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Abstract. We show that it is decidable whether or not a relation on the reals definable
in the structure 〈R,+, <,Z〉 can be defined in the structure 〈R,+, <, 1〉. This result is
achieved by obtaining a topological characterization of 〈R,+, <, 1〉-definable relations in
the family of 〈R,+, <,Z〉-definable relations and then by following Muchnik’s approach
of showing that the characterization of the relation X can be expressed in the logic of
〈R,+, <, 1, X〉.

The above characterization allows us to prove that there is no intermediate structure
between 〈R,+, <,Z〉 and 〈R,+, <, 1〉. We also show that a 〈R,+, <,Z〉-definable relation is
〈R,+, <, 1〉-definable if and only if its intersection with every 〈R,+, <, 1〉-definable line is
〈R,+, <, 1〉-definable. This gives a noneffective but simple characterization of 〈R,+, <, 1〉-
definable relations.

1. Introduction

Consider the structure 〈R,+, <, 1〉 of the additive ordered group of reals along with the
constant 1. It is well-known that the subgroup Z of integers is not first-order-definable in
this structure. Add the predicate x ∈ Z resulting in the structure 〈R,+, <,Z〉. Our main
result shows that given a 〈R,+, <,Z〉-definable relation it is decidable whether or not it is
〈R,+, <, 1〉-definable.

The structure 〈R,+, <,Z〉 is a privileged area of application of algorithmic verification
of properties of reactive and hybrid systems, where logical formalisms involving reals
and arithmetic naturally appear, see e.g [BDEK07, FQSW20, Boi]. It admits quantifier
elimination and is decidable as proved independently by Miller [Mil01] and Weisfpfenning
[Wei99]. The latter’s proof uses reduction to the theories of 〈Z,+, <〉 and 〈R,+, <, 1〉.

There are many ways to come across the structure 〈R,+, <,Z〉, which highlights its
significance. One approach is through automata. Cobham considers a fixed base r and
represents integers as finite r-digit strings. A subset X of integers is r−recognizable if
there exists a finite automaton accepting precisely the representations in base r of its
elements. Cobham’s theorem says that if X is r- and s-recognizable for two multiplicatively
independent values r and s (i.e., for all i, j > 0 it holds ri 6= sj) then X is definable in
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Presburger arithmetic, i.e., in 〈N,+〉 [Cob69, Pre27]. Conversely, each Presburger-definable
subset of N is r-recognizable for every r. This result was extended to integer relations of
arbitrary arity by Semënov [Sem77].

Now consider recognizability of sets of reals. As early as 1962 Büchi interprets subsets
of integers as characteric functions of reals in their binary representations and shows
the decidability of a structure which is essentially an extension of 〈R,+, <,Z〉, namely
〈R+, <, P,N〉 where P if the set of positive powers of 2 [Büc62, Thm 4]. Going one step
further, Boigelot & al. [BRW98] consider reals as infinite strings of digits and use Muller
automata to speak of r-recognizable subsets and more generally of r-recognizable relations
of reals. In the papers [BB09, BBB10, BBL09] the equivalence was proved between (1)
〈R,+, <,Z〉-definability, (2) r- and s-recognizability where the two bases have distinct
primes in their factorization [BBL09, Thm 5] and (3) r- and s-weakly recognizability for
two independently multiplicative bases, [BBL09, Thm 6] (a relation is r-weakly recognizable
if it is recognized by some deterministic Muller automaton in which all states in the same
strongly connected component are either final or nonfinal). Consequently, as far as reals are
concerned, definability in 〈R,+, <,Z〉 compared to recognizability or weak recognizability by
automata on infinite strings can be seen as the analog of Presburger arithmetic for integers
compared to recognizability by automata on finite strings.

A natural issue is to find effective characterizations of subclasses of r−recognizable
relations. In the case of relations over integers, Muchnik proved that for every base r ≥ 2 and
arity k ≥ 1, it is decidable whether a r-recognizable relation X ⊆ Nk is Presburger-definable
[Muc03] (see a different approach in [Ler05] which provides a polynomial time algorithm).
For relations over reals, up to our knowledge, the only known result is due to Milchior
who proved that it is decidable (in linear time) whether a weakly r−recognizable subset
of R is definable in 〈R,+, <, 1〉 [Mil17]. Our result provides an effective characterization
of 〈R,+, <, 1〉-definable relations within 〈R,+, <,Z〉-definable relations. Our approach is
inspired by Muchnik’s one, which consists of giving a combinatorical characterization of
〈N,+〉-definable relations that can be expressed in 〈N,+〉 itself.

Our result has two interesting corollaries. The first one is that there is no intermediate
structure between 〈R,+, <,Z〉 and 〈R,+, <, 1〉, i.e., if an 〈R,+, <,Z〉-definable relation X
is not 〈R,+, <, 1〉-definable, then Z is definable in the structure 〈R,+, <, 1, X〉. Along with
the property that 〈R,+, <,Z〉 is the “common” substructure of all recognizable and weakly
recognizable relations this indicates that this structure is central. The second corollary is a
noneffective but simple characterization: an 〈R,+, <,Z〉-definable relation is 〈R,+, <, 1〉-
definable if and only if every intersection with a rational line is 〈R,+, <, 1〉-definable. By
rational we mean any line which is the intersection of hyperplanes defined by equations with
rational coefficients.

The reader will be able to observe that, while our results are obviously related to
automata questions, proofs do not use automata at all.

Other related works. Muchnik’s approach, namely expressing in the theory of the struc-
ture a property of the structure itself, can be used in other settings. We refer the interested
reader to the discussion in [SSU14, Section 4.6] and also to [PW00, Bès13, Mil17] for exam-
ples of such structures. A similar method was already used in 1966, see [GS66, Thm 2.2.]
where the authors were able to express in Presburger theory whether or not a Presburger
subset is the Parikh image of a context-free language.
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Let us mention a recent series of results by Hieronymi which deal with expansions of
〈R,+, <,Z〉, and in particular with the frontier of decidability for such expansions, see,
e.g., [Hie19] and its bibliography. Finally, in connection with our result that there is
no intermediate structure between 〈R,+, <, 1〉 and 〈R,+, <,Z〉, Conant recently proved
[Con18] that there is no intermediate structure between 〈Z,+〉 and 〈Z,+, <〉. Concerning
these two theories, it is decidable whether or not a 〈Z,+, <〉-definable relation is actually
〈Z,+〉-definable, see [CF10].

Now we give a short outline of our paper. Section 2 gathers all the basic on the
two specific structures 〈R,+, <,Z〉 and 〈R,+, <, 1〉, taking advantage of the existence of
quantifier elimination which allows us to work with simpler formulas. Section 3 introduces
topological notions. In particular we say that the neighborhood of a point x ∈ Rn relative
to a relation X ⊆ Rn has strata if there exists a direction such that the intersection of all
sufficiently small neighborhoods around x with X is the trace of a union of lines parallel
to the given direction. This reflects the fact that the relations we work with are defined
by finite unions of regions of the spaces delimited by hyperplanes of arbitrary dimension.
In Section 4 we show that when X is 〈R,+, <, 1〉-definable all points (except finitely many
which we call singular) have at least one direction which is a stratum. Section 5 studies
relations between neighborhoods. In Section 6 we give a necessary and sufficient condition
for a 〈R,+, <,Z〉-definable relation to be 〈R,+, <, 1〉-definable, namely 1) it has finitely
many singular points and 2) all intersections of X with arbitrary hyperplanes parallel to
n− 1 axes and having rational components on the remaining axis are 〈R,+, <, 1〉-definable.
Then we show that these properties are expressible in 〈R,+, <, 1, X〉. In Section 7 we show
that there is no intermediate structure between 〈R,+, <,Z〉 and 〈R,+, <, 1〉. Section 8 is
devoted to the proof that a 〈R,+, <,Z〉-definable relation is 〈R,+, <, 1〉-definable if and
only if every intersection with a rational line is 〈R,+, <, 1〉-definable.

2. Preliminaries

Throughout this work we assume the vector space Rn is provided with the metric L∞ (i.e.,
|x| = max1≤i≤n |xi|). The open ball centered at x ∈ Rn and of radius r > 0 is denoted by
B(x, r). Given x, y ∈ Rn we let [x, y] (resp. (x, y)) denote the closed segment (resp. open
segment) with extremities x, y. Also we use notations such as [x, y) or (x, y] for half-open
segments.

Let us specify our logical conventions and notations. We work within first-order
predicate calculus with equality. We confuse formal symbols and their interpretations,
except in subsection 6.2 where the distinction is needed. We are mainly concerned with the
structures 〈R,+, <, 1〉 and 〈R,+, <,Z〉. In the latter structure, Z should be understood as
a unary predicate which is satisfied by reals belonging to Z only - in other words, we deal
with one-sorted structures. Given a structure M with domain D and X ⊆ Dn, we say that
X is definable in M, or M-definable, if there exists a formula ϕ(x1, . . . , xn) in the signature
of M such that ϕ(a1, . . . , an) holds in M if and only if (a1, . . . , an) ∈ X.

The 〈R,+, <, 1〉-theory admits quantifier elimination in the following sense, which can
be interpreted geometrically as saying that a 〈R,+, <, 1〉-definable relation is a finite union
of closed and open polyhedra.
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Theorem 2.1 [FR75, Thm. 1]. Every formula in 〈R,+, <, 1〉 is equivalent to a finite Boolean
combination of inequalities between linear combinations of variables with coefficients in Z
(or, equivalently, in Q).

Corollary 2.2.

(1) A subset of R is 〈R,+, <, 1〉-definable if and only if it is a finite union of intervals whose
endpoints are rational numbers. In particular Z is not 〈R,+, <, 1〉-definable.

(2) For every n ≥ 1, if X ⊆ Rn is nonempty and 〈R,+, <, 1〉-definable then X contains an
element of Qn.

Proof. (1) is an immediate consequence of Theorem 2.1. For (2) we proceed by induc-
tion over n. The case n = 1 follows from (1). For n > 1, consider the set Y =
{xn | ∃x1, . . . , xn−1 (x1, . . . , xn) ∈ X}. The set Y is nonempty and 〈R,+, <, 1〉-definable
by our hypothesis on X, thus by the base case of the induction Y contains a ratio-
nal q. Then it suffices to apply the induction hypothesis to the (n − 1)−ary relation
{(x1, . . . , xn−1) | (x1, . . . , xn−1, q) ∈ X}.

