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Abstract. We give a number of formal proofs of theorems from computable analysis.
Many of our results specify executable algorithms that work on infinite inputs by means of
operating on finite approximations. The proofs that these algorithms are correct in the
sense of computable analysis are verified in the proof assistant Coq heavily relying on the
Incone library for information theoretic continuity. This library is developed by one of
the authors and the paper can be used as an introduction to it. Incone formulates the
continuity-theoretic aspects of computable analysis. It is designed in such a way that it can
be combined with Coq’s Type/Prop distinction to provide a general purpose interface for
algorithmic reasoning on continuous structures and many of our results provide complete
computational content.

The results that provide complete computational content include that the algebraic
operations and the efficient limit operator on the reals are computable, that the space of
infinite sequences is isomorphic to a space of functions, compatibility of the enumeration
representation of subsets of natural numbers with the abstract definition as space of functions
to Sierpinski space and that continuous realizability implies sequential continuity. We also
formalize proofs of non-computational results to support the correctness of the definitions:
We show that the information theoretic notion of continuity used in Incone is equivalent
to the metric notion of continuity on Baire space. We give a complete comparison of the
different concepts of continuity that arise from metric and represented-space structures.
Finally we prove discontinuity of the tasks of finding the limit of a converging sequence of
real numbers and selecting an element from a closed subset of the natural numbers.

1. Introduction

Computable analysis is the theory of computing on continuous structures. Its roots are
often cited as going back to Turing’s fundamental paper from 1936 in which he introduced
his mathematical model of computation later known as Turing machine [Tur36]. Turing’s
original definitions relied on the binary representation and was flawed. In his 1937 correction
he adapted it to use a signed binary representation that is still common today [Tur38]. For
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the idea behind the corrected definition he pointed to earlier work from constructive analysis
by Brouwer [Bro75]. The theory of computable functions on the real numbers was further
developed in the 1950s by Grzegorczyk and Lacombe in parallel [Grz57, Lac58]. Finally,
Kreitz and Weihrauch extended the results to apply to more general spaces and introduced
the formal framework of representations that is standard today [KW85].

The basic idea behind computable analysis is fairly simple: To make uncountable
structures available to computation, one encodes them by infinitary objects that can still be
operated on mechanically. Most commonly infinite strings are used, but more conveniently one
may use functions between discrete structures. An example of a reasonable encoding of real
numbers is to describe them by functions that provide arbitrarily accurate approximations.
The inputs and outputs of such functions can be rational numbers and thus be described by
finite means. To compute functions on the real numbers, one operates on these encodings
and algorithms use a model of computation that can handle infinite inputs while remaining
realistic in the sense of being implementable.

Operating on continuous data such as real numbers is necessary in many applications.
The use of software based on computable analysis for solving practically relevant problems is
fairly uncommon. Partly this is due to the strict correctness assumptions that are imposed by
computable analysis. These involve high-level mathematical concepts and require algorithms
to scale to arbitrary precision. On one hand, due to the conceptual complexity, checking
correctness of programs in the sense of computable analysis can be subtle and mathematical
simplicity of algorithms is valued highly. On the other hand, for practical applications
performance is a central topic. Optimizations that rely on the specifics of the hardware are
not uncommon and may fail to scale. Algorithms from computable analysis are typically
difficult to optimize for performance and thus their main area of impact are applications
that require utmost reliability.

Software packages based on computable analysis require their users to keep track of the
details of the semantics to maintain the high reliability that computable analysis provides
in principle. This task becomes increasingly challenging to do by hand when programs
become more complicated. For instance, when dividing a program into components to be
optimized separately, each subtask has to be carefully annotated with the properties that
are needed for correctness of the combined procedure. These problems are not specific to
computable analysis, however, in computable analysis understanding annotations typically
requires a fair amount of mathematical background knowledge. As a consequence, many of
the developers of the more popular software packages for computable analysis have started
to look into possibilities to link their software to some sort of formal verification. Ideally,
this should make it possible for mathematicians to implement their ideas without having
to deal with the low level details of programming languages and relying on components
that computer scientists can develop and optimize. Formal specifications guarantee that the
overall programs do not suddenly become incorrect due to an optimization that changes the
semantics in a subtle way and has not been properly communicated.

This paper describes a formal development where we formulated some well-known facts
from computable analysis and give computer verified correctness proofs. For the more
basic operations we proceed by first obtaining a target specification from the theoretical
background provided by computable analysis and then specifying a fully executable algorithm
and prove it to fulfill the specification. For more advanced operations we argue that the
desired algorithm can be constructed from any set of solutions of more basic operations and
finally obtain an executable program by combining what we, or other formal developments,
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provided earlier. The algorithms we produce are far from being competitive in terms of speed
or memory consumption. Their relevance is more to witness theoretical implementability or
prove impossibility of such an implementation. This means that the developed theory can
safely be used as a basis for verification of software packages that operate more efficiently
[Mül01, Kon08, BCC+06]. Due to recent developments in verified numerics it may also be
possible to optimize the algorithms underlying our proofs quite a bit without sacrificing the
additional safety provided by exclusively working inside of a proof assistant [BM17].

The standard references to find basic facts from computable analysis are [PER89, Ko91,
Wei00]. In [Bau00, Sch02a, Pau16] similar topics are presented in a form that is somewhat
closer to how this paper proceeds. This paper restates many of the basic definitions from
computable analysis to outline how our formal development diverges from a traditional
treatment. However, we do not attempt to give exhaustive explanations or justify more
than the differences to the traditional definitions. We assume the reader to have enough
background in computable analysis to see the reasonability of the definitions used there.
For readers without background in computable analysis let us quickly point out that the
model of computation used in computable analysis is by far not the only popular model
for operating on functional inputs and that differences to other models can be quite subtle.
To avoid confusion, readers from adjacent fields may want to consult sources that give a
systematical comparison [AB14, LN15].

1.1. Coq and proofs about continuous structures and computation. As a framework
for formal verification of proofs from computable analysis, we use the proof assistant
Coq. This proof assistant is type theory based, but the content of this paper should be
understandable with little to no background in type theory or experience with Coq for
that matter. We hope that the basic facts that do make an appearance are comprehensible
from the brief description of the basic workings of Coq provided in this section. For it to
be possible to link the results from this paper to the formal development we provide some
additional information in Appendix A.

Coq is a proof assistant that supports mathematicians in giving fully formal proofs of
their results. Ideally, a Coq development looks very similar to a mathematical paper. It
consists mostly of definitions and lemmas with some explanations and some documentation
in between. The definitions specify objects that the developer is interested in and properties
he wants these objects to have. Lemmas provide evidence that some of the objects actually
have some of the properties. In practice, formal developments fall short in readability due to
the need to specify every last detail and the tendency to optimize proofs for brevity instead
of readability. However, any person that has access to a computer with a Coq installation
can verify the correctness of a Coq development without the need to understand all of
its details. Furthermore, even without understanding the details of the proofs of lemmas
defined by others, it is possible to reuse them without being afraid of making errors as Coq
will check all the details and prevent the user from mixing up definitions or missing details.

There is a wide variety of proof assistants to choose from. The Coq system is particu-
larly appropriate for the purpose of this paper. This is because it is designed to support a
mathematician in maintaining and extracting computational meaning while doing mathe-
matical proofs. The most common way of doing so is by resorting to exclusively constructive
reasoning and the mathematician who chooses to do so is rewarded by programs that can
be executed directly in Coq. This provides a very high standard of reliability. For achieving
this executability Coq relies on the Curry-Howard correspondence to identify proofs and
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programs. Indeed, proving a lemma in Coq can be seen as using a high level programming
language to specify how evidence of its truth can be obtained from the given inputs. Some of
the inputs here may not be traditional input data but instead evidence that the assumptions
of the lemma are fulfilled. Thus, proving a lemma may be understood as a special case of
a defining a function. One may also invert this and follow a Coq definition with a proof
providing the value in the high level language instead of specifying it manually.

However, it is important to keep up the distinction between providing evidence of a
property and producing a value. Just like in mathematics, the details of a value can be
important while a lemma should be chosen such that all information is contained in its
statement so that it can be used independently of why it is true: It should be such that
it is never necessary to unfold the proof and the exact form of the evidence provided is
irrelevant. This means that the corresponding lemmas do not have computational content
and are purely for specification purposes and is independent from whether one chooses
to work constructively or not. Such lemmas can be marked as correct and the details of
their proofs can be hidden. In Coq a collection Prop of values that should be considered
properties is provided and meant to be used to mark parts that do not have computational
content in the above sense. The distinguishing feature is that a definition of a function
cannot depend on details (i.e. the proof) of inputs that are marked properties. This rule
is what allows the code extraction machinery of the Coq system to safely disregard these
parts as non-computational.

A mathematician working with Coq will quickly run into statements that should
intuitively be true but cannot be proven. An example that often causes mathematicians to be
confused is functional extensionality: For functions f and g of the same type mathematicians
would assume that the statement (forall a, f(a) = g(a)) -> f = g is true, but this is
not provable in Coq. Depending on the upbringing of the mathematician, another example
may be the law of excluded middle. Coq allows to assume the truth of properties such as
the two above by stating them as axioms. Many mathematical developments force the truth
of functional extensionality by assuming it in this way. Other popular axioms include choice
principles. Of course, one has to make sure that the axioms are compatible with Coq’s
internal logic and compatible with each other. Coq’s official webpages1 list some known
facts about consistencies of axioms that are often used.

1.2. Computational content in presence of axioms. In the previous paragraph we
spoke about “axioms” as assumptions about the logical background theory. This should be
distinguished from local axioms such as those for algebraic structures that only apply to
a local context. The best practice would be to never assert axioms as global assumptions
and always prove implications that their truth has certain consequences. However, if
certain assumptions about the logical background theory are consistently used throughout a
development, stating them as axioms leads to considerably cleaner overall appearance. In
our development we do this for the law of excluded middle, for functional extensionality and
for some choice principles.

In principle, assuming any consistent set of axioms that state properties is an acceptable
practice, but one should be aware that the use of axioms can make preserving and extracting
computational content challenging. Depending on the nature of the axioms, the loss in
executability is gradual. More specifically, axioms that assert properties typically prevent

1https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
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execution inside of the Coq proof assistant, but an executable program in a functional
programming language can still be obtained using Coq’s code extraction capabilities. Note
that it is thus a plausible assumption that any function that can be defined in Coq is
computable even if it relies on this kind of axiom. This remains true if the set of axioms is
inconsistent: extracted programs are still executable but due to the inconsistency it can be
proven that an executable program exhibits incomputable behavior as any specification can
be proven in this case.

However, Coq also allows to use axioms to introduce objects that cannot realistically
be constructed. In this case the extracted algorithm can be understood to make use of a
subroutine that is not provided and if it is provably impossible to implement this missing
part appropriately, the produced code should be considered useless. As example let us
consider the real numbers that are axiomatized as an archimedean closed field in Coq’s
standard library. This axiomatization asserts a function up : R→ Z to be available of which
it is assumed that it returns the least integer bigger than its input. No computable such
function exists and as a consequence, code extracted from statements about the real numbers
in the standard library is rarely of practical use. At best one obtains algorithms whose
correctness relies on availability of an algorithm implementing the up function and other
assumptions such as exact operations on real numbers. A replacement of the reals by any
realistically implementable type leads to an almost guaranteed loss of correctness. This is
not to say that the axiomatization is useless for specification of algorithms.

While the up function may not realistically implementable, a mathematician may take
the position that it still exists and having direct access to such objects can be desirable. The
existence of the up function could also be stated as a property of the real numbers by hiding
it behind an existential quantifier. For the mathematical development this would result in a
lot of inconveniences where an existential quantifier has to be resolved and a uniqueness
lemma has to be used. Moreover, the very mechanism that the Coq system uses to support
its users in keeping the distinction between computational and non-computational content
will disallow the use of the up function definitionally if this is done. This system can in more
general cases appear as a hurdle to users who do classical mathematics, where more liberal
definitional thinking is common practice. For instance, it generally disallows branching
over properties and as a result a definition by cases is often not possible even if one can
prove that one of the cases must always be true. To do branching one needs to first find an
algorithm that decides the truth by returning a Boolean and such an algorithm is at times
hard to come by with. More recent developments in Coq’s community for formalization of
results from analysis take an even clearer stance on these topics and assume the full strength
ε-axiom to make the development of abstract mathematics more convenient [ACR18].

1.3. Related work. Verification of real and numerical analysis is an active field of research
and several projects in Coq and other proof assistants exist. We do not attempt to give an
overview here but instead refer to Boldo, Lelay and Melquiond’s survey paper [BLM16]. Let
us still briefly mention the projects that are most relevant for our formalization.

As described in the previous section, the definition of the reals in the standard library
makes it difficult to strictly separate computational and non-computational content. A
solution for the real numbers that neither gives up on convenience nor interferes with
the code extraction capabilities is to treat non-computational assumptions such as the up

function as parameters of a real number structure and is currently under development as
“mathcomp analysis” [ACK+20]. However, there exists a vast body of work building on the
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classical axiomatization of the reals in the standard library. A good example for this is the
Coquelicot library [BLM15], a widely used library for real analysis that is conservative over
this axiomatization. To make it possible to reuse previous results of this kind, we rely on the
axiomatization from the standard library for the present work and manually avoid improper
use of the logical strength provided by this axiomatization.

A quite different approach is taken by the C-CoRn library [CFGW04]. The library
defines a fully computational formalization of real numbers. It provides a wide range of
results about functions on real numbers and some about operators on function spaces
and includes an exhaustive treatment of metric spaces and uniformly continuous functions
between metric spaces [O’C09]. Its design follows the development of constructive analysis
by Bishop and Bridges [BB12]. Our treatment of the real numbers rarely goes beyond what
can already be found in C-CoRn and many parts are inspired by it. This said, it should also
be noted that the constructive nature may make the C-CoRn library and the publications
related to it difficult to access for some classically trained mathematicians.

