew M. Pitts and Ian D. B. Stark. Operational reasoning for functions with local state. In Andrew D.

Gordon and Andrew M. Pitts, editors, Higher-Order Operational Techniques in Semantics, Publications
of the Newton Institute, pages 227–273. Cambridge University Press, 1998.

[38] François Pottier. Type inference in the presence of subtyping: from theory to practice. Research Report
3483, INRIA, September 1998.

[39] Uday S. Reddy and Hongseok Yang. Correctness of data representations involving heap data structures.
Science of Computer Programming, 50(1–3):129–160, March 2004.

[40] Bernhard Reus. Modular semantics and logics of classes. In Matthias Baatz and Johann A. Makowsky,
editors, Proceedings Computer Science Logic, CSL’03, volume 2803 of Lecture Notes in Computer Sci-
ence, pages 456–469. Springer, 2003.

[41] Bernhard Reus and Jan Schwinghammer. Denotational semantics for a program logic of objects. Math-
ematical Structures in Computer Science, 16(2):313–358, April 2006.

[42] Bernhard Reus and Thomas Streicher. Semantics and logic of object calculi. Theoretical Computer
Science, 316:191–213, 2004.

[43] John C. Reynolds. Design of the programming language Forsythe. Technical Report CMU-CS-96-146,
Carnegie Mellon University, June 1996. Reprinted in O’Hearn and Tennent, ALGOL-like Languages,
vol. 1, pages 173-233, Birkhäuser, 1997.

[44] Jan Schwinghammer. Reasoning about Denotations of Recursive Objects. PhD thesis, Department of
Informatics, University of Sussex, 2006.

[45] Kedar N. Swadi. Typed Machine Language. PhD thesis, Princeton University, July 2003.
[46] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, 1994.

Appendix A.

A.1. Auxiliary Propositions.

Proposition A.1 (Preorder). The state extension relation, ⊑, is reflexive and transitive.

Proposition A.2 (Information-forgetting extension). If j ≤ k then (k,Ψ) ⊑ (j, ⌊Ψ⌋j).

Proposition A.3 (Relation between 〈k,Ψ, v〉 ∈ τ and v :k,Ψ τ). Let v be a closed value.

(1) If 〈k,Ψ, v〉 ∈ τ then v :k,Ψ τ .

(2) If v :k,Ψ τ , k > 0, and there exists some h such that h :k Ψ, then 〈k,Ψ, v〉 ∈ τ .

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 37

A.2. Typing Lemmas for Object Types.

Lemma A.4 (SemObj: Object construction). For all object types α = [md :νd
τd]d∈D, if

for all d ∈ D we have Σ[xd := α] |= bd : τd, then Σ |= [md=ς(xd)bd]d∈D : α.

Proof. Let α = [md :νd
τd]d∈D and assume that ∀d ∈ D. Σ[xd := α] |= bd : τd. We must

show that Σ |= [md=ς(xd)bd]d∈D : α. Thus, let k ≥ 0, σ be a value environment and Ψ be
a heap typing such that σ :k,Ψ Σ. By the definition of the semantic typing judgement (Def-
inition 3.8) we need to show that σ([md=ς(xd)bd]d∈D) :k,Ψ α. Equivalently (after suitable
α-renaming), we show that

[md=ς(xd)σ(bd)]d∈D :k,Ψ α

Suppose j < k, h, h′ and b′ are such that the following three conditions are fulfilled:

h :k Ψ ∧ 〈h, [md=ς(xd)σ(bd)]d∈D〉 →j 〈h′, b′〉 ∧ 〈h′, b′〉9 (A.1)

By the operational semantics Red-Obj is the only rule that applies, which means that
necessarily j = 1 and for some distinct ld 6∈ dom(h) we have b′ = {md=ld}d∈D and

h′ = h [ld := λ(xd)σ(bd)]d∈D (A.2)

We choose
Ψ′ =

⌊

Ψ [ld := (α → τd)]d∈D

⌋

k−1
(A.3)

and show that

(k,Ψ) ⊑ (k − 1,Ψ′) ∧ h′ :k−1 Ψ′ ∧ 〈k − 1,Ψ′, b′〉 ∈ α (A.4)

That the first conjunct of (A.4) holds is immediate from the construction of Ψ′ (A.3).
In order to show the second conjunct, by Definition 3.5 (Well-typed heap) we first need

to show that dom(Ψ′) ⊆ dom(h′). From the first conjunct of (A.1) and Definition 3.5 it
is clear that dom(Ψ) ⊆ dom(h). Thus from the shape of h′ (A.2) and the definition of Ψ′

(A.3) we obtain the required inclusion.
Next, let i < k − 1 and l ∈ dom(Ψ′). To establish h′ :k−1 Ψ′ in (A.4) we now need to

show that 〈i, ⌊Ψ′⌋i , h
′(l)〉 ∈ Ψ′(l). We distinguish two cases:

• Case l = ld for some d ∈ D. From (A.2) and (A.3) respectively we get that

h′(l) = λ(xd)σ(bd) ∧ Ψ′(l) = ⌊α → τd⌋k−1

Thus we need to show that

〈i,
⌊

Ψ′
⌋

i
, λ(xd)σ(bd)〉 ∈ ⌊α → τd⌋k−1 (A.5)

By SemLam in Figure 6 (Lemma 3.15) and the assumption Σ[xd := α] |= bd : τd we
already know that Σ |= λ(xd)bd : α → τd for all d ∈ D. From this and σ :k,Ψ Σ by
Definition 3.8 (Semantic typing judgement) we obtain

∀d ∈ D. λ(xd)σ(bd) :k,Ψ α → τd (A.6)

Since k > 1 and from (A.1) h :k Ψ, Proposition A.3 shows that (A.6) implies

∀d ∈ D. 〈k,Ψ, λ(xd)σ(bd)〉 ∈ α → τd (A.7)

By Proposition A.2 we get that (k − 1,Ψ′) ⊑ (i, ⌊Ψ′⌋i), which together with the first
conjunct of (A.4) and the transitivity of ⊑ yields (k,Ψ) ⊑ (i, ⌊Ψ′⌋i). Since each α → τd

is closed under state extension, the latter property and (A.7) imply the required (A.5).