In the larger structure 〈R,+, <,Z〉 it is possible to separate the integer (superscript ‘I’)
and fractional (superscript ‘F ’) parts of the reals as follows.

Theorem 2.3 [BFL08],[BBL09, p. 7]. Let X ⊆ Rn be definable in 〈R,+, <,Z〉. Then there
exists a unique finite union

X =
K⋃
k=1

(X
(I)
k +X

(F )
k ) (2.1)

where

• the relations X
(I)
k are pairwise disjoint subsets of Zn and are 〈Z,+, <〉-definable

• the relations X
(F )
k are distinct subsets of [0, 1)n and are 〈R,+, <, 1〉-definable

There is again a geometric interpretation of 〈R,+, <,Z〉-definable relations as a regular
(in a precise technical way) tiling of the space by a finite number of tiles which are themselves
finite unions of polyhedra. As a consequence, the restriction of a 〈R,+, <,Z〉-definable
relation to a bounded subset is 〈R,+, <, 1〉-definable, as stated in the following lemma.

Lemma 2.4. For every 〈R,+, <,Z〉-definable relation X ⊆ Rn, its restriction to a bounded
domain [a1, b1]×· · ·×[an, bn] where the ai’s and the bi’s are rationals, is 〈R,+, <, 1〉-definable.

Proof. By Theorem 2.3 the relation X is a finite union of the form

K⋃
k=1

(X
(I)
k +X

(F )
k ) where

each X
(I)
k ⊆ Zn is 〈Z, <,+〉-definable and each X

(F )
k ⊆ [0, 1)n is 〈R,+, <, 1〉-definable.

Let Ak, Bk ∈ Z be such that

[a1, b1]× · · · × [an, bn] ⊆ [A1, B1]× · · · × [An, Bn].

The ai’s and the bi’s are rational thus 〈R,+, <, 1〉-definable, and the relation [a1, b1]× · · · ×
[an, bn] is 〈R,+, <, 1〉-definable as well. Now the finite subset

Tk = X
(I)
k ∩ ([A1, B1]× · · · × [An, Bn]) ⊆ Z× · · · × Z
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is 〈R,+, <, 1〉-definable, therefore so is the sum Tk + X
(F )
k , and also the finite union S =

K⋃
k=1

(Tk+X
(F )
k ). Finally the restriction X∩([a1, b1]×· · ·×[an, bn]) = S∩([a1, b1]×· · ·×[an, bn])

is also 〈R,+, <, 1〉-definable.

By considering the restriction of the 〈R,+, <,Z〉-relation to a ball containing all pos-
sible tiles with their closest neighbors, we get that the neighborhoods of 〈R,+, <,Z〉- and
〈R,+, <, 1〉-definable relations are indistinguishable.

Lemma 2.5. For every 〈R,+, <,Z〉-definable relation X ⊆ Rn there exists a 〈R,+, <, 1〉-
definable relation Y ⊆ Rn such that for all x ∈ Rn there exists y ∈ Rn and a real r > 0
such that the translation u 7→ u+ y − x is a one-to-one mapping between B(x, r) ∩X and
B(y, r) ∩ Y .

Proof. Let X be a 〈R,+, <,Z〉-definable relation

X =
K⋃
k=1

(X
(I)
k +X

(F )
k )

as in expression (2.1). Set C = [−1, 2)n ⊆ Rn. Observe that the set

P = {−a+ ((a+ C) ∩X) | a ∈ Zn}

is finite and contains at most K3n elements, all of which being subsets of C. Thus there
exists an integer N such that for all P ∈ P there exists z ∈ B(0, N − 1) ∩ Zn such that

P = −z + ((z + C) ∩X).

We prove the statement by defining Y as the restriction of X to B(0, N). Indeed, consider
an arbitrary x ∈ Rn and let x = w + t where wi = bxic for i = 1, . . . , n. Then the
translation u 7→ −w + u defines a one-to-one correspondence between (w + C) ∩ X and
−w+((w+C)∩X) which is some P ∈ P . By definition of N there exists z ∈ B(0, N−1)∩Zn
such that z + P = (z + C) ∩X = (z + C) ∩ Y . Then the translation τ(u) = −w + z + u is
a one-to-one correspondence between (w + C) ∩X and (z + C) ∩ Y . Since x is interior to
w + C, the point τ(x) = y is interior to z + C ⊆ B(0, N), thus for sufficiently small r > 0
the ball B(x, r) is included in w+C and the ball B(y, r) is included in z +C. Consequently
τ defines a one-to-one mapping between B(x, r) ∩X and B(y, r) ∩ Y .

3. Strata

The aim is to decide, given n ≥ 1 and a 〈R,+, <,Z〉-definable relation X ⊆ Rn, whether
X is 〈R,+, <, 1〉-definable. Though the relations defined in the two structures have very
specific properties (see e.g [BN88, BBD12] for 〈R,+, <, 1〉-definable relations) we define
properties that make sense in a setting as general as possible. The following clearly defines
an equivalence relation.

Definition 3.1. Given x, y ∈ Rn we write x∼X y or simply x ∼ y when X is understood,
if there exists a real r > 0 such that the translation w 7→ w + y − x is a one-to-one mapping
from B(x, r) ∩X onto B(y, r) ∩X.
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Example 3.2. Consider a closed subset of the plane delimited by a square. There are 10
equivalence classes: the set of points interior to the square, the set of points interior to its
complement, the four vertices and the four open edges.

Definition 3.3.

(1) Given v ∈ Rn and a point y ∈ Rn, let Lv(y) = {y + αv | α ∈ R}. When v 6= 0 we say
that Lv(y) is the line passing through y in the direction v. More generally, if X ⊆ Rn
we let Lv(X) denote the set

⋃
x∈X Lv(x).

(2) A vector v ∈ Rn is an X-stratum at x (or simply a stratum when X is understood) if
there exists a real r > 0 such that

B(x, r) ∩ Lv(X ∩B(x, r)) ⊆ X. (3.1)

If v 6= 0 this can be seen as saying that inside the ball B(x, r), the relation X is a union
of lines parallel to v.

(3) The set of X-strata at x is denoted by StrX(x) or simply Str(x).

Proposition 3.4. For all X ⊆ Rn and x ∈ Rn the set Str(x) is a vector subspace of Rn.

Proof. We start with a lemma.

Lemma 3.5. Let v1, v2 be two strata at x and let r > 0 be such that

B(x, r) ∩ Lv1(X ∩B(x, r)) ⊆ X and B(x, r) ∩ Lv2(X ∩B(x, r)) ⊆ X
Then

B(x, r) ∩ Lv1+v2(X ∩B(x, r)) ⊆ X.

Proof. Let v = v1 + v2. The case when one of the vectors v, v1, v2 is null is trivial so we
assume v, v1, v2 6= 0. We must prove that a point y ∈ B(x, r) belongs to X if and only if
all points of B(x, r) ∩ Lv(y) do. Consider z = y + λv ∈ B(x, r) with λ 6= 0. Let ε > 0 be
such that for every point t ∈ [y, z] the ball B(t, ε) is included in B(x, r) (such a real exists
because the segment [y, z] is compact). Let n be an integer such that | 1nλv1| < ε. Then the

points yi = y + i
nλ(v1 + v2) for 0 ≤ i ≤ n belong to B(x, r) because they lay in the segment

[y, z], and due to the choice of ε the points yi + 1
nλv1 for 0 ≤ i < n also belong to B(x, r).

Since the vectors v1 and v2 are strata at x, for 0 ≤ i < n we have

yi ∈ X ↔ yi +
λ

n
v1 ∈ X ↔ yi +

λ

n
v1 +

λ

n
v2 = yi+1 ∈ X.

Therefore in particular z ∈ X ↔ y ∈ X.

Now we turn to the proof of Proposition 3.4. By definition v is a stratum if and only if
λv is a stratum for some λ 6= 0. Thus it suffices to verify that Str(x) is closed under addition.
If v1 (resp. v2) is a stratum then there exist r1, r2 > 0 such that

B(x, r1) ∩ Lv1(X ∩B(x, r1)) ⊆ X and B(x, r2) ∩ Lv2(X ∩B(x, r2)) ⊆ X.
Thus for r ≤ min{r1, r2} we have

B(x, r) ∩ Lv1(X ∩B(x, r)) ⊆ X and B(x, r) ∩ Lv2(X ∩B(x, r)) ⊆ X.
It then suffices to apply Lemma 3.5.

Definition 3.6. Let X ⊆ Rn and x ∈ Rn. The dimension dim(x) of x is the dimension of
the subspace Str(x).
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Definition 3.7. Given X ⊆ Rn, a point x ∈ Rn is X-singular, or simply singular, if Str(x)
is trivial, i.e., reduced to the null vector, otherwise it is nonsingular.

Example 3.8 (Example 3.2 continued). Let x ∈ R2. If x belongs to the interior of the
square or of its complement, then Str(x) = R2. If x is one of the four vertices of the square
then we have Str(x) = {0}, i.e x is singular. Finally, if x belongs to an open edge of the
square but is not a vertex, then Str(x) has dimension 1, and two points of opposite edges
have the same one-dimensional subspace, while two points of adjacent edges have different
one-dimensional subspaces.

Note that even non-〈R,+, <,Z〉-definable relations may have no singular points. Indeed
consider in the plane the set X defined as the union of vertical lines at abscissa 1

n for all
positive integers n. In this case any vertical vector is a stratum at any point of the plane.

Now it can be shown that all strata at x can be defined with respect to a common value
r in expression (3.1).

Proposition 3.9. Let X ⊆ Rn and x ∈ Rn. There exists a real r > 0 such that for every
v ∈ Str(x) we have

B(x, r) ∩ Lv(X ∩B(x, r)) ⊆ X.
Proof. The case when Str(x) is reduced to 0 is trivial so we assume that for some p > 0 the
vectors v1, . . . , vp form a basis of the vector space Str(x). There exist r1, . . . , rp > 0 such
that

B(x, ri) ∩ Lvi(X ∩B(x, ri)) ⊆ X.
Then for r = min{r1, . . . , rp} we have

B(x, r) ∩ Lvi(X ∩B(x, r)) ⊆ X.
Consider an arbitrary vector of Str(x), say v = λ1v1 + · · ·+λpvp. It suffices to apply Lemma
3.5 successively to λ1v1 + λ2v2, λ1v1 + λ2v2 + λ3v3, . . . , λ1v1 + · · ·+ λpvp.