In contrast to that, the Incone library follows the usual approach that is taken in
computable analysis: The mathematical background theory is developed classically and the
algorithmic content is considered extra information about data representation that should
follow the mathematical understanding. That is, it distinguishes between computational
results in the form of algorithms and their correctness proofs. A similar approach is taken in
recent work in verified numerics where an abstract mathematical theory is developed in a first
step and computational content provided in an additional step by using the mathematical
libraries to prove floating-point algorithms correct [BM17]. We hope that the “backward
approach” taken by the Incone library allows for synergy with such developments and
complement the “forwards approach” of working completely constructively as is done in
developments such as C-CoRn.

1.4. Structure of the paper and main results. The main contributions of this paper are
described in Section 4 with some exceptions that appear earlier in Section 3. All theorems,
propositions and lemmas in this paper have been formally proven in Coq and have explicit
pointers to their name in the Incone library. However, before we get to the core topics,
some discussion of background is necessary. Section 1 contains the introduction, pointers to
literature for reading up on computable analysis and a short description of some aspects of
Coq that are relevant for understanding some of the more important remarks that directly
address the formal development.

In Section 2 we introduce the concept of continuity of partial operators on Baire space.
As a preparation for a proper treatment of partiality in Coq, we introduce basic concepts
from the theory of multivalued functions, a formalization of which is provided by Incone’s
sublibrary mf for specification of functions through relations. We then discuss how to
capture partial computable functions and operators in Coq by relying on a modification
of the fuel based approach to diverging computation in type theories. This construction is
one of the core concepts that is revisited many times throughout the rest of the paper. The
second part gives an information theoretic description of continuity on Baire space and an
overview over the formalization of this notion in the Incone library. The third part presents
the universal that the Incone library uses to implement the function space construction
from computable analysis.

Section 3 deals with the basic concepts from computable analysis, explains how they
are realized in Incone and introduces the real numbers as an example that is used through
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the rest of the section. The first part of the section explicitly describes how a few of the
simple type constructions like products are automated in the library. Arithmetic operations
on the real numbers are used as a basic example to demonstrate the workings of these
constructions. The second part describes how spaces of sequences can be constructed and
considers point-wise operations on spaces of sequences and the limit operator on the real
numbers as concrete examples. From a category theoretical point of view the space of
sequences is a countably infinite product of a space with itself. As such it is of particular
interest as the existence of countably infinite products is only guaranteed in the case where
all continuous functions are considered as morphisms and may fail to exist if one restricts to
computable ones. The final third part builds exponentials using a construction that is known
to work for both these categories. It presents a formal proof that the space of sequences can
be recovered as an exponential.

The final section (Section 4) starts with a brief description of the metric library and
a comparison to other formalizations that have a similar purpose. The first part presents
a formal proof that information theoretic notion of continuity that the Incone library
uses internally is equivalent to the more traditional approach of equipping Baire space
with an appropriate metric. The second part presents formal proofs about the relation
of different concepts of continuity in metric spaces and represented spaces that can be
constructed from such. The final part introduces Sierpinski space as a space that can be used
to abstractly reason about open and closed subsets of represented spaces. For the concrete
case of the natural numbers, the spaces of open and closed sets can be given more concrete
representation that encode such sets by enumeration of themselves or their complement.
These concrete representations are proven equivalent to the abstract representations and the
equivalence is used to prove that the task of selecting an element of a closed set does not
have a continuous solution.

The formal proofs that we consider related to this publication and part of its main
contributions are that the space of infinite sequences in a space isomorphic to a space of func-
tions (Theorem 3.14), that the algebraic operations and a limit operator for fast-converging
Cauchy sequences on the reals are computable (Examples 3.5 and 3.8), compatibility of
the enumeration representation of subsets of natural numbers with the abstract definition
of the space of open subsets of the natural numbers (Theorem 4.10), and that continuous
realizability implies sequential continuity (Theorem 2.6). The previous results are fully algo-
rithmic, but we also describe many non-computational theorems. These include numerous
specification results for the constructions in the Incone library (in particular Theorems 2.7,
2.11, 3.13 and Proposition 3.7), a proof that the information theoretic notion of continuity
used in the library is equivalent to the metric notion of continuity on Baire space (Theorem
4.4), a complete comparison of the different concepts of continuity that arise from metric and
represented-space structures (Theorems 4.7 and 4.8) and the discontinuity of the unrestricted
limit operator on the real numbers (Example 3.8) and the task of selecting an element of a
closed subset of the natural numbers (Theorem 4.13).

2. Multifunctions and partial operators on Baire space

Baire space NN is the space of all total functions from natural numbers to natural numbers.
Baire space comes with the structure of a topological space and a notion of computability of
its elements. Computable analysis transfers the computability and topological structure of
Baire space to more general spaces by means of encodings that are called representations.
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Before we go into detail about how this can be done, this chapter describes the structure on
Baire space that we need. We will be interested in functions on Baire space and for such
the natural numbers appear in a number of different roles. To avoid confusion, one may be
tempted to name the distinct copies of the natural numbers differently. We will do so and
name the set of inputs Q for questions and the outputs A for answers so that Baire space
takes the form AQ. This naming is chosen such that it matches the use of Baire space in
computable analysis and to avoid coding it can often be convenient to chose Q and A to
not be the natural numbers but something that can sufficiently concretely be encoded by
natural numbers.

Motivated by the above we call a space of the form B = AQ a naming space if Q
and A are countable and non-empty. Here, the letter B is chosen because these spaces
take the role that is traditionally taken by Baire space in computable analysis. The phrase
“naming space” reflects how Baire space, and thus in our treatment also any of these spaces,
is used in computable analysis. Classically the assumptions about Q and A imply that
these sets are either finite or bijectively related to the natural numbers. Constructively this
need not be true, or at least depends on the notion of countability that is used. Indeed, if
computability considerations come in, that is, if the surjection whose existence is guaranteed
by the countability is considered an encoding of the elements of the set by natural numbers,
more care has to be taken. The critical reader may in the following replace any occurrence
of Q and A and their dashed variants by N. In the applications that we look at, these
substitutions can be carried out by hand.

We will mainly be interested in partial functions between naming spaces. While Coq
comes with a native concept of a function, for Coq to accept a definition of a function, the
function must be total. Thus, for our purposes, simply relying on this concept is not an
option. There are several ways to model partial functions in Coq. The most common one is
to replace the target space of a function by a different space that has an additional value
that stands for being undefined. Doing this naively works well in a purely mathematical
setting, but quickly leads to problems when computability considerations come in. Another
way to model partiality in Coq is to rely on the dependent type system. That is, an input
of a partial function is a pair consisting of the input together with a proof that the input
is from the domain of the partial function. Such a treatment is the most natural one, but
heavy use of Coq’s dependent type system brings its own disadvantages. For our purposes
we decided it to be best to use aspects of the theory of multivalued functions to capture
partiality.

Multifunctions are a very popular tool for specification and classification of problems in
computable analysis [BKMP16, BGP17, BG11, BDBP12, PS18]. Within this field, multi-
functions form a topic of research of their own [Pau17, PZ13]. This is not to say that this
concept was invented for computable analysis, multifunctions also have applications in com-
putational complexity, in particular the theory of promise problems and non-deterministic
computation [Sel94, ASBZ13], and even in the treatment of non-smooth and non-linear
problems in functional analysis [EM46, Dei92]. A multivalued function F : S ⇒ T assigns
to each s ∈ S a possibly empty subset F (s) ⊆ T . While this gives F the type of a relation,
the intuition behind a multivalued function is different. By contrast to relations, multivalued
functions are directed and S is treated as input type and T as output type. The domain
of a multifunction F is given by dom(F ) := {s ∈ S | ∃t : t ∈ F (s)} and for s ∈ dom(F )
the set F (s) is non-empty and should be interpreted as the set of eligible return values. A



Vol. 17:2 COMPUTABLE ANALYSIS AND NOTIONS OF CONTINUITY IN COQ 16:9

R S T

g

f

f ◦ g

G

F

F ◦R G

(a) f chooses through F , g chooses through G.
f ◦g does not choose through F ◦RG, but through
F ◦G which is empty. G−1 ◦ F−1 = (F ◦R G)−1

is not the empty function.

S

T

G

f
F

(b) f chooses through F which tightens G. Thus
f also chooses through G.

Figure 1

multivalued function is called total if its domain is all of S, and singlevalued if each F (s)
has at most one element.

Any multivalued function can and should be considered a specification for functions: A
function f : S → T fulfills the specification F : S ⇒ T if for any s ∈ dom(F ) it holds that
f(s) ∈ F (s). In this case we say that f is a choice for F . The operations on multivalued
functions are chosen such that they behave well with the interpretation as specifications. For
instance, the composition F ◦G of two multivalued functions G : R⇒ S and F : S ⇒ T is
of type R⇒ T and its value sets are given by

(F ◦G)(r) := {t ∈ T | G(r) ⊆ dom(F ) ∧ ∃s : t ∈ F (s) ∧ s ∈ G(r)}.

This should be compared to (F ◦R G)(r) := {t | ∃s : t ∈ F (s) ∧ s ∈ G(r)}, which is what
is commonly used as composition for relations. Both the relational and the multifunction
composition are associative operations. The domain condition added in the multifunction
composition is a modifier that addresses the difference in interpretations. For the multifunc-
tion composition it is true that if f is a choice for F and g is a choice for G then f ◦ g is a
choice for F ◦G, which may fail for the relational composition as illustrated in Figure 1a.
From the same figure it can be seen that the multifunction composition is not symmetric
under changing the direction of the multifunctions while for relations this is the case. The
relational and the multifunction composition produce identical results if the multifunction
that is applied last is total (comp_rcmp) resp. the first one is singlevalued (sing_comp).

Functions and partial functions are special cases of multifunctions. A function f : S → T
may be identified with the specification that on input s it makes f(s) the only eligible
return value, i.e. with s 7→ {t ∈ T | t = f(s)}. The multifunction associated to a function
is always total and singlevalued (F2MF_tot and F2MF_sing) and assuming that T is not
empty and an appropriate choice principle, each total singlevalued multifunction arises in
this way (fun_spec). We call this connection between functions and total singlevalued
multifunctions the F2MF correspondence. This construction can be extended to partial
functions by assigning to g : ⊆ S → T the multifunction function

s 7→ {t ∈ T | g(s) is defined and equals t}.
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The resulting multifunction is singlevalued (PF2MF_sing) but need not be total. Note that
we are being unspecific about how to encode partial functions here. One may use functions
to an option type as outlined previously but should keep in mind that this can be understood
to imply the domain of the partial function to be decidable which is rarely the case in our
applications. It is not difficult to check that both relational and multifunction composition
restrict to regular composition of functions or partial functions when considered only on
singlevalued resp. total and singlevalued multifunctions (F2MF comp and PF2MF comp).

Any multifunction can be assigned a reverse multifunction by switching input and
output. Each property of a multifunction has a co-version that requires the same property
for the reverse multifunction. Many of the co-properties have nice characterizations for the
special cases of functions. For instance, a function is injective if and only if the associated
multifunction is co-singlevalued (mfinv_inj_sing). For later reference we list:

Lemma 2.1 (PF2MF cotot). A partial function is surjective if and only if its associated
multifunction is co-total.

For multifunctions F,G : S ⇒ T we say that F tightens G if it is more restrictive as a
specification. This can be spelled out elementary as

dom(G) ⊆ dom(F ) and ∀s ∈ dom(G) : F (s) ⊆ G(s).

Under weak additional assumptions this is equivalent to the statement that each choice
function for F is also a choice function G (icf_tight and tight_icf, see Figure 1b). A
function is a choice for a multifunction F if and only if its associated multifunction tightens F
(icf_spec). For a partial function we say that it is a partial choice for F if its associated
multifunction tightens F . This can be spelled out to still mean that f is a partial choice
for F if whenever s ∈ dom(F ) then f(s) is defined and an element of F (s). Many further
properties of multifunctions are proven in the mf library and we just pick an example:

Lemma 2.2 (tight comp). If F tightens F ′ and G tightens G′ then F ◦G tightens F ′ ◦G′.

2.1. Capturing the computable partial functions and relativization. Next we dis-
cuss another way to generate multifunctions from functions that is related to the standard
way of modeling diverging computation in intuitionistic type theories. Recall that for a type
T the option type optT adds a single element to T . That is, each t ∈ T corresponds to an
element Some t ∈ opt(T ) and there is a single additional element None ∈ opt(T ). Given a
function N : N× S → optT define a multifunction ΦN : S ⇒ T via

ΦN (s) := {t ∈ T | ∃n : N(n, s) = Some t}.
We call the additional input n ∈ N the effort parameter and the reason for this should
become apparent from the next paragraph where it takes the role of the number of steps
taken by a Turing machine.

Consider the special case where S = N = T . Given a partial computable function
f : ⊆ S → T we want to argue that there exists a primitive recursive N that recovers it
through the Φ-assignment above. Indeed fix some Turing machine that computes f and
consider the function N that on input (n, s) returns Some t if the machine on input s
terminates within the first n time-steps and returns t, and None otherwise. For this function
N it holds that ΦN (s) is empty if the machine diverges and otherwise consists of the single
value f(s), thus ΦN (s) = f if we identify partial functions with their induced multifunction.
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Although there are technical differences, it should be clear that the core idea behind this is
a version of the Kleene normal-form theorem [Soa78]. The above makes the Φ assignment
particularly interesting to us as any primitive recursive function is definable in Coq [O’C05].

Even for primitive recursive N , the multifunction ΦN need neither be total nor singl-
evalued. In the case where S and T are the natural numbers, N(n, s) := None leads ΦN

to be the empty function and N(n, s) := Some(n) results in the total specification for that
renders any return value eligible. However, for any N , it is possible to obtain a singlevalued
tightening of the form ΦN ′ : Choose N ′ to be the function that on input n and s evaluates
N on inputs (0, s), . . . , (n, s) and returns the first value returned by N if such exists and
None otherwise. This N ′ is monotone in the sense that if it returns a value on some effort,
then it returns the same value on all bigger efforts. Whenever a function is monotone in
this sense, the corresponding multifunction is singlevalued. As the procedure of searching is
computable, it is also true that for any computable N the function ΦN has a computable
choice function. Thus, assuming that the functions definable in Coq are computable (in
the sense in which this was discussed in the introduction), we may use the Φ assignment to
capture computability in Coq.

