
Logical Methods in Computer Science
Volume 17, Issue 2, 2021, pp. 21:1–21:21
https://lmcs.episciences.org/

Submitted May 29, 2019
Published May 27, 2021

A REALIZABILITY SEMANTICS FOR INDUCTIVE FORMAL

TOPOLOGIES, CHURCH’S THESIS AND AXIOM OF CHOICE

MARIA EMILIA MAIETTI a, SAMUELE MASCHIO a, AND MICHAEL RATHJEN b

a Dipartimento di Matematica “Tullio Levi Civita”, Università di Padova, Italy
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Abstract. We present a Kleene realizability semantics for the intensional level of the
Minimalist Foundation, for short mTT, extended with inductively generated formal
topologies, the formal Church’s thesis and axiom of choice.

This semantics is an extension of the one used to show the consistency of the intensional
level of the Minimalist Foundation with the axiom of choice and the formal Church’s thesis in
the work by Ishihara, Maietti, Maschio, Streicher [Arch.Math.Logic,57(7-8):873-888,2018].

A main novelty here is that such a semantics is formalized in a constructive theory as
Aczel’s constructive set theory CZF extended with the regular extension axiom.

1. Introduction

A main motivation for introducing the Minimalist Foundation, for short MF, in [MS05,
Mai09] was the desire to provide a foundation where to formalize constructive point-free
topology in a way compatible with most relevant constructive foundations. In particular,
MF was designed with the purpose of formalizing the topological results developed by
adopting the approach of Formal Topology by P. Martin-Löf and G. Sambin introduced in
[Sam87]. This approach was further enriched with the introduction of Positive Topology by
Sambin in [Sam03]. A remarkable novelty of this approach to constructive topology was the
advent of inductive topological methods (see [CSSV03, CMS13]) to represent the point-free
topologies of the real number line, of Cantor space and of Baire space.

However, while the basic notions of Formal Topology can be formalized in the Minimalist
Foundation in [Mai09], not all the constructions of inductively generated formal topologies
are formalizable there. For instance, the formal topology of Cantor space and that of the
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real line are formalizable in MF thanks to some characterizations given in [Val07], but the
formal topology of the Baire space is not thanks to results in [CR12].

In any case this limitation is not a surprise since MF was introduced to be a minimalist
foundation compatible with the most relevant constructive and classical foundations for
mathematics in the literature in the sense of being interpretable in them by preserving the
meaning of logical and set-theoretic onstructors.

To better fulfill this requirement MF was ideated in [MS05] as a two level system which
was completed in [Mai09]. More precisely the two-level structure of MF consists of an
intensional level, called mTT and based on an intensional type theory à la Martin-Löf,
aimed at exhibiting the computational contents of mathematical proofs, and an extensional
level formulated in a language as close as possible to that of present day mathematics
which is interpreted in the intensional level by means of a quotient model (see [Mai09]). In
particular, the intensional level mTT is quite weak in proof-theoretic strength because it
can be interpreted in the fragment of Martin-Löf’s type theory with one universe, or directly

in Feferman’s theory of non-iterative fixpoints ÎD1 as first shown in [MM16].
The authors in [MS05] were led to propose a two-level system as a notion of constructive

foundation for the following reason. They wanted to found constructive mathematics in
a system interpretable in an extension of Kleene realizability semantics of intuitionistic
arithmetics with finite types. The reason is that such a semantics makes evident the
extraction of witnesses from existential statements in a computable way thanks to the
validity of the axiom of choice (AC) and the formal Church’s thesis (CT). In more detail,
AC states that from any total relation we can extract a type-theoretic function as follows:

(∀x ∈ A) (∃y ∈ B)R(x, y)→ (∃f ∈ A→ B) (∀x ∈ A)R(x,Ap(f, x)) (AC)

with A and B generic collections and R(x, y) any relation, while CT (see also [Tv88]) states
that from any total relation on natural numbers we can extract a (code of a) recursive
function by using the Kleene predicate T and the extracting function U

(∀f ∈ N→ N)(∃e ∈ N) (∀x ∈ N) (∃z ∈ N) (T (e, x, z) ∧ Ap(f, x) =N U(z)). (CT)

As a consequence, their desired constructive foundation should have been consistent with
AC and CT. But this consistency requirement is a very strong property since it rules out
the validity of extensional principles used in everyday practice of mathematics, including the
extensional equality of functions, beside not being satisfied by most constructive foundations
in the literature. Therefore, the authors of [MS05] ended up in defining a constructive
foundation as a two-level system consisting of an extensional level, formulated in a language
close to that of informal mathematics and validating all the desired extensional properties,
and of an intensional level consistent with the axiom of choice AC and CT where the
extensional level is interpreted via a quotient model. The system MF is an example of this
notion of two-level constructive foundation. The proof that its intensional level is consistent
with AC and CT was given only recently in [IMMS18].

The purpose of this paper is two-fold. First we present an extension MFind of MF with
the inductive definitions sufficient to inductively generate formal topologies and necessary
to define inductively generated basic covers which constitute a predicative presentation of
suplattices (see [BS06, CMS13]). This is motivated by the fact that in [CSSV03] the problem
of generating formal topologies inductively is reduced to that of generating suplattices in an
inductive way. As MF also MFind is presented as a two-level system obtained by extending
each level of MF with rules generating basic covers inductively. In particular, the rules of
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inductively generated basic covers added to mTT to form the intensional level mTTind

are driven by those of well-founded sets in Martin-Löf’s type theory in [NPS90] without
assuming generic well-founded sets or ordinals as done for the formalization of such covers
within type theory in [CSSV03, Val07].

Then our main purpose is to show that the extension MFind of MF is also an example
of the mentioned notion of two-level constructive foundation in [MS05]. To this aim the key
result shown here is that its intensional level mTTind is consistent with AC and CT.

In order to meet our goal we produce a realizability semantics for mTTind by extend-
ing the one used to show the consistency of the intensional level of MF with AC+CT
in [IMMS18], which in turn extends Kleene realizability interpretation of intuitionistic
arithmetic.

A main novelty of the semantics in this paper is that it is formalized in a constructive
theory as the (generalized) predicative set theory CZF+REA, namely Aczel’s constructive
Zermelo-Fraenkel set theory extended with the regular extension axiom REA.

To this purpose it is crucial to modify the realizability interpretation in [IMMS18]
in the line of the realizability interpretations of Martin-Löf type theories in extensions of
Kripke-Platek set theory introduced in [Ra93] (published as [GR94]).

Therefore, contrary to the semantics in [IMMS18], which was formalized in a classical

theory as Feferman’s theory of non-iterative fixpoints ÎD1, here we produce a proof that
mTTind, and hence mTT, is constructively consistent with AC+CT.

As in [IMMS18], we actually build a realizability model for a fragment of Martin-Löf’s
type theory [NPS90], called MLttind, where mTTind extended with the axiom of choice
can be easily interpreted.