Definition 3.10. Let X ⊆ Rn and x ∈ Rn. A safe radius (for x) is a real r > 0 satisfying
the condition of Proposition 3.9. Clearly if r is safe then so are all 0 < s ≤ r. Observe that
every real is a safe radius if Str(x) is trivial.

Example 3.11 (Example 3.2 continued). For an element x of the interior of the square or
the interior of its complement, let r be the (minimal) distance from x to the edges of the
square. Then r is safe for x. If x is a vertex then Str(x) is trivial and every r > 0 is safe
for x. In all other cases r is the minimal distance of x to a vertex.

Lemma 3.12. Let X ⊆ Rn and x, y ∈ Rn. If x ∼ y then Str(x) = Str(y).

Proof. For some r > 0, the translation u 7→ u+y−x is a one-to-one correspondence between
B(x, r)∩X and B(y, r)∩X. Thus every stratum of X at x is a stratum of X at y and vice
versa.

The converse of Lemma 3.12 is false in general. Indeed consider, e.g., X = {(x, y) | y ≤
0} ∪ {(x, y) | y = 1} in R2. The points (0, 0) and (0, 1) have the same subspace of strata,
namely that generated by (1, 0), but x 6∼ y.

Now we combine the notions of strata and of safe radius.

Lemma 3.13. Let X ⊆ Rn, x ∈ Rn and r be a safe radius for x. Then for all y ∈ B(x, r)
we have Str(x) ⊆ Str(y).
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Proof. Indeed, consider v ∈ Str(x). For all s > 0 such that B(y, s) ⊆ B(x, r) we have

B(y, s) ∩ Lv(X ∩B(y, s)) = B(y, s) ∩ Lv(X ∩B(y, s) ∩B(x, r))
⊆ B(x, r) ∩ Lv(X ∩B(x, r)) ⊆ X.

Example 3.14 (Example 3.2 continued). Consider a point x on an (open) edge of the
square and a safe radius r for x. For every point y in B(x, r) which is not on the edge we
have Str(x) ( Str(y) = R2. For all other points we have Str(x) = Str(y).

We relativize the notion of singularity and strata to an affine subspace P ⊆ Rn. The
next definition should come as no surprise.

Definition 3.15. Given an affine subspace P ⊆ Rn, a subset X ⊆ Rn and a point x ∈ P ,
we say that a nonzero vector v parallel to P is an (X,P )-stratum for the point x if for all
sufficiently small r > 0 it holds

B(x, r) ∩ Lv(X ∩B(x, r) ∩ P ) ⊆ X.
A point x ∈ P is (X,P )-singular if it has no (X,P )-stratum. For simplicity when P

is the space Rn we keep the previous terminology and speak of X-strata and X-singular
points.

Singularity and nonsingularity do not go through restriction to affine subpaces.

Example 3.16. In the real plane, let X = {(x, y) | y < 0} and P be the line x = 0. Then
the origin is not X−singular but it is (X,P )−singular. All other elements of P admit (0, 1)
as an (X,P )−stratum thus they are not (X,P )−singular. The opposite situation may occur.
In the real plane, let X = {(x, y) | y < 0} ∪ P where P = {(x, y) | x = 0}. Then the origin
is X−singular but it is not (X,P )−singular.

4. Local properties

4.1. Local neighborhoods. In this section we recall that if X ⊆ Rn is 〈R,+, <, 1〉-definable
then the equivalence relation ∼ (introduced in Definition 3.1) has finite index. This extends
easily to the case where X is 〈R,+, <,Z〉-definable. The claim for 〈R,+, <, 1〉-definable
relations can be found, e.g., in [BN88, Thm 1] (see also [BBD12, Section 3]) but we revisit
it to some extent because of the small modifications needed to use it in our setting.

We define what we mean by “cones”.

Definition 4.1. Let ξ = (ξ1, . . . , ξn) ∈ Rn. A cone with apex ξ is an intersection of finitely
many halfspaces defined by conditions of the form u(x− ξ) / b where / ∈ {<,≤}, b ∈ Q, and
u denotes a linear expression with rational coefficients, i.e., u(x− ξ) =

∑
1≤i≤n ai(xi − ξi)

where ai ∈ Q.

In particular the set reduced to the origin, and the empty set, are specific cones in
our sense (on the real line they can be described respectively by x ≤ 0 ∧ −x ≤ 0 and
x < 0 ∧ −x < 0).

Let X ⊆ Rn be 〈R,+, <, 1〉-definable. By Theorem 2.1 we may assume that X is defined
by a formula

φ(x) =
∨
i∈I

Ci where Ci =
∧
j∈Ji

ui,j(x) /i,j bi,j (4.1)
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where for all (i, j) ∈ I × Ji we have /i,j ∈ {<,≤}, bi,j ∈ Q and ui,j is a linear expression
with rational coefficients.

Now we associate with φ a finite collection of cones.

Definition 4.2. Consider all formulas obtained from expression (4.1) by replacing in all
possible ways each predicate ui,j(x) /ij bi,j by one of the three options ui,j(x) /ij 0 or false
or true. Use the routine simplifications so that the resulting formulas are reduced to false

or true or are disjunctions of conjunctions with no occurrence of false or true.
Let Θ be the (finite) set of formulas thus obtained, and let us call local neighborhood

any relation defined by some formula in Θ. In particular each formula in Θ defines a finite
union of cones of which the origin is an apex.

In the terminology of [BN88, Thm 1] the following says that an 〈R,+, <, 1〉-definable
relation has finitely many “faces” which are what we call local neighborhoods.

Proposition 4.3. Consider an 〈R,+, <, 1〉-definable relation X. There exists a finite
collection Θ of 〈R,+, <, 1〉-formulas defining finite unions of cones with apex the origin such
that for all ξ ∈ Rn there exist some θ in Θ and some real s > 0 such that for all t ∈ Rn we
have

(θ(t) ∧ |t| < s)↔ (φ(ξ + t) ∧ |t| < s). (4.2)

Proof. Let Θ be defined as in Definition 4.2. Consider the expression (4.1). For all
(i, j) ∈ I × Ji let Ai,j denote the hyperplane with equation ui,j(x) = bi,j . Let s > 0 be such
that B(ξ, s) intersects only the hyperplanes Ai,j which contain ξ. For all (i, j) ∈ I × Ji, if
ξ ∈ Ai,j then ui,j(ξ) = bi,j thus for every t ∈ R we have ui,j(ξ + t) /i,j bi,j if and only if
ui,j(t) /i,j 0. Otherwise if ξ 6∈ Ai,j then ui,j(ξ + t) /i,j bi,j is either always true or always
false for 0 < t < |s|. This shows that for 0 < t < |s| the formula φ(ξ + t) is equivalent to a
Boolean combination of formulas of the form ui,j(t) /i,j 0, true or false.

Corollary 4.4. Let X ⊆ Rn be 〈R,+, <, 1〉-definable.

(1) The equivalence relation ∼ has finite index.
(2) The set of (distinct) spaces Str(x) is finite when x runs over Rn.
(3) There exists a fixed finite collection C of cones (in the sense of Definition 4.1) satisfying

the following condition. With each ∼-class E is associated a subset C′ ⊆ C such that for
every x ∈ E there exists r > 0 such that for every t ∈ Rn we have

(x+ t ∈ X) ∧ |t| < r ↔
(
t ∈

⋃
C∈C′

C
)
∧ |t| < r.

Proof. Point 1 follows from the fact that Θ is finite and that two points x, y which are
associated with the same formula θ in Proposition 4.3 satisfy x ∼ y by definition of θ. Point
2 is a straightforward consequence of Point 1 and Lemma 3.12. For Point 3 observe that all
elements of E must be associated with equivalent formulas θ in Proposition 4.3 and that
each formula θ ∈ Θ is a disjunction of formulas which define cones.

Because of Lemma 2.5 we have

Corollary 4.5. The statements of Corollary 4.4 extend to the case where X is 〈R,+, <,Z〉-
definable.

Combining Corollaries 4.4 and 4.5 allows us to specify properties of singular points for
〈R,+, <, 1〉- and 〈R,+, <,Z〉-definable relations.
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Proposition 4.6. Let X ⊆ Rn. If X is 〈R,+, <, 1〉-definable then it has finitely many
singular points and their components are rational numbers. If X is 〈R,+, <,Z〉-definable
then it has a countable number of singular points and their components are rational numbers.

Proof. By Proposition 4.3, if ξ is not interior to X or its complement, for small enough r > 0
the subset X coincides on B(ξ, r) with a finite nonempty union of open or closed cones of
which ξ is an apex. The boundaries of these cones are hyperplanes H1, . . . ,Hp defined by
equations of the form uh,k(x) = bh,k as in the proof of Proposition 4.3. If their normals scan
a subspace of dimension p < n then the space of strata has dimension at least n− p: indeed
along all such directions, the expressions uh,k(x) are constant. Therefore a point is singular
only if these normals scan the space Rn. There are finitely many hyperplanes Hi, and n
hyperplanes whose normals are linearly independent intersect in exactly one point, thus the
number of singular points is finite and their intersections have rational components.

The fact that the set of singular points in an 〈R,+, <,Z〉-definable relation is countable
is a direct consequence of the following observation. Let x ∈ [a1, a1 + 1)× · · · × [an, an + 1)
with a1, . . . , an ∈ Z. Then x is X-singular if and only if it is Y -singular in the restriction

Y = X ∩ ([a1 − 1, a1 + 1)× · · · × [an − 1, an + 1))

because for r > 0 small enough we have B(x, r) ∩X = B(x, r) ∩ Y . By Lemma 2.4 each set
Y is 〈R,+, <, 1〉-definable thus has finitely many singular points, and there is a countable
number of such Y ’s.

4.2. Strata in 〈R,+, <,Z〉. In Proposition 3.4 we proved that the set of strata at a given
point is a vector subspace. Here we show more precisely that this subspace has a set of
generators consisting of vectors with rational coefficients.

Proposition 4.7. Let X ⊆ Rn be a 〈R,+, <,Z〉-definable relation and ξ ∈ Rn. There exists
a set of linearly independent vectors with rational coefficients generating Str(ξ).

Proof. Because of Lemma 2.5 the collection of local neighborhoods in an 〈R,+, <,Z〉-definable
relation is identical to the collection of local neighborhoods in some 〈R,+, <, 1〉-definable
relation, thus it suffices to treat the case of 〈R,+, <, 1〉-definable relations.

By Proposition 4.3 for all points ξ ∈ Rn there exists a 〈R,+, <, 1〉-formula θ defining
a finite union of cones with apex 0 such that for some real s > 0 and for all t ∈ Rn the
following condition is satisfied.

