
Logical Methods in Computer Science
Vol. 9(4:5)2013, pp. 1–36
www.lmcs-online.org

Submitted Feb. 5, 2013
Published Oct. 16, 2013

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS ∗

OLIVER FRIEDMANN a, MARKUS LATTE b, AND MARTIN LANGE c

a,b Department of Computer Science, Ludwig-Maximilians-University Munich, Germany
e-mail address: {oliver.friedmann, markus.latte}@ifi.lmu.de

c School of Electrical Engineering and Computer Science, University of Kassel, Germany
e-mail address: martin.lange@uni-kassel.de

Abstract. The satisfiability problem for branching-time temporal logics like CTL∗, CTL
and CTL+ has important applications in program specification and verification. Their
computational complexities are known: CTL∗ and CTL+ are complete for doubly exponen-
tial time, CTL is complete for single exponential time. Some decision procedures for these
logics are known; they use tree automata, tableaux or axiom systems.

In this paper we present a uniform game-theoretic framework for the satisfiability
problem of these branching-time temporal logics. We define satisfiability games for the
full branching-time temporal logic CTL∗ using a high-level definition of winning condition
that captures the essence of well-foundedness of least fixpoint unfoldings. These winning
conditions form formal languages of ω-words. We analyse which kinds of deterministic
ω-automata are needed in which case in order to recognise these languages. We then obtain
a reduction to the problem of solving parity or Büchi games. The worst-case complexity of
the obtained algorithms matches the known lower bounds for these logics.

This approach provides a uniform, yet complexity-theoretically optimal treatment of
satisfiability for branching-time temporal logics. It separates the use of temporal logic
machinery from the use of automata thus preserving a syntactical relationship between
the input formula and the object that represents satisfiability, i.e. a winning strategy in a
parity or Büchi game. The games presented here work on a Fischer-Ladner closure of the
input formula only. Last but not least, the games presented here come with an attempt at
providing tool support for the satisfiability problem of complex branching-time logics like
CTL∗ and CTL+.

2012 ACM CCS: [Theory of computiation]: Logic—Modal and temporal logics; Computational
complexity and cryptography—Complexity theory and logic .

Key words and phrases: temporal logic, automata, parity games, decidability.
∗ A preliminary version appeared as [FLL10].

Financial support was provided by the DFG Graduiertenkolleg 1480 (PUMA) and the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(4:5)2013
c© O. Friedmann, M. Latte, and M. Lange
CC© Creative Commons

http://creativecommons.org/about/licenses

2 O. FRIEDMANN, M. LATTE, AND M. LANGE

1. Introduction

The full branching-time temporal logic CTL∗ is an important tool for the specification
and verification of reactive [GP08] or agent-based systems [LSS+05], and for program
synthesis [PR88], etc. Emerson and Halpern have introduced CTL∗ [EH86] as a formalism
which supersedes both the branching-time logic CTL [CE81] and the linear-time logic
LTL [Pnu77].

Automata-theoretic approaches. As much as the introduction of CTL∗ has led to an easy uni-
fication of CTL and LTL, it has also proved to be quite a difficulty in obtaining decision proce-
dures for this logic. The first procedure by Emerson and Sistla was automata-theoretic [ES84]
and roughly works as follows. A formula is translated into a doubly-exponentially large tree
automaton whose states are Hintikka-like sets of sets of subformulas of the input formula.
This tree automaton recognises a superset of the set of tree models of the input formula. It
is lacking a mechanism that ensures that certain temporal operators are really interpreted
as least fixpoints of certain monotone functions rather than arbitrary fixpoints. Such a
mechanism is provided by intersecting this automaton with a tree automaton that recognises
a language which is defined as the set of all trees such that all paths in such a tree belong to
an ω-regular word language, recognised by some Büchi automaton for instance. In order to
turn this into a tree automaton, it has to be determinised first. A series of improvements
on Büchi automata determinisation for this particular word language has eventually led
to Emerson and Jutla’s automata-theoretic decision procedure [EJ00] whose asymptotic
worst-case running time is optimal, namely doubly exponential [VS85]. This approach has a
major drawback though, as noted by Emerson [Eme90]: “. . . due to the delicate combinato-
rial constructions involved, there is usually no clear relationship between the structure of
automaton and the candidate formula.”

The constructions he refers to are determinisation and complementation of Büchi au-
tomata. Determinisation in particular is generally perceived as the bottleneck in applications
that need deterministic automata for ω-regular languages. A lot of effort has been spent on
attempts to avoid Büchi determinisation for temporal branching-time logics. Kupferman,
Vardi and Wolper introduced alternating automata [MS87] for branching-time temporal
logics [BVW94, KVW00]. The main focus of this approach was the model-checking problem
for such logics, though. While satisfiability checking and model checking for linear-time
temporal logics are virtually the same problem and therefore can be handled by the same
machinery, i.e. class of automata and algorithms, the situation for branching-time temporal
logics is different. In the automata-theoretic framework, satisfiability corresponds to the
general emptiness problem whereas model-checking reduces to the simpler 1-letter emptiness
problem. Still, alternating automata provide an alternative framework for the satisfiability
checking problem for branching-time logics, and some effort has been paid in order to
achieve emptiness checks, and therefore satisfiability checking procedures. Most notably,
Kupferman and Vardi have suggested a way to test tree automata for emptiness which avoids
Büchi determinisation [KV05]. However, it is based on a satisfiability-preserving reduction
only rather than an equivalence-preserving one. Thus, it avoids the “delicate combinatorial
constructions” which are responsible for the lack of a “clear relationship between the structure
of automaton and the candidate formula” in Emerson’s view [Eme90], but to avoid these
constructions it gives up any will to preserve such a clear relationship.