Since we are interested in specification of partial operators, we relativize the construction.
That is, we start from the Φ assignment and add an additional argument that reaches over
Baire space. For a fixed ϕ from Baire space we thus capture computability by an oracle Turing
machine relative to ϕ just as the original assignment captured computability by a regular
Turing machine. As the use of the word oracle indicates, ϕ need not be computable. In case
the oracle is incomputable, the functions computable relative to it may be incomputable
as well. However, if one does not consider ϕ to be fixed but instead as an input to the
computation, one recovers a realistic model of computation and this is the model that is
at the basis of computable analysis. We further adapt to the conventions of computable
analysis by interpreting the discrete input to the oracle Turing machine as a curried function
input. That is, for a given functional input ϕ, an oracle Turing machine is considered to
return an element of Baire space if the relativized computation with oracle ϕ terminates for
each possible input. If the computation on oracle ϕ diverges for any of the possible inputs,
the return value is considered undefined.

To make this precise, first recall that we use the notations B = AQ and B′ = A′Q
′
. Given

a function M : N× B ×Q′ → optA′ we consider the multifunction FM : B ⇒ B′ defined by

FM (ϕ) := {ψ ∈ B′ | ∀q′,∃n : M(n, ϕ, q′) = Some(ψ(q′))}.

One may repeat the discussion for the Φ assignment above to verify that for each operator
computable by an oracle Turing machine, there exists some M definable in Gödels system T
such that FM is the multivalued function assigned to the operator computed by the oracle
Turing machine. In the same way as was done for the unrelativized case, one may force
singlevaluedness. It is also still true that for any M that is computable by an oracle Turing
machine this singlevalued selection of FM is computable by an oracle Turing machine. Thus,
under the assumption that all functions definable in Coq are computable, and whenever all
the question and answer types come with canonical bijections with the natural numbers, we
may use a definition of M as certificate for the computability of an operator. In the rest of
the paper, whenever we mention computability, we mean computability in this sense.

As an informal example consider sections of elements of Baire space, i.e. let all question
and answer sets be the natural numbers so that B and B′ both are NN. Consider the function
M that on input of an effort n ∈ N, some ϕ ∈ B = NN and a q′ ∈ Q′ = N returns the value
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M(n, ϕ, q′) ∈ opt(A′) = opt(N) given by

M(n, ϕ, q′) :=

{
Some(n) if ϕ(n) = q′

None otherwise.

Then the values of the corresponding operator FM are given by

FM (ϕ) = {ψ ∈ NN | ∀q′,∃a′: ϕ(a′) = q′∧Some(a′) = Some(ψ(q′))} = {ψ | ∀q′: ϕ(ψ(q′)) = q′}.
That is FM (ϕ) is the set of all sections of ϕ. Consequentially, the domain of FM is the
collection of all surjective elements of Baire space. As a given surjective function can have
several different sections, FM is not singlevalued. However, one can make the values unique
by deciding on the minimal section, where a section ψ of a surjection ϕ is called minimal if
it is pointwise less or equal to any other section. An M ′ such that FM ′ is the specification
of being a minimal section can be found by following the construction of a singlevalued
selection for the Φ assignment given above.

A version of this example that is of particular interest for us, we have made formal:

Example 2.3 (examples/continuous search.v). Consider the case where A := {0, 1} are
the Booleans, Q′ := {?} is the canonical one point set and the other question and answer sets

are the natural numbers. This means that B = {0, 1}N is Cantor space and B′ = N{?} can
be understood as the natural numbers by identifying ψ ∈ B′ with ψ(?) ∈ N. Consider the
operator F : ⊆ B → B′ that on input of some χ from Cantor space that is not the constant
function returning 1, returns the first q′ ∈ N such that χ(q′) = 0. Then F = FM if we
choose for M : N×B × {?} → opt(N) the function such that M(n, χ, ?) equals Some(k) if k
is the smallest number no bigger than n such that χ(k) = 0 and None if no such k exists.
Just like in the informal example above, this M may be constructed by first considering the
multifunction returning any zero and then moving to a singlevalued selection function.

Note that the Φ and the F assignments differ considerably in their interpretation of
what is considered input and output. As sketched above this is not relevant for finding a
singlevalued selection. However, it renders different operations natural for the Φ and the F
assignment and the natural operations for the latter tend to be more problematic than for
the former. As illustration of this, and as an additional motivation for the next section, let
us briefly look into composition.

First consider the Φ assignment. Given functions N : N×R→ optS and N ′ : N× S →
optT one may define a new function N ′ ◦Φ N : N×R→ optT via

N ′ ◦Φ N(〈n,m〉, r) :=

{
N ′(n, t) if N(m, r) = Some t

None otherwise,

where 〈·, ·〉 is the Cantor (or any standard) pairing function. This captures the relational
composition in the sense that ΦN ′◦ΦN = ΦN ′ ◦R ΦN which in turn tightens ΦN ′ ◦ΦN . Under
the assumption that N is monotone one may further simplify the construction by replacing
the pair by the maximum. Let us try to adapt the above to the setting of the F assignment.
Given M ′ and M one would most likely be interested in FM ′ ◦ FM . For simplicity let us
assume that FM ′ and FM are singlevalued so that the values of the composition are given by
(FM ′ ◦FM )(ϕ) := FM ′(FM (ϕ)). A straightforward adaption of the proof for the Φ assignment
does not give information about this operator but instead about an operation that would
be more natural to consider for functionals. Namely given functionals F : B × Q′ → A′

and G : B ×Q′′ → Q′ it makes a statement about the functional (ϕ, q′′) 7→ F(ϕ,G(ϕ, q′′)).
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The construction for functionals that corresponds to what we were originally interested
in is “functional substitution”, spells out (ϕ, q′′) 7→ F(λq′.G(ϕ, q′), q′′) in the language for
functionals and requires different typing of F and G.

Let us thus assume we are given M : N×B×Q′ → optA′ and M ′ : N×B′×Q′′ → optA′′

and let us try to find some M ′ ◦FM : N×B×Q′′ → optA′′ such that FM ′◦FM is a tightening
of FM ′ ◦FM . Due to the definition of the F assignment, we can recover from M for each fixed
effort n and input ϕ ∈ B an approximation M(n, ϕ, ·) : Q′ → opt(A′) to possible functional
inputs to M ′. However, M ′ expects an input of type Q′ → A′ and not of type Q′ → opt(A′)
and to move from the latter to the former one has to pick a value whenever None occurs as
return-value. Without further information about M ′ it is not clear why the choices of these
values should be irrelevant. And in particular it is not clear why the return values of M ′ on
an arbitrary extension should have anything to do with the return-value of the composition.
However, Coq is consistent with functional extensionality and any functions defined in Coq
without use of non-computational axioms can be evaluated in a finite amount of time. One
might thus tend to believe that if M ′ is defined in this way, then its value on fixed discrete
input only relies on a finite number of the return values of its functional input. If the original
ϕ is from the domain of FM it is thus possible to choose the effort big enough for the way in
which we extend to be irrelevant. The additional information that is needed about M ′ for
being able to carry out this kind of composition concretely is effective information about its
continuity as presented in the upcoming section.

F

ϕ

Figure 2. A
continuous
operator.

2.2. Continuity of partial operators between naming spaces. This
section presents an information theoretic development of a notion of continuity
of operators between naming spaces. The Incone library provides proofs
that the definitions presented here are equivalent to more traditional notions
of continuity, but the discussion of these equivalences is postponed to Section
4 since it requires some background about metric spaces and topology that
are not necessary for the presentation in the current section. For the following
fix some types Q, A, Q′ and A′ and set B := AQ and B′ := A′Q

′
.

Intuitively continuity says that the values of an operator F : B → B′
interpreted as functional of type F : B × Q′ → A′ only depend on finite
information about the values of the functional input from B and thus can be thought of as
being represented by a diagram as depicted in Figure 2. Mathematically, continuity can be
described as follows: A function F : B → B′ is continuous if for any element ϕ of B and
any q′ ∈ Q′ there exists a certificate, i.e. a finite list q ∈ seqQ such that for any ψ that
coincides with ϕ on q it holds that F (ψ)(q′) = F (ϕ)(q′). Here, two functions are said to
coincide on a finite list q if ϕ(q) = ψ(q) for any q that appears in q. A partial operator
F : ⊆ B → B′ is continuous if for all ϕ ∈ dom(F ) and q′ ∈ Q′ there exists a certificate, i.e. a
finite list q ∈ seqQ such that the above statement holds for any ψ ∈ dom(F ) that coincides
with ϕ on q.

Example 2.4 (examples/continuous search.v). Consider the function F0 : NN → NN

defined by F0(ϕ)(n) := ϕ(n) + ϕ(0). Then for any inputs ϕ and n the finite list q := (n, 0)
is a certificate and thus F0 is continuous. For the operator F1(ϕ)(n) := ϕ(ϕ(n)) the list
q := (ϕ(n), n) is appropriate.

Most functions that can be explicitly defined are continuous. For instance any function
definable in Gödels system T is continuous and as long as no strictly non-computational
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axioms are involved, it is reasonable to assume that the functions definable in Coq are
computable and therefore continuous (compare discussion in Section 1.2).

M

ϕ

Figure 3. A
computable
operator.

The same remains true for operators whose specification can be given
as FM for some function M : N× NN × N→ optN such that M has a Coq-
definition that does not rely on non-computational axioms. For instance
for the search operator F from Example 2.3 the function M can be defined
in Coq only using very elementary means and the list (0, . . . , F (ϕ)(?)) is a
certificate for functional input ϕ and discrete input n. The search operator
does not have a continuous total extension. Thus, one should not expect such
an extension to be definable in Coq without reliance on non-computational
axioms.

The definition of continuity in the Incone library follows the mathe-
matical definition given earlier mostly literally. It superficially looks more
complicated due to the use of multifunction to substitute partial functions, but the definition
is chosen such that it implies a continuous multifunction to be singlevalued and does thus
only really apply to partial functions. Another difference is that instead of a list for each
question the definition of continuity in Incone uses a Skolem-function L : Q′ → seqQ. This
switches the order of the corresponding existential and universal quantification. Whenever
an appropriate choice principle is available, these definitions are equivalent (choice_cont).
The definition used in Incone has the advantage that it allows for a fully constructive proof
of the fact that the composition of continuous operators is continuous.

Theorem 2.5 (cont comp). Let F : ⊆ B → B′ and G : ⊆ B′ → B′′ be continuous partial
operators. The operator F ◦G : ⊆ B → B′′ is continuous.

summary. The idea behind the proof is that the certificate functions L and L′ whose existence
is guaranteed by the continuity of F and G can be interpreted as multivalued functions and
composed relationally to obtain a certificate function for the composition of the operators.
Furthermore, the needed relational composition can be realized constructively on the level
of combining lists.

As we compare different notions of continuity in the later chapters, let us briefly discuss
sequential continuity on naming spaces. Let B = AQ, note that B is a naming space if Q
and A are countable and non-empty but for the following definition we do not need these
assumptions. An element ϕ ∈ B is said to be the limit of a sequence (ϕn)n∈N ⊆ B if for
each fixed argument q ∈ Q the sequence (ϕn(q)) is eventually constantly ϕ(q). Formally

limB(ϕn) = ϕ ⇐⇒ ∀q,∃n0, ∀n ≥ n0 : ϕn(q) = ϕ(q).

If a sequence in Baire space has a limit, this limit is uniquely determined (lim_sing) and
thus the above defines a partial function limB : ⊆ BN → B.

A partial operator F : ⊆ B → B′ is called sequentially continuous if for any ϕ ∈
dom(F ) and any sequence (ϕn)n∈N ⊆ dom(F ) such that limB(ϕn) = ϕ it also holds that
limB′(F (ϕn)) = F (ϕ). It is well known that the topological structure of Baire space NN is
such that sequential continuity of partial operators on Baire space is equivalent to their
continuity and the Incone library includes a formal proof of this and that it remains true
for naming spaces. However, this is a classical fact and constructively sequential continuity
need not imply continuity, thus the library separates the equivalence into two implications.

Theorem 2.6 (cont scnt and scnt cont). A partial operator between naming spaces is
continuous if and only if it is sequentially continuous.
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Section 4.1 discusses how to prove that any naming space is metrizable, or more
specifically it defines a metric on B from each enumeration of Q. It also presents proofs that
the notions of convergence and continuity induced by this metric coincide with those given
above. Thus, the formal proofs that continuity and sequential continuity are equivalent
to what is described in Section 4.2 imply the above theorem. However, metric spaces use
real numbers, which leads to the axioms of the real numbers appearing in the assumptions
printed when inspecting the proofs. This is even though the proofs do not use these axioms
in an essential way. Thus, the above statement is given a separate proof in the Incone
library.

2.3. Construction of a universal and some of its properties. Recall that a naming
space is a space of functions whose target and argument spaces are countable and non-empty.
A continuous universal, or just universal, is an assignment that for each pair B and B′
of naming spaces provides another naming space B′′ and an operation FM(·) : B′′ → B ⇒ B′
such that each of its values is continuous and for each continuous F : ⊆ B → B′ there exists
an element ψ ∈ B′′ such that FM(ψ) tightens F . That is: A universal provides a way to code
any continuous operator between naming spaces by an element of another naming space. We
call such a code, i.e. some ψ such that FM(ψ) tightens F , an associate of F with respect to
the universal or just an associate if the universal is clear from the context. Note that the
type of ψ can be inferred from the universal together with the type of F .