(θ(t) ∧ |t| < s)↔ (φ(ξ + t) ∧ |t| < s) (4.3)

We give the proof for the case ξ = 0. The argument can easily be generalized to any ξ ∈ Rn
using Expression (4.3). Given an hyperplane H defined by a linear equation u(x) = 0, we set

Hε =

 {x | u(x) = 0} if ε is the symbol =
{x | u(x) < 0} if ε is the symbol <
{x | u(x) > 0} if ε is the symbol >

Lemma 4.8. Let y, z ∈ Rn and let H1, . . . ,Hq be hyperplanes in Rn containing the origin.
For all nonzero vectors v ∈ Rn which are parallel with no Hi, there exists α ∈ R and
ε1, . . . , εq such that the points y′ = y + αv and z′ = z + αv belong to

⋂
1≤i≤qH

εi
i .

Proof. Since v is not parallel with Hi, for sufficiently large αi ≥ 0 the points y + αiv and
z + αiv belong to the same halfspace defined by Hi. It suffices to set α = max(αi).
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We return to the proof of Proposition 4.7. Expression (4.3) can be viewed as saying
that the relation Y = {x ∈ Rn | θ(x)} satisfies the following condition: there exist q rational
hyperplanes H1, . . . ,Hq such that Y is a finite union of subsets of the form

⋂
1≤i≤qH

εi
i with

εi ∈ {<,>,=}. Among all possible expressions defining Y and involving the hyperplanes
H1, . . . ,Hq, choose one where the minimum subset of such hyperplanes occurs. Rename if
necessary the hyperplanes as H1, . . . ,Hp with p ≤ q. We want to show that

Str(0) =
⋂

1≤i≤p
Hi.

Clearly, every vector v parallel with allHi is a stratum for all cones so that Str(0) ⊇
⋂

1≤i≤pHi

holds. We prove the opposite inclusion. If Str(0) is trivial or p = 0 we are done. We assume
by way of contradiction that for some vector v ∈ Str(0), the subset J ⊆ {1, . . . , p} of indices
j such that v belongs to Hj is proper. If J = ∅, by Lemma 4.8 for all points y, z ∈ Rn
there exist α ∈ R and ε1, . . . , εp such that the points y′ = y + αv and z′ = z + αv belong to⋂

1≤i≤pH
εi
i . This implies y′ ∈ Y ↔ z′ ∈ Y , and since v is a stratum, we get

y ∈ Y ↔ y′ ∈ Y ↔ z′ ∈ Y ↔ z ∈ Y
thus Y = Rn which is defined by θ(x) = true and violates the minimality of p.

Now we deal with J 6= ∅. By possibly renaming the hyperplanes we assume J =
{r + 1, . . . , p} with r ≥ 1. We will show that the hyperplanes H1, . . . ,Hr are useless,
i.e., that Y can be written as a finite union of subsets of the form

⋂
r<i≤pH

εi
i . Given a

subset A =
⋂
r<i≤pH

εi
i we show that for all points y, z ∈ A we have y ∈ Y ↔ z ∈ Y .

We apply again Lemma 4.8: there exist α ∈ R and ε1, . . . , εr such that y′ = y + αv and
z′ = z + αv belong to

⋂
1≤i≤rH

εi
i . Since y, z ∈ A and v ∈

⋂
r<i≤pHi, we get y′, z′ ∈ A thus

y′, z′ ∈
⋂

1≤i≤pH
εi
i . By definition of θ we get y′ ∈ Y ↔ z′ ∈ Y , and since v is a stratum we

obtain y ∈ Y ↔ z ∈ Y . This contradicts the minimality of p.

4.3. Application: expressing the singularity of a point in a 〈R,+, <,Z〉-definable
relation. The singularity of a point x is defined as the property that no intersection of
X with a ball centered at x is a union of lines parallel with a given nonzero direction.
This property is not directly expressible within 〈R,+, <,Z〉 since the natural way would be
to use multiplication on reals, which is not 〈R,+, <,Z〉-definable. In order to be able to
express the property, we give an alternative characterization of singularity which relies on
the assumption that X is 〈R,+, <,Z〉-definable.

Lemma 4.9. Given an 〈R,+, <,Z〉-definable relation X ⊆ Rn and x ∈ Rn the following
two conditions are equivalent:

(1) x is singular.
(2) for all r > 0, there exists s > 0 such that for all nonzero vectors v of norm less than s,

there exist two points y, z ∈ B(x, r) such that y = z + v and y ∈ X ↔ z 6∈ X.

Observe that when X is not 〈R,+, <,Z〉-definable, the two assertions are no longer
equivalent. E.g., Q has only singular points but condition 2 holds for no point in R.

Proof. In order to prove the equivalence of the two conditions, we write them formally

(1) ∀r > 0 ∀v ∈ Rn \ {0} ∃s > 0 ∃y, z (y, z ∈ B(x, r) ∧ y = sv + z ∧ (y ∈ X ↔ z 6∈ X))
(2) ∀r > 0 ∃s > 0 ∀v (0 < |v| < s→ ∃y, z (y, z ∈ B(x, r) ∧ y = v + z ∧ (y ∈ X ↔ z 6∈ X))
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The implication (2)→ (1) is shown by contraposition, i.e., ¬(1)→ ¬(2) and is a simple
application of the rule ∃u∀vψ(u, v)→ ∀v∃uψ(u, v). Indeed, if v0 satisfies ¬(1) then for every
s the condition ¬(2) is satisfied with any vector v colinear with v0 of modulus less than s.

Now we prove (1)→ (2). We must prove that if the point x is singular, then for all r > 0
there exists s > 0 such that for every vector |v| ≤ s there exist two points y, z satisfying

y, z ∈ B(x, r) ∧ y = z + v ∧ (y ∈ X ↔ z 6∈ X). (4.4)

Let k be the number of disjuncts in the formula defining X (cf. expression (4.1)), which
is also an upper bound on the number of cones composing the local neighborhoods at a
given point. In order to simplify the notation we also assume that the point x is the origin.
Also, it is clear that condition (2) is satisfied if and only if it is satisfied for r small enough
which means that we may assume that the following holds

B(0, r) ∩X = B(0, r) ∩ C (4.5)

where C is the union of the cones at 0 as defined in Corollary 4.5. We claim that expression
(4.4) holds when s is set to r

2k+1 . Since 0 is singular, for every direction u there exists a line

Lu(w) with w ∈ B(0, r) ∩ C which contains points in X and points in the complement of X,
that is

∅ ( B(0, r) ∩ C ∩ Lu(w) ( B(0, r) ∩ Lu(w).

Because C is closed under the mappings z 7→ αz for all α > 0, for all 0 < β ≤ 1 we have

∅ ( B(0, r) ∩ C ∩ Lu(βw) ( B(0, r) ∩ Lu(βw).

By choosing β small enough if necessary, it is always possible to assume that the length
of B(0, r) ∩ Lu(βw) equals some t ≥ r. The intersection of Lu(βw) with X inside B(0, r)
defines p segments, some possibly of length 0, successively included in and disjoint from the
cones in C, with 2 ≤ p ≤ 2k+ 1. Let x0, x1, . . . , xp be the endpoints of these segments in the
order they appear along the line, with x0 and xp being the intersections with the frontier
of the ball B(0, r). Their projections over any of the axes of Rn for which the coordinate
of u is maximal determines a nondecreasing sequence of reals a0 ≤ a1 ≤ · · · ≤ ap such that
ap−a0 = t. If p = 2 then either a1−a0 ≥ t

2 ≥ s or a2−a1 ≥ t
2 ≥ s and then for all s′ < s we

can choose two points y ∈ (x0, x1) and z ∈ (x1, x2) such that |y− z| = s′. Now assume p > 2.
We have ap − a0 = t ≥ r thus there exists 0 ≤ i < p such that ai+1 − ai ≥ r

p ≥
r

2k+1 = s. If

i < p− 1 and xi+1 = xi+2, i.e., ai+1 = ai+2 then for all s′ < ai+1 − ai, and hence for every
s′ < s, there exists a point z ∈ (xi, xi+1) such that |xi+1 − z| = s′, and we can set y = xi+1.
The case where i > 0 and xi−1 = xi is similar. In all other cases, for all s′ < s we can find
z ∈ (xi, xi+1) and y ∈ (xi+1, xi+2) such that |y − z| = s′.

5. Relations between neighborhoods

We illustrate the purpose of this section with a very simple example. We start with a cube
sitting in the horizontal plane with only one face visible. The rules of the game is that we
are given a finite collection of vectors such that for all 6 faces and all 12 edges it is possible
to choose vectors that generate the vector subspace of the smallest affine subspace in which
they live. Let the point at the center of the upper face move towards the observer (assuming
that this direction belongs to the initial collection). It will eventually hit the upper edge of
the visible face. Now let the point move to the left along the edge (this direction necessarily
exists because of the assumption on the collection). The point will hit the upper left vertex.
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Consequently, in the trajectory the point visits three different ∼-classes: that of the points
on the open upper face, that of the points on the open edge and that of the upper left vertex.
Here we investigate the adjacency of such equivalence classes having decreasing dimensions.
Observe that another finite collection of vectors may have moved the point from the center
of the upper face directly to the upper left vertex.

Since two ∼-equivalent points have the same subspace of strata, we let Str(E) denote the
common subspace of all points of a ∼-class E. Similarly, dim(E) is the common dimension
of all the points in E.

5.1. Adjacency. Consider the backwards trajectory on the cube as discussed above: the
point passes from an ∼-equivalence class of low dimension into an ∼-equivalence class of
higher dimension along a direction that is proper to this latter class. This leads to the notion
of adjacency. For technical reasons we allow a class to be adjacent to itself.

Definition 5.1. Let E be a nonsingular ∼- class and let v be one of its nonzero strata.
Given a ∼- class F , a point y ∈ F is v−adjacent to E if there exists ε > 0 such that for all
0 < α ≤ ε we have y + αv ∈ E.

A ∼- class F is v-adjacent to E if there exists a point y ∈ F which is v-adjacent with E.

Lemma 5.2. If the ∼- class F is v-adjacent to the ∼- class E, all elements of F are
v-adjacent to E.

There exists at most one ∼-class E such that F is v-adjacent to E.