38 C. HRIŢCU AND J. SCHWINGHAMMER

• Case l ∈ dom(Ψ). From (A.2) and (A.3) respectively we get that h′(l) = h(l) and
Ψ′(l) = ⌊Ψ(l)⌋k−1, so we actually need to show that 〈i, ⌊Ψ′⌋i , h(l)〉 ∈ ⌊Ψ(l)⌋k−1. From
h :k Ψ (A.1) by Definition 3.5 we get that 〈k−1, ⌊Ψ⌋k−1 , h(l)〉 ∈ Ψ(l). Since Ψ(l) is closed
under state extension and (k − 1, ⌊Ψ⌋k−1) ⊑ (i, ⌊Ψ′⌋i), we obtain 〈i, ⌊Ψ′⌋i , h(l)〉 ∈ Ψ(l).

Finally, we need to show the third conjunct of (A.4), i.e., 〈k − 1,Ψ′, {md=ld}d∈D〉 ∈ α.
To this end, we prove the following more general claim:
Claim: For all j0 ≥ 0, for all Ψ0 and for all {md=l ′d}d∈D

(k − 1,Ψ′) ⊑ (j0,Ψ0) ∧ (∀d ∈ D. ⌊Ψ0⌋j0
(l ′d) =

⌊

Ψ′
⌋

j0
(ld))

⇒ 〈j0, ⌊Ψ0⌋j0
,
{

md=l ′d
}

d∈D
〉 ∈ α (A.8)

From this and ⌊Ψ′⌋k−1 = Ψ′, (A.4) follows by taking j0 = k − 1, Ψ0 = Ψ′, and l ′d = ld for
all d ∈ D, and by observing that ⊑ is reflexive (Proposition A.1).

The claim is proved by complete induction on j0. So assume j0 ≥ 0 and Ψ0 are such
that

(k − 1,Ψ′) ⊑ (j0,Ψ0) (A.9)

Moreover, for all d ∈ D let l ′d ∈ dom(Ψ0) such that

∀d ∈ D. ⌊Ψ0⌋j0
(l ′d) =

⌊

Ψ′
⌋

j0
(ld) (A.10)

We show that 〈j0, ⌊Ψ0⌋j0
, {md=l ′d}d∈D

〉 ∈ α, by checking that all the conditions obtained

by unfolding the definition of α = [md :νd
τd]d∈D hold. Choosing α′ = ⌊α⌋j0

yields (Obj-1):

∃α′.α′ ∈ Type ∧
⌊

α′
⌋

j0
⊆ ⌊α⌋j0

(A.11)

Next, by the construction of Ψ′ in (A.3), together with (A.9), (A.10), and the non-
expansiveness of procedure types, it follows that for all d ∈ D

⌊Ψ0⌋j0
(l′d) =

⌊

Ψ′
⌋

j0
(ld) = ⌊α → τd⌋j0

=
⌊

⌊α⌋j0
→ τd

⌋

j0
=

⌊

α′ → τd

⌋

j0
(A.12)

By the definition of reference types (Definition 3.16) this implies that

∀d ∈ D. 〈j0, ⌊Ψ0⌋j0
, l′d〉 ∈ ref◦(α

′ → τd) (A.13)

By the lemma for subtyping variance annotations (SemSubVarRef in Figure 7) we then
obtain property (Obj-2):

∀d ∈ D. 〈j0, ⌊Ψ0⌋j0
, l′d〉 ∈ refνd

(α′ → τd) (A.14)

Finally, we must prove (Obj-3), i.e., that for all j < j0, Ψ1 and {md=l ′′d }d∈D

(j0,Ψ0) ⊑ (j,Ψ1) ∧ (∀d ∈ D. ⌊Ψ1⌋j (l ′′d) = ⌊Ψ0⌋j (l ′d))

⇒ 〈j, ⌊Ψ1⌋j ,
{

md=l ′′d
}

d∈D
〉 ∈ α (A.15)

Note that this last condition holds trivially in the base case of the induction, when j0 = 0.
So assume j < j0 and Ψ1 and l ′′d are such that (j0,Ψ0) ⊑ (j,Ψ1) and ⌊Ψ1⌋j (l ′′d) = ⌊Ψ0⌋j (l ′d)

for all d ∈ D. Now j < j0 and assumption (A.10) yield that for all d ∈ D

⌊Ψ1⌋j (l ′′d) = ⌊Ψ0⌋j (l ′d) =
⌊

⌊Ψ0⌋j0
(l ′d)

⌋

j
=

⌊

⌊

Ψ′
⌋

j0
(ld)

⌋

j
=

⌊

Ψ′
⌋

j
(ld)

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 39

Moreover, from (k − 1,Ψ′) ⊑ (j0,Ψ0) (A.9) and (j0,Ψ0) ⊑ (j,Ψ1), by the transitivity of ⊑
we have that (k − 1,Ψ′) ⊑ (j,Ψ1). Since j < j0, the induction hypothesis of the claim gives

〈j, ⌊Ψ1⌋j ,
{

md=l ′′d
}

d∈D
〉 ∈ α

and we have established (A.15).
By Definition 3.20 applied to the object type α = [md :νd

τd]d∈D the properties D ⊆ D,
(A.11), (A.14), and (A.15) establish that indeed 〈j0, ⌊Ψ0⌋j0

, {md=l ′d}d∈D
〉 ∈ α. This finishes

the inductive proof of claim (A.8), and the proof of the lemma.

Lemma A.5 (SemInv: Method invocation). For all object types α = [md :νd
τd]d∈D and

for all e ∈ D, if Σ |= a : α and νe ∈ {+, ◦}, then Σ |= a.me : τe.

Proof. Let α = [md :νd
τd]d∈D. We assume that e ∈ D, νe ∈ {+, ◦}, and Σ |= a : α and show

that Σ |= a.me : τe. To this end, let k ≥ 0, σ and Ψ such that σ :k,Ψ Σ. From Σ |= a : α by
Definition 3.8 we get that

σ(a) :k,Ψ α (A.16)

We need to show that σ(a).me :k,Ψ τe. Thus, let j < k, and consider heaps h and h ′ and a
term b′ such that the following three conditions are fulfilled:

h :k Ψ ∧ 〈h, σ(a).me〉 →
j 〈h ′, b′〉 ∧ 〈h ′, b′〉9 (A.17)

From the second and third conjunct of (A.17) by the operational semantics we have that
for some i ≤ j, h∗ and b∗

〈h, σ(a)〉 →i 〈h∗, b∗〉9 ∧ 〈h∗, b∗.m〉 →j−i 〈h ′, b′〉 (A.18)

From the first conjunct together with (A.16) and the first conjunct of (A.17), by Defini-
tion 3.6 it follows that there exists a heap typing Ψ∗ such that

(k,Ψ) ⊑ (k − i,Ψ∗) ∧ h∗ :k−i Ψ∗ ∧ 〈k − i,Ψ∗, b∗〉 ∈ α = [md :νd
τd]d∈D (A.19)

By the definition of object types, the latter shows that there exists C and α′ such that
b∗ = {mc=lc}c∈C , D ⊆ C and (Obj-1) and (Obj-2) hold:

α′ ∈ Type ∧
⌊

α′
⌋

k−i
⊆ ⌊α⌋k−i (A.20)

∀d ∈ D. 〈k − i,Ψ∗, ld〉 ∈ refνd
(α′ → τd) (A.21)

as well as (Obj-3): for all j0 < k − i, all Ψ′ and all {mc=l′c}c∈C ,

((k − i,Ψ∗) ⊑ (j0,Ψ
′) ∧ ∀c ∈ C.

