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Abstract. The recursive path ordering is an established and crucial tool in term rewriting
to prove termination. We revisit its presentation by means of some simple rules on trees
(or corresponding terms) equipped with a ‘star’ as control symbol, signifying a command
to make that tree (or term) smaller in the order being defined. This leads to star games
that are very convenient for proving termination of many rewriting tasks. For instance,
using already the simplest star game on finite unlabeled trees, we obtain a very direct proof
of termination of the famous Hydra battle, direct in the sense that there is not the usual
mention of ordinals. We also include an alternative road to setting up the star games, using
a proof method of Buchholz, adapted by van Oostrom, resulting in a quantitative version
of the star as control symbol. We conclude with a number of questions and future research
directions.
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1. Introduction

To understand difficult notions in mathematics, logic or informatics it sometimes helps
to develop a “game view” on the notion in question. A typical example is the notion of
bisimulation. The second author of this note, at the start of his new job around Christmas
1980 at the CWI1, in trying to understand the then newly proposed notion of the recursive
path ordering (RPO), found that his understanding was much eased by a “gamification”,
consisting of some simple rules for moving a control symbol FF on finite labeled trees.

The star game version of RPO was called IPO, iterative path order. IPO was used
fruitfully by Bergstra & Klop [BK85] to yield termination of a rewrite system evaluating
process expressions in ACP, the algebra of communicating processes. Together with Jan
Bergstra and Aart Middeldorp, the second author of the current paper wrote a course book
(in Dutch) Termherschrijfsystemen [BKM89], while employed, respectively, in 1987 at the
University of Amsterdam and the Vrije Universiteit Amsterdam. There the IPO star game is
included, together with a proof of the crucial lemma of acyclicity and Kruskal’s tree theorem.
This proof of the acyclicity lemma is published in the present paper for the first time (in
English, the mentioned course book is in Dutch). The survey chapter [Klo92] did not include
a proof of the acyclicity lemma.

The iterative path order has been extended in various directions. Klop, van Oostrom
and de Vrijer [KvOdV06] have extended it to the iterative lexicographic path order (ILPO)
after including a well-known rule for lexicographic extensions of RPO2, see also [Ges90,
BN98, Der82, KL80]. In subsequent studies, van Raamsdonk and Kop [KvR08, KvR09] have
extended the framework of ILPO to higher-order rewriting [KvR08] and to deal with the
recursive path order with status [KvR09]. Nowadays, the recursive path order is a standard
ingredient of every leading termination prover. In particular, it is an important part of the
termination prover Jambox [End, EZ15] developed by the first author. The recursive path
order has also been applied fruitfully to prove confluence by decreasing diagrams [FvO13].
Decreasing diagrams [vO94a, EK13, EKO18] is one of the strongest techniques for proving
confluence of (abtract) rewrite systems.

A peculiar matter with the IPO star game is that on the auxiliary objects, being finite
trees adorned with control stars, the game reduction is not terminating (SN), while it is
SN when restricted to the proper, unstarred, objects. Vincent van Oostrom [KvOdV06]
discovered a very interesting variant of the IPO star game where the stars are given a
quantity of energy, a natural number or ordinal. This variant had the remarkable property
to be terminating even on the intermediate auxiliary trees (see Figure 1) while inducing the
same reduction relation on unstarred terms. The termination proof in [KvOdV06] did not
use Kruskal’s tree theorem plus acyclicity, but instead a very different proof method [Buc95],
developed by Buchholz, in the framework of proof theory investigations concerned with
powerful independence theorems and fast-growing hierarchies. The method was adapted
by van Oostrom in [KvOdV06]. In our paper we have devoted a full section to this proof
calling it ‘magical’, which of course is a subjective appraisal, but which just means that we
find this route surprisingly elegant and effective, saving us from the more laborious details
of the symbol tracing proof of acyclicity.

1The Centrum Wiskunde & Informatica of which Jos Baeten is the current director. In 1980 the CWI was
still called Mathematical Centre Amsterdam.

2For stars it was mentioned in [BKM89, Klo92]. For RPO it was defined in Dershowitz [DJ90] and several
introductions to RPO, e.g., Zantema’s chapter on Termination in [Zan03].
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(a) Original terms with reduction relation →1, to be proved SN.

· · ·

(b) Original terms together with auxiliary terms and reduction relation →2 such
that →1 ⊆ →+

2 , and →+
2 restricted to the original terms is SN; →2 itself need

not be SN. It follows that →1 is SN. This is the situation of ILPO with stars.

(c) Original terms together with auxiliary terms and reduction relation →3 such
that →3 is SN, and →+

2 =→+
3 , restricted to original terms. It follows that →1

is SN. This is the situation of ILPO with number labels.

Figure 1. Rewriting of objects simulated by star rules (b), red and dashed,
and by number star rules (c), blue and dotted. Note that the red auxiliary
rewriting relation is not always terminating, while the blue one is. We note
that the non-terminating red parts of the reduction are not simply cut away;
their effect is in a more subtle way after finite unwinding subsumed in the
blue terminating reduction.

Recently, in a draft book on abstract rewriting by the first two authors, we were including
the Kirby-Paris Hydra battle [KP82], a paradigm example in the termination area [Buc07,
DM07, Mos09, Tou98]. The terminator Hercules succeeds in killing the monstrous Hydra,
in the Greek mythology helped by the golden sword given to him by goddess Athena. While
including this killer example of termination, a question, thirty years overdue, occurred to us:
if the IPO star game is so flexible and versatile as it sometimes appeared to be, should it
maybe also prove the victory of Hercules? And lo and behold, the termination proof of the
Kirby-Paris Hydra battle via a simulation in the IPO game, is almost immediately obvious,
as we shall demonstrate in Section 6. Additionally, we design an even more monstrous
Hydra, and show that it also is no match for IPO.

Remarkably, the usual proofs for termination of the Kirby-Paris Hydra battle use ordinals
in the form of Cantor normal forms, or even the more intricate ordinal diagrams [Tak13],
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but the proof via Kruskal’s tree theorem and the star game in this paper does not refer
to ordinals at all. Actually, ordinals are hiding in the background: the Kirby-Paris Hydra
example requires only trees labelled with 0, i.e., unlabelled finite trees, and this game is
paramount to the nested multiset ordering over natural numbers, which has, as is well-known,
ordinal strength ε0 [Klo92]. The more general star game, employing natural numbers as
node labels, is much stronger, reaching the ordinal φω(0) in the Veblen notation [Der87].

However, there are monsters and giant monsters, some of which are much harder to
conquer than the Kirby-Paris Hydra. The most well-known giant monster is the Buchholz
Hydra [HO98, Oka88, Buc87], described in this paper. It is far beyond a simulation by the
IPO star game as presented here, because its astronomically large ordinal dwarfs even the
ordinals in the Veblen hierarchy.

Outline. In the introduction we give a lengthy historical account of sources leading up
to the current survey paper on star games as a termination framework. In Section 2 we
recapitulate the main notions and notations for reading this paper, including a nutshell
account of some of the first large ordinals. Section 3 presents the main star game of this
paper, the star game called iterative path order (IPO).

In Section 4 we establish termination of IPO using Kruskal’s tree theorem and acyclicity.
Section 4.1 gives a brief introduction to Kruskal’s tree theorem and Higman’s lemma. In
Section 4.3 we prove the pivotal lemma of acyclicity.

Section 5 contains a different route towards the same result of SN of IPO, via a refinement
of stars, and a proof method that is interesting in its own right.

Section 6 presents three Hydras: the “classical” one by Kirby and Paris; a super Hydra
of our making, still provably terminating by our IPO star game; and a hyper Hydra of
Buchholz, that is beyond the power of IPO.

The final section, Section 7, presents several directions of further research.

2. Preliminaries

In this section we will briefly enumerate and describe some of the main notions and notations
figuring in this paper. We will work with unranked terms (basically labelled, ordered trees)
where the symbols of the signature do not have a fixed arity. We consider unordered trees
(algebraic trees) as equivalence classes of terms modulo the permutation of arguments.

2.1. Abstract rewriting.

Definition 2.1 (Abstract rewriting). An abstract reduction system (ARS) A = 〈A,→〉
consists of a set A of objects and a binary rewrite or reduction relation → ⊆ A×A.

Let A = 〈A,→〉 be an ARS.

Definition 2.2 (Rewrite sequence). A rewrite sequence (or reduction) in A is a sequence
of rewrite steps a0 → a1 → a2 → · · · where a0, a1, . . . ∈ A. If the rewrite sequence is finite,
say a0 → a1 → · · · → an for n ≥ 0, the sequence is said to have length n and to end in an.
If a0 = an and n > 0, then we speak of a reduction cycle. If there is a finite rewrite sequence
from a and to (ending in) b we write a→∗ b or a� b.