As it turns out, CZF + REA and MLttind possess the same proof-theoretic strength.
In the future we intend to further extend our realizability to model mTTind enriched

with coinductive definitions to represent Sambin’s generated Positive Topologies. Another
possible line of investigation would be to employ our realizability semantics to establish the
consistency strength of mTTind or of the extension of mTT with particular inductively
generated topologies, like that of the Baire space.

2. The extension MFind with inductively generated formal topologies

Here we describe the extension MFind of MF capable of formalizing all the examples of
formal topologies defined by inductive methods introduced in [CSSV03].

In that paper, the problem of generating the minimal formal topology which satisfies
some given axioms is reduced to show how to generate a complete suplattice in terms of an
infinitary relation called basic cover relation

a� V

between elements a of a set A, thought of as basic opens, and subsets V of A, meaning that
the basic open a is covered by the union of basic opens in the subset V .

Then the elements of the generated suplattice would be fixpoints of the associated
closure operator

�(−) : P(A) −→ P(A)

defined by putting
�(V ) ≡ { x ∈ A | x� V }

These suplattices are complete with respect to families of subsets indexed over a set.
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Furthermore, a formal topology is defined as a basic cover relation satisfying a conver-
gence property and a positivity predicate (see [CSSV03, MV04, BS06, CMS13]). Indeed in
this case the resulting complete suplattice of �-fixpoints actually forms a predicative locale
which is overt (or open in the original terminology by Joyal and Tierney) for the presence of
the positivity predicate.

The tool of basic covers appears to be the only one available in the literature to represent
complete suplattices in most-relevant predicative constructive foundations including Aczel’s
CZF, Martin-Löf’s type theory and also MF.

The reason is that there exist no non-trivial examples of complete suplattices that form a
set in such predicative foundations (see [Cur10]). As a consequence, there exist no non-trivial
examples of locales which form a set and the approach of formal topology based on a cover
relation seems to be compulsory (see also [MS13]) when developing topology in a constructive
predicative foundation, especially in MF.

In [CSSV03] it was introduced a method for generating basic covers inductively starting
from an indexed set of axioms, called axiom set. Such a method allows to generate a formal
topology inductively when the basic cover relation � is defined on a preordered set (A,≤)
and it is generated by an axiom set satisfying a so called localization condition which refers
to the preorder defined on A. A general study of the relation between basic covers and
formal covers including their inductive generation is given in [CMS13].

In the following we describe a suitable extension of MF capable of representing induc-
tively generated basic covers, and hence also formal topologies.

We start by describing how to enrich the extensional level emTT of MF in [Mai09]
with such inductive basic covers. The reason is that the language of emTT is more apt to
represent the topological axioms given that it is very close to that of everyday mathematical
practice (with proof-irrelevance of propositions and an encoding of the usual language of
first-order arithmetic and of subsets of a set, see [Mai09]).

We recall that in emTT we have four kinds of types, namely collections, sets, propo-
sitions and small propositions according to the following subtyping relations:

small propositions� _

��

� � // sets� _

��
propositions �

� // collections

where collections include the power-collection P(A) (which is not in general a set!) of any
set A and small propositions are defined as those propositions closed under intuitionistic
connectives, propositional equality and quantifiers restricted to sets.

We first extend emTT with new primitive small propositions

a /I,C V props

expressing that the basic open a is covered by the union of basic opens in V for any a element
of a set A, V subset of A, assuming that the basic cover is generated by a family of (open)
subsets of A indexed on a family of sets I(x) set [x ∈ A] and represented by

C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)].

Recall from [Mai09] that in emTT we can define a subset membership

a ε V
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between a subset V ∈ P(A) and an element a of a set A. Note that while the membership
a ∈ A is primitive in emTT and expresses that A is the type of a, the membership ε
essentially expresses a relation between subsets of A and its elements.

The precise rules extending emTT to form a new type system emTTind are the
following:

Rules of inductively generated basic covers in emTTind

F-/

A set I(x) set [x ∈ A] C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)]
V ∈ P(A) a ∈ A

a /I,C V props

rf-/

A set I(x) set [x ∈ A] C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)]
V ∈ P(A) a ε V true

a /I,C V true

tr-/

A set I(x) set [x ∈ A] C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)]
a ∈ A i ∈ I(a) V ∈ P(A)
(∀y∈A) ( y εC(a, i) → y /I,C V ) true

a /I,C V true

ind-/

A set I(x) set [x ∈ A] C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)]
P (x) prop [x ∈ A] V ∈ P(A) cont(V, P ) true
a ∈ A a�I,C V true

P (a) true

where

cont(V, P ) ≡ ∀x∈A ( x ε V → P (x) )
∧ ∀x∈A ( ∀j∈I(x) ∀y∈A (y εC(x, j) → P (y) ) → P (x) )

where above we adopted the convention of writing φ true for a proposition φ instead of
true ∈ φ as in [Mai09].

The first rule expresses the formation of the small propositional function representing a
basic cover, the second one expresses a form of reflexivity since it states that any element of
a subset V is covered by it, the third one expresses a form of transitivity property applied
to open subsets of the axiom set and the fourth one is a form of induction on the generated
basic cover.

A main example of inductively generated cover formalizable in emTTind is that of the
topology of the real line, represented by Joyal’s inductive formal cover �r of Dedekind real
numbers defined on the set Q × Q (which acts as A in the rules above) where Q is the set of
rational numbers. This formal cover is generated by a family of open subsets C(〈p, q〉, j) for
〈p, q〉 ∈ Q × Q and j ∈ I(〈p, q〉) where I(〈p, q〉) is the set of indexes of the following rules:

q ≤ p
〈p, q〉�r U

p′ ≤ p < q ≤ q′ 〈p′, q′〉�r U

〈p, q〉�r U

p ≤ r < s ≤ q 〈p, s〉�r U 〈r, q〉�r U

〈p, q〉�r U

wc(〈p, q〉) �r U

〈p, q〉�r U
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where in the last axiom we have used the abbreviation

wc(〈p, q〉) ≡ { 〈p′, q′〉 ∈ Q × Q | p < p′ < q′ < q}
(wc stands for ‘well-covered’).

Some relevant applications regarding the formal topology of the real line are discussed
for instance in [CN95, Pal05, MS13].

There exists also an alternative presentation of the formal topology of the real line due
to T. Coquand in [CN95] which makes this topology formalizable in emTT, and hence
in MF. The reason is that its cover can be defined in terms of another inductive cover
generated by a finite set of axioms and formalizable in emTT by using a characterization
of inductive formal topologies given in [Val07] and the crucial fact that in emTT we can
define sequences of subsets by recursion on natural numbers.

Other relevant examples of inductively generated formal topologies are the topologies
of Cantor and Baire spaces. These are instances of the more general notion of tree formal
topology relative to a set E represented by the cover /tr(E) on the set List(E) of lists of E
generated by a family of open subsets C(l, j) for a list l and j ∈ I(h) where I(h) is the set
of indexes of the following rules:

s v l l /tr(E) V

s /tr(E) V

∀x ∈ E [l, x] /tr(E) V

l /tr(E) V

where s v l means that the list l is an initial segment of the list s, formally defined as
s v l ≡ ∃t∈List(E) Id(List(E), s, [l, t]) and [l, t] is the concatenation of the list l with t.