⌊

Ψ′
⌋

j0
(l′c) = ⌊Ψ∗⌋j0

(lc)) ⇒ 〈j0,
⌊

Ψ′
⌋

j0
,
{

mc=l′c
}

c∈C
〉 ∈ α′

(A.22)

From e ∈ D and νe ∈ {+, ◦} using (A.21) we deduce that ⌊Ψ∗⌋k−i (le) ⊆ ⌊α′ → τe⌋k−i. So
by expanding the definition of h∗ :k−i Ψ∗ from (A.19) for k − i − 1 < k − i we have

〈k − i − 1, ⌊Ψ∗⌋k−i−1 , h∗(le)〉 ∈
⌊

α′ → τe

⌋

k−i
(A.23)

By the definition of the procedure type α′ → τe this means in particular that h∗(le) must
be an abstraction, i.e., for some x and a′, h∗(le) = λ(x)a′. Thus, since {mc=lc}c∈C ∈ CVal

40 C. HRIŢCU AND J. SCHWINGHAMMER

and e ∈ D ⊆ C, by (A.18), Red-Ctx, Red-Inv, Red-Beta and the operational semantics,
we obtain a reduction sequence of the form

〈h, σ(a).me〉 →
i 〈h∗, {mc=lc}c∈C .me〉

→ 〈h∗, (λ(x)a′) {mc=lc}c∈C〉

→ 〈h∗, {{x 7→ {mc=lc}c∈C}}(a
′)〉

→j−i−2 〈h′, b′〉

(A.24)

Since k − i − 2 < k − i by Proposition A.2 we have that

(k − i,Ψ∗) ⊑ (k − i − 2, ⌊Ψ∗⌋k−i−2) (A.25)

We can now use the property (Obj-3) of the object type α: we instantiate (A.22) with
l′c = lc, j0 = k − i − 2, and Ψ′ = ⌊Ψ∗⌋k−i−2 to obtain

〈k − i − 2, ⌊Ψ∗⌋k−i−2 , {mc=lc}c∈C〉 ∈ α′ (A.26)

From this using (A.23) and from the definition of procedure types, it follows that

{{x 7→ {mc=lc}c∈C}}(a
′) :k−i−2,⌊Ψ∗⌋k−i−2

τe (A.27)

On the other hand, the second conjunct of (A.19) implies

h∗ :k−i−2 ⌊Ψ∗⌋k−i−2 (A.28)

by Definition 3.5, Proposition A.2 and the closure of types under state extension. Moreover,
by (A.24), 〈h∗, {{x 7→ {mc=lc}c∈C}}(a

′)〉 →j−i−2 〈h ′, b′〉, which by (A.17) is irreducible. This,
combined with (A.28) and (A.27), by Definition 3.6, means that there exists Ψ′′ such that

(k − i − 2, ⌊Ψ∗⌋k−i−2) ⊑ (k − j,Ψ′′) ∧ h′ :k−j Ψ′′ ∧ 〈k − j,Ψ′′, b′〉 ∈ τe (A.29)

From the first conjunct above, the first conjunct in (A.19), and (A.25), using the transitivity
of state extension we obtain

(k,Ψ) ⊑ (k − j,Ψ′′) (A.30)

From (A.17), (A.30), and the second and third conjuncts of (A.29), by Definition 3.6 we
can conclude that σ(a).me :k,Ψ τe holds. This is what we needed to show.

Lemma A.6 (SemUpd: Method update). For all object types α = [md :νd
τd]d∈D and for

all e ∈ D, if Σ |= a : α and Σ[x := α] |= b : τe and νe ∈ {−, ◦}, then Σ |= a.me := ς(x)b : α.

Proof sketch. The proof is similar to that of Lemma A.5 (Method invocation). The existence
of some Ψ∗ such that

〈h, σ(a).me := ς(x)σ(b)〉 →j 〈h∗, {me=le}e∈E .me := ς(x)σ(b)〉

with (k,Ψ) ⊑ (k − j,Ψ∗), h∗ :k−j Ψ∗ and 〈k − j,Ψ∗, {me=le}e∈E〉 ∈ α follows from the

existence of a corresponding reduction sequence 〈h, σ(a)〉 →j 〈h∗, {me=le}e∈E〉. Since the
only reduction from 〈h∗, {me=le}e∈E .me := ς(x)σ(b)〉 is by (Red-Upd) and results in the
configuration 〈h′, {me=le}e∈E〉 where

h′ = h∗ [le := λ(x)σ(b)] (A.31)

the proof of the lemma is essentially a matter of showing that h′ :k−j−1 ⌊Ψ∗⌋k−j−1.

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 41

First, note that dom(Ψ∗) ⊆ dom(h′) = dom(h∗) holds, by h∗ :k−j Ψ∗. Next, let
i < k − j − 1, and let l ∈ dom(Ψ∗). It remains to show that

〈i, ⌊Ψ∗⌋i , h
′(l)〉 ∈ ⌊Ψ∗(l)⌋k−j−1 (A.32)

Note that by the definition of 〈k − j,Ψ∗, {me=le}e∈E〉 ∈ α (Definition 3.20) it follows that
there exists α′ ∈ Type such that ⌊α′⌋k−j ⊆ ⌊α⌋k−j, that D ⊆ E, and that

∀d ∈ D. 〈k − j,Ψ∗, ld〉 ∈ refνd
(α′ → τd) (A.33)

We now prove (A.32) by a case distinction on the location l:

• Case l = le. From (A.31) we have that h′(le) = λ(x)σ(b). Since e ∈ D ⊆ E and
νe ∈ {−, ◦} by assumption, (A.33) yields ⌊α′ → τe⌋k−j ⊆ ⌊Ψ∗⌋k−j (le). Since ⌊α′⌋k−j ⊆

⌊α⌋k−j, the subtyping lemma (SemSubProc) and the non-expansiveness of procedure

types yield ⌊α → τe⌋k−j ⊆ ⌊Ψ∗⌋k−j (le). The monotonicity of semantic approximation
therefore entails

⌊α → τe⌋k−j−1 ⊆ ⌊Ψ∗⌋k−j−1 (le) (A.34)

Additionally, the assumption Σ[x := α] |= b : τe gives λ(x)σ(b) :k−j,Ψ∗ α → τe. Since
0 ≤ i < k − j and h∗ :k−j Ψ∗, Proposition A.3 yields 〈k − j,Ψ∗, λ(x)σ(b)〉 ∈ α → τe. By
the closure under state extension, this implies 〈i, ⌊Ψ∗⌋i , λ(x)σ(b)〉 ∈ α → τe, from which
(A.32) follows by (A.34).

