
Logical Methods in Computer Science
Volume 17, Issue 2, 2021, pp. 15:1–15:33
https://lmcs.episciences.org/

Submitted Feb. 19, 2018
Published May 11, 2021

DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS

WITH ARRAYS

DAISUKE KIMURA a AND MAKOTO TATSUTA b

a Toho University, Chiba, Japan
e-mail address: kmr@is.sci.toho-u.ac.jp

b National Institute of Informatics, Tokyo, Japan
e-mail address: tatsuta@nii.ac.jp

Abstract. This paper presents two decidability results on the validity checking problem
for entailments of symbolic heaps in separation logic with Presburger arithmetic and arrays.
The first result is for a system with arrays and existential quantifiers. The correctness of the
decision procedure is proved under the condition that sizes of arrays in the succedent are not
existentially quantified. This condition is different from that proposed by Brotherston et al.
in 2017 and one of them does not imply the other. The main idea is a novel translation
from an entailment of symbolic heaps into a formula in Presburger arithmetic. The second
result is the decidability for a system with both arrays and lists. The key idea is to extend
the unroll collapse technique proposed by Berdine et al. in 2005 to arrays and arithmetic
as well as double-linked lists.

1. Introduction

Separation logic [20] has been successfully used to verify/analyze heap-manipulating impera-
tive programs with pointers [3, 7, 8, 9, 12], and in particular it is successful for verify/analyze
memory safety. The advantage of separation logic is modularity brought by the frame
rule, with which we can independently verify/analyze each function that may manipulate
heaps [9].

In order to develop an automated analyzer/verifier of pointer programs based on
separation logic, symbolic-heap systems, which are fragments of separation logic, are often
considered [2, 3, 9]. Despite of its simple and restricted form, symbolic heaps have enough
expressive power, for example, Infer [10] and HIP/SLEEK are based on symbolic-heap
systems. Symbolic heaps are used as assertions A and B in Hoare-triple {A}P{B}. For
program analysis/verification, the validity of entailments need to be checked automatically.

Inductive definitions in a symbolic-heap system is important, since they can describe
recursive data structures such as lists and trees. Symbolic-heap systems with inductive
predicates have been studied intensively [2, 3, 1, 6, 11, 13, 14, 15, 16, 21]. Berdine et al. [2, 3]
introduced a symbolic-heap system with hard-coded list and tree predicates, and showed the
decidability of its entailment problem. Iosif et al. [15, 16] considered a system with general

Key words and phrases: Separation Logic, Program Analysis/Verification, Decidability, Arrays, Lists.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(2:15)2021
© Daisuke Kimura and Makoto Tatsuta
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

15:2 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

inductive predicates, and showed its decidability under the bounded tree-width condition.
Tatsuta et al. [21] introduced a system with general monadic inductive predicates.

Arrays are one of the most important primitive data structures of programs. It is
also important to verify that there is no buffer overflow in programs with arrays. In order
to verify/analyze pointer programs with arrays, this paper introduces two symbolic-heap
systems with the array predicate.

The first symbolic-heap system, called SLA (Separation Logic with Arrays), contains
the points-to and the array predicates as well as existential quantifiers in spatial parts. The
entailments of this system also have disjunction in the succedents. Our first main theorem
is the decidability of the entailment problem. For this theorem we need the condition: the
sizes of arrays in the succedent of an entailment do not contain any existential variables. It
means that the size of arrays in the succedent is completely determined by the antecedent.

The basic idea of our decision procedure for SLA is a novel translation of a given
entailment into an equivalent formula in Presburger arithmetic. We use “sorted” symbolic
heaps as a key idea for defining the translation. A heap represented by a sorted symbolic
heap has addresses sorted in the order of the spatial part. If both sides of a given entailment
are sorted, the validity of the entailment is decided by comparing spatial parts on both sides
starting from left to right.

The second system, called SLAL (Separation Logic with Arrays and Lists), contains the
points-to predicate, the array predicate, the singly-linked list predicate, and the doubly-linked
list predicate. They also have disjunction in the succedents. The entailments of this system
are restricted to quantifier-free symbolic heaps. This restriction comes from a technical
reason, namely, our key idea (the unroll collapse technique) does not work in the presence of
existential quantifiers. Although the restriction reduces the expressive power of entailments,
the quantifier-free entailments are useful for verify/analyze memory safety [2, 3].

The second main theorem of this paper is the decidability of the entailment problem for
SLAL. Our decision procedure is split into the two stages (a) and (b): (a) the first stage
eliminates the list predicates from the antecedent of a given entailment by applying the
unroll collapse technique. Originally the unroll collapse for acyclic singly-linked list segments
is invented by Berdine et al. [2]. We extend the original one in two ways; the unroll collapse
in SLAL is extended to arithmetic and arrays as well as doubly-linked list segments. (b)
the second stage eliminates list predicates from the succedent of the entailment by the proof
search technique. To do this, we introduce a sound and complete proof system that has
valid quantifier-free entailments in SLA as axioms, which are checked by the first decision
procedure for SLA.

As related work, as far as we know there are two papers about symbolic-heap systems that
have arrays as primitive. Calcagno et al. [8] studied program analysis based on a symbolic-
heap system in the presence of pointer arithmetic. They assumed a decision procedure for
entailments with arrays and did not propose it. Brotherston et al. [7] considered the same
system as SLA, and investigated several problems about it.

In [7], they proposed a decision procedure for the entailment problem (of SLA) by
giving an equivalent condition to the existence of a counter-model for a given entailment,
then checking a Presburger formula that expresses the condition. In order to do this, they
imposed the restriction that the second argument of the points-to predicate in the succedent
of an entailment is not existentially quantified. Their result decides a different class of
entailments from the class decided by ours, and our class neither contains their class nor is
contained by it.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:3

When we extend separation logic with arrays, it may be different from previous array
logics in the points that (1) it is specialized for memory safety, and (2) it can scale up by
modularity. Bradley et al. [5], Bouajjani et al. [4], and Lahiri et al. [18] discussed logics
for arrays but their systems are totally different from separation logic. So we cannot apply
their techniques to our case. Piskac et al. [19] proposed a separation logic system with list
segments, and it can be combined with various SMT solvers, including array logics. However,
when we combine it with array logics, the arrays are external and the resulting system does
not describe the arrays by spatial formulas with separating conjunction.

The first result of this paper is based on [17] but we give detailed proofs of the key
lemmas (stated in Lemma 4.1) for the result.

The paper is organized as follows. Section 2 introduces the first system SLA. Section 3
defines and discusses the decision procedure of the entailment problem for SLA. In Section
4, we show the first main theorem, namely, the decidability result of SLA. In Section 5, we
introduce the second system SLAL. Section 6 shows the unroll collapse property. Section 7
gives a decision procedure for SLAL. Section 8 shows the second main theorem, namely,
the decidability result of SLAL. We conclude in Section 9.

2. Separation Logic with Arrays

This section defines the syntax and semantics of our separation logic with arrays. We
first give the separation logic G with arrays in the ordinary style. Then we define the
symbolic-heap system SLA as a fragment of G.

2.1. Syntax of System G of Separation Logic with Arrays. We use the following
notations in this paper. Let (pj)j∈J be a sequence indexed by a finite set J . We write
{pj | j ∈ J} for this sequence. This sequence will sometimes be abbreviated by −→p . We write
q ∈ −→p when q is an element of −→p .

We have first-order variables x, y, z, . . . ∈ Vars and constants 0, 1, 2, The syntax of
G is defined as follows:

Terms t ::= x | 0 | 1 | 2 | · · · | t+ t.

Formulas F ::= t = t | F ∧ F | ¬F | ∃xF | Emp | t 7→ (t, . . . , t) | Arr(t, t) | F ∗ F.

Atomic formulas t 7→ (u1, . . . , upt) and Arr(t, u) are called a points-to atomic formula
and an array atomic formula, respectively. The points-to predicate 7→ is (pt +1)-ary predicate
(the number pt is fixed beforehand). We sometimes write t 7→ u instead of t 7→ (u) when 7→
is a binary predicate. We use the symbol - to denote an unspecified term.

Each formula is interpreted by a variable assignment and a heap: Emp is true when the
heap is empty; t 7→ (−→u) is true when the heap has only a single memory cell of address t
that contains the value −→u ; Arr(t, u) is true when the heap has only an array of index from t
to u; a separating conjunction F1 ∗ F2 is true when the heap is split into some two disjoint
sub-heaps, F1 is true for one, and F2 is true for the other. The formal definition of these
interpretations is given in the next subsection.

A term t that appears in either t 7→ (-), Arr(t, -) or Arr(-, t) of F is called an address
term of F . The set of free variables (denoted by FV(F)) of F is defined as usual. We also

define FV(
−→
F) as the union of FV(F), where F ∈

−→
F .

15:4 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

We use abbreviations F1 ∨ F2, F1 → F2, and ∀xF defined in the usual way. We also
write t 6= u, t ≤ u, t < u, True, and False for ¬(t = u), ∃x(u = t+ x), t+ 1 ≤ u, 0 = 0, and
0 6= 0, respectively.

A formula is said to be pure if it is a formula of Presburger arithmetic.
We implicitly use the associative and commutative laws for the connectives ∗ and ∧, the

fact that Emp is the unit of ∗ and True is the unit of ∧, and permutation of the existential
quantifiers.

For I a finite set and {Fi}i∈I a set of formulas, we write
∧
i∈I Fi for the conjunction of

the elements of {Fi}i∈I . If I is empty, it is defined as True.

2.2. Semantics of System G of Separation Logic with Arrays. Let N be the set of
natural numbers. We define the following semantic domains:

Val
def
= N, Loc

def
= N \ {0}, Store

def
= Vars→ Val, Heap

def
= Loc→fin Valpt .

Loc means addresses of heaps. 0 means Null. An element s in Store is called a store
that means a valuation of variables. The update s[x1 := a1, . . . , xk := ak] of s is defined
by s[x1 := a1, . . . , xk := ak](z) = ai if z = xi, otherwise s[x1 := a1, . . . , xk := ak](z) = s(z).
An element h in Heap is called a heap. The domain of h (denoted by Dom(h)) means the
memory addresses which are currently used. h(n) means the value at the address n if it
is defined. We sometimes use notation h1 + h2 for the disjoint union of h1 and h2, that
is, it is defined when Dom(h1) and Dom(h2) are disjoint sets, and (h1 + h2)(n) is hi(n) if
n ∈ Dom(hi) for i = 1, 2. The restriction h|X of h is defined by Dom(h|X) = X ∩Dom(h)
and h|X(m) = h(m) for any m ∈ Dom(h|X). A pair (s, h) is called a heap model.

The interpretation s(t) of a term t by s is defined by extending the definition of s by
s(n) = n for each constant n, and s(t + u) = s(t) + s(u). We also use the notation s(−→u)
defined by s(u1, . . . , uk) = (s(u1), . . . , s(uk)).

The interpretation s, h |= F of F under the heap model (s, h) is defined inductively as
follows:

s, h |= t = u iff s(t) = s(u),
s, h |= F1 ∧ F2 iff s, h |= F1 and s, h |= F2,
s, h |= ¬F iff s, h 6|= F ,
s, h |= ∃xF iff s[x := a], h |= F for some a ∈ Val,
s, h |= Emp iff Dom(h) = ∅,
s, h |= t 7→ (−→u) iff Dom(h) = {s(t)} and h(s(t)) = s(−→u),
s, h |= Arr(t, u) iff s(t) ≤ s(u) and Dom(h) = {x ∈ N | s(t) ≤ x ≤ s(u)},
s, h |= F1 ∗ F2 iff s, h1 |= F1, s, h2 |= F2, and h = h1 + h2 for some h1, h2.
We sometimes write s |= F if s, h |= F holds for any h. This notation is mainly used for

pure formulas, since their interpretation does not depend on the heap-part of heap models.
We also write |= F if s, h |= F holds for any s and h.

The notation F1 |= F2 is an abbreviation of |= F1 → F2, that is, s, h |= F1 implies
s, h |= F2 for any s and h.

2.3. Symbolic-Heap System with Arrays. The symbolic-heap system SLA is defined
as a fragment of G. The syntax of SLA is given as follows. Terms of SLA are the same as
those of G. Formulas of SLA (called symbolic heaps) have the following form:

φ ::= ∃−→x (Π ∧ Σ)

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:5

where Π is a pure formula of G and Σ is the spatial part defined by

Σ ::= Emp | t 7→ (t, . . . , t) | Arr(t, t) | Σ ∗ Σ.

In this paper, we use the following notations for symbolic heaps. The symbol σ is used
to denote an atomic formula of Σ. We write x 7→ for ∃z(x 7→ z) where z is fresh. We also
write ∃−→x (Π ∧ Σ) ∧Π′ for ∃−→x (Π ∧Π′ ∧ Σ), write ∃−→x (Π ∧ Σ) ∗ Σ′ for ∃−→x (Π ∧ Σ ∗ Σ′), and

write ∃−→x (Π ∧ Σ) ∗ ∃
−→
x′ (Π′ ∧ Σ′) for ∃−→x

−→
x′ (Π ∧Π′ ∧ Σ ∗ Σ′).

In this paper, we consider entailments of SLA that have the form:

φ ` {φi | i ∈ I} (I is a finite set).

The left-hand side of the symbol ` is called the antecedent. The right-hand side of the
symbol ` is called the succedent. The right-hand side {φi | i ∈ I} of an entailment means
the disjunction of the symbolic heaps φi (i ∈ I).

An entailment φ ` {φi | i ∈ I} is said to be valid if φ |=
∨
{φi | i ∈ I} holds.

A formula of the form Π ∧ Σ is called a QF symbolic heap (denoted by ϕ). Note that
existential quantifiers may appear in the pure part of a QF symbolic heap. We can easily

see that ∃−→x ϕ |=
−→
φ is equivalent to ϕ |=

−→
φ . So we often assume that the left-hand sides of

entailments are QF symbolic heaps.
We call entailments of the form ϕ ` {ϕi | i ∈ I} QF entailments.

2.4. Analysis/Verification of Memory Safety. We intend to use our entailment checker
as a part of our analysis/verification system for memory safety. We briefly explain it for
motivating our entailment checker.

The target programming language is essentially the same as that in [20] except we
extend the allocation command malloc, which returns the first address of the allocated
memory block or returns nil if it fails to allocate. We define our programming language in
programming language C style.

Expressions e ::= x | 0 | 1 | 2 . . . | e+ e.

Boolean expressions b ::= e == e | e < e | b&&b | b‖b | !b.

Programs P ::= x = e; | if (b){P} else {P}; | while (b){P}; | P P

| x = malloc(y); | x = ∗y; | ∗ x = y; | free(x); .

x = malloc(y); allocates y cells and set x to the pointer to the first cell. Note that this
operation may fail if there is not enough free memory.

Our assertion language is a disjunction of symbolic heaps, namely,

Assertions A ::= φ1 ∨ · · · ∨ φn.

We write φ ∗ (φ1 ∨ . . . ∨ φn) for (φ ∗ φ1 ∨ . . . ∨ φ ∗ φn), and write ∃x(φ1 ∨ . . . ∨ φn) for
(∃xφ1 ∨ . . . ∨ ∃xφn). The notation Π ∧ (φ1 ∨ . . . ∨ φn) is defined similarly.

