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Abstract. We study the equivalence relation on states of labelled transition systems of
satisfying the same formulas in Computation Tree Logic without the next state modality
(CTL−X). This relation is obtained by De Nicola & Vaandrager by translating labelled
transition systems to Kripke structures, while lifting the totality restriction on the latter.
They characterised it as divergence sensitive branching bisimulation equivalence.

We find that this equivalence fails to be a congruence for interleaving parallel composi-
tion. The reason is that the proposed application of CTL−X to non-total Kripke structures
lacks the expressiveness to cope with deadlock properties that are important in the context
of parallel composition. We propose an extension of CTL−X, or an alternative treatment
of non-totality, that fills this hiatus. The equivalence induced by our extension is charac-
terised as branching bisimulation equivalence with explicit divergence, which is, moreover,
shown to be the coarsest congruence contained in divergence sensitive branching bisimu-
lation equivalence.

1. Introduction

CTL
∗ [7] is a powerful state-based temporal logic combining linear time and branching time

modalities; it generalises the branching time temporal logic CTL [6]. CTL
∗ is interpreted

in terms of Kripke structures, directed graphs together with a labelling function assigning
to every node of the graph a set of atomic propositions. As the next state modality X
is incompatible with abstraction of the notion of state, it is often excluded in high-level
specifications. By CTL

∗
−X

we denote CTL
∗ without this modality. To characterise the

equivalence induced on states of Kripke structures by validity of CTL∗−X
formulas, Browne,

Clarke & Grumberg [3] defined the notion of stuttering equivalence. They proved that two
states in a finite Kripke structure are stuttering equivalent if and only if they satisfy the
same CTL

∗
−X

formulas, and moreover, they established that this is already the case if and
only if the two states satisfy the same CTL−X formulas.
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There is an intuitive correspondence between the notions of stuttering equivalence on
Kripke structures and branching bisimulation equivalence [10] on labelled transition sys-
tems (LTSs), directed graphs of which the edges are labelled with actions. De Nicola &
Vaandrager [5] have provided a framework for constructing natural translations between
LTSs and Kripke structures in which this correspondence can be formalised. Stuttering
equivalence corresponds in their framework to a divergence sensitive variant of branching
bisimulation equivalence, and conversely, branching bisimulation equivalence corresponds to
a divergence blind variant of stuttering equivalence. The latter characterises the equivalence
induced on states of Kripke structures by a divergence blind variant of validity of CTL∗−X

formulas.
In [6, 7, 3] and other work on CTL

∗, Kripke structures are required to be total, meaning
that every state has an outgoing transition. These correspond with LTSs that are deadlock-
free. In the world of LTSs requiring deadlock-freeness is considered a serious limitation,
as deadlock is introduced by useful process algebraic operators like the restriction of CCS
and the synchronous parallel composition of CSP. Conceptually, a deadlock may arise as
the result of an unsuccessful synchronisation attempt between parallel components, and
often one wants to verify that the result of a parallel composition is deadlock-free. This is,
of course, only possible when working in a model of concurrency where deadlocks can be
expressed.

Through the translations of [5] it is possible to define the validity of CTL∗−X
formulas

on states of LTSs. To apply CTL
∗
−X

-formulas to LTSs that may contain deadlocks, De
Nicola & Vaandrager [5] consider Kripke structures with deadlocks as well, and hence lift
the requirement of totality. They do so by using maximal paths instead of infinite paths in
the definition of validity of CTL∗−X

formulas. Without further changes, this amounts to the
addition of a self-loop to every deadlock state. As a consequence, CTL∗−X

formulas cannot
see the difference between a state without outgoing transitions (a deadlock) and one whose
only outgoing transition constitutes a self-loop (a livelock), and accordingly a deadlock state
is stuttering equivalent to a livelock state that satisfies the same atomic propositions. This
paper will challenge the wisdom of this set-up.

We observe that for systems with deadlock, the divergence sensitive branching bisimu-
lation equivalence of [5] fails to be a congruence for interleaving operators. We characterise
the coarsest congruence contained in divergence sensitive branching bisimulation equiva-
lence as the branching bisimulation equivalence with explicit divergence introduced in [10].
This equivalence differs from divergence sensitive branching bisimulation equivalence in that
it distinguishes deadlock and livelock. For deadlock-free systems the equivalences coincide.

Having established that the framework of [5] turns CTL
∗
−X

into a logic on LTSs that
induces an equivalence under which interleaving parallel composition fails to be compo-
sitional, we propose two adaptations to this framework that both make CTL

∗
−X

induce
branching bisimulation equivalence with explicit divergence and thus restore composition-
ality. Our first adaptation preserves the treatment of non-totality of [5] as well as their
translations between LTSs and Kripke structures, but extends the language CTL

∗
−X

so that
it can distinguish deadlock from successful termination. Our second adaptation preserves
the totality requirement on Kripke structures but modifies the translation from LTSs to
Kripke structures. One of our main results is that both adaptations are equivalent in the
sense that they induce equally expressive logics on LTSs. In the following two paragraphs
we discuss these adaptations in more detail.
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That divergence sensitive branching bisimulation equivalence is not a congruence for
interleaving operators means that there are properties of concurrent systems, pertaining to
their deadlock behaviour, that (in the framework of [5]) cannot be expressed in CTL

∗
−X

,
but that can be expressed in terms of the validity of a CTL

∗
−X

formula on the result of
putting these systems in a given context involving an interleaving operator. We find this
unsatisfactory, and therefore propose an extension of CTL∗−X

in which this type of property
can be expressed directly. We obtain that two states are branching bisimulation equivalent
with explicit divergence if and only if they satisfy the same formulas in the resulting logic.
Treating CTL−X in the same way leads either to an extension of CTL−X or, equivalently,
to a modification of its semantics. The new semantics we propose for CTL−X is a valid
extension of the original semantics [6] to non-total Kripke structures. It slightly differs
from the semantics of [5] and it is arguably better suited to deal with deadlock behaviour.

Instead of extending CTL
∗
−X

or modifying CTL−X we also achieve the same effect by
amending the translation from LTSs to Kripke structures in such a way that every LTS maps
to a total Kripke structure. This amended translation consist of any of the translations in
the framework of [5] followed by a postprocessing stage introducing a fresh state sδ, labelled
by a fresh atomic proposition expressing the property of having deadlocked, and a transition
from all deadlock states, and sδ itself, to sδ. Adding self-loops and a fresh atomic proposition
expressing deadlock (or just a fresh atomic proposition expressing deadlock) to deadlock
states themselves does not have the desired effect, for it yields logics that are too expressive.

From the point of view of practical applications our work allows the rich tradition of
verification by equivalence checking to be combined with the full expressive power of CTL∗−X

.
In equivalence checking, three properties of the chosen equivalence have been found indis-
pensable [2]: compositionality—in particular parallel composition being a congruence—is a
crucial requirement to combat the state explosion problem; the ability to represent dead-
lock is crucial in ascertaining deadlock-freedom; and abstraction from internal activity—and
thus from the concept of a “next state”—is crucial to get a firm grasp of correctness. Our
work is the first that allows specification by arbitrary CTL

∗
−X formulas to be incorporated

in this framework, without giving up any of these essential properties.
Given the existence of adequate translations between LTSs and Kripke structures, we

could have presented the results of this paper entirely within the framework of Kripke struc-
tures, or entirely within the framework of LTSs. Using Kripke structures only would entail
defining a parallel composition on Kripke structures—which is possible by lifting the paral-
lel composition on LTSs through the appropriate translations. However, Kripke structures
are traditionally used for global descriptions of systems; building system descriptions mod-
ularly by parallel composition, while worrying about deadlocks that may be introduced in
this process, would be a novel approach in itself. For establishing the results of this paper
it is much more appropriate to build on the rich tradition of composing LTSs by parallel
composition, and the known importance of deadlock behaviour within this framework.

Using just LTSs, on the other hand, would require lifting CTL
∗
−X

to the world of LTSs.1

Here we could build on the work of De Nicola and Vaandrager [4], who defined the logic
ACTL

∗ on LTSs and showed that it corresponds neatly, through the translations of [5],

1A tempting alternative appears to be to use the weak modal µ-calculus [15] instead of CTL∗
−X. This

is the modal µ-calculus of Kozen [12] with weak action modalities 〈〈α〉〉 and [[a]] instead of 〈a〉 and [a] in
order to abstract from internal activity. However, as observed in [15], this logic cannot distinguish states
that are weakly bisimilar, and hence, contrary to what is suggested in the introduction of [15], lacks the
expressiveness of CTL∗

−X.
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with CTL
∗ on Kripke structures. However, whereas abstracting from the notion of state in

CTL
∗ can be done elegantly by removing the next state modality X from the language, in

ACTL
∗ this additionally requires parametrising the until-modality by two action formulas

[4]. Doing this would make the resulting logic ACTL
∗
−X

appear less than a wholly canonical
action-based incarnation of CTL∗−X

, and the reader might wonder whether the failure of
ACTL

∗
−X

to generate an equivalence on LTSs that is a congruence for parallel composition
would be due to it being an imperfect rendering of CTL∗−X

in the action-based world.
By presenting our analysis directly for CTL

∗
−X

, we make clear that this is not the
case, and the problem stems from CTL

∗
−X

itself. Having to work in both LTSs and Kripke
structures, with translations between them, appears to be a small price to pay. In addition,
we feel that in many applications, such as process algebra with data, in may be preferable
to work directly in a model of concurrency that features both state and action labels, and
thus benefits from the ability to smoothly combine LTSs and Kripke structures [16].