• Case l 6= le. This case is easier since the value in the heap does not change for this
location, i.e., h′(l) = h∗(l), so the result follows from the closure under state extension of
Ψ∗(l).

Lemma A.7 (SemClone: Object cloning). For all object types α = [md :νd
τd]d∈D, if

Σ |= a : α then Σ |= clone a : α.

Proof sketch. The proof is similar to that of Lemma A.6 (Method update). Assuming
σ :k,Ψ Σ and h :k Ψ such that 〈h, clone σ(a)〉 halts in fewer than k steps, by appealing to
the operational semantics and the assumption that Σ |= a : α one obtains the existence of
some Ψ∗ such that

〈h, clone σ(a)〉 →j 〈h∗, clone {me=le}e∈E〉 → 〈h′, b′〉

with (k,Ψ) ⊑ (k − j,Ψ∗), h∗ :k−j Ψ∗ and 〈k − j,Ψ∗, {me=le}e∈E〉 ∈ α. Since the only re-
duction from 〈h∗, clone {me=le}e∈E〉 is by (Red-Clone) it is clear that for some (distinct)
l′e /∈ dom(h∗) we have

h′ = h∗
[

l′e := h∗(le)
]

e∈E
∧ b′ =

{

me=l′e
}

e∈E
(A.35)

If we set Ψ′ =
⌊

Ψ∗ [l′e := Ψ∗(le)]e∈E

⌋

k−j−1
then it follows that (k,Ψ) ⊑ (k − j − 1,Ψ′), and

to establish the lemma it suffices to prove

h′ :k−j−1 Ψ′ ∧ 〈k − j − 1,Ψ′,
{

me=l′e
}

e∈E
〉 ∈ α (A.36)

Observing that dom(Ψ′) ⊆ dom(h′) is satisfied, the first conjunct is proved by showing
that 〈i, ⌊Ψ′⌋i , h′(l)〉 ∈ ⌊Ψ′(l)⌋k−j−1 holds for all i < k − j − 1 and all l ∈ dom(Ψ′). This is

done by a case distinction on whether l ∈ dom(Ψ∗) or l = l′e for some e. In both cases, the
relation follows from h∗ :k−j Ψ∗ and the closure under state extension of types.

As for the second conjunct of (A.36), we note that Ψ′ is constructed from Ψ∗ such
that ⌊Ψ′(l′e)⌋k−j−1 = ⌊Ψ∗(le)⌋k−j−1 holds for all e ∈ E. Therefore, by unfolding the

definition of the object types for 〈k − j,Ψ∗, {me=le}e∈E〉 ∈ α, condition (Obj-3) allows

42 C. HRIŢCU AND J. SCHWINGHAMMER

us to conclude that 〈k − j − 1, ⌊Ψ′⌋k−j−1 , {me=l′e}e∈E〉 ∈ ⌊α⌋k−j−1. Then the required

〈k − j − 1,Ψ′, {me=l′e}e∈E〉 ∈ α follows from the fact that ⌊Ψ′⌋k−j−1 = Ψ′ holds by defini-

tion of Ψ′, and that ⌊α⌋k−j−1 ⊆ α.

A.3. Subtyping Lemmas for Object Types.

Lemma A.8 (SemSubObj: Subtyping object types). E ⊆ D and for all e ∈ E if

νe ∈ {+, ◦} then αe ⊆ βe and if νe ∈ {−, ◦} then βe ⊆ αe imply that [md :νd
αd]d∈D ⊆

[me :νe βe]e∈E.

Proof. We denote α = [md :νd
αd]d∈D and β = [me :νe βe]e∈E. We assume that E ⊆ D and

∀e ∈ E. (νe ∈ {+, ◦} ⇒ αe ⊆ βe) ∧ (νe ∈ {−, ◦} ⇒ βe ⊆ αe), (A.37)

and prove that for all heap typings Ψ, for all values v and all k ≥ 0, if 〈k,Ψ, v〉 ∈ α then
〈k,Ψ, v〉 ∈ β, by complete induction on k. The induction hypothesis is that for all j < k if
〈j,Ψ, v〉 ∈ α then 〈j,Ψ, v〉 ∈ β, or equivalently ⌊α⌋k ⊆ ⌊β⌋k.

If we assume that 〈k,Ψ, v〉 ∈ α, then by the definition of α (Definition 3.20) we have
that v = {mc=lc}c∈C , D ⊆ C and there exists α′ ∈ Type such that ⌊α′⌋k ⊆ ⌊α⌋k and

∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd
(α′ → αd) (A.38)

Moreover, condition (Obj-3) holds with respect to α, i.e., for all j < k, all Ψ′ and all
{me=l′e}e∈E such that (k,Ψ) ⊑ (j,Ψ′),

(∀e ∈ E.
⌊

Ψ′
⌋

j
(l′e) = ⌊Ψ⌋j (le)) ⇒ 〈j,

⌊

Ψ′
⌋

j
,
{

me=l′e
}

e∈E
〉 ∈ α′ (A.39)

From E ⊆ D and D ⊆ C by transitivity E ⊆ C. From ⌊α′⌋k ⊆ ⌊α⌋k and the induction
hypothesis ⌊α⌋k ⊆ ⌊β⌋k we get that ⌊α′⌋k ⊆ ⌊β⌋k, i.e., (Obj-1) holds. Moreover, (A.39)
entails that condition (Obj-3) also holds with respect to the object type β. So in order
to conclude that 〈k,Ψ, v〉 ∈ β, and therefore that α ⊆ β, all that remains to be proven is
condition (Obj-2):

∀e ∈ E. 〈k,Ψ, le〉 ∈ refνe(α
′ → βe)

For this, we choose some e in E and do a case analysis on the variance annotation νe:

• Case νe = +. By (A.37) we deduce that αe ⊆ βe, thus by the covariance of the procedure
type constructor in its second argument (SemSubProc in Figure 6) we get that α′ →
αe ⊆ α′ → βe. But since E ⊆ D from (A.38) we know that 〈k,Ψ, le〉 ∈ ref+(α′ → αe).
Since the type constructor ref+ is covariant (SemSubCovRef in Figure 7) this implies
〈k,Ψ, le〉 ∈ ref+(α′ → βe).