In the same way as [20], we use a triple {A} P {B} that means that if the assertion A
holds at the initial state and the program P is executed, then (1) if P terminates then the
assertion B holds at the resulting state, and (2) P does not cause any memory errors.

As inference rules for triples, we have ordinary inference rules for Hoare triples including
the consequence rule, as well as the following rules (axioms) for memory operations. We

15:6 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

write Arr2(x, y) for ∃z(Arr(x, z) ∧ x+ y = z + 1). Arr2(x, y) denotes the memory block at
address x of size y.

{A} x = malloc(y); {∃x′(A[x := x′] ∧ x = nil ∨A[x := x′] ∗Arr2(x, y[x := x′]))},
{A ∗ y 7→ t} x = ∗y; {∃x′(A[x := x′] ∗ y 7→ t[x := x′] ∧ x = t[x := x′])},
{∃x′(A ∗ x 7→ x′)} ∗x = y; {A ∗ x 7→ y},
{∃x′(A ∗ x 7→ x′)} free(x); {A}, where x′ is fresh.

In order to prove memory safety of a program P under a precondition A, it is sufficient
to show that {A}P{True} is provable.

By separation logic with arrays, we can show a triple
{A} x = malloc(y); {∃x′(A[x := x′] ∧ x = nil ∨A[x := x′] ∗Arr2(x, y[x := x′]))}, but it
is impossible without arrays since y in malloc(y) is a variable. With separation logic with
arrays, we can also show {Arr(p, p+ 3)} ∗p = 5; {p 7→ 5 ∗Arr(p+ 1, p+ 3)}.

For the consequence rule

{A′} P {B′}
{A} P {B} (if A→A′ and B′→B)

we have to check the side conditions A→ A′ and B′→ B. Let A be φ1 ∨ . . . ∨ φn and A′

be φ′1 ∨ . . . ∨ φ′m. Then we will use our entailment checker to decide φi ` φ′1, . . . , φ′m for all
1 ≤ i ≤ n.

3. Decision Procedure for SLA

This section gives our decision procedure of the entailment problem for SLA by introducing
the key idea, namely sorted symbolic heaps, for the decision procedure, and defining the
translation from sorted symbolic heaps into formulas in Presburger arithmetic. We finally
state the decidability result for SLA, which is the first main theorem in this paper.

3.1. Sorted Entailments. This subsection describes sorted symbolic heaps. In this and
the next sections, for simplicity, we assume that the number pt is 1, that is, the points-to
predicate is a binary one. The decidability result and the decision procedure in these
sections can be straightforwardly extended to arbitrary pt . In these two sections, we will
not implicitly use the commutative law for ∗, or the unit law for Emp in order to define the
following notations.

We give a pure formula t < Σ, which means the first address expressed by Σ is greater
than t. It is inductively defined as follows:

t < Emp
def
= True, t < t1 7→ (-)

def
= t < t1,

t < Arr(t1, -)
def
= t < t1, t < (Emp ∗ Σ1)

def
= t < Σ1,

t < (t1 7→ (-) ∗ Σ1)
def
= t < t1, t < (Arr(t1, -) ∗ Σ1)

def
= t < t1.

Then we inductively define a pure formula Sorted(Σ), which means the address terms are
sorted in Σ as follows.

Sorted′(Emp)
def
= True,

Sorted′(t 7→ u)
def
= True,

Sorted′(Arr(t, u))
def
= t ≤ u,

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:7

Sorted′(Emp ∗ Σ1)
def
= Sorted′(Σ1),

Sorted′(t 7→ u ∗ Σ1)
def
= t < Σ1 ∧ Sorted′(Σ1),

Sorted′(Arr(t, u) ∗ Σ1)
def
= t ≤ u ∧ u < Σ1 ∧ Sorted′(Σ1),

Sorted(Σ)
def
= 0 < Σ ∧ Sorted′(Σ).

We define Σ∼ as Sorted(Σ)∧Σ. Let φ be ∃~x(Π∧Σ). We write φ̃ or φ∼ for ∃~x(Π∧Σ∼). We

call φ̃ a sorted symbolic heap.
We define Perm(Σ) as the set of permutations of Σ with respect to ∗. A symbolic heap

φ′ is called a permutation of φ if φ = ∃−→x (Π ∧ Σ), φ′ = ∃−→x (Π ∧ Σ′) and Σ′ is a permutation

of Σ. We write Perm(φ) for the set of permutations of φ. Note that s, h |= φ̃′ for some
φ′ ∈ Perm(φ) if and only if s, h |= φ. An entailment is said to be sorted if all symbolic heaps
in its antecedent and succedent are sorted.

The next lemma claims that checking the validity of entailments can be reduced to
checking the validity of sorted entailments.

Lemma 3.1. s |= ϕ̃′ →
∨
{φ̃′ | i ∈ I, φ′ ∈ Perm(φi)} for all ϕ′ ∈ Perm(ϕ)

if and only if s |= ϕ→
∨
i∈I φi.

Proof. We first show the left-to-right part. Assume the left-hand side of the claim. Fix
ϕ′ ∈ Perm(ϕ) and suppose s, h |= ϕ̃′. Then we have s, h |= ϕ. By the assumption, s, h |= φi
for some i ∈ I. Hence we have s, h |=

∨
{φ̃′ | i ∈ I, φ′ ∈ Perm(φi)}. Next we show the

right-to-left part. Assume the right-hand side and s, h |= ϕ. We have s, h |= ϕ̃′ for some

ϕ′ ∈ Perm(ϕ). By the assumption, s, h |= φ̃′ for some φ′ ∈ Perm(φi). Thus we have s, h |= φi
for some i ∈ I.

The basic idea of our decision procedure is as follows: (1) A given entailment is
decomposed into sorted entailments according to Lemma 3.1; (2) the decomposed sorted
entailments are translated into Presburger formulas by the translation P given in the next
subsection; (3) the translated formulas are decided by the decision procedure of Presburger
arithmetic.

3.2. Translation P . We define the translation P from QF entailments into Presburger
formulas. We note that the resulting formula may contain new fresh variables (denoted
by z). In the definition of P , we fix a linear order on an index set I to take an element
of the minimum index. For saving space, we use some auxiliary notations. Let {tj}j∈J be
a set of terms indexed by a finite set J . We write u = tJ for

∧
j∈J u = tj . We also write

u < tJ for
∧
j∈J u < tj . We note that both u = t∅ and u < t∅ are True, since

∧
j∈∅ u = tj

and
∧
j∈∅ u < tj are defined by True.

The definition of P (Π,Σ, S) is given as listed in Fig. 1, where S is a finite set {(Πi,Σi)}i∈I .
We assume that pattern-matching is done from the top to the bottom.

In order to describe the procedure P , we temporarily extend terms to include u− t where
u, t are terms. In the result of P , which is a Presburger arithmetic formula, we eliminate
these extended terms by replacing t′ + (u− t) = t′′ and t′ + (u− t) < t′′ by t′ + u = t′′ + t
and t′ + u < t′′ + t, respectively.

Let]∗(Σ) be the number of ∗ in Σ. Let]∗({(Πi,Σi)}i∈I) be
∑

i∈I]∗(Σi). We define
FirstRemoveΣ(Σ′) by Σ′0 if Σ has the form t 7→ u ∗ Σ0 and Σ′ has the form t′ 7→ u′ ∗ Σ′0, or

15:8 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

P (Π,Emp ∗ Σ, S)
def
= P (Π,Σ, S) (EmpL)

P (Π,Σ, {(Π′,Emp ∗ Σ′)} ∪ S)
def
= P (Π,Σ, {(Π′,Σ′)} ∪ S) (EmpR)

P (Π,Emp, {(Π′,Σ′)} ∪ S)
def
= P (Π,Emp, S), where Σ′ 6≡ Emp (EmpNEmp)

P (Π,Emp, {(Πi,Emp)}i∈I)
def
= Π→

∨
i∈I Πi (EmpEmp)

P (Π,Σ, {(Π′,Emp)} ∪ S)
def
= P (Π,Σ, S), where Σ 6≡ Emp (NEmpEmp)

P (Π,Σ, ∅) def
= ¬(Π ∧ Sorted(Σ)) (empty)

P (Π, t 7→ u ∗ Σ, {(Πi, ti 7→ ui ∗ Σi)}i∈I) (7→7→)
def
= P (Π ∧ t < Σ,Σ, {(Πi ∧ t = ti ∧ u = ui ∧ ti < Σi,Σi)}i∈I)

P (Π, t 7→ u ∗ Σ, {(Πi,Arr(ti, t
′
i) ∗ Σi)} ∪ S) (7→Arr)

def
= P (Π ∧ t′i = ti, t 7→ u ∗ Σ, {(Πi, ti 7→ u ∗ Σi)} ∪ S)
∧ P (Π ∧ t′i > ti, t 7→ u ∗ Σ, {(Πi, ti 7→ u ∗Arr(ti + 1, t′i) ∗ Σi)} ∪ S)
∧ P (Π ∧ t′i < ti, t 7→ u ∗ Σ, S)

P (Π,Arr(t, t′) ∗ Σ, S) (Arr 7→)
def
= P (Π ∧ t′ > t, t 7→ z ∗Arr(t+ 1, t′) ∗ Σ, S)
∧ P (Π ∧ t′ = t, t 7→ z′ ∗ Σ, S), where (Π′′, t′′ 7→ u′′ ∗ Σ′′) ∈ S and z, z′ are fresh

P (Π,Arr(t, t′) ∗ Σ, {(Πi,Arr(ti, t
′
i) ∗ Σi)}i∈I) (ArrArr)

def
=

∧
I′⊆I

P

(
Π ∧m = mI′ ∧m < mI\I′ ∧ t ≤ t′ ∧ t′ < Σ ∧ 0 < t,Σ,
{(Πi ∧ t = ti ∧ t′i < Σi,Σi)}i∈I′ ∪ {(Πi ∧ t = ti,Arr(ti +m+ 1, t′i) ∗ Σi)}i∈I\I′

)
∧

∧
∅6=I′⊆I

P

(
Π ∧m′ < m ∧m′ = mI′ ∧m′ < mI\I′ ∧ 0 < t,Arr(t+m′ + 1, t′) ∗ Σ,
{(Πi ∧ t = ti ∧ t′i < Σi,Σi)}i∈I′ ∪ {(Πi ∧ t = ti,Arr(ti +m′ + 1, t′i) ∗ Σi)}i∈I\I′

)
,

where m, mi, and m′ are abbreviations of t′ − t, t′i − ti, and mmin I′ , respectively.

Figure 1: The translation P

Σ′ otherwise. This is obtained as follows: the points-to predicates at the first positions of
Σ and Σ′ are removed (if they exist), then the resulting formula made from Σ′ is returned.
FirstRemoveΣ({(Πi,Σi)}i∈I) is also defined by {(Πi,FirstRemoveΣ(Σi))}i∈I .

The
def
= steps terminate since the measure (]∗(FirstRemoveΣ(S)),]∗(Σ) +]∗(S), |S|) for

P (Π,Σ, S) strictly decreases, where |S| is the number of elements in S.

The formula P (Π,Σ, {(Πi,Σi)}i∈I) means that the QF entailment Π ∧ Σ̃ ` {Πi ∧ Σ̃}i∈I
is valid. From this intuition, we sometimes call Σ the left spatial formula, and also call
{Σi}i∈I the right spatial formulas. We call the left-most position of a spatial formula the
head position. The atomic formula appears at the head position is called the head atom.

We will explain the meaning of each clause in Figure 1.
The clauses (EmpL) and (EmpR) just remove Emp at the head position.
The clause (EmpNEmp) handles the case where the left spatial formula is Emp. A

pair (Π′,Σ′) in the third argument of P is removed if Σ′ is not Emp, since Π′ ∧Σ′ cannot be
satisfied by the empty heap.

The clause (EmpEmp) handles the case where the left formula and all the right spatial
formulas are Emp. This case P returns a Presburger formula which is equivalent to the
corresponding entailment is valid.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:9

The clause (NEmpEmp) handles the case where the left spatial formula is not Emp
and a pair (Π′,Emp) appears in the third argument of P . We remove the pair since
Π′ ∧ Emp cannot be satisfied by any non-empty heap. For example, P (True, x 7→ 0 ∗ y 7→
0, {(True,Emp)}) becomes P (True, x 7→ 0 ∗ y 7→ 0, ∅).

The clause (empty) handles the case where the third argument of P is empty. This
case P returns a Presburger formula which is equivalent to that the left symbolic heap Π∧Σ
is not satisfiable. For example, P (True, x 7→ 0 ∗ y 7→ 0, ∅) returns ¬(x < y) using the fact
that True is the unit of ∧.

The clause (7→7→) handles the case where all the head atoms of Σ and {Σi}i∈I are
the points-to atomic formulas. This case we remove all of them and put equalities on the
right pure parts. By this rule the measure is strictly reduced. For example, P (True, 3 7→
y ∗ 4 7→ 11, {(True, x 7→ y′ ∗ Arr(4, 4))}) becomes P (3 < 4, 4 7→ 11, {(3 = x ∧ y = y′ ∧ x <
4,Arr(4, 4))}).

The clause (7→Arr) handles the case where the head atom of the left spatial formula is
the points-to atomic formula and some right spatial formula Σi has the array atomic formula
as its head atom. Then we split the array atomic formula into a points-to atomic formula
and an array atomic formula for the rest. We have three subcases according to the size of
the head array. The first case is when the size of the array is 1: We replace the head array
by a points-to atomic formula. The second case is when the size of the head array is greater
than 1: We split the head array atomic formula into a points-to atomic formula and an array
atomic formula for the rest. The last case is when the size of the head array is less than
1: We just remove (Πi,Σi), since the array atomic formula is false. We note that this rule
can be applied repeatedly until all head array atomic formulas of the right spatial formulas
are unfolded, since the left spatial formula is unchanged. Then the measure is eventually
reduced by applying (7→7→). For example, P (True, x 7→ 10, {(True,Arr(4, 5))}) becomes

P (5 = 4, x 7→ 10, {(True, 4 7→ 10)})
∧ P (5 > 4, x 7→ 10, {(True, 4 7→ 10 ∗Arr(5, 5))})
∧ P (5 < 4, x 7→ 10, ∅).

The clause (Arr 7→) handles the case where the head atom of the left spatial formula is
an array atomic formula and there is a right spatial formula whose head atom is a points-to
atomic formula. We have two subcases according to the size of the head array. The first
case is the case where the size of the array is greater than 1: The array atomic formula is
split into a points-to atomic formula (with a fresh variable z) and an array atomic formula
for the rest. The second case is when the size of the array is 1: The array atomic formula is
unfolded and replaced by a points-to atomic formula with a fresh variable z′. We note that
the left head atom becomes a points-to atomic formula after applying this rule. Hence the
measure is eventually reduced, since (7→7→) or (7→Arr) will be applied next. For example,
P (True,Arr(x, 3), {(True, y 7→ 10)}) becomes

P (x < 3, x 7→ z ∗Arr(x+ 1, 3), {(True, y 7→ 10)})
∧ P (x = 3, x 7→ z′, {(True, y 7→ 10)}).