Let us give some motivation for the terminology chosen here. To justify the term
“universal” note that replacing all the naming spaces by the set of finite binary strings and
the word “continuous” by “computable” one recovers a specification that is fulfilled by the
universal Turing machine. While the construction of a universal Turing machine takes some
effort, continuous universals can be chosen very simple: Classically any naming space can be
replaced by Baire space and modulo this one may use Kleene-Kreisel associateship to obtain
a universal [Kle59, Kre59]. A more popular variant in computable analysis is to move from
Baire space to the space of infinite binary strings, i.e. Cantor space and use Weihrauch’s η
operator [Wei00]. The former of these is conceptually more well adapted to our setting and
there are several excellent sources to read up about its background [LN15, EX16]. A previous
version of Incone’s universal closely followed generalization of Kleene-Kreisel associateship
first presented by van Oosten [vO11]. The current universal modifies that construction
slightly by moving away from the idea that questions should be asked sequentially and
allowing for a finite number of questions to be asked in parallel.

A mathematical description of Incone’s universal can be given as follows: for fixed
naming spaces B = AQ and B′ = A′Q

′
set Q′′ := seqA×Q′ and A′′ := seqQ+A′. That is

let B′′ := (seqQ+A′)seqA×Q′ . That B′′ is a naming space, i.e. that Q′′ and A′′ are countable
and non-empty, follows directly from B and B′ being naming spaces. Assign to ψ ∈ B′ the
multifunction FU(ψ) : B ⇒ B′ defined as follows: ϕ′ ∈ FU(ψ)(ϕ) if and only if for any q′ ∈ Q′
there exists an N and a finite sequence of lists (ai)i∈{1,...,N} ⊆ seqA such that for i < N
it holds that ψ(ai, q

′) = ? q for some q ∈ seqQ (where ? denotes the left inclusion in the
sum) and ai+1 = ai ++(ϕ(q1), . . . , ϕ(q|q|)) and ψ(aN , q

′) = !ϕ′(q′) (where ! denotes the right
inclusion of the sum). The above is best understood as running a small while program: For
given functional input ϕ and input q′, the universal attempts to extract a value from ψ
by first calling it on input (ε, q′), and then branching according to the return value: if the
return value is a list of questions it updates the list in the first argument with the respective
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FU(ψ)

U

q′

b := (ε, q′)

ψ
d
d = ? q

d = ! a′

q

b

ϕ

ϕ(q1) . . . ϕ(q|q|)

update list

a′

Figure 4. The universal used in Incone.

answers according to ϕ. If the return value is an answer, it interprets this answer as the
return value of the operator (cf. Figure 4).

The notation we used strongly suggests that the universal can be specified by means
of a function U : B′′ → N× B ×Q→ optA′ where the universal as described above can be
recovered using the operator assignment M 7→ FM described in Section 2.1 via ψ 7→ FU(ψ).
Indeed, Incone defines such a function U using only very elementary means. We refrain from
writing out the exact definition of U here and point the interested reader to the Incone
library, where the definition can be printed and a formal proof that it fulfills the above
specification can be found (FU_spec). Furthermore, U(ψ) is always monotone in the sense of
the previous section (U_mon) and in particular FU(ψ) is always singlevalued (FU_sing).

That this actually defines a universal can be separated into two statements. Let us
first argue that all operators of the form FU(ψ) are continuous. We actually prove the
stronger statement, that from an associate ψ one can obtain a self modulating modulus
of continuity for FU(ψ). Let us start by introducing the notion of a modulus of continuity
for a multifunction F : B ⇒ B′. Recall from Section 2.1 that we decided to call a finite
list a certificate for ϕ ∈ B and q′ ∈ Q′ if for any ψ that coincides with ϕ on this list the
return-values of F are identical. Note that previously we assumed F to be a partial function
and here we talk about a multifunction, so we have to elaborate. Call a list certificate for ϕ
and q′ if for each ψ that coincides with ϕ on this list and any ϕ′ ∈ F (ϕ) and ψ′ ∈ F (ψ) it
holds that ϕ′(q′) = ψ′(q′). Note that if F is singlevalued, being a certificate in this sense is
equivalent to being a certificate for the corresponding multivalued function. Furthermore
note that the existence of a certificate implies that the elements of F (ϕ) can only take one
possible value in q′. In particular, if continuity of multifunctions is defined as before, i.e. by
requiring a certificate to exist for all inputs, the corresponding notion implies singlevaluedness
and should be understood as a notion of continuity for partial functions specified by relations
and not as a notion for multifunctions (cf. [PZ13]).

Define the multivalued modulus of continuity CF : B ⇒ seqQQ
′

of a multifunction
F : B ⇒ B′ by

CF (ϕ) := {L : Q′ → seqQ | ∀q′ : L(q′) is a certificate for ϕ and q′}.
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The definition of CF makes sense for any multifunction F : B ⇒ B′ but CF (ϕ) can only be
non-empty if F (ϕ) has at most one element. The continuous partial operators F : ⊆ B → B′
can be specified as exactly those multifunctions such that the domain of CF is a super-set of
the domain of F (cont_spec). If F is continuous, then we call any partial choice function

µ : ⊆ B → seqQQ
′

of CF a modulus of continuity for F . Note that if µ is a modulus of
continuity of F , then Cµ has the same type as CF . Thus it makes sense to call a modulus
of continuity µ for F self-modulating if it is continuous and a modulus of continuity for
itself, that is if it is also a choice function for Cµ.

Let ψ be an associate of a partial operator F with respect to the universal U from above,
i.e. let ψ be such that FU(ψ) tightens F . A self-modulating modulus for F can readily be
obtained from ψ by tracking the queries in the evaluation of the universal. The same can be
done for the values that the universal calls the function ψ on and one defines functions UQ
and US such that FUQ(ψ) and FUS(ψ) are the corresponding operators.

Theorem 2.7 (FqM mod FU, FqM mod FqM and FqM mod FsM). For any fixed ψ of appropriate
type the operator FUQ(ψ) is a modulus of continuity for FU(ψ), for itself and for FUS(ψ).

The universal is used in Incone to construct exponentials in the category of represented
spaces or, more simply put, to construct spaces of functions. The above Theorem 2.7
in particular implies that for any ψ the operator FU(ψ) is continuous. Its more general
statement is enough to provide what is needed to prove the evaluation procedure on the
constructed space of functions to be a continuous operation. The functions UQ and US are
of more theoretical than practical importance. For the purpose of inspecting the evaluation
of an associate Incone provides a more useful function gather queries that on input of
an associate ψ, a functional input ϕ, a discrete input q′ and an effort n returns the list of
all queries posed up to the n-th loop of the evaluation of the universal on these values (see
examples/KleeneKreisel.v for examples).

To finish the proof that U is an universal it is left to show that any partial continuous
operator has an associate with respect to U .

Theorem 2.8 (U universal). Any partial continuous operator F : ⊆ B → B′ between
naming spaces has an associate with respect to the universal U described above. I.e. there
exists some ψ such that FU(ψ) tightens F .

We do not give a lot of details for this proof here, but let us sketch the most important
parts and point out some interesting details. Let µ be any function that chooses through the
multivalued modulus of continuity CF of F and let f be any function that chooses through
F . For any fixed enumeration (qi)i∈N of Q, one can attempt to define an associate ψ for
F as follows: On input (a, q′) interpret the list a as a partial function by assuming that
its elements are the return values on the first |a| elements mentioned in the enumeration
of Q, i.e. interpret it as the finite function such that qi 7→ ai for all 0 < i ≤ |a|. Extend
this function to a total function ϕa that is from the domain of F if this is possible. If
µ(ϕa, q

′) ⊆ (q1, . . . , q|a|) then return ! f(ϕa)(q′), otherwise ask for the (|a|+ 1)-st element
mentioned in the enumeration.

As µ is a modulus for F , evaluating this associate using the universal U only results
in correct return values. That µ(ϕ, q′) must be contained in some initial segment of the
enumeration and the sequence of functions ϕa converges to ϕ gives hope that the iteration
may often be finite. Without further assumptions about µ, however, this can not be proven
and the function ψ defined above might fail to be an associate of F . Since it is always
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possible to extract a self-modulating modulus from an associate it may not be surprising
that the proof can be completed if the modulus is additionally known to be self-modulating.
In the library the existence of a self-modulating modulus is proven by picking µ to be
minimal with respect to subset inclusion under the additional condition that it can only
return initial segments with respect to the enumeration of Q. We call such a modulus a
minimal modulus with respect to the enumeration.

Lemma 2.9 (mod minmod). A minimal modulus is always self-modulating.

The reason for the indefinite article in this lemma is that the existence of a minimal
modulus is not constructively provable [TvD88], and indeed the Coq proof of its existence
is classical and relies on a fairly strong choice principle, namely one that covers naming
spaces and is thus strictly stronger than countable choice.

Lemma 2.10 (exists minmod). For any continuous partial operator there exists a minimal
modulus of continuity.

A minimal modulus is unique up to choice of the sequence and as it is known to be
impossible to constructively prove the existence of an extensional way to obtain a modulus
of continuity, the proof is inherently classical. In particular there are computable operators
on Baire space whose minimal modulus with respect to the identity as enumeration is not
computable. By contrast, from a computable associate a computable self-modulating modulus
can be read of. Incone thus makes some efforts to avoid the use of the minimal modulus
and instead allow to construct a self-modulating modulus from additional information about
the operator. The details of this leave the scope of this paper we do not elaborate further
on this aspect.

Finally, the library defines a function D that exchanges the arguments of the universal.

Theorem 2.11 (D spec). For all ϕ and ψ it holds that FU(ψ)(ϕ) = FU(Dϕ)(ψ).

Here, the types have been purposefully omitted, details can be found in the library.
Note that, while U(ψ) has the more complicated type and is interpreted as FU(ψ) using the
operator assignment, D can be directly interpreted as a function or using the associated
multifunction. The above theorem is interesting because it is related to the Cartesian closure
of the category of represented spaces (see Section 3 for details on the category). However, it
falls short in strength as it only considers a special case in which it is not necessary to talk
about tupling of elements of naming spaces.

Corollary 2.12 (FsM mod FU, FsM mod FsM and FsM mod FqM). Theorem 2.7 remains true
if UQ and US are exchanged and ψ and ϕ are exchanged.

3. Represented spaces and continuous realizability

Computable analysis is the theory of computation on sets of continuum cardinality. To make
such spaces available to computation, computable analysis considers encodings of such sets
over Baire space B = NN. Typically, such an encoding is understood to be a surjective partial
function δ : ⊆ B ⇒ X from Baire space to the set that is called a representation. Instead of a
partial function, the representation can also be considered a singlevalued multifunction and
we will go back and forth between these two views seamlessly. According to Lemma 2.1 the
requirement of being surjective translates to the corresponding multifunction being co-total.
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In the formal development in Incone everything is formulated using singlevalued, co-total
multifunctions. Moreover, instead of using Baire space, B is allowed to be any naming space
in the sense of the previous chapter, i.e. any space of the form B = AQ where A and Q are
countable and non-empty.

A representation of a set X is defined as a naming space B together with a singlevalued,
co-total multifunction δ : B ⇒ X. Note that B can be inferred from δ. This justifies the fact
to just call δ the representation. Just like in computable analysis we call those ϕ ∈ B such
that x ∈ δ(ϕ) the names of x. The surjectivity of δ can now be reformulated as each element
of the space having at least one name and the singlevaluedness as each name uniquely
identifying the element. An alternate maybe more descriptive phrase for “name” would
be “description”. As B is a naming space it is of the form B = AQ for some countable and
non-empty sets Q of questions and A of answers. A useful interpretation of ϕ being a name
is that it provides on-demand information about x. If ϕ is a name of x then for each question
q ∈ Q about the abstract object x the value ϕ(q) ∈ A can be considered a valid answer to
that question. A represented space is a pair X = (X, δX) of a set X and a representation
δX of X. When appropriate we decorate the naming space of the representation and its

question and answer sets with indices as well, i.e. we assume δ : BX ⇒ X, where BX = AQX
X

and QX and AX are countable and non-empty.
As an example let us equip the real numbers with a representation.

Example 3.1 (examples/Q reals.v). Let X := R be the set of real numbers and pick the
question and answer sets to be the rational numbers, i.e. QR = AR := Q and thus BR = QQ.
Clearly Q is countable and non-empty so that BR is a naming space. Let δR : ⊆ BR → R be
the partial function specified by

δR(ϕ) = x ⇐⇒ ∀ε ∈ Q, 0 < ε =⇒ |x− ϕ(ε)| ≤ ε.

Then δR is a representation of R. Indeed, using the axiomatization of the real numbers pro-
vided by Coq’s standard library δR can be proven singlevalued and surjective (rep RQ sing

and rep RQ sur) and we refer to the represented space (R, δR) simply as R.

X
f // Y

B
F
//

δX

OO

B′
δY

OO

Figure 5. F : ⊆ B → B′
is a realizer of f : X→ Y.

Computability and continuity of partial operators on naming
space can be used to define computability and continuity of
functions between represented spaces by means of realizers. For
represented spaces X and X′, a partial operator F : ⊆ BX → BX′
is a realizer of a function f : X → X′ if for each name ϕ of x
the value F (ϕ) is defined and a name of f(x) (cf. Figure 5).
A function between represented spaces is continuous if it has
a continuous realizer and computable if it has a computable
realizer. The represented spaces form a Cartesian closed category
both if the continuous functions are used as morphisms, and if the
computable functions are used. The use of the word “continuous”
here is often contested and many say it should be reserved for the topological concept.
Others argue that the above is the correct notion and that the topological one is only a
syntactic approximation of it. It is one of the objectives of this paper to give a formal proof
that the above and topological continuity have a considerable overlap in that they coincide
for metric spaces. For instance for the real numbers represented as indicated in Example 3.1
it is true that a function from R→ R has a continuous realizer if and only if it is continuous
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in any of the more traditional ways to make sense of being continuous. This is more generally
true for functions between metric spaces and we go into detail about this in Section 4.

It is possible to extend the definition of being a realizer to allow for both the realizer and
the realized function to be multivalued. We refrain from stating the elementary definition as
for the purpose of this paper it is sufficient to know that the extended definition fulfills the
following specification:

Lemma 3.2 (rlzr spec). A multifunction F : BX ⇒ BX′ realizes another multifunction
f : X ⇒ X′ if and only if δX′ ◦ F tightens f ◦ δX.