Then the formal topology of the Cantor space is the tree topology /tr({0,1}) when E is
the boolean set {0, 1} and the formal topology of the Baire space is the tree topology /tr(N)

when E is the set N of natural numbers.
The formal topology of the Baire space is a genuine example of inductively generated

cover definable in emTTind but not in emTT contrary to that of the Cantor space which
is definable in emTT:

Proposition 2.1. The formal topology of the Baire space /tr(N) is not formalizable in
emTT, and hence in MF, while the formal topology of Cantor space /tr({0,1}) is formalizable
there.

Proof. The formal topology of the Cantor space /tr({0,1}) is formalizable in emTT thanks to
the characterization of /tr({0,1})(V ) for a subset V of List({0, 1}) in [Val07], beside the fact
that in emTT we can define sequences of subsets of a set by recursion on natural numbers.

Instead the formal topology of the Baire space /tr(N) is not formalizable in emTT for
the following reason. From [Mai09] we know that emTT can be translated in CZF by
preserving the meaning of propositions and sets. Now if the topology /tr(N) were formalizable
in emTT then it would be formalizable also in CZF but from [CR12] we know that this is
not possible.

More generally, all the finitary topologies in [CSSV03] are definable in emTT, and
hence in MF, in a way similar to what done to formalize the formal topology of the Cantor
space.

It is worth noting that different presentations of basic covers may yield to the same
complete suplattice. For example, any complete suplattice presented by (the collection
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of fixpoints associated to) a basic cover �I,C on a quotient set B/R, can be equivalently
presented by a cover on the set B itself which behaves like �I,C but in addition it considers
as equal opens those elements which are related by R.

In order to properly show this fact, which will motivate some definitions in the next
section, we define a correspondence between subsets of B/R and subsets of B as follows:

Definition 2.2. In emTTind, given a quotient set B/R, for any subset W ∈ P(B/R) we
define

es(W ) ≡ { b ∈ B | [b] εW }
and given any V ∈ P(B) we define es−(V ) ≡ { z ∈ B/R | ∃b∈B ( b ε V ∧ z =B/R [b] )}.

Definition 2.3. Given an axiom set represented by a set A ≡ B/R with I(x) set [x ∈ A]
and C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)], we define a new axiom set as follows:

AR ≡ B IR(x) ≡ I([x]) + (Σy ∈ B) R(x, y) for x ∈ B

where CR(b, j) is the formalization of

CR(b, j) ≡

{
es(C([b], j) ) if j ∈ I([b])

{π1(j) } if j ∈ (Σy ∈ B) R(b, y)

for b ∈ B and j ∈ IR(x).
We then call �R

I,C the inductive basic cover generated from this axiom set.

It is then easy to check that

Lemma 2.4. For any axiom set in emTTind represented by a set A ≡ B/R with
I(x) set [x ∈ A] and C(x, j) ∈ P(A) [x ∈ A, j ∈ I(x)], the suplattice defined by �I,C

is isomorphic to that defined by �R
I,C by means of an isomorphism of suplattices.

Proof. It is immediate to check that for any subset W of B/R which is a fixpoint for �I,C

the subset es(W ) is a fixpoint for �R
I,C and that, conversely, for any subset V of B which is

a fixpoint for �R
I,C the subset es−(V ) is a fixpoint for �I,C . Moreover, this correspondence

preserves also the suprema defined as in [CMS13]. Alternatively, one could check that the
relation z F b ≡ Id(B/R , z , [b] ), namely the propositional equality of z with [b], defines a
basic cover isomorphism in the sense of [CMS13] between the basic cover �I,C and �R

I,C .

2.1. The intensional level mTTind. Here we describe the extension mTTind of the
intensional level mTT of MF capable of interpreting the extension emTTind.

We recall that in mTT we have the same four kinds of types as in emTT with the
difference that in mTT power-collections of sets are replaced by the existence of a collection
of small propositions props and function collections A→ props for any set A. Such collections
are enough to interpret power-collections of sets in emTT within a quotient model of
dependent extensional types built over mTT, as explained in [Mai09].

In order to complete emTTind into a two-level foundation according to the requirements
in [MS05], we need to define an extension of mTT with a proof-relevant version of the
inductively generated basic covers of emTTind.

To this purpose we defined the extension mTTind by extending mTT in [Mai09] with
new small propositions

a /I,C V props



21:8 M. E. Maietti, S. Maschio, and M. Rathjen Vol. 17:2

and corresponding new proof-term constructors associated to them so that judgements
asserting that some proposition is true in emTTind are turned into judgements of mTTind

producing a proof-term of the corresponding proposition.
We recall that in mTTind as in mTT in [Mai09] the universe of small propositions is

defined in the version à la Russell. A version of mTT with the universe of small propositions
à la Tarski can be found in [MM16].

It is worth noting that the equality rules of the inductive basic covers are driven by
those of well-founded sets in Martin-Löf’s type theory in [NPS90] without assuming generic
well-founded sets or ordinals as in the representations given in [CSSV03, Val07]. However,
in accordance with the idea that proof-terms of propositions of mTT represent just a
constructive rendering of the proofs of propositions in emTT, we do restrict the elimination
rules of inductive basic covers to act toward propositions which do not depend on their
proof-terms, since these proof-terms do not appear at the extension level emTT.

When expressing the rules of inductive basic covers we use the abbreviation

a ε V to mean Ap(V , a )

for any set A, any small propositional function V ∈ A→ props and any element a ∈ A.

The precise rules of inductive basic covers extending mTT to form a new type system
mTTind are the following:

Rules of inductively generated basic covers in mTTind

F-/

A set I(x) set [x ∈ A] C(x, j) ∈ A→ props [x ∈ A, j ∈ I(x)]
V ∈ A→ props a ∈ A

a /I,C V props

rf-/

A set I(x) set [x ∈ A] C(x, j) ∈ A→ props [x ∈ A, j ∈ I(x)]
V ∈ A→ props a ∈ A r ∈ a ε V

rf(a, r) ∈ a /I,C V

tr-/

A set I(x) set [x ∈ A] C(x, j) ∈ A→ props [x ∈ A, j ∈ I(x)]
V ∈ A→ props a ∈ A i ∈ I(a)
r ∈ ∀x∈A ( x εC(a, i)→ x /I,C V )

tr(a, i, r) ∈ a /I,C V

ind-/

A set I(x) set [x ∈ A] C(x, j) ∈ A → props [x ∈ A, j ∈ I(x)]

P (x) prop [x ∈ A] V ∈ A → props

a ∈ A m ∈ a�I,C V

q1(x, z) ∈ P (x) [x ∈ A, z ∈ x ε V ]

q2(y, j, f) ∈ P (y) [y ∈ A, j ∈ I(y), f ∈ ∀z∈A ( z εC(y, j) → P (z) )]

ind(m, q1, q2) ∈ P (a)
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C1-ind