Nevertheless, all our work applies just as well to ACTL
∗
−X, with the very same problems

and the very same solutions.
At the end of the paper we briefly consider Linear Temporal Logic without the next

state modality (LTL−X). The equivalence induced by the validity of LTL−X-formulas is not
a congruence for interleaving parallel composition either. The coarsest coarsest congruence
included in the equivalence induced by the validity of LTL−X-formulas is obtained much in
the same way as the coarsest congruence included in the equivalence induced by the validity
of CTL−X-formulas. Adding the ∞-modality to LTL−X, however, yields a logic that induces
a strictly finer equivalence than the obtained congruence.

2. CTL
∗
−X

and stuttering equivalence

We presuppose a set AP of atomic propositions. A Kripke structure is a tuple (S,L,→)
consisting of a set of states S, a labelling function L : S → 2AP and a transition relation
→ ⊆ S × S. For the remainder of the section we fix a Kripke structure (S,L,→).

A finite path from s is a finite sequence of states s0, . . . , sn such that s = s0 and
sk −→ sk+1 for all 0 ≤ k < n. An infinite path from s is an infinite sequence of states
s0, s1, s2, . . . such that s = s0 and sk −→ sk+1 for all k ∈ ω. A path is a finite or infinite
path. A maximal path is an infinite path or a finite path s0, . . . , sn such that ¬∃s′. sn−→s′.
We write π ☎ π′ if the path π′ is a suffix of the path π, and π ✄ π′ if π ☎ π′ and π 6= π′.

Temporal properties of states in S are defined using CTL
∗
−X

formulas.

Definition 2.1. The classes Φ of CTL∗−X
state formulas and Ψ of CTL∗−X

path formulas are
generated by the following grammar:

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃ψ ψ ::= ϕ | ¬ψ |
∧

Ψ′ | ψ U ψ

with p ∈ AP, ϕ ∈ Φ, Φ′ ⊆ Φ, ψ ∈ Ψ and Ψ′ ⊆ Ψ.

In case the cardinality of the set of states of our Kripke structure is less than some infinite
cardinal κ,2 we may require that |Φ′| < κ and |Ψ′| < κ in conjunctions, thus obtaining a set
of formulas rather than a proper class. Normally, S is required to be finite, and accordingly
CTL

∗
−X

admits finite conjunctions only.

2In fact it suffices to require that for every state s the cardinality of the set of states reachable from s is
less than κ.
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Figure 1: Difference between a) ≈dbs and b) ≈s.

Definition 2.2. We define when a CTL
∗
−X

state formula ϕ is valid in a state s (notation:
s |= ϕ) and when a CTL

∗
−X path formula ψ is valid on a maximal path π (notation: π |= ψ)

by simultaneous induction as follows:

− s |= p iff p ∈ L(s);
− s |= ¬ϕ iff s 6|= ϕ;
− s |=

∧

Φ′ iff s |= ϕ for all ϕ ∈ Φ′;
− s |= ∃ψ iff there exists a maximal path π from s such that π |= ψ;
− π |= ϕ iff s is the first state of π and s |= ϕ;
− π |= ¬ψ iff π 6|= ψ;
− π |=

∧

Ψ′ iff π |= ψ for all ψ ∈ Ψ′; and
− π |= ψ U ψ′ iff there exists a suffix π′ of π such that π′ |= ψ′, and π′′ |= ψ for all
π ☎ π′′ ✄ π′.

A formula ψ U ψ′ says that, along a given path, ψ holds until ψ′ holds. One writes ⊤ for
the empty conjunction (which is always valid), Fψ for ⊤Uψ (“ψ will hold eventually”) and
Gψ for ¬F¬ψ (“ψ holds always (along a path)”).

The above is the standard interpretation of CTL∗−X
[7, 3], but extended to Kripke structures

that are not required to be total. Following [5], this is achieved by using maximal paths in
the definition of validity of CTL∗−X

formulas, instead of the traditional use of infinite paths
[7, 3]. The resulting definition generalises the traditional one, because for total Kripke
structures a path is maximal iff it is infinite.

An equivalent way of thinking of this generalisation of CTL
∗
−X

to non-total Kripke
structures is by means of a transformation that makes a Kripke structure K total by the
addition of a self-loop s−→ s to every deadlock state s, together with the convention that a
formula is valid in a state of K iff it is valid in the same state of the total Kripke structure
obtained by this transformation. It is not hard to check that this yields the same notion of
validity as our Definition 2.2.

The divergence blind interpretation of [5] (notation: s |=
db
ϕ and π |=

db
ψ) is obtained

by dropping the word “maximal” in the fourth clause of Definition 2.2. In contrast, we
call the the standard interpretation divergence sensitive, because it does not abstract from
divergences, i.e., infinite paths consisting of states with the same label. For instance, in
Figure 1a we have t |= ∃Gp, due to the divergence t, t, t, . . . , whereas u 6|= ∃Gp. Under the
divergence blind interpretation there is no formula distinguishing these two states.

Definition 2.3. A colouring is a function C : S → C, for C any set of colours.
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Given a colouring C and a (finite or infinite) path π = s0, s1, s2, . . . from s, let C(π) be
the sequence of colours obtained from C(s0), C(s1), C(s2), . . . by contracting all its (finite or
infinite) maximal consecutive subsequences C,C,C, . . . to C. The sequence C(π) is called
a C-coloured trace of s; it is complete if π is maximal.

A colouring C is [fully] consistent if two states of the same colour always satisfy the
same atomic propositions and have the same [complete] C-coloured traces. Two states s and
t are divergence blind stuttering equivalent, notation s ≈dbs t, if there exists a consistent
colouring C such that C(s) = C(t). They are (divergence sensitive) stuttering equivalent,
notation s ≈s t, if there exists a fully consistent colouring C such that C(s) = C(t). The
difference between ≈dbs and ≈s is illustrated in the following example.

Example 2.4. Consider the Kripke structure and its colouring depicted in Figure 1a. This
colouring is consistent, implying s ≈dbs t ≈dbs u and x ≈dbs y, but it is not fully consistent
because state t has a complete trace while u does not. Note that t has, due to the
self-loop, a complete coloured trace that consists of just the colour of a p-labelled state,
whereas the unique complete coloured trace of u contains the colour of a q-labelled state
too. Since a consistent colouring assigns different colours to states with different labels,
every fully consistent colouring must assign different colours to states t and u, i.e. it must
be that t 6≈s u. One such colouring is given in Figure 1b. This colouring shows that x ≈s y.

Lemma 2.5. Let C be a colouring such that two states with the same colour satisfy the
same atomic propositions and have the same C-coloured traces of length two. Then C is
consistent.

Proof. Suppose C(s0) = C(t0) and C0, C1, C2, . . . is an infinite coloured trace of s0. Then,
for i > 0, there are states si and finite paths πi from si−1 to si, such that C(πi) = Ci−1, Ci.
With induction on i > 0 we find states ti with C(si) = C(ti) and finite paths ρi from ti−1

to ti such that C(ρi) = Ci−1, Ci. Namely, the assumption about C allows us to find ρi given
ti−1, and then ti is defined as the last state of ρi. Concatenating all the paths ρi yields an
infinite path ρ from t0 with C(ρ) = C0, C1, C2, . . . .

The case that C(s0) = C(t0) and C0, . . . , Cn is a finite coloured trace of s0 goes likewise.

Lemma 2.6. Let C be a colouring such that two states with the same colour satisfy the
same atomic propositions and have the same C-coloured traces of length two, and the same
complete C-coloured traces of length one. Then C is fully consistent.

Proof. Suppose C(s) = C(t) and σ is a complete C-coloured trace of s. Then σ = C(π) for
a maximal path π from s. By Lemma 2.5, σ is also a C-coloured trace of t. It remains to
show that it is a complete C-coloured trace of t. Let ρ be a path from t with C(ρ) = σ. If ρ
is infinite, we are done. Otherwise, let t′ be the last state of ρ. Then C(t′) is the last colour
of σ. Therefore, there is a state s′ on π such that the suffix π′ of π starting from s′ is a
maximal path with C(π′) = C(s′) = C(t′). By the assumption about C, C(t′) must also be a
complete C-coloured trace of t′, i.e. there is a maximal path ρ′ from t′ with C(ρ′) = C(t′).
Concatenating ρ and ρ′ yields a maximal path ρ′′ from t with C(ρ′′) = σ.

The following two theorems were proved in [5] and [3], respectively, for states s and t in a
finite Kripke structure. Here we drop the finiteness restriction.

Theorem 2.7. s ≈dbs t iff s |=db ϕ ⇔ t |=db ϕ for all CTL∗−X
state formulas ϕ.
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Proof. “Only if”: Let C be a consistent colouring. With structural induction on ϕ and ψ
we show that

C(s) = C(t) ⇒ (s |=db ϕ ⇔ t |=db ϕ) and C(π) = C(ρ) ⇒ (π |=db ψ ⇔ ρ |=db ψ).

The case ϕ = p for p ∈ AP follows immediately from Definition 2.3. The cases ϕ = ¬ϕ′

and ϕ =
∧

Φ′ follow immediately from the induction hypothesis.
Suppose C(s) = C(t) and s |=db ∃ψ. Then there exists a path π from s such that π |=db ψ.

C(π) is a coloured trace of s, and hence of t. Thus there must be a path ρ from t with
C(π) = C(ρ). By induction, ρ |=db ψ. Hence, t |=db ∃ψ.

The case ψ ∈ Φ follows since the first states of two paths with the same colour also have
the same colour. The cases ψ = ¬ψ′ and ψ =

∧

Ψ′ follow immediately from the induction
hypothesis.