Definition 2.3. An object a ∈ A is a normal form if there is no b ∈ A such that a→ b.
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Definition 2.4. The ARS A is said to be

(1) terminating (or strongly normalizing), denoted SN(A), if there are no infinite reductions;
(2) weakly normalizing if for every a ∈ A there exists a normal form b such that a� b;
(3) confluent (has the Church-Rosser property), denoted CR(A), if � ·� ⊆� ·�;
(4) acyclic if there are no reduction cycles.

2.2. Term rewriting. We introduce some basic notions of term rewriting and unranked
terms. For background on term rewriting with unranked terms, we refer to [Kut02, Kut04].
For general background in (term) rewriting we refer to Terese [Ter03], Klop [Klo92],
Dershowitz-Jouannaud [DJ90], Baader-Nipkow [BN98].

Let Σ be a (possibly infinite) set of symbols, called the (unranked) signature. Let
X = {x, y, z, . . .} be an infinite set of variables such that X ∩ Σ = ∅.

Definition 2.5 (Terms). The set of (unranked) terms T (Σ,X ) over the signature Σ and
set of variables X is inductively defined by:

(i) X ⊆ T (Σ,X ), and
(ii) f(t1, . . . , tn) ∈ T (Σ,X ) whenever f ∈ Σ and t1, . . . , tn ∈ T (Σ,X ).

We denote terms f() by f for short.

As we only consider unranked terms, we will simply speak of terms.

Remark 2.6. The set of terms T (Σ,X ) is isomorphic to the set of ordered, rooted finite
trees with inner nodes labeled by elements from Σ and leaves labelled by elements from Σ∪X .
Here “ordered” means that there is an order between node siblings. In illustrations, the
sibling-order is the left-to-right. We frequently depict terms by ordered trees. For instance,

3

5 7

9

8

0

1 5

depicts the term 3(5, 7(9), 8(0(1, 5))).

Definition 2.7 (Variables). The set of variables Var(t) ⊆ X of t ∈ T (Σ,X ) is given by:

Var(x) = {x} Var(f(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn)

Definition 2.8 (Positions). The set of positions Pos(t) ⊆ N∗ of t ∈ T (Σ,X ) is defined by:

Pos(x) = {ε} Pos(f(t1, . . . , tn)) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)}
For p ∈ Pos(t), the subterm t|p of t at position p is defined by:

t|ε = t f(t1, . . . , tn)|ip = ti|p
Definition 2.9 (Substitutions). A substitution σ is a map σ : X → T (Σ,X ). We extend
the domain of substitutions σ to terms T (Σ,X ) as follows:

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn))

We write {x1 7→ t1, . . . , xn 7→ tn } for the substitution σ given by σ(x1) = t1, . . . , σ(xn) = tn
and σ(y) = y for every y ∈ X − {x1, . . . , xn }.
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Definition 2.10 (Contexts). A context C is a term T (Σ,X ∪ {2}) containing precisely
one occurrence of 2, that is, there is precisely one position p ∈ Pos(C) such that C|p = 2.
For a context C and a term t, we write C[t] for the term {2 7→ t }(C).

Definition 2.11 (Rewriting). A rewrite rule ` → r over Σ and X is a pair (`, r) ∈
T (Σ,X )× T (Σ,X ) of terms such that the left-hand side ` is not a variable (` 6∈ X ), and all
variables in the right-hand side r occur in ` (Var(r) ⊆ Var(`)).

A term rewrite system (TRS) R over Σ and X is a set of rewrite rules over Σ and X .
The rewrite relation →R ⊆ T (Σ,X )× T (Σ,X ) generated by R consist of all pairs

C[σ(`)]→R C[σ(r)]

for contexts C, rules ` → r ∈ R, and substitutions σ : X → T (Σ,X ). Furthermore, we
write →R,p whenever additionally C|p = 2. We drop the subscript R in →R and →R,p
whenever R is clear from the context.

Notation 2.12 (Argument vector notation). We use expressions of the form ~x to denote
a finite (possibly empty) sequence of distinct variables (x1, . . . , xn) for some n ∈ N. For
example, the rule schema

f(~x, y, ~z)→ f(~x, ~z)

enumerates rules

f(x1, . . . , xn, y, z1, . . . , zm)→ f(x1, . . . , xn, z1, . . . , zm)

for every m,n ≥ 0. The rule schema thus allows deleting an arbitrary subtree y under head
symbol f .

2.3. Tree rewriting. We introduce (finite, rooted, labelled, unordered) trees as equivalence
classes of terms modulo the permutation of arguments. In our setting this view is convenient
as we have already introduced terms, we use terms to denote trees, and we will switch from
trees to terms by “freezing” in order to make use of positions and tracing.

Definition 2.13 (Swapping). Let R' be the TRS consisting of the rules

f(~u, x, y, ~w)→ f(~u, y, x, ~w)

for every f ∈ Σ. We write →' for the rewrite relation →R', and we use ' to denote the
equivalence relation generated by →'.

Note that ' coincides with the transitive closure of →', that is, ' =→∗'.

Definition 2.14 (Trees). The set of (unordered) trees T(Σ,X ) over Σ and X is T (Σ,X )/',
the equivalence classes of terms modulo '. For a term t ∈ T (Σ,X ), we write t' for the
equivalence class of t with respect to '. So T(Σ,X ) = { t' | t ∈ T (Σ,X ) }.

Example 2.15. In a tree the subtrees of a node may be permuted without changing the tree.
So 3(5, 7(9), 8(0(1, 5)))' denotes the same tree as 3(8(0(5, 1)), 5, 7(9))'.

In this paper we speak of terms whenever the arguments are ordered, and we speak of
trees when the arguments are unordered. Most of this paper will be concerned with trees.
In the proof in Section 4.3, however, we “freeze” trees, obtaining terms, in order to make
use of positions and tracing throughout rewrite sequences. This freezing procedure was also
used in [Klo92].
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Remark 2.16. We depict trees in the same way as we depict terms:

3

8

0

5 1

5 7

9

It will be clear from the context whether such illustration depicts a term (ordered) or a tree
(unordered).

We rewrite trees using term rewriting systems.

Definition 2.17. Let R be a term rewriting system. We extend →R from terms T (Σ,X )
to trees T(Σ,X ) by defining s' →R t' whenever s, t ∈ T (Σ,X ) and s→R t.

So { (s', t') | s, t ∈ T (Σ,X ), s→R t } is the rewrite relation induced by R on trees.
A term rewrite system R thus induces abstract rewrite systems on terms and trees,

namely 〈T (Σ,X ), →R〉 and 〈T(Σ,X ), →R〉, respectively. Hence, the notions of rewrite
sequences, reduction cycles, normal forms, termination, confluence, acyclicity and so forth,
carry over from abstract rewriting to term and tree rewriting.

2.4. Orders. We also presuppose some familiarity with the basics of order theory, partial
orders, well-founded orders, and trees. Particularly important in this paper is the notion of a
well-quasi-order (wqo), an order that often proves fruitful in the termination setting [SSW20].

Definition 2.18. (Well-quasi-order) A quasi-order is a binary relation that is reflexive and
transitive. A well-quasi-order (wqo) is a quasi-order E such that any infinite sequence of
elements a0, a1, . . . , ai, . . . , aj , . . . contains an increasing pair ai E aj with i < j.

Proposition 2.19. Any wqo is well-founded.

2.5. Ordinals. An ordinal [Rub67] is a transitive set whose elements are again transitive
sets. A set A is transitive if x ⊆ A for every x ∈ A. In this view, every ordinal α is the set
of all ordinals smaller than α; thus α = {β | β < α }. So the class of all ordinals is totally
ordered by the membership relation. The least ordinal is { }, called 0. The successor α+ of
an ordinal α is the ordinal α+ = α∪ {α }. A limit ordinal is an ordinal that is neither 0 nor
a successor ordinal. So the smallest ordinals are

0 = { }, 1 = 0+ = { { } }, 2 = 1+ = { { }, { { } } }, . . . , ω, . . .

The ordinal ω is the least infinite ordinal, ω = { 0, 1, 2, 3, . . . }.
The Kirby-Paris Hydra and the Buchholz Hydra treated in this paper have traditionally

been studied and used in the context of ordinal analysis [Rat06], a branch of proof theory
that measures the strength of mathematical theories in terms of ordinals. More specifically,
the ordinal strength (or proof-theoretic ordinal) of such a theory T can be characterized as
the smallest ordinal that T cannot prove well-founded. In this paper, we will say that a
Hydra has ordinal strength α if a proof of its termination requires a theory with ordinal
strength at least α.



20:8 Jörg Endrullis, Jan Willem Klop, and Roy Overbeek Vol. 17:2

While we will not perform any ordinal analysis in this paper, we will ask questions
pertaining to it, in particular in relation to our newly introduced Star Hydra. For this
reason, we provide the following overview of large ordinals, assuming only an understanding
of the limit ordinal ω and ordinal arithmetic [Rub67].