• Case νe = −. Similarly to the previous case, (A.37) gives us that βe ⊆ αe. Again by
the covariance of λξ. α′ → ξ (SemSubProc) we infer that α′ → βe ⊆ α′ → αe. From
(A.38) 〈k,Ψ, le〉 ∈ ref−(α′ → αe), so by the contravariance of ref− (SemSubConRef in
Figure 7) we get that 〈k,Ψ, le〉 ∈ ref−(α′ → βe).

• νe = ◦. Now (A.37) entails that αe = βe. Since 〈k,Ψ, le〉 ∈ ref◦(α
′ → αe) by (A.38) we

immediately obtain that also 〈k,Ψ, le〉 ∈ ref◦(α
′ → βe).

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 43

Lemma A.9 (SemSubObjVar: Subtyping object variances). If for all d ∈ D we have

νd = ◦ or νd = ν ′
d then [md :νd

τd]d∈D ⊆ [md :ν′
d

τd]d∈D.

Proof. The proof proceeds similarly to the proof of Lemma A.8. Let us denote α =
[md :νd

τd]d∈D and α′ = [md :ν′
d

τd]d∈D. We assume that

∀d ∈ D. νd = ◦ ∨ νd = ν ′
d (A.40)

Let Ψ and v be arbitrary. We prove that for all k ≥ 0, if 〈k,Ψ, v〉 ∈ α then 〈k,Ψ, v〉 ∈ α′,
by complete induction on k. The induction hypothesis is that for all j < k if 〈j,Ψ, v〉 ∈ α
then 〈j,Ψ, v〉 ∈ α′, or equivalently ⌊α⌋k ⊆ ⌊α′⌋k.

Assume that 〈k,Ψ, v〉 ∈ α, then by the definition of α we have that v = {me=le}e∈E ,
D ⊆ E, and there exists a type α′′ such that ⌊α′′⌋k ⊆ ⌊α⌋k and

∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd
(α′′ → τd) (A.41)

Moreover, condition (Obj-3) holds.
From ⌊α′′⌋k ⊆ ⌊α⌋k and the induction hypothesis ⌊α⌋k ⊆ ⌊α′⌋k by transitivity we get

that ⌊α′′⌋k ⊆ ⌊α′⌋k. This choice of α′′ also shows that (Obj-3) holds for 〈k,Ψ, v〉 with
respect to α′. So in order to show that 〈k,Ψ, v〉 ∈ α′, and therefore that α ⊆ α′, all that
remains to be proven is that:

∀d ∈ D. 〈k,Ψ, ld〉 ∈ refν′
d
(α′′ → τd)

We show this by case analysis on the disjunction in (A.40). Both cases are trivial:

• Case νd = ◦. From (A.41) and ref◦(α
′′ → τd) ⊆ refν′

d
(α′′ → τd) (SemSubVarRef in

Figure 7) it is immediate that 〈k,Ψ, ld〉 ∈ refν′
d
(α′′ → τd).

• Case νd = ν ′
d, then the required statement is the same as (A.41).

A.4. Typing Lemmas with Structural Assumptions for Self Types.

Lemma A.10 (SemUpd-Str: Method update with structural assumptions). For all object

types α = [md :νd
Fd]d∈D and all α′ ∈ Type such that α′ ⊳ α, if e ∈ D, νe ∈ {−, ◦} and

Σ |= a : α′ and Σ[x := α′] |= b : Fe(α
′), then Σ |= a.me := ς(x)b : α′.

Proof. The proof is an adaptation of the proof given for Lemma A.6 (Method update)
above. Assume α = [md :νd

Fd]d∈D, e ∈ D, and νe ∈ {−, ◦}, and let α′ ∈ Type such that
α′ ⊳ α. Moreover assume that Σ |= a : α′ and Σ[x := α′] |= b : Fe(α

′) hold. We show that
Σ |= a.me := ς(x)b : α′.

Let k ≥ 0, σ be a value environment and Ψ be a heap typing such that σ :k,Ψ Σ. We
must prove that σ(a.me := ς(x)b) :k,Ψ α′, so let h and j < k be such that

h :k Ψ ∧ 〈h, σ(a).me := ς(x)σ(b)〉 →j 〈h ′, a′〉 ∧ 〈h ′, a′〉9 (A.42)

By the operational semantics, this sequence is induced by 〈h, σ(a)〉 →i 〈h ′′, a′′〉 for i ≤ j
and some h′′ and a′′, and by the assumption Σ |= a : α′ there exists some Ψ′′ such that

(k,Ψ) ⊑ (k − i,Ψ′′) ∧ h ′′ :k−i Ψ′′ ∧ 〈k − i,Ψ′′, a′′〉 ∈ α′ ⊆ [md :νd
Fd]d∈D (A.43)

In particular, a′′ is of the form {me=le}e∈E for some E ⊇ D, and by the operational seman-
tics 〈h ′′, a′′.me := ς(x)σ(b)〉 → 〈h ′, a′′〉. In particular, a′ is a′′ and h′ is h′′[le := λ(x)σ(b)].
By choosing Ψ′ = ⌊Ψ′′⌋k−j, the first and last conjuncts of (A.43) yield

(k,Ψ) ⊑ (k − j,Ψ′) ∧ 〈k − j,Ψ′, a′′〉 ∈ α′

44 C. HRIŢCU AND J. SCHWINGHAMMER

by Proposition A.2 and transitivity, and by closure under state extension of α′. To establish
the lemma, it remains to show that h′ :k Ψ′. For l ∈ dom(Ψ′) − {le} this follows from the
second conjunct of (A.43) by the closure under state extension. The interesting case is when
l = le and we must prove h′(l) = λ(x)σ(b) :k−j Ψ′(l). Since α′ ⊳ α and 〈k − j,Ψ′, a′′〉 ∈
α′, condition (Obj-2-self) in Definition 5.2 (Self type exposure) yields 〈k − j,Ψ′, le〉 ∈
refνe(α

′ → Fe(α
′)). By assumption, νe ∈ {−, ◦} so Ψ′(l) ⊇ ⌊α′ → Fe(α

′)⌋k−j holds by the
definition of refνe . Hence it suffices to prove that

λ(x)σ(b) :k−j,Ψ′ α′ → Fe(α
′)

which follows from the assumption Σ[x := α′] |= b : Fe(α
′).

