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A COMPLETE AXIOM SYSTEM FOR PROPOSITIONAL INTERVAL

TEMPORAL LOGIC WITH INFINITE TIME

BEN MOSZKOWSKI

Software Technology Research Laboratory, De Montfort University, Leicester, UK

Abstract. Interval Temporal Logic (ITL) is an established temporal formalism for rea-
soning about time periods. For over 25 years, it has been applied in a number of ways
and several ITL variants, axiom systems and tools have been investigated. We solve the
longstanding open problem of finding a complete axiom system for basic quantifier-free
propositional ITL (PITL) with infinite time for analysing nonterminating computational
systems. Our completeness proof uses a reduction to completeness for PITL with finite
time and conventional propositional linear-time temporal logic. Unlike completeness proofs
of equally expressive logics with nonelementary computational complexity, our semantic
approach does not use tableaux, subformula closures or explicit deductions involving en-
codings of omega automata and nontrivial techniques for complementing them. We believe
that our result also provides evidence of the naturalness of interval-based reasoning.

1. Introduction

Intervals and discrete linear state sequences offer a natural and flexible way to model both
sequential and parallel aspects of computational processes involving hardware or software.
Interval Temporal Logic (ITL) [Mos86] (see also [ITL12]) is an established formalism for
rigorously reasoning about such intervals. ITL has a basic construct called chop for the
sequential composition of two arbitrary formulas as well as an analogue of Kleene star
for iteration called chop-star. Although originally developed for digital hardware specifica-
tion [Mos83a, Mos83b, HMM83, Mos85], ITL is suitable for logic-based executable specifica-
tions [Mos86], compositional reasoning about concurrent processes [Mos94, Mos95, Mos98,
Mos11], refinement [CZ97], as well as for runtime analysis [ZZC99].

Until now, in spite of research over many years involving ITL and its applications, there
was no known complete axiom system for quantifier-free propositional ITL (PITL) with in-
finite time. We present one and prove completeness by a reduction to our earlier complete
PITL axiom system for finite time [Mos04] (see also [BT03]) and conventional propositional
linear-time temporal logic (PTL). We do not use subformula closures, tableaux, or explicit
deductions involving encodings of omega automata and nontrivial techniques for comple-
menting them. Such encodings are typically found in completeness proofs for comparable
logics discussed later on (see §11.1), which like PITL have omega-regular expressiveness.
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See Thomas [Tho90, Tho97] for more about omega-regular languages, omega automata and
some associated logics. Our simple axiom system avoids complicated inference rules and
proofs such as axiom systems for an equally expressive version of PITL with restricted
sequential iteration [Pae89] and a less expressive version of PITL lacking sequential iter-
ation [RP86]. In the future we plan to use our axiom system as a hierarchical basis for
obtaining completeness for some PITL variants. We also believe it can be applied to some
other logics and discuss this in Section 12.

Our earlier completeness proof for a larger, more complicated axiom system for quanti-
fied ITL with finite domains and infinite time [Mos00] does not work if variables are limited
to being just propositional. So that result, while serving as a stepping stone for further
research on ITL, even fails to establish axiomatic completeness for a quantified version of
PITL (QPITL) with infinite time! For these reasons, we feel justified in regarding the prob-
lem of showing axiomatic completeness for full PITL with infinite time as a previously open
problem.

We now mention some recent publications by others as evidence of ITL’s continuing
relevance. None specifically motivate our new completeness proof. Nevertheless, they ar-
guably contribute to making a case for the study of ITL’s mathematical foundations, which
naturally include axiomatic completeness.

The KIV interactive theorem prover [RSSB98] has for a number of years included a
slightly extended version of ITL for interactive theorem proving via symbolic execution
both by itself (e.g., see [BBN+10, BSTR11]) and also as a backend notation which supports
Statecharts [TSOR04] and UML [BBK+04]. KIV can employ ITL proof systems such as
ours. The concluding remarks of [BSTR11] note the following advantages of ITL:

Our ITL variant supports classic temporal logic operators as well as program
operators.

The interactive verifier KIV allows us to directly verify parallel programs
in a rich programming language using the intuitive proof principle of sym-
bolic execution. An additional translation to a special normal form (as e.g. in
TLA [Temporal Logic of Actions [Lam02]]) using explicit program counters
is not necessary.

Axiomatic completeness of PITL is not an absolute requirement for the KIV tool but does
offer some benefits. This is because some axioms, inference rules and associated deductions
employed to prove completeness can be exploited in KIV, thereby reducing the number of
adhoc axioms and inference rules.1

Various imperative programming constructs are expressible in ITL and operators for
projecting between time granularities are available (but not considered here). ITL influenced
an assertion language called temporal ‘e’ [Mor99] which is part of the IEEE Standard
1647 [IEE08] for the system verification language ‘e’.

The Duration Calculus (DC) of Zhou, Hoare and Ravn [ZHR91] is an ITL extension
for real-time and hybrid systems. The books by Zhou and Hansen [ZH04] and Olderog
and Dierks [OD08] both employ DC with finite time and discuss relatively complete axiom
systems for it. The second book utilises DC with timed automata to provide a basis for
specifying, implementing and model checking suitable real-time systems. Indeed, Olderog
and Dierks explain how they regard an interval-oriented temporal logic as being better
suited for these tasks than more widely used point-based ones and timed process algebras.

1Our claim is supported by email correspondence in 2011 with Gerhard Schellhorn of the KIV group.
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Concerning point-based logics, they make this comment (on page 23): “In our opinion this
leads to complicated reasoning similar to that . . . based on predicate logic.” As for timed
process algebras, they note the following (on page 25): “A difficulty with these formalisms
is that their semantics are based on certain scheduling assumptions on the actions like
urgency, which are difficult to calculate with.”

Within the last ten years, other complete axiom systems for versions of propositional
and first-order ITL with infinite time have been presented. These include two by Wang and
Xu [WX04] for first-order variants with restricted quantifiers and no sequential iteration as
well as a probabilistic extension of theirs by Guelev [Gue07] which all build on an earlier
completeness result of Dutertre [Dut95] for first-order ITL restricted to finite time. Like
Dutertre, Wang and Xu and also Guelev use a nonstandard abstract-time semantics (e.g.,
without induction over time) instead of ITL’s standard discrete-time one. Their proofs em-
ploy Henkin-style infinite sets of maximal consistent formulas. Duan et al. [DZ08, DZK12]
give a tableaux-like completeness proof for a related omega-regular logic called Proposi-
tional Projection Temporal Logic (PPTL). The only primitive temporal operators in PPTL
for sequential composition have varying numbers of operands and concern multiple time
granularities. However, both chop and chop-star can be derived. The proof system has over
30 axioms and inference rules, some rather lengthy and intricate. The completeness proof
itself involves the nontrivial task of complementing omega-regular languages which can be
readily expressed in the logic but it is not discussed. Furthermore, the authors omit much of
the prior work in the area developed in the course of over forty years (which we later survey
in Section 11). More significantly, they do not explain how they bypass the associated hur-
dles faced by previous completeness proofs for logics with comparable expressiveness and
nonelementary computational complexity. These points make checking the proof’s han-
dling of the complementation of omega-regular languages, liveness and other issues rather
challenging. Mo, Wang and Duan [MWD11] describe promising applications of Projection
Temporal Logic to specifying and verifying asynchronous communication. Zhang, Duan
and Tian [ZDT12] investigate the modelling of multicore systems in Projection Temporal
Logic. In view of this, the foundational issue of axiomatic completeness for PPTL should
be addressed in the future more thoroughly and systematically and better related to other
approaches. Incidentally, we already showed in [Mos95] that axiomatic completeness for a
version of PITL with a standard version of temporal projection can be simply and hierar-
chically reduced to axiomatic completeness for PITL without temporal projection. Duan et
al. [DZ08, DZK12] however make no mention of this by now long established and powerful
technique in their review of prior work.

Here is the structure of the rest of this presentation: Section 2 overviews PITL and
the new axiom system. Section 3 concerns a class of PITL theorems from which we can
also deduce suitable substitution instances needed later on. Section 4 gives some infrastruc-
ture for systematically replacing formulas by other equivalent ones in deductions arising in
the completeness proof. Section 5 introduces some useful PITL subsets for later use in the
completeness proof. Section 6 reduces completeness for PITL with a kind of infinite sequen-
tial iteration to completeness for a subset without this. Section 7 shows how to represent
deterministic finite-state semi-automata and automata in PITL. Section 8 employs semi-
automata to test a given PITL formula in a finite interval’s suffix subintervals. Section 9
shows completeness for the PITL subset without infinite sequential iteration. Section 10
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includes some observations about the completeness proof. Section 11 reviews existing com-
plete axiom systems for omega-regular logics. Section 12 discusses some topics for future
research.

2. Propositional Interval Temporal Logic

We now describe the version of (quantifier-free) PITL used here. More on basic aspects
of ITL can be found in [Mos83a, HMM83, Mos85, Mos86, Mos04] (see also Kröger and
Merz [KM08], Fisher [Fis11] and the ITL web pages [ITL12]).

Below is the syntax of PITL formulas in BNF, where p is any propositional variable:

A ::= true | p | ¬A | A ∨ A | skip | A⌢A | A⋆.

The last two constructs are called chop and chop-star, respectively. The boolean operators
false, A ∧ B, A ⊃ B (implies) and A ≡ B (equivalence) are defined as usual. We refer
to A⌢B as strong chop, since a weak version A;B also exists. In addition, A⋆ (strong
chop-star) slightly differs from ITL’s conventional weak chop-star A∗, although the two
are interderivable. The strong variants of chop and chop-star taken as primitives here are
chosen simply because, without loss of generality, they help streamline the completeness
proof.

We use p, q, r and variants such as p′ for propositional variables. Variables A, B, C and
variants such as A′ denote arbitrary PITL formulas. Let w and w′ denote state formulas
without the temporal operators skip, chop and chop-star. We have V denote a finite set of
propositional variables. Also, VA denotes the finite set of the formula A’s variables.

Time within PITL is discrete and linear. It is represented by intervals each consisting
of a sequence of one or more states. More precisely, an interval σ is any finite or ω-sequence
of one or more states σ0, σ1, . . . . Each state σi in σ maps each propositional variable p

to either true and false . This mapping is denoted as σi(p). An interval σ has an interval
length |σ| ≥ 0, which, if σ is finite, is the number of σ’s states minus 1 and otherwise ω. So
if σ is finite, it has states σ0, . . . , σ|σ|. This (standard) version of PITL, with state-based
propositional variables, is called local PITL.

A subinterval of σ is any interval which is a contiguous subsequence of σ’s states.
This includes σ itself.

The notation σ |= A, defined shortly by induction on A’s syntax, denotes that interval
σ satisfies formula A. Moreover, A is valid, denoted |= A, if all intervals satisfy it.

Below are the semantics of the first five constructs:

• True: σ |= true trivially holds for any σ.
• Propositional variable: σ |= p iff p is true in the initial state σ0 (i.e., σ0(p) = true).
• Negation: σ |= ¬A iff σ 6|= A.
• Disjunction: σ |= A ∨ B iff σ |= A or σ |= B.
• Skip: σ |= skip iff σ has exactly two states.

For natural numbers i, j with 0 ≤ i ≤ j ≤ |σ|, let σi:j be the finite subinterval σi . . . σj (i.e.,
j − i+ 1 states). Define σi↑ to be σ’s suffix subinterval from state σi.

Below are semantics for the versions of chop and chop-star found most suitable for the
completeness proof. As already noted, other versions can be readily derived.

• Chop: σ |= A⌢B iff for some natural number i : 0 ≤ i ≤ |σ|, both σ0:i |= A and
σi↑ |= B. This is called strong chop because both A and B must be true.
• Chop-star: σ |= A⋆ iff one of the following holds:
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©A
def
≡ skip⌢A Next

✸A
def
≡ true⌢A Eventually

✷A
def
≡ ¬✸¬A Henceforth

more
def
≡ © true More than one state

empty
def
≡ ¬more Only one state

finite
def
≡ ✸ empty Finite interval

inf
def
≡ ¬finite Infinite interval

fin A
def
≡ ✷(empty ⊃ A) Weak test of final state

A← B
def
≡ finite ⊃ ((fin A) ≡ B) Temporal assignment

✸f A
def
≡ A⌢true Some initial finite subinterval

✷f A
def
≡ ¬✸f ¬A All initial finite subintervals

A;B
def
≡ (A⌢B) ∨ (A ∧ inf ) Weak chop

✸i A
def
≡ A; true Some initial subinterval (even infinite)

✷i A
def
≡ ¬✸i ¬A All initial subintervals (including infinite)

A∗
def
≡ A⋆ ∨

(
A⋆⌢(A ∧ inf )

)
Conventional (weak) chop-star

Aω def
≡ A⋆ ∧ inf Chop-omega

Table 1: Some useful derived PITL operators

− Interval σ has only one state (i.e., it is empty).
− σ is finite and either itself satisfies A or can be split into a finite number of (finite-

length) subintervals which share end-states (like chop) and all satisfy A.
− |σ| = ω and σ can be split into ω finite-length intervals sharing end-states (like chop)

and each satisfying A.
In this version of chop-star, each iterative subinterval has finite length. The third case is
called chop-omega and denoted as Aω.

As an example, we depict the behaviour of variable p in some 5-state interval σ and
denote true and false by t and f, respectively:

σ0 σ1 σ2 σ3 σ4
p t f t f t

This interval satisfies the following formulas:

p skip⌢¬p p ∧ (true⌢¬p) (p ∧ (skip⌢skip))⋆.

For instance, the formula skip⌢¬p is true because σ0σ1 satisfies skip and σ1 . . . σ4 satisfies
¬p since σ1(p) = false. The fourth formula is true because both σ0 . . . σ2 and σ2 . . . σ4
satisfy p ∧ (skip⌢skip). The interval does not satisfy the formulas below:

¬p skip⌢p true⌢(¬p ∧ ¬(true⌢p)).

Table 1 shows some useful derived PITL operators, including the weak versions of chop
A;B and chop-star A∗. The derived construct A← B for temporal assignment in Table 1
perhaps requires some more explanation. Its purpose is to specify that the value of A in a
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Axioms:

VPTL ⊢ Substitution instances of valid PTL formulas

P2 ⊢ (A⌢B)⌢C ≡ A⌢(B⌢C)

P3 ⊢ (A ∨ A′)⌢B ⊃ (A⌢B) ∨ (A′⌢B)

P4 ⊢ A⌢(B ∨ B′) ⊃ (A⌢B) ∨ (A⌢B′)

P5 ⊢ empty⌢A ≡ A

P6 ⊢ finite ⊃ (A⌢empty ≡ A)

P7 ⊢ w ⊃ ✷f w

P8 ⊢ ✷f (A ⊃ A′) ∧ ✷(B ⊃ B′) ⊃ (A⌢B ⊃ A′⌢B′)

P9 ⊢ A⋆ ≡ empty ∨ (A ∧ more)⌢A⋆

P10 ⊢ A ∧ ✷
(
A ⊃ (B ∧ more)⌢A

)
⊃ Bω

Inference Rules:

MP ⊢ A ⊃ B, ⊢ A ⇒ ⊢ B

✷f FGen ⊢ finite ⊃ A ⇒ ⊢ ✷f A

✷Gen ⊢ A ⇒ ⊢ ✷A

✷f Aux ⊢ ✷f
(
(fin p) ≡ B

)
⊃ A ⇒ ⊢ A

In ✷f Aux, propositional variable p must not occur in A or B.

Table 2: Axiom system for PITL with finite and infinite time

finite interval’s last state equals the value of B for the interval. For example, the formula
p← ✷ q is true on an interval iff either (a) the interval is infinite or (b) it is both finite and
has one of the following hold for the propositional variables p and q:

• The (finite) interval’s last state has p true and all states have q true.
• The (finite) interval’s last state has p false and at least one state has q false.

Below are some sample valid PITL formulas:

(finite ∧ ✷f A) ⊃ A skip⋆ A⋆⋆ ≡ A⋆ (w ∧ A)⌢B ≡ w ∧ (A⌢B)

✷f (A ∧ B) ≡ (✷f A ∧ ✷f B) (✷✷f A) ≡ (✷f ✷A) (✷f ✷f A) ≡ ✷f A

✸f A ∧ ✸f B ≡ ✸f (✸f A ∧ ✸f B) ✷f
(
(fin p) ≡ A) ⊃ (✷f A) ≡ (✷ p).

Let PTL be the subset of PITL with just skip and the (derived) temporal operators ©

and ✸ shown in Table 1. We use X and X ′ for PTL formulas.
Although we do not need existential quantification in our proof, it is convenient

to define here since it helps the exposition concerning automata-based ways to represent
PITL formulas in §7.2, §7.4 and §10.2 and also assists us when we compare our approach
with related proofs for logics with quantification in Section 11. The syntax is ∃p.A for any
propositional variable p and formula A. We let σ |= ∃p.A be true iff σ′ |= A is true for
some interval σ′ identical to σ except possibly for p’s behaviour. Existential quantification
together with PITL yields QPITL and together with PTL yields QPTL.

2.1. PITL Axiom System. Table 2 shows the PITL axiom system with finite and infinite
time. Axiom VPTL permits PITL substitution instances of valid PTL formulas with skip,
© and ✸. For instance, from the valid PTL formula © p ⊃ ✸ p follows ⊢ ©A ⊃ ✸A, for
any PITL formula A. Axiom P10 gives an inductive way to introduce chop-omega. Our
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Axioms:

Taut ⊢ Substitution instances of conventional (nonmodal) tautologies

F2 ⊢ (A⌢B)⌢C ≡ A⌢(B⌢C)

F3 ⊢ (A ∨ A′)⌢B ⊃ (A⌢B) ∨ (A′⌢B)

F4 ⊢ A⌢(B ∨ B′) ⊃ (A⌢B) ∨ (A⌢B′)

F5 ⊢ empty⌢A ≡ A

F6 ⊢ A⌢empty ≡ A

F7 ⊢ w ⊃ ✷f w

F8 ⊢ ✷f (A ⊃ A′) ∧ ✷(B ⊃ B′) ⊃ (A⌢B) ⊃ (A′⌢B′)

F9 ⊢ A⋆ ≡ empty ∨ (A ∧ more)⌢A⋆

F10 ⊢ ©A ⊃ ©w A

F11 ⊢ A ∧ ✷(A ⊃ ©w A) ⊃ ✷A

Inference Rules:

MP ⊢ A ⊃ B, ⊢ A ⇒ ⊢ B

✷f Gen ⊢ A ⇒ ⊢ ✷f A

✷Gen ⊢ A ⇒ ⊢ ✷A

Note: ©w A
def
≡ ¬©¬A (Weak next)

Table 3: Axiom system for PITL with just finite time

new Inference Rule ✷f Aux permits auxiliary variables to capture behaviour in finite-length
prefix intervals and is only needed for infinite time.

The axiom system in Table 2 for both finite and infinite time is adapted from our
earlier one [Mos04] for just finite time (see Table 3), itself based on a previous one we
originally presented in [Mos94]. That axiom system contains some axioms of Rosner and
Pnueli [RP86] for PITL without chop-star and our own axioms and inference rule for the
operators ✷i (defined using weak chop in Table 1) and chop-star. The new PITL axiom
system in Table 2 adapts the axioms for ✷i to use ✷f instead to shorten the completeness
proof since ✷f works better with the strong chop operator ⌢.

For consistency with our usage here, the version of the earlier axiom system for just
finite time given in Table 3 uses strong chop ⌢ instead of weak chop “;” and likewise
uses ✷f instead of ✷i . It therefore very slightly differs from the original one in [Mos04] in
an inessential way since for finite time the two pairs of operators are indistinguishable.
In [Mos04] we prove completeness by reduction to PTL.

Appendix A contains a large variety of representative PITL theorems, derived rules and
their proofs. Many are used directly or indirectly in our completeness proof.