2.5.1. Ordinals up to ε0. Any ordinal can be written as a polynomial

ωα1c1 + ωα2c2 + · · ·+ ωαncn,

where α1 > α2 > · · · > αn ≥ 0 are ordinals and the ci are positive integers. This
representation is called Cantor normal form (CNF).

Using ordinals ≤ ω as elementary symbols, one can express ordinals lying on the
spectrum ω, ωω, ωω

ω
, . . . in CNF. The limit ordinal for this sequence is the first solution to

the fixed point equation α = ωα, called ε0. The weakest Hydra treated in this paper, the
Kirby-Paris Hydra, has ordinal strength ε0.

The equation α = ωα in fact has infinitely many fixed points. The ι-th ordinal that is a
solution to α = ωα is called ει. If we similarly generalize the subscript of ε, the limit for
what we can express is the first fixed point solution to α = εα. Call this ordinal ζ0. Once
again generalizing the subscript, we can express ordinals up to the first fixed point solution
to α = ζα. If we were to continue in this fashion, we would soon exhaust the Greek alphabet.
Veblen functions provide a systematic solution to this problem.

2.5.2. Ordinals up to Γ0. The Veblen hierarchy φα(γ) can be defined by two clauses:

• for α = 0, φα(γ) = ωγ , and
• for α > 0, φα(γ) is the (1 + γ)-th common fixed point of the functions φβ for all β < α.

So in particular, we obtain φ1(0) = ε0 and φ2(0) = ζ0. The first solution to the
fixed point equation φα(0) = α is the Feferman–Schütte ordinal, and it is denoted by Γ0

[Veb08, Sch65].

2.5.3. Ordinals beyond Γ0. Multiple definitions exist that allow us to go beyond the Veblen
hierarchy. Buchholz’s ψ functions [Buc86] are one example. The ordinal strength of the
strongest Hydra in our paper, the powerful Buchholz Hydra, exceeds even all the ordinals
expressible using the ψ functions.

3. Star Games

Proving termination (SN) of various rewriting sequences is of major importance. Not only
is it a central aspect of program correctness, it is also a stepping stone towards confluence,
using Newman’s lemma. Although it is in general undecidable whether a (string or term)
rewrite system is terminating, in many instances termination can be proven, and various
techniques have been developed to do so.

In this paper we present one of the most powerful of such termination proof techniques:
the recursive path order [Der82] as developed by Dershowitz. We will use the presentation
as in [KvOdV06], where the inductive definitions of the usual presentation are replaced by
a reduction procedure that is easier to grasp to our taste. We develop this application,
employing trees with annotations, natural numbers or ordinals at the nodes, and an auxiliary
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Figure 2. A tree with stars.

marker FF at some nodes. It turns out that we will arrive at vast generalizations of the
well-known multiset orders [Man80, vO94b].

Definition 3.1 (Starred signature). ΣF
F

= {fFF | f ∈ Σ} is the starred signature. It is
assumed that Σ is unstarred, i.e., it does not contain a symbol of the form xF

F

.

Notation 3.2. We abbreviate T (Σ ∪ ΣF
F

,X ) as T (Σ,X )F
F

, and T(Σ ∪ ΣF
F

,X ) as T(Σ,X )F
F

.

Definition 3.3 (Iterative path order). Let > ⊆ Σ×Σ be a well-founded partial order, often
called the precedence ordering. The iterative path order (IPO) on trees T(Σ,X ) is

−�+ ∩ (T(Σ,X )× T(Σ,X )) .

Here −� is the rewrite relation induced on T(Σ,X ) by the TRS Star consisting of the rules

(put) f(~x) −� f
FF
(~x)

(select) f
FF
(~x, y, ~z) −� y

(copy) f
FF
(~x) −� g(f

FF
(~x), . . . , f

FF
(~x)︸ ︷︷ ︸

0 or more

) if f > g

(down) f
FF
(~x, g(~y), ~z) −� f(~x, g

FF
(~y), . . . , g

FF
(~y)︸ ︷︷ ︸

0 or more

, ~z)

for every f, g ∈ Σ.
Overloading names and notation, we also use −� to denote the rewrite relation on

T (Σ,X )F
F

induced by these rules.

Remark 3.4. Although they are rule schemas in the technical sense, we will often refer to
put, select, copy, and down simply as rules. Similarly for many other rule schemas in
this paper.

The idea behind Star is that marking the root symbol of a tree, by means of the put rule,
corresponds to the obligation to make that tree smaller, whereas the other rules correspond
to ways in which this can be brought about:

(1) The select rule expresses that selecting one of the children of a tree makes it smaller.
(2) The copy rule expresses that a tree t can be made smaller by putting finitely many

copies of trees smaller than t below a root symbol g which is less heavy than the root
symbol f of t.

(3) The down rule expresses that a tree can be made smaller by replacing one of its subtrees
with finitely many smaller subtrees.
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Remark 3.5 (down vs. lex). In the literature on iterative lexicographic path orders, one
frequently finds the lex rule [Klo92, Ges90, KvOdV06, KvR09] instead of the down rule:

(lex) f
FF
(~x, g(~y), ~z) −� f(~x, g

FF
(~y), `, . . . , `︸ ︷︷ ︸

0 or more

) where ` = f
FF
(~x, g(~y), ~z)

The lex rule is stronger than the down rule in the sense that the latter can be derived
using the former (in combination with the rules put and select). However, the lex rule
is only valid on terms, but it leads to non-termination in the setting of (unordered) trees.
The down rule, on the other hand, is valid also on trees, and this is the setting that we are
focusing on in this paper.

Example 3.6 (A cyclic reduction). A cyclic reduction

f

a g

b

FF h

f

a g

b

f

a g

b

FF FF

h

f

a g

b

f

a g

b

FF

FF FF

f

a g

b

FF
copy put select

in Star. (Here h < f .)

Clearly, Star is neither SN, nor CR. However, we are interested in termination on
star-free trees. It turns out that Star does not admit infinite rewrite sequences that contain
an infinite number of star-free trees. In other words, the restriction of the transitive closure
−�+ to T(Σ,X ) is terminating.

Theorem 3.7. The relation −�+, restricted to T(Σ,X ), is SN.

We will present two proofs of this theorem.
The first proof makes use of Kruskal’s tree theorem in combination with acyclicity of

the reduction relation −�. This route has also been used in the seminal paper [Der82]
introducing the recursive path order. Nevertheless, the proof that we present has a very
different flavour. In [Der82] the recursive path ordering is defined via an inductive definition,
and the crucial step in the termination proof is establishing transitivity of the defined order.
In our setting, transitivity of the iterative path order is immediate since the order is defined
via the transitive closure of −�. Our proof, presented in Section 4, establishes acyclicity by
tracing symbol occurrences throughout −� reductions.

The second proof, presented in Section 5, is based on well-founded induction, as
in [Buc95, KvOdV06]. This proof gives a stronger result than the first proof in the presence
of infinite signatures Σ, as it establishes termination of the iterative path order for arbitrary
well-founded partial orders (Σ, <). For the first proof, (Σ,≤) needs to be a wqo due to the
use of Kruskal’s tree theorem.

Theorem 3.7 is of significant practical interest because of the following corollary, which
intuitively states that a relation R is terminating if it can be simulated by −�+.

Corollary 3.8 (Termination by simulation). If R ⊆ T(Σ,X )× T(Σ,X ) and R ⊆ −�+,
then SN(R).

We illustrate this corollary by applying it to a simple word rewrite system.
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Example 3.9 (Star in practice). Consider the rewrite system with signature Σ = {1, 0}
and the single rewrite rule

1(0(x))→ 0(0(1(x))) .

By defining the precedence ordering 1 > 0, we obtain the IPO reduction

1(0(x))' −�put 1F
F

(0(x))'

−�copy 0(1F
F

(0(x)))'

−�copy 0(0(1F
F

(0(x))))'

−�down 0(0(1(0F
F

(x))))'

−�select 0(0(1(x)))'

on unstarred trees. Since the conditions of Corollary 3.8 are met, it follows that → is
terminating.

A more interesting example is given in Section 6, where Star is used to show that the
Kirby-Paris Hydra is terminating.

4. The First Proof: The Scenic Route

In this section, we present the first proof of Theorem 3.7 based on Kruskal’s tree theorem,
which presents a well-known way to establishing termination of the star games [Klo92]. Due
to the use of Kruskal’s tree theorem, this proof requires that (Σ,≤) is a well-quasi-order (wqo).
The proof in this section is centered around the following simple, but pivotal, proposition.

Proposition 4.1. Let A = 〈A,→〉 be an ARS and suppose that

(i) E ⊆ A×A is a wqo,
(ii) a E b =⇒ b� a, and
(iii) → is acyclic.

Then the reduction → is SN.

Proof. Assume for a contradiction that there is an infinite rewrite sequence a0 → a1 → · · · .
Then since E is a wqo on A, there exists a pair ai →+ aj with ai E aj . Thus by (2), aj � ai.
Hence ai →+ ai, contradicting that → is acyclic. So → must be SN.