Proof. We must show that if y and z belong to F and if y is v-adjacent to E then there
exists a real α > 0 such that for all 0 < β < α we have y + βv ∼ z + βv. Indeed, by
definition of ∼ there exists r such that the translation t 7→ t+ z − y maps B(y, r) ∩X onto
B(z, r) ∩X. For all α satisfying |αv| < r consider any s satisfying |αv|+ s < r. Then the
above translation maps B(y + αv, s) ∩X onto B(z + αv, s) ∩X, i.e., y + αv ∼ z + αv .

The second claim easily follows from the very definition of v−adjacency.

Observe that for any nonsingular ∼-class E and one of its nonzero strata v there always
exists a ∼-class v-adjacent to E, namely E itself, but there might be different classes
v-adjacent to E.

Example 5.3. Let X be the union of the two axes of the 2-dimensional plane and v = (1, 1)
which we assume is one of the chosen strata of the ∼-class {(x, y) | x 6= 0, y 6= 0}. The
different classes are: the complement of X, the origin {0} which is a singular point, the
horizontal axis deprived of the origin, and the vertical axis deprived of the origin. The two
latter ∼-classes are both v−adjacent to the class R2 \X.

5.2. Intersection of a line and equivalence classes. In this section we describe the
intersection of a ∼-class E with a line parallel to some v ∈ Str(E).

With the example of the cube discussed at the beginning of Section 5, a line passing
through a point x on the upper face along any of the directions of Str(x) of dimension 2
intersects an open edge or a vertex at point y. In the former case dim(y) = 1 and in the
latter dim(y) = 0, and in both cases Str(y) ( Str(x).
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Lemma 5.4. Let X ⊆ Rn, E,F be two ∼-classes, and v ∈ Str(E)\{0}. Let y be an element
of F which is topologically adherent to Ly(v) ∩ E. Then Str(F ) ⊆ Str(E).

If E,F are different, then Str(F ) ⊆ Str(E) \ {v} and therefore dim(F ) < dim(E) .

Proof. If E = F then clearly Str(F ) = Str(E). Thus it suffices to consider the case F 6= E.
By hypothesis B(y, r) intersects E for every r > 0, which yields Str(F ) ⊆ Str(E) by Lemma
3.13. It remains to prove that v 6∈ Str(F ). We show that for every r > 0 we can find in
B(y, r) two elements z1, z2 such that z1 ∈ X ↔ z2 6∈ X and z1 − z2 is parallel to v.

Let r be a safe radius for y. By hypothesis there exists y′ ∈ B(y, r) ∩ Ly(v) ∩ E. Let
s > 0 be a safe radius for y′ such that B(y′, s) ⊆ B(y, r). We have y 6∼ y′, thus there exists
u with |u| < s such that y + u ∈ X ↔ y′ + u 6∈ X. We set z1 = y + u and z2 = y′ + u. Both
z1 and z2 belong to B(y, r) by our hypothesis on u, s and y. Moreover z1 − z2 = y − y′ and
y′ ∈ Lv(y) thus z1 − z2 is parallel to v.

Lemma 5.5. Let X ⊆ Rn, x ∈ Rn a nonsingular point and v ∈ Str(x) \ {0}. There exist
y, z ∈ Lv(x) such that x ∈ (y, z) and every element w of (y, z) satisfies w ∼ x.

Proof. Indeed, let r be a safe radius for x and (y, z) be an open segment on Lv(x) ∩B(x, r)
containing x. Let w ∈ (y, z) and let t > 0 be any real such that B(w, t) ⊆ B(x, r). We show
that the translation u 7→ u+ w − x defines a one-to-one correspondence from B(x, t) ∩X
to B(w, t) ∩X. Indeed, let z′ ∈ B(x, t) ∩X. Since B(x, r) ∩X is a union of lines parallel
with v, we have Lv(z

′) ∩B(w, t) ⊆ Lv(z′) ∩B(x, r) ⊆ X implying z′ + w − x ∈ B(w, t) ∩X.
Conversely, for every element u ∈ B(w, t) ∩X we have u− w + x ∈ B(x, t) ∩X.

Lemmas 5.4 and 5.5 lead to the following.

Corollary 5.6. Let X ⊆ Rn, x ∈ Rn a nonsingular point, E its ∼-class and let v ∈
Str(x) \ {0}. The set Lv(x) ∩E is a union of disjoint open segments (possibly unbounded in
one or both directions) of Lv(x), i.e., of the form (y − αv, y + βv) with 0 < α, β ≤ ∞ and
y ∈ E.

If α < ∞ (resp. β < ∞) then the point y − αv (resp. y + βv) belongs to a ∼-class
F 6= E where F is v-adjacent (resp. (−v)-adjacent ) to E, and dim(F ) < dim(E).

Proof. In order to prove the first claim it suffices to show that for every y ∈ Lv(x) ∩E, the
maximal segment of Lv(x) which contains y and is included in E is an open segment. Let
0 < α, β ≤ ∞ be maximal such that (y − αv, y + βv) ⊆ E. There exist such values α, β by
Lemma 5.5 (applied to y). Now if α <∞ then by maximality of α and Lemma 5.5 (applied
to y − αv) we have y − αv 6∈ E. Similarly if β <∞ then y + βv 6∈ E.

The second claim of the corollary follows from Lemma 5.4.

6. Characterization and decidability

6.1. Characterization of 〈R,+, <, 1〉 in 〈R,+, <,Z〉. In this section we give a characteri-
zation of 〈R,+, <,Z〉-definable relations which are 〈R,+, <, 1〉-definable. A rational section
of a relation X ⊆ Rn is a relation of the form

X(i)
c = X ∩ (Ri × {c} × Rn−i−1) for some c ∈ Q, 0 ≤ i < n

Theorem 6.1. Let n ≥ 1 and let X ⊆ Rn be 〈R,+, <,Z〉-definable. Then X is 〈R,+, <, 1〉-
definable if and only if the following two conditions hold
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(1) There exist finitely many X−singular points.
(2) Every rational section of X is 〈R,+, <, 1〉-definable.

Observe that both conditions (1) and (2) are needed. Indeed, the relation X = R× Z
is 〈R,+, <,Z〉-definable. It has no singular point thus it satisfies condition (1), but does

not satisfy (2) since, e.g., the rational section X
(0)
0 = {0} × Z is not 〈R,+, <, 1〉-definable.

Now, consider the relation X = {(x, x) | x ∈ Z} which is 〈R,+, <,Z〉-definable. It does not
satisfy condition (1) since every element of X is singular, but it satisfies (2) because every
rational section of X is either empty or equal to the singleton {(x, x)} for some x ∈ Z, thus
is 〈R,+, <, 1〉-definable.

The necessity of point 1 follows from Proposition 4.6. That of point 2 results from the
fact that all rational constants are 〈R,+, <, 1〉-definable by Theorem 2.1, and moreover that
〈R,+, <, 1〉-definable relations are closed under direct product and intersection.

Now we prove that conditions 1 and 2 are sufficient. We start with some informal
discussion. Since X possesses finitely many ∼-classes, Corollary 5.6 suggests that we prove
the 〈R,+, <, 1〉-definability of the ∼-classes by induction on their dimension. The case of
classes of dimension 0 is easy to handle using condition 1. For the induction step, we use
the same corollary which asserts that the intersection of a nonsingular class E with a line
passing through a point x in the class and parallel to a direction of the class is a union of
open segments. If the segment containing x is finite or semifinite then one of its adherent
point belongs to a class F of lower dimension and we can define E relatively to F via the
notion of adjacency. However the segment may be infinite and thus may intersect no other
equivalence class. So we consider the canonical subspaces defined below, and will use the
fact that every line has an intersection with one of these.

Formally we define

Hi = {(x1, . . . , xn) ∈ Rn | xi = 0} i ∈ {1, . . . , n}
QI =

⋂
i∈I

Hi, Q′I = (QI \
⋃

i∈{1,...,n}\I

Hi) for all ∅ ⊂ I ⊆ {1, . . . , n}. (6.1)

In particular Q{1,...,n} = {0}, Q′{1,...,n} = ∅ and by convention Q∅ = Rn. The Q′i’s are not

vector subspaces but with some abuse of language we call them canonical subspaces and
write dim(Q′I) to mean dim(QI) = n− |I|. Moreover for every I 6= {1, . . . , n} the set Q′I is
open in QI , that is

∀x ∈ Q′I ∃ε ∀v (v ∈ QI ∧ |v| < ε→ x+ v ∈ Q′I) (6.2)

(indeed, it suffices to assume |vj | < |xj | for all j 6∈ I). Observe that point 2 of the theorem
implies that for every I the intersection X ∩ QI (resp. X ∩ Q′I) is 〈R,+, <, 1〉-definable.
Furthermore the sets Q′I define a partition of the space. We also have a trivial but important
property which is implicit in the proof of Lemma 6.4.

Remark 6.2. If x ∈ Q′I and v is a vector in the subspace QI then for all points on y ∈ Lv(x)
we have y ∈ Q′J for some J ⊇ I.

Using the canonical subspaces, the proof below can be seen as describing a trajectory
starting from a point x in a ∼-class E, traveling along a stratum of E until it reaches a
class of lower dimension F (by Corollary 5.6) or some canonical subspace. In the first case
it resumes the journey from the new class F on. In the second case it is trapped in the
canonical subspace: it resumes the journey by choosing one direction of the subspace until
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it reaches a new ∼- class or a point belonging to a proper canonical subspace. Along the
journey, either the dimension of the new class or the dimension of the canonical subspace
decreases. The journey stops when the point reaches a (X,QI)−singular point, or the origin
which is the least canonical subspace.

Definition 6.3. Given an 〈R,+, <, 1〉-definable relation X ⊆ Rn, a set of principal directions
(for X) is any finite subset V of vectors such that for all nonsingular points x ∈ Rn and all
canonical spaces Q′I , there exists a subset V ′ ⊆ V which generates the space Str(x) ∩QI .
Observe that by Proposition 4.7 there is no loss of generality to assume that V ⊆ Qn.

By Corollary 4.5 there exist finitely many distinct spaces Str(x) when x runs over Rn,
thus there exists a set V of principal directions for X.

For every I ⊆ {1, . . . , n} and every ∼-class E we define E(I) = E ∩Q′I . Observe that

E =
⋃
I⊆{1,...,n}E

(I) which is a disjoint union. We know that X is a union of finitely many

∼-classes, see Corollary 4.5. Thus in order to prove that X is 〈R,+, <, 1〉-definable it suffices

to prove that all sets E(I) are 〈R,+, <, 1〉-definable. Consider the (height) function h which

assigns to every set E(I) the pair of integers

h(E(I)) = (dim(Str(E) ∩QI), dim(Q′I)).