The last clause (ArrArr) handles the case where all the head atoms in the left and
right spatial formulas are array atomic formulas. We first find the head arrays of the shortest
length among the head arrays. Next we split each longer array into two arrays so that the
first part has the same size as the shortest array. Then we remove the first parts. The

15:10 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

shortest arrays are also removed. In this operation we have two subcases: The first case is
when the array atomic formula of the left spatial formula has the shortest size and disappears
by the operation. The second case is when the array atomic formula of the left spatial
formula has a longer size, it is split into two array atomic formulas, and the second part
remains. We note that the measure is strictly reduced, since at least one shortest array
atomic formula is removed. For example, P (True,Arr(x, 5), {(True,Arr(y, 2) ∗Arr(3, z))})
becomes

P (5− x = 2− y ∧ x ≤ 5 ∧ 0 < x,Emp, {(x = y ∧ 2 < 3,Arr(3, z))})
∧ P (5− x < 2− y ∧ x ≤ 5 ∧ 0 < x,Emp,

{(x = y,Arr(y + (5− x) + 1, 2) ∗Arr(3, z))})
∧ P (2− y < 5− x ∧ 0 < x,Arr(x+ (2− y) + 1, 5), {(x = y ∧ 2 < 3,Arr(3, z))}).

This example is a case when I is a singleton set (we write {0} for it), Π and Π0 are True, Σ
is Emp, Σ0 is Arr(3, z), t is x, t′ is 5, t0 is y, t′0 is 2 in (ArrArr). The first clause of this
result is obtained from the case I ′ = I of the first conjunct in (ArrArr), namely, m = mI′

is 5− x = 2− y and m < mI\I′ is True. The second clause is obtained from the case I ′ = ∅
of the first conjunct, namely, m = mI′ is True and m < mI\I′ is 5 − x < 2 − y. The last
clause is obtained from the case I ′ = I of the second conjunct in (ArrArr), namely, m′ < m
is 2− y < 5− x, m′ = mI′ is 2− y = 5− x, and m′ < mI\I′ is True.

Example 3.2. The sorted entailment (x 7→ 10 ∗ v 7→ 11)∼ ` Arr(x′, v′)∼ is translated by
computing P (True, x 7→ 10 ∗ v 7→ 11, {(True,Arr(x′, v′))}). We will see its calculation step
by step. It first becomes

P (x′ = v′, x 7→ 10 ∗ v 7→ 11, {(True, x′ 7→ 10)}) (a)

∧ P (x′ < v′, x 7→ 10 ∗ v 7→ 11, {(True, x′ 7→ 10 ∗Arr(x′ + 1, v′))}) (b)

∧ P (x′ > v′, x 7→ 10 ∗ v 7→ 11, ∅) (c)

by (7→Arr) taking Π to be True, t 7→ u to be x 7→ 10, Σ to be v 7→ 11, Πi to be True,
Arr(ti, t

′
i) to be Arr(x′, v′), Σi to be Emp, and S to be empty. The first conjunct (a) becomes

P (x′ = v′ ∧ x < v, v 7→ 11, {(x′ = x ∧ 10 = 10,Emp)}) by (7→7→) taking Π to be x′ = v′,
t 7→ u to be x 7→ 10, Σ to be v 7→ 11, I to be the singleton set {0}, Π0 to be True, t0 7→ u0

to be x′ 7→ 10, and Σ0 to be Emp. Then it becomes

¬(x′ = v′ ∧ x < v) (a’)

by (NEmpEmp) and (empty). The third conjunct (c) becomes

¬(x′ > v′ ∧ x < v) (c’)

by (empty) taking Π to be x′ > v′ and Σ to be x 7→ 10 ∗ v 7→ 11. The second conjunct (b)
becomes P (x′ < v′ ∧ x < v, v 7→ 11, {(x = x′ ∧ 10 = 10,Arr(x′ + 1, v′))}) by (7→7→) taking Π
to be x′ < v′, t 7→ u to be x 7→ 10, Σ to be v 7→ 11, I to be the singleton set {0}, Π0 to be
True, t0 7→ u0 to be x′ 7→ 10, and Σ0 to be Arr(x′ + 1, v′), then it becomes

P (x′ < v′ ∧ x < v ∧ x′ + 1 = v′, v 7→ 11, {(x = x′ ∧ 10 = 10, x′ + 1 7→ 11)}) (b1)

∧ P (x′ < v′ ∧ x < v ∧ x′ + 1 < v′, v 7→ 11,

{(x = x′ ∧ 10 = 10, x′ + 1 7→ 11 ∗Arr(x′ + 2, v′))}) (b2)

∧ P (x′ < v′ ∧ x < v ∧ x′ + 1 > v′, v 7→ 11, ∅) (b3)

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:11

by (7→Arr) taking Π to be x′ < v′ ∧ x < v, t 7→ u to be v 7→ 11, Σ to be Emp, Πi to be
x = x′ ∧ 10 = 10, Arr(ti, t

′
i) to be Arr(x′ + 1, v′), Σi to be Emp and S to be ∅. Hence we

have

P (x′ < v′ ∧ x < v ∧ x′ + 1 = v′,Emp,

{(x = x′ ∧ 10 = 10 ∧ v = x′ + 1 ∧ 11 = 11,Emp)}) (b1’)

∧ P (x′ < v′ ∧ x < v ∧ x′ + 1 < v′,Emp,

{(x = x′ ∧ 10 = 10 ∧ v = x′ + 1 ∧ 11 = 11,Arr(x′ + 2, v′))}) (b2’)

∧ ¬(x′ < v′ ∧ x < v ∧ x′ + 1 > v′) (b3’)

by (7→7→) and (empty). We note that (b2’) becomes P (x′ < v′∧x < v∧x′+ 1 < v′,Emp, ∅})
by (EmpNEmp) taking Π to be x′ < v′ ∧x < v ∧x′+ 1 < v′, Π′ to be x = x′ ∧ 10 = 10∧ v =
x′ + 1 ∧ 11 = 11, Σ′ to be Arr(x′ + 2, v′), and S to be ∅. Thus we obtain(

(x′ < v′ ∧ x < v ∧ x′ + 1 = v′)→ (x = x′ ∧ 10 = 10 ∧ v = x′ + 1 ∧ 11 = 11)
)

(b21)

∧ ¬(x′ < v′ ∧ x < v ∧ x′ + 1 < v′) ∧ ¬(x′ < v′ ∧ x < v ∧ x′ + 1 > v′), (b22)

where (b21) is obtained from (b1’) by applying (EmpEmp), and (b22) is obtained from (b2’)
and (b3’) by applying (empty). Finally, by combining (a’), (b21), (b22), and (c’), we have

¬(x′ = v′ ∧ x < v)

∧
(
(x′ < v′ ∧ x < v ∧ x′ + 1 = v′)→ (x = x′ ∧ 10 = 10 ∧ v = x′ + 1 ∧ 11 = 11)

)
∧ ¬(x′ < v′ ∧ x < v ∧ x′ + 1 < v′) ∧ ¬(x′ < v′ ∧ x < v ∧ x′ + 1 > v′)

∧ ¬(x′ > v′ ∧ x < v)

as the translation result of P (True, x 7→ 10 ∗ v 7→ 11, {(True,Arr(x′, v′))}).

3.3. Decidability Theorem. The aim of P is to give an equivalent formula of Presburger
arithmetic to a given entailment. The correctness property of P is stated as follows.

Proposition 3.3 (Correctness of Translation P). If any array atomic formula in Σi has
the form Arr(t, t+ u) such that the term u does not contain −→y , then

Π ∧ Σ̃ |= {∃−→yi (Πi ∧ Σ̃i)}i∈I iff |= ∀−→z ∃−→y P (Π,Σ, {(Πi,Σi)}i∈I)

where −→y is a sequence of −→yi (i ∈ I), and −→z is FV(P (Π,Σ, {(Πi,Σi)}i∈I)) \
FV(Π,Σ, {Πi}i∈I , {Σi}i∈I).

We note that −→z are the fresh variables introduced in the unfolding of
P (Π,Σ, {(Πi,Σi)}i∈I). The proof of this theorem will be given in the next section.

The correctness property is shown with the condition described in the theorem.
This condition avoids a complicated situation for −→y and −→z , such that some variables
in −→y depend on −→z , and some determine −→z . For example, if we consider Arr(1, 5) `
∃y1y2(Arr(1, y1) ∗ y1 + 1 7→ y2 ∗Arr(y1 + 2, 5)), we will have y1 + 1 7→ z during the unfolding
of P (True,Arr(1, 5), {(True,Arr(1, y1) ∗ y1 + 1 7→ y2 ∗Arr(y1 + 2, 5))}). Then we have z = y2

after some logical simplification. This fact means that y2 depends on z, and moreover z is
indirectly determined by y1. The latter case occurs when sizes of array depend on −→y . We
need to exclude this situation.

15:12 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

Finally we have the decidability result for the entailment problem of SLA under
the condition from the above theorem and the property of sorted entailments (stated in
Lemma 3.1).

Theorem 3.4 (Decidability of Validity Checking of Entailments in SLA). Validity checking
of entailments Π ∧ Σ ` {∃−→yi (Πi ∧ Σi)}i∈I in SLA is decidable, if any array atomic formula
in Σi has the form Arr(t, t+ u) such that the term u does not contain −→yi .

Example 3.5. An example Arr(x, x) ` x 7→ 0, ∃y(y > 0 ∧ x 7→ y) satisfies the condition,
and its validity is checked in the following way.

• It is decomposed into several sorted entailments: in this case, it produces one sorted
entailment Arr(x, x)∼ ` x 7→ 0, ∃y(y > 0 ∧ x 7→ y)

• Compute P (True,Arr(x, x), S1), where S1 is {(True, x 7→ 0), (y > 0, x 7→ y)}. It becomes
P (x < x, x 7→ z ∗Arr(x+ 1, x), S1) ∧ P (x = x, x 7→ z, S1) by (Arr7→). Then it becomes

P (x < x ∧ x < x+ 1,Arr(x+ 1, x), S2) ∧ P (x = x ∧ x < x+ 1,Emp, S2),

where S2 is {(x = x ∧ z = 0,Emp), (y > 0 ∧ x = x ∧ z = y,Emp)}. The former
conjunct becomes P (x < x ∧ x < x + 1,Arr(x + 1, x), ∅) by (NEmpEmp), then, by
(empty), it becomes ¬(x < x ∧ x < x + 1 ∧ x + 1 ≤ x). The latter conjunct becomes
x = x ∧ x < x + 1 → (x = x ∧ z = 0) ∨ (y > 0 ∧ x = x ∧ z = y), which is equivalent to
x < x+ 1→ z = 0 ∨ (y > 0 ∧ z = y),

• Check the validity of the formula ∀xz∃yP (True,Arr(x, x), S1), which is equivalent to
∀xz∃y(¬(x < x∧x < x+ 1∧x+ 1 ≤ x)∧ (z = 0∨ (y > 0∧ z = y))). Finally the procedure
answers “valid”, since the produced Presburger formula is valid.

3.4. Other Systems of Symbolic Heaps with Arrays. Other known systems of sym-
bolic heaps with arrays are only the system given in Brotherston et al. [7]. They gave a
different condition for decidability of the entailment problem for the same symbolic-heap
system. Their condition disallows existential variables in u for each points-to atomic formula
t 7→ u in the succedent of an entailment. In order to clarify the difference between our
condition and their condition, we consider the following entailments:

(i) Arr(x, x) ` x 7→ 0, ∃y(y > 0 ∧ x 7→ y),

(ii) Arr(1, 5) ` ∃y, y′(Arr(y, y + 1) ∗Arr(y′, y′ + 2)),

(iii) Arr(1, 5) ` ∃y(Arr(1, 1 + y) ∗Arr(2 + y, 5)),

(iv) Arr(1, 5) ` ∃y, y′(Arr(1, 1 + y) ∗ 2 + y 7→ y′ ∗Arr(3 + y, 5)).

The entailment (i) can be decided by our decision procedure, but it cannot be decided
by their procedure. The entailment (ii) is decided by both theirs and ours. The entailment
(iii) is decided by theirs, but it does not satisfy our condition. The entailment (iv) is decided
by neither theirs nor ours.

Our system and the system in [7] have the same purpose, namely, analysis/verification
of memory safety. Basically their target programming language and assertion language are
the same as ours given in this section. These entailment checkers are essentially used for
deciding the side condition of the consequence rule. As explained above, ours and theirs
have different restrictions for decidability. Hence the class of programs is the same for ours
and theirs, but some triples can be proved only by ours and other triples can be proved

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:13

only by theirs, according to the shape of assertions. In this sense both our system and their
system have advantage and disadvantage.

4. Correctness of Decision Procedure

This section shows correctness of our decision procedure. We first show the basic property
of sorted entailments.

4.1. Correctness of Translation. This subsection shows correctness of the translation P .
The main difficulty for showing correctness is how to handle the new variables (denoted by
z) that are introduced during the unfolding P . In order to do this, we temporarily extend
our language with new terms, denoted by [t]. A term [t] means the value at the address t,
that is, it is interpreted to h(s(t)) under (s, h). We will use this notation instead of z, since
z must appear in the form t 7→ z during unfolding P , and this t is unique for z. Note that
both s and h are necessary for interpreting a formula of the extended language even if it is a
pure formula.

In this extended language, we temporarily introduce a variant P ′ of P so that we use [t]
instead of z, which is defined in the same way as P except

P ′(Π,Arr(t, t′) ∗ Σ, S)
def
=P ′(Π ∧ t′ = t, t 7→ [t] ∗ Σ, S)

∧ P ′(Π ∧ t′ > t, t 7→ [t] ∗Arr(t+ 1, t′) ∗ Σ, S),

when (Π′′, t′′ 7→ u′′ ∗ Σ′′) ∈ S. Note that P ′ never introduces any new variables.

We will introduce some notations. Let S be {(Π,Σ)}i∈I . Then we write S̃ for {Πi∧Σ̃i}i∈I .
We write Dom(s,Σ) for the set of addresses used by Σ under s, that is, it is inductively
defined as follows: Dom(s,Emp) = ∅, Dom(s,Emp∗Σ1) = Dom(s,Σ1), Dom(s, t 7→ u∗Σ1) =
{s(t)}∪Dom(s,Σ1), and Dom(s,Arr(t, u)∗Σ1) = {s(t), . . . , s(u)}∪Dom(s,Σ1) if s(t) ≤ s(u).

The next lemma clarifies the connections between entailments, P , and P ′.

Lemma 4.1. (1) Assume s, h |= Π̂ ∧ Σ̂. Suppose P ′(Π,Σ, S) appears in the unfolding of

P ′(Π̂, Σ̂, Ŝ). Then

s, h|Dom(s,Σ) |= P ′(Π,Σ, S) iff s, h|Dom(s,Σ) |= Π ∧ Sorted(Σ)→
∨
S̃.

(2) ∀sh(s, h |= Π ∧ Σ̃→ s, h |= ∃−→y P ′(Π,Σ, S)) iff Π ∧ Σ̃ |= ∃−→y
∨
S̃.