Note that Inference Rule ✷f FGen in Table 2 for ✷f mentions finite in it, whereas the
analogous Inference Rule ✷Gen for ✷ does not. A version of ✷f FGen without finite and
called ✷f Gen can be deduced (see the derived inference rule DR4 in Appendix A). If just
finite time is permitted, the two variants ✷f FGen and ✷f Gen for ✷f are in practice identical
since finite is valid and hence deducible by Axiom VPTL. In fact, our earlier axiom system
for PITL with just finite time in Table 3 uses the version without finite.
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2.2. Theoremhood, Soundness and Axiomatic Completeness. A formula A de-
ducible from the axiom system is a theorem, denoted ⊢ A. Additionally, a formula A

is consistent if ¬A is not a theorem, i.e., 6⊢ ¬A. We claim the axiom system is sound,
that is, ⊢ A implies |= A. A logic is complete if each valid formula is deducible as a
theorem in the logic’s axiom system. In other words, if |= A, then ⊢ A. Our goal is to show
completeness for PITL. However, we actually prove a stronger result which requires some
further definitions and we therefore defer the formal statement until Theorem 3.2 in Sec-
tion 3. We also make use of the following variant way of expressing axiomatic completeness:

Lemma 2.1 (Alternative notion of completeness). A logic’s axiom system is complete iff
each consistent formula is satisfiable.

We often use the next Theorem 2.2 about finite time:

Theorem 2.2 (Completeness of PITL Axiom System for Finite Time). Any valid PITL
implication finite ⊃ A is deducible as a PITL theorem ⊢ finite ⊃ A using the axiom system
for PITL with both finite and infinite time in Table 2.

Proof.. This readily follows by deducing the axioms and inference rules of our earlier
complete axiom system for PITL with just finite time [Mos04] in Table 3. The axiom system
and proofs of theorems are easily relativised to make finite time explicit and deduced with
the new axiom system for both finite and infinite time already presented in Table 2. The
relativisation can use the fact that the two axiom systems are quite similar.

One can alternatively disregard Theorem 2.2 and instead treat our presentation as a
self-contained proof reducing completeness for PITL with both finite and infinite time to
that for PITL with just finite time.

2.3. Summary of the Completeness Proof. Our proof of axiomatic completeness for
PITL establishes that any consistent PITL formula is satisfiable (see the earlier Lemma 2.1).
The completeness proof makes use of a PITL subset called PTLu (defined later in §5.2) which
is a version of PTL having an until operator. As we discuss in §5.2, axiomatic completeness
for PTLu readily follows from axiomatic completeness for basic PTL so any consistent PTLu

formula is satisfiable.
The PITL completeness proof can be roughly summarised as ensuring that for any

consistent PITL formula A, there exists a consistent PTLu formula Y0, which possibly con-
tains auxiliary propositional variables, such that the PITL implication Y0 ⊃ A is deducible.
Completeness for PTLu guarantees that Y0 is satisfiable. The soundness of the PITL axiom
system then ensures that any model of Y0 also satisfies A thereby showing axiomatic com-
pleteness for PITL. Note that in the actual proof, we use make use of a PTLu conjunction
Y ∧ X in place of Y0.

In the course of the PITL completeness proof, we also employ another PITL subset
called PITLk (defined later in §5.3). It is a version of PITL without omega-iteration and
serves as a kind of bridge between full PITL and PTLu. The PITL completeness proof first
obtains from the PITL formula A a PITLk formula K such that we can deduce A ≡ K. We
then show how to obtain the PTLu formula Y0 such that the implication Y0 ⊃ K is deducible.
We further show that if A is consistent, so are K and Y0. Axiomatic completeness for
PTLu ensures that the consistent PTLu formula Y0 is satisfiable. The implication Y0 ⊃ K

together with the deduced equivalence A ≡ K guarantees the deducibility of the previously
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mentioned PITL implication Y0 ⊃ A. Hence, any model of Y0 also satisfies A, thereby
establishing completeness for PITL since every consistent PITL formula is indeed satisfiable.

Here is a very brief summary of the main reductions:

PITL
Section 6
−−−−−→ PITLk

Section 9
−−−−−→ PTLu.

Only the reduction from PITLk to PTLu requires some explicit automata-theoretic con-
structions which involve finite words and are expressed in temporal logic.

Below is the structure of our reduction from PITL to PTLu:

• In Section 3 we describe a class of PITL theorems with useful substitution instances.
• In Section 4 we present lemmas for systematically replacing some of a formula’s subfor-
mulas by others in proofs.
• In Section 5 we formally introduce the very simple PTL subset NL1 as well as the subsets
PTLu and PITLk. Although PITLk lacks chop-omega, it still has the same expressiveness
as PITL. We also describe three other classes of formulas called right-chops, chain-
formulas and auxiliary temporal assignments.
• In Section 6 we show that any PITL formula is deducibly equivalent to one in PITLk.
• In Section 7 we show how to represent semi-automata and automata in PITL.
• Section 8 utilises the material in the previous section to test for a given PITL formula
in suffixes of a finite interval. Sections 7 and 8 provide a basis for introducing suitable
auxiliary variables via auxiliary temporal assignments.
• In Section 9 we use the constructed auxiliary variables to reduce an arbitrary consistent
PITLk formula K to one in PTLu. Axiomatic completeness for PITL with infinite time
then readily follows from this.

A large portion of the reasoning is done at the semantic level (for example, all of Section 8).
We then employ axiomatic completeness for restricted versions of PITL (such as PITL with
finite time) to immediately deduce the theoremhood of key properties expressible as valid
formulas in these versions. This significantly shortens the completeness proof by reducing
the amount of explicit deductions.

3. Right-Instances, Right-Variables and Right-Theorems

Before proceeding further, we need to introduce a class of PITL theorems for which suitable
substitution instances are themselves deducible as theorems. Now in the completeness proof
for PITL later on, if a deducible PITL formula has propositional variables not occurring in
the left of chops or in chop-stars (e.g., p in the formula p ⊃ ✸ p), then in each step of the
formula’s deduction these particular variables likewise do not occur in the left of chops or
chop-stars. We define more generally for any PITL formula A and subformula B in A, a
right-instance of B in A to be an instance of B which does not occur within the left of a
chop or within some chop-star. Consider for example the disjunction below:

(p⌢¬q) ∨ (p⌢p′) ∨ (p⌢p′)⋆. (3.1)

The subformulas ¬q, and (p⌢¬q) as well as the leftmost occurrence of p⌢p′ are right-
instances in the overall formula (3.1). However, all three occurrences of p and the rightmost
occurrences of p′ and p⌢p′ are not right-instances in (3.1) because each is either in the left
of a chop or in a chop-star.

Now let a PITL formula A’s right-variables be the (finite) set RV (A) of A’s variables
which have only right-instances in A, that is, do not occur in the left of chops or chop-stars.
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We now look at why the concept of right-variable is needed. In the formula p ⊃ ✸ p,
the variable p is a right-variable. Therefore, from the validity of p ⊃ ✸ p, we can infer the
validity of the substitution instance skip ⊃ ✸ skip. Lemma 3.1, which is shortly presented,
formalises this idea. However, if a variable is not a right-variable in a valid formula, we
might incorrectly infer that a substitution instance of the formula is also valid. For instance,
the variable p is not a right-variable in the formula p ⊃ ✷f p which is an instance of Axiom P7
in Table 2. This formula is valid but the substitution instance skip ⊃ ✷f skip is not.

Now all propositional variables in a propositional formula with no temporal operators
are right-variables of that formula. More generally, all propositional variables in a PTL
formula are right-variables. In contrast, a chop-star formula has no right-variables.

The next simple lemma concerns substitution into right-variables in valid formulas:

Lemma 3.1 (Substitution Instances into Right-Variables). Suppose A is a PITL formula,
p is one of A’s right-variables (i.e., in RV (A)) and B is some PITL formula. Then if A is
valid, so is the substitution instance AB

p .

Proof by contradiction.. Let q be a variable not occurring in A or B and let C be a
variant of A with all instances of p replaced by q (i.e., A

q
p). The variable p is a right-

variable of A so q is similarly a right-variable of C. It follows by induction on A’s syntax
that AB

p and CB
q denote exactly the same PITL formula. Consequently, in our reasoning

about AB
p , we can assume without loss of generality that p itself does not occur in B. This

is because we can view AB
p as being CB

q .

Now suppose by contradiction that AB
p is not valid. By our previous discussion, also

assume that p does not occur in B. Then some interval σ satisfies ¬(AB
p ). We construct a

variant σ′ in which the value of variable p in each state σ′
i equals true iff the suffix subinterval

σi↑ satisfies B. Hence σ′ |= ✷(p ≡ B) and σ′ |= ¬(AB
p ). It readily follows from this and p

being a right-variable that σ′ satisfies ¬A since AB
p only examines B in suffix subintervals.

From σ′ |= ¬A we have that A is not valid.

Later in Section 6, our completeness proof will need a deductive analogue of the seman-
tically oriented Lemma 3.1 to permit us to infer from a theorem A and right-variable p in
RV (A) another theorem AB

p . One way to achieve this is by adding the next inference rule
to the PITL axiom system in Table 2 for any formula A and variable p in RV (A):

⊢ A ⇒ ⊢ AB
p . (3.2)

Another possibility is an analogue of Inference Rule ✷f Aux in Table 2:

⊢ ✷(p ≡ B) ⊃ A ⇒ ⊢ A,

where the propositional variable p does not occur in A or B. However, it turns out that
these are unnecessary since the axiom system in its current form is already sufficient to
allow a suitable class of such substitutions. We now present a formal basis for this.

A PITL formula A which is theorem (i.e., ⊢ A) is called a right-theorem (denoted
⊢rt A) if there exists a deduction of A in which A’s right-variables never occur on the left
of chop or in chop-star in any proof steps. However, any of A’s variables not in RV (A) as
well as any subsequently introduced auxiliary variables in the deductions are permitted to
appear in some deduction steps in the left of chops or chop-stars. For example, if p is a
right-variable of A, then no proof step can use p with Axiom P7 (e.g., ⊢ p ⊃ ✷f p) since p is
not a right-variable here owing to ✷f p.
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The completeness proof for PITL will ensure that any valid PITL formula A is indeed
deducible as a right-theorem. We will refer to this here as right-completeness. Below is
our main theorem for axiomatic completeness of PITL using right-completeness:

Theorem 3.2 (Right-Completeness of PITL Axiom System). Any valid PITL formula A

is a right-theorem of the axiom system, that is, if |= A, then ⊢rt A.

The proof of this, our main result, is described later and concludes in Section 9.
Right-theoremhood naturally yields the dual notion of right-consistency of a PITL

formula A, that is, not ⊢rt ¬A. Our completeness proof for PITL can therefore be regarded
as not only showing that valid PITL formulas are right-theorems but also that any right-
consistent PITL formula is satisfiable (compare with Lemma 2.1).

As already pointed out, the main reason we are interested in right-theorems is that
suitable substitution instances of them are PITL theorems. Our need for this occurs when
in Section 6 we reduce right-completeness for PITL to right-completeness for its subset
PITLk without chop-omega. The lemma below formalises the substitution process:

Lemma 3.3 (Substitution Instances of Right-Theorems). Let A and B1, . . . , Bn be PITL

formulas and p1, . . . , pn be some of A’s right-variables. If A is a right-theorem, then so is

the substitution instance A
B1,...,Bn
p1,...,pn , that is, ⊢rt A

B1,...,Bn
p1,...,pn .

Proof.. We assume that auxiliary variables in A’s proof (i.e., ones not in VA) do not occur

in B1, . . . , Bn. In each step of A’s proof, we replace each pi by Bi to obtain ⊢rt A
B1,...,Bn
p1,...,pn .

Many PITL theorems in Appendix A can be checked to be right-theorems by inspection
of the proof steps. For example, those with no right-variables are immediate right-theorems.
We have not indicated in the appendix which theorems are right-theorems and will normally
only designate formulas as right-theorems in the completeness proof when this is needed.

The next lemma concerns the relationship between derived rules and right-theorems:

Lemma 3.4 (Right-Theorems from Some Derived Rules). Suppose the assumptions of a
derived rule which deduces some PITL formula A are right-theorems. Furthermore, suppose
that in the derived rule’s own proof of A, none of A’s right-variables occur on the left of
chop or in chop-star (including in any nested deduced PITL theorems and derived rules).
If A’s right-variables are a subset of the union of the assumptions’ right-variables, then A

itself is a right-theorem.

We omit the proof. For example, Derived Rule DR13 in Appendix A (see also the
abbreviated Table 4 found later in §7.4) lets us infer from the theorem ⊢ ✷A ⊃ B the
theorem ✷A ⊃ ✷B. It only requires the kind of reasoning mentioned in Lemma 3.4.
Consequently, from ⊢rt ✷A ⊃ B we can infer ⊢rt ✷A ⊃ ✷B.

Readers are strongly encouraged to initially try to understand our completeness proof
without consideration of right-theoremhood by simply viewing it as ordinary theoremhood and
ignoring the prefix “right-”. This can even be rigorously done by assuming that the optional
inference rule (3.2) is part of the PITL axiom system. A subsequent, more thorough study
of the material can then better take right-theoremhood into account. Indeed, we can then
regard our completeness proof as two parallel proofs, a simpler one with (3.2) and another
more sophisticated one which is based on right-theoremhood and Lemma 3.3 and hence does
not assume (3.2). Incidentally, our completeness proof ultimately ensures that (3.2) is
obtainable as a derived inference rule even if it is not in the axiom system.



12 B. MOSZKOWSKI

4. Some Lemmas for Replacement

We now consider some techniques used in the completeness proof to replace selected right-
instances in a PITL formula by other formulas.

Lemma 4.1. Let A1, A2, B1 and B2 be PITL formulas. If A2 can be obtained from A1

by replacing zero or more right-instances of B1 in A1 by B2, then the next implication is
deducible as a right-theorem:

⊢rt ✷(B1 ≡ B2) ⊃ A1 ≡ A2.

Proof.. The proof involves induction on the syntax of formula A1, with each instance of
B1 regarded as atomic. We consider the cases when A1 is B1 itself, true, a propositional
variable p, ¬C, C1 ∨ C2, skip, C1

⌢C2, and C⋆. The first three of these involve quite
routine conventional propositional reasoning. The case for skip is trivial since A1 and A2

are identical. The case for chop-star is likewise trivial since this lemma does not permit
replacement in its scope.

For the case for chop, assume A1 and A2 have the forms C1
⌢C2 and C1

⌢C ′
2, respec-

tively. Note that no replacements are done in the left of chop. By induction on A1’s syntax,
we deduce the next implication:

⊢rt ✷(B1 ≡ B2) ⊃ C2 ≡ C ′
2.

This and PTL reasoning (see Derived RuleDR13 in Appendix A and also in the abbreviated
Table 4 found later in §7.4) yields the implication below:

⊢rt ✷(B1 ≡ B2) ⊃ ✷(C2 ≡ C ′
2).

Lemma 3.4 ensures that our use here of Derived Rule DR13 indeed yields a right-theorem.
We can also deduce the next implication using Axiom P8 and some further temporal

reasoning (see PITL Theorem T3 in Appendix A and also in Table 4 in §7.4):

⊢rt ✷(C2 ≡ C ′
2) ⊃ (C1

⌢C2) ≡ (C1
⌢C ′

2).

These two implications together yield our goal below:

⊢rt ✷(B1 ≡ B2) ⊃ (C1
⌢C2) ≡ (C1

⌢C ′
2).

This concludes Lemma 4.1’s proof.

Lemma 4.1 yields a derived inference rule for Right Replacement of formulas:

Lemma 4.2 (Right Replacement Rule). Let A1, A2, B1 and B2 be PITL formulas. Suppose
that A2 can be obtained from A1 by replacing zero or more right-instances of B1 in A1 by
B2. If B1 and B2 are deducibly equivalent as a right-theorem (i.e., ⊢rt B1 ≡ B2), then so
are A1 and A2.

Proof.. By Lemma 4.1, we deduce the next implication:

⊢rt ✷(B1 ≡ B2) ⊃ A1 ≡ A2.

Also, ⊢rt B1 ≡ B2 and Inference Rule ✷Gen yield ⊢rt ✷(B1 ≡ B2). Then modus ponens
yields ⊢rt A1 ≡ A2.
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5. Useful Subsets of PITL

We now describe five subsets of PITL and some associated properties which will be ex-
tensively used later on in different parts of the PITL completeness proof. We have chosen
to collect material about the subsets here instead of introducing each subset as the need
arises. This should make it easier for readers to review the definitions and features when
required and also make the main steps of the completeness proof shorter and more focused.
In addition, when taken as a whole, the combined presentation of the PITL subsets enables
us to give a technical overview of some of the proof steps encountered. Table 5 later lists
variables used for the subsets and other subsequently defined categories.

5.1. PTL with only Unnested Next Constructs. Let NL1 denote the subset of PTL
formulas in which the only temporal operators are unnested ©s (e.g., p ∨ ©¬p but not
p ∨ ©©¬p). It is not hard to see that NL1 formulas only examine an interval’s first two
states. They are therefore useful for describing automata transitions from one state to the
next. The variables T and T ′ denote formulas in NL1.

Below are some theorems which contain NL1 formulas and are required in the complete-
ness proof. None of these theorems are themselves in NL1. The proofs are in Appendix A.

T62 ⊢ ✸f (more ∧ T ) ≡ more ∧ T

T68 ⊢ ✸f (skip ∧ T ) ≡ more ∧ T

T69 ⊢ (skip ∧ T )⌢A ≡ T ∧ ©A

5.2. PTL with Until. Recall that for our purposes we define PTL to be the subset of
PITL with just skip and the derived temporal operators © and ✸ shown in Table 1.

We also use a more expressive version of PTL denoted here as PTLu with a strong
version of the standard temporal operator until , derivable in PITL:

T until A
def
≡ (skip ∧ T )⋆⌢A.

We limit until ’s lefthand operand to be a formula in NL1 (defined previously in §5.1). Note
that this definition of until using chop and chop-star results in any variable in the left
operand of until not being a right-variable. Let Y and Y ′ denote PTLu formulas.

We establish right-completeness for PITL by a reduction to PTLu, instead of directly
to PTL. It is not hard to show that our axiom system is complete for PTLu formulas. This
is because we can deduce the next two PTLu axioms known to capture this kind of until ’s
behaviour (the PITL proofs are in Appendix A):

T70 ⊢ T until A ≡ A ∨
(
T ∧ ©(T until A)

)
T71 ⊢ T until A ⊃ ✸A.

Consequently, we can reduce completeness for PTLu to it for PTL. In fact every PTLu

theorem is a right-theorem. This is because the right-variables in T until A remain so
in T70 and T71, Hence, the two PTLu axioms ensure that these variables remain right-
variables in the proof steps for deducing a PTLu theorem in the PITL axiom system. See
Kröger and Merz [KM08] for more about axioms for a variety of such binary temporal
operators.
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5.3. PITL without Omega-Iteration. Our completeness proof includes a step in which
any chop-omega (defined in Table 1) is eliminated by re-expressing any chop-star not in the
left of chop or another chop-star. This exploits a convenient alternative characterisation of
omega-regular languages described by Thomas at the end of [Tho79] which does not involve
omega-iteration. It instead employs closure under some other operations which include
complementation:

Theorem 5.1 (Omega-Regularity using Closures). The omega-regular languages of an al-
phabet Σ are exactly the closure of {∅} under the following: (1) union, (2) complementation
(with respect to Σω) and (3) left concatenation by Σ’s regular languages.

Here ∅ denotes the omega-language with no elements.
Let PITLK denote the PITL subset in which chop-star only occurs on the left of chops

(like (3) in Thomas’ theorem above) and is therefore restricted to finite intervals. The K in
PITLk stands for “Kleene star”. For example, the next two formulas are in PITLk:

(skip ∧ p)⋆⌢q (skip⋆⌢skip) ∨ © p.

In contrast, the two formulas below are not in PITLk:

(skip ∧ p)⋆ p ⊃ ✸(skip ∧ q)⋆.

Observe that a PITLk formula can contain chop-star subformulas, which by the definition
of PITLk are not themselves in it. An example is (skip ∧ p)⋆ in (skip ∧ p)⋆⌢q.