Given two ∼-classes E,F and I, J ⊆ {1, . . . , n} we define the (partial) ordering F (J) < E(I)

if h(F (J)) = (a′, b′) and h(E(I)) = (a, b) with either (a′ < a and b′ ≤ b) or (a′ ≤ a and
b′ < b).

We prove by induction on (a, b) that each E(I) is definable from smaller classes F (J),

i.e., that E(I) is definable in the expansion of 〈R,+, <, 1〉 obtained by adding a predicate for

each smaller class F (J).
Let h(E(I)) = (a, b). If a = 0 then the elements of E(I) have no nonzero X−stratum in

QI , thus they are (X,QI)−singular, see Definition 3.15. By point 2, X ∩QI is 〈R,+, <, 1〉-
definable thus it has finitely many such points and they are 〈R,+, <, 1〉-definable. The same

holds for E(I) which is a finite union of such points.
If b = 0 then QI = {0}, thus E(I) is either empty or equal to the singleton {0}, and in

both cases E(I) is 〈R,+, <, 1〉-definable.

Now assume that a, b > 0. The following details a single step of the journey explained
above.

Lemma 6.4. Let I ⊆ {1, . . . , n} and x ∈ Q′I . Then x ∈ E(I) if and only if there exists a
principal direction v ∈ V ∩Str(x)∩QI , elements y, z ∈ Rn, some ∼-class F and some J ⊇ I
such that the following holds:

(1) x ∈ (y, z) and y − x = αv for some positive real α

(2) (y, z) does not intersect any class G(K) such that G(K) < E(I)

(3) (a) either (y ∈ F (J) where F (J) < E(I) and F is v−adjacent to E)

(b) or (z ∈ F (J) where F (J) < E(I) and F is (−v)−adjacent to E).

Proof. We first prove that the conditions are sufficient. We assume w.l.o.g. that condition 3
holds for the case (a). By hypothesis x ∈ Q′I and x ∈ (y, z), thus it suffices to prove that

(y, z) ⊆ E(I). Set z = y − γv and consider the union U of all open segments (y, y − βv),
β > 0, included in E. Observe that U is nonempty since y is v-adjacent to E. If U contains
(y, z) we are done so we assume U = (y, t) with t = y − γ′v and γ′ < γ and we let G(K)
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be the class of t. We set h(G(K)) = (a′, b′). By Lemma 5.4 and Corollary 5.6 we have
Str(G) ⊆ Str(E) \ {−v}, and because of Remark 6.2 it holds K ⊇ I.

If K ) I then b′ < b, which leads to the inclusions

Str(G) ∩QK ⊆ Str(E) ∩QK ( Str(E) ∩QI .

This implies a′ ≤ a and thus G(K) < E(I).
If I = K then b = b′ and we show that a′ < a. The inclusion Str(G) ⊆ Str(E) \ {−v}

along with the fact that v ∈ QI = QK implies Str(G) ∩QK ( Str(E) ∩QK which leads to

a′ < a. This implies again G(K) < E(I) contradicting point 2.

Now we prove that the conditions are necessary. By hypothesis we have a 6= 0 thus
Str(E) ∩QI 6= {0}, and by Definition 6.3 the set V contains a basis of Str(E) ∩QI . We can
choose v 6= 0 as any element of this basis.

By Corollary 5.6 and Property (6.2) there exists an open segment of the line Lv(x)

containing x and only points in E(I). Consider the union U of all such open segments. The
hypothesis b > 0 implies dim(QI) ≥ 1 which means that Lv(x) intersects some hyperplane
Hj with j 6∈ I. This implies that Lv(x) is not a subset of Q′I , and a fortiori not a subset

of E(I), hence U is not equal to Lv(x). Assume without loss of generality that U has an
extremity of the form x− αv for some α > 0. We set y = x− αv, and z = x+ βv where β
is any positive real such that [x, x+ βv) ⊆ E(I).

We prove that y, z satisfy the conditions of the lemma. Conditions (1) and (2) are easy
consequences of the very definition of y and z. We show that condition (3a) holds. We set

y ∈ F (J) and h(F (J)) = (a′, b′). By Remark 6.2 we have I ⊆ J thus b′ ≤ b, and by Lemma
5.4 we have Str(F ) ⊆ Str(E) thus Str(F ) ∩QJ = Str(E) ∩QI , hence a′ ≤ a.

If a = a′, i.e y ∈ E, then y 6∈ QI by definition of y and Property (6.2). It follows that

I ( J i.e. b′ < b, thus h(F (J)) < h(E(I)).
If b = b′, i.e I = J , then by definition of y and Corollary 5.6 we have E 6= F , and

using again Lemma 5.4 we obtain Str(F ) ⊆ Str(E) \ {v}, and this yields v ∈ (Str(E)∩QI) \
(Str(F ) ∩QJ) i.e. a′ < a, which shows that h(F (J)) < h(E(I)).

We can conclude the proof of Theorem 6.1. By our induction hypothesis, every set F (J)

such that F (J) < E(I) is 〈R,+, <, 1〉-definable, thus it suffices to prove that E(I) is definable
in 〈R,+, <, 1,F〉 where

F = {F (J) | F is v adjacent to E for some v ∈ V , and F (J) < E(I)}.

We use the characterization of E(I) given by Lemma 6.4 and build a formula which expresses
the conditions of this lemma. Set Z = {F (J) | F (J) < E(I)} and let V ′ be the set of vectors

v ∈ V for which there exist some class F and some subset J such that F (J) < E(I). A
defining formula for E(I) is

χ(x) : x ∈ Q′I ∧
∨
v∈V ′

χv(x)

where χv(x) is defined as follows. Denote by A (resp. B) the set of classes F (J) such that

F (J) < E(I) and F is v−adjacent to E (resp (−v)−adjacent to E). Then
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χv(x) : ∃y, z, α, β (α < 0 ∧ β > 0 ∧ (y = x+ αv ∧ z = x+ βv)

∧∀γ(α < γ < β →
∧

F (J)∈Z

¬F (J)(x+ γv))∧

∧(
∨

F (J)∈A

F (J)(y) ∨
∨

F (J)∈B

F (J)(z))
)
.

6.2. Decidability. In this section we prove that it is decidable whether a 〈R,+, <,Z〉-
definable relation X ⊆ Rn is 〈R,+, <, 1〉-definable. The main idea is to construct in
(R,+, <, 1, X) a sentence ψn which expresses the conditions of Theorem 6.1, then use
the 〈R,+, <,Z〉-definability of X to re-write ψn as a 〈R,+, <,Z〉-sentence, and conclude
thanks to the decidability of 〈R,+, <,Z〉. This is an adaptation of Muchnik’s technique
for Presburger Arithmetic [Muc03, Theorems 2 and 3]. In order to simplify the task of
constructing ψn we re-formulate Theorem 6.1. We extend the notion of section by allowing
to fix several components. A generalized section of X is a relation of the form

Xs,a = {(x1, . . . , xn) ∈ X | xs1 = as1 . . . . , xsr = asr} (6.3)

where r > 0, (s)1,...,r = 1 ≤ s1 < · · · < sr ≤ n is an increasing sequence, and a(= as1 . . . . , asr)
is a r−tuple of reals. When r = 0 we define Xs,a = X by convention. If all elements of a
are rationals then Xs,a is called a rational generalized section of X.

Proposition 6.5. Let n ≥ 1 and let X ⊆ Rn be 〈R,+, <,Z〉-definable. Then X is
〈R,+, <, 1〉-definable if and only if every rational generalized section of X has finitely
many singular points.

Proof. If X is 〈R,+, <, 1〉-definable so is every rational restriction which therefore has finitely
many singular points by point 1 of Theorem 6.1.

We show the opposite direction by decreasing induction of the number r of frozen
components of the rational restriction. We use the fact that all rational restrictions are
〈R,+, <,Z〉-definable. If r = n−1 the rational generalized section is an 〈R,+, <,Z〉-definable
subset of R with finitely many singular points which implies that it consists of finitely many
intervals with rational endpoints and we are done by Corollary 2.2.

Fix r > 1 and assume that all rational restrictions Xs,a as in 6.3 with r frozen components
are 〈R,+, <, 1〉-definable. Consider a rational generalized section Xt,b with r − 1 frozen
components, say

(t)1,...,r−1 = 1 ≤ t1 < · · · < tr−1 ≤ n
b = (bt1 , . . . , btr−1) bi ∈ Q, i = 1, . . . , r − 1.

It has finitely many singular points by hypothesis. A rational section of Xt,b is defined by
some increasing sequence (s)1,...,r = 1 ≤ s1 < · · · < sr ≤ n and an r-tuple a = (as1 , . . . , asr)
of rational numbers such that for some 0 ≤ u ≤ r − 1 we have

sk = tk, k < u, sk+2 = tk+1, u ≤ k
ak = bk, k < u, ak+2 = bk+1, u ≤ k

But then all Xt,b are 〈R,+, <, 1〉-definable by induction and so is Xs,a by Theorem 6.1.

So far we did not distinguish between formal symbols and their interpretations but here
we must do it if we want to avoid any confusion. In order to express that a 〈R,+, <,Z〉-
definable n−ary relation X is actually 〈R,+, <, 1〉-definable we proceed as follows. Let
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{Xn(x1, . . . , xn) | n ≥ 1} be a collection of relational symbols. We construct a {+, <
, 1,Xn}−sentence ψn(Xn) such that ψn(Xn) holds if and only Xn is 〈R,+, <, 1〉-definable.

Proposition 6.6. Let {Xn(x1, . . . , xn) | n ≥ 1} denote a set of relational symbols. For every
n ≥ 1 there exists a {+, <, 1,Xn}−sentence ψn such that for every {+, <, 1,Xn}−structure
M = (R,+, <, 1, Xn), if Xn is 〈R,+, <,Z〉-definable then we have M |= ψn if and only if
Xn is 〈R,+, <, 1〉-definable.

Proof. For each I ⊆ {1, . . . , n} we let RI denote the Cartesian product of copies of R indexed
by I and for all nonzero reals r and all x ∈ RI we set BI(x, r) = {y ∈ RI | |x − y| < r}.
Using Lemma 4.9 we can construct the following {+, <, 1,Xn}−formula which expresses the

fact that a point x+ y where x ∈ RI and y ∈ R[n]\I is singular, when seen as a point of the
generalized section of Xn obtained by freezing to y the components of [n] \ I (with some

abuse of notation we write x+ y for x ∈ RI and y ∈ R[n]\I):

Singn,I(x, y,Xn) ≡ ∀r ∈ R∃s ∈]0, r[ ∀q ∈ RI |q| < s→
∃z ∈ RI((z, z + q ∈ BI(x, r)) ∧ (y + z ∈ Xn ↔ y + z + q /∈ Xn)).