(3) |= ¬(Π ∧ Sorted(Σ))→ P (Π,Σ, S).
(4) Let −→z be fresh variables introduced during the calculation of P (Π,Σ, S). Then

∀sh(s, h |= Π ∧ Σ̃→ s, h |= ∀−→z ∃−→y P (Π,Σ, S)) iff |= ∀−→z ∃−→y P (Π,Σ, S).

Proof of Lemma 4.1 (1). This is shown by induction on the steps
def
= . Consider cases

according to the definition of P ′.
Case 1 (7→7→-case):

P ′(Π, t 7→ u ∗ Σ, {(Πi, ti 7→ ui ∗ Σi)}i∈I)
def
= P ′(Π ∧ t < Σ,Σ, {(Πi ∧ t = ti ∧ u = ui ∧ ti < Σi,Σi)}i∈I).

Let h1 = h|Dom(s,t 7→u∗Σ), h2 = h|Dom(s,Σ). Then h1 = {(s(t), h(s(t)))}+ h2. It is enough
to show

s, h1 |= Π ∧ Sorted(t 7→ u ∗ Σ)→
∨
i∈I

Πi ∧ (ti 7→ ui ∗ Σi)
∼ (a)

15:14 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

iff

s, h2 |= Π ∧ t < Σ ∧ Sorted(Σ)→
∨
i∈I

Πi ∧ t = ti ∧ u = ui ∧ ti < Σi ∧ Σ∼i . (b)

The only-if part. Assume (a) and the antecedent of (b). Then the antecedent of (a)
holds, since it is equivalent to the antecedent of (b). Then the succedent of (a) is true for
s, h1. Hence the succedent of (b) is true for s, h2.

The if part. Assume (b) and the antecedent of (a). Then the antecedent of (b) holds,
since it is equivalent to the antecedent of (a). Then the succedent of (b) is true for s, h2.
Hence the succedent of (a) is true for s, h1.

Case 2 (Arr 7→-case):

P ′(Π,Arr(t, t′) ∗ Σ, S)
def
=P ′(Π ∧ t′ = t ∧ t ≤ Σ,Σ, S)

∧ P ′(Π ∧ t′ > t, t 7→ [t] ∗Arr(t+ 1, t′) ∗ Σ, S).

Let h3 = h|Dom(s,Arr(t,t′)∗Σ), h4 = h|Dom(s,t 7→[t]∗Σ), and h5 = h|Dom(s,t 7→[t]∗Arr(t+1,t′)∗Σ). It
is enough to show

s, h3 |= Π ∧ Sorted(Arr(t, t′) ∗ Σ)→
∨
S̃ (c)

is equivalent to the conjunction of the following two clauses:

s, h4 |= Π ∧ t′ = t ∧ t < Σ ∧ Sorted(Σ)→
∨
S̃ (d)

and

s, h5 |= Π ∧ t′ > t ∧ Sorted(t 7→ [t] ∗Arr(t+ 1, t′) ∗ Σ)→
∨
S̃. (e)

Case 2.1: the case of s(t) = s(t′).
We note that h3 = h4. The antecedent of (d) is equivalent to the antecedent of (c). (e)

is true since s(t) = s(t′). Hence (c) and (d) ∧ (e) are equivalent.
Case 2.2: the case of s(t′) > s(t).
We note that h3 = h5. The antecedent of (e) is equivalent to the antecedent of (c). (d)

is true since s(t′) > s(t). Hence (c) and (d) ∧ (e) are equivalent.
Case 3 (7→Arr-case):

P ′(Π,t 7→ u ∗ Σ, {(Πi,Arr(ti, t
′
i) ∗ Σi)} ∪ S)

def
=P ′(Π ∧ t′i = ti, t 7→ u ∗ Σ, {(Πi, ti 7→ u ∗ Σi)} ∪ S)

∧ P ′(Π ∧ t′i > ti, t 7→ u ∗ Σ, {(Πi, ti 7→ u ∗Arr(ti + 1, t′i) ∗ Σi)} ∪ S)

∧ P ′(Π ∧ t′i < ti, t 7→ u ∗ Σ, S)

This case is proved by showing the following claim, which is shown similarly to the claim of
Case 2. Let h′ = h|Dom(s,t 7→u∗Σ). Let SortedL be an abbreviation of Sorted(t 7→ u∗Σ). Then

s, h′ |= Π ∧ SortedL→Πi ∧ (Arr(ti, t
′
i) ∗ Σi)

∼ ∨
∨
S̃

is equivalent to the conjunction of the following three clauses:

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:15

s, h′ |= Π ∧ t′i = ti ∧ SortedL→Πi ∧ (ti 7→ u ∗ Σi)
∼ ∨

∨
S̃

s, h′ |= Π ∧ t′i > ti ∧ SortedL→Πi ∧ (ti 7→ u ∗Arr(ti + 1, t′i) ∗ Σi)
∼ ∨

∨
S̃,

s, h′ |= Π ∧ t′i < ti ∧ SortedL→
∨
S̃.

Case 4 ((ArrArr)-case): Consider that P ′(Π,Arr(t, t′) ∗ Σ, {(Πi,Arr(ti, t
′
i) ∗ Σi)}i∈I)

is defined by the conjunction of

P ′
(

Π ∧m = mI′ ∧m < mI\I′ ∧ t ≤ t′ ∧ t′ < Σ ∧ 0 < t,Σ,
{(Πi ∧ t = ti ∧ t′i < Σi,Σi)}i∈I′ ∪ {(Πi ∧ t = ti,Arr(ti +m+ 1, t′i) ∗ Σi)}i∈I\I′

)
for all I ′ ⊆ I and

P ′
(

Π ∧m′ < m ∧m′ = mI′ ∧m′ < mI\I′ ∧ 0 < t,Arr(t+m′ + 1, t′) ∗ Σ,
{(Πi ∧ t = ti ∧ t′i < Σi,Σi)}i∈I′ ∪ {(Πi ∧ t = ti,Arr(ti +m′ + 1, t′i) ∗ Σi)}i∈I\I′

)
for all I ′ ⊆ I with I ′ 6= ∅, where m, mi, and m′ are abbreviations of t′ − t, t′i − ti, and
mmin I′ , respectively.

Let h6 = h|Dom(s,Arr(t,t′)∗Σ), h7 = h|Dom(s,Σ), and h8 = h|Dom(s,Arr(t+m′+1,t′)∗Σ). It is
enough to show

s, h6 |= Π ∧ Sorted(Arr(t, t′) ∗ Σ)→
∨
i∈I

Πi ∧ (Arr(ti, t
′
i) ∗ Σi))

∼ (f)

is equivalent to the conjunction of the following

s, h7 |= Π ∧m = mI′ ∧m < mI\I′ ∧ 0 < t ∧ t ≤ t′ ∧ t′ < Σ ∧ Sorted(Σ)

→
∨
i∈I′

Πi ∧ t = t′ ∧ t′i < Σi ∧ Σ∼i

∨
∨

i∈I\I′
Πi ∧ t = t′ ∧ (Arr(ti +m′ + 1, t′i) ∗ Σi)

∼ (g)

for any I ′ ⊆ I, and

s, h8 |= Π ∧m′ < m ∧m′ = mI′ ∧m′ < mI\I′ ∧ 0 < t ∧ Sorted(Arr(t+m′ + 1, t′) ∗ Σ)

→
∨
i∈I′

Πi ∧ t = t′ ∧ t′i < Σi ∧ Σ∼i

∨
∨

i∈I\I′
Πi ∧ t = t′ ∧ (Arr(ti +m′ + 1, t′i) ∗ Σi)

∼ (h)

for any I ′ ⊆ I with I ′ 6= ∅.
Case 4.1: the case of s |= m = mI′ ∧m < mI\I′ for some I ′ ⊆ I.
The antecedent of the conjunct of the form of (g) with I ′ being this I ′ satisfies the case

condition. The conjunct of the form (g) with I ′ begin not this I ′ and the conjuncts of the
form (h) are true, because their antecedents are false by the case condition.

Now we show the only-if part and the if part by using h6 = h|{s(t),s(t+1),...,s(t′)} + h7.
The only-if part: Suppose (f) is true. By the above observation it is enough to consider

the conjunct of the form (g) with this I ′. Assume the antecedent of the conjunct is true
for s, h7. Then its succedent is also true for s, h7 since the succedent of (f) is true for s, h6.
Therefore the form of (g) with I ′ being this I ′ holds.

15:16 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

The if part: Suppose that the forms of (g) for any I ′ ⊆ I hold, and the forms of (h) for
any I ′ such that ∅ 6= I ′ ⊆ I hold. Assume that the antecedent of (f) is true for s, h6. Then
the succedent of the form (g) with I ′ being this I ′ holds for s, h7 since its antecedent is true.
Hence the succedent of (f) is true for s, h6. Therefore (f) holds.

Case 4.2: the case of s |= m′ < m ∧m′ = mI′ ∧m′ < mI\I′ for some I ′ ⊆ I. It is
similar to Case 4.1 by using h6 = h|{s(t),...,s(t+m′)} + h8.
Proof of Lemma 4.1 (2). We first show the only-if part. Assume the left-hand side

of the claim and s, h |= Π ∧ Σ̃. By the left-hand side, we obtain s, h |= ∃−→y P ′(Π,Σ, S).

Hence we have s′ such that s′, h |= P ′(Π,Σ, S). By (1), s′, h |= Π ∧ Sorted(Σ)→
∨
S. Thus

s′, h |=
∨
S. Finally we have s, h |= ∃−→y

∨
S.

Next we show the if part. Fix s, h. Assume the right-hand side of the claim and

s, h |= Π ∧ Σ̃. By the right-hand side, s, h |= ∃−→y
∨
S̃ holds. Hence we have s′ such that

s′, h |=
∨
S. Then we obtain s′, h |= Π ∧ Sorted(Σ)→

∨
S̃. By (1), s′, h |= P ′(Π,Σ, S)

holds. Finally we have s, h |= ∃−→y P ′(Π,Σ, S).

Proof of Lemma 4.1 (3). It is shown by induction on the steps of
def
= . Consider cases

according to the definition of P .
Case 1 ((EmpL)-case): By the induction hypothesis we have |= ¬(Π ∧ Sorted(Σ))→

P (Π,Σ, S). This is equivalent to |= ¬(Π ∧ Sorted(Emp ∗ Σ))→ P (Π,Emp ∗ Σ, S).
The other cases (EmpR), (EmpNEmp), (NEmpEmp), and (7→7→) are shown in a

similar way. We will consider the remaining cases.
Case 2 ((EmpEmp)-case): This case is easily shown, since |= ¬(Π ∧ Sorted(Emp))→

(Π→
∨
i∈I Πi) trivially holds.

Case 3 ((empty)-case): This case is easily shown, since |= ¬(Π ∧ Sorted(Emp))→
¬(Π ∧ Sorted(Emp)) trivially holds.

Case 4 ((7→Arr)-case): By the induction hypothesis, we have

|= ¬(Π ∧ t′i = ti ∧ Sorted(t 7→ u ∗ Σ))→ P (=),

where P (=) is an abbreviation of P (Π ∧ t′i = ti, t 7→ u ∗ Σ, {(Πi, ti 7→ u ∗ Σi)} ∪ S),

|= ¬(Π ∧ t′i > ti ∧ Sorted(t 7→ u ∗ Σ))→ P (>),

where P (>) is an abbreviation of P (Π∧t′i > ti, t 7→ u∗Σ, {(Πi, ti 7→ u∗Arr(ti+1, t′i)∗Σi)}∪S),
and

|= ¬(Π ∧ t′i < ti ∧ Sorted(t 7→ u ∗ Σ))→ P (<),

where P (<) is an abbreviation of P (Π ∧ t′i < ti, t 7→ u ∗ Σ, S). In order to show the current
case, it is enough to show Π ∧ t′i = ti ∧ Sorted(t 7→ u ∗ Σ) → Π ∧ Sorted(t 7→ u ∗ Σ),
Π ∧ t′i > ti ∧ Sorted(t 7→ u ∗ Σ)→ Π ∧ Sorted(t 7→ u ∗ Σ), and Π ∧ t′i < ti ∧ Sorted(t 7→
u ∗ Σ)→Π ∧ Sorted(t 7→ u ∗ Σ). They trivially hold by comparing conjuncts.

Case 5 ((Arr 7→)-case): By the induction hypothesis, we have

|= ¬(Π ∧ t′ > t ∧ Sorted(t 7→ z ∗Arr(t+ 1, t′) ∗ Σ))→ P (>),

where P (>) is an abbreviation of P (Π ∧ t′ > t, t 7→ z ∗Arr(t+ 1, t′) ∗ Σ, S), and

|= ¬(Π ∧ t′ = t ∧ Sorted(t 7→ z′ ∗ Σ))→ P (=),

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:17

where P (=) is an abbreviation of P (Π∧t′ = t, t 7→ z′∗Σ, S). In order to show the current case,
it is enough to show Π∧ t′ > t∧ Sorted(t 7→ z ∗Arr(t+ 1, t′) ∗Σ)→Π∧ Sorted(Arr(t, t′) ∗Σ)
and Π∧ t′ = t∧Sorted(t 7→ z′ ∗Σ)→Π∧Sorted(Arr(t, t′) ∗Σ). They are immediately shown
by the definition of Sorted.

Case 6 ((ArrArr)-case): For I ′ ⊆ I, we abbreviate m = mI′ ∧ m < mI\I′ and

m′ < m∧m′ = mI′ ∧m′ < mI\I′ by Π
(=)
I′ and Π

(<)
I′ , respectively. We write S

(=)
I′ and S

(<)
I′ for

the third arguments of the first and the second P for I ′ in the right-hand side of (ArrArr),
respectively. We also write Arr for Arr(t + m′ + 1, t′). By the induction hypothesis, we
obtain the forms of

|= ¬(Π ∧Π
(=)
I′ ∧ t ≤ t

′∧t′ < Σ ∧ 0 < t ∧ Sorted(Σ))

→ P (Π ∧Π
(=)
I′ ∧ t ≤ t

′ ∧ t′ < Σ ∧ 0 < t,Σ, S
(=)
I′)

for each I ′ ⊆ I, and

|= ¬(Π ∧Π
(<)
I′ ∧ 0 < t ∧ Sorted(Arr ∗ Σ))→ P (Π ∧Π

(<)
I′ ∧ 0 < t,Arr ∗ Σ, S

(<)
I′)

for each I ′ ⊆ I with I ′ 6= ∅. In order to show the current case, it is enough to show

Π ∧ Π
(=)
I′ ∧ t ≤ t′ ∧ t′ < Σ ∧ 0 < t ∧ Sorted(Σ)→ Π ∧ Sorted(Arr(t, t′) ∗ Σ) for each I ′ ⊆ I,

and Π ∧ Π
(<)
I′ ∧ 0 < t ∧ Sorted(Arr ∗ Σ)→ Π ∧ Sorted(Arr(t, t′) ∗ Σ) for each I ′ ⊆ I with

I ′ 6= ∅. They are immediately shown by the definition of Sorted.
Proof of Lemma 4.1 (4). We note that ∀sh(s, h |= Π ∧ Σ̃→ s |= ∀−→z ∃−→y P (Π,Σ, S)) is

equivalent to ∀s(∃h(s, h |= Π ∧ Σ̃)→ s |= ∀−→z ∃−→y P (Π,Σ, S)). Moreover it is equivalent to
∀s(s |= Π ∧ Sorted(Σ)→ s |= ∀−→z ∃−→y P (Π,Σ, S)). By (3), we have |= ¬(Π ∧ Sorted(Σ))→
∀−→z ∃−→y P (Π,Σ, S), since Π ∧ Sorted(Σ) does not contain −→z , which are fresh variables
introduced during the calculation of P (Π,Σ, S). Hence we obtain |= (Π∧Sorted(Σ))∨¬(Π∧
Sorted(Σ))→∀−→z ∃−→y P (Π,Σ, S). This is equivalent to |= ∀−→z ∃−→y P (Π,Σ, S).