The idea behind Proposition 4.1 is illustrated in Figure 3.3

The remainder of this section is devoted to establishing conditions (i)–(iii) of Propo-
sition 4.1 for A = T(Σ,X ) and → = −�+ ∩ (T(Σ,X )× T(Σ,X )). Then termination
of −�+ on unstarred trees follows. In Subsection 4.1, we recall a well-known embed-
ding relation � on trees, which is a wqo as stated by the beautiful Kruskal’s tree theo-
rem [NW67, RW93, Wei94, Gal91]. In Subsection 4.2, we clarify the relation between � and
−�+, and show that s � t =⇒ t −�+ s. In Subsection 4.3, finally, we demonstrate that
−�+ is acyclic on unstarred trees by means of an elaborate symbol tracing proof.

3Proposition 4.1 can be viewed as a generalization of [MZ97, Theorem 4.4], the termination of simplification
orders, to abstract reduction systems. In [MZ97, Theorem 4.4], the objects are terms, and the wqo E is the
homeomorphic embedding.
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...
...

...
...

barrier of embedding pairs
with backward reductions

acyclic reduction

Figure 3. A wqo provides a barrier for an acyclic reduction, if it subsumes
the converse of the wqo embedding E. The well-founded part of the reduction
tree cut off by the wqo barrier has an ordinal height that measures how soon
the barrier with its embedded pairs is manifesting itself.

4.1. A reminder of Kruskal’s tree theorem. A standard embedding relation on trees
exists, called the homeomorphic embedding, for which we need the following auxiliary
definitions. Let α and β be nodes in a tree. We write α � β if β lies within the subtree
rooted at α and α 6= β. We write α ∧ β for the supremum of α and β with respect to �. In
other words, α ∧ β is the unique node that lies on the intersection of the path from α to β,
the path from α to the root and the path from β to the root.

Definition 4.2 (Tree embedding [Gal91]). A tree s ∈ T(Σ,X ) is homeomorphically em-
bedded in tree t ∈ T(Σ,X ), notation s � t, if there is an injective function ϕ : nodes(s)→
nodes(t) such that

(1) ϕ is supremum preserving (ϕ(α ∧ β) = ϕ(α) ∧ ϕ(β)), and
(2) ϕ is label increasing (label(α) ≤ label(ϕ(α))).

Here ≤ is the wqo on the node labels Σ.

For the labels, we will typically use natural numbers with the usual order ≤.

Example 4.3. We have 2(9, 7(0, 4))' � 1(3(8(8(5, 1)), 9, 5(9)), 2)' due to the mapping:
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2

9 7

0 4

1

3

8

8

5 1

9 5

9

2

Clearly, � is a partial order on T(Σ,X ). Moreover it satisfies the following remarkable
property:

Theorem 4.4 (Kruskal’s tree theorem [Kru60]). Let t0, t1, t2, . . . be an infinite sequence of
trees in T(Σ,X ), and ≤ a wqo on the labels Σ. Then ti � tj for some i < j.

Remark 4.5. Kruskal’s tree theorem can be phrased as follows: if (Σ,≤) is a wqo, then
(T(Σ,X ),�) is a wqo.

Kruskal’s tree theorem generalizes Higman’s lemma, a similar result originally stated
for words over finite alphabets.

Corollary 4.6 (Higman’s lemma [Hig52]). Let (A,≤) be a (possibly infinite) wqo alphabet.
Then the set of words (A∗,≤∗) is a wqo, where w ≤∗ v if w can be obtained from v by
decreasing and erasing an arbitrary number of letters in v.

4.2. Embeddings and IPO. We now clarify the relation between the homeomorphic
embedding � and −�.

First of all, we believe that the homeomorphic embedding relation can be more conve-
niently defined via term rewriting as follows.

Definition 4.7 (Tree embedding via term rewriting). Define the TRS E to consist of the
following rules:

( removing a subtree) f(~x, y, ~z)→ f(~x, ~y)

( selecting a subtree) f(~x, y, ~z)→ y

( decreasing a label) f(~x)→ g(~x) if f > g

for f, g ∈ Σ. Here, f > g means that f ≥ g and not f ≤ g. We use →E to denote the
rewrite relation induced by E on trees. We say that s can be homeomorphically embedded in
t (via tree rewriting) if t→∗E s.

Remark 4.8. The term rewrite system E can be used to define both the homeomorphic
embedding on trees and on terms. Note that the rewrite system does not permute arguments.
So it preserves the argument order (sibling order) when applied to terms.

Lemma 4.9 (Equivalence of embedding relations). � =←∗E .
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Proof. We provide a proof for ⊆, which is the only direction relied on in this paper.
Assume s � t is established by some witnessing homeomorphism φ. For a tree u and

a node n in u, we use u|n to denote the subtree of u rooted at n. It suffices to prove that
(†) for node every n in s, t|φ(n) →∗ s|n. For then t→∗ t|φ(root(s)) using 0 or more selecting
steps, and t|φ(root(s)) →∗ s|root(s) = s by (†). We prove (†) by structural induction on s. For
the base case, s is a leaf n. Then t|φ(n) →∗ n = s|n by removing all of the subtrees of φ(n),
and decreasing its label.

For the inductive step, s = n(s0, . . . , sk)' for some k ∈ N. For every 0 ≤ i < j ≤ k,
the roots of si and sj have n as their supremum in s, and thus φ(root(si)) and φ(root(sj))
have φ(n) as their supremum in t. This implies that φ(root(s0)),. . . ,φ(root(sk)) are each in
distinct subtrees that are rooted at φ(n). So t|φ(n) = φ(n)(t0, . . . , tk, . . . , tk+k′)' for some
k′ ≥ 0 such that φ(root(si)) is among the nodes of ti for all i ≤ k. Now we obtain

t|φ(n) →∗ φ(n)(t0, . . . , tk)' removing subtrees

→∗ φ(n)(t|φ(root(s0)), . . . , t|φ(root(sk)))' selecting in the ti’s

→∗ φ(n)(s|root(s0), . . . , s|root(sk))' induction hypothesis

= φ(n)(s0, . . . , sk)'

→∗ n(s0, . . . , sk)' decreasing φ(n)’s label

= s|n
which concludes the proof.

Example 4.10. We have 2(9, 7(0, 4))' � 1(3(8(8(5, 1)), 9, 5(9)), 2)' since

1(3(8(8(5, 1)), 9, 5(9)), 2)

→E 3(8(8(5, 1)), 9, 5(9)) selecting a term

→E 3(8(5, 1), 9, 5(9)) selecting a term

→E 3(8(5, 1), 5(9)) removing a subterm

→E 3(8(5, 1), 9) selecting a term

' 3(9, 8(1, 5)) commutativity

→+
E 2(9, 7(0, 4)) decreasing labels (multiple times)

Example 4.11 (Non-example). We do not have 1(0, 0)' � 1(0(0, 0))'.

The following proposition allows us to infer the existence of an IPO reduction sequence
t −�∗ s given a tree embedding s � t.

Proposition 4.12. For s, t ∈ T(Σ,X ), s � t =⇒ t −�∗ s.

Proof. By Proposition 4.9 it suffices to show that →∗E ⊆ −�∗. This follows from the easily
observed fact that IPO can simulate any →E step, i.e., that →E ⊆ −�∗.

4.3. Proving acyclicity. Our final obligation concerns the acyclicity of −�+ on star-free
trees. The proof that we will give is a microscopic analysis of how the symbols propagate
and have descendants in a −�+ reduction. Because of this symbol tracing approach, we will
have to “freeze” the trees T(Σ,X ) of interest, and thus reason on the level of terms T (Σ,X )
rather than trees. The precise nature of this proof reduction is clarified and justified by the
following proposition.
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f

t1 . . . tn

fF
F

t1 . . . tn

put

fF
F

t1 . . . tn

ti
select

fF
F

t1 . . . tn

g

fF
F

t1 . . .tn

. . . fF
F

t1 . . .tn

copy

fF
F

t1 . . . ti−1 g

s1. . .sm

ti+1 . . . tn

f

t1 . . . ti−1 gF
F

s1. . .sm

. . . gF
F

s1. . .sm

ti+1 . . . tn

down

Figure 4. Tracing via colors. The symbol occurrences in the right-hand
side are descendants of those symbol occurrences in the left-hand side that
have the same color. Here red (square) and yellow (round) can be arbitrary
colors (they can also be the same color). The subterms s1, . . . , sm, t1, . . . , tn
can contain colored symbol occurrences as well.

Proposition 4.13. The relation −� has the following properties:

(i) On T (Σ,X ), we have →' · −� ⊆ −� · →'.
(ii) If for no term t ∈ T (Σ,X ) we have t (−�+ · ') t, then for no tree t′ ∈ T(Σ,X ) we

have t′ −�+ t′.

Proof.