(6.4)

Now we construct a {+, <, 1,Xn}−sentence ψn which expresses the condition of Proposition

6.5. Some difficulty arises from the fact that we have to express that every rational generalized
section of X has finitely many singular points, but the set Q is not 〈R,+, <,Z〉-definable.
In order to overcome this issue, we construct ψn in such a way that it expresses that every
generalized section of X has finitely many singular points. We define ψn as

ψn ≡
∧
I⊆[n]

∀y ∈ R[n]\I ϕn,I(y)

where

ϕn,I(y) ≡ ∃M > 0 ∀x ∈ RI (Singn,I(x, y,Xn)→ |x| < M)

∧ ∃m > 0 ∀x, x′ ∈ RI
((x 6= x′ ∧ Singn,I(x, y,Xn) ∧ Singn,I(x′, y,Xn))→ |x− x′| > m).

(6.5)

The formula ϕn,I(y) expresses that the generalized section of Xn obtained by freezing to y
the components of [n] \ I has finitely many singular points.

We prove first that if Xn is 〈R,+, <,Z〉-definable and satisfies the formula ψn, then it
is 〈R,+, <, 1〉-definable. Consider a rational generalized section Xs,a of X with (s)1,...,r =
1 ≤ s1 < · · · < sr ≤ n and a = (a1, . . . , ar) ∈ Qr. Let I = {s1, . . . , sr}. The sentence ψn
holds, thus in particular the formula ϕn,I(y) holds when we assign the r−tuple a to the
r components of y. It follows that Xs,a has finitely many singular points, and the result
follows from Proposition 6.5.

Conversely assume that the 〈R,+, <,Z〉-definable relation Xn is also 〈R,+, <, 1〉-
definable. Then we show that the formula ψn(Xn) holds. Indeed, if this were not the

case, then for some I ⊆ [n] the predicate ∀y ∈ R[n]\I ϕn,I(y) would be false, i.e ϕn,I(y)
would be false for some assignment of y. This implies that the formula γn(y) ≡ ¬ϕn,I(y) (in
which the only free variables are the (n− |I|) variables constituting y) defines a nonempty

subset Y of Rn−|I|. Now γn is a {+, <, 1,Xn}−formula, and Xn is 〈R,+, <, 1〉-definable,
thus Y is also 〈R,+, <, 1〉-definable. By Corollary 2.2(2), Y contains a (n− |I|)−tuple q of
rational elements. Therefore the formula ¬ϕn,I(y) holds when we assign the value q to y,
and this implies that there exists a rational generalized section of X which has infinitely
many singular points, and by Proposition 6.5 this leads to a contradiction.
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Theorem 6.7. For every n ≥ 1 and every 〈R,+, <,Z〉-definable relation X ⊆ Rn, it is
decidable whether X is 〈R,+, <, 1〉-definable.

Proof. Assume that X is 〈R,+, <,Z〉-definable by the formula φ(x). In Proposition 6.6, if we
substitute φ(x) for every occurrence of x ∈ Xn in ψn, then we obtain a 〈R,+, <,Z〉-sentence
Γn which holds in 〈R,+, <,Z〉 if and only if X is 〈R,+, <, 1〉-definable. The result follows
from the decidability of 〈R,+, <,Z〉 [Wei99].

Let us give a fair estimate of the complexity of the decision problem of Theorem 6.7.
One can derive from [Wei99, Section 5] that the known triply-exponential upper bound
for the deterministic time complexity of deciding Presburger Arithmetic sentences [Opp78]
still holds for 〈R,+, <,Z〉. We proved that given n ≥ 1 and a relation X ⊆ Rn which is
〈R,+, <,Z〉-definable by φ, the question of whether X is 〈R,+, <, 1〉-definable amounts to
decide whether the sentence Γn holds in 〈R,+, <,Z〉.

It is easy to check that the length of Γn is of the order of 2n times the length of φ.
Consequently, for fixed n, the length of Γn is linear with respect to the one of φ, thus we also
get a triply-exponential upper bound for the deterministic time complexity of our decision
problem.

7. Non-existence of an intermediate structure between 〈R,+, <, 1〉 and
〈R,+, <,Z〉

Our aim is to prove the following result.

Theorem 7.1. If X ⊆ Rn is 〈R,+, <,Z〉-definable but not 〈R,+, <, 1〉-definable then the
set Z is definable in 〈R,+, <, 1, X〉.

In other words, for every X ⊆ Rn which is 〈R,+, <,Z〉-definable, then 〈R,+, <, 1, X〉 is
inter-definable with either 〈R,+, <,Z〉 or 〈R,+, <, 1〉.

7.1. Periodicity in R.

Definition 7.2. Consider X ⊆ R and p ∈ R \ {0}.
Then X is periodic of period p (or p−periodic) if for every real x we have x ∈ X ↔

x+ p ∈ X.
It is ultimately right p−periodic if there exists m ∈ R such that for every real x with

x ≥ m, we have x ∈ X ↔ x+ p ∈ X. We say that p is a right ultimate period.
It is ultimately left p−periodic if there exists m ∈ R such that for every real x with

x ≤ m, we have x ∈ X ↔ x+ p ∈ X. We say that p is a left ultimate period.

Observe that the empty set is p−periodic, ultimately right p−periodic, ultimately left
p−periodic for every p 6= 0. We apply these notions and results concerning 〈R,+, <, 1〉- and
〈R,+, <,Z〉-definable subsets of R.

Proposition 7.3.

(1) A 〈R,+, <,Z〉-definable set A ⊆ R is periodic if and only if it is of the form pZ + B
where p ∈ Q and B ⊆ [0, p) is a finite union of intervals with rational endpoints.
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(2) For every 〈R,+, <,Z〉-definable set A ⊆ R there exist two periodic sets A1, A2 ⊆ R
and two reals m1,m2 such that A ∩ [m1,+∞) = A1 ∩ [m1,+∞) and A ∩ (−∞,m2] =
A2 ∩ (−∞,m2]

1.

Proof. (1) Assume that A is periodic of period p. Let B = A ∩ [0, p). Then A = pZ + B.
Since B is 〈R,+, <, 1〉-definable it is a finite union of intervals included in [0, p) with rational
endpoints. The converse is trivial.

(2) Let A ⊆ R be 〈R,+, <,Z〉-definable. We prove the existence of A1 and m1 (the
proof for A2 and m2 is similar). By Theorem 2.3 we have

A =
K⋃
k=1

(Bk + Ck) (7.1)

where all Bk ⊆ Z are disjoint 〈Z,+, <〉-definable subsets and all Ck ⊆ [0, 1) are distinct
〈R,+, <, 1〉-definable subsets.

By [Pre27] for every k there exist two integers nk, pk ≥ 0 such that

∀x ≥ nk x ∈ Bk ↔ x+ pk ∈ Bk. (7.2)

Observe that if (7.2) holds for nk, pk then it still holds for the pair of integers m1, p ≥ 0
where p = lcm{nj | 1 ≤ j ≤ K} and m1 is a sufficiently large a multiple of p. Therefore for
every k ∈ {1, . . . ,K} we have

∀x ≥ m1 x ∈ Bk ↔ x+ p ∈ Bk. (7.3)

This implies that there exist K disjoint sets Sk ⊆ {0, . . . , p − 1} such that for every
k ∈ {1, . . . ,K} we have

Bk ∩ [m1,∞) = (pZ + Sk) ∩ [m1,∞).

The claim of the proposition follows by setting A1 = pZ + B where B =
K⋃
k=1

Sk + Ck ⊆

[0, p).

Lemma 7.4. With the notations of Proposition 7.3(2), a real q is a right (resp. left) ultimate
period of the 〈R,+, <,Z〉-definable subset A if and only if it is a period of A1 (resp. A2).

Proof. We only give the proof for A1 (the proof for A2 can be handled similarly). It follows
from the equivalences

∀y ≥ m1 y ∈ A↔ y ∈ A1 ↔ y + q ∈ A1 ↔ y + q ∈ A
∀y ≥ m1 y ∈ A1 ↔ y ∈ A↔ y + q ∈ A↔ y + q ∈ A1.

Lemma 7.5. With the notations of Proposition 7.3 (2), if A = pZ +B with ∅ ( B ( [0, p),
then the set of periods of A is a discrete cyclic subgroup of R whose elements are rational. It
is generated by its element of minimal positive absolute value.

Proof. The set P of periods of A is clearly a subgroup. Let us prove that P is discrete, i.e.
that there cannot be arbitrarily small periods. Indeed, set A = pZ +B where p ≥ 0, B is a
finite union of intervals in [0, p) and ∅ ( B ( [0, p). Let q > 0 be a period of A. We consider
three exclusive cases:

1Theorem 6.1 of [Wei99] misses the case where the subset A has different right and left ultimate periods
such as −2N ∪ 3N.
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(1) if B = {0} or B = (0, p), then the condition q = 0 + q ∈ A implies q ≥ p.
(2) if both B and [0, p) \B consist of a unique interval, then we have either B = [a, p) with

a > 0 or B = [0, b) with b < p. In the first case we have q ≥ a and in the latter case
q ≥ p− b.

(3) if B or [0, p) \B consist of at least two intervals: since a set and its complement have
the same periods, we can assume without loss of generality that B contains two disjoint
and consecutive intervals with respective extremities a1, b1 and a2, b2 (the proof for the
other case is similar). If b1 = a2 then (a1, b1) is right open and (a2, b2) is left open. Then
the fact that q is a period and the equality b1 = a2 ∈ A imply b1 − q, a2 + q ∈ A thus
q ≥ max{b1 − a1, b2 − a2}. Now if b1 < a2 then for all a1 < y < b1 we have y + q ∈ A
which implies q ≥ a2 − b1.
We proved that P admits a minimal positive element, say p0. The fact that P is cyclic

and generated by p0 is well-known. In order to prove that P ⊆ Q, it suffices to prove that
p0 ∈ Q. Now the 〈R,+, <,Z〉-formula

φ(p) = p > 0 ∧ ∀x (x ∈ A↔ x+ p ∈ A)

defines the set P+ of positive elements of P , thus p0 is 〈R,+, <,Z〉-definable as the minimal
element of P+, and the result follows from Corollary 2.2(2).