4.2. Decidability Proof. This subsection proves the correctness of the decision procedure.
Proof of Proposition 3.3 Let S be {(Πi,Σi)}i∈I . Then the left-hand side is equivalent

to Π ∧ Σ̃ |= ∃−→y
∨
S̃. Moreover, by Lemma 4.1 (2), it is equivalent to

∀sh(s, h |= Π ∧ Σ̃→ s, h |= ∃−→y P ′(Π,Σ, S)). (i)

By Lemma 4.1 (4), the right-hand side is equivalent to

∀sh(s, h |= Π ∧ Σ̃→ s |= ∀−→z ∃−→y P (Π,Σ, S)). (j)

Now we will show the equivalence of (i) and (j). Here we assume [t1], . . . , [tn] appear in
P ′(Π,Σ, S) and s |= t1 < . . . < tn, we let −→z = z1, . . . , zn.

Recall that our condition requires that sizes of arrays in the succedent do not depend
on existential variables. We note that, under the condition of Theorem 3.4, each t of t 7→ u
or Arr(t, t′) in the second argument of P ′ during the unfolding of P ′ does not contain any
existential variables. By this fact, we can see that each term [t] does not contain existential
variables, since it first appears as t 7→ [t] in the second argument of P ′ during the unfolding

of P ′. So we can obtain P ′(Π,Σ, S) = P (Π,Σ, S)[−→z := [
−→
t]]. Hence (i) is obtained from (j)

by taking zi to be [ti] for 1 ≤ i ≤ n.

We show the inverse direction. Assume (i). Fix s and h such that s, h |= Π ∧ Σ̃. We
will show s |= ∀−→z ∃−→y P (Π,Σ, S). Take −→a for −→z . Let s′ be s[−→z := −→a]. We claim that

15:18 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

s(tj) ∈ Dom(h) (j = 1, . . . , n), since each tj appears as an address of an array atomic formula
in Σ. Define h′ by Dom(h′) = Dom(h) and h′(m) = aj if m = s(tj) (j = 1, . . . , n), otherwise

h′(m) = h(m). Then we have s, h′ |= Π∧ Σ̃. By (i), we obtain s, h′ |= ∃−→y P ′(Π,Σ, S). Hence

s′ |= ∃−→y P (Π,Σ, S) holds, since s′, h′ |= [
−→
t] = −→z . Therefore we have s |= ∀−→z ∃−→y P (Π,Σ, S).

Thus we obtain (j).
Hence we obtained the decidability result of SLA stated in Theorem 3.4.

5. Separation Logic with Arrays and Lists

From this section, we will show the second result of this paper: the decidability of validity
checking for QF entailments of symbolic heap system with array and list predicates. The
decidability result of the previous section will be used in that of the second result.

We start from the separation logic G+, which is obtained from G by assuming the
point-to predicate is ternary and adding the singly-linked list predicate ls(-, -) and the
doubly-linked list predicate dll(-, -, -, -). Then we define the symbolic heap system SLAL
which is a fragment of G+.

5.1. Syntax of G+ and SLAL. The terms of G+ are same as those of G. The formulas
(denoted by F) of G+ are defined as follows:

F ::= t = t | F ∧F | ¬F | ∃xF | Emp | F ∗F | t 7→ (t, t) | Arr(t, t) | ls(t, t) | dll(t, t, t, t).

The notations for G mentioned in Section 2 are also used for G+.
We call the singly-linked and doubly-linked list predicates list predicates. We also call a

formula list-free if it does not contain any list predicates.
The list predicates are inductively defined predicates and they are introduced with the

following definitions clauses:

ls(x, y) ::= (x = y ∧ Emp) ∨ ∃zw(x 7→ (z, w) ∗ ls(z, y)),

dll(x1, y1, x2, y2) ::= (x1 = y1 ∧ x2 = y2 ∧ Emp) ∨ ∃x(x1 7→ (x, y2) ∗ dll(x, y1, x2, x1)).

We define the k-times unfolding of the list predicates.

Definition 5.1. For k ≥ 0, lsk(t, u) and dllk(t, u, v, w) are inductively defined by:

ls0(t, u)
def
= 0 6= 0 ∧ Emp,

lsk+1(t, u)
def
= (t = u ∧ Emp) ∨ ∃zw(t 7→ (z, w) ∗ lsk(z, u)),

dll0(t, u, v, w)
def
= 0 6= 0 ∧ Emp, and

dllk+1(t, u, v, w)
def
= (t = u ∧ v = w ∧ Emp) ∨ ∃z(t 7→ (z, w) ∗ dllk(z, u, v, t)).

For each formula F of G+ and heap model (s, h), we define s, h |= F extending that of
G with

s, h |= ls(t, u)
def⇐⇒ s, h |= lsk(t, u) for some k ≥ 0, and

s, h |= dll(t, u, v, w)
def⇐⇒ s, h |= dllk(t, u, v, w) for some k ≥ 0.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:19

We note that there is no heap model (s, h) such that s, h |= ls0(t, u). Intuitively a heap

model (s, h) that satisfies s, h |= lsk+1(t, u) contains a singly-linked list of length k starting
from s(t) and ends at s(u). This situation is depicted as follows:

s(t)
...

s(u)

We also note that there is no heap model (s, h) such that s, h |= dll0(t, u, v, w). A heap

model (s, h) that satisfies s, h |= dllk+1(t, u, v, w) contains a doubly-linked list of length k
with a forward-link starting from s(t) and ending at s(u), and a backward-link starting from
s(v) and ending at s(w). This situation is depicted as follows:

s(t)

s(w)

...
s(u)

s(v)

The notation F |=
−→
F is also defined in a similar way to SLA.

Formulas of SLAL are QF symbolic heaps (denoted by ϕ) of the form Π ∧ Σ, where its
pure part Π is the same as that of SLA and its spatial part Σ is defined by

Σ ::= Emp | t 7→ (t, t) | Arr(t, t) | ls(t, t) | dll(t, t, t, t) | Σ ∗ Σ.

We use notations Πϕ and Σϕ that mean the pure part and the spatial part of ϕ,
respectively.

Entailments of SLAL are QF entailments of the form ϕ ` {ϕi | i ∈ I}. The validity of
an entailment is defined in a similar way to SLA.

6. Unroll Collapse

This section shows the unroll collapse properties for the singly-linked and doubly-linked list
predicates. In the decision procedure for SLAL, these properties will be used for eliminating
the list predicates in the antecedent of a given entailment.

The unroll collapse property for the singly-linked list predicate is given in the next
proposition. The key idea of its proof is to replace the list ls(t, u) by some list ls(t, u) of
length 2 in the antecedent of (1), in order to show (1). Then (2) applies to obtain the
succedent. Then we can show that the list of length 2 is contained in some list ls(p, q) of
the succedent. By replacing the list of length 2 by ls(t, u) of arbitrary length, we obtain the
succedent of (1), since the difference by the replacement is absorbed by ls(p, q).

Proposition 6.1 (Unroll Collapse for ls). The following clauses are equivalent:

(1) ls(t, u) ∗ φ |=
−→
ψ ,

(2) t = u ∧ φ |=
−→
ψ and t 7→ (z, y1) ∗ z 7→ (u, y2) ∗ φ |=

−→
ψ , where z, y1, y2 are fresh.

Proof of Proposition 6.1. From (1) to (2) is trivial. We consider the inverse direction.

Assume s, h |= ls(t, u) ∗ φ. We will show s, h |=
−→
ψ .

By the assumption, there are h1 and h2 such that s, h1 |= ls(t, u), s, h2 |= φ, and
h = h1 + h2. Hence s, h1 |= lsn(t, u) for some n (take the smallest one).

We will show s, h |=
−→
ψ . In the case of n = 0, it is not the case since ls0(t, u) is

unsatisfiable. In the case of n = 1 or n = 3, we have s, h |=
−→
ψ by (2).

15:20 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

We consider the other cases. Let d be the second component of h1(s(t)). Then the
current situation of h1 and h2 is depicted as follows:

Formula ls(t, u) ∗ φ

Heap s(t)

d

...
s(u)

︸ ︷︷ ︸
h1

+ h2

Fix values a, b ∈ N such that a 6∈ Dom(h)∪{s(p) | p 7→ (-, -) ∈
−→
ψ }∪{s(p), s(q) | ls(p, q) ∈

−→
ψ }∪{s(p), s(q), s(p′), s(q′) | dll(p, q, p′, q′) is in

−→
ψ }∪

⋃
{[s(p), s(q)] | Arr(p, q) is in

−→
ψ }, and

b 6∈ Dom(h) ∪ {a}.
Define h′1 by Dom(h′1) = {s(t), a}, h′1(m) = (a, d) if m = s(t), and h′1(m) = (s(u), b) if

m 6= s(t). Let s′ = s[z := a, y1 := d, y2 := b]. Then we have

s′, h′1 + h2 |= t 7→ (z, y1) ∗ z 7→ (u, y2) ∗ φ,
which is depicted as follows:

Formula t 7→ (z, y1) ∗ z 7→ (u, y2) ∗ φ

Heap s(t)

d

a

b

s(u)

︸ ︷︷ ︸
h′1

+ h2

Hence, by the assumption, we have

s′, h′1 + h2 |= ψj

for some ψj ∈
−→
ψ . Recall that z, y1, y2 do not appear in ψj since they are fresh variables. So

we have

s, h′1 + h2 |= ψj .

Let ψj ≡ Π ∧ Σ. Then s |= Π, and there are h3, h4 and an atomic spatial formula σ
such that s, h3 |= σ, s, h4 |= Σ− σ, a ∈ Dom(h3), and h3 + h4 = h′1 + h2, where Σ− σ is the
spatial formula obtained by removing σ from Σ.

We can show that σ must have the form ls(p, q) as follows: it cannot be p 7→ (-, -) by
a 6= s(p); it cannot be Arr(p, q) by a 6∈ [s(p), s(q)]; it cannot be dll(p, q, p′, q′), otherwise, by
a 6= s(p), s(p′), b and h3(a) = (s(u), b), we have b ∈ Dom(h3) \ {a} ⊆ Dom(h3 + h4) \ {a} =
Dom(h′1 + h2) \ {a} ⊆ Dom(h), which contradicts the condition of b.

Note that a 6= s(p), s(q) by the condition of a. Hence we have s(t), a ∈ Dom(h3),
h3(s(t)) = h′1(s(t)) = (a, d) and h3(a) = h′1(a) = (s(u), b). Therefore the current situation of
h3 and h4 is depicted as follows:

Formula ls(p, q) ∗ Σ− σ
Heap s(p)

...
s(t)

d

a

b

s(u)
...

s(q)

︸ ︷︷ ︸
h3

+ h4

Then define h′3 by Dom(h′3) = Dom(h1) + (Dom(h3) \ {a, s(t)}), where the symbol
+ is the disjoint union symbol, h′3(m) = h1(m) if m ∈ Dom(h1), and h′3(m) = h3(m) if
m 6∈ Dom(h1). Then we have the following situation:

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:21

Formula ls(p, q) ∗ Σ− σ
Heap s(p)

...
s(t)

d

...
s(u)

...
s(q)

︸ ︷︷ ︸
h′3

+ h4

Note that the above picture covers both cases of n = 2 and n ≥ 4. It satisfies s, h′3 |= ls(p, q).
We have h′3 + h4 = h1 + h2 = h by removing h′1 from both sides of h3 + h4 = h′1 + h2 and

adding h1 to them. Hence we have s, h′3 + h4 |= Σ. Therefore we have (1) since s, h |=
−→
ψ

can be obtained.

The unroll collapse property for the doubly-linked list predicate is given in the next
proposition. The key idea of its proof is similar to that of Proposition 6.1: First the list
dll(t, u, v, w) is replaced by some doubly-linked list dll(t, u, v, w) of length 3 in the antecedent
of (1), in order to show (1). Then (2) applies to obtain the succedent. Then we can show
that the doubly-linked list of length 3 is contained in some list either ls(p, q) or dll(p, q, p′, q′)
of the succedent. By replacing the doubly-linked list of length 3 by dll(t, u, v, w) of arbitrary
length, we obtain the succedent of (1), since the difference by the replacement is absorbed
by ls(p, q) or dll(p, q, p′, q′).

Proposition 6.2 (Unroll Collapse for dll). The following clauses are equivalent:

(1) dll(t, u, v, w) ∗ φ |=
−→
ψ .

(2) t = u ∧ v = w ∧ φ |=
−→
ψ , t = v ∧ t 7→ (u,w) ∗ φ |=

−→
ψ , and

t 7→ (z, w) ∗ z 7→ (v, t) ∗ v 7→ (u, z) ∗ φ |=
−→
ψ , where z is fresh.

Proof of Proposition 6.2. From (1) to (2) is trivial. We consider the inverse direction.

Assume s, h |= dll(t, u, v, w) ∗ φ. We will show s, h |=
−→
ψ .

By the assumption, there are h1 and h2 such that s, h1 |= dll(t, u, v, w), s, h2 |= φ, and
h = h1 + h2. Hence s, h1 |= dlln(t, u, v, w) for some n (take the smallest one).

We will show s, h |=
−→
ψ . The case of n = 0 does not happen since dll0(t, u, v, w) is

unsatisfiable. In the case of n = 1, n = 2, or n = 4, we have s, h |=
−→
ψ by (2).

We consider the other cases. The current situation of h1 and h2 is depicted as follows:

Formula dll(t, u, v, w) ∗ φ

Heap
s(t)

s(w)

...
s(u)

s(v)︸ ︷︷ ︸
h1

+ h2

Fix a value a ∈ N such that a 6∈ Dom(h) ∪ {s(p), s(q), s(r) | p 7→ (q, r) is in
−→
ψ } ∪

{s(p), s(q) | ls(p, q) is in
−→
ψ }∪{s(p), s(q), s(p′), s(q′) | dll(p, q, p′, q′) is in

−→
ψ }∪

⋃
{[s(p), s(q)] |

Arr(p, q) is in
−→
ψ }.

Define h′1 by Dom(h′1) = {s(t), a, s(v)}, h′1(m) = (a, s(w)) if m = s(t), h′1(m) =
(s(v), s(t)) if m = a, and h′1(m) = (s(u), a) if m = s(v).