A set I(x) set [x ∈ A] C(x, j) ∈ A → props [x ∈ A, j ∈ I(x)]

P (x) prop [x ∈ A] V ∈ A → props

a ∈ A r ∈ a ε V
q1(x, z) ∈ P (x) [x ∈ A, z ∈ x ε V ]

q2(y, j, f) ∈ P (y) [y ∈ A, j ∈ I(y), f ∈ ∀z∈A ( z εC(y, j) → P (z) )]

ind(rf(a, r), q1, q2) = q1(a, r) ∈ P (a)

C2-ind

A set I(x) set [x ∈ A] C(x, j) ∈ A → props [x ∈ A, j ∈ I(x)]

P (x) prop [x ∈ A] V ∈ A → props

a ∈ A i ∈ I(a) r ∈ ∀x∈A ( x εC(a, i) → x /I,C V )

q1(x, z) ∈ P (x) [x ∈ A, z ∈ x ε V ]

q2(y, j, f) ∈ P (y) [y ∈ A, j ∈ I(y), f ∈ ∀z∈A ( z εC(y, j) → P (z) )]

ind(tr(a, i, r), q1, q2) = q2( a , i , λz.λw. ind(Ap(Ap(r, z), w) , q1, q2) ) ∈ P (a)

Note that the cover relation preserves extensional equality of subsets represented as
small propositional functions thanks to the induction principle:

Lemma 2.5. For any axiom set in mTTind on a set A with I(x) set [x ∈ A] and C(x, j) ∈
A → props [x ∈ A, j ∈ I(x)] and for any propositional functions V1 ∈ A → props and
V2 ∈ A → props, there exists a proof-term

q ∈ V1 =ext V2 → a /I,C V1 =ext a /I,C V2

where for any small propositional functions W1 and W2 on a set A we use the following
abbreviation

W1 =ext W2 ≡ ∀x∈A ( W1(x) ↔ W2(x) )

Recall that the interpretation of emTT in mTT in [Mai09] interprets a set A as an
extensional quotient defined in mTT as a set AJ of mTT, called support, equipped with
an equivalence relation =AJ over AJ , as well as families of sets are interpreted as families
of extensional sets preserving the equivalence relations in their telescopic contexts. Now,
lemma 2.4 suggests that we can interpret an inductive basic cover on a set A of emTTind

within mTTind as an inductive cover of mTTind on the support AJ by enriching the

interpretation of the axiom-set in mTTind with the equivalence relation =AJ in a similar
way to definition 2.3 as follows:

Definition 2.6. For any axiom set in mTTind represented by a set A with I(x) set [x ∈ A]
and C(x, j) ∈ A → props [x ∈ A, j ∈ I(x)] and for any given equivalence relation
x =A y ∈ props [x ∈ A, y ∈ A] turning A into an extensional set as well as the family of set
I(x) set [x ∈ A] and propositional functions C(x, j) ∈ A → props [x ∈ A, j ∈ I(x)] into an
extensional family of sets and extensional propositional functions preserving =A according
to the definitions in [Mai09], we define a new axiom set as follows

A=A ≡ A I=A(x) ≡ I(x) + (Σy ∈ A)(x =A y) for x ∈ A
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where C=A(a, j) is the formalization of

C=A(a, j) ≡

{
C(a, j) if j ∈ I(a)

{π1(j) } if j ∈ (Σy ∈ A)(a =A y)

for a ∈ A and j ∈ I=A(x).
We then call �=A

I,C the inductive basic cover generated from this axiom set.

We are now ready to interpret emTTind in the quotient model over mTTind built as
in [Mai09]:

Proposition 2.7. The interpretation of emTT in mTT in [Mai09] extends to an interpre-
tation of emTTind in mTTind by interpreting an inductive basic cover a�I,C V for a ∈ A
and V ∈ P(A) as the inductive basic cover �

=
AJ

IJ ,CJ
in mTTind over the support AJ of the

interpretation of A.

Proof. It follows from the proof given in [Mai09] after checking that the inductive basic
cover �

=
AJ

IJ ,CJ
is an extensional proposition over the extensional set interpreting A and over

the interpretation of P(A) in the sense of [Mai09].

3. The fragment MLttind of intensional Martin-Löf’s type theory with
inductive basic covers

We here briefly describe the theory MLttind obtained by adding the rules of inductive basic
covers to the first order fragment of intensional Martin-Löf’s type theory in [NPS90] with
one universe.

This theory interprets mTTind as soon as propositions are identified with sets following
the Curry-Howard correspondence in [NPS90]. In accordance with this propositions as sets
interpretation, which is a pecularity of Martin-Löf’s type theory, contrary to mTTind in
MLttind we strengthen the elimination rule of inductive basic covers to act towards sets
depending on their proof-terms according to inductive generation of types in Martin-Löf’s
type theory.

As a consequence the interpretation of mTTind into MLttind also validates the axiom
of choice AC as formulated in the introduction.

Therefore in order to show the consistency of mTTind with AC+CT (with CT formu-
lated as in the introduction) it is enough to show the consistency of MLttind extended with
(the translation of) CT.

Here we adopt the notation of types and terms within the first order fragment MLtt1

of intensional Martin-Löf’s type theory with one universe U0 à la Tarski in [IMMS18] and
we just describe the rule of inductive basic covers added to it.

To this purpose we add to MLtt1 the code

a /̂s,i,c v ∈ U0 for a ∈ T(s) and v ∈ T(s) → U0

meaning that the element a of a small set T(s) represented by the code s ∈ U0 is covered by
the subset v represented by a small propositional function from T(s) to the (large) set of
small propositions identified with U0 by the propositions-as-sets correspondence.

Moreover, we use the abbreviations

a /s,i,c v ≡ T(a /̂s,i,c v) x ε y ≡ T(Ap(y, x))
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and the notation

axcov(s, i, c)

to abbreviate the following judgements

s ∈ U0 i(x) ∈ U0 [x ∈ T(s)] c(x, y) ∈ T(s)→ U0 [x ∈ T(s), y ∈ T(i(x))]

Then, the precise rules of inductive basic covers extending MLtt1 to form a new type
system MLttind are the following:

Rules of inductively generated basic covers in MLttind

F-/
axcov(s, i, c) a ∈ T(s) v ∈ T(s)→ U0

a /̂s,i,c v ∈ U0

rf-/
axcov(s, i, c) a ∈ T(s) v ∈ T(s)→ U0 r ∈ a ε v

rf(a, r) ∈ a /s,i,c v

tr-/

axcov(s, i, c) a ∈ T(s) j ∈ T(i(a)) v ∈ T(s)→ U0

r ∈ (Πz ∈ T(s))(z ε c(a, j)→ z /s,i,c v)

tr(a, j, r) ∈ a /s,i,c v

ind-/

axcov(s, i, c)
v ∈ T(s)→ U0 P (x, u) type [x ∈ T(s), u ∈ x /s,i,c v]
a ∈ T(s) m ∈ a /s,i,c v
q1(x,w) ∈ P (x, rf(x,w)) [x ∈ T(s), w ∈ x ε v]

q2(x, h, k, f) ∈ P (x, tr(x, h, k))
[x ∈ T(s), h ∈ T(i(x)),
k ∈ (Πz ∈ T(s))(z ε c(x, h)→ z /s,i,c v),

f ∈ (Πz ∈ T(s))(Πu ∈ z ε c(x, h))P (z,Ap(Ap(k, z), u))]

ind(m, q1, q2) ∈ P (a,m)