The above lemma can also be used backwards to express the notion of a tighten-
ing as a special case of being a realizer by using the identity function as representation
(id_rlzr_tight). One may even further extend the definition of a realizer by dropping the
requirement that the representations are singlevalued. In the terminology of computable
analysis this would mean dealing with multi-representations and while in the manipulation of
discrete data the use of non-singlevalued encodings is fairly common, in computable analysis
the use of multirepresentations is rare. The above characterization does not generalize to
multirepresentations. For the full definitions we point the interested reader to the Rlzrs
library.

Here, we are only interested in representations and mostly in continuous, and therefore
singlevalued, realizers. However, in Section 4.3 we discuss closed choice on the natural
numbers as an elementary example of a multifunction between represented spaces. We
call a multifunction between represented spaces continuously realizable if there exists
a continuous realizer in the sense of the previous lemma. Note that under the usual
identification of a function with the multifunction that uniquely specifies it, continuity is a
special case of continuous realizability and we sometimes use the latter to distinguish it from
other notions of continuity if confusion is possible. One reason that the use of continuously
realizable multifunctions is common in computable analysis is that continuity of functions
often fails for extensionality reasons. For instance, one may formulate a multifunction
corresponding to the parallel or on the space introduced in Section 4.3 as Sierpinski space to
see that there exist continuously realizable functions that do not have any continuous choice
function. A special case where exactly the opposite behavior appears is that of a naming
space equipped with the identity function as a representation: a multifunction between
naming spaces is continuously realizable if and only if it has a singlevalued tightening that is
continuous in the sense of Section 2.2 and therefore allows for a continuous choice function.

That continuity and continuous realizability is preserved under composition follows from
content of the Rlzrs library together with the fact that continuity of operators on Baire
space is preserved under composition (Theorem 2.5).

Lemma 3.3 (comp cont and comp hcr). The composition of continuous functions is contin-
uous and the composition of continuously realizable multifunctions is continuously realizable.

3.1. Examples and basic constructions such as products and sums. Now that we
can talk about continuity and computability on the real numbers, a reasonable next step is
to attempt to prove addition and multiplication computable. Both of these functions are
of type R× R→ R and to make sense of continuity of functions of these types we need to
specify how R× R should be made a represented space. The Incone library automatically
generates such a represented space X×Y from arbitrary represented spaces X and Y by
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using the query type QX×Y := QX + QY, the answer type AX×Y := AX × AY and the
representation δX×Y defined by

δX×Y(ψ) = (x, y) ⇐⇒ δX(fst ◦ ψ ◦ inl) = x ∧ δY(snd ◦ ψ ◦ inr) = y.

This can be decoded as follows: A name of the pair (x, y) should be a pair (ϕ,ϕ′) of a name
for x and a name for y. Since the set of pairs BX×BY does not have the type that we required
a naming space to have, we embed it into the naming space BX×Y := (AX × AY)QX+QY .
There are several possible choices for BX×Y, but for the one picked by Incone the projection
function π : BX×Y → BX can particularly conveniently be expressed by the natural operations
on the question and answer spaces, namely π(ψ) := fst ◦ ψ ◦ inl and the formula for the
second projection is similar.

Proposition 3.4 (prod rep sing, prod rep sur and prod uprp cont). For any repre-
sented spaces X and Y the space (X × Y, δX×Y) is a represented space and it is the product
of X and Y in the category of represented spaces.

Part of verifying the universal property of a product in the category of represented
spaces with continuous resp. computable functions as morphisms is to prove the projections
computable resp. continuous (fst_cont and snd_cont).

Example 3.5 (examples/Q reals.v). Addition and multiplication of real numbers is
computable (Rplus cont and Rmult cont). As described in more detail in Section 2.1 this
should be taken to mean that the operations are continuous and the realizers can be explicitly
specified as Coq-functions whose definitions contain no axioms. Indeed, the realizers are
defined not through the more complicated operator assignment but more directly using
the F2MF correspondence. Furthermore, their definition only uses very simple tools and the
operations should therefore even be considered primitive recursive.

Incone additionally proves some other basic functions on product spaces computable.
Most notably it provides the possibility to glue continuous functions f : X → X′ and
g : Y → Y′ together to obtain another continuous function f × g : X × Y → X′ × Y′

(fprd_cont). More generally, such a construction is provided for continuously realizable
multifunctions.

As another basic example of a represented space that is needed below let I be any
countable and non-empty set. Set QI := {?} and AI := I. Then the function δI(ϕ) := ϕ(?)
makes the pair I := (I, δI) a represented space that is discrete in the following sense:

Lemma 3.6 (cs id dscrt). For any countable, non-empty set I the represented space I
described above is discrete in the sense that any function that has I as its domain is continuous.
Moreover, any multivalued function with I as input space is continuously realizable.

In particular, the natural numbers can be assigned a discrete represented space. We
denote both the set and the represented space of natural numbers by N.

Let us briefly mention a couple of additional constructions. The Incone library proves
that the represented space 1 constructed from the unit type as above is a terminal object in
the category of represented spaces. It defines for each pair of represented spaces X and Y a
space X + Y that is proven to be the category-theoretical sum. It gives a separate option
type construction and proves the resulting space to be isomorphic to X + 1. There is also
an elementary construction of the space of finite lists of elements from a represented space
X, where asking a question about an element of x results in a list of answers to question for
each of the elements of the list.
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3.2. The space of infinite sequences, limits and pointwise operations. Let I be a
countable, non-empty set and let X be a represented space. Define a represented space∏
I X whose underlying set are the functions of type I → X by setting Q∏

I X
:= I ×QX,

A∏
I

:= AX and

(xi) ∈ δ∏
I X

(ϕ) ⇐⇒ ∀i : I, xi ∈ δX(q 7→ ϕ(i, q)),

where (xi) is short for the function i 7→ xi.

Proposition 3.7 (rep Iprod sing, rep Iprod sur and cprd uprp cont). Let I be count-
able and non-empty. Then

∏
I X := (XI , δ∏

I X
) is a represented space and Xω :=

∏
N X is

a countably infinite product in the category of represented spaces and continuous functions.

The use of the symbol ω instead of N is to differentiate the space Xω of infinite sequences
in X from the space of functions from the natural numbers to X that is discussed in the
next section. The proof that δ∏

I X
is singlevalued assumes functional extensionality and the

proof of surjectivity needs a choice principle over I. Since I = N is by far the most common
use-case and I is assumed to be countable anyway, this usually boils down to the axiom of
countable choice. The proof of the universal property relies on stronger choice principles
and the law of excluded middle. Since the category of represented spaces with computable
functions fails to have countably infinite products, the corresponding result is inherently
inefficient. Given a sequence of computable functions fn : Y → X the function F : Y → XN

that glues them together need only be continuous. Thus we only prove the existence of its
realizer. To obtain a computable realizer for F one needs one algorithm that uniformly
computes the fn and not just the existence of an algorithm for each fn. How far our use of
axioms can be optimized in this case is difficult to tell at this point in time since the current
proof uses a part of the library that has not yet been optimized in terms of axiom use. Since
it is more a sanity result than something that may actually be of use, optimizations here are
not our highest priority.

An example of a partial function whose natural domain is a subset of the space of
sequences is the limit operator. Consider the multivalued function limX : Xω ⇒ X where
x ∈ limX(xn) if and only if there is a convergent sequence of names (ϕn) ⊆ BX and some ϕ
such that ϕ is a name of x, each ϕn is a name for xn and the sequence (ϕn) converges to ϕ
in BX, i.e. limBX(ϕn) = ϕ where the limit in BX is taken point-wise as explained in Section
2.2. While the limit operator on Baire space is singlevalued, this need not be true for the
limit operator on a general represented space, as can be seen at the example of Sierpinski
space that is discussed in Section 4.3. In most spaces that are relevant for numerical analysis,
the limit operator is singlevalued but discontinuous. It is often the case that computability
of the limit operator can be recovered by restricting it to an appropriate set of efficiently
convergent sequences.

Example 3.8 (examples/Q reals.v). The limit operator limR where R is represented as
in Example 3.5 is discontinuous (lim not cont). Its restriction to those sequences (xn) that
are efficiently Cauchy in the sense that |xn−xm| ≤ 2−n + 2−m is computable (lim eff hcr).

To be strict, the example file proves these properties with respect to the metric notion
of convergence that is introduced later in Section 4.2. To really obtain what is claimed here
one has to additionally use that metric convergence and convergence in the represented space
of real numbers are equivalent. The major part of this equivalence is proven in Theorem 4.6
and the rest, namely that the representation of real numbers introduced in Example 3.1 is
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equivalent (in the sense introduced shortly) to the representation of real numbers as metric
space, is also provided by the Incone library.

A function f : X → Y between represented spaces is called sequentially continuous
if it preserves limits, i.e. if limX xn = x implies that limY f(xn) = f(x). In general,
sequential continuity need not imply continuity and this is not a matter of whether one
works constructively or not. From the point of view of a classical mathematician there
exist sequentially continuous functions between represented spaces that are simply not
continuously realizable. The difference can be eliminated by making additional assumptions
about the involved represented spaces. One such assumption is referred to as admissibility
and while we do not go into the details here, this condition is of major importance throughout
different parts of computable analysis [Sch02b]. Most spaces encountered in practice are
admissible, in particular the space of real numbers from Example 3.1, all the representations
of metric spaces considered in Section 4, and also the representations of hyper-spaces that
are topic of Section 4.3 are admissible. The relation between sequential continuity and
continuous realizability is discussed in more detail in Section 4.2.

The Incone library proves some further lemmas about spaces of sequences that might
be useful in applications and should thus not go unmentioned. Two represented spaces
X and Y are isomorphic, in symbols X ' Y, if there exists a continuous bijection with
continuous inverse. The spaces are computably isomorphic if there exists a computable
bijection with computable inverse. In the special case where the underlying set of two
represented spaces are identical we call their representations equivalent if the identity
function is an isomorphism. While mathematicians are usually fairly liberal in identifying
sets and equivalence of representations is a widely used concept, in our formal development
isomorphy is by far the more common notion.

Lemma 3.9 (cprd prd). For any represented spaces X, Y and countable, non-empty set I
it holds that

∏
I(X×Y) '

(∏
I X
)
×
(∏

I Y
)
, the spaces are even computably isomorphic.

The realizers are defined using very limited means and interpreted using the F2MF

assignment, thus they should be considered primitive recursive.
Any function f : X→ Y can be extended to a function f I :

∏
I X→

∏
I Y that applies

f pointwise, i.e. is defined by f I((xi)i∈I) := (f(xi))i∈I .

Lemma 3.10 (ptw cont). Whenever f is a continuous function, then also f I is continuous.

This lemma has a multivalued variant (ptw hcr). If the realizer of f can be expressed
as a Coq-function through the F2MF interpretation, then so can f I . The same should hold
true if a realizer of f can be expressed via a Coq function through the operator assignment
M 7→ FM from Section 2.1, although we have not carried out the details yet.

Another common situation is that an operation ∗ : X×Y → Z is used to construct an
operation ∗I :

∏
I X×

∏
I Y →

∏
I Z via (xi) ∗I (yi) := (xi ∗ yi). For instance the natural

operations on diverse spaces of sequences of real numbers are introduced by pointwise applying
the arithmetic operations of the real numbers. More concretely, the most common vector
space structure on the space Rω of sequences in the real numbers is to set X = Y = Z := R
in the above and use +N where + is addition of real numbers. A proof that this extension
also preserves continuity can be directly obtained from the previous two lemmas.

Corollary 3.11 (cptw op cont). If ∗ is a continuous operation, then the corresponding
pointwise operation ∗I is also continuous.
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As mentioned before, examples where these results are useful is when reasoning about
pointwise addition and multiplication as operations on Rω. The operation of multiplying a
sequence with a scalar is also covered by first embedding the scalars into the sequences as
the constant sequences and then using pointwise multiplication.

3.3. Function spaces and infinite sequences as functions. Let X and Y be represented
spaces and denote by YX the collection of all continuous functions from X to Y. Recall
that Section 2.3 gave an explicit description of a continuous universal U . This universal
can be used to equip the space YX with a representation as follows: Let BYX be the space

that the universal U points to for input naming spaces BX = AQX
X and BY = AQY

Y . This

expands to QYX = seqAX×QY and AYX = seqQX +AY, where BYX = A
Q

YX

YX . Note that
a function (as opposed to a partial or multifunction) is uniquely determined by each of its
realizers. Thus there exists a unique partial function δYX : BYX ⇒ YX specified by

δYX(ψ) = f ⇐⇒ FU(ψ) realizes f.

Put differently, although δYX is specified as a multifunction, it is singlevalued. Any f ∈ YX

is continuous which by definition means that there exists some continuous F : ⊆ BX → BY
that realizes f . Because U is a universal there exists some ψ such that FU(ψ) tightens F (cf.
Theorem 2.8). As being a realizer is preserved under tightening also FU(ψ) realizes f . Thus
δYX is surjective and co-total when considered a multifunction.

Proposition 3.12 (fun rep sing and fun rep sur). For any represented spaces X and Y
the space (YX, δYX) of continuous functions as defined above is a represented space.

The proof of singlevaluedness assumes proof irrelevance and functional extensionality.
Here proof irrelevance is another commonly assumed axiom that asserts a Coq property
(Prop) and that over the internal logic of Coq is implied by the law of excluded middle.

The following theorem uses the finite products as they were constructed in Section 3.1
and can be proven from the continuity properties of the universal from Theorem 2.7.

Theorem 3.13 (eval cont). Evaluation as operation YX ×X→ Y is computable.

The function space construction overlaps in its scope with the space of infinite sequences:
For a countable, non-empty index set I and a represented space X, the set underlying the
space

∏
I X is the set of functions from I to X. Recall what it meant for the discrete space

I generated from I as in Section 3.1 to be discrete: Proposition 3.6 says that any function
starting from I is continuous. As a consequence, the sets underlying

∏
I X and XI are

identical. Indeed these spaces are computably isomorphic.