Then we have

s[z := a], h′1 + h2 |= t 7→ (z, w) ∗ z 7→ (v, t) ∗ v 7→ (u, z) ∗ φ.

The current situation is as follows:

15:22 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

Formula t 7→ (z, w) ∗ z 7→ (v, t) ∗ v 7→ (u, z) ∗ φ

Heap
s(t)

s(w)

a

s(t)

s(v)

a

s(u)

s(v)︸ ︷︷ ︸
h′1

+ h2

Then, by the assumption, we have

s, h′1 + h2 |= ψj

for some ψj ∈
−→
ψ , since z does not appear in ψj .

Let ψj ≡ Π ∧ Σ. Then s |= Π, and there are h3, h4 and σ such that s, h3 |= σ,
s, h4 |= Σ− σ, a ∈ Dom(h3), and h3 + h4 = h′1 + h2.

We can show σ have the form ls(p, q) or dll(p, q, p′, q′) as follows: it cannot be p 7→ (-, -)
by a 6= s(p); it cannot be Arr(p, q) by a 6∈ [s(p), s(q)].

Case 1: the case of σ ≡ dll(p, q, p′, q′). Note that s(v), s(t), a ∈ Dom(h3), since a cannot
be the first or last cell of the dll by a 6= s(p), s(p′). Hence h3(s(t)) = h′1(s(t)) = (a, s(w))
and h3(a) = h′1(a) = (s(v), s(t)). This case is depicted as follows:

Formula dll(p, q, p′, q′) ∗ Σ− σ

Heap
s(p)

s(q′) s(p)

...
s(t)

s(w)

a

s(t)

s(v)

a

s(u)

s(v)

...
s(q)

s(p′)︸ ︷︷ ︸
h3

+ h4

Define h′3 by Dom(h′3) = Dom(h1) + (Dom(h3) \ {a, s(t), s(v)}), h′3(m) = h1(m) if
m ∈ Dom(h1), and h′3(m) = h3(m) if m 6∈ Dom(h1). Then we have the situation depicted
as follows:

Formula dll(p, q, p′, q′) ∗ Σ− σ

Heap
s(p)

s(q′) s(p)

...
s(t)

s(w)

...
s(u)

s(v)

...
s(q)

s(p′)︸ ︷︷ ︸
h′3

+ h4

Note that the above picture covers both cases of n = 3 and n ≥ 5. It satisfies s, h′3 |=
dll(p, q, p′, q′). We have h′3 + h4 = h1 + h2 = h by removing h′1 from both sides of h3 + h4 =
h′1 + h2 and adding h1 to them. Hence we have s, h′3 + h4 |= Σ. Therefore we have (1) since

s, h |=
−→
ψ can be obtained.

Case 2: the case of σ ≡ ls(p, q). Note that a, s(t) ∈ Dom(h3), since a cannot be the
first cell of the list by a 6= s(p). Hence h3(s(t)) = h′1(s(t)) = (a, s(w)) and h3(a) = h′1(a) =
(s(v), s(t)). We also note that s(v) ∈ Dom(h3) or s(v) ∈ Dom(h4). The latter case implies
s(v) = s(q). We consider two subcases about where s(v) is.

Case 2.1: the case of s(v) ∈ Dom(h3). Consider h′3 taken in the case 1. This case is
depicted as follows:

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:23

Formula ls(p, q) ∗ Σ− σ

Heap
s(p)

...
s(t)

...
s(u)

...
s(q)

︸ ︷︷ ︸
h′3

+ h4

Note that the above picture covers both cases of n = 3 and n ≥ 5. It satisfies s, h′3 |= ls(p, q).
We have h′3 + h4 = h1 + h2 = h by removing h′1 from both sides of h3 + h4 = h′1 + h2 and

adding h1 to them. Hence we have s, h′3 + h4 |= Σ. Therefore we have (1) since s, h |=
−→
ψ

can be obtained.
Case 2.2: the case of s(v) ∈ Dom(h4). Recall that this case implies s(v) = s(q). This

case is depicted as follows:

Formula ls(p, q) ∗ Σ− σ

Heap
s(p)

...
s(t) a

s(t)

s(v) = s(q)

a︸ ︷︷ ︸
h3

+

s(v)

a

s(u)
...

︸ ︷︷ ︸
h4

Let h1(s(v)) = (s(u), d). Then we define h̃′3 by Dom(h̃′3) = (Dom(h1) \ {s(v)}) +

(Dom(h3) \ {a, s(t)}), h̃′3(m) = h1(m) if m ∈ Dom(h1) \ {s(v)}, and h̃′3(m) = h3(m)

otherwise. We also define h̃4 by Dom(h̃4) = Dom(h4), h̃4(m) = h4(m) if m 6= s(v), and

h̃4(m) = (s(u), d) if m = s(v). Then we have the following situation:

Formula ls(p, q) ∗ Σ− σ

Heap
s(p)

...
s(t)

...
s(v) = s(q)

d︸ ︷︷ ︸
h̃′3

+

s(v)

d

s(u)
...

︸ ︷︷ ︸
h̃4

Note that the above picture covers both cases of n = 3 and n ≥ 5. Then we have
h̃′3 + h̃4 = h1 + h2 = h, by removing h′1 from both sides of h3 + h4 = h′1 + h2 and adding

h1 to them. Hence we have s, h̃′3 + h̃4 |= Σ. Therefore we have (1) since s, h |=
−→
ψ can be

obtained.

Remark 6.3. We note that our unroll collapse properties (Proposition 6.1 and 6.2) hold
for entailments with the points-to predicate, the array predicate, and the (possibly cyclic)
singly-linked and doubly-linked list predicates. We also note that ours hold for entailments
that contain arithmetic. The original version of unroll collapse is given by Berdine et al. [2].
It holds for entailments with only the points-to predicate and the acyclic singly-linked list
predicate. We cannot compare ours and theirs naively, since the singly-linked list predicates
in both papers are different for cyclic lists.

15:24 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

7. Decision Procedure for Arrays and Lists

This section gives our algorithm for checking the validity of a given entailment, whose
antecedent do not contain list predicates. In the following subsections 7.1 and 7.2, we
implicitly assume that the antecedent of each entailment is list-free.

The procedure first eliminates the list predicates in the succedent of a given entailment.
The resulting entailments only contain the points-to and array predicates, that is, they
are entailments in SLA. Then the procedure checks their validity by using the decision
procedure of SLA.

7.1. Proof System for Elimination of Lists in Succedents. This subsection gives a
proof system for entailments whose antecedents do not contain list predicates. Our decision
procedure is given as a proof-search procedure of the proof system.

We define a Presburger formula Σ→↓ t that means the address t is a cell of Σ. We also
define Tm(Σ), which is the set of terms in Σ. For defining them, we will not implicitly use
the commutative law for ∗ and the unit law for Emp.

Definition 7.1. Σ→↓ t is inductively defined as follows:

Emp→↓ t def
= False, Emp ∗ Σ′ →↓ t def

= Σ′ →↓ t,
t′ 7→ (-, -)→↓ t def

= t = t′, t′ 7→ (-, -) ∗ Σ′ →↓ t def
= t = t′ ∨ Σ′ →↓ t,

Arr(t′, u′)→↓ t def
= t′ ≤ t ≤ u′, Arr(t′, u′) ∗ Σ→↓ t def

= t′ ≤ t ≤ u′ ∨ Σ→↓ t.

Definition 7.2. Tm(Σ) is inductively defined as follows:

Tm(Emp)
def
= ∅, Tm(t 7→ (u1, u2))

def
= {t, u1, u2}, Tm(Arr(t, u))

def
= {t, u},

Tm(Σ1 ∗ Σ2)
def
= Tm(Σ1) ∪ Tm(Σ2).

We write Tm(
−→
Σ) for

⋃
Σ∈
−→
Σ

Tm(Σ).

Lemma 7.3. Suppose s, h |= Σ. Then s |= Σ→↓ t if and only if s(t) ∈ Dom(h).

Proof. The claim is shown by induction on Σ.

Then we define the inference rules which give our algorithm. The rules are shown in
Figure 2.

Let h and h′ be heaps such that Dom(h) = Dom(h′). We write h ∼d h′ if h(x) = h′(x)
holds for any x ∈ Dom(h) \ {d}.

The following lemma is used in the proof of local completeness of the inference rules.

Lemma 7.4. (1) Suppose that s, h |= σ, (a, b) ∈ Ran(h) and a 6∈ Dom(h) ∪ {s(t) | t ∈
Tm(σ)}. Then σ is an array atomic formula.

(2) Suppose that s, h |= Σ, h(d) = (a, b), a 6∈ Dom(h) ∪ {s(t) | t ∈ Tm(Σ)} and h′ ∼d h.
Then s, h′ |= Σ.

Proof. (1) We show the claim by case analysis of σ.
The case that σ is t 7→ (u, v). By the assumptions, we have (a, b) ∈ Ran(h) =

{(s(u), s(v))}. Hence we obtain a = s(u) ∈ {s(t) | t ∈ Tm(σ)}, which contradicts the
assumption.

The case that σ is ls(t, u). By the assumptions, we have h 6= ∅. Hence h contains a
non-empty list that starts from t. Then a must be a cell of the list, since a 6= s(u). Therefore
we have a ∈ Dom(h), which contradicts the assumption.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:25

ϕ `
−→
ψ

(Start)
where ϕ is list-free and ϕ |=

−→
ψ in SLA

ϕ `
−→
ψ

(UnsatL)
if ϕ is unsat

ϕ `
−→
ψ

ϕ ` ψ,
−→
ψ

(UnsatR)
if ϕ ∧ ψ is unsat

t 6= t′ ∧ t 7→ (v, w) ∗ ϕ ` ls(t′, u′) ∗ ψ,
−→
ψ

t = t′ ∧ t 7→ (v, w) ∗ ϕ ` ls(t′, u′) ∗ ψ,
−→
ψ

t 7→ (v, w) ∗ ϕ ` ls(t′, u′) ∗ ψ,
−→
ψ

(7→LsEM)

if t = t′ ∧Πϕ and t 6= t′ ∧Πϕ are satisfiable

t 7→ (v, w) ∗ ϕ ` t′ = u′ ∧ ψ, t′ 7→ (v, w) ∗ ls(v, u′) ∗ ψ,
−→
ψ

t 7→ (v, w) ∗ ϕ ` ls(t′, u′) ∗ ψ,
−→
ψ

(7→Ls)
if Πϕ |= t = t′

ϕ ` t′ = u′ ∧ ψ,
−→
ψ

ϕ ` ls(t′, u′) ∗ ψ,
−→
ψ

(LsElim)
if Πϕ 6|= Σϕ →↓ t′

t 6= t′ ∧ t 7→ (v, w) ∗ ϕ ` dll(t′, u′, v′, w′) ∗ ψ,
−→
ψ

t = t′ ∧ t 7→ (v, w) ∗ ϕ ` dll(t′, u′, v′, w′) ∗ ψ,
−→
ψ

t 7→ (v, w) ∗ ϕ ` dll(t′, u′, v′, w′) ∗ ψ,
−→
ψ

(7→DllEM)

if t = t′ ∧Πϕ and t 6= t′ ∧Πϕ are satisfiable

t 7→ (v, w) ∗ ϕ ` t′ = u′ ∧ v′ = w′ ∧ ψ, t 7→ (v, w′) ∗ dll(v, u′, v′, t′) ∗ ψ,
−→
ψ

t 7→ (v, w) ∗ ϕ ` dll(t′, u′, v′, w′) ∗ ψ,
−→
ψ

(7→Dll)
if Πϕ |= t = t′

ϕ ` t′ = u′ ∧ v′ = w′ ∧ ψ,
−→
ψ

ϕ ` dll(t′, u′, v′, w′) ∗ ψ,
−→
ψ

(DllElim)
if Πϕ 6|= Σϕ →↓ t′

t′ < t ∧Arr(t, v) ∗ ϕ ` L(t′,
−→
u′) ∗ ψ,

−→
ψ

v < t′ ∧Arr(t, v) ∗ ϕ ` L(t′,
−→
u′) ∗ ψ,

−→
ψ

t ≤ t′ ≤ v ∧Arr(t, v) ∗ ϕ ` L(t′,
−→
u′) ∗ ψ,

−→
ψ

Arr(t, v) ∗ ϕ ` L(t′,
−→
u′) ∗ ψ,

−→
ψ

(ArrListEM)
,

where t ≤ t′ ≤ v ∧Πϕ and (t′ < t ∨ v < t′) ∧Πϕ are satisfiable

L(t′,
−→
u′) is ls(t′, u′) or dll(t′, u′1, u

′
2, u
′
3)

Arr(t, v) ∗ ϕ ` t′ = u′ ∧ ψ,
−→
ψ

Arr(t, v) ∗ ϕ ` ls(t′, u′) ∗ ψ,
−→
ψ

(ArrLs)
if Πϕ |= t ≤ t′ ≤ v

Arr(t, v) ∗ ϕ ` t′ = u′ ∧ v′ = w′ ∧ ψ,
−→
ψ

Arr(t, v) ∗ ϕ ` dll(t′, u′, v′, w′) ∗ ψ,
−→
ψ

(ArrDll)
if Πϕ |= t ≤ t′ ≤ v

Figure 2: Inference rules for the decision procedure

The case of dll(t, u, v, w) can be shown in a similar way to the case of ls(t, u).
(2) By the assumptions, there exist h1 and h2 such that s, h1 |= σ, s, h2 |= Σ − σ,

h = h1 + h2 and d ∈ Dom(h1). By (1), σ is an array atomic formula. Let h′1 be h′|Dom(h1).
Then we have s, h′1 |= σ, since h1 ∼d h′1. Thus we obtain s, h′ |= Σ, since h′ = h′1 + h2.

Proposition 7.5. Each inference rule is sound and locally complete.

15:26 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

Proof. The claims of the rules (Start), (UnsatL) and (UnsatR) are immediately shown. The
claims of the rules (7→LsEM), (7→DllEM), (ArrListEM), (7→Ls) and (7→Dll) are easily shown
(without the side-conditions).

Soundness of the rule (LsElim) is easily shown. We show local completeness of it.

Assume ϕ |= ls(t′, u′) ∗ ψ,
−→
ψ , the validity s, h |= ϕ and Πϕ 6|= Σϕ →↓ t′. We will show

s, h |= t′ = u′ ∧ ψ,
−→
ψ . By the assumption, we have s, h |= ls(t′, u′) ∗ ψ or s, h |=

−→
ψ . If

the latter case holds, then we have the claim. Otherwise there exist h1 and h2 such that
h = h1 + h2, s, h1 |= ls(t′, u′) and s, h2 |= ψ. By the lemma 7.3, we have s(t′) 6∈ Dom(h)
since s, h |= Σϕ and s 6|= Σϕ →↓ t′. Hence we obtain h1 = ∅, s |= t′ = u′ and s, h |= ψ. Thus
s, h |= t′ = u′ ∧ ψ holds.

Soundness of the rule (DllElim) is shown immediately. Local completeness of it can be
shown in a similar way to the proof of local completeness of (LsElim).