C1-ind-/

axcov(s, i, c)
v ∈ T(s)→ U0 P (x, u) type [x ∈ T(s), u ∈ x /s,i,c v]
a ∈ T(s) r ∈ a ε v
q1(x,w) ∈ P (x, rf(x,w)) [x ∈ T(s), w ∈ x ε v]

q2(x, h, k, f) ∈ P (x, tr(x, h, k))
[x ∈ T(s), h ∈ T(i(x)),
k ∈ (Πz ∈ T(s))(z ε c(x, h)→ x /s,i,c v),

f ∈ (Πz ∈ T(s))(Πu ∈ z ε c(x, h))P (z,Ap(Ap(k, z), u))]

ind(rf(a, r), q1, q2) = q1(a, r) ∈ P (a, rf(a, r))
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C2-ind-/

axcov(s, i, c)
v ∈ T(s)→ U0 P (x, u) type [x ∈ T(s), u ∈ x /s,i,c v]
a ∈ T(s) j ∈ T(i(a)) r ∈ (Πz ∈ T(s))(z ε c(a, j)→ z /s,i,c v)
q1(x,w) ∈ P (x, rf(x,w)) [x ∈ T(s), w ∈ x ε v]

q2(x, h, k, f) ∈ P (x, tr(x, h, k))
[x ∈ T(s), h ∈ T(i(x)),
k ∈ (Πz ∈ T(s))(z ε c(x, h)→ z /s,i,c v),

f ∈ (Πz ∈ T(s))(Πu ∈ z ε c(x, h))P (z,Ap(Ap(k, z), u))]

ind(tr(a, j, r), q1, q2) = q2(a, j, r, λz.λu.ind(Ap(Ap(r, z), u), q1, q2)) ∈ P (a, tr(a, j, r))

A crucial difference from the ordinary versions of Martin-Löf’s type theory is that for
MLttind we postulate just the replacement rule repl)

repl)

c(x1, . . . , xn) ∈ C(x1, . . . , xn) [x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1) ]

a1 = b1 ∈ A1 . . . an = bn ∈ An(a1, . . . , an−1)

c(a1, . . . , an) = c(b1, . . . , bn) ∈ C(a1, . . . , an)

in place of the usual congruence rules which would include the ξ-rule in accordance with the
rules of mTT in [Mai09], and hence of mTTind.

The motivation for this restriction in mTTind and in MLttind is due to the fact that the
realizability semantics we present in the next sections, based on that in [IMMS18] and hence
on the original Kleene realizability in [Tv88], does not validate the ξ-rule1 of lambda-terms

ξ
c = c′ ∈ C [x ∈ B]

λxB.c = λxB.c′ ∈ (Πx ∈ B)C

which is instead valid in [NPS90].
It is indeed an open problem whether the original intensional version of Martin-Löf’s

type theory in [NPS90], including the ξ-rule of lambda terms, is consistent with CT.
It is worth noting that the lack of the ξ-rule does not affect the possibility of adopting

mTT as the intensional level of a two-level constructive foundation as intended in [MS05],
since its term equality rules suffice to interpret an extensional level including extensionality
of functions, as that represented by emTT, by means of the quotient model as introduced
in [Mai09] and studied abstractly in [MR13a, MR13b, MR15].

Furthermore our realizability semantics interprets terms as applicative terms in the first
Kleene algebra and their equality as numerical equality turning into an extensional equality
in the context-dependent case. Hence we need a suitable encoding of lambda-terms which
validates the replacement rule under the interpretation. As observed in [IMMS18] not each
translation of pure lambda calculus in the first Kleene algebra satisfies this requirement (see
pp.881-882 in [IMMS18]).

Now note that we can interpret mTTind within MLttind by first interpreting mTTind

in the version of MLttind with the universe U0 à la Russell which is then interpreted into
the original version MLttind with the first universe à la Tarski.

In more detail, we call MLttr1 the first order fragment of intensional Martin-Löf’s type
theory in [NPS90] with the first universe U0 formulated à la Russell. Then, we call MLttrind
the version of MLttind with the universe U0 and the rules of inductively generated basic
covers à la Russell which are obtained from those of MLttind by identifying the code of a

1Notice that a trivial instance of the ξ-rule is derivable from repl) when c and c′ don’t depend on xB .
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set in the first universe U0 with the set itself. In particular in MLttrind we must have a new
set in U0 expressing the basic cover

a /I,C V for a set A in U0 and V ∈ A → U0

for any axiom set given by a set family I(a) in U0 for a ∈ A and C(a, j) ∈ A → U0 for
a ∈ A and j ∈ I(a).

Theorem 3.1. The interpretation of mTT into MLttr1 given in [Mai09] extends to that of
mTTind by interpreting each basic cover �I,C of mTTind associated to an axiom set I(−)
and C(−,−) in the corresponding basic cover of MLttrind associated to the interpreted axiom
set.

Proof. Note that small propositions are encoded in the universe U0 as well as axiom sets
generating a basic cover in mTTind.

Observe that the version à la Russell MLttrind can be interpreted in that à la Tarski
MLttind by preserving the meaning of sets and of their elements:

Proposition 3.2. MLttrind can be interpreted into MLttind in such a way that any set
A (under a context) in the first universe is interpreted as a set T(c) for some code c and
each basic cover a�I,C V of MLttrind for a ∈ A and V ∈ A→ U0 associated to an axiom
set I(−) and C(−,−) is interpreted as the set with code a /̂s,i,c v ∈ U0 for a ∈ T(s) and v ∈
T(s) → U0 where s is the code of the set interpreting A, v is the interpretation of V and
i(x) ∈ U0 [x ∈ T(s)] and c(x, y) ∈ T(s)→ U0 [x ∈ T(s), y ∈ T(i(x))] are the interpretation
of the axiom-set.

Proof. The raw syntax of MLttind, i.e. the preterms and pretypes associated to the syntax
of terms and types of MLttind, is defined in the usual way (see [IMMS18]). Observe that a
set in the first universe à la Russell may appear both as a preterm and as a pretype.

Then we define a partial interpretation of preterms and pretypes respectively as preterms
and pretypes of MLttind with the warning of interpreting a set in the first universe U0 used
as a preterm as its corresponding code à la Tarski in MLttind.

Corollary 3.3. mTTind can be interpreted in MLttind by composing the interpretations
in theorem 3.1 and proposition 3.2.

4. A realizability interpretation of MLttind with the formal Church’s Thesis

Here we are going to describe a realizability model of MLttind with CT extending that of
MLtt1 in [IMMS18].