(i) It is routine to verify that any swap steps can be postponed.
(ii) By contradiction. Assume that there is a cycle on trees t′ −�+ t′. Then by the

definition of a tree one obtains a sequence on terms σ = t′ (→∗' · −� · →∗')+ t′. From
σ we can construct a sequence t′ (−�+ · →∗') t′ on terms by repeatedly applying (i),
contradicting the hypothesis.

The tracing can be understood intuitively via coloring. In order to trace a symbol
occurrence ρ throughout a reduction, one can color ρ using a unique color c. Then one can
apply the colored variant of the rewrite rules as shown in Figure 4. After each rewrite step,
the symbol occurrences with color c are the descendants of ρ. This way of proceeding, in
which the tracing is expressed via labelling is called label-tracing in [Ter03, Section 8.6.4.].

Here, we define the descendant relation without the use of colors as follows.
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Definition 4.14 (Tracing). We define in a step s −� t (s, t ∈ T (Σ,X )F
F

) a descendant
relation between the occurrences of constant and function symbols of s and t. We will
disregard the markers FF. The definition follows the clauses of the definition of −�.

(1) s = f(~u) −�put f
FF(~u) = t. Every symbol occurrence in s has as unique descendant “the

same” symbol occurrence in t. (In particular, fF
F

descends from f .)
(2) s = fF

F

(~u, v, ~w) −�select v = t. Every symbol occurrence in v (subterm of s) has as
unique descendant “the same” symbol occurrence in v = t. The other symbol occurrences
of s have no descendant.

(3) s = fF
F

(~u) −�copy g(s, . . . , s) = t.
(a) Every symbol occurrence in s has as descendants the corresponding symbols in each

copy of s in t.
(b) In addition, the head symbol fF

F

of s has the head symbol g of t as descendant. In
this case g is called the special descendant of fF

F

.
(4) s = fF

F

(~u, v, ~w) −�down f(~u, vF
F

, . . . , vF
F

, ~w) = t. Every symbol occurrence in s has as
unique descendant “the same” symbol in t.

(5) s = C[t1] −� C[t2] = t with t1 −� t2. The descendants of symbol occurrences in t1 are
given by the clauses above; each symbol occurrence in the context C[] has as unique
descendant “the same” symbol in t.

In a sequence t0 −� t1 −� t2 −� · · · −� tn of several steps (n ≥ 2) we define the descendant
relation between symbol occurrences of t0 and those of tn in the obvious way, namely by
relational composition. Moreover, if p is a descendant of q, then we call q an ancestor of p.

The descendant relation thus defined has the following three properties that are easily
checked.

Lemma 4.15 (Unique ancestors). Let s −�+ t, and let q be a symbol occurrence in t. Then
q has a unique ancestor in s.

Lemma 4.16 (Descendants are smaller). Let p and q be symbol occurrences such that q
descends from p. Then p ≥ q (in the ordering on S). If one or more steps in the descendant
sequence from p to q are special, i.e., are of type Definition 4.14.3(b), then moreover p > q.

t

p

t

q

Figure 5. Illustration of Lemma 4.17.

The following lemma is illustrated in Figure 5.

Lemma 4.17 (Reductions on subterms). Let α : s −�+ t be a nonempty sequence. Let p
be a symbol occurrence in s and q one of its descendants in t. Let s|p be the subterm of s
rooted at symbol occurrence p, and t|q the subterm of t rooted at symbol occurrence q. Then
s|p −�∗ t|q, in a number of −�-steps less or equal to the number of steps in the sequence α.
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Proof. This property is easily proved from the particular case of one step s −� t, where for
p in s and q in t such that q descends from p, we have s|p −�= t|q.

We are now ready to prove acyclicity on terms.

Lemma 4.18 (Acyclicity on terms). For no term t ∈ T (Σ,X ), t (−�+ · ') t

Proof. For a contradiction, suppose there exists a cycle t (−�+ · ') t on terms. We call
such a term t cyclic. Let t be a smallest cyclic term (with respect to the number of symbols).
We consider a shortest cycle of t (with respect to the number of steps):

C: t = f(~u) −�+ t′ = f(~v) ' t,

(1) Our first observation on the cycle C is that the head symbol of t′ descends from the
head symbol of t.

For suppose that the head symbol f of t′ descends from a symbol occurrence in t at
position q 6= ε. Then, by Lemma 4.17, we have t|q −�∗ t′. Since t ' t′, there is a q′

in t′ such that t′|q′ ' t|q, q′ not at the root. (That is, t′|q′ is a proper subterm of t′.)
Therefore t′ −�+ t′|q′ by, e.g., a (−�put · −�select)+ sequence at the root. But then we
obtain the cycle

t|q −�∗ t′ −�+ t′|q′ ' t|q
which contradicts that t that is the smallest cyclic term (Figure 6).

t

q

t′

q′'

Figure 6. Illustration of item (1) in the proof of Proposition 4.18.

(2) The second observation is that in C there do not occur steps of type select or copy at
the root.

For suppose there is such a first step in C. This cannot be a select step, since
otherwise the head symbol of t would not have a descendant in t′, contradicting the
previous item. So C must be of the form

t = f(~u) −�+
α f

FF
(~w) = s −�copy g(s, . . . , s) −�∗β t′ ' t

for some g < f , where in part α no select or copy steps occur at the root. (Observe
that f(~u) −�+

α f
FF(~w) is nonempty because f must become starred for a copy step to

occur.)
Now the only descendants in g(s, . . . , s) of the head symbol f of t are the head symbol

g and the head symbols of the arguments s, . . . , s. By item (1) and the fact that the
descendant relation is defined through relational composition, one of these symbols must
be the ancestor of the head symbol f of t′. By Lemma 4.16 and g < f , this ancestor
cannot be g. Thus, it must be the head symbol f of one of the arguments s, . . . , s. By
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Lemma 4.17 we then obtain a sequence s −�∗γ t′ of length not exceeding the length of
part β. Omitting the first copy step, it follows that

t = f(~u) −�+
α f

FF
(~w) = s −�∗γ t′ ' t

is a cycle on t shorter than C, contradicting C’s minimality.
(3) Let down(T, k) denote a down step at a root in C which creates k starred copies of a

subtree T . Our final observation is that any step at a root in C is either a put step or a
down(k) step with k > 1, and that there is at least one such a down step. From this it
follows that the root of t′ has more subterms than the root of t, contradicting t ' t′,
and concluding the proof.

The final observation follows from the following three items:
(a) At least one down step must occur in C. Otherwise, it follows from item (2) that

all steps in C happen below the root, implying the existence of a cyclic term smaller
than t.

(b) No down(T, 1) step takes place. For the step and its corresponding put step at
the root can be replaced with a single put step on the root of T , yielding a cycle
smaller than C.

(c) No down(T, 0) step takes place. For a contradiction, suppose otherwise. Since no
select and copy steps take place at the root, T was either originally under the
head symbol of t, or it arose due to some earlier down(T ′, k) step with k > 1 and
T a reduct of (T ′)F

F

. In either case, we know that no local rewrite steps have since
taken place in T , since omitting these steps would yield a cycle shorter than C.
In the first case, T can be pruned from the initial term t, yielding a smaller cyclic
term. More formally, we have

t = f(~w, T, ~x) −�+ f
FF
(~y, T, ~z) −�down(T,0) f(~y, ~z) −�∗ t′ ' t,

from which we can construct a sequence

f(~w, ~x) −�∗ f(~y, ~z) −�∗ t′ ' t = f(~w, T, ~x) −�+ f(~w, ~x)

with f(~w, ~x) the cyclic term smaller than t (postponing the ' step).
In the second case, we can make one less copy of T ′ in the earlier down(T ′, k) step,
allowing us to construct a cycle shorter than C by omitting the down(T, 0) step.
More formally, we have

t (−�+ · −�down(T ′,k)) f(~w, (T ′)F
F

, ~x) −�+
α f

FF(~y, T, ~z) −�down(T,0) f(~y, ~z)

−�∗ t′ ' t

from which we can construct a shorter cycle

t (−�+ · −�down(T ′,k−1)) f(~w, ~x) −�∗β f(~y, ~z) −�∗ t′ ' t

where part β is shorter than α.

This ends the proof of acyclicity of the iterative path ordering on terms T (Σ,X ).

Corollary 4.19 (Acyclicity on trees). For no tree t ∈ T(Σ,X ) we have t −�+ t.

Proof. Immediate from Proposition 4.13(ii) and Lemma 4.18.

We now have all the ingredients required for proving Theorem 3.7, the claim that −�+

restricted to unstarred trees is SN.
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Proof of Theorem 3.7. Follows from the basic Proposition 4.1, Kruskal’s tree theorem (The-
orem 4.4), Proposition 4.12 and Corollary 4.19.