With just finite time, any PITL formula A is easily re-expressed in PITLk as A⌢empty
(compare with Axiom P6 in Table 2). However this technique does not work for infinite
time. We also need Thomas’ theorem (Theorem 5.1) to ensure that any PITL formula A has
a semantically equivalent PITLk formula K for both finite and infinite time (i.e., |= A ≡ K).
For example, one way to re-express the PITL formula (skip ∧ p)⋆ in PITLk is ✷(more ⊃ p).
It follows that any chop-omega formula is re-expressible in PITLk. For instance, for any
PITL formula B, the formula (skip ∧ B)ω is semantically equivalent to ✷✸f (skip ∧ B).

Later on in Section 6 we employ Thomas’ theorem to easily reduce axiomatic complete-
ness for PITL to that for PITLk. More precisely, we will formally establish there that for
any PITL formula A, there exists a semantically equivalent PITLk formula K such that the
formula A ≡ K is deducible as a PITL theorem. Hence, by simple propositional reasoning,
if A is consistent, so is K and any model for K is also one for A. The remainder of the
overall completeness proof then reduces completeness for PITLk to it for PTLu.

Choueka and Peleg [CP83] give a simpler proof of Thomas’ theorem using standard
deterministic omega automata. Readers favouring an automata-theoretic perspective can
therefore regard the theorem in the context of PITL as a basis for implicitly determinising
the original PITL formula, resulting in a semantically equivalent one in PITLk.

5.4. Right-Chops and Chain Formulas. For any PITL formula A, we call a chop for-
mula in A a right-chop if it is not in another chop’s left operand or in a chop-star. Right-
chops help reduce PITLk to PTLu. We illustrate them with the formula below:

(
(p⌢p′)⌢¬(q⌢q′)

)
∨ (p⌢p′). (5.1)

The following three formulas all occur as right-chops in this:

(p⌢p′)⌢¬(q⌢q′) q⌢q′ p⌢p′.
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Only the second instance of p⌢p′ in formula (5.1) is a right-chop. In contrast, the first
instance of p⌢p′ is not a right-chop since it is within the left operand of another chop.
Observe that the right-chops of a PITL formula A are exactly those subformulas in A,
including possibly A itself, which have chop as their main operator and are right-instances
(previously defined in Section 3).

In addition to right-chops, the reduction of a PITLk formula to PTLu employs a class
of PTLu formulas involving disjunctions and sequential chains of restricted constructs. Let
a chain formula be any PTLu formula with the syntax below, where w is a state formula,
T is an NL1 formula and G and G′ are themselves chain formulas:

empty w ∧ G G ∨ G′ T until G.

The operator until in chain formulas involves a quite limited version of the PITL oper-
ator chop-star which is much easier to reason about than full chop-star. The next lemma
exploits this and shows that a chop in which the left operand is a chain formula and the
right one is in PTLu can be re-expressed as a deducibly equivalent PTLu formula.

Lemma 5.2. For any chain formula G and PTLu formula Y , there exists some PTLu

formula Y ′ such that the equivalence (G⌢Y ) ≡ Y ′ is deducible as a right-theorem.

Proof.. We do induction on G’s syntax using the deducible equivalences below in which w

is a state formula, T is an NL1 formula and G′ and G′′ are themselves chain formulas:

⊢rt empty⌢Y ≡ Y ⊢rt (G′ ∨ G′′)⌢Y ≡ (G′⌢Y ) ∨ (G′′⌢Y )
⊢rt (w ∧ G′)⌢Y ≡ w ∧ (G′⌢Y ) ⊢rt (T until G′)⌢Y ≡ T until (G′⌢Y ).

The first of these is an instance of PITL Axiom P5. The second and third are respective
instances of PITL Theorems T42 and T18 in Appendix A (see also the abbreviated Table 4
found later in §7.4). The fourth uses the earlier ITL-based definition of the temporal
operator until in §5.2 and Axiom P2 which itself concerns chop’s associativity.

For example, the left chop operand in the PITL formula
(
p ∧ (q until empty))⌢skip is a

chain formula. The chop itself is deducibly equivalent to the PTLu formula p ∧ (q until skip).
Our completeness proof will ultimately apply Lemma 5.2 when in Section 9 we later

replace the left operands of a consistent PITLk formula’s right-chops with chain formulas.
For this to work, we will also need auxiliary variables of the kind now described.

5.5. Auxiliary Temporal Assignments. When we later represent automata runs in
PITL, it is convenient to generalise formulas of the form p ← B (the temporal assign-
ment construct defined in Table 1) to conjunctions of several of these. Please refer back to
Section 2 for a brief explanation about the meaning of temporal assignment. We call such a
conjunction an Auxiliary Temporal Assignment (ATA). It has the form given below:

∧

1≤i≤n(qi ← Ai),

for some n ≥ 0, where each Ai is a PITL formula, there are n distinct auxiliary proposi-
tional variables q1, . . . qn and the only ones of them permitted in each Ai are q1, . . . qi−1.
All other propositional variables are allowed in any Ai. Here is a sample ATA with one
nonauxiliary variable r and two auxiliary variables p and q:

(p← © r) ∧ (q ← ✷(r ⊃ ✸ p)).

Variables such as D and D′ denote ATAs. Two ATAs are disjoint if they have distinct
auxiliary variables.
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Let us now look at how to formally introduce ATAs containing auxiliary variable into
deductions for later use within the completeness proof in §9.2.

Lemma 5.3 (Temporal Operators ✷f , ← and Right-Consistency). Let A and B be PITL
formulas with no instances of propositional variable p. If A is right-consistent, so is the
conjunction A ∧ ✷f (p← B).

Proof by contradiction.. Suppose A ∧ ✷f (p ← B) is not right-consistent. Then ✷f (p ←
B) ⊃ ¬A is a right-theorem. We re-express ✷f (p ← B) as ✷f

(
(fin p) ≡ B

)
. By this

and Inference Rule ✷f Aux, the formula ¬A is a right-theorem. Therefore A is not right-
consistent.

Lemma 5.3 readily generalises to reduce a formula’s right-consistency to that for a
conjunction of it and a suitable ATA:

Lemma 5.4 (The Temporal Operator ✷f , ATAs and Right-Consistency). Let A be a PITL
formula and D an ATA with no auxiliary variables in A. If A is right-consistent, so is the
formula A ∧ ✷f D.

Proof.. For some n ≥ 0, the ATA D contains n auxiliary variables and has the form
∧

1≤i≤n(qi ← Bi). We first apply Lemma 5.3 n times to reduce the formula A’s right-
consistency to that for the next formula:

A ∧
∧

1≤i≤n✷
f (qi ← Bi). (5.2)

The conjunction of ✷f -formulas is then re-expressed with a single ✷f (see PITL Theorem T28
found in Appendix A and also included in the more abbreviated Table 4 later in §7.4) to
obtain the formula below which is deducibly equivalent to (5.2):

A ∧ ✷f
(∧

1≤i≤n qi ← Bi

)
.

This is the same as our goal A ∧ ✷f D.

5.6. Overview of Role of PITL Subsets in Rest of Completeness Proof. The PITL
completeness proof can now be summarised using the PITL subsets just presented. Some
readers may prefer to skip this material and proceed directly to the proof which starts in
Section 6. Our goal here is to show that any right-consistent PITL formula A is satisfiable.
Here is an informal sequence of the transformations involved:

A
Section 6
−−−−−→ K

Section 9
−−−−−→ K ′

∧ ✷f D′ Section 9
−−−−−→ Y ∧ X,

where K is a PITLk formula, K ′ is a PITLk formula in which the left operands of all right
chops are chain formulas, D′ is an ATA and Y and X are respectively in PTLu and PTL.
If A is right-consistent, then so are the formulas in all steps. From the completeness of the
PTLu axiom system as discussed in §5.2 we have that the conjunction Y ∧ X is satisfiable.
Furthermore, our techniques ensure that the models of a formula obtained from one of the
transformations also satisfy the immediately preceding formula and hence by transitivity
the original PITL formula A as well.

Important automata-theoretic techniques presented in Sections 7 and 8 help with the
reductions to K ′ ∧ ✷f D′ and Y ∧ X in Section 9. We show in Section 9 that the formulas
K ∧ ✷f D′, K ′ ∧ ✷f D′ and Y ∧ X are deducibly equivalent.
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Note that in the actual completeness proof (in Lemma 9.4 in §9.2), which for technical
reasons involves a sequence of transformations from K to K ′, we make use of a PITLk

formula denoted K ′
m+1 rather than simply K ′.

6. Reduction of Chop-Omega

If we assume right-completeness for PITLk (later proved as Lemma 9.4 in §9.2), then ob-
taining from a PITL formula a deducibly equivalent PITLk one is relatively easy. We first
look at re-expressing chop-omega formulas in PITLk and then extend this to arbitrary PITL
formulas.

Lemma 6.1 (Deducible Re-Expression of Chop-Omega in PITLk). Suppose we have right-
completeness for PITLk. Then for any PITL formula B, there exists a PITLk formula K

with the same variables and no right-variables and for which the equivalence K ≡ Bω is a
right-theorem (i.e., ⊢rt K ≡ Bω).

Proof.. Thomas’ theorem (Theorem 5.1) ensures that there exists some PITLk formula
which is semantically equivalent to Bω and contains the same variables. From that formula
we obtain one denoted here as K which has no right-variables by conjoining a trivially true
✸f -formula containing a disjunction of all of B’s variables and their negations. We therefore
have |= K ≡ Bω and now deduce ⊢rt K ≡ Bω:

Case for showing ⊢rt K ⊃ Bω:
The first step involves an instance of Axiom P10:

⊢rt K ∧ ✷(K ⊃ (B ∧ more)⌢K) ⊃ Bω. (6.1)

In addition, the next formula is valid:

|= Bω ⊃ (B ∧ more)⌢Bω.

From this and |= K ≡ Bω, we have |= K ⊃ (B ∧ more)⌢K. We then use the assumed
right-completeness of PITLk to deduce the implication as a right-theorem. Now invoke
✷-generalisation (Axiom ✷Gen) on this to obtain ⊢rt ✷(K ⊃ (B ∧ more)⌢K). Simple
propositional reasoning involving that and the earlier deduced implication (6.1) establishes
our immediate goal ⊢rt K ⊃ Bω.

Case for showing ⊢rt Bω ⊃ K:
Let p be a propositional variable not in Bω or K. The next formula is valid (and an

instance of Axiom P10):

|= p ∧ ✷(p ⊃ (B ∧ more)⌢p) ⊃ Bω.

We then replace Bω by the semantically equivalent K:

|= p ∧ ✷(p ⊃ (B ∧ more)⌢p) ⊃ K. (6.2)

Now K is a PITLk formula and furthermore (B ∧ more)⌢p is as well since even if B does
contain some chop-stars, B is located within the left of a chop. The valid formula (6.2) is
in PITLk and hence a right-theorem by the assumed right-completeness for PITLk:

⊢rt p ∧ ✷(p ⊃ (B ∧ more)⌢p) ⊃ K.

Therefore, we can use Lemma 3.3 to obtain the theoremhood of the next PITL implication
which has the formula Bω substituted into the right-variable p:

⊢rt Bω
∧ ✷

(
Bω ⊃ (B ∧ more)⌢Bω

)
⊃ K. (6.3)
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We also deduce the following from the definition of chop-omega in terms of chop-star to-
gether with Axiom P9 and some simple temporal reasoning:

⊢rt Bω ⊃ (B ∧ more)⌢Bω.

We now do ✷-generalisation (Axiom ✷Gen) on this and then use propositional reasoning
on it with the previous formula (6.3) to obtain the right-theorem ⊢rt B

ω ⊃ K, which is our
immediate goal.

Lemma 6.2 (Reduction of PITL to PITLk). If right-completeness holds for PITLk, then
for any PITL formula A, there exists an equivalent PITLk formula K with exactly the same
propositional variables and right-variables such that ⊢rt A ≡ K.

Proof.. We first re-express each of A’s chop-stars B⋆
i not in the left of chop or another chop-

star using the next deducible equivalence (see PITL Theorem T58 found in Appendix A
and also included in the more abbreviated Table 4 in §7.4):

⊢rt B⋆
i ≡ (B⋆

i
⌢empty) ∨ Bω

i . (6.4)

This splits B⋆
i into cases for finite and infinite time. Note that there there are no right-

variables in (6.4) since any variables occur in a chop-star. Hence the equivalence, once
deduced, is trivially a right-theorem.

Lemma 6.1 ensures some PITLk formula K ′
i exists with the same variables as Bi, no

right-variables and the right-theorem ⊢rt K
′
i ≡ Bω

i . Hence like (6.4), the next equivalence
is a right-theorem and both sides have the same variables and no right-variables:

⊢rt B⋆
i ≡ (B⋆

i
⌢empty) ∨ K ′

i.

Then Right Replacement (Lemma 4.2) in A of each B⋆
i by (B⋆

i
⌢empty) ∨ K ′

i yields a PITLk

formula K which the same variables as A and equivalent to it (i.e., ⊢rt A ≡ K). No right-
variables in A are in any replaced B⋆

i . Hence A and K have the same right-variables.

7. Deterministic Finite-State Semi-Automata And Automata

The remainder of our axiomatic completeness proof for PITL mostly concerns reducing
PITLk to PTLu. Now PITL with finite time expresses the regular languages and can readily
encode regular expressions (see for example [Mos04] which reproduces our results with
J. Halpern in [Mos83a]). We can therefore employ some kinds of deterministic finite-state
semi-automata and automata which provide a convenient low-level framework for finite
time to encode the behaviour of an arbitrary PITL formula. Our completeness proof utilises
these semi-automata and automata to build a variant semi-automaton discussed in the next
Section 8 to assist in reducing PITL formulas on the left of right-chops to chain formulas
in PTLu. The reduction applying these techniques to go from PITLk to PTLu is presented
in Section 9.

After introducing the semi-automata and automata, we will consider various seman-
tically equivalent ways to represent them in temporal logic, each with its benefits. Some
require PITL and others just PTL. The representations in PITL are at a higher level and
fit well with our proof system, especially since we can assume completeness for PITL with
finite time. In some later sections, we consider deducing some of the properties as theorems.

In order to define an alphabet for our semi-automata and automata, we introduce
a special kind of state formula which serves as a letter and is called here an atom. An
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atom is any finite conjunction in which each conjunct is some propositional variable or its
negation and no two conjuncts share the same variable. The Greek letters α and β denote
an individual atom. For any finite set of propositional variables V, let ΣV be some set of 2|V |

logically distinct atoms containing exactly the variables in V. For example, if V = {p, q},
we can let ΣV be the set of the four atoms shown below:

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q.

One simple convention is to assume that the propositional variables in an atom occur from
left to right in lexical order. If V is the empty set, then ΣV contains just the formula true.

A finite, nonempty sequence of atoms form a word. Each possible word corresponds
to some collective state-by-state behaviour of the selected variables in a finite interval. For
our interval-oriented application of words we never utilise the word containing no letters
(commonly denoted ǫ in the literature).

7.1. Deterministic Finite-State Semi-Automata. We define a deterministic finite-
state semi-automaton S to be a quadruple (VS , QS , q

I
S , δS) consisting of a finite set

of propositional variables VS , together with a finite, nonempty set of control states
QS = {q1, . . . , qm}, an initial control state qIS ∈ QS and a deterministic transition
function δS : QS×ΣVS

→ QS. The sets VS and QS must be disjoint, i.e., VS ∩QS = ∅. We
use propositional variables q1, . . . , qm to denote control states since this helps when express-
ing the semi-automaton’s behaviour in PITL. A run on a finite word α1 . . . αk in Σ+

VS
with

k atoms is a sequence of k control states q′1 . . . q
′
k all in QS with q′1 = qIS and δS(q

′
i, αi) = q′i+1

for each i : 1 ≤ i < k. Hence the semi-automaton makes just k − 1 transitions and conse-
quently ignores the details of the last atom αk. Therefore the semi-automaton differs from a
conventional automaton which would have a run with k+1 control states involving k transi-
tions and the examination of all k atoms. Furthermore, the definition of a semi-automaton
has no set of final control states and hence no acceptance condition. We abbreviate the set
of atoms ΣVS

as ΣS since the elements of ΣVS
serve as S’s letters.

The semi-automaton S’s behaviour is expressible in temporal logic by regarding each
control state qi to be a propositional variable which is true when qi is S’s current control
state. Before showing how S’s runs are expressed in PTL, we first define a state formula
initS which ensures that the initial control state is qIS and also a transitional formula TS in

NL1 which captures the behaviour of δS :

initS : qIS ∧

∧

q∈QS : q 6=qI
S

¬q

TS :
∧

q∈QS

(
(© q) ≡

∨

q′∈QS

∨

α∈ΣS : δS(q′,α)=q

(q′ ∧ α)
)
.

If we assume finite time, then a run starting at S’s initial control state is expressed as
the PTL formula initS ∧ ✷(more ⊃ TS) or alternatively as the chain formula initS ∧

(TS until empty) in PTLu.

7.2. Deterministic Finite-State Automata. Semi-automata do not have an acceptance
test and hence do not have associated accepting runs. We therefore now define a determin-
istic finite-state automaton which includes an acceptance test. As we shortly illustrate,
this can be constructed to recognise a given PITL formula in a finite interval. Let M be a
quintuple (VM , QM , qIM , δM , τM ). The first four entries are as for a semi-automaton. The



20 B. MOSZKOWSKI

last entry τM : QM → 2ΣM is a conditional acceptance function from control states to
sets of letters. A run is the same as for a semi-automaton. Our notion of acceptance of a
word does not use a conventional set of final control states but instead has the function τM
make all control states conditionally final. An accepting run on a finite word α1 . . . αk

in Σ+
M with k atoms is any run of k control states q′1 . . . q

′
k with q′k ∈ τM (αk). Therefore, a

control state q ∈ QM is regarded as a final one only when the automaton sees an atom α

with α ∈ τM(q). A test for this is expressible as the state formula accM defined below:

accM :
∨

q∈QM

∨

α∈τM (q)

(q ∧ α).

If we assume finite time, an accepting run of M starting at M ’s initial control state is
expressed as the PTL formula initM ∧ ✷(more ⊃ TM ) ∧ fin accM or alternatively as the
chain formula initM ∧ (TM until (accM ∧ empty)) in PTLu. As a result of our convention
for runs and accepting runs, the automaton M ’s operation requires one state less than a
conventional one to accept a word. For example, it can accept one-letter words without the
need for any state transitions. In fact, such an automaton M only recognises words with at
least one letter (i.e., in Σ+

M). This is perfect when we utilise semi-automata and automata
to mimic PITL formulas since ITL intervals have at least one state.

The regular expressiveness of PITL with finite time ensures that any PITL formula B

can be recognised by some M . The set VB of propositional variables in B and the set QM

of M ’s control states are assumed to be distinct. Formally, we have the next valid formula
expressed in QPITL (defined in Section 2):

|= finite ⊃ B ≡ ∃q1, . . . , q|QM |.
(
initM ∧ ✷(more ⊃ TM ) ∧ fin accM

)
.

For instance, below is a sample automaton M to recognise finite intervals satisfying the
formula (skip ∧ p)⌢skip⌢skip⋆⌢(empty ∧ ¬p), which is semantically equivalent to the PTL
formula p ∧ ©©✸(empty ∧ ¬p):

VM = {p} (so ΣM = {p,¬p}) QM = {q1, q2, q3, q4} qIM = q1
δM (q1, p) = q2 δM (q1,¬p) = q4 δM (q2, p) = δM (q2,¬p) = q3
δM (q3, p) = δM (q3,¬p) = q3 δM (q4, p) = δM (q4,¬p) = q4
τM(q1) = τM (q2) = τM (q4) = {} τM(q3) = {¬p}

(7.1)

Here is an accepting run for the 5-letter word p¬p p p¬p: q1 q2 q3 q3 q3:

initM : q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4 accM : q3 ∧ ¬p
TM : (© q1) ≡ false ∧ (© q2) ≡ (q1 ∧ p)

∧ (© q3) ≡ (q2 ∨ q3) ∧ (© q4) ≡ ((q1 ∧ ¬p) ∨ q4)
Accepting run in PTL: finite ∧ initM ∧ ✷(more ⊃ TM ) ∧ fin accM

Below are the values of q1, . . . , q4 over an associated 5-state interval in which p has the
behaviour p¬p p p¬p:

(q1,¬q2,¬q3,¬q4) (¬q1, q2,¬q3,¬q4) (¬q1,¬q2, q3,¬q4)
(¬q1,¬q2, q3,¬q4) (¬q1,¬q2, q3,¬q4).