A main novelty here is that we formalize such a model in the (generalized) predicative
and constructive theory CZF + REA where CZF stands for Constructive Zermelo-Fraenkel
Set Theory and REA stands for the regular extension axiom (for details see [Acz86, AR01,
AR10]).

Since the interpretation in [IMMS18] is performed in ÎD1 which is a classical theory
of fixed points, we cannot follow the proof technique in [IMMS18] to fulfill our purpose.

Moreover ÎD1 is a too weak theory to accommodate inductively defined topologies as it can
be gleaned from [CR12]. The solution is to adopt the proof-technique in [Ra93, GR94] to
fulfill our goal.
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As usual in set theory we identify the natural numbers with the finite ordinals, i.e.
N := ω. To simplify the treatment we will assume that CZF has names for all (meta)
natural numbers. Let n be the constant designating the nth natural number. We also
assume that CZF has function symbols for addition and multiplication on N as well as for
a primitive recursive bijective pairing function p : N × N → N and its primitive recursive
inverses p0 and p1, that satisfy p0(p(n,m)) = n and p1(p(n,m)) = m. We also assume that
CZF is endowed with symbols for a primitive recursive length function ` : N → N and a
primitive recursive component function (−)− : N× N→ N determining a bijective encoding
of finite lists of natural numbers by means of natural numbers. CZF should also have a
symbol T for Kleene’s T -predicate and the result extracting function U . Let P ({e}(n))
be a shorthand for ∃m(T (e, n,m) ∧ P (U(m))). Further, let p(n,m, k) := p(p(n,m), k),
p(n,m, k, h) := p(p(n,m, k), h), etc. A similar convention will be adopted for application
of partial recursive functions: Let {e}(a, b) := {{e}(a)}(b), {e}(a, b, c) := {{e}(a, b)}(c) etc.
We use a, b, c, d, e, f, n,m, l, k, q, r, s, v, j, i as metavariables for natural numbers.

We first need to introduce some abbreviations:

(1) n0 is p(0, 0), n1 is p(0, 1) and n is p(0, 2).

(2) Σ̃(a, b) is p(1, p(a, b)), Π̃(a, b) is p(2, p(a, b)) and +(a, b) is p(3, p(a, b)).
(3) list(a) is p(4, a) and id(a, b, c) is p(5, p(a, b, c)).
(4) a/̃c,d,eb is p(6, p(a, b, c, d, e)).

(5) r̃f(a, r) is p(7, p(a, r)).
(6) t̃r(a, j, r) is p(8, p(a, j, r)).

Recall that in intuitionistic set theories ordinals are defined as transitive sets all of
whose members are transitive sets, too. Unlike in the classical case, one cannot prove that
they are linearly ordered but they are perfectly good as a scale along which one can iterate
various processes. The trichotomy of 0, successor, and limit ordinal, of course, has to be
jettisoned. We use lowercase greek letters as metavariables for ordinals.

Definition 4.1. By transfinite recursion on ordinals (cf. [AR10], Proposition 9.4.4) we
define simultaneously two relations Setα(n) and n εαm on N in CZF + REA.

In the following definition we use the shorthand Famα(e, k) to convey that Setα(k) and
∀j(j εα k → Setα({e}(j))) and we shall write Set∈α(n) for ∃β ∈ α(Setβ(n)), n ε∈αm for
∃β ∈ α(n εβm) and Fam∈α(e, k) for ∃β ∈ α(Famβ(e, k)).

(1) Setα(nj) if j = 0 or j = 1, and mεα nj if m < j;

(2) Setα(n) holds, and mεα n if m ∈ N.

(3) If Fam∈α(e, k), then Setα(Π̃(k, e)) and Setα(Σ̃(k, e));
if Fam∈α(e, k), then

(a) n εα Π̃(k, e) if there exists β ∈ α such that Famβ(e, k) and (∀i εβ k) {n}(i) εβ {e}(i).2

(b) n εα Σ̃(k, e) if there exists β ∈ α such that Famβ(e, k) as well as p0(n) εβ k and
p1(n) εβ {e}(p0(n)).

(4) If there exists β ∈ α such that Setβ(n) and Setβ(m), then Setα(+(n,m)), and
i εα+(n,m) if there exists β ∈ α such that Setβ(n), Setβ(m) and

[p0(i) = 0 ∧ p1(i) εβ n] ∨ [p0(i) = 1 ∧ p1(i) εβm].

2We use the obvious shorthand (∀i εβ k) . . . for ∀i[i εβ k → . . .]; also employed henceforth.
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(5) If there exists β ∈ α such that Setβ(n), then Setα(list(n)), and
i εα list(n) if there exists β ∈ α such that Setβ(n) and ∀j [j < `(i)→ (i)j εβ n].

(6) If Set∈α(n), then Setα(id(n,m, k)), and
s εα id(n,m, k) if there exists β ∈ α such that Setβ(n), mεβ n and s = m = k.

(7) Let β ∈ α. Suppose that the following conditions (collectively called ∗β) are satisfied:
(a) Setβ(s),
(b) a εβ s,
(c) Famβ(v, s),
(d) Famβ(i, s) and
(e) ∀x∀y[x εβs ∧ y εβ{i}(x)→ Famβ({c}(x, y), s)].

Then Setα(a/̃s,i,cv).
For β ∈ α satisfying ∗β, let Vβ be the smallest subset of N satisfying the following
conditions:
(a) if z εβs and r εβ{v}(z) then p(z, r̃f(z, r)) ∈ Vβ;
(b) if r ∈ N, z εβ s, j εβ{i}(z) and

(∀u εβs) (∀t εβ{c}(z, j, u)) p(u, {r}(u, t)) ∈ Vβ
then p(z, t̃r(z, j, r)) ∈ Vβ.

The existence of the set Vβ is guaranteed by the axiom REA.
Finally we define q εα a/̃s,i,cv by ∃β ∈ α [ ∗β ∧ p(a, q) ∈ Vβ].

Remark 4.2. It is perhaps worth noting that in the above definition the interpretation

of the Propositional Identity T ( Îd(s, a, b) ) for s ∈ U0 and a ∈ T(s) and b ∈ T(s) agrees
with that in [IMMS18] which validates the rules of the extensional Propositional Identity in
[NPS90]. Hence, also our realizability semantics actually validates the extensional version
of MLttind. Therefore the elimination rule of inductive basic covers can be equivalently
weakened to act towards types which do not depend on proof-terms of basic covers, as soon
as we add a suitable η-rule in a way similar to what happens to the rules of first-order
types (like disjoint sums or natural numbers or list types) in the extensional type theories in
[Mai05].

Here we have a crucial lemma.

Lemma 4.3 (CZF + REA).

• For all m ∈ N, if Setα(m) and α ⊆ ρ, then Setρ(m).
• For all m ∈ N, if Setα(m), then for all ρ such that Setρ(m),

∀i ∈ N(i εαm↔ i ερm). (∗)

Proof. The proof is similar to the one for Lemma 4.2 in [Ra93, GR94]. (i) and (ii) are proved
simultaneously by induction on α (cf. [AR10], Proposition 9.4.3). Suppose Setα(m) and
Setρ(m). We look at the forms m can have.