Theorem 3.14 (sig iso fun). For any represented space X and any countable, non-empty
set I the space

∏
I X from the last section is computably isomorphic to the function space

XI, where I the discrete space constructed from I as described in Section 3.1.

sketch. Recall that AXI = seqQI +AX and that we decided to refer to the left inclusion into
this sum by ? and to the right inclusion by !. A realizer T : B∏

I X
→ BXI that translates a

name of a sequence to a name of the corresponding function can be directly specified via

T (ϕ)(a, q′) :=

{
?(?) if a = ε

!ϕ(a1, q
′) , where a = (a1, . . . , a|a|).
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To see that this realizer is correct we need to prove that whenever ϕ is a
∏
I X-name of

some (xi), then FU(T (ϕ)) is a realizer of the function i 7→ xi : I→ X. The former means that
for any question q about xi, ϕ(i, q) is a valid answer. To check that FU(T (ϕ)) is a realizer
note that ? 7→ i is the only valid name of i in I and that for the correctness of T it is thus
enough to argue that FU(T (ϕ))(? 7→ i) on any input q returns ϕ(i, q). Now the values of
FU(T (ϕ)) are obtained by evaluating the universal. If the evaluation of U(T (ϕ)) is started on
functional input ? 7→ i and input q it will first call T (ϕ) on input (ε, q) and be returned ?(?).
This will lead U to evaluate ? 7→ i in ? and call T (ϕ) on the updated input ((i), q). As T (ϕ)
returns !ϕ(i, q) on this input U will finish its run by returning ϕ(i, q) and we have proven
correctness of the translation.

The translation in the other direction, i.e. constructing a sequence from a continuous
function proceeds by using a variation of the realizer of evaluation.

Note that the first translation can be defined by very elementary means but is specific
to the details of the universal U . The translation in the other direction is independent of the
implementation of the universal but only relies on availability of an algorithm for evaluation.
The algorithm for evaluation, however, executes the universal which requires an unbounded
search and is considerably less elementary. More specifically, the first translation can be
defined as a function that is interpreted directly or as its associated multifunction, while the
second translation requires the use of the more complicated operator assignment discussed
in detail in Section 2.1. Indeed, the second translation need in general not have a total
continuous realizer and thus one should not expect it to be possible to give a definition of a
translation as elementary as the one for the first direction.

The above theorem is a good example of a result that is usually stated as an equivalence
but that was formulated as an isomorphism in our formal development. The sets underlying
Xω and XN are considered equal from a mathematical point of view, but formally the
elements of the latter are pairs of a function and a proof that this function is continuous.
The set of such pairs is still in bijection with its first components because we work in a
setting where different proofs of the same property are considered equal. More specifically
the equality of these proofs is what the axiom of proof irrelevance states and over the logic
of Coq proof irrelevance is implied by the law of excluded middle that we regularly assume
anyway. The bijection can thus be given as the function that just drops the proof in the
second component of the pair and for the inverse one lifts an arbitrary function by adding
the proof obtained from the fact that N is discrete.

Theorem 3.14 above is an important building block for obtaining the results about
hyper-spaces that are presented Section 4.3. As a more basic example of an application
of this theorem let us give some additional justification for our previous choice to use the
identity function as canonical representation of a given naming space. More specifically let
us prove that the structure thus obtained is the same as considering a naming space as space
of functions from its question set as discrete space to its answer set as such.

Corollary 3.15. For any naming space B = AQ it holds that (B, idB) ' AQ.

Proof. By the previous theorem AQ '
∏
Q A. The equivalence of the representation of∏

Q A with the identity representation is straightforward to define directly. To be exact,

T (ϕ)(q, ?) := ϕ(q) continuously translates from the identity representation to that of
∏
Q A

and T ′(ϕ′)(q) := ϕ′(q, ?) continuously translates back.
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4. Application to continuity in metric and hyper spaces

A map d : M ×M → R is called a pseudo-metric on a set M if it returns non-negative
values, is symmetric under exchange of its arguments and fulfills d(x, x) = 0 and the triangle
inequality

d(x, z) ≤ d(x, y) + d(y, z).

It is called a metric if it is additionally true that d(x, y) = 0 implies x = y. A pair (M,d)
is called a pseudo-metric space if d is a pseudo-metric on M and a metric space if d is
a metric. Every pseudo-metric space comes with a topology that is generated by the open
balls with respect to the pseudo-metric and therefore with notions of continuity of functions
on and convergence of sequences in this space. The notion of convergence is of particular
importance since any pseudo-metric space is first-countable and thus knowing the limits of
sequences is sufficient for characterizing continuity. The notion of a metric captures the
properties that one expects a notion of distance to have in a very general sense. Metric
spaces are a widely applicable tool for talking about continuity on many spaces of practical
interest and a common sight in many branches of mathematics. As such, metric spaces have
received considerable attention in their formal treatment.

A definition of continuity that does not require any knowledge of topology can be given
using the ε-δ-criterion. A function f : M →M ′ between pseudo-metric spaces (M,dM ) and
(M ′, dM ′) is called continuous in x ∈M if

∀ε > 0, ∃δ > 0,∀y : dM (x, y) ≤ δ =⇒ dM ′(f(x), f(y)) ≤ ε.

Here, ε and δ are real numbers but replacing them by rational numbers results in an
equivalent definition. The function is called continuous if it is continuous in every point
of M . An element x of a pseudo-metric or metric space (M,d) is said to be the limit of a
sequence (xn) in M , in symbols lim(M,d)(xn) = x, if

∀ε > 0, ∃N, ∀n ≥ N : d(x, xn) ≤ ε.

Again, ε is taken to be a real number but may equivalently be restricted to be rational. A
function f between pseudo-metric spaces is said to be sequentially continuous in x if for
each sequence xn in M with lim(M,dM )(xn) = x it holds that lim(M ′,dM′ )

(f(xn)) = f(x) and
sequentially continuous if it is sequentially continuous in every point of M .

Note that above for metric spaces we reuse the terms that we already used for represented
spaces: We give an alternative definition of what it means to be continuous, a limit and
sequentially continuous. Since we make a clear distinction of whether the spaces we operate
on are metric spaces or represented spaces, this overloading rarely leads to confusion. Note
that while the names of the concepts are identical, there are significant differences for their
behavior in a metric and a represented space context respectively: A function between metric
spaces is continuous if and only if it is sequentially continuous while for represented spaces
the backward implication can fail.

4.1. Recovering continuity on Baire space from a metric structure. Let B be a
naming space, i.e. B = AQ for some countable, non-empty sets Q and A. Since Q is countable
and non-empty there exists a surjective function from N to Q. Such a function may be
understood as an enumeration q = (qn)n∈N of Q. For each such enumeration q define a
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mapping dq : B × B → R by

dq(ϕ,ψ) :=

{
0 if ϕ = ψ

2−min{n∈N|ϕ(qn)6=ψ(qn)} otherwise.

To argue that this definition is well-formed note that the second case is only assumed if it is
not true that ϕ = ψ but in this case there exists some q such that ϕ(q) 6= ψ(q) and since q
is an enumeration of Q there exists some n such that q = qn and thus ϕ(qn) 6= ψ(qn). Thus,
the set that the minimum is taken over is not empty and the minimum takes a natural
number value.

Proposition 4.1 (dst pos, dst sym, dstxx, dst trngl, dst eq). (B, dq) is a metric space.

Let us briefly discuss some details specific to our Coq proof of this proposition. The
discussion before the proposition implies that the definition of dq branches over the undecid-
able proposition whether two elements of a naming space are equal and thus a priori only
specifies a relation and not a function. Now, the axiomatization of the real numbers implies
a choice principle that is strong enough to move from this relation to an actual function
[BLM15]. To be able to prove that the thus defined function is a metric it is additionally
necessary to assume functional extensionality. Another tool that is used in the proof to
deal with the occurring minima somewhat efficiently is a function named search. There
are several adaptations of such a function in other developments some of which could have
been reused by assumption of rather mild additional axioms. The search function made
an earlier appearance in this paper: It is what is behind the implementation of the search
operator from Example 2.3.

Recall that in Section 2.2 we introduced for any naming space B the limit operator limB
corresponding to pointwise convergence. We can now compare this limit operator to the one
that corresponds to the metric notion of convergence and was introduced as lim(M,d) in the
introduction of this section.

Theorem 4.2 (lim lim). Let B be a naming space and q an enumeration of its question
set. Convergence with respect to dq is exactly pointwise convergence. I.e. lim(B,dq) = limB.

As sequential continuity is defined directly from the notions of convergence, the above
theorem implies that the notion of sequential continuity for naming spaces as introduced in
Section 2.2 is also reproduced.

Corollary 4.3. A function between naming spaces is sequentially continuous if and only if
it is sequentially continuous as function between the corresponding metric spaces.

It is possible to generalize the above corollary to apply not only to total but also to
partial operators. We omit the generalized statement here and instead formulate a theorem
about the non-sequential version of continuity.

Theorem 4.4 (cont cont). Let B and B′ be naming spaces and q and q′ enumerations of
their respective question sets. A partial operator F : ⊆ B → B′ is continuous in the sense of
Section 2.2 if and only if it is continuous as a function from (dom(F ), dq) to (B′, dq′).

We omit details of the straightforward proofs of Theorem 4.2 and Theorem 4.4.

Example 4.5 (examples/continuous search.v). The traditional notion of continuity of
partial operators on Baire space NN is captured by the continuity introduced in Section 2.2
if all of the questions and answer sets are taken to be the natural numbers.
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Figure 6. Implications between different notions of continuity on metric
spaces.

4.2. Comparing continuity in represented and in metric spaces. A metric space is
called separable if there exists a dense sequence (rn)n∈N in it. Here, density of a sequence
can equivalently be taken to mean that any open ball in the metric space contains an element
of the sequence or that for any point of the metric space there exists a subsequence of (rn)
that converges to that point. Separable metric spaces are well investigated in computable
analysis [Wei93]. To each dense sequence r = (rn)n∈N in a metric space (M,d) assign a
multifunction δMr : NN ⇒M defined by

x ∈ δMr(ϕ) ⇐⇒ ∀n, d(x, rϕ(n)) ≤ 2−n.

Clearly NN is a naming space and δMr can be proven singlevalued and surjective (mrep_sing
and mrep_sur). Thus δMr defines a representation and we denote the corresponding
represented space by Mr := (M, δMr).

Note that the construction of Mr is very similar to how we chose to represent the real
numbers through rational approximations in Example 3.1. A name of an element of a metric
space produces an index of an approximation from an accuracy requirement. The only
difference is that for real numbers we decided to minimize the number of types involved by
using rational numbers as both accuracy requirements and approximations while for metric
spaces we use accuracy requirements of the form 2−n to minimize the number of distinct
types by matching the type of indices and setting both question and answer types to be N.

A sequence (xn) in a separable metric space (M,d) converges to a limit x from M if
and only if the same is true in the represented space Mr or in symbols if and only if it holds
that limMr(xn) = x. This remains true irrespectively of the choice of the dense sequence
that is used for constructing the representation and can more concisely be formulated as
lim(M,d) = limMr . Furthermore, if (M ′, d′) is another separable metric space, then a function
f : M →M ′ is continuous as a function between metric spaces if and only if it is continuously
realizable as a function f : Mr →M′

r′ and this remains true irrespectively of the choices of
the dense sequences r and r′.

This section describes our formal proofs of statements comparing the two continuity
notions and their sequential versions (cf. Figure 6). The proofs have been kept as constructive
as possible. Since the definition of a metric space relies on the axiomatic reals, only one
of the implications is fully constructive, the others are conservative over the background
theory of real numbers and do not rely on the axioms of the real numbers in an essential way.
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Let us reiterate that the construction of a represented space from a separable metric space
explicitly relies on the choice of a dense sequence. I.e. for each dense sequence r in the metric
space one obtains a represented space Mr. In the following we usually drop the index r for
brevity. This is justified in a continuity setting as different choices of dense sequences lead to
isomorphic represented spaces. As always, the situation is more complicated if computability
is considered and in this case one should assume in the following that two metric spaces
with dense sequences are fixed. In the formal development, the dense sequences are always
present as parameters.

Let us first describe the proof of the equivalence of the notions of sequential continu-
ity. The main part of the proof is that the notions of limit in the metric space and the
corresponding represented space coincide.

Theorem 4.6 (lim mlim). Whenever (M,d) is a separable metric space and M as above
then

lim(M,d) = limM .

idea. The proof that convergence in the represented space implies convergence in the metric
space is straightforward. The idea behind the other direction can be sketched as follows: If
(xn) converges to x in the metric space then there exists a modulus of convergence, i.e. some
µ : N→ N such that

∀n,m ≥ µ(n) : d(xm, x) ≤ 2−n.

From an arbitrary sequence (ϕ′m) of names of xm and a name ϕ′ of x an appropriate
convergent sequence of names can be defined by

ϕm(n) :=

{
ϕ′(n+ 1), if µ(n+ 1) ≤ m
ϕ′m(n), otherwise

and its limit is given by ϕ(n) := ϕ′(n+ 1) which is clearly a name of x again.

The availability of a modulus of convergence as a function relies on a use of the axiom
of countable choice. This could probably be eliminated by appropriate assumptions about
the values of the metric being approximable on the elements of the dense sequence (i.e. by
working with computable metric spaces).

That the sequential notions of continuity on metric and represented spaces coincide
follows immediately from the above Theorem 4.6. As the proof of each direction requires
to translate limits in both directions, either of the directions is as constructive or non-
constructive as the worse direction of the previous theorem.

Corollary 4.7 (scnt mscnt). Let (M,d) and (M ′, d′) be separable metric spaces and M
and M′ the derived represented spaces. Then f : M → M ′, is sequentially continuous as
a function between metric spaces if and only if it is sequentially continuous as function
f : M→M′.

Next let us state the equivalence of continuous realizability and ε-δ-continuity. One
implication, namely proving continuous realizability from ε-δ-continuity needs stronger
assumptions and for the Incone library we thus separated the proofs.

Lemma 4.8 (cont mcont and mcont cont). Let (M,d) and (M ′, d′) be two separable metric
spaces. A function f : M →M ′ is ε-δ-continuous if and only if f : M→M′ is continuous.