(7.2)

In each tuple, we show the unique active control state in boldface. For instance, q2 is true
in the second interval state since q1 ∧ p is true in the first one.
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7.3. ATAs for Semi-Automata and Automata. The runs of a deterministic semi-
automaton or deterministic automaton from the initial control state can alternatively be
expressed with an ATA (defined in §5.5). We will consider the case for a semi-automaton S,
but the technique is identical for an automaton M . Now PITL with finite time can express
all regular languages in Σ+

S . For each control state q of S, the set of words in Σ+
S for which

S starts in the initial control state qIS and ends in q is regular. The regular expressive-
ness of PITL with finite time ensures that there exists some corresponding PITL formula
CS,q which only has variables in the set VS and expresses this set of words. In principle,
such a formula can be obtained by adapting standard techniques for constructing a regular
expression from a conventional finite-state automaton. Now let the ATA DS denote the
conjunction

∧

q∈QS
(q ← CS,q). We express finite runs in PITL using finite ∧ ✷f DS . Here is

such an ATA for the earlier sample automaton in (7.1):

q1←(empty ∧ p) ∧ q2←(skip ∧ p) ∧ q3←(skip ∧ p)⌢skip⌢skip⋆ ∧ q4←(more ∧ ¬p).

Note that the case for q3 simplifies to q3 ← (p ∧ ©© true). The 5-tuple sample run in (7.2)
reflects behaviour in prefix subintervals for the previous illustrative word p¬p p p¬p. For
example, q2 is true in just the second interval state since the 2-state prefix subinterval is
the only prefix subinterval satisfying the formula skip ∧ p.

For any deterministic automaton M , let DM denote some ATA obtained from M in
exactly the same way as for a semi-automaton.

7.4. Formal Equivalence of the Two Representations of Runs. For finite time, the
PITL formula ✷f DS expresses all runs of S starting from its initial control state. Hence for
finite time this formula is semantically equivalent to the previous formulas for this behaviour
(e.g., the PTL formula initS ∧ ✷(more ⊃ TS)). Consequently, the next valid formula relates
the two ways of expressing S’s runs:

|= finite ⊃
(

✷f DS ≡
(
initS ∧ ✷(more ⊃ TS)

))

. (7.3)

The use of a single example (7.1) for both representations of S’s runs can be justified from
this. An automaton M ’s accepting runs can be expressed with finite ∧ (✷f DM ) ∧ fin accM .
The QPITL formula below is valid for any PITL formula B and automaton M which
recognises B:

|= finite ⊃ B ≡ ∃q1, . . . , q|QM |.
(
✷f DM ∧ fin accM

)
.

The valid PITLk formula (7.3) just given relates two ways of representing in temporal
logic the runs of a finite-state semi-automaton (that is, ✷f DS and initS ∧ ✷(more ⊃ TS)).
It includes an explicit assumption about finite time. The next Lemma 7.1 eliminates this
requirement and provides a way to re-express ✷f DS as an equivalent PTL formula in de-
ductions concerning infinite time. The proof of Lemma 7.1 only involves temporal logic and
requires no explicit knowledge about omega automata.

For the convenience of readers studying our deductions here and later on in Section 9,
Table 4 lists every PITL theorem and derived rule explicitly mentioned somewhere prior to
Appendix A. The appendix itself contains all needed PITL theorems and derived rules and
as well as their individual proofs.
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T1 ⊢ ✷f (A ⊃ A′) ⊃ (A⌢B) ⊃ (A′⌢B)
T3 ⊢ ✷(B ≡ B′) ⊃ (A⌢B) ≡ (A⌢B′)
DR4 ⊢ A ⇒ ⊢ ✷f A

DR12 ⊢ A ≡ B ⇒ ⊢ ✷A ≡ ✷B

DR13 ⊢ ✷A ⊃ B ⇒ ⊢ ✷A ⊃ ✷B

T18 ⊢ (A ∨ A′)⌢B ≡ (A⌢B) ∨ (A′⌢B)
T25 ⊢ ✷f (A ⊃ B) ⊃ (✷f A) ⊃ (✷f B)
T28 ⊢ ✷f (A ∧ B) ≡ ✷f A ∧ ✷f B

T30 ⊢ ✷f (A ≡ A′) ⊃ (A⌢B) ≡ (A′⌢B)
T37 ⊢ ✷f w ≡ w

T42 ⊢ (w ∧ empty)⌢A ≡ w ∧ A

T46 ⊢ ✷f ✷f A ≡ ✷f A

T55 ⊢ ✷f ✷A ≡ ✷✷f A

T58 ⊢ A⋆ ≡ (A⋆⌢empty) ∨ Aω

T62 ⊢ ✸f (more ∧ T ) ≡ more ∧ T

T63 ⊢ ✷f (more ⊃ T ) ≡ more ⊃ T

T68 ⊢ ✸f (skip ∧ T ) ≡ more ∧ T

T69 ⊢ (skip ∧ T )⌢A ≡ T ∧ ©A

T70 ⊢ T until A ≡ A ∨
(
T ∧ ©(T until A)

)

T71 ⊢ T until A ⊃ ✸A

Table 4: PITL theorems and derived rules mentioned before Appendix A

Lemma 7.1. For any deterministic finite-state semi-automaton S, the next PITLk equiv-
alence involving S’s ATA DS and a PTL formula is a PITL theorem:

⊢ ✷f DS ≡
(
initS ∧ ✷(more ⊃ TS)

)
. (7.4)

Proof.. The validity of implication (7.3), together with completeness for PITL with finite
time ensures that (7.3) is also a deducible theorem:

⊢ finite ⊃
(

✷f DS ≡
(
initS ∧ ✷(more ⊃ TS)

))

.

We then deduce from that and Inference Rule ✷f FGen the next theorem:

⊢ ✷f

(

✷f DS ≡
(
initS ∧ ✷(more ⊃ TS)

))

.

From this and some interval-based temporal reasoning about ✷f (using properties of the
underlying modal system K – see Appendix A.2) we can then deduce the equivalence below:

⊢ ✷f DS ≡ ✷f initS ∧ ✷f ✷(more ⊃ TS).

Let us now re-express✷f initS as the equivalent state formula initS (see PITL TheoremT37):

⊢ ✷f DS ≡ initS ∧ ✷f ✷(more ⊃ TS).

We also want to re-express ✷f ✷(more ⊃ TS) as the PTL formula ✷(more ⊃ TS). This can
be done by first re-expressing ✷f ✷ as ✷✷f (see PITL Theorem T55) to yield the equivalence
below:

⊢ ✷f DS ≡ initS ∧ ✷✷f (more ⊃ TS). (7.5)
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Let us now consider how to eliminate the operator ✷f in the subformula ✷✷f (more ⊃ TS).
The fact that any NL1 formula T only sees an interval’s first two states ensures that the
next equivalence is valid and also deducible (see PITL Theorem T62):

⊢ ✸f (more ∧ T ) ≡ more ∧ T .

A dual form (see PITL Theorem T63) is readily deduced for use with TS :

⊢ ✷f (more ⊃ TS) ≡ more ⊃ TS .

We employ this with Derived Rule DR12 to obtain an equivalence for eliminating the ✷f

operator in ✷✷f (more ⊃ TS):

⊢ ✷✷f (more ⊃ TS) ≡ ✷(more ⊃ TS). (7.6)

Equivalence (7.4)’s theoremhood, which is our immediate goal, then readily follows by
simple propositional reasoning from the deduced equivalences (7.5) and (7.6).

8. Compound Semi-Automata for Suffix Recognition

Let a compound semi-automaton R be a vector of semi-automata S1, . . . , Sn for some
n ≥ 1 with disjoint sets of control states. We take VR to be the set of propositional variables
in the semi-automata S1, . . . , Sn which are not also control states. The purpose of R is to
perform what we call suffix recognition. This is a way to determine which of an finite
interval’s suffix subintervals satisfy some given PITL formula B. Suffix recognition is a
stepping stone enabling us to subsequently perform the infix recognition already briefly
mentioned in §5.6. Later on in Section 9 this feature of R ensures that for a given PITLk

formula K with m right-chops (previously defined in §5.4), we can utilise m such compound
semi-automata to obtain an ATA for infix recognition to replace the left sides of K’s right-
chops with PTLu chain formulas (also introduced in §5.4). The n individual semi-automata
S1, . . . , Sn in R are meant to operate lockstep in parallel and so simultaneously make state
transitions. For each i : 1 ≤ i < n, we require for the set VSi+1

, which contains propositional
variables examined by Si+1, that VSi+1

⊆ VSi
∪ QSi

. Hence the control states of Si are
allowed occur within the letters for Si+1 and any semi-automata of higher index but not
vice versa. This enables each semi-automaton to optionally observe control states of all
semi-automata with lower index when it makes transitions. In our particular construction
of R, the set VR simply equals the set VB of propositional variables in the PITL formula
B and also equals the lowest-indexed semi-automata S1’s set VS1

of propositional variables
used to form the atoms ΣS1

. Let R’s ATA DR be a conjunction of the ATAs for the semi-
automata S1, . . . , Sn. It is not hard to check that DR obeys the ATA requirement limiting
where auxiliary variables can occur (as specified in the definition of ATAs in §5.5) and is
therefore well-formed.

We perform suffix recognition by exploiting standard techniques originally developed
by McNaughton [McN66] to construct deterministic omega automata. Choueka [Cho74]
later applied McNaughton’s insights to some constructions for automata on finite words.
Our discussion here likewise concerns finite-time behaviour and avoids omega automata.
Furthermore, this section deals with semantic issues but not deductions.

wil
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8.1. Overview of Construction of Compound Semi-Automaton. The compound
semi-automaton R to suffix recognise B is built from several modified copies of a determin-
istic automaton running lockstep in parallel. We also define an associated chain formula
GR. Here is a summary:

• We initially construct R and GR to just check whether B is true in any given finite suffix
subinterval of the overall finite interval in which R is run. Consequently, GR can be used
to mimic B.
• We first construct a deterministic finite-state automaton M (discussed in §7.2) to recog-
nise the regular language associated with B in finite time. Let n be the number of control
states, that is, n = |QM |.
• We do not use M directly but instead construct n+1 semi-automata S1, . . . , Sn+1 based
on M . The compound semi-automaton R is a vector of them.
• Our construction ensures that always at least one semi-automaton is in (its copy of)
M ’s initial control state and so available to start testing for B in the suffix subinterval
commencing at the current state.
• A suffix subinterval satisfies B iff there is exists a simulation of an accepting run of M
which starts in the subinterval’s first state, ends in its last one (the same as the overall
interval’s final state) and is formed by combining up to n+ 1 pieces of runs of the semi-
automata S1, . . . , Sn+1. The successive partial runs are performed on semi-automata of
decreasing index.

8.2. Construction of the Individual Semi-Automata. Let us now consider the details
of the n+1 semi-automata variants S1, . . . , Sn+1 of M . A semi-automaton Sk has its own

disjoint set QSk
= {qSk

1 , . . . , qSk
n } of copies of the n control states in M and is initialised

exactly as M would be and hence starts in (its copy of) M ’s initial control state. We let
Sk examine the control states of semi-automata with lower index (i.e., S1, . . . , Sk−1) when
it makes its transitions in lockstep with them. Hence, the set of propositional variables VSk

is the union of VM and
⋃

1≤j<k QSj
and all propositional variables in an atom α in ΣSk

are
therefore either in VM or are control states in the semi-automata S1, . . . , Sk−1.

We now define the transition function δSk
of each semi-automaton Sk in R for use

when all of the semi-automata operate in lockstep. The transition function δSk
: QSk

×ΣSk
→

QSk
is deterministic like M ’s, but more complicated. For each pair 〈qSk

i , α〉 in QSk
× ΣSk

,

there are two distinct possible cases based on the values of qSk

i and α. We now define these
cases and the associated transitions:

• The pair 〈qSk

i , α〉 is active: This occurs when for every j < k, the pair’s atom α

assigns the control variable q
Sj

i to be false. It corresponds to a situation where Sk is the

semi-automaton of lowest index in R currently in (its own copy q
Sk

i of) M ’s control state
qMi and itself also called active.

Let β ∈ ΣM be the atom in ΣM obtained from α by only using the propositional
variables in VM and thereby ignoring the control variables in α. Now we have that

δM (qMi , β) = qMj for some qMj ∈ QM . Define the transition δSk
(qSk

i , α) to be the corre-

sponding q
Sk

j ∈ QSk
.

• The pair 〈qSk

i , α〉 is inactive: If the first case does not apply, then Sk shares (its copy

of) M ’s control state qMi with some semi-automaton of lesser index as seen by Sk via
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the atom α. We define the transition δSk
(qSk

i , α) to equal the initial control state of Sk.
Hence Sk makes a transition from its current control state to (its copy of) M ’s initial
control state so in effect reinitialises itself. Our construction of R ensures that some other
semi-automaton with lower index which is both active and presently in (its own copy of)
the same control state qMi of M now indeed takes over from Sk. We also say that Sk is
inactive and that the two semi-automata merge.

Figure 1 gives an example of an deterministic automaton M with four states and a run of
an associated compound semi-automaton with five semi-automata S1, . . . , S5.

Recall that our representation of M ’s n control states using n propositional variables
qM1 , . . . , qMn has exactly one of the variables being true at any time. Hence we represent the n
control states for a semi-automata Sk using n propositional variables qk1 , . . . , q

k
n. Therefore

the subset of atoms in ΣSk
extracted from R’s composite runs always have exactly one

variable q
j
i true for each semi-automaton Sj with j < k. This property of the runs follows

by induction on k. In contrast, the full set of atoms for ΣSk
includes for each index j

with j < k some pathological atoms in which none or more than one of the q
j
i are true.

Nevertheless, actual runs of Sk in R never encounter such atoms so we need not concern
ourselves with the precise way δSk

is defined to handle them in transitions.

8.3. Formalisation of Suffix Recognition in PITL. The following lemma formalises the
finite-time behaviour of the compound semi-automaton R in PITL and uses an associated
chain formula GR in PTLu which we construct in the proof:

Lemma 8.1. For any PITL formula B, there exists a compound semi-automaton R with
VR = VB and associated ATA DR and chain formula GR such that R’s control variables are
not in B and the next implication is valid:

|= finite ∧ ✷f DR ⊃ ✷(B ≡ GR). (8.1)

This lemma provides a way to replace right-instances of a PITL formula B by a chain
formula GR in formulas restricted to finite time. However, it serves as basis for later
replacing lefthand sides of chops with chain formulas. The lemma is entirely semantic and
so does not depend on any particular axiom system or deductions. We will later readily
deduce the lemma’s implication (8.1) by invoking the completeness for PITL with finite
time to obtain immediate theoremhood of the implication and some valid variants of it.
Hence, from the standpoint of axiom systems and deductions, there is no need to know
Lemma 8.1’s proof or even any further details of R, DR and GR.

Proof of Lemma 8.1.. The construction for R ensures that the set union QS1
∪· · ·∪QSn+1

of control variables of the semi-automata S1, . . . , Sn+1 contains no elements of the set VB

of propositional variables occurring in B.
We will obtain the chain formula GR by mimicking an accepting run ofM . This involves

combining together pieces of runs from the some of the semi-automata S1, . . . , Sn+1. It
needs at most n merges since when two semi-automata merge, only the one of lesser index
continues testing. The chain formula GR, when suitably combined with the compound semi-
automaton R’s ATA, will capture the needed behaviour which we previously formalised in
the implication (8.1).

We first define state formulas to test for active and merging semi-automata and also
introduce a modified acceptance test:
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Sample formula B : (skip ∧ p)⌢skip⌢skip⋆⌢(empty ∧ ¬p)

Sample automaton M for B (already presented in (7.1)):

VM = {p} (so ΣM = {p,¬p}) QM = {q1, q2, q3, q4} qIM = q1
δM (q1, p) = q2 δM (q1,¬p) = q4 δM (q2, p) = δM (q2,¬p) = q3
δM (q3, p) = δM (q3,¬p) = q3 δM (q4, p) = δM (q4,¬p) = q4
τM (q1) = τM (q2) = τM (q4) = {} τM (q3) = {¬p}
initM : q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4 accM : q3 ∧ ¬p
TM : (© q1) ≡ false ∧ (© q2) ≡ (q1 ∧ p)

∧ (© q3) ≡ (q2 ∨ q3) ∧ (© q4) ≡ ((q1 ∧ ¬p) ∨ q4)

Control state behaviour of each Sk in sample 8-state interval σ:
State in σ p’s value S1 S2 S3 S4 S5

σ0 ¬p 1 1 1 1 1
σ1 p 4 1 1 1 1
σ2 ¬p 4 2 1 1 1
σ3 p 4 3 4 1 1
σ4 p 4 3 1 2 1
σ5 ¬p 4 3 2 S2←3 1
σ6 p 4 3 S2←3 1 4
σ7 ¬p 4 3 1 2 1

Value of acc′k for each Sk at end in state σ7:

false true false false false

Some explanations about the sample 8-state interval σ0 . . . σ7:
Only control states’ indices are shown (e.g., 1 for q1).
Active semi-automata are shown in boldface.
All control states used in any accepting runs of M are underlined.
“S2←” shows merge into semi-automaton S2 in accepting run for M .

Compound accepting runs of M to recognise B:

Suffix subinterval σ1 . . . σ7 (S2: σ1σ2σ3σ4σ5σ6σ7): q1, q2, q3, q3, q3, q3, q3
︸ ︷︷ ︸

S2

Suffix subinterval σ3 . . . σ7 (S4: σ3σ4, S2: σ5σ6σ7): q1, q2
︸ ︷︷ ︸

S4

, q3, q3, q3
︸ ︷︷ ︸

S2

Suffix subinterval σ4 . . . σ7 (S3: σ4σ5, S2: σ6σ7): q1, q2
︸ ︷︷ ︸

S3

, q3, q3
︸ ︷︷ ︸

S2

Figure 1: Sample behaviour of compound semi-automaton in 8-state interval

• activek: True iff semi-automaton Sk is active.

activek
def
≡

∨

1≤i≤n+1

(
q
Sk

i ∧

∧

1≤j<k

¬q
Sj

i

)
.
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• mergej,k: True iff the active semi-automaton Sj and inactive semi-automaton Sk merge.

mergej,k
def
≡

∨

1≤i≤n+1

(q
Sj

i ∧ q
Sk

i ∧ activej ∧ ¬activek).

It follows from the definition of an active semi-automaton that j < k.
• acc′

k: Let us also define a propositional test acc′k based on the state formula accM for
checking M ’s conditional acceptance test τM . We use a substitution instance of accM to
adapt it to Sk and its own copies of M ’s control states.

acc′k
def
≡ (accM )

q
Sk
1

,...,q
Sk
n

qM
1

,...,qMn
.

Note that a semi-automaton S has no conditional acceptance test τS and indeed the role
of acc′k here somewhat differs from that of accM .

As usual, for an individual semi-automaton Sk in the compound semi-automaton R, the
state formula initSk

tests for the initial control state of Sk and the NL1 formula TSk
expresses

the transition function δSk
of Sk in temporal logic.

Let us now inductively define for each pair j, k : 1 ≤ j ≤ k ≤ n + 1 a chain formula
G′

k,j to be true iff a run segment starts with currently active semi-automaton Sk in some

unspecified control state, involves exactly j active automata (i.e., j − 1 mergers) and ends
with acceptance of the word seen.

G′
k,1 : (activek ∧ TSk

) until (acc ′k ∧ empty)

G′
k,j+1 : (activek ∧ TSk

) until
∨

1≤i<k

(
mergei,k ∧ G′

i,j

)
.

For example, the chain formula initS1
∧ active1 ∧ G′

1,1 corresponds to an accepting run
of M in which the semi-automaton S1 recognises B on its own. The conjunction initS2

∧

active2 ∧ G′
2,2 corresponds to an accepting run of M involving first semi-automaton S2

and then semi-automaton S1. The semi-automaton S2 starts recognising B and eventually
merges with semi-automaton S1 which completes the accepting run.