5. The Second Proof: a Magical Proof

We now give an alternative proof of Theorem 3.7, by employing an ingenious proof technique
due to Buchholz [Buc95] which uses neither Kruskal’s tree theorem nor acyclicity. Throughout
this section, (Σ, <) is a well-founded partial order.4

As we have seen, the star game introduced and studied so far has the peculiarity that it
is terminating when restricted to the intended, proper objects, being finite trees with nodes
labeled with natural numbers or ordinals, but without presence of the stars as “control
agents”. On the auxiliary trees that are equipped with the control stars, we do not have
termination, as there may be cycles and spiraling reductions, generating a proper context of
the starting tree.

An interesting subsequent step was made by Vincent van Oostrom in [KvOdV06], who
noticed that by making the control stars quantitative, as if having a certain amount of
working energy, conceived as a natural number or ordinal, this peculiarity can be made
to disappear, and the auxiliary objects are themselves already terminating. Moreover, the
two reductions, with simple stars or with their numerical refinements, are coinciding on the
proper objects, trees without control symbols. Figure 1 presents a helicopter view of this
situation.5

We now state the rules of the number star game.

Definition 5.1 (Energized signature). Let fn be a fresh symbol for every f ∈ Σ and n ∈ N.
We define Σω = { fn | f ∈ Σ, n ∈ N } as the energized signature.

Notation 5.2. We abbreviate T(Σ ∪ Σω,X ) as T(Σ,X )ω.

Definition 5.3 (Stars with specified energy). On T(Σ,X )ω we define the rewriting system
Starω, which induces the reduction relation −�, as follows:

(put) f(~s) −� fn(~s)

(select) fn+1(~s, t, ~u) −� t

(copy) fn+1(~s) −� g(fn(~s), . . . , fn(~s)︸ ︷︷ ︸
0 or more

) if f > g

(down) fn+1(~s, t, ~u) −� f(~s, tn, . . . , tn︸ ︷︷ ︸
0 or more

, ~u)

for every every n ∈ N and f, g ∈ Σ.

4Strictly speaking even transitivity is not needed, an arbitrary well-founded relation suffices. However,
without loss of generality, we may assume that < is transitive, for otherwise we can work with <+.

5In [KvOdV06] the present second author together with his co-authors chose to focus on the iterative
lexicographic path order among the material in draft form available at the time. That Buchholz’ proof method
could also be adapted to prove termination of related orders such as the iterative recursive path order was
not fleshed out and ended up only as a claim in the conclusion of [KvOdV06]. We prove the claim applies to
IPO (Definition 3.3) as employed here.
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A star FF can be seen as an unspecified amount of “energy” while a label n is a precise
quantity of energy. We can lift every finite reduction in Star to one in Starω by replacing
the stars by energy quanta that are large enough to make the journey all the way. As the
energy decreases by at most 1 in every −� step, the length of the (remaining) reduction
bounds the amount of energy that we need.

Proposition 5.4. The relations −�+ and −�+ coincide on unmarked trees T(Σ,X ).

Example 5.5. We reconsider Example 3.9 with the single rule 1(0(x))→ 0(0(1(x))) and
the order 1 > 0 on the signature. In Starω we have

1(0(x))' −�put 14(0(x))'

−�copy 0(13(0(x)))'

−�copy 0(0(12(0(x))))'

−�down 0(0(1(01(x))))'

−�select 0(0(1(x)))'

Note that the energy decreases in each step.

We now prove the main theorem, termination of −�, by employing a proof technique
due to Buchholz [Buc95]. As mentioned before, the proof technique was adapted by Vincent
van Oostrom, and is included in [KvOdV06]. In the following proof we closely follow the
exposition given by van Oostrom in [KvOdV06].

Proposition 5.6. −� is terminating.

Proof. We write fω(~t) to denote the tree f(~t) for an unmarked symbol f . This allows us
to write any tree from T(Σ,X )ω uniquely in the form fα(~t) for some unmarked symbol f ,
vector of trees ~t and ordinal α ≤ ω. In the crucial induction in this proof we will make use
of the fact that in the ordering of the ordinals we have ω > n for each natural number n.

We prove by induction on the construction of trees that any ω-marked tree is terminating.
To be precise, we show that any ω-marked tree fα(~t) is terminating under the assumption
(the induction hypothesis) that its arguments ~t are terminating:

t1, . . . , tn terminating =⇒ fα(t1, . . . , tn) terminating

for every f ∈ Σ and α ≤ ω. We prove this implication by induction on the triple

(f, {{ t1, . . . , tn }}, α)

in the lexicographic order with respect to

(1) > on the symbols of Σ,
(2) the multiset extension −�# of −�, and
(3) > on the markers in N ∪ {ω }.
Note that −�# is well-founded on multisets that contain only terminating terms.

Clearly, the tree fα(~t) is terminating if all its one-step reducts are. We prove that the
one-step reducts are terminating by distinguishing cases on the type of the reduction step:

(1) If the step occurs at the root, we perform a further case analysis on the rule applied:
(put) The first and second component of the triple remain the same. The third compo-

nent decreases from ω to some m ∈ N. Thus by the IH, the reduct is terminating.
(select) The result follows by the termination assumption for the terms ~t.
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(copy) Then α is of the form m + 1 for some m ∈ N, and the reduct has shape
gω(f m(~t), . . . , f m(~t)) for some g such that f > g. By the IH for the third component,
each of the f m(~t) is terminating. Hence, by the IH for the first component, the
reduct is terminating.

(down) Then α is of the form m+ 1 for some m ∈ N, and the reduct is of the form

fω(t1, . . . , ti−1, t
m
i , . . . , t

m
i︸ ︷︷ ︸

0 or more

, ti+1, . . . , tk)

with ti = gω(~s) for some trees ~s, and tmi = gm(~s). Each t1, . . . , tk is terminating by
assumption, and tmi is terminating since it is a reduct of ti. Hence, the reduct is
terminating by the IH for the second component.

(2) If the step is a non-head step, then it rewrites some subterm, and the result follows by
the IH for the second component.

6. Hydras

A (mathematical) Hydra is a tree, in which the leaves resemble the Hydra’s heads, and the
root resembles its body. The objective is to slay the Hydra by chopping off its heads (i.e.,
removing its leaves) one by one. Like its mythological counterpart, the Hydra may – subject
to certain conditions – grow new heads in response to each chop. Will the Hydra eventually
be slain, no matter which strategy we choose?

Multiple versions of the Hydra exist. One Hydra of particular interest is the Kirby-Paris
(KP) Hydra [KP82]. It was used by Kirby and Paris to derive a mathematical truth that
cannot be proved in Peano Arithmetic (namely, the fact there is no losing strategy against
this Hydra). Such independence results started with Gödel’s famous theorem; but the
endeavour later on was to find independence results with a more “mathematical” content,
referring to mathematical objects such as words and trees rather than logical proof systems.
(Of course, for us, the latter are also mathematical objects, but maybe not in the eyes of
every mathematician.)

Definition 6.1 (Kirby-Paris Hydra). A Kirby-Paris ( KP) Hydra is a finite tree with nodes
labeled from S = {0, †}. The label † labels only the root. Its rewrite relation →KP is defined
by the TRS consisting of rule schemas

(KP1) †(~t,0)→ †(~t)
(KP2) f(~t1, 0(~t2,0))→ f(~t1, 0(~t2), . . . , 0(~t2)︸ ︷︷ ︸

k ∈ N times

)

for any f ∈ S. In these rules, a boldfaced 0 highlights the head 0 that is “chopped off” by
the rule.

Remark 6.2. The Kirby-Paris Hydra is usually described as an unlabeled Hydra – or
equivalently – a Hydra labeled from a singleton label set. In this modeling, rule KP1 is of
the form 0(~t,0)→ 0(~t), and its applicability must be explicitly restricted to the root.
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Example 6.3 (Slaying a KP Hydra). One battle with the KP Hydra †(0(0, 0)) may progress
as follows:

†(0(0,0)) →KP †(0(0), 0(0))

→KP †(0,0, 0(0))

→KP †(0, 0(0))

→KP †(0(0))

→KP †(0,0)

→KP †(0)

→KP †
The KP Hydra of Example 6.3 started out quite small, and made only two copies after

each cut not directly below the root. But it is easy to see that the Hydra can grow explosively
large even for small starting examples.

Similar to Example 3.9, we can use Star to prove that the Kirby-Paris Hydra is eventually
slain.

Theorem 6.4. Any Kirby-Paris Hydra is eventually slain, no matter the strategy. In other
words, →KP is terminating.

Proof. For KP1 we have:

†(~t, 0) −�put †
FF
(~t, 0) −�down †(~t)

and for rule KP2 we have (see also Figure 7):

x(~t1, 0(~t2, 0)) −�put x
FF(~t1, 0(~t2, 0)) −�down x(~t1, 0

FF
(~t2, 0), . . . , 0

FF
(~t2, 0)︸ ︷︷ ︸

k ∈ N times

)

−�∗down x(~t1, 0(~t2), . . . , 0(~t2)︸ ︷︷ ︸
k ∈ N times

)

Hence →KP ⊆ −�+, so that termination of →KP follows from Corollary 3.8.