As a consequence of Lemmas 7.4 and 7.5, and Proposition 7.3 we obtain the following
result.

Lemma 7.6. If A ⊆ R is 〈R,+, <,Z〉-definable but not 〈R,+, <, 1〉-definable then A has
either a minimal ultimate right or a minimal ultimate left period.

Proof. Either A∩ (−∞, 0] or A∩ [0,∞) is not 〈R,+, <, 1〉-definable. Assume that the latter
case holds, and let us prove that A admits a minimal ultimate right period. By Proposition
7.3 there exist a periodic subset A1 and a real m such that A ∩ [m,∞[= A1 ∩ [m,∞[. With
the notations of Proposition 7.3 we have A1 = pZ + B where B ⊆ [0, p). Now the set
A ∩ [0,∞) is 〈R,+, <,Z〉-definable but not 〈R,+, <, 1〉-definable, thus by Lemma 2.4 it
cannot have an upper bound, and the same holds for A1. It follows that B 6= ∅. Using a
similar argument with the complement of A leads to B 6= [0, p). Thus by Lemmas 7.4 and
7.5, A1 admits a minimal period which is also a minimal ultimate right period of A.

Similarly if A ∩ (−∞, 0] is not 〈R,+, <, 1〉-definable then A admits a minimal ultimate
left period.

Lemma 7.7. If A ⊆ R is ultimately right periodic and admits a minimal ultimate right
period p > 0, then

(1) For all reals x, y, if

∀u ≥ 0 (x+ u ∈ A↔ y + u ∈ A) (7.4)

then p divides x− y.
(2) Conversely for every z multiple of p there exist x, y satisfying (7.4) and x− y = z.

Proof. (1) It suffices to prove that x− y = q is an ultimate right period. We have

∀v ≥ x v = x+ (v − x) ∈ A↔ y + (v − x) ∈ A↔ v + q ∈ A.

(2) Let m be such that

∀t ≥ m (t ∈ A↔ t+ p ∈ A).
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This condition implies that for all positive multiples q of p we have

∀t ≥ m (t ∈ A↔ t+ q ∈ A).

Set x = m, y = m+ q and u = t−m. The above condition is equivalent to

∀u ≥ 0 (x+ u ∈ A↔ y + u ∈ A).

7.2. Proof of Theorem 7.1. Now we proceed by induction on the dimension n. Assume
n = 1. If X is definable in 〈R,+, <,Z〉 but not in 〈R,+, <, 1〉 then by Lemma 7.6, the set
X has either a minimal ultimate left or a minimal ultimate right period. Assume w.l.o.g
that the latter case holds, i.e that X has an ultimate right period p > 0. By Lemma 7.5, p
is a rational number, say p = a

b .
Applying Lemma 7.7 the subset Z can be defined in 〈R,+, <, 1, X〉 by the formula

φX(x) = ∃y, z ∀u ≥ 0 ((y + u ∈ X ↔ z + u ∈ X) ∧ ax = b(y − z)).

Now we pass to the general case n ≥ 2. Let X ⊆ Rn be 〈R,+, <,Z〉-definable but not
〈R,+, <, 1〉-definable. By Theorem 6.1, either some rational section of X is not 〈R,+, <, 1〉-
definable, or X admits infinitely many singular points. In the first case, the result follows
from the induction hypothesis and the fact that every rational section of X is definable in
〈R,+, <, 1, X〉 thus also in 〈R,+, <,Z〉.

In the second case, by Proposition 4.6 the set X contains a countably infinite number
of singular points. The set S of singular points is 〈R,+, <, 1, X〉-definable by the formula
(6.4) thus it is also 〈R,+, <,Z〉-definable and the same holds for any projection of S over a
component. Therefore some of the n projections over the n components is a 〈R,+, <,Z〉-
definable subset of R and contains a countably infinite number of singular points thus is not
〈R,+, <, 1〉-definable, and we may apply case n = 1.

8. Yet another characterization

We provide in this section an alternative characterization of 〈R,+, <, 1〉-definability for
〈R,+, <,Z〉-definable relations.

A line in Rn is rational if it is the intersection of hyperplanes defined by equations with
rational coefficients. Every rational line is 〈R,+, <, 1〉-definable.

Theorem 8.1. A 〈R,+, <,Z〉-definable relation X ⊆ Rn is 〈R,+, <, 1〉-definable if and only
if the intersection of X with every rational line is 〈R,+, <, 1〉-definable.

Proof. The condition is necessary because every rational line is 〈R,+, <, 1〉-definable and
the set of 〈R,+, <, 1〉-definable relations is closed under intersection.

Now we prove the converse. By Proposition 6.5 it suffices to prove that all rational
restrictions have finitely many singular points. Since all rational restrictions of X are
〈R,+, <,Z〉-definable the result will follow from the next Lemma.

Lemma 8.2. Let X ⊆ Rn be 〈R,+, <,Z〉-definable relation and assume the intersection
of X with every rational line is 〈R,+, <, 1〉-definable. Then X has finitely many singular
points.
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Proof. We prove that if X has infinitely many singular points then there exists some rational
line l such that l ∩X is not a finite union of segments, which contradicts the fact that l ∩X
is 〈R,+, <, 1〉-definable.

Let us first prove that the set of singular points is unbounded. Assume for a contradiction
that there exists a rational number M > 0 such that X ∩ [0,M)n contains all X−singular
points. The set X ′ = X ∩ [0,M ]n is 〈R,+, <, 1〉-definable by Proposition 2.4, and moreover
by definition every X−singular element of [0,M)n is also X ′−singular, thus there exist
infinitely many X ′−singular points, which contradicts Theorem 6.1.

An hypercube of the form [a1, a1 + 1]× · · · × [an, an + 1] with a1, . . . , an ∈ Z is called
elementary. All X-singular points which belong to the interior of some elementary hypercube
H are (X ∩H)-singular and the converse is true. Observe that a point may be X-singular
without being (X ∩H)-singular if it belongs to the boundary of the hypercube. In order to
avoid this problem we consider an elementary cube surrounded by its 3n − 1 neighbours.
Then a point in a elementary cube is X-singular if and only if it is singular in this enlarged
hypercube.

Formally, we start by extending the notion of integer part to vectors in Rn by setting
for every point x ∈ Rn

bxc = (bx1c, . . . , bxnc).
Set S = {−1, 0, 1}n. For all σ ∈ S and a ∈ Zn define

Dσ =

n times︷ ︸︸ ︷
[0, 1]× · · · × [0, 1] +σ, Hσ(a) = (a+Dσ) ∩X, Lσ(a) = −a+Hσ(a)

and

H(a) =
⋃
σ∈S

Hσ(a), L(a) =
⋃
σ∈S

Lσ(a).

Because of the decomposition of Theorem 2.3, the set L of distinct subsets L(a), called
elementary neighborhood, is finite when a ranges over Zn since each −σ + Lσ(a) is equal to

some X
(F )
k . Furthermore, say that H(a) contains a singular point x if x is X-singular and

x ∈ H(0,...,0)(a). Since the set of singular points is unbounded, there exist a fixed L ∈ L and
infinitely many a’s such that a+ L(0,...,0)(a) contains a singular point. Furthermore, in each
L(0,...,0)(a) there exist at most finitely many X-singular points. Consequently, there exists a
fixed element z ∈ Qn ∩ [0, 1]× · · · × [0, 1] and a fixed elementary neighborhood L such that
for infinitely many a ∈ Zn the point a+ z is X-singular and La = L. Consider the integer
K as defined in Theorem 2.3, and the mapping ι : S 7→ {1, . . . ,K} such that

L =
⋃
σ∈S

σ +X
(F )
ι(σ).

The set of elements a satisfying La = L is the intersection⋂
σ∈S
−σ +X

(I)
ι(σ) ⊆ Zn

which is infinite and semilinear. Now, all infinite semilinear subsets contain a subset of the
form A = u+ Nv where u, v ∈ Zn with v 6= 0.

For some sufficiently small positive real r, for all w ∈ A the sets −w+ (B(w, r)∩X) are
identical. Consider any element w′ ∈ A, and assume further that r ∈ Q. Since w′ is singular,
B(w′, r)∩X is not a union of lines parallel to any direction and in particular to the direction
v. Thus the set Yr of points t ∈ Rn such that |t| < r and B(w′, r) ∩ Lv(w′ + t) intersects
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both X and its complement is not empty. Now both w′ and r have rational components, and
X is 〈R,+, <,Z〉-definable, thus Yr is also 〈R,+, <,Z〉-definable, and since it is bounded it
is also 〈R,+, <, 1〉-definable by Lemma 2.4. By Corollary 2.2(2), Yr contains an element
t ∈ Qn. Now for all w ∈ A the sets −w + (B(w, r) ∩X) are identical, and |t| < r, thus for
every w ∈ A the segment B(w, r) ∩ Lv(w + t) intersects both X and its complement. It
follows that the line ` = Lv(w

′ + t) (which coincides with all lines Lv(w + t) for w ∈ A) is
such that l ∩X is not a finite union of segments, and thus by Corollary 2.2(1) cannot be
〈R,+, <, 1〉-definable.

This concludes the proof of Theorem 8.1.

9. Conclusion

We discuss some extensions and open problems.
It is not difficult to check that the main arguments used to prove Theorems 6.7, 7.1 and

8.1, still hold if one replaces R with Q. Observe that by [Mil01], 〈Q,+, <,Z〉 and 〈R,+, <,Z〉
are elementary equivalent structures.

Is it possible to remove our assumption that X is 〈R,+, <,Z〉-definable in Theorem
6.1? We believe that the answer is positive2. Note that even if one proves such a result, the
question of providing an effective characterization is more complex. Indeed the sentence ψn
of Proposition 6.6 expresses a variant of the criterion of Theorem 6.1, and we use heavily
the fact that we work within 〈R,+, <,Z〉 to ensure that this variant is actually equivalent
to the criterion.

In particular the construction of ψn relies on Lemma 4.9 to express that a point is
X−singular. However if we consider, e.g., X = Q then every element x of X is singular
while no element x of X satisfies the condition stated in Lemma 4.9.

Another question is the following. In Presburger arithmetic it is decidable whether or
not a formula is equivalent to a formula in the structure without <, cf. [CF10]. What about
the case of the structure 〈R,+, <,Z〉 ?
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References

[BB09] Bernard Boigelot and Julien Brusten. A generalization of Cobham’s theorem to automata over
real numbers. Theoretical Computer Science, 410(18):1694–1703, 2009.
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