Now let us construct from the chain formulas G′
k,j the chain formula GR specifying an

accepting run involving some of the n+1 semi-automata to recognise the PITL formula B.
Like in the examples, we start in some active copy of M ’s initial control state:

GR :
∨

1≤k≤n+1

(
initSk

∧ activek ∧
∨

1≤j≤k G
′
k,j

)
.

The construction of the compound semi-automaton R together with DR and GR ensures
the desired validity of implication (8.1).

To assist readers, we list in Table 5 a variety of variables and where they are introduced.

9. Reduction of PITL to PTL with Until

Most of the remaining part of the PITL completeness proof concerns using compound semi-
automata to show right-completeness for PITLk by reduction to PTLu. Recall from §5.4
that any chop construct in a formula A is a right-chop iff it does not occur in another chop’s
left operand or in a chop-star.

The PITL theorems mentioned here in proofs are found in Table 4 in §7.4 and also
Appendix A.
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Variable names Category Where defined

A,A′, B,C Arbitrary PITL formulas §2
α, β Atoms (letters) §7
accM State formula for automaton M ’s acceptance §7.2
D,D′ Auxiliary temporal assignments (ATA) §5.5
DS ,DM ,DR ATA for use in expressing runs of S, M and R §7.3, §8
δS , δM Deterministic transition function §7.1, §7.2

for semi-automaton S and automaton M

G,G′ Chain formulas §5.4
initS , initM State formula to force the initial control state §7.1, §7.2

of semi-automaton S and automaton M

K,K ′ PITLk formulas §5.3
M Deterministic finite-state automaton §7.2
p, p′, q, r Propositional variables §2
QS, QM Sets of control states of semi-automaton S §7.1, §7.2

and automaton M

R Compound finite-state semi-automaton §8
S Deterministic finite-state semi-automaton §7.1
ΣV Atoms (letters) formed from variables in set V §7
ΣS,ΣM Atoms tested by semi-automaton S and automaton M §7.1, §7.2
T, T ′ NL1 formulas §5.1
TS, TM NL1 formula for transitions of semi-automaton S §7.1, §7.2

and automaton M

τM Conditional acceptance test for automaton M §7.2
V Finite set of propositional variables §2
VA, VS , VM , VR Finite set of propositional variables in PITL §2, §7.1, §7.2, §8

formula A and in atoms of semi-automaton S,
automaton M and compound semi-automaton R

w,w′ State formulas §2
X,X ′ PTL formulas §2
Y, Y ′ PTLu formulas §5.2

Table 5: Naming conventions for different variables

9.1. Application of Suffix Recognition, Right-Chops and Chain Formulas. The
next Lemma 9.1, which employs the compound semi-automaton R, generalises suffix recog-
nition to infix recognition for checking which of a (possibly infinite-time) interval’s finite-
time infix subintervals satisfy some given PITL formula by instead using a chain formula.

Lemma 9.1. For any PITL formula B, there exists a compound semi-automaton R with
VR = VB, associated ATA DR and chain formula GR such that R’s control variables are
not in B and the next formula is a PITL theorem:

⊢ ✷f DR ⊃ ✷✷f (B ≡ GR). (9.1)

Proof.. Lemma 8.1 ensures the validity of the implication below for some compound semi-
automaton R, associated ATA DR and chain formula GR:

|= finite ∧ ✷f DR ⊃ ✷(B ≡ GR).
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This and completeness for PITL with finite time (Theorem 2.2) ensures the next implica-
tion’s theoremhood:

⊢ finite ⊃
(
✷f DR ⊃ ✷(B ≡ GR)

)
.

This and Inference Rule ✷f FGen yield the next formula:

⊢ ✷f
(
✷f DR ⊃ ✷(B ≡ GR)

)
.

Simple reasoning about ✷f (see PITL Theorem T25) results in the following:

⊢ ✷f ✷f DR ⊃ ✷f ✷(B ≡ GR).

We re-express ✷f ✷f DR as ✷f DR and commute ✷f ✷ (see PITL Theorems T46 and T55) to
obtain our goal (9.1).

The lemma below later plays a key role in reducing right-chops in a PITLk formula to
PTLu formulas by first replacing their left sides with chain formulas in PTLu:

Lemma 9.2. For any PITL formulas B and C, there exists a compound semi-automaton
R with VR = VB, associated ATA DR and chain formula GR such that R’s control variables
are not in B or C and the next formula is deducible as a right-theorem:

⊢rt ✷f DR ⊃ ✷
(
(B⌢C) ≡ (GR

⌢C)
)
. (9.2)

Proof.. Lemma 9.1 yields R, DR, GR and the next implication for infix recognition of B:

⊢ ✷f DR ⊃ ✷✷f (B ≡ GR). (9.3)

Note that this has no right variables. We also employ the next implication which is an
instance of PITL Theorem T30 and concerns interval-based reasoning about the left of
chop:

⊢rt ✷f (B ≡ GR) ⊃ (B⌢C) ≡ (GR
⌢C). (9.4)

Inference Rule ✷Gen then obtains from implication (9.4) the formula below:

⊢rt ✷
(
✷f (B ≡ GR) ⊃ (B⌢C) ≡ (GR

⌢C)
)
.

This with PTL-based reasoning involving the valid PTL formula ✷(p ⊃ q) ⊃
(
(✷ p) ⊃ (✷ q)

)

with Axiom VPTL, where p is replaced by ✷f (B ≡ GR) and q by (B⌢C) ≡ (GR
⌢C),

together with modus ponens results in the following:

⊢rt ✷✷f (B ≡ GR) ⊃ ✷
(
(B⌢C) ≡ (GR

⌢C)
)
. (9.5)

Implications (9.3) and (9.5) and simple propositional reasoning yield our goal (9.2).

Lemma 9.3. Any PITLk formula K in which the left sides of all right chops are chain
formulas is deducibly equivalent to some PTLu formula Y , that is, ⊢rt K ≡ Y .

Proof.. Starting with K’s right-chops not nested in other right-chops, we inductively
replace them by equivalent PTLu formulas. More precisely, if n is the number of K’s
right chops, then we use n applications of Lemma 5.2 and the Right Replacement Rule
(Lemma 4.2) to show that K is deducibly equivalent to some PTLu formula Y (i.e., ⊢rt K ≡
Y ).
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For example, suppose K is (G1
⌢skip) ∨

(
G2

⌢(G3
⌢w)

)
and hence has 3 right-chops.

We could start by first re-expressing either G1
⌢skip or G3

⌢w by an equivalent PTLu for-
mula. For instance, if G2 is the chain formula p until empty and G3 is the chain formula
q until empty , then G3

⌢w will be replaced by the equivalent PTLu formula q until w. Af-
ter this, G2

⌢(G3
⌢w) will first reduce to G2

⌢(q until w) and finally to the PTLu formula
p until (q until w).

9.2. Proof of the Main Completeness Theorem. We now establish right-completeness
for PITLk and then use this to obtain right-completeness for PITL.

Lemma 9.4. Any valid PITLk formula can be deduced as a right-theorem.

Proof.. We show that a right-consistent PITLk formula K is satisfiable. Our proof trans-
forms K to a PTLu formula. Let m equal the number of K’s right-chops. We employ m

compound semi-automata to obtain ATAs for systematically replacing the left operands of
K’s right-chops by PTLu chain formulas. Note that if m = 0, then K has no chops but
perhaps skip so K itself is in PTL. We will construct a sequence of m+ 1 PITLk formulas
K ′

1, . . . , K
′
m+1. In the final one K ′

m+1, left operands of all right-chops are chain formulas so
K ′

m+1 is deducibly equivalent to some PTLu formula by Lemma 9.3. For example, suppose

K has the form (B1
⌢w) ⊃

(
B2

⌢(B3
⌢skip)

)
. Then K has 3 right-chops so m equals 3 and

K ′
4 has the form (G1

⌢w) ⊃
(
G2

⌢(G3
⌢skip)

)
, where G1, G2 and G3 in K ′

4’s 3 right-chops’
left sides are all chain formulas.

Let K ′
1 be K. For each i : 1 ≤ i ≤ m, we choose a right-chop in K ′

i. This has the form
Bi

⌢K ′′
i for some PITL formula Bi and PITLk formula K ′′

i . Lemma 9.2 yields a compound
semi-automaton R′

i, ATA DR′
i
and a chain formula GR′

i
for which the next right-theorem is

deducible:
⊢rt ✷f DR′

i
⊃ ✷

(
(Bi

⌢K ′′
i ) ≡ (GR′

i

⌢K ′′
i )
)
. (9.6)

We employ Lemma 4.1 concerning replacement of right-instances to relate K ′
i and K ′

i+1 by
replacing the selected Bi

⌢K ′′
i by GR′

i

⌢K ′′:

⊢rt ✷
(
(Bi

⌢K ′′
i ) ≡ (GR′

i

⌢K ′′
i )
)
⊃ K ′

i ≡ K ′
i+1.

This and implication (9.6) together ensure the right-theorem ⊢rt ✷f DR′
i
⊃ (K ′

i ≡ K ′
i+1).

Without loss of generality, assume the control variables in the compound semi-automata
R′

1, . . . , R
′
m are distinct. We deduce from the m implications ⊢rt ✷f DR′

i
⊃ (K ′

i ≡ K ′
i+1) just

mentioned the next right-theorem:

⊢rt
∧

1≤i≤m(✷f DR′
i
) ⊃ K ≡ K ′

m+1. (9.7)

The left operand of each right-chop in K ′
m+1 is a chain formula. Hence by Lemma 9.3,

we can deduce the equivalence of K ′
m+1 and some PTLu formula Y to obtain the PITL

right-theorem ⊢rt K ′
m+1 ≡ Y . By this and implication (9.7), the next implication is a

right-theorem:
⊢rt

∧

1≤i≤m(✷f DR′
i
) ⊃ K ≡ Y . (9.8)

Right-variables in the original formula K do not occur in any DR′
i
since the construction of

each DR′
i
only involves the left sides of K’s right-chops. The right-variables in K are still

right-variables in Y and implication (9.8). Now K’s right-consistency and m applications
of Lemma 5.4 ensure the right-consistency of K ∧

∧

1≤i≤m(✷f DR′
i
). This is re-expressible

as K ∧ ✷f D′, where the ATA D′ is the conjunction of the ATAs DR′
1
, . . . ,DR′

m
(we use



A COMPLETE AXIOM SYSTEM FOR PROPOSITIONAL INTERVAL TEMPORAL LOGIC 31

PITL Theorem T28). Hence the formula K ∧ ✷f D′ is right-consistent. We deduce the
equivalence of ✷f D′ and some PTL formula X as ⊢ X ≡ ✷f D′ by invoking Lemma 7.1 on
the individual basic semi-automata in each R′

i to re-express each one’s runs in PTL and
then forming the conjunction of results. Now D′ and X have the same variables. Hence the
equivalence X ≡ ✷f D′ has no right-variables because of ✷f D′ and is a right-theorem (i.e.,
⊢rt X ≡ ✷f D′). This with the equivalence ⊢rt ✷f D

′ ≡
∧

1≤i≤m(✷f DR′
i
) and implication (9.8)

then yield the equivalence of formulas K ∧ ✷f D′ and Y ∧ X as a right-theorem. Therefore
the PTLu formula Y ∧ X, like K ∧ ✷f D′, is right-consistent and by right-completeness for
PTLu (discussed in §5.2) is satisfiable as is K.

We now prove our main result Theorem 3.2 about right-completeness for PITL:

Proof of Theorem 3.2.. Let A be a right-consistent PITL formula. Lemma 9.4 ensures
right-completeness for PITLk. Hence by this and Lemma 6.2, there exists some PITLk for-
mula K having the same variables and right-variables as A and with the deducible equiva-
lence ⊢rt A ≡ K. Now K like A is right-consistent and so satisfiable by right-completeness
for PITLk (Lemma 9.4). Hence A is satisfiable.

As we already remarked in Section 3, the completeness proof can be regarded as two
parallel proofs. The simpler one uses the extra inference rule (3.2) mentioned there to
avoid right-theorems and right-completeness. The more sophisticated proof uses right-
theoremhood instead of the inference rule and ensures that any valid PITL formula is not
just a theorem but a right-theorem.

This concludes the PITL completeness proof.

10. Some Observations about the Completeness Proof

We now consider various issues concerning the new PITL axiom system and techniques
employed in the completeness proof. Most of the points address questions previously raised
by others.

10.1. Alternative Axioms for PTL. Axiom VPTL in Table 2 can optionally be replaced
by four lower level axioms. Readers may wish to skip over the details now given. One of
the lower level axioms is Taut in Table 3 permitting PITL formulas which are substitution
instances of conventional (nonmodal) tautologies. For example, from the valid propositional
formula p ⊃ (p ∨ q) follows ⊢ A ⊃ (A ∨ B), for any PITL formulas A and B. The other
three axioms involve PTL. These are Axioms F10 and F11 found in Table 3 and also
⊢ skip ⊃ finite. The three Axioms Taut, F10 and F11 together with the remaining PITL
axioms and inference rules in Table 2 then suffice to derive a slight variant proposed by
us in [Mos04] of the complete PTL axiom system D0X for © and ✸ (and ✷) of Gabbay
et al. [GPSS80], itself based on an earlier one DX of Pnueli [Pnu77]. We denote our D0X
variant here as D0X ′. It permits both finite and infinite time, whereas D0X assumes
infinite time. We previously did an explicit deduction of D0X ′ in our completeness proof
for PITL with just finite time as described in [Mos04]. However, for infinite time we need
the additional axiom ⊢ skip ⊃ finite because Axiom P6 (unlike Axiom F6 in Table 3) does
not suffice on its own to deduce ⊢ skip ≡ © empty to re-express skip using ©. Without
⊢ skip ⊃ finite, we can only deduce the PITL theorem ⊢ finite ⊃ (skip ≡ © empty) from
Axiom P6 together with the definition of © in terms of skip and chop. In addition, from
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D0X ′ (once deduced), we can obtain ⊢ (© empty) ⊃ finite. These two implications combined
with ⊢ skip ⊃ finite and simple propositional reasoning (involving Axiom Taut and modus
ponens) yield our goal ⊢ skip ≡ © empty .

10.2. Feasibility of Reduction from PITL to PTL. Some people have expressed se-
rious doubts about our proof’s technical feasibility owing to the significant gap in expres-
siveness between PITL and PTL. We therefore believe it is worthwhile to emphasis that in
spite of this gap, any PITL formula can be represented by some PTL formula containing
auxiliary variables. This is because conventional semantic reasoning about omega-regular
languages and omega automata ensures that for any PITL formula A, there exist conven-
tional nondeterministic omega automata (such as Büchi automata) which recognise A. For
example, we present in [Mos00] a decidable version of quantified ITL which includes QPITL
(defined earlier in Section 2) as a subset and then show how to encode formulas in Büchi
automata. Various deterministic omega automata (e.g., with Muller, Rabin and Streett
acceptance conditions) are also suitable for this. Such an automaton’s accepting runs can
be trivially encoded by some PTL formula X with auxiliary variables p1, . . ., pn repre-
senting the automaton’s control state. Hence the PITL formula A and the QPTL formula
∃p1 . . . pn.X are semantically equivalent, where ∃ is defined earlier in Section 2. Further-
more, the (quantifier-free) PITL implication X ⊃ A is valid and consequently any model
of X can also serve as one for A. Indeed the technique of re-expressing formulas in omega-
regular logics by means of nondeterministic and deterministic omega automata expressed
in versions of PTL (subsequently enclosed in a simple sequence of existential quantifiers)
is central to the completeness proofs for QPTL variants by Kesten and Pnueli [KP02] and
French and Reynolds [FR03]. A related approach can be used to reduce decidability of PTL
with the (full) until operator to PTL without until . This works in spite of the fact that
PTL with until is strictly more expressive as proved by Kamp [Kam68] (see also Kröger and
Merz [KM08]). We replace each until in a formula with an auxiliary variable which mimics
its behaviour along the lines of the two axioms for until previously mentioned in §5.2. For
example, when testing the satisfiability of the formula p ∧ ©(p until q) ∧ ¬(p until q), we
transform it into the formula below with an extra auxiliary variable r:

p ∧ © r ∧ ¬r ∧ ✷
(
r ≡ q ∨ (p ∧ © r)

)
∧ ✷(r ⊃ ✸ q).

10.3. Benefits of Restricted Chop-Stars in Chain Formulas. Lemma 9.4 states that
any valid PITLk formula can be deduced as a right-theorem. Within the proof of this lemma,
all chop-star formulas found in the PITLk formula K ′

m+1 only occur in chain formulas.
Such chop-star formulas therefore have the very restricted form (skip ∧ T )⋆ for expressing
the PITL-based version of until defined earlier in §5.2 for PTLu. The simplicity of these
chop-star constructs greatly helps us to reduce K ′

m+1 to the semantically equivalent PTLu

formula Y and show that their equivalence is a deducible theorem. Incidentally, in [Mos07]
we prove that any PITL formula (skip ∧ T )⋆ can be expressed in PTL as ✷(more ⊃ T ) and
make extensive use of this equivalence. In contrast, arbitrary chop-star formulas cannot
necessarily be re-expressed as semantically equivalent PTL formulas.
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10.4. Thomas’ Theorem and the Size of Deductions. Section 6 uses Thomas’ theo-
rem to re-express a PITL formula A as a semantically equivalent PITLk formula K. The
two known proofs of Thomas’ theorem by Thomas himself [Tho79] and Choueka and Pe-
leg [CP83] unfortunately do not ensure that K is in some sense natural and succinct or
even obtainable in a computationally feasible way. Therefore our completeness proof does
not guarantee simple deductions. The main problem concerns the difficulties in nontrivial
transformations on the underlying omega automata representing PITL formulas. Other
established completeness proofs for comparable omega-regular logics with nonelementary
complexity such as QPTL [KP95, KP02, FR03] currently share a similar fate. However,
our proof bypasses an explicit embedding of the intricate process of complementing nonde-
terministic omega automata.

10.5. Justification for Using ATAs in the Completeness Proof. Some readers will
wonder why we need ATAs introduced in §7.3 and do not just use the PTL-based represen-
tation of semi-automata and automata presented in §7.1 and §7.2. The main reason is that,
as far as we currently know, this requires a more intricate inference rule than our PITL-
based one ✷f Aux. In particular, a PTL-based rule suitable for our purposes must permit
the simultaneous introduction of multiple auxiliary propositional variables analogous to the
one French and Reynolds [FR03] were compelled to employ for QPTL without past time
(see also [KM08]).

11. Existing Completeness Proofs for Omega-Regular Logics

We now compare our axiomatic completeness proof with related ones for other omega-
regular logics. Here is a list of a number of such formalisms:

• Logics with nonelementary complexity:
− The Second-Order Theory of Successor (S1S) [Büc62]
− Regular Logic [Pae89] (This includes a PITL subset.)
− Various temporal logics with quantification:
∗ QPTL (with and without past time) (e.g., see [KM08])
∗ Quantified ITL with finite domains [Mos00]

• Logics with elementary complexity:
− Extended Propositional Linear-Time Temporal Logic (ETL) [Wol83]
− Linear-Time µ-Calculus (νTL) [BKP86, BB89]
− Dynamic Linear Time Temporal Logic [HT99]

Kröger and Merz [KM08] summarise QPTL and νTL and some axiomatisations. See also
the earlier surveys about the expressiveness of various formalisms such as PTL and QPTL
given by Lichtenstein et al. [LPZ85] and Emerson [Eme90]. Like S1S and QPTL, PITL has
nonelementary complexity (e.g., see our results in collaboration with J. Halpern in [Mos83a]
(reproduced in [Mos04])). In contrast, ETL and νTL have only elementary complexity.
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11.1. Omega-Regular Logics with Nonelementary Complexity. Let us consider ax-
iomatic completeness for omega-regular logics which, like PITL, have nonelementary com-
plexity. We later discuss some with elementary complexity in §11.2.