Soundness of the rule (ArrLs) is easily shown. We show local completeness of it. Assume

Arr(t, v) ∗ ϕ |= ls(t′, u′) ∗ ψ,
−→
ψ , the validity s, h |= Arr(t, v) ∗ ϕ and Πϕ |= t ≤ t′ ≤ v.

We will show s, h |= t′ = u′ ∧ ψ,
−→
ψ . Let (a, b) be h(s(t′)). Fix a fresh value a′ such

that a′ 6∈ Dom(h) ∪ {s(t) | t ∈ Tm(ls(t′, u′) ∗ Σψ,Σ−→ψ)}. Define h′ by h′ ∼s(t′) h and

h′(s(t′)) = (a′, b). Then we have s, h′ |= Arr(t, v) ∗ ϕ since s |= t ≤ t′ ≤ v by the side

condition. Hence s, h′ |= ls(t′, u′) ∗ ψ,
−→
ψ holds. If s, h′ |=

−→
ψ , then we have the claim by

Lemma 7.4 (2). Otherwise we have s, h′ |= ls(t′, u′) ∗ ψ. Hence there exist h′1 and h′2 such
that h′ = h′1 + h′2, s, h′1 |= ls(t′, u′) and s, h′2 |= ψ. Then we can show h′1 = ∅ as follows:
Suppose it does not hold, then s(t′) ∈ Dom(h′1) and (a′, b) ∈ Ran(h′1); hence we have a
contradiction since ls(t′, u′) is an array atomic formula by Lemma 7.4 (1). Therefore we
have s |= t′ = u′ and s, h′ |= ψ. Finally we have s, h |= t′ = u′ ∧ ψ by Lemma 7.4 (2).

The claim of the rule (ArrDll) can be shown in a similar way to (ArrLs).

7.2. Proof Search Algorithm. In our decision procedure, we read each inference rule from
the bottom (conclusion) to the top (assumptions). Let E be the set of entailments whose
antecedents do not contain list predicates. For each inference rule R we define a partial
function ApplyR from E to P(E) as follows. ApplyR(J) is defined when J is a conclusion of
some instance of R (including its side condition). ApplyR(J) is the assumptions in some
instance of R with the conclusion J (non-deterministically chosen).

Let τ be a derivation tree τ1 . . . τk
J

R . We sometimes represent this tree by a tuple

(R, J, τ ′1, . . . , τ ′k), where τ ′1, . . . , τ
′
k are representation of τ1, . . . , τk, respectively. Our proof

search procedure search is given in Figure 3. search(J) returns a tuple for a derivation
tree of J or returns fail.

We first show the termination property of search. In order to show this, we define some
notations.

Definition 7.6. (1)]7→(ψ) is the number of 7→ in ψ,]lists(ψ) is the number of ls and dll in
ψ.

(2) |ψ|Unfold
ϕ is defined by]7→(ϕ)−] 7→(ψ).

(3) Let L(t′,
−→
u′) be ls(t′,

−→
u′) or dll(t′,

−→
u′), where

−→
u′ has an appropriate length.

deg(Π, σ, σ′) is defined as follows:

deg(Π, t 7→ (-, -), L(t′, -)) =

{
1 if t = t′ ∧Π and t 6= t′ ∧Π are satisfiable,
0 otherwise.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:27

function search(J)
if (UnsatL is applicable to J) R := UnsatL

else if (Start is applicable to J) R := Start
else if (UnsatR is applicable to J) R := UnsatR

else if (7→LsEM is applicable to J) R := 7→ LsEM
else if (ArrListEM is applicable to J) R := ArrListEM

else if (LsElim is applicable to J) R := LsElim
else if (ArrLs is applicable to J) R := ArrLs

else if (7→Ls is applicable to J) R := 7→ Ls
else if (7→DllEm is applicable to J) R := 7→ DllEM

else if (DllElim is applicable to J) R := DllElim
else if (ArrDll is applicable to J) R := ArrDll

else if (7→Dll is applicable to J) R := 7→ Dll
else return(fail)

{J1, . . . , Jk} := ApplyR(J)
if (each of search(Ji) returns a tuple) return((R, J, search(J1), . . . , search(Jk)))
else return(fail)

Figure 3: Proof search algorithm

deg(Π,Arr(t, u), L(t′, -)) =

{
1 if t ≤ t′ ≤ u ∧Π and (t′ < t ∨ u < t′) ∧Π are satisfiable,
0 otherwise.

deg(Π, σ, σ′) = 0 if σ′ is not a list predicate.
Then we define |ψ|EM

ϕ by
∑

σ in ϕ,σ′ in ψ

deg(Πϕ, σ, σ
′).

(4) We define the degree ||ψ||ϕ of ψ with respect to ϕ by (]lists(ψ), |ψ|Unfold
ϕ , |ψ|EM

ϕ). The
order on degrees is given by the lexicographic order.

(5) Let J be an entailment ϕ ` {ψi}i∈I . We define the measure J̃ of J as the sequence

of ||ψi||ϕ (i ∈ I) sorted in decreasing order. Then we write J1 < J2 for J̃1 <lex J̃2.

|ψ|Unfold
ϕ gives an upper bound of unfolding of list predicates in ψ under ϕ. During the

proof search, a list predicate in ψ is unfolded if a matched points-to atomic formula in ϕ is
found. So, if unfolding is done more than the upper bound, ψ becomes unsatisfiable since
some points-to atomic formula has to match more than once.

Note that the relation < on entailments is a well-founded preorder, that is, there is no
infinite decreasing chain, since the lexicographic order ≤lex on measures is a well-order.

Lemma 7.7. The degrees and the preorder on entailments satisfy the following properties.

(1)
−→
ψ1 (

−→
ψ2 implies (ϕ `

−→
ψ1) < (ϕ `

−→
ψ2).

(2) ||ψ1||ϕ, . . . , ||ψk||ϕ < ||ψ||ϕ implies (ϕ `
−→
ψ ,ψ1, . . . , ψk) < (ϕ `

−→
ψ ,ψ).

(3) If Π ⊆ Π′, then ||ψ||Π′∧ϕ ≤ ||ψ||Π∧ϕ.
(4) Suppose that t = t′ ∧ Πϕ and t 6= t′ ∧ Πϕ are satisfiable, ϕ = t 7→ (-, -) ∗ ϕ′ and

ψ = L(t′, -) ∗ ψ′. Then (t = u ∧ ϕ `
−→
ψ ,ψ), (t 6= u ∧ ϕ `

−→
ψ ,ψ) < (ϕ `

−→
ψ ,ψ).

(5) Suppose that t ≤ t′ ≤ u∧Πϕ and (t′ < t∨u < t′)∧Πϕ are satisfiable, ϕ = Arr(t, u)∗ϕ′

and ψ = L(t′, -)∗ψ′. Then (t ≤ t′ ≤ u∧ϕ `
−→
ψ ,ψ), (t′ < t∧ϕ `

−→
ψ ,ψ), (u < t′∧ϕ `

−→
ψ ,ψ) <

(ϕ `
−→
ψ ,ψ).

15:28 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

Proof. (1) and (2) are immediately shown since the order ≤lex on measures is a lexicographic
order and the preorder < on entailments is defined by <lex.

(3) Assume Π ⊆ Π′. Take arbitrary ϕ and ψ. We have deg(Π′ ∧ Πϕ, σ, σ
′) ≤ deg(Π ∧

Πϕ, σ, σ
′) since Π ∧Πϕ is satisfiable if Π′ ∧Πϕ is satisfiable. Hence |ψ|EM

Π′∧ϕ ≤ |ψ|EM
Π∧ϕ holds.

Therefore we have ||ψ||Π′∧ϕ ≤ ||ψ||Π∧ϕ.

(4) Suppose the assumption of the claim (4). We have |ψ|EM
t=t′∧ϕ < |ψ|EM

ϕ since deg(t =

t′ ∧ Πϕ, t 7→ (-, -), L(t′, -)) < deg(Πϕ, t 7→ (-, -), L(t′, -)). Hence ||ψ||t=t′∧ϕ < ||ψ||ϕ holds. We

also have ||ψ1||t=t′∧ϕ < ||ψ1||ϕ by (3). Thus we obtain (t = t′ ∧ ϕ `
−→
ψ ,ψ) < (ϕ `

−→
ψ ,ψ).

Similarly we can also show (t 6= t′ ∧ ϕ `
−→
ψ ,ψ) < (ϕ `

−→
ψ ,ψ).

(5) is shown in a similar way to (4).

Lemma 7.8. Let R be an inference rule other than (Start) and (UnsatL). Then we have
J ′ < J for any J ′ ∈ ApplyR(J).

Proof. We show the claim for each rule of R.
The claim for (UnsatR) is shown by Lemma 7.7 (1).
The claims for (7→LsEM), (7→DllEM) and (ArrListEM) are shown by Lemma 7.7 (4).
The claims for (LsElim), (DllElim), (ArrLs) and (ArrDll) are shown by Lemma 7.7 (2)

since the number of ls and dll is reduced.
The claim for (7→Ls) is shown as follows: Let J and J ′ be t 7→ (v, w)∗ϕ ` ls(t′, u′)∗ψ,

−→
ψ

and t 7→ (v, w)∗ϕ ` t′ = u′∧ψ, t 7→ (v, w)∗ ls(v, u′)∗ψ,
−→
ψ , respectively. Then we have ||t′ =

u′∧ψ||t7→(v,w)∗ϕ < ||ls(t′, u′)∗ψ||t7→(v,w)∗ϕ since the number of ls is reduced. We also have ||t 7→
(v, w)∗ ls(v, u′)∗ψ||t7→(v,w)∗ϕ < ||ls(t′, u′)∗ψ||t7→(v,w)∗ϕ since]lists(t 7→ (v, w) ∗ ls(v, u′) ∗ ψ) =

]lists(ls(t
′, u′) ∗ ψ) and |t 7→ (v, w) ∗ ls(v, u′) ∗ ψ|Unfold

t7→(v,w)∗ϕ < |ls(t
′, u′) ∗ ψ|Unfold

t7→(v,w)∗ϕ. Hence we

have J ′ < J by Lemma 7.7 (2).
The claim for (7→Dll) is shown similarly to the case (7→Ls).

By the above lemma, we can show termination of search.

Lemma 7.9 (Termination). search(J) terminates for any J .

Proof. Suppose that search does not terminate with an input J0. Then there is an infinite
sequence of recursive calls search(J0), search(J1), search(J2), By Lemma 7.8, we have
an infinite decreasing sequence J0 > J1 > J2 > This contradicts the well-foundedness of
<.

Lemma 7.10. Let J be a valid entailment. Then either of (UnsatL), (Start), (UnsatR),
(7→LsEM), (ArrListEM), (LsElim), (ArrLs), (7→Ls), (7→DllEM), (DllElim), (ArrDll), or
(7→Dll) is applicable to J .

Proof. If the antecedent of J is unsatisfiable, then (UnsatL) is applicable to J . If J is
list-free, then (Start) is applicable, since J is valid. We consider the other cases.

Let (ϕ `
−→
ψ) = J . If there is ϕ ∈

−→
ψ such that ϕ ∧ ψ is unsatisfiable, then (UnsatR) is

applicable. In the following, we assume that ϕ ∧ ψ is satisfiable for any ψ ∈
−→
ψ . If ϕ does

not contain either 7→ or Arr, then (LsElim) or (DllElim) is applicable to J . Otherwise ϕ

contains 7→ or Arr, and
−→
ψ contains list predicates.

(1) The case that
−→
ψ contains the ls predicate. Fix ls(t′, u′) in

−→
ψ . We consider the

following subcases.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:29

(1.1) The case that there is t 7→ (-, -) in ϕ such that t = t′ ∧ Πϕ and t 6= t′ ∧ Πϕ are
satisfiable. Then (7→EM) is applicable.

(1.2) The case that there is t 7→ (-, -) in ϕ such that t 6= t′ ∧Πϕ is unsatisfiable (that is
Πϕ |= t = t′). Then (7→Ls) is applicable.

(1.3) The case that t = t′ ∧Πϕ is unsatisfiable (that is Πϕ |= t 6= t′) for all t 7→ (-, -) in
ϕ. We consider the following subsubcases.

(1.3.1) The case that there is Arr(t, u) in ϕ such that t ≤ t′ ≤ u ∧ Πϕ and (t′ < t ∨ u <
t′) ∧ ϕϕ are satisfiable. Then (ArrLsEM) is applicable.

(1.3.2) The case that there is Arr(t, u) in ϕ such that (t′ < t∨u < t′)∧Πϕ is unsatisfiable
(that is Πϕ |= t ≤ t′ ≤ u). Then (ArrLs) is applicable.

(1.3.3) The case that t ≤ t′ ≤ u ∧Πϕ is unsatisfiable (that is Πϕ |= t′ < t ∨ u < t′) for
all Arr(t, u) in ϕ. This case (LsElim) is applicable since Πϕ 6|= Σϕ →↓ t′.

(2) The case that
−→
ψ does not contain the ls predicate. There exists dll(t′, u′, v′, w′) in

−→
ψ . We can show the claim for this case in a similar way to (1).

By using the results of this section, we can show correctness of the proof search algorithm.

Proposition 7.11 (Correctness). J is valid if and only if search(J) returns a proof of J .

Proof. The if-part is shown by soundness of the proof system (Proposition 7.5). We show
the only-if part. Assume that J is a valid entailment. By Lemma 7.9, search(J) terminates.
We show the claim by induction on computation of search(J). By Lemma 7.10, some rule
R is applicable to J . Then J1, . . . , Jk are obtained by ApplyR(J). By local completeness of
the proof system (Proposition 7.5), each Jk is valid. Hence, by the induction hypothesis,
search(Ji) returns a tuple that represents a proof of Ji for any i ∈ {1, . . . , k}. Therefore
search(J) returns a tuple that represents a proof of J .

8. Decidability of Entailment Problem for SLAL

This section shows the second theorem of this paper, namely the decidability of the entailment
problem of SLAL, by combining the four results of the previous sections.

Theorem 8.1 (Decidability of SLAL). Checking the validity of entailments in SLAL is
decidable.

Proof. We first give the decision procedure for SLAL. An entailment J of SLAL is given
as an input for the procedure. Then it performs as follows. (i) The decision procedure
eliminates the list predicates that appear in the antecedent of J by using the unroll collapse
(Propositions 6.1 and 6.2). Then it obtains entailments J1, . . . , Jk whose antecedents are
list-free. (ii) It computes search(Ji) (i = 1, . . . , k). It returns “valid” if each of search(Ji)
returns a tuple. Otherwise it returns “invalid”.

Termination property of the decision procedure can be obtained from the termination
property of search (Proposition 7.9). Correctness of the decision procedure is stated as
follows: the decision procedure returns “valid” for an input J if and only if J is valid. We
show this. By the unroll collapse, the validity of J is equivalent to that of J1, . . . , Jk. Hence
J is valid if and only if search(Ji) returns a proof of Ji for all i by the correctness property
of search (Proposition 7.11). This is equivalent to that the decision procedure returns
“valid”.