There exist even more intimidating Hydras. A well-known one is the Buchholz Hydra,
in which non-root nodes are labeled with ordinals α ≤ ω rather than 0. For heads labeled
with α = 0, the Buchholz Hydra acts much like the Kirby-Paris Hydra. More interestingly,
for heads labeled with 0 < α < ω, the Hydra shifts down a (slightly modified) copy of a
supertree towards the chopping site. This allows it to not only grow in width, but also in
height. The precise definition of the Buchholz Hydra contains a number of subtleties, given
below.

Definition 6.5 (Buchholz Hydra [Buc87]). A Buchholz Hydra ( BH) is a finite tree with
nodes labeled from L = N ∪ {ω, †}, where

(1) † labels only the root,
(2) every node directly below the root is labeled 0, and
(3) every remaining node is labeled with an ordinal α ≤ ω.

Its rewrite relation →BH can be defined as a TRS as induced by the following three rule
schemas.

The first rule schema is a generalization of the Kirby-Paris rule schema KP2:

(BH1) x(~t1, α(~t2,0))→ x(~t1, α(~t2), . . . , α(~t2)︸ ︷︷ ︸
k ∈ N times

)
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wn3

Figure 7. Simulating rule KP2 by star rules. All nodes of the trees have
label 0.

for any x, α ∈ L.
The second rule is more intricate. For a targeted leaf node x labeled with a successor

ordinal 0 < α < ω, find the closest ancestor y such that label(y) ≤ α. (By condition (2) above,
such an ancestor exists.) Now copy the subtree T rooted at y. In T , set label(y) = α− 1, and
set label(x) = 0. Call the result of these two changes T ′. Then the second rule is given by

(BH2) z(~t, α)→ z(~t, T ′)

for any z ∈ L.
The third rule, finally, simply relabels a targeted leaf node with label ω to an arbitrary

k ∈ N, i.e.,

(BH3) z(~t, ω)→ z(~t, k) for k ∈ N

for any z ∈ L.

Example 6.6 (Example application of BH2). Cutting off the boldfaced head in the Buchholz
Hydra †(0(ω), 0(2, 7(5))) results in the Hydra †(0(ω), 0(2, 7(T ′))) with T ′ = 4(2, 7(0)).

Buchholz [Buc95] has shown that every Buchholz Hydra can be slain by always chopping
the rightmost head.

Theorem 6.7. →BH is weakly normalizing.

We conjecture that →BH is even strongly normalizing. But even if this is correct, IPO
cannot be used to prove this. IPO can simulate rules BH1 and BH3, respectively, by the
argument given in the proof to Theorem 6.4, and the fact that IPO can decrease labels. But
rule BH2 cannot generally be simulated, as the proof to the following lemma demonstrates.

Lemma 6.8 (IPO cannot simulate BH). →BH 6⊆ −�∗.
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Proof. Assume by contradiction that →BH ⊆ −�∗. Then in particular, the BH2 step
†(0(3(2)))→BH †(0(3(1(3(0))))) implies the existence of a sequence

†(0(3(2))) −�∗ †(0(3(1(3(0)))))

−�put · −�select †(0(3(3(0))))

−�put †(0(3(3F
F

(0))))

−�copy †(0(3(2))),

which is a −�+ cycle on unmarked trees, contradicting Lemma 4.19.

Remark 6.9. The proof to Lemma 6.8 shows something stronger: any pursuit for a conser-
vative extension of IPO that allows one to simulate the Buchholz Hydra is fruitless. For any
such solution results in cyclicity, and therefore non-termination, of −�+ on unmarked trees,
defeating the purpose of defining −� in the first place.

The heart of the problem is that, under minimal conditions, the Buchholz Hydra allows
replacing a leaf x in a tree T with a tree T ′, where T ′ contains a subtree Y larger than x.
Subsequently, subtree Y can be installed on the position of x using repeated applications of
rule select, producing a tree T ′′ larger than the starting tree T .

Note that the Kirby-Paris Hydra can grow only in width, and never in height, whereas the
Buchholz Hydra can grow both in width and in height. We now define an alternative powerful
Hydra which can be labeled with any well-ordered set, and which can grow both in width
and in height, but which – unlike the Buchholz Hydra – can be proven terminating using
IPO. The underlying idea is that a chop can be regarded as prefulfilling an “obligation” to
make its supertrees smaller: hence the roots of the supertrees receive “permission” (denoted
by underlining) to modify themselves in accordance with the rules of Star . For a labeled tree
t = f(~u), we write t to denote the tree f(~u) obtained from t by underlining the root symbol.

Definition 6.10 (Star Hydra). A Star Hydra ( SH) is a finite tree with nodes labeled from a
well-founded set (S,<). For every s ∈ S let s be a fresh symbol, and define S = { s | s ∈ S }.
On finite trees labeled with S ∪ S we define the relation → by the term rewrite system:

(chop) n(α, ~x) → n(β1, . . . , βk, ~x) k ≥ 0, β1, . . . , βk < α

(propagate) n(m(~x), ~y) → n(m(~x), ~y)

(widen) n(m(~x), ~y) → n(m(~x), . . . ,m(~x)︸ ︷︷ ︸
0 or more

, ~y)

(lengthen) n(~x) → m(n(~x)) m < n

(waive) m(~x) → m(~x)

The Star Hydra rewrite relation →SH is defined as the relation

→chop · →!
propagate · (→widen ∪ →lengthen)∗ · →!

waive

where R! denotes a maximal reduction of R, i.e., x R! y if and only if x R∗ y and there
exists no z such that y R z.

Intuitively, the Star Hydra can be described as follows. When Hercules chops off a head,
the Hydra enrages, possibly regrowing any smaller number of heads at the wound (→chop).
In addition, it seeks to strengthen the neck from the body to the wound (→!

propagate). It
does this by repeatedly lengthening and duplicating subtrees along the neck, in any order
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Figure 8. One step in the process of killing the Star Hydra. After chopping
the head with value 5, the Hydra grows both in width and in height, and
Hercules starts running.
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Figure 9. Justification of the →SH step in Figure 8, detailing the change of
the Hydra via the steps in Definition 6.10.

((→widen ∪ →lengthen)∗). Eventually it calms down and stabilizes (→!
waive), opening up

another opportunity for Hercules to strike. An example →SH step is given in Figure 8.
In order to prove termination of →SH we show that →SH ⊆ −�+. For this purpose, we

show that the underlined reduction introduced in Definition 6.10, in particular the rules
widen and lengthen, can be simulated by −�+. As a first approximation, these rules can
be simulated by

n(m(~x), ~u) −�put n
FF
(m(~x), ~u)

−�down n(m
FF
(~x), . . . ,m

FF
(~x), ~u)
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and

n(~x) −�put n
FF
(t, ~x)

−�copy m(n
FF
(~x)) ,

respectively. However, there is one problem: we need to get rid of the stars FF after the −�
simulation. The idea is to enrich the trees such that every underlined symbol has additional
“garbage” arguments. A garbage argument garbage can then be used to eliminate a FF symbol
as follows:

n
FF
(~t, garbage) −�down n(~t)

To this end, we introduce the notion of garbage collection.
For convenience, when proving→SH ⊆ −�+, we consider −� over an extended signature

S′ = S ∪ {⊥}

where ⊥ is a fresh element that is smaller than all elements in S. So ⊥ is an auxiliary
element that is not used in the Hydra reduction →SH .

Definition 6.11 (Garbage collection). For every g ≥ 1 we define ↪→g on T(S′ ∪ S′,X ) by
the following rewrite system

n(~x, y1, . . . , yh) ↪→g n(~x) for every h ≥ g

Definition 6.12 (Dropping underlining). For s ∈ T(S′ ∪ S′,X ) we write [s] for the tree
obtained from s by removing underlining, that is, replacing each symbol occurrence n by n.

Garbage collection can be handled by −� in the following sense.

Lemma 6.13. If s ∈ T(S′,X ) and s ↪→∗g t, then s −�∗ [t].

Proof. Since s ↪→∗g t, the term [t] is obtained from s by removing at least g subtrees. This
can be simulated by repeated applications of −�put · −�down.

The following lemma states that −�∗ can simulate the chopping of a head and insert
garbage arguments along the affected neck (the underlined symbol occurrence).

Lemma 6.14. If g ≥ 1, s ∈ T(S,X ) and s→chop · →!
propagate t, then s −� sF

F −�∗ v ↪→∗g t
for some v ∈ T(S′,X ).