We are not the first to consider a version of quantifier-free PITL with infinite time.
Paech [Pae89] in a workshop paper presents completeness proofs for Gentzen-style axiom
systems for versions of a Regular Logic with branching-time and linear-time and both finite
and infinite time (see also [Pae88]). The linear-time variant LRL can be regarded as PITL
with the addition of a binary temporal operator unless. Paech’s framework is presented
in a rather different way from ours to accommodate both branching-time and linear-time
models of time, with the overwhelming emphasis on the branching-time one. Perhaps more
significantly, the chop-star operator A∗ in LRL is limited, like Kleene star, to finitely many
iterations (we look at a closely related PITL subset, called by us PITLk, in §5.3). Due to
a theorem of Thomas [Tho79] (which we discuss and use in §5.3 and Section 6), LRL has
omega-regular expressiveness, although it is less succinct than full PITL. Paech’s restricted
chop-star does not support chop-omega’s infinite iteration. Indeed, Thomas’ theorem is
not at all mentioned in the completeness proof and does not serve as a bridge in the way
we apply it in Section 6. Paech’s stimulating and valuable presentation is quite detailed,
especially in the extended version [Pae88]. Nevertheless, in our opinion (based on many
years of experience with doing proofs in ITL), its treatment of LRL needs some clarification,
as the following points demonstrate:

• The unwinding of chop-star does not take into account that for induction over time to
work in PITL, individual iterations need to take at least two states. This contrasts
with our Axioms P9 and P10 in Table 2 and an analogous one which Bowman and
Thompson use in [BT03]. Kono’s tableaux-based decision procedure for PITL [Kon95]
likewise ensures that iterations have more than one state.
• The proof system includes nonconventional rules requiring some temporal formulas to be
in a form analogous to regular expressions.
• The main proof concerns a branching-time semantics. In contrast, only a couple of sen-
tences are devoted to extending the proof to a linear-time interval framework appropriate
for LRL.
• The completeness proof uses constructions involving deterministic automata for finite
words. It also mentions Thomas’ theorem which ensures omega-regular expressiveness
of LRL. Now the proof by Choueka and Peleg [CP83] of Thomas’ theorem using stan-
dard deterministic omega automata quite clearly shows the link between LRL and these
automata. However Paech does not discuss how the LRL completeness proof relates to
techniques previously developed by McNaughton [McN66] and others for building de-
terministic omega automata from deterministic automata for finite words in order to
recognise omega-regular languages. Some kind of explicitly described adaptation of such
methods seems to us practically unavoidable. In contrast, our proof quite clearly benefits
from this work as we discuss in detail in §8.
• Except for the LRL construct L0 (the same as empty in PITL), no derived interval-
oriented operators are defined (e.g, to examine prefix subintervals or to perform a test in
a finite interval’s final state). Moreover, it does not appear that the LRL proof system
was ever used for anything.
• One minor puzzling feature of the LRL axiom system is that in its stated form, the
linear-time proof rules for Paech’s unary construct ©A (which is actually the weak-next
operator ©w mentioned by us in Table 3) ensure that every state has a successor state.
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This clearly forces the linear-time variant to be limited to infinite state sequences. In
practice, such a requirement is counterproductive for LRL, which permits finite time and
in particular has a primitive finite-time construct L1 that is identical to our own construct
skip for two-state intervals. The LRL formula L∗1 is used in rules to force finite intervals.
The LRL proof rules for © which impose infinite time clash with rules containing the
formula L∗1 and likewise with rules having L0 to specify one-state intervals. However, the
difficulty with the LRL operator © and infinite intervals seems to be an easily correctable
oversight.

Unfortunately, no subsequent versions of Paech’s completeness proof for LRL with more
explanations and clarifications have been published. Indeed, the difficulties faced at the time
by Paech and others such as Rosner and Pnueli [RP86] (discussed below) when attempting
to develop complete axiomatisations of versions of ITL with infinite time were such that
subsequent published work in this area did not appear until over ten years later. Incidentally,
the manner of Paech’s proof based on Propositional Dynamic Logic (PDL) [FL79, HKT00]
and the associated Fischer-Ladner closures suggests that it could have connections with
much later research by Henriksen and Thiagarajan [HT99] on axiomatising Dynamic Linear
Time Temporal Logic, a formalism combining PTL and PDL which we shortly mention in
§11.2. On the other hand, our own PITL completeness proof here and our earlier one for
PITL with just finite time [Mos04] do not involve Fischer-Ladner closures.

Completeness proofs for logics such as S1S [Sie70], QPTL with past time [KP95, KP02]
and without past time [FR03] and one by us for quantified ITL with finite domains [Mos00]
use quantified formulas encoding omega automata and explicit deductions involving nontriv-
ial techniques to complement them. As we already noted in Section 1, our earlier axiomatic
completeness proof [Mos00] for quantified ITL with finite domains requires the use of quan-
tifiers and does not work when formulas were limited to have just propositional variables.
French and Reynold’s [FR03] axiom system for QPTL without past time contains a non-
trivial inference rule for introducing a variable number of auxiliary variables. This inference
rule is required by the automata-based completeness proof.

The axiomatic completeness proofs for the logics with quantification just mentioned
with nonelementary complexity involve using quantified auxiliary variables to re-express a
formula A as another semantically equivalent formula ∃p1 . . . pn.X, where ∃ for QPITL and
QPTL is defined earlier in Section 2. Here p1, . . . , pn are the auxiliary variables and X is
a formula in a much simpler logical subset, such as some version of (quantifier-free) PTL.
Axiomatic completeness for the subset is much easier to show than for the original logic.
Completeness is then proved by the standard technique of demonstrating that any consis-
tent formula A (i.e., not deducibly false) in the full logic is also satisfiable. In particular,
we deduce as a theorem the equivalence A ≡ ∃p1 . . . pn.X. Now from this, the assumed log-
ical consistency of A and simple propositional reasoning, we readily obtain consistency for
∃p1 . . . pn.X. Standard reasoning about quantifiers then ensures X is consistent. Complete-
ness for the logical subset yields a model for X which can also serve as one for A. Normally
in such completeness proofs, the formula X encodes some kind of omega automaton such as
a nondeterministic Büchi automata. The details are not relevant for our purposes here. The
deduction of the equivalence A ≡ ∃p1 . . . pn.X in these proofs has always involved explicitly
embedding nontrivial techniques for manipulating such omega automata.

In contrast to our approach, most of the established axiomatic completeness proofs
for logics with nonelementary complexity need quantifiers. The one exception is Paech’s
Regular Logic, which does not have quantifiers and in linear time is like our PITLk, the
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subset of PITL without chop-omega defined earlier in §5.3. Our quantifier-free proof also
benefits from the hierarchical application of some previously obtained semantic theorems
and related techniques expressible as valid formulas in restricted versions of PITL (such as
PITL with just finite time). This largely spares us from explicit, tricky reasoning about
complementing omega automata. Once we have ensured axiomatic completeness for these
versions of PITL, valid formulas in them can be immediately deduced as theorems. For
example, we invoke (without proof) the theorem of Thomas at the end of [Tho79] to show
that PITLk has the same expressiveness as full PITL. Our completeness proof then combines
this result with completeness for PITLk to demonstrate that any PITL formula is deducibly
equivalent to one in PITLk.

Our completeness proof for PITL with both finite and infinite time does not actually
require a proof of the axiomatic completeness of a version of PTL with this time model
because Axiom VPTL in Table 2 includes all substitution instances of valid PTL formulas.
For our purposes, even axiomatic completeness for PTLu can be based on a reduction to PTL
which invokes Axiom VPTL. However, as we noted in §10.1, some alternative, lower level
axioms for the PITL axiom system can be used which would actually involve the reliance
on a complete PTL axiom system. Our older axiom system for PITL with just finite time
in Table 3 includes explicit axioms of this sort but of course can be readily modified to
similarly use just a version of Axiom VPTL for finite time.

Even if we choose to use the alternative axioms and therefore explicitly rely on some
provably complete PTL axiom system, the proofs are fairly easy to obtain via tableaux
and other means (e.g., see Gabbay et al. [GPSS80], Lichtenstein and Pnueli [LP00], Kröger
and Merz [KM08] and Moszkowski [Mos07]). Such methods often have associated practical
decision procedures which in many cases are not so hard to implement. This contrasts
with the explicit encoding in deductions of much more difficult automata-theoretic and
combinatorical techniques to complement omega-regular languages in completeness proofs
for other omega-regular logics with nonelementary complexity such as S1S [Sie70] and two
versions of QPTL [KP02, FR03]. Furthermore, the completeness proofs for QPTL in any
case also rely on reductions to some form of axiomatic completeness for PTL (which, like
in our presentation, can be used without reproving it). Those QPTL axiom systems could
alternatively be modified to include a suitable version of our Axiom VPTL. So even if we
add a few extra axioms for PTL, we still feel justified in regarding our approach, which
is partly based on invoking Thomas’ theorem without having to encode a proof of it in
deductions, as indeed being much more implicit than previous completeness proofs for
omega-regular logics with nonelementary complexity such as S1S and QPTL.

Remark 11.1. As noted above, unlike previous automata-based approaches, ours avoids
explicitly defining omega automata and embedding various associated explicit deductions
concerning complicated proofs of some known results about them. Nevertheless, omega
automata can be used in a simple semantic argument ensuring that for any satisfiable PITL
formula, there exists some satisfiable PTL formula which implies it. This is because any
omega-regular language can be recognised by such an automaton which itself is encodable
in a QPTL formula of the form ∃p1 . . . pn.X

′, for some PTL formula X ′. So for any PITL
formula, there is some semantically equivalent QPTL formula of this kind and its quantifier-
free part therefore implies the PITL formula. Clearly, the PITL formula is satisfiable iff the
PTL subformula is.
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Rosner and Pnueli’s version of PITL [RP86] with infinite time and without chop-star
is not an omega-regular logic since it has the (more limited) expressiveness of conventional
PTL. Nevertheless, it in common with S1S, QPTL and PITL has nonelementary compu-
tational complexity. Rosner and Pnueli’s complete axiom system includes a complicated
inference rule which requires the construction of a table.

11.2. Omega-Regular Logics with Elementary Complexity. As we previously noted,
ETL, νTL and Dynamic Linear Time Temporal Logic have only elementary complexity.
Wolper [Wol82, Wol83] proves axiomatic completeness for ETL but Banieqbal and Bar-
ringer [BB86] later present a correction to Wolper’s axiom system and proof requiring a
table-based inference rule. Walukiewicz [Wal95] is the first to show axiomatic completeness
for the modal mu-calculus [Koz83, Sti01, BS06] which subsumes νTL. Kaivola’s [Kai95]
subsequent less complicated completeness proof for just νTL uses a partially semantic ap-
proach which has some similar aims to ours for PITL, but is nevertheless technically quite
different. It involves a clever normal form and tableaux. Every formula is shown to be de-
ducibly equivalent to one in the normal form. We believe that our proof, although longer, is
in certain respects more natural and straightforward than even Kaivola’s at the deductive
level.

Dynamic Linear Time Temporal Logic combines PTL and Propositional Dynamic Logic
(PDL) [FL79, HKT00] in a linear-time framework with infinite time. The axiom system
for this formalism has axioms concerning a variety of transitions [HT99]. The completeness
proof is an adaptation of an earlier one for PDL by Kozen and Parikh [KP81]. It uses
consistent sets of formulas.

12. Future Work

Our plans include using the axiom system as a hierarchical basis for completeness of PITL
variants with weak chop and chop-star taken as primitives as well as quantification. Further
possibilities include multiple time granularities (see our work [Mos95] for finite time), a
temporal Hoare logic and also logics such as QPTL (by encoding within QPTL a complete
axiom system for quantified PITL instead using of omega automata). The last would show
interval logics can be applied to point-based ones.

In [Mos04], we used semantic techniques to prove axiomatic completeness for PITL with
finite time by a simple reduction to an equally expressiveness subset called by us Fusion
Logic and closely related to Propositional Dynamic Logic (PDL) [FL79, HKT00]. Fusion
Logic, like some variants of PDL, uses discrete linear sequences of states instead of binary
relations as its semantic basis. Some of the semantic techniques we presented in Section 6
for reducing PITL to its expressively equivalent subset PITLk by eliminating instances of
chop-omega could shorten the completeness proof for Fusion Logic in [Mos04], since that
proof contains a similar elimination of chop-star by reduction down to PTL. Furthermore,
our completeness proof for PITL with just finite time in [Mos04] uses a separate complete
axiom system for Fusion Logic. This now seems unnecessary for the overall completeness
proof for PITL with finite time. Instead, the PITL axiom system should also suffice for
Fusion Logic in view of our positive experiences with the current much more streamlined
approach for PITL with infinite time.

The PITL operators ✸f and ✷f for finite prefix subintervals play a major role in our
new completeness proof and appear worthy of more consideration. For example, we have
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recently studied techniques for reasoning about them with time reversal [Mos11]. This is
a natural mathematical way to exploit the symmetry of time in finite intervals. We can
show the validity of suitable finite-time formulas concerning ✷f and prefix subintervals from
the validity of analogous ones for ✷ and suffix subintervals which themselves might even
be in conventional PTL with the operator until . The time symmetry considered here only
applies to finite intervals. However, a valid finite-time formula obtained in this way can
sometimes then be generalised to infinite intervals. One potential use of time reversal is
to provide an algorithmic reduction of suitable higher-level PITL formulas to lower-level
PTL ones for model checking. It also helps extend compositional techniques we described
in [Mos94, Mos96, Mos98].

Conclusions

We have presented a simple axiom system for PITL with infinite time and proved com-
pleteness using a semantic framework and reductions to finite time and PTL. Our axiom
system is demonstrably simpler than the one which Paech presents for LRL, even though
we support omega-iteration and LRL does not. Moreover, the explicitly stated deductions
in our proof can be regarded as being technically less complex then others for quantified
omega-regular logics with nonelementary complexity such as S1S and QPTL. This is be-
cause known completeness proofs for those logics involve an explicit deductive embedding
of proofs of theorems about complementing omega-regular languages and require reason-
ing about nontrivial algorithms (typically utilising quantifier-based encodings of omega
automata). Such completeness proofs therefore do not merely use one such theorem but
incorporate significant aspects of its complicated proof, in effect reproving it. In contrast,
we simply invoke Thomas’ theorem without referring to how it is proved. In our opinion,
this conforms much more to the conventional mathematical practice of using previously
established theorems, even hard-to-prove ones, as modular “black boxes”. However, we
appreciate that some readers will argue about the significance of this technical point.

The overall results we have described in our new completeness proof seem to complement
our recent analysis of PTL using PITL [Mos07]. One surprise during the development of
our completeness proof concerned how much explicit deductions could be minimised by
application of valid properties proved with semi-automata and automata on finite words.
Another unexpected benefit arose from the insights into time reversal.
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[Büc62] J. R. Büchi. On a decision method in restricted second-order arithmetic. In
Proc. Int. Congress on Logic, Methodology, and Philosophy of Science 1960,
pages 1–12. Stanford University Press, 1962.

[Che80] Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press,
Cambridge, England, 1980.

[Cho74] Yaacov Choueka. Theories of automata on omega-tapes: A simplified approach.
Journal of Computer and System Sciences, 8(2):117–141, 1974.

[CP83] Yaacov Choueka and David Peleg. A note on ω-regular languages. Bulletin of
the European Association for Theoretical Computer Science, 21:21–23, October
1983.

[CZ97] A. Cau and H. Zedan. Refining Interval Temporal Logic specifications. In
M. Bertran and T. Rus, editors, Transformation-Based Reactive Systems De-
velopment, volume 1231 of LNCS, pages 79–94. AMAST, Springer-Verlag, 1997.

[Dut95] Bruno Dutertre. Complete proof systems for first order Interval Temporal Logic.
In Proc. 10th Ann. IEEE Symp. on Logic in Computer Science (LICS ’95), pages
36–43, Los Alamitos, Calif., USA, June 1995. IEEE Computer Society Press.

[DZ08] Zhenhua Duan and Nan Zhang. A complete axiomatization of propositional
projection temporal logic. In 2nd IEEE/IFIP Int’l Symp. on Theoretical Aspects
of Software Eng. (TASE 2008), pages 271–278. IEEE Computer Society Press,
2008.

[DZK12] Zhenhua Duan, Nan Zhang, and Maciej Koutny. A complete axiomatization
of propositional projection temporal logic. Theor. Comp. Sci., 2012. doi:
10.1016/j.tcs.2012.01.026.

10.1016/j.tcs.2012.01.026


40 B. MOSZKOWSKI

[Eme90] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 16, pages 995–1072. Elsevier/MIT Press, Amsterdam, 1990.

[Fis11] Michael Fisher. An Introduction to Practical Formal Methods Using Temporal
Logic. John Wiley & Sons, 2011.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211, April 1979.

[FR03] Tim French and Mark Reynolds. A sound and complete proof system for QPTL.
In P. Balbiani, N-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances
in Modal Logic, volume 4, pages 127–148. King’s College Publications, London,
2003.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of
fairness. In Proc. 7th Ann. ACM Symp. on Principles of Programming Languages
(POPL ’80), pages 163–173. ACM, 1980.

[Gue07] Dimitar P. Guelev. Probabilistic interval temporal logic and duration calculus
with infinite intervals: Complete proof systems. Logical Methods in Computer
Science, 3(3), 2007.

[HC96] George E. Hughes and Max J. Cresswell. A New Introduction to Modal Logic.
Routledge, London, 1996.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
Cambridge, Massachusetts, 2000.

[HMM83] J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on
temporal intervals. In J. Diaz, editor, Proc. 10th Int’l. Colloquium on Automata,
Languages and Programming (ICALP ’83), volume 154 of LNCS, pages 278–291,
Berlin, 1983. Springer-Verlag.

[HT99] Jesper G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic.
Annals of Pure and Applied Logic, 96(1-3):187–207, 1999.

[IEE08] IEEE. Standard for the Functional Verification Language e, Standard 1647-
2008. ANSI/IEEE, New York, 2008. Produced by the e Functional Verification
Language Working Group.

[ITL12] Interval Temporal Logic webpages. http://www.tech.dmu.ac.uk/STRL/ITL/,
2012.

[Kai95] Roope Kaivola. Axiomatising linear time mu-calculus. In Insup Lee and Scott A.
Smolka, editors, CONCUR ’95, volume 962 of LNCS, pages 423–437. Springer-
Verlag, 1995.

[Kam68] Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, University of California, Los Angeles, 1968.
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Appendix A. Some PITL theorems and Their Proofs

This appendix gives a representative set of PITL theorems and derived inference rules
together with their proofs. Many are used either directly or indirectly in the completeness
proof for PITL with both finite and infinite time. We have partially organised the material,
particularly in §A.2, along the lines of some standard modal logic systems [Che80, HC96].

The PITL theorems and derived rules have a shared index sequence (e.g., T1–T3 are
followed by DR4 rather than DR1). We believe that this convention simplifies locating
material in this appendix and also in Table 4 found earlier in §7.4.

Proof steps can refer to axioms, inference rules, previously deduced theorems, derived
inference rules and also the following:

• assump.: Assumptions which are regarded as being previously deduced.
• Prop: Conventional nonmodal propositional reasoning (by restricted application of Ax-
iom VPTL) and modus ponens.
• ⊃-chain: A chain of implications.
• ≡-chain: A chain of equivalences.

10.1016/j.tcs.2012.02.011
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In principle, ⊃-chain and ≡-chain are subsumed by Prop but are used here to make
the reasoning more explicit.
• PITLF: Our assumption of axiomatic completeness for PITL with just finite time permits
any valid implication of the form finite ⊃ A.

A.1. Some Basic Properties of Chop.

We now consider deducing various simple properties of chop and the associated opera-
tors ✸f , ✷f , ✸ and ✷ which have a wide range of uses.