Finally, suppose C(π) = C(ρ) and π |=db ψ U ψ′. Then there exists a suffix π′ of π such
that π′ |=

db
ψ′ and π′′ |=

db
ψ for all π ☎ π′′ ✄ π′. As C(π) = C(ρ), there must be a suffix

ρ′ of ρ such that C(π′) = C(ρ′) and for every path ρ′′ such that ρ ☎ ρ′′ ✄ ρ′ there exists a
path π′′ with π ☎ π′′ ✄ π′ such that C(π′′) = C(ρ′′). By induction, this implies ρ′ |=

db
ψ′

and ρ′′ |=
db
ψ for all ρ ☎ ρ′′ ✄ ρ′. Hence ρ |=db ψ U ψ′.

“If”: Let C be the colouring given by C(s) = {ϕ ∈ Φ | s |=
db
ϕ}. It suffices to show

that C is consistent. So suppose C(s) = C(t). Trivially, s and t satisfy the same atomic
propositions. By Lemma 2.5 it remains to show that s and t have the same coloured traces
of length two. Suppose s has a coloured trace C,D. Let s0, . . . , sk be a path from s such
that C(si) = C for 0 ≤ i < k and C(sk) = D 6= C. Let

U = {u | there is a path from t to u and C(u) 6= C},
V = {v | there is a path from t to v and C(v) 6= D}.

For every u ∈ U pick a CTL
∗
−X

formula ϕu ∈ C − C(u) (using negation on a formula in
C(u) − C if needed), and for every v ∈ V pick a CTL

∗
−X

formula ϕ′
v ∈ D − C(v). Now

s |=db ∃(
∧

u∈U ϕu) U (
∧

v∈V ϕ
′
v) and, as C(s) = C(t), also t |=db ∃(

∧

u∈U ϕu) U (
∧

v∈V ϕ
′
v).

Thus, there is a path t0, . . . , tℓ from t such that tℓ |=db

∧

v∈V ϕ
′
v and tj |=db

∧

u∈U ϕu for
0 ≤ j < ℓ. It follows that tℓ 6∈ V and tj 6∈ U for 0 ≤ j < ℓ. Hence C(tℓ) = D and C(tj) = C
for 0 ≤ j < ℓ, so C,D is also a coloured trace of t.

Theorem 2.8. s ≈s t iff s |= ϕ ⇔ t |= ϕ for all CTL∗−X
state formulas ϕ.

Proof. “Only if” goes exactly as in the previous proof, reading |= for |=
db
, but requiring C

to be fully consistent and, in the second paragraph, the paths π and ρ to be maximal and
C(π) to be a complete coloured trace of s and t.

“If” goes as in the previous proof, but this time we have to show that C is fully consis-
tent. Thus, applying Lemma 2.6, and assuming C(s) = C(t), we additionally have to show
that s and t have the same complete coloured traces of length one. Let π be a maximal
path from s with C(π) = C. Let

U = {u | there is a path from t to u and C(u) 6= C}.

For every u ∈ U pick a CTL
∗
−X

formula ϕu ∈ C − C(u). Now s |= ∃G(
∧

u∈U ϕu) and, as
C(s) = C(t), also t |= ∃G(

∧

u∈U ϕu). Thus, there is a maximal path ρ from t such that
t′ |=

∧

u∈U ϕu for all states t′ in ρ. It follows that t′ 6∈ U . Hence C(t′) = C and thus
C(ρ) = C.
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Since ⇔ is an equivalence relation on predicates, we obtain the following corollary to The-
orems 2.7 and 2.8.

Corollary 2.9. ≈dbs and ≈s are equivalence relations.

Note that, for any colouring C, the C-coloured traces of a state s are completely determined
by the complete C-coloured traces of s, namely as their prefixes. Hence, any colouring
that is fully consistent is certainly consistent, and thus ≈s is a finer (i.e. smaller, more
discriminating) equivalence relation than ≈dbs .

Above, the divergence blind interpretation of CTL∗−X
is defined by using paths instead

of maximal paths. It can equivalently be defined in terms of a transformation on Kripke
structures, namely the addition of a self-loop s−→ s for every state s.3 Now s ≈dbs t holds
in a certain Kripke structure iff s ≈s t holds in the Kripke structure obtained by adding
all these self-loops. This is because the colour of a path doesn’t change when self-loops are
added to it, and up to self-loops any path is maximal. Likewise, s |=db ϕ in the original
Kripke structure iff s |= ϕ in the modified one.

Just like ≈dbs can be expressed in terms of ≈s by means of a transformation on Kripke
structures, by means of a different transformation, at least for finite Kripke structures, ≈s

can be expressed in terms of ≈dbs . This is done in [5], Definitions 3.2.6 and 3.2.7.

3. Branching bisimulation equivalence in terms of coloured traces

We presuppose a set A of actions with a special element τ ∈ A. A labelled transition
system (LTS) is a structure (S,→) consisting of a set of states S and a transition relation

→ ⊆ S × A× S. For the remainder of the section we fix an LTS (S,→). We write s
a−→ s′

for (s, a, s′) ∈ →.
A path from s is an alternating sequence s0, a1, s1, a2, . . . of states and actions, ending

with a state if the sequence is finite, such that s = s0 and sk−1
ak−−→ sk for all relevant

k > 0. A maximal path is an infinite path or a finite path s0, a1, s1, a2, . . . , an, sn such that
¬∃a, s′. sn

a−→ s′. We write π ☎ π′ if the path π′ is a suffix of the path π, and π ✄ π′ if
π ☎ π′ and π 6= π′.

Definition 3.1. A colouring is a function C : S → C, for C any set of colours.
For π = s0, a1, s1, a2, . . . a path from s, let C(π) be the alternating sequence of colours

and actions obtained from C(s0), a1, C(s1), a2, . . . by contracting all finite maximal con-
secutive subsequences C, τ, C, τ, . . . , τ, C and all infinite maximal consecutive subsequences
C, τ, C, τ, . . . to C. The sequence C(π) is called a C-coloured trace of s; it is complete if π is
maximal; it is divergent if it is finite whilst π is infinite.

A colouring C is [fully] consistent if two states of the same colour always have the
same [complete] C-coloured traces. Two states s and t are (divergence blind) branching
bisimulation equivalent, notation s ↔b t, if there exists a consistent colouring C such that
C(s) = C(t).

They are divergence sensitive branching bisimulation equivalent, notation s ↔λ
b t, if

there exists a fully consistent colouring C such that C(s) = C(t).

3 In the beginning of this section we proposed a transformation that adds a self-loop s −−→ s merely
to every deadlock state s. Both transformations make any Kripke structure total. However, whereas the
previous transformation preserves the divergence sensitive interpretation of CTL∗

−X, the current one preserves

the divergence blind interpretation, and expresses it in terms of the divergence sensitive one.
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A consistent colouring preserves divergence if two states of the same colour always
have the same divergent C-coloured traces. Two states s and t are branching bisimulation
equivalent with explicit divergence, notation s↔∆

b t, if there exists a consistent, divergence
preserving colouring C with C(s) = C(t).
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Figure 2: Difference between a) ↔b, b) ↔
λ
b , and c) ↔∆

b .

The difference between ↔b, ↔
λ
b , and ↔∆

b is illustrated in the following example.

Example 3.2. Consider first the LTS and its colouring depicted in Figure 2a. This colour-
ing is consistent and we have s↔b t↔b u↔b v and x↔b y ↔b z. It is not fully consistent
because state t has a complete trace whereas u has not. It is easy to see that every fully

consistent colouring must assign different colours to states t and u, and so that t 6↔λ
b u.

One such colouring is given in Figure 2b and it shows that u↔λ
b v and x↔λ

b y ↔λ
b z. Note,

however, that this colouring, although fully consistent, does not preserve divergence. State
v has a divergent trace a whereas u has not, and similarly state z has a divergent

trace whereas y has not. Any colouring that preserves divergence must assign different

colours to states u and v and to states y and z, meaning that u 6↔∆
b v and y 6↔∆

b z. One

such colouring is given in Figure 2c. It shows that x↔∆
b y. In fact, these are the only two

(different) states that are branching bisimulation equivalent with explicit divergence.

In the definition of ↔∆
b above, consistency and preservation of divergence appear as two

separate properties of colourings. Instead we could have integrated them by adding an extra
bit (∆) at the end of those finite coloured traces that stem from infinite paths. Likewise,
↔λ
b could have been defined by adding such an extra bit at the end of those finite coloured

traces that stem from maximal paths.
Lemmas 2.5 and 2.6 about colourings on Kripke structures apply to labelled transition

systems as well. The proofs are essentially the same.

Lemma 3.3. Let C be a colouring such that two states with the same colour have the same
C-coloured traces of length three (i.e. colour - action - colour). Then C is consistent.

Lemma 3.4. Let C be a consistent colouring such that two states with the same colour have
the same complete C-coloured traces of length one. Then C is fully consistent.

Lemma 3.5. Let C be a consistent colouring such that two states with the same colour have
the same divergent C-coloured traces of length one. Then C preserves divergence.

Proof. Exactly like the proof of Lemma 2.6, but letting σ be a divergent C-coloured trace
of s; π, π′ infinite paths; C(t′) a divergent C-coloured trace of t′; and ρ′, ρ′′ infinite paths.
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Branching bisimulation equivalence and branching bisimulation equivalence with explicit
divergence were originally defined in Van Glabbeek & Weijland [10]. There, only finite
coloured traces are considered, and a consistent colouring was defined as a colouring with
the property that two states have the same colour only if they have the same finite coloured
traces. By Lemma 3.3 this yields the same concept of consistent colouring as Definition 3.1
above.

In [10], a consistent colouring is said to preserve divergence if no divergent state has the
same colour as a nondivergent state. Here a state s is divergent if it is the starting point of
an infinite path of which all nodes have the same colour. This is the case if s has a divergent
coloured trace of length one. Now Lemma 3.5 says that the definition of preservation of
divergence from [10] agrees with the one proposed above. Hence the concepts of branching
bisimulation and branching bisimulation with explicit divergence of [10] agree with ours.