If m is n0, n1 or n, then the claim is immediate in view of clauses (1) and (2) in the
previous definition.

If m is of the form Π̃(k, e), then there exists β ∈ α such that Famβ(e, k). The induction
hypothesis applied to β yields that whenever Famξ(e, k), then for all ξ

∀j ∈ N(i εβm↔ i εξm)

∀i ∈ N∀j ∈ N(i εβm→ (j εβ {e}(i)↔ j εξ {e}(i)))
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The claim (∗) follows from the foregoing. If m is either Σ̃(k, e), +(a, b), list(a) or id(a, b, c)
the argument proceeds as in the previous case.

If m is of the form a/̃s,i,cv, the proof is similar, although more involved.

Definition 4.4. We define in CZF + REA the formula Set(n) as ∃α(Setα(n)) and x ε y as
∃α(x εα y).

Theorem 4.5. Consistency of the theory CZF+REA implies the consistency of the theory
MLttind extended with the formal Church thesis CT.

Proof. We outline a realizability semantics in CZF+REA. Let p be a code for the primitive
recursive pairing function p introduced just before Definition 4.1, i.e. {p}(n,m) = p(n,m).3

Every preterm is interpreted as a K1-applicative term (that is, a term built with numerals,
variables and Kleene application) as it is done in [IMMS18] with the only difference that
here we do not identify N with List(N1) but we consider it as a primitive type interpreted as
the set of natural numbers N; zero and successor terms are interpreted in the obvious way
while the eliminator relative to N is interpreted using a numeral encoding a recursor.

We must notice that in introducing codes for sets in the universe in Definition 4.1 we
took account of dependencies by means of natural numbers representing recursive functions;
however every preterm depending on variables will be interpreted as a K1-applicative
term having the same free variables (we identify the variables of MLttind with those in
CZF+REA). For these reasons, whenever a term s in MLttind depends on terms t1, . . . , tn
in context, its interpretation will depend on the interpretations of t1, . . . , tn bounded with
adequate Λ operators. The variables which will be bounded by these Λs will be the ones
used in the rule where the term s is introduced. This abuse of notation allows us to avoid
heavy fully-annotated terms in the syntax.

We only need to interpret the new preterms of MLttind as follows.

(1) (a/̂s,i,cv)I is defined as {p}(6, {p5}(aI , vI , sI ,Λx.iI ,Λx.Λy.cI)) (= aI /̃sI ,Λx.iI ,Λx.Λy.cI v
I),4

where p and p5 are numerals representing the encoding of pairs of natural numbers and
of 5-tuples of natural numbers, respectively.

(2) (rf(a, r))I := {p}(7, {p}(aI , rI)) (= r̃f(aI , rI)).
(3) (tr(a, j, r))I := {p}(8, {p3}(aI , jI , rI)) (= t̃r(aI , jI , rI)), where p3 is a numeral repre-

senting the encoding of triples of natural numbers.
(4) (ind(m, q1, q2))I is {indq1,q2}(mI) where indq1,q2 is the code of a recursive function5 such

that
(a) indq1,q2(r̃f(z, r)) ' {Λx.Λw.qI1}(z, r) 6,
(b) indq1,q2(t̃r(a, i, r)) ' {Λx.Λh.Λk.Λf.qI2}(a, i, r,Λz.Λu.indq1,q2( {r}(z, u))).
For the existence of such a code one appeals to the recursion theorem.

If τ is a K1-applicative term and A = {x|φ} is a class, we will define τ ∈ A as an abbreviation
for φ[τ/x].
We will interpret pretypes into the language of set theory (with CZF + REA being the
interpreting theory) as definable subclasses of N as follows.

(1) NI0 := {x ∈ N| ⊥}.
(2) NI1 := {x ∈ N|x = 0}.

3Recall that when we write {b}(a1, . . . , an), we mean {. . . {{b}(a1)}(a2) . . .}(an).
4(= . . .) is meant to convey that the preceding term evaluates to same number as the one indicated by . . ..
5Actually depending primitive recursively on the parameters, i.e. free variables, occuring in q1 and q2.
6t ' s to mean that the applicative term t converges if and only if s converges, and in this case t = s.
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(3) NI := {x ∈ N|x = x} = N.
(4) ((Σy ∈ A)B)I := {x ∈ N| p0(x) ∈ AI ∧ p1(x) ∈ BI [p0(x)/y]}.
(5) ((Πy ∈ A)B)I := {x ∈ N| ∀y ∈ N [y ∈ AI → {x}(y) ∈ BI ]}.
(6) (A+B)I := {x ∈ N| [p0(x) = 0 ∧ p1(x) ∈ AI ] ∨ [p0(x) = 1 ∧ p1(x) ∈ BI ]}.
(7) (List(A))I := {x ∈ N| ∀i ∈ N [i < `(x)→ (x)i ∈ AI ]}.
(8) (Id(A, a, b))I := {x ∈ N|x = aI ∧ aI = bI ∧ aI ∈ AI}.
(9) U I0 := {x| Set(x)}.
(10) T(a)I := {x|x ε aI}.
Precontexts are interpreted as conjunctions of set-theoretic formulas as follows.

(1) [ ]I is the formula >;
(2) [Γ, x ∈ A]I is the formula ΓI ∧ x ∈ AI .
Validity of judgements J in CZF + REA under the foregoing interpretation is defined as
follows:

(1) A type [Γ] holds if CZF + REA ` ΓI → ∀x (x ∈ AI → x ∈ N)
(2) A = B type [Γ] holds if CZF + REA ` ΓI → ∀x (x ∈ AI ↔ x ∈ BI)
(3) a ∈ A [Γ] holds if CZF + REA ` ΓI → aI ∈ AI
(4) a = b ∈ A [Γ] holds if CZF + REA ` ΓI → aI ∈ AI ∧ aI = bI ,

where x is a fresh variable.
The encoding of lambda-abstraction in terms of K1-applicative terms can be chosen (see

[IMMS18]) in such a way that if a and b are terms and x is a variable which is not bounded
in a, then the terms ( a[b/x] )I and aI [ bI/x] coincide.

The proof that for every judgement if MLttind ` J , then J holds in the realizability
model is a long verification. Serving as a generic example, we will prove that the rules for
the inductively generated covers (rf-/) and (tr-/) preserve the validity of judgments in the
model. In doing so we will tacitly be assuming that the interpretation of the context ΓI

holds true.