Proposition A.11 (Self type exposure). Let α be a self type and suppose 〈k,Ψ, v〉 ∈ α.

Then there exists α′′ ∈ Type such that α′′ ⊳ α and 〈k − 1, ⌊Ψ⌋k−1 , v〉 ∈ α′′.

Proof. Suppose 〈k,Ψ, v〉 ∈ α = [md :νd
Fd]d∈D. By Definition 5.1 (Self types), this means

that there exists α′ ∈ Type such that ⌊α′⌋k ⊆ ⌊α⌋k and conditions (Obj-2-Self) and (Obj-
3) are satisfied. Choosing α′′ = ⌊α′⌋k, it is clear that α′′ ⊳ α since all the conditions only
rely on α′ to approximation k. Moreover, by instantiating Ψ′ = Ψ and {me=l′e}e∈E = v in
(Obj-3) we obtain that 〈k − 1, ⌊Ψ⌋k−1 , v〉 ∈ α′′. This proves the proposition.

Lemma A.12 (SemLet-Str: Introducing structural assumptions). Let α = [md :νd
Fd]d∈D

and suppose that Σ |= a : α and that Σ[x := ξ] |= b : β for all ξ ∈ Type with ξ ⊳ α. Then

Σ |= let x = a in b : β.

Proof. Let α = [md :νd
Fd]d∈D and suppose that Σ |= a : α and that Σ[x := ξ] |= b : β for all

ξ ∈ Type with ξ ⊳ α. We must show that Σ |= let x = a in b : β. Thus, let k ≥ 0, Ψ and σ
be such that σ :k,Ψ Σ. By the definition of the semantic typing judgement (Definition 3.8)
we must show that σ(let x = a in b) :k,Ψ β, or equivalently (after suitable α-renaming and
removing the syntactic sugar) that

(λ(x)σ(b)) σ(a) :k,Ψ β

Suppose j < k, h, h′ and b′ are such that

h :k Ψ ∧ 〈h, (λ(x)σ(b)) σ(a)〉 →j 〈h′, b′〉 ∧ 〈h′, b′〉9 (A.44)

From the second and third conjunct of (A.44) by the operational semantics we have that
for some i ≤ j < k, some h′′ and some Ψ′′,

〈h, σ(a)〉 →i 〈h′′, a′′〉9 ∧ 〈h ′′, (λ(x)σ(b)) a′′〉 →j−i 〈h ′, b′〉 (A.45)

From the first conjunct together with the assumption Σ |= a : α and the first conjunct of
(A.44), by Definition 3.6 it follows that there exists a heap typing Ψ′′ such that

(k,Ψ) ⊑ (k − i,Ψ′′) ∧ h ′′ :k−i Ψ′′ ∧ 〈k − i,Ψ′′, a′′〉 ∈ α = [md :νd
Fd]d∈D (A.46)

In particular, a′′ ∈ Val and the operational semantics gives

〈h, (λ(x)σ(b)) (σ(a))〉 →i 〈h′′, (λ(x)σ(b)) a′′〉 → 〈h ′′, σ
[

x := a′′
]

(b)〉 →j−i−1 〈h ′, b′〉 (A.47)

From the third conjunct of (A.46) by Proposition A.11 there exists α′ ∈ Type such that
α′ ⊳ α and 〈k − i − 1, ⌊Ψ′′⌋k−i−1 , a′′〉 ∈ α′. From σ :k,Ψ Σ, the first conjunct of (A.46),
Propositions A.1 and A.2 and the closure under state extension, this yields

σ
[

x := a′′
]

:k−i−1,⌊Ψ′′⌋k−i−1
Σ

[

x := α′
]

(A.48)

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 45

Since α′ ⊳ α, by instantiating the universally quantified type ξ in the hypothesis on b we
obtain that Σ[x := α′] |= b : β. Therefore, (A.48) gives σ[x := a′′](b) :k−i−1,⌊Ψ′′⌋k−i−1

β.

Clearly h′′ :k−i−1 ⌊Ψ′′⌋k−i−1 by the second conjunct of (A.46), so that the second conjunct
of (A.45) shows that there is some Ψ′ such that (k,Ψ) ⊑ (k−i−1, ⌊Ψ′′⌋k−i−1) ⊑ (k − j,Ψ′),
h ′ :k−j Ψ′ and 〈k−j,Ψ′, b′〉 ∈ β, by Definition 3.6. This establishes that σ(let x = a in b) :k,Ψ

β holds as required.

We next define a recursive type of records {|md :νd
Fd |}d∈D, which is the type arising

from the recursive record interpretation of (imperative) objects [18]. While this type does
not give rise to non-trivial subtyping, we will show that it satisfies {|md :νd

Fd |}d∈D ⊳

[md :νd
Fd]d∈D.

Definition A.13. Assume Fd : Type → Type are monotonic and non-expansive type con-
structors, for all d ∈ D. Then let β = {|md :νd

Fd |}d∈D be defined as the set of all triples
〈k,Ψ, {md=ld}d∈D〉 such that

(∀d ∈ D. 〈k,Ψ, ld〉 ∈ refνd
(β → Fd(β))) (Rec-1)

∧ (∀j < k. ∀Ψ′. ∀
{

me=l′e
}

e∈E
. (Rec-2)

(k,Ψ) ⊑ (j,Ψ′) ∧ (∀d ∈ D.
⌊

Ψ′
⌋

j
(l′d) = ⌊Ψ⌋j (ld)) ⇒ 〈j,

⌊

Ψ′
⌋

j
,
{

md=l′d
}

d∈D
〉 ∈ β)

Note that the recursive specification of β is well-founded, i.e., β is well-defined. Moreover,
β is a type, i.e., it is closed under state extension.