Theorem 3.6. ↔b, ↔
λ
b and ↔∆

b are equivalence relations.

Proof. We show the proof for ↔b; the other two cases proceed likewise.
We will regard any equivalence relation on S as a colouring, the colour of a state being

its equivalence class. Conversely, any colouring can be considered as an equivalence relation
on states.

The diagonal on S (i.e., the binary relation {(s, s) | s ∈ S}) is a consistent colouring,
so ↔b is reflexive. That ↔b is symmetric is immediate from the required symmetry of
colourings.

To prove that ↔b is transitive, suppose s ↔b t and t ↔b u. So there exist consistent
colourings C and D with C(s) = C(t) and D(t) = D(u). Let E be the finest equivalence
relation containing C and D. Then E(s) = E(t) = E(u). It suffices to show that E is
consistent.

First of all note that the E-colour of a state is completely determined by its C-colour,
as well as by its D-colour: C(p) = C(q) ⇒ E(p) = E(q) and D(p) = D(q) ⇒ E(p) = E(q) for
all p, q ∈ S. Thus, if two states have the same sets of C-coloured traces or the same sets of
D-coloured traces, they must also have the same sets of E-coloured traces.

Suppose E(p) = E(q). Then there must be a sequence of states (pi)0≤i≤n such that
p = p0, q = pn and for 0 ≤ i < n we have either C(pi) = C(pi+1) or D(pi) = D(pi+1). As C
and D are consistent colourings, pi and pi+1 have the same C-coloured traces or the same
D-coloured traces. In either case they also have the same E-coloured traces. This holds for
0 ≤ i < n, so p and q have the same E-coloured traces. Thus E is consistent.

Lemma 3.7. Let C be a consistent colouring and s ∈ S. Then the complete C-coloured
traces of s consist of the C-coloured traces of s that are infinite, divergent, or maximal, in
the sense that they cannot be extended.

Proof. By definition, infinite and divergent C-coloured traces of s are complete. Let σ be a
maximal C-coloured trace of s, and let π be a path from s such that C(π) = σ. Let π′ be
an extension of π to a maximal path. As σ is a maximal C-coloured trace, in the sense that
it cannot be extended, we have C(π′) = σ. Hence σ is a complete C-coloured trace of s.

Now let σ be a complete C-coloured trace of s that is not infinite, nor a divergent
C-coloured trace of s. In that case σ = C(π) for π a finite maximal path from s. Let t

be the last state of π. We have ¬∃a, t′. t a−→ t′. Suppose, towards a contradiction, that σ
is not maximal, i.e. there is a path π′ from s such that C(π′) is a proper extension of σ.
Then there must be a state u on π′ with C(u) = C(t), such that u has a coloured trace σ′
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of length > 1, which is a suffix of C(π′). As C is consistent, σ′ is also a coloured trace of t,

contradicting ¬∃a, t′. t a−→ t′.

As for Kripke structures, for any colouring C, the C-coloured traces of a state s are the
prefixes of the complete C-coloured traces of s. Moreover, Lemma 3.7 says that the complete
C-coloured traces of a state s are completely determined by the C-coloured traces of s
together with the divergent C-coloured traces of s. Hence, any colouring that is consistent
and preserves divergence is also fully consistent. Therefore, ↔∆

b is finer than ↔λ
b , which is

finer than ↔b.
The difference between ↔λ

b and ↔∆
b is that only the latter sees the difference between

those maximal finite coloured traces that stem from finite paths (ending in deadlock) and
those that stem from infinite paths (ending in livelock). For deadlock-free LTSs (having no

states s with ¬∃a, s′. s a−→ s′) the equivalences ↔λ
b and ↔∆

b coincide.

4. Translating between Kripke structures and labelled transition systems

We presuppose a set A of actions with a special element τ ∈ A, and a set AP of atomic
propositions. A doubly labelled transition system (L2TS) is a structure (S,L,→) that consists
of a set of states S, a labelling function L : S → 2AP and a labelled transition relation
→ ⊆ S × A × S. From an L2TS one naturally obtains an LTS by omitting the labelling
function L, and a Kripke structure by replacing the labelled transition relation by one from
which the labels are omitted. We call these the LTS or Kripke structure associated to the
L2TS. An L2TS (S,L,→) is consistent if it satisfies the following three conditions:

(i) if s a−→ t, then (L(s) = L(t) iff a = τ);

(ii) if s
a−→ t, s′

a−→ t′ and L(s) = L(s′), then L(t) = L(t′); and

(iii) if s a−→ t, s′ b−→ t′, L(s) = L(s′) and L(t) = L(t′), then a = b.

Consistent L2TSs were introduced in De Nicola & Vaandrager [5] for studying relationships
between notions defined for Kripke structures and notions defined for LTSs. Condition (i)
states that a transition is unobservable in the underlying Kripke structure (i.e., a transition
between states with the same label) if and only if it is an unobservable transition in the
underlying labelled transition system (i.e., a τ -transition). Condition (ii) expresses that
the label of the target state of a transition is completely determined by the label of the
source state and the label of the transition. Consequently, the label of a state t reachable
from a state s is completely determined by the label of s and the sequence of labels of the
transitions leading from s to t. Condition (iii) says that the label of a transition is fully
determined by the labels of its source and target state.

Example 4.1. The three L2TSs from Figure 3a are not consistent because they violate
conditions (i), (ii), and (iii), respectively; the L2TS in Figure 3b is consistent.

Many semantic equivalences on LTSs, such as ↔b, ↔λ
b and ↔∆

b , are considered in the
literature; for an overview see [8].

Definition 4.2. Any semantic equivalence ∼ on LTSs extends to L2TSs by declaring, for
all states s and t in an L2TS, that s ∼ t iff L(s) = L(t) and s ∼ t in the associated LTS.

Any semantic equivalence ∼ on Kripke structures extends to L2TSs by declaring, for all
states s and t in an L2TS, that s ∼ t iff s ∼ t in the associated Kripke structure.
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Figure 3: a) Three inconsistent L2TSs and b) a consistent L2TS.

The following theorem was proved in [5] for finite consistent L2TSs. Here we drop the
finiteness restriction.

Theorem 4.3. On a consistent L2TS, ≈dbs equals ↔b, and ≈s equals ↔λ
b .

Proof. Suppose s ≈dbs t [or s ≈s t]. Then there is a colouring C on the states of the L2TS
that is [fully] consistent on the associated Kripke structure K and satisfies C(s) = C(t). By
definition, this entails L(s) = L(t). It remains to show that C is [fully] consistent on the
associated LTS L. So let C(p) = C(q), and let σ be a [complete] coloured trace of p in L.
Using symmetry, it suffices to show that σ is also a [complete] coloured trace of q in L. Let
ρ be obtained by omitting all actions from the alternating sequence of states and actions
σ. Using direction “only if” of clause (i) in the definition of a consistent L2TS, ρ must be
a [complete] coloured trace of p in K. As C is [fully] consistent on K, ρ must also be a
[complete] coloured trace of q in K. Finally, using clauses (i) “only if” and (iii), σ must be
a [complete] coloured trace of q in L.

Now suppose s ↔b t [or s ↔λ
b t]. Then L(s) = L(t) and there is a colouring C on

the states of the L2TS, with C(s) = C(t), that is [fully] consistent on L. Let D be the
colouring given by D(p) := (C(p),L(p)) for all p ∈ S, so that D(p) = D(q) ⇔ [C(p) = C(q)∧
L(p) = L(q)]. It suffices to show that D is [fully] consistent on K. The requirement
D(p) = D(q) ⇒ L(p) = L(q) is built into the definition of D. So let D(p) = D(q), and let
ν be a [complete] D-coloured trace of p in K. Using symmetry, it suffices to show that ν
is also a [complete] D-coloured trace of q in K. Using clause (i) “only if”, there must be
a [complete] D-coloured trace ρ of p in L such that ν is obtained from ρ by omitting its
actions. Let σ be the [complete] C-coloured trace of s in K obtained from ρ by omitting the
second component of each D-colour of a state. As C(p) = C(q) and C is [fully] consistent on
L, σ must also be a [complete] C-coloured trace of q in L. By applying clauses (i) “if” and
(ii) one derives that ρ is a [complete] D-coloured trace of q in L. Therefore, again using
clause (i) “only if”, ν must be a [complete] D-coloured trace of q in K.

Observation 4.4. For every Kripke structure K there exists a consistent L2TS D such that
K is the Kripke structure associated to D.

One way to obtain D is to label any transition s −→ t by the pair (L(s),L(t)) (or simply
by L(t)) when L(s) 6= L(t), or τ when L(s) = L(t). An alternative is the label (L(s) −
L(t),L(t)− L(s)), where (∅, ∅) is identified with τ .

Unlike the situation for Kripke structures (Observation 4.4) it is not the case that every
LTS can be obtained as the LTS associated to a consistent L2TS. A simple counterexample
is presented in [5]. Thus, in encoding LTSs as L2TSs, it is in general not possible to keep
the set of states the same.

Definition 4.5. An LTS-to-L2TS transformation η consist of a function taking any LTS L to
a consistent L2TS η(L), and in addition taking any state s in L to a state η(s) in η(L). Such
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a transformation should at least satisfy s↔λ
b t ⇔ η(s) ↔λ

b η(t), that is, it preserves (“⇒”)
and reflects (“⇐”) divergence sensitive branching bisimulation equivalence, and likewise for
↔b, and ↔∆

b .