T1 ⊢ ✷f (A ⊃ A′) ⊃ (A⌢B) ⊃ (A′⌢B)
1 ⊢ B ⊃ B Prop
2 ⊢ ✷(B ⊃ B) 1,✷Gen
3 ⊢ ✷f (A ⊃ A′) ∧ ✷(B ⊃ B) ⊃ (A⌢B) ⊃ (A′⌢B) P8
4 ⊢ ✷f (A ⊃ A′) ⊃ (A⌢B) ⊃ (A′⌢B) 2,3,Prop

T2 ⊢ ✷(B ⊃ B′) ⊃ (A⌢B) ⊃ (A⌢B′)
1 ⊢ finite ⊃ (A ⊃ A) Prop
2 ⊢ ✷f (A ⊃ A) 1,✷f FGen
3 ⊢ ✷f (A ⊃ A) ∧ ✷(B ⊃ B′) ⊃ (A⌢B) ⊃ (A⌢B′) P8
4 ⊢ ✷(B ⊃ B′) ⊃ (A⌢B) ⊃ (A⌢B′) 2,3,Prop

T3 ⊢ ✷(B ≡ B′) ⊃ (A⌢B) ≡ (A⌢B′)
1 ⊢ ✷(B ≡ B′) ≡ ✷(B ⊃ B′) ∧ ✷(B′ ⊃ B) VPTL
2 ⊢ ✷(B ⊃ B′) ⊃ (A⌢B) ⊃ (A⌢B′) T2
3 ⊢ ✷(B′ ⊃ B) ⊃ (A⌢B′) ⊃ (A⌢B) T2
4 ⊢ ✷(B ≡ B′) ⊃ (A⌢B) ≡ (A⌢B′) 2,3,Prop

The following derived variant of Inference Rule ✷f FGen omits the subformula finite:

DR4 ⊢ A ⇒ ⊢ ✷f A

1 ⊢ A assump.
2 ⊢ finite ⊃ A 1,Prop
3 ⊢ ✷f A 2, ✷f FGen

The derived inference rule DR4 can also be referred to as ✷f Gen (analogous to the
inference rule ✷Gen).

DR5 ⊢ A ⊃ A′ ⇒ ⊢ (A⌢B) ⊃ (A′⌢B)
1 ⊢ A ⊃ A′ assump.
2 ⊢ ✷f (A ⊃ A′) 1,DR4
3 ⊢ ✷f (A ⊃ A′) ⊃ (A⌢B) ⊃ (A′⌢B) T1
4 ⊢ A⌢B ⊃ A′⌢B 2,3,MP

DR6 ⊢ A ≡ A′ ⇒ ⊢ (A⌢B) ≡ (A′⌢B)
1 ⊢ A ≡ A′ assump.
2 ⊢ A ⊃ A′ 1,Prop
3 ⊢ A⌢B ⊃ A′⌢B 2,DR5
4 ⊢ A′ ⊃ A 1,Prop
5 ⊢ A′⌢B ⊃ A⌢B 4,DR5
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6 ⊢ A⌢B ≡ A′⌢B 3,5,Prop

DR7 ⊢ A ⊃ B ⇒ ⊢ ✸f A ⊃ ✸f B

1 ⊢ A ⊃ B assump.
2 ⊢ A⌢true ⊃ B⌢true 1,DR5
3 ⊢ ✸f A ⊃ ✸f B 2,def. of ✸f

DR8 ⊢ A ≡ B ⇒ ⊢ ✸f A ≡ ✸f B

1 ⊢ A ≡ B assump.
2 ⊢ A⌢true ≡ B⌢true 1,DR6
3 ⊢ ✸f A ≡ ✸f B 2,def. of ✸f

DR9 ⊢ B ⊃ B′ ⇒ ⊢ (A⌢B) ⊃ (A⌢B′)
1 ⊢ B ⊃ B′ assump.
2 ⊢ ✷(B ⊃ B′) ✷Gen
3 ⊢ ✷(B ⊃ B′) ⊃ (A⌢B) ⊃ (A⌢B′) T2
4 ⊢ A⌢B ⊃ A⌢B′ 2,3,MP

DR10 ⊢ B ≡ B′ ⇒ ⊢ (A⌢B) ≡ (A⌢B′)
1 ⊢ B ≡ B′ assump.
2 ⊢ B ⊃ B′ 1,Prop
3 ⊢ A⌢B ⊃ A⌢B′ 2,DR9
4 ⊢ B′ ⊃ B 1,Prop
5 ⊢ A⌢B′ ⊃ A⌢B 4,DR9
6 ⊢ A⌢B ≡ A⌢B′ 3,5,Prop

DR11 ⊢ A ≡ B ⇒ ⊢ ✸A ≡ ✸B

1 ⊢ A ≡ B assump.
2 ⊢ true⌢A ≡ true⌢B 1,DR10
3 ⊢ ✸A ≡ ✸B 2,def. of ✸

DR12 ⊢ A ≡ B ⇒ ⊢ ✷A ≡ ✷B

1 ⊢ A ≡ B assump.
2 ⊢ ¬A ≡ ¬B 1,Prop
3 ⊢ ✸¬A ≡ ✸¬B 2,DR11
4 ⊢ ¬✸¬A ≡ ¬✸¬B 3,Prop
5 ⊢ ✷A ≡ ✷B 4,def. of ✷

DR13 ⊢ ✷A ⊃ B ⇒ ⊢ ✷A ⊃ ✷B

1 ⊢ ✷A ⊃ B assump.
2 ⊢ ✷(✷A ⊃ B) 1,✷Gen
3 ⊢ ✷(✷A ⊃ B) ⊃ (✷A ⊃ ✷B) VPTL
4 ⊢ ✷A ⊃ ✷B 2,3,MP

T14 ⊢ (A ∧ A′)⌢B ⊃ A⌢B

1 ⊢ A ∧ A′ ⊃ A Prop
2 ⊢ (A ∧ A′)⌢B ⊃ A⌢B 1,DR5

T15 ⊢ (A ∧ A′)⌢B ⊃ A′⌢B

1 ⊢ A ∧ A′ ⊃ A′ Prop
2 ⊢ (A ∧ A′)⌢B ⊃ A′⌢B 1,DR5
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T16 ⊢ (A ∧ A′)⌢B ⊃ (A⌢B) ∧ (A′⌢B)
1 ⊢ (A ∧ A′)⌢B ⊃ A⌢B T14
2 ⊢ (A ∧ A′)⌢B ⊃ A′⌢B T15
3 ⊢ (A ∧ A′)⌢B ⊃ (A⌢B) ∧ (A′⌢B) 1,2,Prop

T17 ⊢ (A ∧ A′)⌢B ≡ (A′ ∧ A)⌢B

1 ⊢ A ∧ A′ ≡ A′ ∧ A Prop
2 ⊢ (A ∧ A′)⌢B ≡ (A′ ∧ A)⌢B 1,DR6

T18 ⊢ (A ∨ A′)⌢B ≡ (A⌢B) ∨ (A′⌢B)

The proof for ⊃ is immediate from axiom P3. Here is the proof for ⊂:

1 ⊢ A ⊃ A ∨ A′ Prop
2 ⊢ A⌢B ⊃ (A ∨ A′)⌢B 1,DR5
3 ⊢ A′ ⊃ A ∨ A′ Prop
4 ⊢ A′⌢B ⊃ (A ∨ A′)⌢B 3,DR5
5 ⊢ (A⌢B) ∨ (A⌢B′) ⊃ (A ∨ A′)⌢B 2,4,Prop

T19 ⊢ A⌢B ⊃ ✸f A

1 ⊢ B ⊃ true Prop
2 ⊢ A⌢B ⊃ A⌢true 1,DR9
3 ⊢ A⌢B ⊃ ✸f A 2,def. of ✸f

T20 ⊢ ✸f empty
1 ⊢ empty⌢true ≡ true P5
2 ⊢ empty⌢true ⊃ ✸f empty T19
3 ⊢ ✸f empty 1,2,Prop

T21 ⊢ A⌢B ⊃ ✸B

1 ⊢ A ⊃ true Prop
2 ⊢ A⌢B ⊃ true⌢B 1,DR5
3 ⊢ A⌢B ⊃ ✸B 2,def. of ✸

A.2. Some Properties of ✷f involving the Modal System K and Axiom D.

The two pairs of operators ✷ and ✸ and ✷f and ✸f obey various standard properties of
modal logics. Axiom VPTL helps streamline reasoning involving ✷ and ✸. The situation
with ✷f and✸f is quite different since they lack a comparable axiom. Therefore, it is especially
beneficial to review some conventional modal systems which assist in organising various
useful deductions involving ✷f and ✸f .

Table 6 summarises some relevant modal systems, various associated axioms and infer-
ence rules. Chellas [Che80] and Hughes and Cresswell [HC96] give more details.

Within PITL, as in PTL, the operator ✷ can be regarded as the conventional unary
necessity modality L and the operator ✸ as the dual possibility operator M . The two
operators together fulfil the requirements of the modal system S4. We do not need to
explicitly prove versions of the S4 axioms in Table 6 for ✷ and ✸. Rather, any PITL
formula which is a substitution instance of a valid S4 formula involving ✷ and ✸ can
be readily deduced using the PITL proof system’s Axiom VPTL. Similarly, inference rules
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System Axiom or inference rule Axiom or rule name

K : M A
def
≡ ¬L¬A M-def

plus ⊢ L(A ⊃ B) ⊃ (LA ⊃ LB) K
plus ⊢ A ⇒ ⊢ LA N

T : K plus ⊢ LA ⊃ A T
S4 : T plus ⊢ LA ⊃ LLA 4
KD4 : K plus 4 and ⊢ LA ⊃ M A D

Table 6: Some standard modal systems

based on S4 can be obtained with Axiom VPTL, Inference Rule ✷Gen (which corresponds
to the inference rule N of S4 ) and modus ponens. Moreover, the PITL proof system’s
Axiom VPTL permits using any PITL formula which is a substitution instance of some
valid PTL formula which can also contain the PTL operator ©. In view of all this, we do
not give much further consideration to aspects of S4 with ✷ and ✸.

In contrast to ✷, the PITL operator ✷f does not have a comprehensive axiom analogous
to VPTL. Therefore, we need to explicitly prove in the PITL axiom system various modal
properties of ✷f and its dual ✸f . If only finite time is allowed, then ✷f and ✸f act as an S4
system. However, ✷f with infinite time permitted does not fulfil the requirements of S4, or
even those of the weaker modal systemT, because Axiom T fails. Instead, ✷f with infinite
time fulfils the requirements of the modal system KD4 which is strictly weaker than S4.

Here is a list of KD4 ’s axioms and inference rules and related PITL proofs for ✷f :

K ⊢ L(A ⊃ B) ⊃ (LA ⊃ LB) Theorem T25
N ⊢ A ⇒ ⊢ LA Derived Inf. Rule DR4
D ⊢ LA ⊃ M A Theorem T33
4 ⊢ LA ⊃ LLA Theorem T47

If only finite time is allowed, then the implication D does not need to be regarded as an
explicit axiom since it can be inferred from any proof system for S4.

Remark A.1. It is also worth noting that the related operators ✷i and ✸i (defined using
weak chop in Table 1 in Section 2) obey the modal system S4 even when infinite time is
permitted. However, we prefer to work with ✷f and ✸f since the use of strong chop simplifies
the overall PITL completeness proof.

Conventional model logics usually take L, not M , to be primitive. When we deduce
standard modal properties for ✷f and ✸f in our PITL axiom system, we let M , which corre-

sponds to ✸f , be primitive and define L to be M ’s dual (i.e., LA
def
≡ ¬M ¬A). This M -based

approach goes well with the PITL axioms for chop. Chellas [Che80] discusses some alterna-
tive axiomatisations of modal systems with M as the primitive although none correspond
directly to ours. For the system K, we can deduce implication (A.1) below for ✷f and ✸f (see
Theorem T23 later on) and then obtain from it together some other reasoning the more
standard axiom K just presented which only mentions L:

⊢ L(A ⊃ B) ⊃ (MA ⊃ MB). (A.1)
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The operators ✷ and ✷f together yield a multi-modal logic with two necessity constructs
L and L′ which are commutative:

⊢ LL′ A ≡ L′LA.

This corresponds to our Theorem T55 given later on.

Below are various theorems and derived inference rules about ✷f and ✸f for obtaining
the axioms M-def (Theorem T22) and K (Theorem T25) found in the modal system K.
The associated inference rule N was already proved above as Derived Inference Rule DR4.
We also prove the modal axiom D (Theorem T33).

In the next proof’s final step, recall that ≡-chain indicates a chain of equivalences:

T22 ⊢ ✸f A ≡ ¬✷f ¬A
1 ⊢ A ≡ ¬¬A Prop
2 ⊢ ✸f A ≡ ✸f ¬¬A 1,DR8
3 ⊢ ✸f ¬¬A ≡ ¬¬✸f ¬¬A Prop
4 ⊢ ✸f ¬¬A ≡ ¬✷f ¬A 3,def. of ✷f

5 ⊢ ✸f A ≡ ¬✷f ¬A 2,4,≡-chain

T23 ⊢ ✷f (A ⊃ B) ⊃ ✸f A ⊃ ✸f B

1 ⊢ ✷f (A ⊃ B) ⊃ (A⌢true) ⊃ (B⌢true) T1
2 ⊢ ✷f (A ⊃ B) ⊃ ✸f A ⊃ ✸f B 1,def. of ✸f

T24 ⊢ ✷f (¬B ⊃ ¬A) ⊃ (✷f A) ⊃ (✷f B)
1 ⊢ ✷f (¬B ⊃ ¬A) ⊃ (✸f ¬B) ⊃ (✸f ¬A) T23
2 ⊢ ✷f (¬B ⊃ ¬A) ⊃ (¬✸f ¬A) ⊃ (¬✸f ¬B) 1,Prop
3 ⊢ ✷f (¬B ⊃ ¬A) ⊃ (✷f A) ⊃ (✷f B) 2,def. of ✷f

T25 ⊢ ✷f (A ⊃ B) ⊃ (✷f A) ⊃ (✷f B)
1 ⊢ (A ⊃ B) ⊃ (¬B ⊃ ¬A) Prop
2 ⊢ ¬(¬B ⊃ ¬A) ⊃ ¬(A ⊃ B) 1,Prop
3 ⊢ ✷f

(
¬(¬B ⊃ ¬A) ⊃ ¬(A ⊃ B)

)
2,DR4

4 ⊢ ✷f
(
¬(¬B ⊃ ¬A) ⊃ ¬(A ⊃ B)

)

⊃ ✷f (A ⊃ B) ⊃ ✷f (¬B ⊃ ¬A)
T24

5 ⊢ ✷f (A ⊃ B) ⊃ ✷f (¬B ⊃ ¬A) 3,4,MP
6 ⊢ ✷f (¬B ⊃ ¬A) ⊃ (✷f A) ⊃ (✷f B) T24
7 ⊢ ✷f (A ⊃ B) ⊃ (✷f A) ⊃ (✷f B) 5,6,⊃-chain

DR26 ⊢ A ⊃ B ⇒ ⊢ ✷f A ⊃ ✷f B

1 ⊢ A ⊃ B assump.
2 ⊢ ✷f (A ⊃ B) 1,DR4
3 ⊢ ✷f (A ⊃ B) ⊃ (✷f A) ⊃ (✷f B) T25
4 ⊢ ✷f A ⊃ ✷f B 2,3,MP

DR27 ⊢ A ≡ B ⇒ ⊢ ✷f A ≡ ✷f B

1 ⊢ A ≡ B assump.
2 ⊢ A ⊃ B 1,Prop
3 ⊢ ✷f A ⊃ ✷f B 2,DR26
4 ⊢ B ⊃ A 1,Prop
5 ⊢ ✷f B ⊃ ✷f A 4,DR26
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6 ⊢ ✷f A ≡ ✷f B 3,5,Prop

T28 ⊢ ✷f (A ∧ B) ≡ ✷f A ∧ ✷f B

1 ⊢ (A ∧ B) ⊃ A Prop
2 ⊢ ✷f (A ∧ B) ⊃ ✷f A 1,DR26
3 ⊢ (A ∧ B) ⊃ B Prop
4 ⊢ ✷f (A ∧ B) ⊃ ✷f B 3,DR26
5 ⊢ A ⊃ (B ⊃ (A ∧ B)) Prop
6 ⊢ ✷f A ⊃ ✷f (B ⊃ (A ∧ B)) 5,DR26
7 ⊢ ✷f (B ⊃ (A ∧ B)) ⊃

(
✷f B ⊃ ✷f (A ∧ B)

)
T25

8 ⊢ ✷f A ∧ ✷f B ⊃ ✷f (A ∧ B) 6,7,Prop
9 ⊢ ✷f (A ∧ B) ≡ ✷f A ∧ ✷f B 2,4,8,Prop

T29 ⊢ ✷f (A ≡ B) ≡ ✷f (A ⊃ B) ∧ ✷f (B ⊃ A)
1 ⊢ (A ≡ B) ≡ (A ⊃ B) ∧ (B ⊃ A) Prop
2 ⊢ ✷f (A ≡ B) ≡ ✷f

(
(A ⊃ B) ∧ (B ⊃ A)

)
1,DR27

3 ⊢ ✷f
(
(A ⊃ B) ∧ (B ⊃ A)

)
≡ ✷f (A ⊃ B) ∧ ✷f (B ⊃ A) T28

4 ⊢ ✷f (A ≡ B) ≡ ✷f (A ⊃ B) ∧ ✷f (B ⊃ A) 2,3,≡-chain

T30 ⊢ ✷f (A ≡ A′) ⊃ (A⌢B) ≡ (A′⌢B)
1 ⊢ ✷f (A ≡ A′) ≡ ✷f (A ⊃ A′) ∧ ✷f (A′ ⊃ A) T29
2 ⊢ ✷f (A ⊃ A′) ⊃ (A⌢B) ⊃ (A′⌢B) T1
3 ⊢ ✷f (A′ ⊃ A) ⊃ (A′⌢B) ⊃ (A⌢B) T1
4 ⊢ ✷f (A ≡ A′) ⊃ (A⌢B) ≡ (A′⌢B) 1–3,Prop

T31 ⊢ ✷f (A ≡ B) ⊃ ✸f A ≡ ✸f B

1 ⊢ ✷f (A ≡ B) ⊃ (A⌢true) ≡ (B⌢true) T30
2 ⊢ ✷f (A ≡ B) ⊃ ✸f A ≡ ✸f B 1,def. of ✸f

DR32 ⊢ finite ⊃ (A ≡ B) ⇒ ⊢ ✸f A ≡ ✸f B

1 ⊢ finite ⊃ (A ≡ B) assump.
2 ⊢ ✷f (A ≡ B) 1,✷f FGen
3 ⊢ ✷f (A ≡ B) ⊃ ✸f A ≡ ✸f B T31
4 ⊢ ✸f A ≡ ✸f B 2,3,MP

T33 ⊢ ✷f A ⊃ ✸f A

1 ⊢ A ⊃ (empty ⊃ A) Prop
2 ⊢ ✷f A ⊃ ✷f (empty ⊃ A) 1,DR26
3 ⊢ ✷f (empty ⊃ A) ⊃ (✸f empty ⊃ ✸f A) T23
4 ⊢ ✷f A ⊃ (✸f empty ⊃ ✸f A) 2,3,⊃-chain
5 ⊢ ✸f empty T20
6 ⊢ ✷f A ⊃ ✸f A 4,5,Prop

T34 ⊢ ✸f (A ∨ B) ≡ ✸f A ∨ ✸f B

1 ⊢ (A ∨ B)⌢true ≡ (A⌢true) ∨ (B⌢true) T18
2 ⊢ ✸f (A ∨ B) ≡ ✸f A ∨ ✸f B 1,def. of ✸f

T35 ⊢ ✷f A ∧ (A′⌢B) ⊃ (A ∧ A′)⌢B

1 ⊢ A ⊃ (A′ ⊃ A ∧ A′) Prop
2 ⊢ ✷f A ⊃ ✷f (A′ ⊃ A ∧ A′) 1,DR26
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3 ⊢ ✷f (A′ ⊃ A ∧ A′) ⊃ (A′⌢B) ⊃ (A ∧ A′)⌢B T1
4 ⊢ ✷f A ∧ (A′⌢B) ⊃ (A ∧ A′)⌢B 2,3,Prop

A.3. Some Properties of Chop, ✸f and ✷f with State Formulas.