Proposition A.14. For all self types [md :νd
Fd]d∈D we have that

{|md :νd
Fd |}d∈D ⊳ [md :νd

Fd]d∈D

Proof. Let α = [md :νd
Fd]d∈D and β = {|md :νd

Fd |}d∈D for some arbitrary monotonic
and non-expansive type constructors Fd. It is clear that for all 〈k,Ψ, {md=ld}d∈D〉 ∈ β,
conditions (Obj-2-Self) and (Obj-3) from Definition 5.2 are satisfied, by the definition of
β (Definition A.13). It remains to prove that β ⊆ α. We establish this by showing that for
all k ≥ 0, ⌊β⌋k ⊆ ⌊α⌋k, by complete induction on k. Let 〈k,Ψ, {md=ld}d∈D〉 ∈ β; we need
to show that 〈k,Ψ, {md=ld}d∈D〉 ∈ α. We have that D ⊆ D and we choose α′ = β which
is a type and fulfills ⌊β⌋k ⊆ ⌊α⌋k (Obj-1) by the induction hypothesis. The conditions
(Obj-2-Self) and (Obj-3) in Definition 5.1 (Self types) are exactly the same as conditions
(Rec-1) and (Rec-2) in the definition of β (Definition A.13), which concludes the proof.

Lemma A.15 (SemObj-Str: Object construction with structural assumptions). Let α =
[md :νd

Fd]d∈D and suppose that for all d ∈ D and all ξ ∈ Type with ξ ⊳ α, Σ[x := ξ] |= bd :
Fd(ξ). Then Σ |= [md=ς(xd)bd]d∈D : α.

Proof. Let α = [md :νd
Fd]d∈D and assume that

∀d∈D. ∀ξ∈Type. ξ ⊳ α ⇒ Σ[xd := ξ] |= bd : Fd(ξ) (A.49)

We must show that Σ |= [md=ς(xd)bd]d∈D : α. Thus, let k ≥ 0, σ be a value environment
and Ψ be a heap typing such that σ :k,Ψ Σ. By Definition 3.8 we need to show that
σ([md=ς(xd)bd]d∈D) :k,Ψ α. Equivalently (after suitable α-renaming), we show that

[md=ς(xd)σ(bd)]d∈D :k,Ψ α

Suppose j < k, h, h′ and b′ are such that the following three conditions are fulfilled:

h :k Ψ ∧ 〈h, [md=ς(xd)σ(bd)]d∈D〉 →j 〈h′, b′〉 ∧ 〈h′, b′〉9 (A.50)

46 C. HRIŢCU AND J. SCHWINGHAMMER

By the operational semantics Red-Obj is the only rule that applies, which means that
necessarily j = 1 and for some distinct ld 6∈ dom(h) we have b′ = {md=ld}d∈D and

h′ = h [ld := λ(xd)σ(bd)]d∈D (A.51)

Let β = {|md :νd
Fd |}d∈D, as in Definition A.13. We choose

Ψ′ =
⌊

Ψ [ld := (β → Fd(β))]d∈D

⌋

k−1
(A.52)

and show that

(k,Ψ) ⊑ (k − 1,Ψ′) ∧ h′ :k−1 Ψ′ ∧ 〈k − 1,Ψ′, b′〉 ∈ α (A.53)

The first conjunct of (A.53) holds by the construction of Ψ′ (A.52). In order to show the
second conjunct, let i < k−1 and l ∈ dom(Ψ′). We now need to show that 〈i, ⌊Ψ′⌋i , h

′(l)〉 ∈
Ψ′(l). In case l ∈ dom(Ψ) the proof proceeds exactly as for Lemma A.4, so we only consider
the case when l = ld for some d ∈ D. From (A.51) and (A.52) we get that

h′(l) = λ(xd)σ(bd) ∧ Ψ′(l) = ⌊β → Fd(β)⌋k−1

Thus we need to show that

〈i,
⌊

Ψ′
⌋

i
, λ(xd)σ(bd)〉 ∈ ⌊β → Fd(β)⌋k−1 (A.54)

By Proposition A.14 we obtain that β ⊳ α, so we can instantiate the universally quantified
ξ in (A.49) with β and obtain that

Σ[xd := β] |= bd : Fd(β)

By SemLam in Figure 6 (Lemma 3.15) this gives us that

Σ |= λ(xd)bd : β → Fd(β)

From this and σ :k,Ψ Σ by Definition 3.8 we obtain

λ(xd)σ(bd) :k,Ψ β → Fd(β) (A.55)

Since k > 1 and from (A.50) h :k Ψ, Proposition A.3 shows that (A.55) implies

〈k,Ψ, λ(xd)σ(bd)〉 ∈ β → Fd(β) (A.56)

By Proposition A.2 we get that (k−1,Ψ′) ⊑ (i, ⌊Ψ′⌋i), which together with the first conjunct
of (A.53) and the transitivity of ⊑ yields (k,Ψ) ⊑ (i, ⌊Ψ′⌋i). Since each β → Fd(β) is closed
under state extension, the latter property and (A.56) imply the required (A.54).

Finally, we need to show the third conjunct of (A.53), i.e., 〈k−1,Ψ′, {md=ld}d∈D〉 ∈ α.
To this end, we prove the following more general claim:
Claim: For all j0 ≥ 0, for all Ψ0 and for all {md=l ′d}d∈D

(k − 1,Ψ′) ⊑ (j0,Ψ0) ∧ (∀d ∈ D. ⌊Ψ0⌋j0
(l ′d) =

⌊

Ψ′
⌋

j0
(ld))

⇒ 〈j0, ⌊Ψ0⌋j0
,
{

md=l ′d
}

d∈D
〉 ∈ β (A.57)

From this and ⌊Ψ′⌋k−1 = Ψ′, the last conjunct of (A.53) follows by taking j0 = k − 1,
Ψ0 = Ψ′, and l ′d = ld for all d ∈ D, and by observing that ⊑ is reflexive (Proposition A.1)
and β ⊆ α (since β ⊳ α).

The claim above is proved by complete induction on j0. So assume j0 ≥ 0 and Ψ0 are
such that

(k − 1,Ψ′) ⊑ (j0,Ψ0) (A.58)

A STEP-INDEXED SEMANTICS OF IMPERATIVE OBJECTS 47

Moreover, for all d ∈ D let l ′d ∈ dom(Ψ0) such that

⌊Ψ0⌋j0
(l ′d) =

⌊

Ψ′
⌋

j0
(ld) (A.59)

We show that 〈j0, ⌊Ψ0⌋j0
, {md=l ′d}d∈D

〉 ∈ β, by checking that the two conditions from the

definition of β (Definition A.13) are satisfied. By the construction of Ψ′ in (A.52), together
with (A.58) and (A.59), it follows that for all d ∈ D

⌊Ψ0⌋j0
(l′d) =

⌊

Ψ′
⌋

j0
(ld) = ⌊β → Fd(β)⌋j0

(A.60)

By the definition of reference types (Definition 3.16) this implies that

∀d ∈ D. 〈j0, ⌊Ψ0⌋j0
, l′d〉 ∈ ref◦(β → Fd(β)) (A.61)