A common LTS-to-L2TS transformation is presented in [5]. It takes an LTS L = (S,→) to

an L2TS η(L) by inserting a new state halfway along any transition s
a−→ t with a 6= τ . This

new state is labelled {a}, and each of the two transitions replacing s a−→ t (from s to the

new state and from there to t) is labelled a. Transitions s τ−→ t are untouched. One takes
η(s) = s for s ∈ S and all such states from L are labelled with the same dummy symbol
in η(L). (Consult [5] for the formal definition and examples.) In [5] it is shown that this
transformation preserves and reflects ↔λ

b ; the same proof applies to ↔b and ↔∆
b .

An LTS-to-L2TS transformation η yields an LTS-to-Kripke-structure transformation
that we also call η, namely the one transforming an LTS L into the Kripke structure
associated to η(L). In fact, using Theorem 4.3 and Observation 4.4, any LTS-to-Kripke-
structure transformation η that preserves and reflects the required equivalences can be
obtained in this way.

An LTS-to-L2TS transformation η makes it possible to define when a state s in an LTS
satisfies a CTL

∗
−X

formula ϕ. Namely, one defines s |=η ϕ iff η(s) |= ϕ. This way, CTL∗−X

can be used as temporal logic on LTSs.

Theorem 4.6. Let s and t be states in an LTS, and let η be an LTS-to-L2TS transformation.
Then

s↔b t iff s |=η
db
ϕ ⇔ t |=η

db
ϕ for all CTL∗−X state formulas ϕ

s↔λ
b t iff s |=η ϕ ⇔ t |=η ϕ for all CTL∗−X state formulas ϕ.

Proof. This is an immediate consequence of the requirement that η preserves and reflects
↔b and ↔λ

b , in combination with Theorems 2.7, 2.8 and 4.3.

5. Parallel composition

For a behavioural equivalence to be useful in a process algebraic setting, it is essential that
it is a congruence for the operations under consideration. In this section we prove that ↔∆

b

and↔b are congruences for the merge or interleaving operator ‖. This operator is often used
to represent (asynchronous) parallel composition. However, ↔λ

b fails to be a congruence for
‖. We characterise the least discriminating congruence that makes all the distinctions of
↔λ
b as ↔∆

b . In the following definition we provide the necessary and sufficient conditions
for a binary operation on the set of states of an LTS to qualify as a merge.

Definition 5.1. A binary operation ‖ on the states of an LTS is a merge if for all s, t, u ∈ S

and for all a ∈ A it holds that s ‖ t a−→ u iff

− there exists s′ ∈ S such that s
a−→ s′ and u = s′ ‖ t; or

− there exists t′ ∈ S such that t a−→ t′ and u = s ‖ t′.

The structural operational semantics of any process calculus that includes an operation for
pure interleaving generates an LTS with merge. Moreover, any LTS can be augmented to
an LTS with merge, for instance through a transition system specification [1] that includes
all states of the original LTS as constants and a binary operation ‖ with the usual structural
operational rules for interleaving parallel composition. Henceforth we deal with LTSs with
a merge ‖.
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Figure 4: ↔λ
b is not a congruence for parallel composition

Theorem 5.2. The relation ↔∆
b is a congruence for ‖, i.e., if s ↔∆

b t and u ↔∆
b v, then

s ‖ u ↔∆
b t ‖ v.

Proof. Let R be the reflexive and transitive closure of the relation

{(p‖q, p′‖q′) | p↔∆
b p′ & q ↔∆

b q′} .

Let C be the function that assigns to each state its equivalence class with respect to R.
It suffices to prove that C is a consistent divergence preserving colouring. So suppose
C(r) = C(r′). Using Lemmas 3.3 and 3.5 it suffices to show that r and r′ have the same
C-coloured traces of length three and the same divergent C-coloured traces of length one. It
is straightforward, but notationally cumbersome, to establish this in the special case that
r = p ‖ q and r′ = p′ ‖ q′ with p ↔∆

b p′ and q ↔∆
b q′. The general case then follows by

induction on the length of a chain of pairs from the relation displayed above showing that
the pair (r, r′) is in its reflexive and transitive closure.

A similar proof shows that also ↔b is a congruence for ‖. However, ↔λ
b is not.

Example 5.3. Consider an LTS with merge that contains a state 0 without outgoing
transitions, a state ∆0 with a τ -loop (an outgoing τ -labelled transition to itself) and no

other outgoing transitions, and a state a with a
a−→ 0 and no other outgoing transitions.

(Note that such an LTS is, e.g., generated by the structural operational semantics of CCS
with recursion.) Then 0 ↔λ

b ∆0. Figure 4a shows the fragment consisting of the states 0,
∆0 and a of the LTS under consideration. Figure 4b shows a fragment where the merge is
applied. Observe that 0 ‖ a 6↔λ

b ∆0 ‖ a. The reason is that ∆0 ‖ a has a maximal path that
stays in its initial state, whereas 0 ‖ a has not. This problem does not apply to ↔b because
0 ‖ a↔b ∆0 ‖ a. It does not apply to ↔∆

b because 0 6↔∆
b ∆0.

The example above involves a deadlock state, namely 0. This is unavoidable, as on LTSs
without deadlock ↔λ

b coincides with ↔∆
b (cf. Section 3) and hence is a congruence for ‖.

The standard solution to the problem of an equivalence ∼ failing to be a congruence for
a desirable operator Op is to replace it by the coarsest congruence for Op that is included
in ∼ [13]. Applying this technique to the current situation, the coarsest congruence for ‖
included in ↔λ

b turns out to be ↔∆
b .

Theorem 5.4. ↔∆
b is the coarsest congruence for ‖ that is included in ↔λ

b .
4

4Strictly speaking, we merely show that ↔∆

b is the coarsest congruence for ‖ that is included in ↔λ
b

and satisfies the Fresh Atom Principle (FAP). This principle, described in [9], is satisfied by a semantic
equivalence ∼ on LTSs when ∼ on an LTS L can always be obtained as the restriction of ∼ on any given
larger LTS of which L is a subLTS, and whose transition labels may be drawn from a larger set of actions
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Proof. We have already seen that ↔∆
b is a congruence for ‖, and that it is included in ↔λ

b .
To show that it is the coarsest, we need to show that if ∼ is any congruence for ‖ that
is included in ↔λ

b , then ∼ is included in ↔∆
b . So let ∼ be such a congruence and assume

s ∼ t. We need to show that s ↔∆
b t. Let a be an action that does not occur in any path

from s or t. Since ∼ is a congruence for ‖, we have s ‖ a ∼ t ‖ a, where a is the state from
Example 5.3. As ∼ is included in ↔λ

b we obtain s ‖ a↔λ
b t ‖ a. Let C be a fully consistent

colouring with C(s‖a) = C(t‖a). Define the colouring D by D(p) = C(p‖a) for p a state
reachable from s or t, and D(p) = p otherwise. Then D(s) = D(t). It suffices to show that
D is consistent and preserves divergence, implying s↔∆

b t.
So suppose D(p) = D(q) with p 6= q. Then C(p‖a) = C(q‖a).
First we show that p and q have the same D-coloured traces. Let σ be a D-coloured

trace of p. Then σ is also a C-coloured trace of p ‖ a. As p ‖ a and q ‖ a have the same
complete C-coloured traces, they surely have the same C-coloured traces (for the coloured
traces of a state are the prefixes of its complete coloured traces). Hence σ is a C-coloured
trace of q ‖ a. As p is reachable from s or t, the action a cannot occur in σ. Therefore,
σ must also be a D-coloured trace of q. By symmetry, any D-coloured trace of q is also a
D-coloured trace of p, and hence p and q have the same D-coloured traces.

Next, we show that p and q have the same divergent D-coloured traces. So let σ be a
divergent D-coloured trace of p. Then σ is also a divergent C-coloured trace of p ‖ a. Hence
σ is a complete C-coloured trace of p‖a and thus also of q ‖a. As the action a cannot occur
in σ, it is not possible that σ stems from a finite maximal path from q ‖ a. Therefore, σ
must be a divergent C-coloured trace of q ‖ a, and hence a divergent D-coloured trace of q.
Again invoking symmetry, p and q have the same divergent D-coloured traces.

It follows that D is consistent and preserves divergence; thus s↔∆
b t.

So if one is in search of a semantics such that, for s and t states in an LTS,
− if there is a CTL

∗
−X

state formula ϕ such that s |=η ϕ but t 6|=η ϕ, then s and t should
be distinguished,

− if s and t can be distinguished after placing them in a context ‖ u for some u, then
they should be distinguished to start with, and

− no two states should be distinguished unless this is required by the previous two condi-
tions,

then branching bisimulation semantics with explicit divergence is the answer, for s↔∆
b t iff

for all u and all ϕ ∈ Φ we have s ‖ u |=η ϕ ⇔ t ‖ u |=η ϕ.

6. Adding deadlock detection to CTL
∗
−X

We saw above that there are important properties of states s in an LTS that can be expressed
in terms of a context ‖ u and a CTL

∗
−X

formula ϕ, namely as s‖u |=η ϕ, but that cannot
be directly expressed in terms of CTL∗−X

. This is somewhat unsatisfactory, and therefore
we propose an extension of CTL∗−X

in which this type of property can be expressed directly.
We add a path modality ∞ that is valid on a path π iff π is infinite. This path modality,

than those of L. FAP allows us to use the state a that figures in the proof of Theorem 5.4, regardless of
whether such a state, or the fresh action a, occurs in the given LTS or not. FAP is satisfied by virtually
all semantic equivalences documented in the literature, and can be used as a sanity check for meaningful
equivalences [9].
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or actually an equally expressive one, was studied prior by Kaivola & Valmari [11] in the
context of Linear Temporal Logic without the next state operator—see Section 9.