16:30 F. Steinberg, L. Théry, and H. Thies Vol. 17:2

While the proof that continuous realizability implies ε-δ-continuity is straightforward,
the proof of the other implication required some work and we sketch some of the details.

Interestingly, the tools needed for this proof are in spirit fairly close to those that were
used to prove the existence of associates in Section 2.3, more specifically we also use minimal
moduli. Call a function m : N→ N a metric modulus of continuity of f in x ∈M if

∀y ∈M : d(x, y) ≤ 2−m(n) =⇒ d′(f(x), f(y)) ≤ 2−n

and call such a modulus minimal if it is minimal in the obvious way. This notion generalizes
the one used to prove the existence of associates in Section 2.3 if the naming spaces are
equipped with the metric space structures that were introduced in Section 4.1 and reasonable
assumptions about the enumeration used for this are made.

Lemma 4.9 (exists minmod met). For any continuous function f between metric spaces
and any argument x for f there exists a minimal modulus of f in x.

This lemma implies its version for naming spaces that we have earlier proven in Section 2.3.
As we noted in the discussion following Lemma 2.10 this weaker version cannot be proven
constructively. It follows that the same remains true for the lemma above.

The key idea behind the rest of the proof is to also use some notion of being self-
modulating. This is slightly complicated by the fact the notion that made sense for moduli
of continuity on naming spaces does not translate to the metric setting. Moreover, in general
the minimal modulus of continuity fails to have some of the nice properties that we relied
on for naming spaces. The function assigning to each x the minimal modulus function of f
in x is usually not even continuous. This is, for instance, not possible if (M,d) is connected
as the function takes values in a totally disconnected space and functions from connected to
totally disconnected spaces can only be continuous if they are constant. One might suspect
that the awkward typing is the cause for this, and that quantifying the continuity of f in x
by use of a function of type R→ R instead would help, but it does not. It is known that
also in this case returning the minimal modulus of continuity need not be a continuous
operation. A construction of a continuous such assignment, while possible in general, takes
considerably more effort [Gut83, Ena00]. Thus, for our proof that ε-δ-continuity implies
continuous realizability we rely on a notion of being almost self-modulating instead: The
value of the minimal modulus on slightly disturbed input from the metric space can be
bounded in terms of a shift of the minimal modulus in the original value.

4.3. Sierpiński space and closed choice on the naturals. As a somewhat orthogonal
class of examples of represented spaces that are far from being metrizable let us consider
certain hyper spaces. A hyper space is a space whose underlying set consists of subsets of a
given represented space and depending on the application very different ways to represent
such sets of subsets can be appropriate. An important tool for introducing representations
of hyper spaces is Sierpinski space S. The base set of S is the two point set {>,⊥} equipped
with the total representation δS with names of type N→ B specified by

δS(ϕ) = > ⇐⇒ ∃n ∈ N ϕ(n) = true.

The elements of Sierpinski space should be understood as symbols for termination and
divergence. More specifically: From any kind of computational process for which the notion
of an elementary computational step is meaningful one may obtain a sequence of Booleans
by taking the n-th element to be the truth-value of the statement “the process finishes
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within the first n basic steps”. This way one obtains a name of > if the process terminates
and ⊥ otherwise.

The final topology of this representation is {∅, {>},S} and as a non-Hausdorff space this
space is not metrizable. Without going into details let us mention that also for Sierpinski
space there is a tight connection between continuous realizability and topological continuity.
To connect Sierpinski space to hyperspaces consider for a subset U ⊆ X its characteristic
function χU : X→ S defined by

χU (x) :=

{
> if x ∈ U,
⊥ otherwise.

For illustration let us assume that we can also safely equip X with the final topology of
the representation without changing the notion of continuity. Recall that a function is
topologically continuous if and only if preimages of open sets are open. From the topology
of Sierpinski space specified above it is evident that in this setting a subset of X is open
if and only if its characteristic function is continuous. Inspired by this we may generalize
and follow sources such as [Pau16] in identifying the space O(X) of open subsets of X with
the space of continuous functions SX as defined in Section 3.3. Similarly, the space A(X) of
closed subsets of X can be introduced as the space of complements of opens.

If X is taken to be a concrete space it is often possible to give simpler descriptions
of O(X) and A(X). For instance if X := N is the discrete represented space of natural
numbers one may make use of a space of infinite sequences as introduced in Section 3.2 and
in particular of the special case I = N and X = S of Lemma 3.14 which guarantees that
O(N) = SN '

∏
N S = Sω. There exists a fully concrete description of O(N) that is often

used for reasoning about this space in computable analysis: The enumeration representation,
where a name of an open set enumerates its elements. We call the corresponding space ON.
The representation of the corresponding concrete space AN of closed subsets encodes sets as
functions ϕ : N→ N via

δAN(ϕ) := N \ {n ∈ N | ∃m : ϕ(m) = n+ 1}.

That is: the information that a name ϕ specifies about a closed set is an enumeration of its
complement.

We provide a formal proof that the enumeration representations of the open and closed
subsets of the natural numbers capture the abstract structure of these spaces through the
exponential in the category of represented spaces.

Theorem 4.10 (AN iso Anat, ON iso Onat and clsd iso open). A(N) ' O(N) and the
concrete spaces of open and closed sets above are correct, i.e. A(N) ' AN and O(N) ' ON.

The first of these isomorphies may look surprising but is evident on closer inspection:
the isomorphism is taking the complement and it is realized by the identity function. The
isomorphism of O(N) and ON is proven by first replacing O(N) by Sω as described above.
The realizers for the isomorphisms between Sω and ON can be defined as functions directly
by relying on the Cantor paring function or any standard pairing function. We chose to use
the standard pairing function provided by the mathematical components library.

As an application let us consider choice operators. To implement a choice operator one
has to select an element of a closed set. As closed sets are represented as complements of
open sets and thus by providing positive information about their complement, a realistic
implementation of a choice operator is rarely possible. Such an implementation still solves
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a problem that can be described by fairly basic means and thus asserting the existence of
a solution is popular for classifying unsolvability of other tasks according to their logical
strength. More details about this can be found in survey articles about Weihrauch reducibility
such as [BGP17], more concrete examples of classifications where the problems discussed
here make an appearance can be found for instance in [PS18].

Let us give a precise formulation of what it means to select an element from a closed
subset. For a fixed represented space X let closed choice on X be the task of finding a
realizer of the multifunction CX defined by

CX : A(X) ⇒ X, a ∈ CX(A) ⇐⇒ a ∈ A.
Or in words: a is an acceptable return value of CX on input A if and only if a is an element
of A. This in particular means that the domain of CX are the non-empty subsets of X. This
is relevant as it means that a potential realizer of CX can behave arbitrarily when handed a
name of the empty set. The realizer need not produce any name of an element of X in this
case and may even be undefined.

Consider the special case where X = N. While the argument space of the multivalued
function CN is A(N) we may use the same definition to obtain a multifunction C ′N : AN ⇒ N.
A mathematician may even consider it pointless to give this function a new name as
A(N) ' AN and isomorphic spaces are regularly identified. Indeed, for the question of
whether CN has a continuous realizer the space A(N) may be substituted with AN for this
exact reason.

Lemma 4.11 (CN CN’ hcr). CN has a continuous realizer if and only if C ′N does.

On the concrete space AN a standard argument can be used to see that a continuous
realizer cannot exist.

Theorem 4.12 (CN’ not cont). C ′N does not have a continuous realizer.

outline. The proof proceeds by contradiction. Assume that to the contrary C ′N is continuous
and that F is a continuous realizer. Pick any name ϕ of the one point set {0}. As F is a
realizer, it has to return a name of 0 on input ϕ, i.e. F (ϕ)(?) = 0. Since F is continuous
there is a list q ⊆ N such that F (ϕ)(?) = F (ψ)(?) for all ψ : N→ N that coincide with ϕ on
q. Consider the name ϕ′ of the non-empty set A := N \ ({n | ∃m ∈ q, ϕ(m) = n+ 1} ∪ {0})
defined by

ϕ′(n) :=

{
ϕ(n), if n ∈ q

1, otherwise.

On one hand, F (ϕ′)(?) ∈ A since F is a realizer. On the other hand F (ϕ′)(?) = F (ϕ)(?) = 0
as ϕ and ϕ′ coincide on q. Now since 0 /∈ A we arrive at a contradiction and this completes
the proof.

Combining the theorem with the lemma we conclude that closed choice on the natural
numbers does not have a continuous realizer:

Corollary 4.13 (CN not cont). Closed choice on the natural numbers does not have a
continuous solution.

Clearly the existence of a continuous solution also rules out the possibility that a
computable solution exists.
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5. Conclusion

The Incone library provides general tools for enriching abstract mathematical structures
of interest with computational structures and for comparing different such encodings. It
can be used to investigate reasonability of encodings in a fully formal setting, to provide
computational content for mathematical statements or to prove it impossible to do so. We
feel that the examples from this paper showcase these capabilities well. Moreover, they
involve many of the most prominent features of Incone: The abstract definition of the
space of open subsets is based on the library’s function space construction and our proof of
isomorphy relies on the fact that in this specific case the corresponding space of functions is
isomorphic to a space of sequences. We believe the Incone library to be reasonably accessible
for the computable analysis community and hope that its combination with methods from
that community [MPPZ16] could help to make parts of it more accessible to the numerical
analysis community.

Let us make an effort to outline some relations to other approaches. For a given
representation, i.e. singlevalued and co-total (surjective) multifunction δ : B ⇒ X, one may
define a partial equivalence relation on Baire space via

ϕ ∼ ψ ⇐⇒ ∃x ∈ X : x ∈ δ(ϕ) ∧ x ∈ δ(ψ).

If δ is considered a partial function the right-hand side can be replaced by δ(ϕ) = δ(ψ) if
the equality is interpreted in the appropriate way. The resulting structure (B,∼) is what is
called a setoid in constructive mathematics. Conversely, for each such setoid one may take
X to be the set of equivalence classes with respect to ∼. This makes the quotient mapping
a representation and one may check that the constructions are “inverse” in an appropriate
sense. Other notions for representations can be translated accordingly. For instance, a
function that preserves equivalence induces a function on the equivalence classes and realizes
this function with respect to the quotient mappings as representations. If the function does
not preserve the equivalence relation, it induces a multifunction on the equivalence classes
that it still realizes.

While mathematicians take quotients without thinking twice, in a type theoretic setting
quotients are a problematic operation. Our proof assistant of choice, Coq, does not support
quotient types and there are reasons why it refrains from doing so. As setoids allow to still
reason about the quotient without really taking it, they are a very popular tool in the Coq
community and constructive mathematics in general. The specification of an appropriate
type X and a representation that acts as quotient mapping is additional information that
has to be provided by the user. This extra information is exclusively used for specification
purposes and we aim to give the greatest possible amount of freedom in how the user wants
to present this information. For instance our choice to treat representations as relations and
not as functions can be justified by this. This comes with the drawback that definability of a
function on the description of the quotient need no longer be related to it being realistically
implementable. For instance consider Sierpinski space: In this case the description of the
quotient is a discrete two element set which means that all self-maps are definable. However,
the one that switches > and ⊥ is not implementable on the level of names. As the information
from the description of the quotient is computationally irrelevant, another way of introducing
it is via an axiomatization similar to that of the real numbers from Coq’s standard library
that was used in this paper. Ideally such an axiomatization should avoid stating unrealistic
assumptions as computationally relevant facts but the example of the reals shows that even
if it does, this can be worked around.
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The idea behind the constructions provided by Incone is to support a user in conveniently
obtaining descriptions of quotient types by piecing them together from basic building blocks.
As basic spaces Incone defines discrete spaces, separable metric spaces with a distinguished
dense sequence and Sierpinski space. One may combine these basic spaces via building
products, sums, infinite sequences and spaces of functions. The space O(N) is an example for
such a combination as it is constructed as a space of functions between elementary defined
spaces. This particular space, sometimes also called P(ω), is a common sight in work on
constructive or computational analysis. This is even though as a space it is very different
from the objects that are actually of interest in these fields. However, many spaces of
practical importance can be identified with a subspace of this space: Any quasi-Polish space
in the sense of de Brecht and therefore in particular any Polish space embeds isomorphically
into O(N) as a subspace of low descriptive complexity [dB13]. This covers all of the spaces
considered in Section 4. Let us give a concrete example by outlining of how to isomorphically
embed the real numbers into O(N) ' SN. First enumerate the open rational intervals and
then send a real number x to the function that on input of a natural number n returns > if
x is contained in the n-th interval and ⊥ if this is not the case. As checking inclusion of a
real number into an open interval is semi-decidable relative to availability of approximations
to the real number, we obtain an element of O(N) that continuously depends on the real
number. This can be checked to lead to a continuous, and even computable, embedding of
the reals into O(N). Of course, this is nothing but the identification of a real number with a
Dedekind cut.

For future directions in the development of Incone we plan to work on additional
applications. One particularly fitting extension of the contents of this paper would be a
proof that C([0, 1]) ' R[0,1]. This statement is called the Computable Weierstraß Theorem
[PEC75]: Here, C([0, 1]) are the continuous real-valued functions on the unit interval
represented as separable metric space with supremum norm and the rational polynomials as
dense sequence. The function-space R[0,1] has the same underlying set but uses a different
representation that the theorem states to be computably equivalent. Other possibilities
include:

• Results about ODE solving [IH12, MS13, KST18]. This may be done by providing an
interface with C-CoRn, parts of it could also be done separately by relying on libraries
such as Coq-Interval [Mel08].
• Duality theory for spaces of summable sequences (`p-spaces) which provide a pool of

examples where sub-spaces of exponentials can be treated complexity theoretically [Sch04,
SS17]. Additionally it constitutes a step towards capturing popular methods for solving
partial differential equations [BY06, SS08, BCF+17].
• A characterization of continuity via preimages of open sets, general considerations about

admissibility, discreteness, compactness and many other similar results [Pau16, Sch02a].