By the lemma for subtyping reference types (SemSubVarRef in Figure 7) we then obtain
property (Rec-1):

∀d ∈ D. 〈j0, ⌊Ψ0⌋j0
, l′d〉 ∈ refνd

(β → Fd(β)) (A.62)

Second, we must prove (Rec-2), i.e., that for all j < j0, Ψ1 and {md=l ′′d }d∈D

(j0,Ψ0) ⊑ (j,Ψ1) ∧ (∀d ∈ D. ⌊Ψ1⌋j (l ′′d) = ⌊Ψ0⌋j (l ′d))

⇒ 〈j, ⌊Ψ1⌋j ,
{

md=l ′′d
}

d∈D
〉 ∈ β (A.63)

Note that this last condition holds vacuously in the base case of the induction, when j0 = 0.
So assume j < j0 and Ψ1 and l ′′d are such that (j0,Ψ0) ⊑ (j,Ψ1) and ⌊Ψ1⌋j (l ′′d) = ⌊Ψ0⌋j (l ′d)

for all d ∈ D. Now j < j0 and assumption (A.59) yield that for all d ∈ D

⌊Ψ1⌋j (l ′′d) = ⌊Ψ0⌋j (l ′d) =
⌊

⌊Ψ0⌋j0
(l ′d)

⌋

j
=

⌊

⌊

Ψ′
⌋

j0
(ld)

⌋

j
=

⌊

Ψ′
⌋

j
(ld)

Moreover, from (k − 1,Ψ′) ⊑ (j0,Ψ0) (A.58) and (j0,Ψ0) ⊑ (j,Ψ1), by the transitivity of ⊑
we have that (k − 1,Ψ′) ⊑ (j,Ψ1). Since j < j0, the induction hypothesis of the claim gives

〈j, ⌊Ψ1⌋j ,
{

md=l ′′d
}

d∈D
〉 ∈ β

and we have established (A.63).
By Definition A.13 applied to the type β = {|md :νd

Fd |}d∈D the properties (A.62),
and (A.63) establish that indeed 〈j0, ⌊Ψ0⌋j0

, {md=l ′d}d∈D
〉 ∈ β. This finishes the inductive

proof of claim (A.57), and the proof of the lemma.

A.5. Subtyping Lemma for Generalized Object Types.

Lemma A.16 (SemSubGen-Obj: Subtyping generalized object types). If E ⊆ D and for

all e ∈ E we have that βw
e ⊆ αw

e and αr
e ⊆ βr

e then [md : (αw
d , αr

d)]
d∈D

⊆ [me : (βw
e , βr

e)]e∈E.

Proof. Denote α = [md : (αw
d , αr

d)]
d∈D

, β = [me : (βw
e , βr

e)]e∈E , and assume E ⊆ D and

∀e ∈ E. (βw
e ⊆ αw

e ∧ αr
e ⊆ βr

e). (A.64)

We prove that for all heap typings Ψ, for all values v and all k ≥ 0, if 〈k,Ψ, v〉 ∈ α then
〈k,Ψ, v〉 ∈ β, by complete induction on k. The induction hypothesis is that ⌊α⌋k ⊆ ⌊β⌋k.

If we assume that 〈k,Ψ, v〉 ∈ α, then by the definition of α (Definition 3.20 with
condition (Obj-2-Gen) instead of (Obj-2)) we have that v = {mc=lc}c∈C , D ⊆ C and
there exists α′ ∈ Type such that ⌊α′⌋k ⊆ ⌊α⌋k and

∀d ∈ D. 〈k,Ψ, ld〉 ∈ ref(α′ → αw
d , α′ → αr

d) (A.65)

48 C. HRIŢCU AND J. SCHWINGHAMMER

Moreover, condition (Obj-3) holds with respect to α, i.e., for all j < k, all Ψ′ and all
{me=l′e}e∈E such that (k,Ψ) ⊑ (j,Ψ′),

(∀e ∈ E.
⌊

Ψ′
⌋

j
(l′e) = ⌊Ψ⌋j (le)) ⇒ 〈j,

⌊

Ψ′
⌋

j
,
{

me=l′e
}

e∈E
〉 ∈ α′ (A.66)

From E ⊆ D and D ⊆ C by transitivity E ⊆ C. From ⌊α′⌋k ⊆ ⌊α⌋k and the induction
hypothesis ⌊α⌋k ⊆ ⌊β⌋k we get that ⌊α′⌋k ⊆ ⌊β⌋k, i.e., (Obj-1) holds. Moreover, (A.66)
entails that condition (Obj-3) also holds with respect to the object type β. So in order to
conclude that 〈k,Ψ, v〉 ∈ β, all that remains to be proven is condition (Obj-2-Gen):

∀e ∈ E. 〈k,Ψ, le〉 ∈ ref(α′ → βw
e , α′ → βr

e) (A.67)

Let e ∈ E. Since the procedure type constructor is covariant in the result type (Sem-
SubProc in Figure 6) assumption A.64 implies that

α′ → βw
e ⊆ α′ → αw

e ∧ α′ → αr
e ⊆ α′ → βr

e

From this by (SemSubRef-Gen) we get that

ref(α′ → αw
e , α′ → αr

e) ⊆ ref(α′ → βw
e , α′ → βr

e)

This together with A.65 and E ⊆ D directly implies A.67, which concludes the proof.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Outline

	2. The Imperative Object Calculus
	2.1. Syntax
	2.2. Operational Semantics
	2.3. Type System

	3. A Step-indexed Semantics of Objects
	3.1. The Semantic Model
	3.2. Subtyping
	3.3. Procedure Types
	3.4. Revisiting Reference Types
	3.5. Object Types
	3.6. Bounded Quantified Types
	3.7. Recursive Types

	4. Semantic Soundness
	5. Self Types
	5.1. Semantics of Self Types
	5.2. Limitations
	5.3. Self Types with Structural Assumptions

	6. Generalizing Reference and Object Types
	7. Comparison to Related Work
	7.1. Domain-theoretic Models
	7.2. Interpretations of Object Types
	7.3. Step-indexed Models
	7.4. Type Safety Proofs
	7.5. Generalized Reference and Object Types
	7.6. Functional Object Calculus

	8. Conclusion
	Acknowledgements
	References
	Appendix A.
	A.1. Auxiliary Propositions
	A.2. Typing Lemmas for Object Types
	A.3. Subtyping Lemmas for Object Types
	A.4. Typing Lemmas with Structural Assumptions for Self Types
	A.5. Subtyping Lemma for Generalized Object Types