Definition 6.1. The syntax of CTL∗∞ is given by

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃ψ ψ ::= ϕ | ¬ψ |
∧

Ψ′ | ψ U ψ | ∞

with p ∈ AP, ϕ ∈ Φ, Φ′ ⊆ Φ, ψ ∈ Ψ and Ψ′ ⊆ Ψ.
Validity is defined as in Definition 2.2, but adding the clause

− π |= ∞ iff the path π is infinite.

We write ∃∞ψ for ∃(∞∧ ψ); this formula holds in a state s if there exists an infinite path
π from s such that π |= ψ. Likewise ∀∞ψ = ∀(∞ → ψ) holds in s if for all infinite paths
π from s we have that s |= ψ. These constructs are dual, in the sense that s |= ¬∃∞ψ iff
s |= ∀∞¬ψ.

The negation of ∞ holds for a maximal path π iff π is finite, and hence ends in a
deadlock. It is tempting to simply extend CTL

∗
−X

with a state formula δ such that s |= δ iff
¬∃s′. s−→ s′. This would make it possible to express ∞ as ¬Fδ. However, this would make
the resulting logic too expressive: the two states in the Kripke structure ◦ −→ ◦ (with the
empty labelling) are branching bisimulation equivalent with explicit divergence, yet they
would be distinguished by this extension of CTL∗−X

, as only the last state satisfies δ.
CTL

∗
∞ is an extension of CTL∗−X

. There is no need for a similar extension of CTL∗, for
δ can be expressed as ¬∃X⊤. In particular, CTL∗∞ is not more expressive than CTL

∗.
The definition of branching bisimulation equivalence with explicit divergence lifts easily

to Kripke structures: s ↔∆
b t, for s and t states in a Kripke structure, iff there exists a

consistent and divergence preserving colouring C such that C(s) = C(t). Here divergence
preserving is defined as in Section 3; by Lemma 3.5, this time applied to Kripke structures,
a consistent colouring preserves divergence iff, for any states s and t, C(s) = C(t) implies

for any infinite path π from s with C(π) = C(s)
there is an infinite path ρ from t with C(ρ) = C(t).

Theorem 6.2. s↔∆
b t iff s |= ϕ ⇔ t |= ϕ for all CTL∗∞ state formulas ϕ.

Proof. “Only if” goes as in the proof of Theorem 2.7, reading |= for |=
db
, requiring C to be

consistent and divergence preserving, and, in the second paragraph, requiring the paths π
and ρ to be maximal and C(π) to be a complete coloured trace of s and t. Here we use that
if a colouring is consistent and divergence preserving, then two states with the same colour
must also have the same complete coloured traces. This follows from Lemma 3.7, this time
applied to Kripke structures.

There is one extra case to check. Suppose C(π) = C(ρ) and π |= ∞, but ρ 6|= ∞. Then
the last state t of ρ has the same colour C(t) as one of the states s of π. Let π′ be the
(infinite) suffix of π starting at s. Then C(π′) = C(s) = C(t), yet there is no infinite path
from t, contradicting that C is divergence preserving.

“If” goes as in the proof of Theorem 2.7, but this time we also have to show that C
preserves divergence. So let s and t be states and π an infinite path from s with C(π) =
C(s) = C(t) = C. Let

U = {u | there is a path from t to u and C(u) 6= C}.



CTL WITH DEADLOCK DETECTION 17

For every u ∈ U pick a CTL
∗
∞ formula ϕu ∈ C − C(u). Now s |= ∃∞G(

∧

u∈U ϕu) and, as
C(s) = C(t), also t |= ∃∞G(

∧

u∈U ϕu). Thus, there is an infinite path ρ from t such that
t′ |=

∧

u∈U ϕu for all states t′ in ρ. It follows that t′ 6∈ U . Hence C(t′) = C and thus
C(ρ) = C.

7. Adding deadlock detection to CTL−X

CTL−X is the sublogic of CTL∗−X
that only allows path formulas of the form ϕ U ϕ′ and

¬(ϕ U ϕ′), where ϕ and ϕ′ are state formulas. Equivalently, it can be defined as only
allowing path formulas of the form ϕ U ϕ′ and Gϕ, for we have

s |= ∃Gϕ iff s |= ∃¬(⊤ U ¬ϕ)

s |= ∃¬(ϕ U ϕ′) iff s |= ∃[(¬ϕ′) U ¬(ϕ ∨ ϕ′)] ∨ ∃G¬ϕ′ .

Theorems 2.7 and 2.8 are also valid when using CTL−X instead of CTL∗−X
, for their proofs

use no other temporal constructs than ∃(ϕ U ϕ′) and ∃Gϕ.
A natural proposal for CTL∞ would be to add the path quantifier ∃∞ to CTL−X, thus

yielding the syntax

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃(ϕ U ϕ) | ∃∞(ϕ U ϕ) | ∃Gϕ | ∃∞Gϕ .

However, we can economise on that, for

s |= ∃∞(ϕ U ϕ′) iff s |= ∃(ϕ U (ϕ′ ∧ ∃∞G⊤))

s |= ∃Gϕ iff s |= ∃∞Gϕ ∨ ∃(ϕ U (∀Gϕ))

where ∀Gϕ is an abbreviation for ¬∃(⊤ U ¬ϕ). Hence CTL∞ can be given by the syntax

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃(ϕ U ϕ) | ∃∞Gϕ .

It follows immediately from the proof of Theorem 6.2 that this language is sufficiently
expressive to characterise branching bisimulation equivalence with explicit divergence:

Theorem 7.1. s↔∆
b t iff s |= ϕ ⇔ t |= ϕ for all CTL∞ formulas ϕ.

It is tempting to simply write ∃∞G as ∃G; that is, to keep the same syntax as for CTL−X but
define its semantics in such a way that ∃(ϕUϕ′) asks merely for a finite path, whereas ∃Gϕ
asks for an infinite one. This deadlock sensitive interpretation of CTL−X is an alternative
for the interpretation of [5]. It is consistent with the classical interpretation of CTL [7, 3],
as for total Kripke structures there is no difference between ∃∞ and ∃.

8. The deadlock extension of Kripke structures

Following De Nicola & Vaandrager [5] we have applied CTL
∗
−X

to non-total Kripke structures
by using maximal instead of infinite paths in the definition of validity. As remarked in
Section 2, the same effect can be obtained by transforming a non-total Kripke structure
into a total one by adding a self-loop s −→ s to every deadlock state s, and applying the
standard CTL

∗
−X

semantics to the resulting total Kripke structure. However, the latter does
not apply to CTL

∗
∞, because the self-loop s −→ s invalidates the formula ∃¬∞ that holds

in any deadlock state s. Here we define another transformation on Kripke structures that
makes every Kripke structure total, and allows the encoding of CTL∗∞ in terms of CTL∗−X

.
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K :
p��

��

// q

r

D(K) :
p��

��

// q

��
r // sδ

δ
TT

Figure 5: Deadlock extension of a Kripke structure

Definition 8.1. The deadlock extension D(K) of a Kripke structure K is obtained by the
addition of a fresh state sδ, labelled by the fresh atomic proposition δ, together with a
transition from sδ and from every deadlock state in K to sδ.

An example of this transformation is depicted in Figure 5.

Theorem 8.2. Let K be a Kripke structure, with states s and t. Then s ↔∆
b t within the

Kripke structure K iff s↔∆
b t within the Kripke structure D(K).

Proof. “If”: Let D be a consistent and divergence preserving colouring on D(K). Note that
D(sδ) 6= D(s) for any state s 6= sδ in D(K). Let C be the restriction of D to the states of K.
Then the C-coloured traces of a state s in K equal the D-coloured traces of s in D(K), but
with the colour D(sδ) omitted from the end of such traces. It follows that C is consistent.
It preserves divergence by Lemma 3.5.

“Only if”: Let C be a consistent and divergence preserving colouring on K. Extend it
to a colouring D on D(K) by assigning a fresh colour δ to the extra state sδ of D(K). It
suffices to check that D is consistent and divergence preserving.

Claim. From any state s in K with the same colour as a deadlock state t in K there
must be a path π to a deadlock state such that C(π) = C(t).

Proof of claim. As t has no C-coloured traces of length two, neither does s, and as t has
no divergent C-coloured traces, neither does s. Thus, all paths from s are finite and only
pass through states with colour C(t).

Application of the claim. The D-coloured traces of length two of a state s 6= sδ in D(K)
are the C-coloured traces of length two of the state s in K, together with the trace C(t)δ in
case s has the same colour as a deadlock state t in K. Thus D is consistent by Lemma 2.5,
and preserves divergence by Lemma 3.5.

The “if”-direction of the theorem, with a similar proof, also applies to ≈s and ≈dbs ,
but the “only if”-direction does not. As a counterexample, let K be a Kripke structure with
a deadlock state d (having no outgoing transitions) and a livelock state l (with a self-loop
as its only one outgoing transition); neither state satisfies any atomic propositions. In K
we have d ≈s l, and hence d ≈dbs l, but in D(K) we have d 6≈dbs l, and hence d 6≈s l.

Considering that Kripke structures of the form D(K) are total, and that on total Kripke
structures ≈s and ↔∆

b coincide, it is in fact impossible to define a transformation like D

for which Theorem 8.2 holds for both ↔∆
b and ≈s.