There are also still some gaps in the Incone library that we plan to fill. Currently
there is no complete proof that the category of represented spaces is Cartesian closed as
the corresponding universal property is missing. The library proves a restricted case by
providing a duality operator, but a full proof would be desirable. Further steps would
be to use a formalization of a model of computation to make it possible to talk about
computability without moving to the meta level and using the Prop/Type distinction.
This would have the additional advantage of opening the possibility to do complexity
theory. Even without reliance on a model of computation it should be possible to add the



Vol. 17:2 COMPUTABLE ANALYSIS AND NOTIONS OF CONTINUITY IN COQ 16:35

capability to do qualitative complexity theory in terms of tracking the decrease in accuracy
of approximations [KC12, Fér17, NS20, KST19]. As the Incone library keeps close to recent
work about complexity theory for computable analysis, this should be possible with relatively
low effort. A full treatment of step-counting complexity might become available in the not
too distant future due to recent progress on the formalization of models of computation
[FS18, Wut18] and methods from implicit complexity theory [FHM+18]. Another way to
gain insight into such efficiency considerations would be to capture the trace of the basic
feasible functionals on the operators on Baire space [Meh76, KC96, KS18].
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Appendix A. An overview of the Incone library

The goal of the Incone library is to provide a Coq formalization of some of the most
important concepts and basic results from computable analysis. The library uses notations
that allow to state theorems similar to how they would be formulated in natural language
and therefore should be readable for a mathematician familiar with computable analysis
without having a deep knowledge of Coq. For example, Lemma 2.2 corresponds to the
following statement in the library.

Lemma tight_comp R S T (f f’: T ->> R) (g g’: S ->> T):

f \tightens f’ -> g \tightens g’ -> (f \o g) \tightens (f’ \o g’).

Here, tight_comp is the name of the lemma and the symbols following this name until
the colon at the end of the line are parameters of its statement. These parameters can
alternatively be thought of as universally quantified. The phrase (f f’: T ->> R) thus
translates to the mathematical language used in the paper as “for all f, f ′ : T ⇒ R”, or “let
f and f ′ be multifunctions from T to R”. That R and T are sets can be omitted as it can be
inferred from their use. The notation for multifunctions may seem unfortunate at first but
the closer match of a notation => seemed unwise to use as it is commonly overloaded with a
number of different meanings. The colon is followed by the body of the lemma, where -> is
the logical implication and _ \o _ and _ \tightens _ are the notations for composition
and the tightening order on multivalued functions. Many of the infix notations in the library
start in a \ to avoid blocking too many keywords.

Most statements in this paper and many additional results can be found in the files of
the Incone library. In the paper, we labeled each theorem and lemma with the names of the
relevant statements in the library. This should make it easy to locate and inspect them in
Incone. The structure of this paper and the formal development of the concepts are quite
similar. For most parts making the connection is about as complicated as indicated by the
example above. The most important exception where one needs additional information for
the translation is that the library uses the expression “continuity space” for what is usually
referred to as “represented space”. We decided to use this notion since represented spaces
are tied to computability theory, which the Incone library avoids except on the meta-level.
This has another important consequence for the translation between the results of the paper
and the formal development: The formal versions will only prove continuity where the
paper claims computability. The user can verify the computability claim by inspecting
the definitions of the realizers. Whenever a result proves a function with name fun_name



Vol. 17:2 COMPUTABLE ANALYSIS AND NOTIONS OF CONTINUITY IN COQ 16:39

continuous, there will be a function whose name contains the string fun_name_rlzr. It
can be checked that this definition does not rely on any assumptions, so that it certifies
computability. How to check this manually is described in more detail below.

The smaller differences between the formal and the informal development of concepts
include the definition of the space of functions YX: While in this paper we chose the
underlying set to be the continuous functions, in the formal development we use the co-
domain of the function-space representation for the definition. In Incone the space of
functions is denoted by cs fun with the notation _ c-> _ and that its underlying set
contains exactly the continuous functions is proven separately (ass_cont). The reason
for this choice is to minimize the strength of the axioms that are automatically assumed
whenever spaces of functions are used. The proof that every continuous function has an
associate requires a considerably stronger background theory than most of the other basic
results one would be interested in. Another design choice for the sake of minimizing the use
of axioms is that Incone does not use the Coq-internal notion of equality for equality of
multivalued functions. Instead, it defines this equality as an equivalence relation _ =~= _.
This avoids the need to assume the axiom of propositional extensionality that, while being
theoretically justified and fairly commonly used, is known for having caused inconsistencies
in the past. As such equivalence relations are a common sight in constructive mathematics,
Coq provides the necessary infrastructure to make most operations equally effortless for
equalities and equivalence relations. Thus this detail can mostly be ignored by the user.

The Incone library has some sublibraries that are of separate interest and have fewer
dependencies. These parts can be obtained individually and we give an overview over their
purpose in Section A.2. Before we do so, let us sketch what steps need to be taken to get an
installation of Incone up and running and verify the correctness of the results described
in this paper. We will assume that the user has successfully installed Coq on his machine,
instructions of how to do so are available online.

A.1. How to get started. The paper describes release version 1.0 of Incone. As Incone
is an ongoing project, newer versions will become available and for a description of the
newest version, the GitHub repository can be consulted [Ste19a]. For readers only interested
in verifying the results of the paper, we give instructions how to install and use version 1.0
of the library here. This version of Incone has been tested with version 8.9.0 of the Coq
proof assistant. Additionally, the Coquelicot library (version 3.0) and the ssreflect package
from math-comp (version 1.7.0) needs to be installed. To install Incone, the libraries mf,
Rlzrs, Metric and Incone have to be downloaded and installed in this order. They can be
found in their respective GitHub repositories [Ste19c, Ste19b, Ste19d, Ste19a]. Alternatively,
the paper’s project page https://holgerthies.github.io/continuity offers a package
containing all libraries.

All of the claims the paper makes about the incone library can be checked by installing
the library, opening a new Coq file with the following includes in the preamble.

From mf Require Import choice_mf.

From rlzrs Require Import all_rlzrs.

From metric Require Import all_metric Qmetric.

From incone Require Import all_cs classical_func

classical_cont classical_mach

Duop Q_reals baire_metric.

https://holgerthies.github.io/continuity
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Each result in the paper states the name of the corresponding lemma in Incone in
brackets after the number of the result. The formal lemmas and theorems can be inspected
via Check lem_name, definitions can be detailed using Print def_name and notations by
Locate "not_name". In the case where multiple results share a name, Locate "lem_name"

lists all lemmas with that name and unique identifiers and Print Assumptions lem_name

shows the axioms that the result assumes. To list all results involving a concept Coq’s search
function can be used via Search _ (concept) and Search "phrase" might be useful where
phrase is an expected substring of a lemma’s name. Coq’s search function can also be used
with multiple arguments and the underscore above is due to the first argument being treated
differently. Omitting it will lead to only functions returning concept being listed as a result
and a warning that this may not be the intended behavior.

For example, one of the theorems from the paper has the name cont_comp. Typing

Check cont_comp.

prints the following statement:

cont_comp

: forall (X Y Z : cs) (f : Y -> Z) (g : X -> Y),

f \is_continuous -> g \is_continuous -> (f \o_f g) \is_continuous

Here, cs is a short notation for continuity_space, which is the Incone equivalent of a
represented space. The notation _ \o_f _ is for composition of functions, the shorter _ \o _

is preserved for composition of multivalued functions. The rest of the notations should be
self-explanatory but it may be worth noting that the use of a \ for non-prefix notations is to
avoid blocking too many keywords. The user may first use Locate "_ \is_continuous" to
find that this is a notation for the definition continuous. Then the details of the definition
can be printed using the command Print continuous. The above may or may not be the
desired theorem from the paper. Typing

Locate cont_comp.

shows that there are several lemmas with this name and the location of the files that contain
them.

For users that are not only interested in verifying the results from the paper, the
examples folder is a good starting point. Most of the the examples are documented via
comments in the files and contain some rudimentary proofs that can be used to get familiar
with using the library. A reader familiar with Coq will notice right away that these proofs
heavily use the ssreflect proof language. This is true for the whole of the development and a
comprehensible overview over this language and its advantages can be found in [GMT16].

A.2. The structure of Incone and its sub-libraries. Some concepts described in this
paper are expected to have applications that are unrelated to computable analysis and the
most important ones have been exported to small libraries that can be installed separately
and have less dependencies. For instance, due to its potential applications outside of
Incone the development of a convenient environment for manipulation of multifunctions
was exported and can be obtained separately as the mf-library [Ste19c]. Already the Incone
library uses multifunctions for several different purposes: Through the Rlzrs library for the
formulation of realizability, but also for dealing with partiality issues in Coq and in their
traditional role in computable analysis as formalization of computational tasks.

Let us list all the packages that we decided to export from Incone with a short
description of their contents.
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MF

RLZRS

METRIC

INCONE

INCONE and related libraries

MATHEMATICAL COMPONENTS COQUELICOT

External Dependencies

Figure 7. Internal and external dependencies of the incone library.

• mf: The mf library contains statements from the theory of multivalued functions. The
formalization closely follows the description in the first part of Section 2. Several useful no-
tations are introduced, for example _ ->> _ for multivalued functions and _ \tightens _

for the tightening relation. An exhaustive list of the important concepts can be found in
the preamble of the file mf.v in the library.
• Rlzrs: A library for basic realizability using the question and answer structure described

in the beginning of Section 3. It defines basic notations such as _ \is_name_of _ or
_ \realizes _ and heavily relies on the mf library.
• Metric: A classical formalization of metric spaces. This library contains results that are

independent from the theory of represented spaces. It also defines the metric notion of
a limit, an efficient limit and proves some statements about continuity. The layout of
Metric roughly follows that of the Coquelicot [BLM15] library. However, the definitions
are kept close to the classical mathematical treatment and are thus most similar to the
metric spaces that can be found in Coq’s standard library.

The libraries above can, and have to be, installed separately but should be considered
part of the Incone system. However, Incone also has some external dependencies. As
mentioned before it uses the ssreflect proof language. This language originates from the
mathematical components development and Incone also uses other parts of that library
[GMT16]. Another external dependency that Incone shares with Metric is Coquelicot, a
popular formalization of some facts from analysis that is conservative over the axiomatization
of the real numbers in the standard library [BLM15]. See Figure 7 for an overview of Incone,
its sublibraries and dependencies.
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The mf and Rlzrs libraries are fairly manageable and their few files can be navigated by
hand and are well documented. The Metric library is less accessible and heavily interleaved
with both the Coquelicot library and the development of metric spaces in Coq’s standard
library. Thus, we take some space to sketch some of its more important features and give
additional justification of its existence.

A.3. The library for metric spaces. Metric spaces are available in Coq’s standard
library and there are several other developments that include a treatment of metric spaces or
related concepts. The original intention of the Metric library was to provide an interface
between the the metric spaces from the standard library and a similar concept provided by
Coquelicot. Coquelicot is a popular library for doing analysis in Coq and is conservative
over the axiomatization of the real numbers in the standard library. The concept from
Coquelicot that we are referring to is named a “uniform space” in Coquelicot. However,
these spaces are more restrictive than what a mathematician would expect to be called a
uniform space and instead closely resemble pseudo-metric spaces. For Coquelicot the choice
of pseudo-metric spaces over metric spaces is due to neither Coq, nor the axioms of the real
numbers, implying functional extensionality. This makes it challenging to define a metric on
any kind of space of functions. A pseudo-metric can often be defined in a straightforward
manner. The definitions of limits and continuity used in Coquelicot rely on filters instead
of sequences. As the “uniform spaces” are Coquelicot’s most general structure and are
first-countable, the definitions via filters are equivalent to those using sequences. However,
it is not clear whether the equivalence of the derived concepts can be proven in the setting
that Coquelicot works in.

The Metric library provides interfaces with both the standard library of Coq (MS2M_S,
M_S2MS, Uncv_lim, cont_limin, etc.) and the Coquelicot library (US2MS, MS2US, cntp_cntp,
etc.) so that it is possible to reuse results proven there (for instance the lemmas limD,
limM, R_cmplt that assert the limit to commute with additional multiplication and the real
numbers to be complete are proven this way). The definitions of continuity that the metric
library uses are as stated in this paper in the chapter about metric spaces. While these
definitions quantify over real numbers ε and δ, restricting the quantifiers to only reach over
a discrete subset of the real numbers often leads to equivalent definitions. For an easy back
and forth between the different convergence statements Incone provides a line of lemmas
that contain the phrase “tpmn” (for “two to the power minus n”) in their name (tpmnP,
lim_tpmn, dns_tpmn, etc.). For instance tpmnP proves that 2−n ≤ 2−m on real numbers
reflects m ≤ n on natural numbers and lim_tpmn says that in the definition of the limit
one may replace ε by 2−n and thereby quantification over R by quantification over N. A
similar set of lemmas is provided for replacement of ε and δ with rational numbers. For
rational numbers Incone also provides a constructive instantiation of the restriction of
the up function (upQ, limQ, archimedQ, etc.). The function upQ, for instance, is useful for
recovering computational content from proofs in the standard library, as it may in some
cases be used as substitute for the non-computable function up defined on all reals.

Finally, the Metric library proves some results that are not proven in Coquelicot,
most of these rely on the axioms that our development assumes over the assumptions made
by Coquelicot. It also defines an interface for handling sub-spaces as continuity of partial
functions is important for our purposes. In the case of metric spaces both continuity and its
sequential variant can be recovered from analogous point-wise notions while for represented
spaces this is only the case for sequential continuity. The availability of point-wise notions is
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not always an advantage and can introduce subtle problems in the treatment of sub-spaces.
Even in the most well-behaved cases there is a difference between a function being continuous
in each point of the subset and the restriction of the function being continuous. For instance,
the characteristic function of the closed unit interval has a continuous restriction but is not
continuous in either end-point. This can easily lead to confusion and as a result some of
the statements of important theorems about continuous functions on the real numbers from
the standard library differ slightly from what a mathematician would expect them to say.
Examples for this include the mean value and the intermediate value theorem.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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