T36 ⊢ ✸f w ≡ w

Proof for ⊃.
1 ⊢ ¬w ⊃ ✷f ¬w P7
2 ⊢ ¬w ⊃ ¬✸f ¬¬w 1,def. of ✷f

3 ⊢ ✸f ¬¬w ⊃ w 2,Prop
4 ⊢ w ⊃ ¬¬w Prop
5 ⊢ ✸f w ⊃ ✸f ¬¬w 4,DR7
6 ⊢ ✸f w ⊃ w 3,5,⊃-chain

Proof for ⊂.
1 ⊢ w ⊃ ✷f w P7
2 ⊢ ✷f w ⊃ ✸f w T33
3 ⊢ w ⊃ ✸f w 1,2,⊃-chain

T37 ⊢ ✷f w ≡ w

1 ⊢ ✸f ¬w ≡ ¬w T36
2 ⊢ ¬✸f ¬w ≡ w 1,Prop
3 ⊢ ✷f w ≡ w 2,def. of ✷f

T38 ⊢ w⌢A ⊃ w

1 ⊢ w⌢A ⊃ ✸f w T19
2 ⊢ ✸f w ≡ w T36
3 ⊢ w⌢A ⊃ w 1,2,Prop

T39 ⊢ (w ∧ A)⌢B ⊃ w

1 ⊢ w ∧ A ⊃ w Prop
2 ⊢ (w ∧ A)⌢B ⊃ w⌢B 1,DR5
3 ⊢ w⌢B ⊃ w T38
4 ⊢ (w ∧ A)⌢B ⊃ w 2,3,⊃-chain

The following lets us move a state formula into the left side of chop:

T40 ⊢ w ∧ (A⌢B) ⊃ (w ∧ A)⌢B

1 ⊢ w ⊃ ✷f w P7
2 ⊢ w ∧ (A⌢B) ⊃ ✷f w ∧ (A⌢B) 1,Prop
3 ⊢ ✷f w ∧ (A⌢B) ⊃ (w ∧ A)⌢B T35
4 ⊢ w ∧ (A⌢B) ⊃ (w ∧ A)⌢B 2,3,⊃-chain

We can easily combine this with theorem T39 to deduce the equivalence below:

T41 ⊢ (w ∧ A)⌢B ≡ w ∧ (A⌢B)
1 ⊢ (w ∧ A)⌢B ⊃ w T39
2 ⊢ (w ∧ A)⌢B ⊃ (w⌢B) ∧ (A⌢B) T16
3 ⊢ (w ∧ A)⌢B ⊃ w ∧ (A⌢B) 1,2,Prop
4 ⊢ w ∧ (A⌢B) ⊃ (w ∧ A)⌢B T40
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5 ⊢ w ∧ (A⌢B) ≡ (w ∧ A)⌢B 3,4,Prop

Below is a useful corollary of T41 used in decomposing the left side of chop:

T42 ⊢ (w ∧ empty)⌢A ≡ w ∧ A

1 ⊢ (w ∧ empty)⌢A ≡ w ∧ (empty⌢A) T41
2 ⊢ empty⌢A ≡ A P5
3 ⊢ (w ∧ empty)⌢A ≡ w ∧ A 1,2,Prop

A.4. Some Properties of ✷f involving the Modal System K4.

We now consider how to establish for the PITL operator ✷f the axiom “4” (PITL
Theorem T47) found in the modal systems K4 and S4.

T43 ⊢ ✸f ✸f A ≡ ✸f A

1 ⊢ (A⌢true)⌢true ≡ A⌢(true⌢true) P2
2 ⊢ ✸f true ≡ true T36
3 ⊢ (true⌢true) ≡ true 2,def. of ✸f

4 ⊢ A⌢(true⌢true) ≡ A⌢true 3,DR6
5 ⊢ (A⌢true)⌢true ≡ A⌢true 1,4,≡-chain
6 ⊢ ✸f ✸f A ≡ ✸f A 5,def. of ✸f

T44 ⊢ ✸f ¬A ≡ ¬✷f A
1 ⊢ ✷f A ≡ ¬✸f ¬A def. of ✷f

2 ⊢ ✸f ¬A ≡ ¬✷f A 1,Prop

T45 ⊢ ✸f ✸f ¬A ≡ ¬✷f ✷f A
1 ⊢ ✸f ¬A ≡ ¬✷f A T44
2 ⊢ ✸f ✸f ¬A ≡ ✸f ¬✷f A 1,DR8
3 ⊢ ✸f ¬✷f A ≡ ¬✷f ✷f A T44
4 ⊢ ✸f ✸f ¬A ≡ ¬✷f ✷f A 2,3,≡-chain

T46 ⊢ ✷f ✷f A ≡ ✷f A

1 ⊢ ✸f ✸f ¬A ≡ ✸f ¬A T43
2 ⊢ ✸f ✸f ¬A ≡ ¬✷f ✷f A T45
3 ⊢ ¬✷f ✷f A ≡ ✸f ¬A 1,2,Prop
4 ⊢ ✸f ¬A ≡ ¬✷f A T44
5 ⊢ ¬✷f ✷f A ≡ ¬✷f A 3,4,≡-chain
6 ⊢ ✷f ✷f A ≡ ✷f A 5,Prop

T47 ⊢ ✷f A ⊃ ✷f ✷f A

1 ⊢ ✷f ✷f A ≡ ✷f A T46
2 ⊢ ✷f A ⊃ ✷f ✷f A 1,Prop

A.5. Properties Involving the PTL Operator ©.

T48 ⊢ (©A)⌢B ≡ ©(A⌢B)
1 ⊢ (skip⌢A)⌢B ≡ skip⌢(A⌢B) P2
2 ⊢ (©A)⌢B ≡ ©(A⌢B) 1,def. of ©
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T49 ⊢ (w ∧ ©A)⌢B ≡ w ∧ ©(A⌢B)
1 ⊢ (w ∧ ©A)⌢B ≡ w ∧

(
(©A)⌢B

)
T41

2 ⊢ (©A)⌢B ≡ ©(A⌢B) T48
3 ⊢ (w ∧ ©A)⌢B ≡ w ∧ ©(A⌢B) 1,2,Prop

T50 ⊢ ✸f (w ∧ ©w′) ≡ w ∧ ©w′

1 ⊢ (w ∧ ©w′)⌢true ≡ w ∧ ©(w′⌢true) T49
2 ⊢ ✸f (w ∧ ©w′) ≡ w ∧ ©✸f w′ 1,def. of ✸f

3 ⊢ ✸f w′ ≡ w′ T36
4 ⊢ skip⌢✸f w′ ≡ skip⌢w′ 3,DR10
5 ⊢ ©✸f w′ ≡ ©w′ 4,def. of ©

6 ⊢ ✸f (w ∧ ©w′) ≡ w ∧ ©w′ 2,5,Prop

A.6. Some Properties of ✷f Together with ✷.

We make use of the following analogue of Theorem T44 for ✸ and ✷:

T51 ⊢ ✸¬A ≡ ¬✷A

1 ⊢ ✸¬A ≡ ¬✷A VPTL

T52 ⊢ ✸f ✸A ≡ ✸✸f A

1 ⊢ (true⌢A)⌢true ≡ true⌢(A⌢true) P2
2 ⊢ (✸A)⌢true ≡ ✸(A⌢true) 1,def. of ✸
3 ⊢ ✸f ✸A ≡ ✸✸f A 2,def. of ✸f

T53 ⊢ ✸f ✸¬A ≡ ¬✷f ✷A

1 ⊢ ✸¬A ≡ ¬✷A T51
2 ⊢ ✸f ✸¬A ≡ ✸f ¬✷A 1,DR8
3 ⊢ ✸f ¬✷A ≡ ¬✷f ✷A T44
4 ⊢ ✸f ✸¬A ≡ ¬✷f ✷A 2,3,≡-chain

T54 ⊢ ✸✸f ¬A ≡ ¬✷✷f A

1 ⊢ ✸f ¬A ≡ ¬✷f A T44
2 ⊢ ✸✸f ¬A ≡ ✸¬✷f A 1,DR11
3 ⊢ ✸¬✷f A ≡ ¬✷✷f A T51
4 ⊢ ✸✸f ¬A ≡ ¬✷✷f A 2,3,≡-chain

T55 ⊢ ✷f ✷A ≡ ✷✷f A

1 ⊢ ✸f ✸¬A ≡ ✸✸f ¬A T52
2 ⊢ ✸f ✸¬A ≡ ¬✷f ✷A T53
3 ⊢ ✸✸f ¬A ≡ ¬✷✷f A T54
4 ⊢ ✷f ✷A ≡ ✷✷f A 1-3,Prop

A.7. Some Properties of Chop-Star.

We now consider some theorems and derived rules concerning chop-star.

DR56 ⊢ A ⊃ more ⇒ ⊢ A⋆ ≡ empty ∨ (A⌢A⋆)
1 ⊢ A ⊃ more assump.
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2 ⊢ A ∧ more ≡ A 1,Prop
3 ⊢ (A ∧ more)⌢A⋆ ≡ A⌢A⋆ 2,DR6
4 ⊢ A⋆ ≡ empty ∨

(
(A ∧ more)⌢A⋆

)
P9

5 ⊢ A⋆ ≡ empty ∨ (A⌢A⋆) 3,4,Prop

DR57 ⊢ A ⊃ more ⇒ ⊢ A⋆⌢B ≡ B ∨
(
A⌢(A⋆⌢B)

)

1 ⊢ A ⊃ more assump.
2 ⊢ A⋆ ≡ empty ∨ (A⌢A⋆) 1,DR56
3 ⊢ A⋆⌢B ≡ (empty ∨ (A⌢A⋆))⌢B 2,DR6
4 ⊢ (empty ∨ (A⌢A⋆))⌢B ≡ (empty⌢B) ∨

(
(A⌢A⋆)⌢B

)
T18

5 ⊢ empty⌢B ≡ B P5
6 ⊢ (A⌢A⋆)⌢B ≡ A⌢(A⋆⌢B) P2
7 ⊢ A⋆⌢B ≡ B ∨

(
A⌢(A⋆⌢B)

)
3–6,Prop

T58 ⊢ A⋆ ≡ (A⋆⌢empty) ∨ Aω

1 ⊢ finite ∨ ¬finite Prop
2 ⊢ finite ∨ inf 1,def. of inf
3 ⊢ finite ⊃ (A⋆⌢empty) ≡ A⋆ P6
4 ⊢ inf ⊃ A⋆ ≡ (A⋆ ∧ inf ) Prop
5 ⊢ inf ⊃ A⋆ ≡ Aω 4,def. of chop-omega
6 ⊢ A⋆ ≡ (A⋆⌢empty) ∨ Aω 2,3,5,Prop

A.8. Some Properties Involving a Reduction to PITL with Finite Time.

We now present some derived inference rules which come in useful when completeness
for PITL with finite time is assumed (see Theorem 2.2). Recall that any valid implication
of the form finite ⊃ A is allowed and that we designate such a step by using PITLF. PITL
Theorem T61 below illustrates this technique.

DR59 ⊢ finite ⊃ (A ⊃ B) ⇒ ⊢ ✷f A ⊃ ✷f B

1 ⊢ finite ⊃ (A ⊃ B) assump.
2 ⊢ ✷f (A ⊃ B) 1,✷f FGen
3 ⊢ ✷f (A ⊃ B) ⊃ (✷f A ⊃ ✷f B) T25
4 ⊢ ✷f A ⊃ ✷f B 2,3,MP

DR60 ⊢ finite ⊃ (A ≡ B) ⇒ ⊢ ✷f A ≡ ✷f B

1 ⊢ finite ⊃ (A ≡ B) assump.
2 ⊢ finite ⊃ (A ⊃ B) 1,Prop
3 ⊢ ✷f A ⊃ ✷f B 2,DR59
4 ⊢ finite ⊃ (B ⊃ A) 1,Prop
5 ⊢ ✷f B ⊃ ✷f A 4,DR59
6 ⊢ ✷f A ≡ ✷f B 3,5,Prop

The next theorem’s proof involves the application of the previous derived inference rule
together with completeness for PITL with just finite time:

T61 ⊢ ✷f fin w ≡ ✷w

1 ⊢ ✷f ✷f fin w ≡ ✷f fin w T46
2 ⊢ ✷f fin w ≡ ✷f ✷f fin w 1,Prop
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3 ⊢ finite ⊃
(
(✷f fin w) ≡ ✷w

)
PITLF

4 ⊢ ✷f ✷f fin w ≡ ✷f ✷w 3,DR60
5 ⊢ ✷f ✷w ≡ ✷✷f w T55
6 ⊢ ✷f w ≡ w T37
7 ⊢ ✷✷f w ≡ ✷w 6,DR12
8 ⊢ ✷f fin w ≡ ✷w 2,4,5,7,≡-chain

An alternative proof of Theorem T61 can be given without PITLF by first deducing
the dual equivalence

(
✸f ✸(empty ∧ w)

)
≡ ✸w, for any state formula w.

A.9. Some Properties of Skip, Next And Until. Recall from §5.1 that NL1 formulas
are exactly those PTL formulas in which the only temporal operators are unnested ©s (e.g.,
p ∨ ©¬p but not p ∨ ©©¬p). The next theorem holds for any NL1 formula T :

T62 ⊢ ✸f (more ∧ T ) ≡ more ∧ T

Proof.. We use Axiom VPTL to re-express more ∧ T as a logically equivalent disjunction
∨

1≤i≤n(wi ∧ ©w′
i) for some natural number n ≥ 1 and n pairs of state formulas wi and w′

i:

⊢ more ∧ T ≡
∨

1≤i≤n

(wi ∧ ©w′
i). (A.2)

Now by Theorem T50 any conjunction w ∧ ©w′ is deducibly equivalent to ✸f (w ∧ ©w′).
Therefore the disjunction in (A.2) can be re-expressed as

∨

1≤i≤n✸
f (wi ∧ ©w′

i):

⊢
∨

1≤i≤n

(wi ∧ ©w′
i) ≡

∨

1≤i≤n

✸f (wi ∧ ©w′
i). (A.3)

Then by n− 1 applications of Theorem T34 and some simple propositional reasoning, the
righthand operand of this equivalence is itself is deducibly equivalent to ✸f

(∨

1≤i≤n(wi ∧

©w′
i)
)
:

⊢
∨

1≤i≤n

✸f (wi ∧ ©w′
i) ≡ ✸f

( ∨

1≤i≤n

(wi ∧ ©w′
i)
)
. (A.4)

The chain of the three equivalences (A.2)–(A.4) yields the following:

⊢ more ∧ T ≡ ✸f
( ∨

1≤i≤n

(wi ∧ ©w′
i)
)
.

We then apply Derived Rule DR8 to the first equivalence (A.2):

⊢ ✸f (more ∧ T ) ≡ ✸f
( ∨

1≤i≤n

(wi ∧ ©w′
i)
)
.

The last two equivalences with simple propositional reasoning yield our goal T62.
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Here is a corollary of the previous PITL Theorem T62 for any NL1 formula T :

T63 ⊢ ✷f (more ⊃ T ) ≡ more ⊃ T

1 ⊢ ✷f (more ⊃ T ) ≡ ¬✸f ¬(more ⊃ T ) def. of ✷f

2 ⊢ ¬(more ⊃ T ) ≡ more ∧ ¬T Prop
3 ⊢ ✸f ¬(more ⊃ T ) ≡ ✸f (more ∧ ¬T ) 2,DR8
4 ⊢ ✸f (more ∧ ¬T ) ≡ more ∧ ¬T T62
5 ⊢ ✸f ¬(more ⊃ T ) ≡ more ∧ ¬T 3,4,≡-chain
6 ⊢ ✷f (more ⊃ T ) ≡ ¬(more ∧ ¬T ) 1,5,Prop
7 ⊢ ¬(more ∧ ¬T ) ≡ more ⊃ T Prop
8 ⊢ ✷f (more ⊃ T ) ≡ more ⊃ T 6,7,≡-chain

T64 ⊢ more ∧ T ⊃ ✷f (more ⊃ T )
1 ⊢ ✷f (more ⊃ T ) ≡ more ⊃ T T63
2 ⊢ more ∧ T ⊃ ✷f (more ⊃ T ) 1,Prop

T65 ⊢ ✷f (skip ⊃ A) ∧ ©B ⊃ (skip ∧ A)⌢B

1 ⊢ ✷f (skip ⊃ A) ∧ (skip⌢B) ⊃
(
(skip ⊃ A) ∧ skip

)
⌢B T35

2 ⊢ (skip ⊃ A) ∧ skip ⊃ skip ∧ A Prop
3 ⊢

(
(skip ⊃ A) ∧ skip

)
⌢B ⊃ (skip ∧ A)⌢B 2,DR5

4 ⊢ ✷f (skip ⊃ A) ∧ (skip⌢B) ⊃ (skip ∧ A)⌢B 1,3,Prop
5 ⊢ ✷f (skip ⊃ A) ∧ ©B ⊃ (skip ∧ A)⌢B 4,def. of ©

T66 ⊢ ✷f (more ⊃ A) ⊃ ✷f (skip ⊃ A)
1 ⊢ more ⊃ skip VPTL
2 ⊢ (more ⊃ A) ⊃ (skip ⊃ A) 1,Prop
3 ⊢ ✷f (more ⊃ A) ⊃ ✷f (skip ⊃ A) 2,DR26

T67 ⊢ ✷f (more ⊃ A) ∧ ©B ⊃ (skip ∧ A)⌢B

1 ⊢ ✷f (more ⊃ A) ⊃ ✷f (skip ⊃ A) T66
2 ⊢ ✷f (skip ⊃ A) ∧ ©B ⊃ (skip ∧ A)⌢B T65
3 ⊢ ✷f (more ⊃ A) ∧ ©B ⊃ (skip ∧ A)⌢B 1,2,Prop

T68 ⊢ ✸f (skip ∧ T ) ≡ more ∧ T

1 ⊢ finite ⊃ ✸f (skip ∧ T ) ≡ (more ∧ T ) PITLF
2 ⊢ ✸f ✸f (skip ∧ T ) ≡ ✸f (more ∧ T ) 1,DR32
3 ⊢ ✸f ✸f (skip ∧ T ) ≡ ✸f (skip ∧ T ) T43
4 ⊢ ✸f (more ∧ T ) ≡ more ∧ T T62
5 ⊢ ✸f (skip ∧ T ) ≡ more ∧ T 2–4,Prop

T69 ⊢ (skip ∧ T )⌢A ≡ T ∧ ©A

Proof for ⊃.
1 ⊢ (skip ∧ T )⌢A ⊃ ✸f (skip ∧ T ) T19
2 ⊢ ✸f (skip ∧ T ) ≡ more ∧ T T68
3 ⊢ (skip ∧ T )⌢A ⊃ T 1,2,Prop
4 ⊢ (skip ∧ T )⌢A ⊃ skip⌢A T14
5 ⊢ (skip ∧ T )⌢A ⊃ ©A 4,def. of ©

6 ⊢ (skip ∧ T )⌢A ⊃ T ∧ ©A 3,5,Prop

Proof for ⊂.
1 ⊢ ©A ⊃ more VPTL
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2 ⊢ more ∧ T ⊃ ✷f (more ⊃ T ) T64
3 ⊢ T ∧ ©A ⊃ ✷f (more ⊃ T ) 1,2,Prop
4 ⊢ ✷f (more ⊃ T ) ∧ ©A ⊃ (skip ∧ T )⌢A T67
5 ⊢ T ∧ ©A ⊃ (skip ∧ T )⌢A 3,4,Prop

T70 ⊢ T until A ≡ A ∨
(
T ∧ ©(T until A)

)

1 ⊢ skip ∧ T ⊃ more VPTL
2 ⊢ (skip ∧ T )⋆⌢A ≡ A ∨

(
(skip ∧ T )⌢((skip ∧ T )⋆⌢A)

)
1,DR57

3 ⊢ T until A ≡ A ∨
(
(skip ∧ T )⌢(T until A)

)
2,def. of until

4 ⊢ (skip ∧ T )⌢(T until A) ≡ T ∧ ©(T until A) T69
5 ⊢ T until A ≡ A ∨

(
T ∧ ©(T until A)

)
3–4,Prop

T71 ⊢ T until A ⊃ ✸A

1 ⊢ (skip ∧ T )⋆⌢A ⊃ ✸A T21
2 ⊢ T until A ⊃ ✸A 1,def. of until
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