Now let η be an arbitrary LTS-to-L2TS-transformation, yielding an LTS-to-Kripke-
structure transformation that is also called η (see Section 4). Then D ◦ η is not a valid
LTS-to-Kripke-structure transformation as intended in [5], for it fails to preserve ↔λ

b / ≈s

and ↔b / ≈dbs (cf. Definition 4.5). Yet, it satisfies

s↔∆
b t ⇔ D ◦ η(s) ≈s D ◦ η(t)
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(because s↔∆
b t ⇔ η(s) ↔∆

b η(t) ⇔ D ◦η(s) ↔∆
b D ◦η(t) and on total Kripke structures

↔∆
b and ≈s coincide), and as such it is a suitable transformation for defining validity of

CTL
∗
−X

formula on states in LTSs. We obtain:

Corollary 8.3. Let s and t be states in an LTS, and let η be an LTS-to-L2TS transforma-
tion. Then

s↔∆
b t iff s |=D◦η ϕ ⇔ t |=D◦η ϕ for all CTL∗−X

state formulas ϕ.

Thus, one way to make CTL
∗
−X

suitable for dealing with deadlock behaviour on LTSs is to
stick to total Kripke structures and translate LTSs to Kripke structures by a translation
D ◦ η instead of a transformation η as proposed in [5]. This way branching bisimulation
equivalence with explicit divergence becomes the natural counterpart of stuttering equiva-
lence on Kripke structures, and we have the modal characterisation of Corollary 8.3.

An alternative is to stick to more natural transformations η meeting the criteria on Def-
inition 4.5, apply the definition of validity of CTL∗−X

formulas to non-total Kripke structures
as in [5], and extend CTL

∗
−X

to CTL
∗
∞ as indicated in Section 6.

Below we show that these solutions lead to equally expressive logics on LTSs.

Definition 8.4. Given a set of atomic propositions, let CTL∗δ be the logic CTL
∗
−X

extended
with an extra atomic proposition δ. The mappings D from CTL

∗
∞ to CTL

∗
δ formulas and E

from CTL
∗
δ to CTL

∗
∞ formulas are defined inductively by

D(p) = p E (p) = p
D(¬ϕ) = ¬δ ∧ ¬D(ϕ) E(¬ϕ) = ¬E(ϕ)

D(
∧

i∈I ϕi) =
∧

i∈I D(ϕi) E(
∧

i∈I ϕi) =
∧

i∈I E(ϕi)
D(∃ψ) = ∃D(ψ) E(∃ψ) = ∃E(ψ)
D(¬ψ) = ¬δ ∧ ¬D(ψ) E(¬ψ) = ¬E(ψ)

D(
∧

i∈I ψi) =
∧

i∈I D(ψi) E(
∧

i∈I ψi) =
∧

i∈I E(ψi)
D(ψ U ψ′) = D(ψ) U D(ψ′) E(ψ U ψ′) = (E(ψ) U δψ′) ∨ (E(ψ) U E(ψ′))

D(∞) = ¬Fδ E(δ) = ¬⊤.

Here δψ′ =

{

δ if sδ |= ∃ψ′

¬⊤ otherwise
, and ψ U δ abbreviates ¬∞∧ Gψ.

We remark that checking whether sδ |= ∃ψ′ is simple: just substitute ⊤ for δ and ⊥ for
all other atomic propositions in ψ′, while simplifying subformulas ψ1 Uψ2 to ψ2. The latter
is justified because the unique infinite path starting from sδ has only itself as suffix.

Theorem 8.5. Let K be a Kripke structure and s a state in K. Then for any CTL
∗
∞ state

formula ϕ we have s |= ϕ in K iff s |= D(ϕ) in D(K), and for any CTL
∗
δ state formula ϕ

we have s |= ϕ in D(K) iff s |= E(ϕ) in K.

Proof. For a state formula ϕ, let [[ϕ]]K denote the set of states s in K with s |= ϕ. Likewise,
for a path formula ψ, [[ψ]]K denotes the set of maximal paths π in K with π |= ϕ. Note
that there is a bijective correspondence between the maximal paths in K and those in D(K)
not starting in sδ. A straightforward structural induction shows that [[ϕ]]K = [[D(ϕ)]]D(K)

for any CTL
∗
∞ state formula ϕ and, up to the aforementioned bijective correspondence,

[[ψ]]K = [[D(ψ)]]D(K) for any CTL
∗
∞ path formula ψ.

For the second statement, let πδ be the unique path in D(K) starting in sδ. A straight-
forward structural induction shows that [[ϕ]]D(K) − {sδ} = [[E(ϕ)]]K for any CTL

∗
δ state

formula ϕ and, up to the above bijective correspondence, [[ψ]]D(K)−{πδ} = [[E(ψ)]]K for any
CTL

∗
δ path formula ψ.
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In CTL
∗
∞ the path modality ∞ is equally expressive as the path modality ψ U δ of Defi-

nition 8.4, saying of a path that it is finite and all its suffixes satisfy ψ. This is because
π |= ψ U δ ⇔ π |= ¬∞ ∧ Gψ and π |= ∞ ⇔ π |= ¬Fδ ⇔ π |= ¬⊤ U δ. In this
light, the encoding D of CTL∗∞ into CTL

∗
δ merely adds a conjunct ¬δ here and there. These

conjuncts are not optional; they enable, for instance, the correct translation of the CTL
∗
∞

path formula Gp by the CTL
∗
δ formula ¬δ ∧ G(δ ∨ p).

Recall that in Section 6 we considered extending CTL
∗
−X

with a state formula δ such
that s |= δ iff ¬∃s′. s −→ s′. We then argued that this would make the resulting logic too
expressive. Note that in our current proposal the atomic proposition δ only holds in the
fresh state sδ of the deadlock extension D(K) of a Kripke structure K and not in any of
the original states of K. As a consequence, in CTL

∗
∞, which does not have the next state

modality X, we can express the property that deadlock is unavoidable (when all paths from
an original state of K lead to deadlock), but we still cannot express the property of being
deadlocked (i.e., the property that holds in an original state of K iff no further transitions
are possible).

Theorem 8.6. Also the logics CTLδ and CTL∞ are equally expressive.

Proof. This follows because D can be restricted to a mapping from CTL∞ to CTLδ formula
and E to a mapping from CTL∞ to CTLδ formula. In particular,

D(∃(ϕ U ϕ′)) = ∃(D(ϕ) U D(ϕ′)) D(∃G∞ϕ) = ∃G(¬δ ∧ D(ϕ))

E(∃(ϕ U ϕ′)) =

{

∃(E(ϕ) U E(ϕ′)) ∨ ∃(E(ϕ) U (¬∃∞G⊤∧ ∃GE(ϕ))) if sδ |= ϕ′

∃(E(ϕ) U E(ϕ′)) otherwise

and

E(∃Gϕ) =

{

∃G∞
E(ϕ) if sδ |= ϕ′

∃G E(ϕ) otherwise.

9. Linear temporal logic with deadlock detection

Linear Temporal Logic [14] (LTL) is the sublogic of CTL∗ that allows propositional variables
p∈AP but no other state formulas to be used as path formulas. Path formulas are applied
to states by an implicit universal quantification: s |= ψ iff s |= ∀ψ. In this section we explore
the programme of this paper in the setting of LTL−X (LTL without the next state modality),
and compare the results with the branching time case.

First we characterise the equivalence induced on the states of a Kripke structure
(S,L,→) by validity of LTL−X formulas. We can conveniently use the notion of com-
plete coloured traces in this characterisation, observing that L is a colouring in the sense
of Definition 2.3. We write s ≈L t if the states s and t have the same complete L-coloured
traces. Now two states satisfy the same LTL−X formulas iff they have the same complete
L-coloured traces.

Theorem 9.1. s ≈L t iff s |= ψ ⇔ t |= ψ for all LTL−X formulas ψ.

Proof. “Only if”: Note that, to show that s ≈L t implies s |= ψ ⇔ t |= ψ, it suffices to
prove that if L(π) = L(ρ) then π |= ψ ⇔ ρ |= ψ. We proceed by structural induction on ψ.
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From L(π) = L(ρ) it follows that the first states of π and ρ have the same colour, and
hence if ψ = p with p ∈ AP then π |= ψ ⇔ ρ |= ψ. The cases ψ = ¬ψ′ and ψ =

∧

Ψ′ follow
immediately from the induction hypothesis.

Finally, let ψ = ψ′ U ψ′′ and suppose that π |= ψ. Then there exists a suffix π′ of π
such that π′ |= ψ′′ and π′′ |= ψ′ for all π ☎ π′′ ✄ π′. As L(π) = L(ρ), there must be a suffix
ρ′ of ρ such that L(π′) = L(ρ′) and for every path ρ′′ such that ρ ☎ ρ′′ ✄ ρ′ there exists
a path π′′ with π ☎ π′′ ✄ π′ such that L(π′′) = L(ρ′′). By induction, this implies ρ′ |= ψ′′

and ρ′′ |= ψ′ for all ρ ☎ ρ′′ ✄ ρ′. Hence ρ |= ψ.
“If”: Suppose that s 6≈L t. Then, without loss of generality, there exists a maximal

path ρ from t such that for all maximal paths π from s it holds that L(π) 6= L(ρ); we define
an LTL−X formula ψ such that s |= ψ, while t 6|= ψ.

First, we define for every colour C, which is a subset of AP, a formula ψ(C) with
the property that π |= ψ(C) iff the first state of π has colour C. (A possible definition of
ψ(C) would be

∧

p∈C p ∧
∧

p 6∈C ¬p; however, one can economise on the cardinality of this
conjunction by including only one conjunct for every other colour D that actually occurs
in the underlying Kripke structure—this way we meet the cardinality restriction imposed
in Section 2.) For every maximal path π from s such that L(ρ) is not a prefix of L(π), let

ψπ = (· · · ((ψ(C0)) U (ψ(C1))) U · · · ) U (ψ(Ck)) ,

where C0, C1, . . . , Ck is the shortest prefix of L(ρ) that is not also a prefix of L(π). For
every maximal path π from t such that L(ρ) is a prefix of L(π), let

ψπ = ¬(· · · ((ψ(D0)) U (ψ(D1))) U · · · ) U (ψ(Dk)) ,

where D0,D1, . . . ,Dk is the shortest prefix of L(π) that is not also a prefix of L(ρ). Note
that in either case we have ρ |= ψπ while π 6|= ψπ . Now, define ψ by

ψ = ¬
∧

{ψπ | π a maximal path from s} .