15:30 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

Example 8.2. We show how our decision procedure works with an example Arr(1, 2) ∗ 3 7→
(10, 0) ∗ ls(10, 20) ` Arr(1, 3) ∗ ls(10, 20).

By using the unroll collapse (Proposition 6.1) taking ls(t, u) to be ls(10, 20), φ to be

Arr(1, 2) ∗ 3 7→ (10, 0), and
−→
ψ to be Arr(1, 3) ∗ ls(10, 20), we obtain the following entailments:

(Ja) 10 = 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ` Arr(1, 3) ∗ ls(10, 20),

(Jb) Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w) ` Arr(1, 3) ∗ ls(10, 20).

Then search(Ja) and search(Jb) are performed. search(Ja) immediately returns a tuple
(UnsatL, Ja), since the antecedent is unsatisfiable. Computation of search(Jb) is done as
follows:

Begin search(Jb): search(Jb) is called. Then R is set by (7→Ls), since it is applicable
to Jb. ApplyR(Jb) is performed. An instance of (7→Ls) is non-deterministically chosen:
t 7→ (v, w) is taken to be 10 7→ (z, y), ϕ is taken to be Arr(1, 2) ∗ 3 7→ (10, 0) ∗ z 7→ (20, w),
ls(t′, u′) is taken to be ls(10, 20), and ψ is taken to be Arr(1, 3). Then ApplyR(Jb) produces
the following one subgoal:

(Jb1) Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` 10 = 20 ∧Arr(1, 3),Arr(1, 3) ∗ 10 7→ (z, y) ∗ ls(z, 20).

Begin search(Jb1): search(Jb1) is called. Then R is set by (UnsatR). ApplyR(Jb1) is
performed. An instance of (UnsatR) is chosen, where ϕ is taken to be the antecedent of Jb1,

ψ is taken to be 10 = 20 ∧Arr(1, 3), and
−→
ψ is taken to be Arr(1, 3) ∗ 10 7→ (z, y) ∗ ls(z, 20).

Then ApplyR(Jb1) produces the following one subgoal:

(Jb2) Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` Arr(1, 3) ∗ 10 7→ (z, y) ∗ ls(z, 20).

Begin search(Jb2): search(Jb2) is called. Then R is set by (7→Ls). ApplyR(Jb2) is
performed. An instance of (7→Ls) is chosen, where t 7→ (v, w) is taken to be z 7→ (20, w), ϕ
is taken to be Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y), ls(t′, u′) is taken to be ls(z, 20), ψ is taken

to be Arr(1, 3) ∗ 10 7→ (z, y), and
−→
ψ is taken to be empty. Then ApplyR(Jb2) produces the

following one subgoal:

(Jb3) Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` z = 20 ∧Arr(1, 3) ∗ 10 7→ (z, y), z 7→ (20, w) ∗ ls(20, 20) ∗Arr(1, 3) ∗ 10 7→ (z, y).

Begin search(Jb3): search(Jb3) is called. Then R is set by (UnsatR). ApplyR(Jb3)
is performed. An instance of (UnsatR) is chosen, where ϕ is taken to be the antecedent

of Jb3, ψ is taken to be z = 20 ∧ Arr(1, 3) ∗ 10 7→ (z, y), and
−→
ψ is taken to be z 7→

(20, w) ∗ ls(20, 20) ∗Arr(1, 3) ∗ 10 7→ (z, y). Now ϕ ∧ ψ is unsatisfiable, since the sizes of the
required heaps by these ϕ and ψ are different.

Then ApplyR(Jb3) produces the following one subgoal:

(Jb4) Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` z 7→ (20, w) ∗ ls(20, 20) ∗Arr(1, 3) ∗ 10 7→ (z, y).

Begin search(Jb4): search(Jb4) is called. Then R is set by (7→LsEM). ApplyR(Jb4)
is performed. An instance of (7→LsEM) is non-deterministically chosen, where t 7→ (v, w)
is taken to be z 7→ (20, w), ϕ is taken to be Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y), ls(t′, u′) is

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:31

taken to be ls(20, 20), ψ is taken to be the succedent of Jb4, and
−→
ψ is taken to be empty.

Then ApplyR(Jb4) produces the following two subgoals:

(Jb51) z 6= 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` z 7→ (20, w) ∗ ls(20, 20) ∗Arr(1, 3) ∗ 10 7→ (z, y), and

(Jb52) z = 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` z 7→ (20, w) ∗ ls(20, 20) ∗Arr(1, 3) ∗ 10 7→ (z, y).

Begin search(Jb51): search(Jb51) is called. Then R is set by (LsElim). ApplyR(Jb51)
is performed. An instance of (LsElim) is chosen, where ϕ is taken to be the antecedent of
Jb51, ls(t′, u′) is taken to be ls(20, 20), ψ is taken to be z 7→ (20, w) ∗Arr(1, 3) ∗ 10 7→ (z, y),

and
−→
ψ is taken to be empty. Then ApplyR(Jb51) produces the following one subgoal:

(Jb61) z 6= 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` 20 = 20 ∧ z 7→ (20, w) ∗Arr(1, 3) ∗ 10 7→ (z, y).

Begin search(Jb61): search(Jb61) is called. Then R is set by (Start). ApplyR(Jb61)
returns the empty list, since Jb61 is evaluated to be valid by the decision procedure for SLA
given by Theorem 3.4.

End search(Jb61): search(Jb61) returns a tuple (Start, Jb61), which is written as Tb61.
End search(Jb51): search(Jb51) returns (LsElim, Jb51, Tb61), which is written as Tb51.
Begin search(Jb52): search(Jb52) is called. Then R is set by (7→Ls). ApplyR(Jb52) is

performed. An instance of (7→Ls) is chosen, where t 7→ (v, w) is taken to be z 7→ (20, w), ϕ
is taken to be z = 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y), ls(t′, u′) is taken to be ls(20, 20),

and ψ is taken to be z 7→ (20, w) ∗Arr(1, 3) ∗ 10 7→ (z, y), and
−→
ψ is taken to be empty. Then

ApplyR(Jb52) produces the following one subgoal:

(Jb62) z = 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` 20 = 20 ∧ z 7→ (20, w) ∗Arr(1, 3) ∗ 10 7→ (z, y),

z 7→ (20, w) ∗ 20 7→ (20, w) ∗ ls(20, 20) ∗Arr(1, 3) ∗ 10 7→ (z, y).

Begin search(Jb62): search(Jb62) is called. Then R is set by (UnsatR), since the
second clause in the succedent of Jb62 is unsatisfiable under the assumption z = 20. Then
ApplyR(Jb62) produces the following one subgoal:

(Jb72) z = 20 ∧Arr(1, 2) ∗ 3 7→ (10, 0) ∗ 10 7→ (z, y) ∗ z 7→ (20, w)

` 20 = 20 ∧ z 7→ (20, w) ∗Arr(1, 3) ∗ 10 7→ (z, y).

Begin search(Jb72): search(Jb72) is called. It immediately terminates, since Jb72 is
evaluated to be valid by the decision procedure for SLA.

End search(Jb72): search(Jb72) returns a tuple (Start, Jb72), which is written as Tb72.
End search(Jb62): search(Jb62) returns (UnsatR, Jb62, Tb72), which is written as Tb62.
End search(Jb52): search(Jb52) returns (7→ Ls, Jb52, Tb62), which is written as Tb52.
End search(Jb4): search(Jb4) returns (7→ LsEM, Jb4, Tb51, Tb52), which is written as Tb4.
End search(Jb3): search(Jb3) returns (UnsatR, Jb3, Tb4), which is written as Tb3.
End search(Jb2): search(Jb2) returns (7→ Ls, Jb2, Tb3), which is written as Tb2.
End search(Jb1): search(Jb1) returns (UnsatR, Jb1, Tb2), which is written as Tb1.
End search(Jb): search(Jb) returns (7→ Ls, Jb, Tb1), which is written as Tb.

15:32 Daisuke Kimura and Makoto Tatsuta Vol. 17:2

Finally our decision procedure answers “Valid”, since each of search(Ja) and search(Jb)
returns a tuple.

9. Conclusion

We have shown the decidability results for the validity checking problem of entailments
for SLA and SLAL. First we have given the decision procedure for SLA and proved its
correctness under the condition that the sizes of arrays in the succedent are not existentially
quantified. The key idea of the decision procedure is the notion of the sorted entailments.
By using this idea, we have defined the translation P of a sorted entailment into a formula
in Presburger arithmetic. Secondly we have proved the decidability for SLAL. The key idea
of the decision procedure is to extend the unroll collapse technique given in [2] to arithmetic
and arrays as well as doubly-linked list segments. We have also given a proof system and
showed correctness of the proof search algorithm for eliminating the list predicates in the
succedent of an entailment.

We require the condition in the decidability for SLA (Theorem 3.4) from a technical
reason. It would be future work to show the decidability without this condition.

Acknowledgments. This is partially supported by Core-to-Core Program (A. Advanced
Research Networks) of the Japan Society for the Promotion of Science.

References

[1] Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max Kanovich, and Joël Ouaknine. Foun-
dations for Decision Problems in Separation Logic with General Inductive Predicates. In: Proceedings
of the 17th International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS), volume 8412 of Lecture Notes in Computer Science, pages 411–425, 2014, Springer.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A Decidable Fragment of Separation Logic. In:
Proceedings of the 24th International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 3328 of Lecture Notes in Computer Science, pages 97–109, 2004,
Springer.

[3] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic Execution with Separation Logic.
In: Proceedings of the third Asian Symposium on Programming Languages and Systems (APLAS),
volume 3780 of Lecture Notes in Computer Science, pages 52–68, 2005, Springer.

[4] Ahmed Bouajjani, Cezara Drǎgoi, Constantin Enea, and Mihaela Sighireanu. A Logic-Based Framework
for Reasoning About Composite Data Structures. In: Proceedings of the 20th International Conference
on Concurrency Theory (CONCUR), volume 5710 of Lecture Notes in Computer Science, pages 178–195,
2009, Springer.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma, What’s Decidable About Arrays? In: Proceedings
of the 7th International Workshop on Verification, Model Checking, and Abstract Interpretation (VMCAI),
volume 3855 of Lecture Notes in Computer Science, pages 427–442, 2006, Springer.

[6] James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan A. Navarro Pérez. A Decision Procedure
for Satisfiability in Separation Logic with Inductive Predicates. In: Proceedings of the Joint Meeting of
the 23rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), Article No.25, ACM.

[7] James Brotherston, Nikos Gorogiannis, and Max Kanovich. Biabduction (and Related Problems) in
Array Separation Logic. In: Proceedings of the 26th International Conference on Automated Deduction
(CADE), volume 10395 of Lecture Notes in Computer Science, pages 472–490, 2017, Springer.

Vol. 17:2 DECIDABILITY FOR ENTAILMENTS OF SYMBOLIC HEAPS WITH ARRAYS 15:33

[8] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Beyond Reachability:
Shape Abstraction in the Presence of Pointer Arithmetic. In: Proceedings of the the 13rd International
Static Analysis Symposium (SAS), volume 4134 of Lecture Notes in Computer Science, pages 182–203,
2006, Springer.

[9] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional Shape
Analysis by Means of Bi-Abduction. In: Journal of ACM, volume 58 Issue 6, pages 1–66, 2011, ACM.

[10] Cristiano Calcagno and Dino Distefano. Infer: An Automatic Program Verifier for Memory Safety of C
Programs. In: Proceedings of NASA Formal Methods Symposium, volume 6617 of Lecture Notes in
Computer Science, pages 459–465, 2011, Springer.

[11] Byron Cook, Christoph Haase, Jöel Ouaknine, Matthew Parkinson, and James Worrell. Tractable
reasoning in a fragment of Separation Logic. In: Proceedings of the 22nd International Conference on
Concurrency Theory (CONCUR), volume 6901 of Lecture Notes in Computer Science, pages 235–249,
2011, Springer.

[12] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures using Separation Logic. In: Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV), volume 6806 of Lecture Notes in Computer Science, pages
372–378, 2011, Springer.

[13] Constantin Enea, Vlad Saveluc, and Mihaela Sighireanu. Compositional invariant checking for overlaid
and nested linked lists. In: Proceeding of 22nd European Symposium on Programming (ESOP), volume
7792 of Lecture Notes in Computer Science, pages 129–148, 2013, Springer.

[14] Constantin Enea, Onděj Lengál, Mihaela Sighireanu, and Tomáš Vojnar. Compositional Entailment
Checking for a Fragment of Separation Logic. In: Proceedings of the 12th Asian Symposium on
Programming Languages and Systems (APLAS), volume 8858 of Lecture Notes in Computer Science,
pages 314–333, 2014, Springer.

[15] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The Tree Width of Separation Logic with Recursive
Definitions. In: Proceedings of the 24th International Conference on Automated Deduction (CADE),
volume 7898 of Lecture Notes in Computer Science, pages 21–38, 2013, Springer.

[16] Radu Iosif, Adam Rogalewicz, and Tomáš Vojnar. Deciding Entailments in Inductive Separation Logic
with Tree Automata. In: Proceedings of International Symposium on Automated Technology for
Verification and Analysis (ATVA), volume 8837 of Lecture Notes in Computer Science, pages 201–218,
2014, Springer.

[17] Daisuke Kimura and Makoto Tatsuta. Decision Procedure for Entailment of Symbolic Heaps with Arrays.
In: Proceedings of the 15th Asian Symposium on Programming Languages and Systems (APLAS),
volume 10695 of Lecture Notes in Computer Science, pages 169–189, 2017, Springer.

[18] Shuvendu Lahiri and Shaz Qadeer. Back to the Future: Revisiting Precise Program Verification Using
SMT Solvers. In: Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 171–182, ACM.

[19] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating Separation Logic Using SMT. In:
Proceedings of the 25th international conference on Computer Aided Verification (CAV), volume 8044 of
Lecture Notes in Computer Science, pages 773–789, 2013, Springer.

[20] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In: Proceedings of
the 17th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 55–74, 2002, IEEE
Computer Society.

[21] Makoto Tatsuta and Daisuke Kimura. Separation Logic with Monadic Inductive Definitions and Implicit
Existentials. In: Proceedings of the 13th Asian Symposium on Programming Languages and Systems
(APLAS), volume 9458 of Lecture Notes in Computer Science, pages 69–89, 2015, Springer.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Separation Logic with Arrays
	2.1. Syntax of System G of Separation Logic with Arrays
	2.2. Semantics of System G of Separation Logic with Arrays
	2.3. Symbolic-Heap System with Arrays
	2.4. Analysis/Verification of Memory Safety

	3. Decision Procedure for SLA
	3.1. Sorted Entailments
	3.2. Translation P
	3.3. Decidability Theorem
	3.4. Other Systems of Symbolic Heaps with Arrays

	4. Correctness of Decision Procedure
	4.1. Correctness of Translation
	4.2. Decidability Proof

	5. Separation Logic with Arrays and Lists
	5.1. Syntax of G+ and SLAL

	6. Unroll Collapse
	7. Decision Procedure for Arrays and Lists
	7.1. Proof System for Elimination of Lists in Succedents
	7.2. Proof Search Algorithm

	8. Decidability of Entailment Problem for SLAL
	9. Conclusion
	Acknowledgments

	References