(rf-/) Suppose the premisses of the following rule are valid in the model.

rf-/

s ∈ U0 i(x) ∈ U0 [x ∈ T(s)] c(x, y) ∈ T(s)→ U0 [x ∈ T(s), y ∈ T(i(x))]
a ∈ T(s) v ∈ T(s)→ U0 r ∈ a ε v

rf(a, r) ∈ a /s,i,c v

Then, the following hold true:
(a) Set(sI)
(b) ∀x ∈ N (x ε sI → Set((i(x))I))
(c) ∀x, y, z ∈ N (x ε sI ∧ y ε (i(x))I ∧ x ε sI → Set({(c(x, y))I}(z)))
(d) aI ε sI

(e) ∀x ∈ N (x ε sI → Set({vI}(x)))
(f) rI ε {vI}(aI)
(a) entails that there exists an ordinal α such that

Setα(sI) (4.1)

and by (b) we have ∀x ∈ N (x εα s
I → ∃β Setβ((i(x))I)). Using strong collection in our

background theory, the latter yields the existence of a set of ordinals b1 such that

∀x ∈ N (x εα s
I → ∃β ∈ b1 Setβ((i(x))I)). (4.2)
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Let γ be α ∪ b1 ∪
⋃
b1. One then determines that γ is an ordinal. From (c) it follows by

strong collection that there exists a set of ordinals b2 such that

∀x, y, z ∈ N (x εγ s
I ∧ y εγ (i(x))I ∧ x εγ sI → ∃ξ ∈ b2 Setξ({(c(x, y))I}(z))). (4.3)

Likewise, (e) yields the existence of a set of ordinals b3 such that

∀x ∈ N (x εγ s
I → ∃ζ ∈ b3 Setζ({vI}(x))). (4.4)

Finally, let δ be the ordinal γ ∪ b2 ∪
⋃
b2 ∪ b3 ∪

⋃
b3. In light of Lemma 4.3, we can infer

from the above (4.1, 4.2, 4.3 and 4.4) collectively that
(i) Setδ(s

I)
(ii) ∀x ∈ N (x εδ s

I → Setδ((i(x))I))
(iii) ∀x, y, z ∈ N (x εδ s

I ∧ y εδ (i(x))I ∧ x εδ sI → Setδ({(c(x, y))I}(z)))
(iv) aI εδ s

I

(v) ∀x ∈ N (x εδ s
I → Setδ({vI}(x)))

(vi) rI εδ {vI}(aI)
Let θ be any ordinal such that δ ∈ θ. By Definition 4.1(7), we then have Setθ(a

I /̃sI ,iI ,cI v
I)

and rf(a, r)I = r̃f(aI , rI) ε aI /̃sI ,iI ,cI v
I . So the validity of the judgement rf(a, r) ∈

a /s,i,c v in the model is established.
(tr-/) Suppose the premisses of the following rule are valid in the model.

tr-/

s ∈ U0 i(x) ∈ U0 [x ∈ T(s)] c(x, y) ∈ T(s)→ U0 [x ∈ T(s), y ∈ T(i(x))]
a ∈ T(s) j ∈ T(i(a)) v ∈ T(s)→ U0

r ∈ (Πx ∈ T(s))(x ε c(a, j)→ x /s,i,c v)

tr(a, j, r) ∈ a /s,i,c v

Then, in addition to (a)-(e) of the previous case, jI ε {iI}(aI) and

∀x ∈ N ∀y ∈ N [x ε sI ∧ y ε {cI(aI , jI)}(x)→ {rI}(x, y) ε x /̃sI ,iI ,cI v
I ]

hold. Thus just as in the previous case, we have to find sufficiently large ordinals in
which all the relevant coded sets “live”. However, we will not repeat this procedure.
Following it, we have, by Definition 4.1(7), (tr(a, j, r))I = t̃r(aI , jI , rI) ε aI /̃sI ,iI ,cI v

I ,
which means that tr(a, j, r) ∈ a /s,i,c v is valid in the model.

To conclude, one can show in CZF + REA that the interpretation of CT is inhabited by
some numeral n. This numeral is “almost” a Turing machine code for the identity function,
however, it also depends on the Kleene normal form predicate T and the result extracting
function U .

Corollary 4.6. Consistency of the theory CZF+REA implies the consistency of the theory
mTTind+AC + CT.

Proof. This follows from corollary 3.3 and theorem 4.5.

Corollary 4.7. The theory mTTind+AC + CT has an interpretation in the intensional
version of the type theory ML1WV in Definition 5.1 of [Ra93] or [GR94].

Proof. This is a consequence of corollary 3.3 together with the proof of the above Theorem
4.5 and Proposition 5.3 in [Ra93, GR94], namely the interpretability of CZF + REA in
ML1WV.
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Remark 4.8. In a certain sense there is nothing special about inductively generated basic
covers in that the interpretation of MLttind in CZF + REA would also work if one added
further inductive types such as generic well founded sets to MLttind. In the same vein
one could add more universes or even superuniverses (see [Pal98, Ra01]) after beefing up
the interpreting set theory by adding large set axioms. As a consequence one can conclude
that intensional Martin-Löf type theory with some or all these type constructors added, but
crucially missing the ξ-rule, is consistent with the formal Church’s thesis.

Theorem 4.9. MLttind and CZF + REA have the same proof-theoretic strength.

Proof. It follows from [Ra93], Theorem 5.13, Theorem 6.9, Theorem 6.13 (or the same
theorems in [GR94]) together with our theorem 4.5 and the observation that the theory IARI
of [Ra93] in Definition 6.2 can already be interpreted in MLttind using the interpretation of
[Ra93] in Definition 6.5.

We just recall that IARI is a subsystem of second order intuitionistic number theory.
It has a replacement schema and an axiom of inductive generation asserting that for every
binary set relation R on the naturals the well-founded part of this relation is a set. The
interpretation for the second order variables are the propositions on the naturals with truth
conditions in U0.

The crucial step is to interpret the axiom of inductive generation of IARI in MLttind.
To this purpose one has to show that if s ∈ U0 and R ∈ T(s) × T(s) → U0 then the
well-founded part of R, WP(R), can be given as a predicate WP(R) ∈ T(s) → U0. To
this end define i ∈ T(s) → U0 by i(x) := s, v ∈ T(s) → U0 by v(p) := n0, c(x, y) ∈
T(s) → U0 by c(x, y)(z) := R(z, x) (so y is dummy) for x ∈ T(s) and y ∈ T(s). Now let
WP(R)(a) := a /s,i,c v for a ∈ T(s). Then it follows that a is in the well-founded part
exactly when WP(R)(a) is inhabited. To see this, suppose we have a truth maker r for
(Πx ∈ T(s))(R(x, a) → WP(R)(x)). Then r ∈ (Πx ∈ T(s))(x ε c(a, a) → x /s,i,c v), hence
tr(a, a, r) ∈ a /s,i,c v by (tr-/), whence tr(a, a, r) ∈ WP(R)(a). Thus WP(R) satisfies the
appropriate closure properties characterizing the well-founded part of R. The pertaining
induction principle is then a consequence of (ind-/).

Remark 4.10. The proof of theorem 4.9 does not work if we substitute MLttind with
mTTind. The reason is that the axiom of replacement in IARI does not appear to be
interpretable in mTTind and to establish the exact proof theoretic strength of mTTind is
left to future work.

Conclusions. In the future we aim to further extend the realizability semantics presented
here to model MFind enriched with coinductive definitions capable of representing generated
Positive Topologies in [Sam03].

Further goals would be to study the consistency strength of mTTind or of mTT
extended with specific inductive formal topologies such as that of the Baire space.
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