It is not hard to check that in a Kripke structure with less then κ states, for κ an infinite
cardinal, less than κ of the formulas ψπ are different. Now, since ρ is a path from t such
that ρ 6|= ψ, it follows that t 6|= ψ. On the other hand, since π 6|= ψπ , it follows that π |= ψ
for all paths π from s, and hence s |= ψ.

In order to lift this notion of equivalence from Kripke structures to LTSs, consider a trivial
colouring T, assigning the same colour to all states in an LTS, and write s =λ

T t if s and t

have the same complete T-coloured traces. In [8], =λ
T was called divergence sensitive trace

equivalence. The following counterpart of Theorem 4.3 indicates that =λ
T is on LTSs what

≈L is on Kripke structures:

Theorem 9.2. On a consistent L2TS ≈L equals =λ
T .

Proof. If π is a path from a state s and ρ a path from t in a consistent L2TS (S,L,→), then

L(π) = L(ρ) ⇔ L(s) = L(t) ∧ T(π) = T(ρ)

where L(π) denotes the L-coloured trace in the associated Kripke structure (thus, forgetting
the actions) and T(π) denotes the trivially coloured trace in the associated LTS (thus,
keeping the visible actions, but forgetting the colours). This is an immediate consequence
of the definition of consistency, and it immediately implies the theorem.
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In order to make LTS-to-L2TS transformations useful for applying LTL on LTSs they should
be required to preserve and reflect =λ

T—the transformation of [5] trivially has this property.
We then obtain:

Corollary 9.3. Let s and t be states in an LTS, and let η be an LTS-to-L2TS transformation
preserving and reflecting =λ

T . Then s =λ
T t iff s |=η ψ ⇔ t |=η ψ for all LTL−X formulas ψ.

The very same counterexample as used in Section 5 shows that =λ
T fails to be a congruence

for ‖: we have 0 =λ
T ∆0, yet 0‖a 6=λ

T ∆0‖a. We proceed to characterise the coarsest

congruence for ‖ that is included in =λ
T . We write s =∆λ

T t if s and t have the same
complete T-coloured traces as well as the same divergent T-coloured traces; by analogy
with the branching bisimulation variants we propose to call =∆λ

T trace equivalence with
explicit divergence.

Theorem 9.4. =∆λ
T is the coarsest congruence for ‖ that is included in =λ

T .

Proof. Let T (s) denote the set of T-coloured traces of a state s, T λ(s) its set of complete
T-coloured traces, and T∆(s) its set of divergent ones. Clearly T∆(s) ⊆ T λ(s) ⊆ T (s).
Note that T (s) is completely determined by T λ(s), namely as its set of initial prefixes.
Furthermore, let T ∗(s) denote the set of finite T-coloured traces of s and T∞(s) its set of
infinite ones. Also T ∗(s) and T∞(s) are completely determined by T λ(s), and T∞(s)⊆T λ(s).
For any two sets of sequences S and T , let S‖T denote the set of those sequences which can
be obtained by interleaving a sequence of S with a sequence of T . Now we have

T (s‖t) = T (s)‖T (t)
T ∗(s‖t) = T ∗(s)‖T ∗(t)
T∞(s‖t) = T∞(s)‖T (t) ∪ T (s)‖T∞(s)
T∆(s‖t) = T∆(s)‖T ∗(t) ∪ T ∗(s)‖T∆(s)
T λ(s‖t) = T∞(s‖t) ∪ T∆(s‖t) ∪ T λ(s)‖T λ(t).

This implies that =∆λ
T is a congruence. By construction it is included in =λ

T .

Now let ∼ be any congruence for ‖ that is included in =λ
T , and assume s ∼ u. We

need to show that s =∆λ
T u. We know already that T λ(s) = T λ(u). So let σ ∈ T∆(u). By

symmetry, it suffices to show that σ ∈ T∆(s). Let a be an action that does not occur in
any path from s. Since ∼ is a congruence for ‖, we have s ‖ a ∼ t ‖ a, where a is the state
from Example 5.3. As ∼ is included in =λ

T we obtain s ‖ a =λ
T t ‖ a. Since σ ∈ T∆(u) and

the empty trace ε is in T ∗(a), we have σ ∈ T∆(u‖a) ⊆ T λ(u‖a) = T λ(s‖a). Since ε 6∈ T λ(a)
it must be that σ ∈ T∆(s‖a) and hence σ ∈ T∆(s).

So far the situation is analogous with the branching time case. However, from here on
the development is different. Adding the ∞-modality to LTL−X does not merely add the
expressiveness to the logic to make it characterise =∆λ

T . Instead LTL∞ (obtained from LTL−X

by adding the ∞-modality) characterises a strictly finer equivalence. We define L-coloured
deadlock traces as L-coloured traces that stem from finite maximal paths, i.e. paths ending
in a deadlock state, and for s, t states in a Kripke structure (S,L,→) we write s ≈∆δ

L
t if s

and t have the same complete L-coloured traces, the same divergent L-coloured traces, and
the same L-coloured deadlock traces. Likewise, for s, t states in an LTS we write s =∆δ

T t if s
and t have the same complete T-coloured traces, the same divergent T-coloured traces, and
the same T-coloured deadlock traces. In [8], =∆δ

T was called divergence sensitive completed
trace equivalence. In light of the proof of Theorem 9.2 it is straightforward to establish that
on a consistent L2TS the preorders ≈∆δ

L and =∆δ
T coincide.
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Theorem 9.5. s ≈∆δ
L t iff s |= ψ ⇔ t |= ψ for all LTL∞ formulas ψ.

Proof. Let L
δ(π) be the L-coloured trace of a path π as given in Definition 2.3, but with

a symbol δ tagged at the end iff π is finite and maximal (i.e. ending in deadlock). Then
s ≈∆δ

L t iff for every path π from s there is a path ρ from t such that L
δ(π) = L

δ(ρ), and
vice versa.

“Only if”: To show that s ≈∆δ
L t implies s |= ψ ⇔ t |= ψ, it suffices to prove that if

L
δ(π) = L

δ(ρ) then π |= ψ ⇔ ρ |= ψ. This proceeds exactly as in the proof of Theorem 9.1,
except that there is one extra case to consider, namely that ψ = ∞: Suppose π |= ∞. Then
L
δ(π) does not end in δ, so L

δ(ρ) does not end in δ, so ρ |= ∞.
“If”: Suppose that s 6≈∆δ

L t. Then, without loss of generality, there exists a maximal
path ρ from t such that for all maximal paths π from s it holds that L

δ(π) 6= L
δ(ρ). As

in the proof of Theorem 9.1 we define an LTL−X formula ψ such that s |= ψ, while t 6|= ψ.
For π a maximal path from s such that L(π) 6= L(ρ), we define the formula ψπ exactly as
in the proof of Theorem 9.1. In case L(π) = L(ρ) but L

δ(π) 6= L
δ(ρ) we take ψπ to be

∞ or ¬∞. The definition of ψ remains the same.

Corollary 9.6. Let s and t be states in an LTS, and let η be an LTS-to-L2TS transformation
preserving and reflecting =∆δ

T . Then s =∆δ
T t iff s |=η ψ ⇔ t |=η ψ for all LTL∞ formulas ψ.

The deadlock extension of Definition 8.1 gives the same result.

Theorem 9.7. Let s and t be states in an LTS, and let η be an LTS-to-L2TS transformation
preserving and reflecting =∆δ

T . Then s =∆δ
T t iff s |=D◦η ψ ⇔ t |=D◦η ψ for all LTL−X

formulas ψ.

Proof. Just like Corollary 8.3, this follows immediately from the observations that s ≈∆δ
L

t
within a Kripke structure K iff s ≈∆δ

L t within the Kripke structure D(K) (cf. Theorem 8.2),
and that on total Kripke structures the equivalence relations ≈∆δ

L
and ≈L coincide.

Kaivola & Valmari [11] study equivalences on LTSs with the property that under
all plausible transformations of LTSs into Kripke structures two equivalent states (trans-
formed into states of Kripke structures) satisfy the same formulas in either LTL−X or LTL∞.
They characterise the coarsest such congruences for a selection of standard process algebra
operators—including the merge, but also a partially synchronous parallel composition as
well as nondeterministic choice—as NDFD -equivalence (for LTL−X) and CFFD -equivalence
(for LTL∞). In turns out that neither =∆λ

T nor =∆δ
T are congruences for the partially

synchronous parallel composition, or for nondeterministic choice. Hence to satisfy the re-
quirement of being a congruence for these operators, NDFD -equivalence is necessarily finer
than =∆λ

T , and CFFD -equivalence is necessarily finer than =∆δ
T . The question of raising the

expressiveness of LTL−X to the level where it characterises NDFD- or CFFD-equivalence
directly remains open.

10. Conclusion

In this paper we enabled CTL−X and CTL
∗
−X

to be used as logics on labelled transition
systems (LTSs) while taking deadlock behaviour into account. This could be accomplished
by adding a modality to CTL

∗
−X

, by adapting the semantics of the G-modality (in CTL−X),
or by adapting the translations from [5] from LTSs to Kripke structures. We have shown
that these approaches all lead to equally expressive logics on LTSs. Our work allows the
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rich tradition of verification by equivalence checking to be combined with the full expressive
power of CTL∗−X

. Taking advantage of this possibility is left for further research.
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