Proof. We prove the claim by induction on the depth of the chop step:

(1) If the chop step occurs at the root, then it is of the form

s = n(α, ~u)→chop n(β1, . . . , βk, ~u) = t

with k ≥ 0, β1, . . . , βk < α. We then reduce as follows:

s = n(α, ~u) −�put nF
F

(α, ~u) = sF
F

−�down n(α
FF
, . . . , α

FF︸ ︷︷ ︸
k + g times

, ~u)

−�∗copy n(β1(⊥, . . . ,⊥︸ ︷︷ ︸
g times

), . . . , βk(⊥, . . . ,⊥︸ ︷︷ ︸
g times

),⊥, . . . ,⊥︸ ︷︷ ︸
g times

, ~u) = v

↪→∗g n(β1, . . . , βk, ~u) = t
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(2) Let s = n(s′, ~u) and assume that the chop step occurs in s′. Then

s′ →chop · →!
propagate t

′ and n(t′, ~u)→propagate n(t′, ~u) = t

for some t′. By the induction hypothesis s′ −� s′F
F −�∗ v′ ↪→∗g t′ for some v′ ∈ T(S′,X ).

Hence

n(s′, ~u) −�put nF
F

(s′, ~u)

−�down n(s′
FF
, . . . , s′

FF︸ ︷︷ ︸
g + 1 times

, ~u)

−�∗ n(v′, . . . , v′︸ ︷︷ ︸
g + 1 times

, ~u) = v

↪→∗g n(t′, ~u) = t

This concludes the proof.

Lemma 6.15. If s ∈ T(S′,X ) and s ↪→∗g+1 · →widen u for g ≥ 1, then s −�∗ v ↪→∗g u for

some v ∈ T(S′,X ).

Proof. Let s ∈ T(S′,X ) and s ↪→∗g+1 t→widen u with g ≥ 1. W.l.o.g. we may assume that

the widen step occurs at the root (otherwise we consider the relevant subtrees of s, t, u).
Then the rewrite sequence is of the form

s ↪→∗g+1 t = n(m(~v), ~w)→widen n(m(~v), . . . ,m(~v), ~w) = u

for some n,m ∈ S′ and ~v, ~w ∈ T(S′ ∪ S′,X )∗. As a consequence s must be of the form

s = n(m(~v′, x1, . . . , xg1+1), ~w′, y1, . . . , yg2+1)

with g1, g2 ≥ g and componentwise ~v′ ↪→∗g+1 ~v and ~w′ ↪→∗g+1 ~w. Then

s = n(m(~v′, x1, . . . , xg1+1), ~w′, ~y)

−�put nF
F

(m(~v′, x1, . . . , xg1+1), ~w′, ~y)

−�down n(mF
F

(~v′, x1, . . . , xg1+1), . . . ,m
FF(~v′, x1, . . . , xg1+1), ~w′, ~y)

−�∗down n(m(~v′, x1, . . . , xg1), . . . ,m(~v′, x1, . . . , xg1), ~w′, ~y) = v

↪→∗g n(m(~v), . . . ,m(~v), ~w)

= u

This proves the claim.

Lemma 6.16. If s ∈ T(S′,X ) and s ↪→∗g+1 · →lengthen u for g ≥ 1, then s −�∗ v ↪→∗g u for

some v ∈ T(S′,X ).

Proof. Let s ∈ T(S′,X ) and s ↪→∗g+1 t→lengthen u with g ≥ 1. Assume that the lengthen

step occurs at the root (otherwise we consider the relevant subtrees of s, t, u). The rewrite
sequence is of the form

s ↪→∗g+1 t = n(~w)→lengthen m(n(~w)) = u

for some n > m ∈ S′ and ~w ∈ T(S′ ∪ S′,X )∗. Hence s must be of the form

s = n( ~w′, x1, . . . , xg′+1)
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with g′ ≥ g and componentwise ~w′ ↪→∗g+1 ~w. Then

s = n( ~w′, x1, . . . , xg′+1)

−�put nF
F

( ~w′, x1, . . . , xg′+1)

−�copy m(n
FF
( ~w′, x1, . . . , xg′+1), . . . , n

FF
( ~w′, x1, . . . , xg′+1)︸ ︷︷ ︸

g + 1 times

)

−�∗down m(n( ~w′, x1, . . . , xg′), . . . , n( ~w′, x1, . . . , xg′))

↪→∗g m(n(~w))

= u

This concludes the proof.

Lemma 6.17. We have →SH ⊆ −�+ where −� uses the given order < on S′.

Proof. Assume that s→SH t. Then

s→chop · →!
propagate s

′′ (→widen ∪ →lengthen)n t′ →!
waive t

for some n ≥ 0 and trees s′′, t′. By Lemma 6.14 we have s −�+ s′ ↪→∗n+1 s
′′ for some

s′ ∈ T(S′,X ). Using induction on n together with Lemmas 6.15 and 6.16, we obtain
s′ −�∗ t′′ ↪→1 t

′ for some t′′ ∈ T(S′,X ). Thus we have

s −�∗ s′ −�∗ t′′ ↪→1 t
′ →!

waive t

Moreover, by Lemma 6.13 we have t′′ −�∗ [t′] = t. Hence s −�∗ t.

Theorem 6.18. The Star Hydra →SH is terminating.

Proof. A direct consequence of Lemma 6.17.

7. Concluding remarks and questions

We have revisited star games as an alternative setting for dealing with several termination
problems, to wit, of word rewriting systems, term rewriting systems, and other objects, in
this paper in particular Hydras. We expect that the scope of this method, consisting of
letting some control symbols walk over the objects and transforming them, is wider than we
could treat in this paper. We mention a few follow-up matters, that we hope to address in
subsequent notes or papers.

(1) An essential part of the star games is that they cooperate with well-quasi-orders, as
vocalized in our simple but basic Proposition 4.1. That requires that the appropriate
embedding relations in the wqo can be obtained by a subset of the star game rules, or
by derived rules, derived from the star rules. Above we have seen this for the notion of
embedding as in Kruskal’s tree theorem.

A challenge is to extend the star rules so that they capture the more difficult embedding
on words known as gap embedding, and likewise the corresponding embedding on trees
as proposed by Friedman and studied by Dershowitz and Tzameret [DT03, Tza02].

(2) In general, it is our endeavour to extend the expressivity of the star rules by adding new
rules. A typical example, already realized in the literature, is admitting the lex rule as
treated in the paper ILPO [KvOdV06], that actually makes the down rule a derived
rule, and that importantly, enables one to prove termination of functions like the one
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of Ackermann. See further Geser [Ges90]. However, in the setting of trees (as we have
used in this paper), the lex rule is unsound for proving termination (see Remark 3.5).

(3) In continuation of the previous item about enhancing expressivity, fruitful results have
already been obtained towards connecting the framework of this paper to higher-order
rewriting, pertaining to various typed and untyped lambda calculi, or combinations of
these with first-order rewriting such as in HRSs and CRSs [Klo92].

For the original version of RPO, progress in this direction has been made by Jouan-
naud and Rubio and others. For the equivalent version of IPO as in [KvOdV06] and
the present paper, several developments have been realized by Kop [Kop12] and Van
Raamsdonk [KvR09].

(4) Another direction is the adaptation of the star game for proving infinitary normaliza-
tion [EGH+08] and productivity [End10, EGH09].

(5) We also would like to enhance the precision of the star rules. Can the star game be
changed in order to prove local termination [EdVW09, EdVW10] on a given set of
starting terms, in contrast to global termination on all terms?

(6) The star game framework lends itself to a further syntactical analysis of its fine-structure
along the lines of obtaining for instance a standardization theorem, well-known in lambda
calculus and first order rewriting. Such a theorem was already included and used
in [KvOdV06], but as yet without proof, which was subsequently given by Van Oostrom
under the name of obtaining cut elimination. An interesting corollary pointed out by
him in that work is the decidability of the star rewrite relation. The point of such a
strategy is that computation is going down along the tree with a wave front of star
symbols, denoting the front of activity, and freezing everything above that front.

(7) Are there interesting variations of star games for proving termination in infinitary
rewriting [EHK12, EHH+18], that is, considering infinite trees and rewrite sequences of
ordinal length?

(8) A further question that we wondered about, is obtained by reflecting a star game in itself,
and continuing to repeat that. That is, we can allow finite ω-labeled trees themselves
as labels, and determine the termination ordinal thus obtained. We can reiterate this
feeding the system into itself, even in an ordinal long procedure. Here the notion of
normal function on ordinals will likely play a role. Can we determine at what ordinal this
process closes? We expect that for some of these questions there are already answers in
the literature, but we have not encountered such answers explicitly, for several questions.

(9) The most fascinating question to our mind concerns the extension of star games to
finite graphs, to start with, undirected and unlabeled as in the original graph minor
theorem (GMT) by Robertson and Seymour [RS04]. Obvious generalizations here are
admitting directed edges, and admitting ordinal labels on the nodes. This is a very
powerful generalization of KTT. Ideally, we would like to obtain a star game on such
finite graphs, yielding a framework to termination of various graph rewrite problems, by
simulation into this terminating graph framework [JK08]. A promising advance in this
direction has been made by Dershowitz and Jouannaud, who designed a very general
datatype called drags, not using star games, but with developments towards setting up
RPO, recursive path order, for these objects [DJ19, DJ18].
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