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 3

Other approaches. Apart from these automata-theoretic approaches, a few different ones
have been presented as well. For instance, there is Reynolds’ proof system for validity
[Rey01]. Its completeness proof is rather intricate and relies on the presence of a rule which
violates the subformula property. In essence, this rule quantifies over an arbitrary set of
atomic propositions. Thus, while it is possible to check a given tree for whether ot not it is
a proof for a given CTL∗ formula, it is not clear how this system could be used in order to
find proofs for given CTL∗ formulas.

Reynolds has also presented a tableaux system for CTL∗ [Rey09, Rey11] which shares
some commonalities with the automata-theoretic approach by Emerson and others as well
as the game-based approach presented here. However, one of the main differences between
tableaux on one side and automata and games on the other has a major effect in the case of
such a complex branching-time logic: while automata- and game-based approaches typically
separate the characterisation (e.g. tree automaton or parity game) from the algorithm (e.g.
emptiness test or check for winning strategy), tableaux are often designed monolithically, i.e.
with the characterisation and algorithm as one procedure. As a result, Reynolds’ tableaux
rely on some repetition test which, done in a näıve way, is hopelessly inefficient in practice.
On the other hand, it is not immediately clear how a more clever and thus more efficient
repetition check could be designed for these tableaux, and we predict that it would result in
the introduction of Büchi determinisation.

A method that is traditionally used for predicate logics is resolution. It has also been
used to devise decision procedures for temporal logics, starting with the linear-time temporal
logic LTL [Fis91], followed by the simple branching-time temporal logic CTL [BF99, ZHD10].
Finally, there is also a resolution-based approach to CTL∗ which combines linear-time
temporal logic resolution with additional techniques to handle path quantification [BDF99].
However, all resolution methods rely on the fact that the input formula is transformed
into a specialised normal form. The known transformations are not trivial, and they only
produce equi-satisfiable formulas. Thus, such methods also do not preserve a close connection
between the models of the input formula and its subformulas.

The game-based framework. In this paper we present a game-based characterisation of CTL∗

satisfiability. In such games, two players play against each other with competing objectives:
player 0 should show that the input formula is satisfiable whereas player 1 should show
that it is not. Formally, the CTL∗ satisfiability game for some input formula is a graph of
doubly exponential size on which the two players move a token along its edges. There is
a winning condition in the form of a formal language of infinite plays which describes the
plays that are won by player 0. This formal language turns out to be ω-regular, and it is
known that arbitrary games with such a winning condition can be solved by a reduction to
parity games. This yields an asymptotically optimal decision procedure. Still, the games
only use subformulas of the input formula, and automata are only needed in the actual
decision procedure but not in the definition of the satisfiability games as such. Thus, it
moves the “delicate combinatorial constructions” to a place where they do not destroy a
“clear relationship between the [. . .] input formula” and the parity game anymore. This is
very useful in the setting of a user interacting with a satisfiability checker or theorem prover
for CTL∗, when they may want to be given a reason for why a formula is not satisfiable for
instance.

The delicate combinatorial procedures, i.e. Büchi determinisation and complementation
is kept at minimum by analysing carefully where it is needed. We decompose the winning

4 O. FRIEDMANN, M. LATTE, AND M. LANGE

condition such that the transformation of a nondeterministic Büchi into a deterministic
parity automaton [Saf88, Pit06, KW08, Sch09] is only needed for some part. The other is
handled directly using manually defined deterministic automata.

We also consider two important fragments of CTL∗, namely the well-known CTL and
the lesser known CTL+. The former has less expressive power and is computationally
simpler: CTL satisfiability is complete for deterministic singly exponential time only [EH85].
The latter already carries the full complexity of CTL∗ despite sharing its expressive power
with the weaker CTL [EH85]: CTL+ satisfiability is also complete for doubly exponential
time [JL03]. The simplicity of CTL when compared to CTL∗ also shows through in this
game-based approach. The rules can be simplified a lot when only applied to CTL formulas,
resulting in an exponential time procedure only. Even more so, the simplification gets rid of
the need for automata determinisation procedures at all. Again, it is possible to construct
a very small and deterministic Büchi automaton directly that can be used to check the
winning conditions when simplified to CTL formulas.

The computational complexity of CTL+ suggests that no major simplifications in
comparison to CTL∗ are possible. Still, an analysis of the combinatorics imposed by CTL+

formulas on the games shows that for such formulas it suffices to use determinisation for
co-Büchi automata [MH84] instead of that for Büchi automata. This yields asymptotically
smaller automata, is much easier to implement and also results in Büchi games rather than
general parity games.

Advantages of the game-based approach. The game-theoretic framework achieves the following
advantages.

– The framework uniformally treats the standard branching-time logics from the relatively
simple CTL to the relatively complex CTL∗.

– It yields complexity-theoretic optimal results, i.e. satisfiability checking using this framework
is possible in exponential time for CTL and doubly exponential time for CTL∗ and CTL+.

– Like the automata-theoretic approaches, it separates the characterisation of satisfiability
through a syntactic object (a parity game) from the test for satisfiability (the problem
of solving the game). Thus, advances in the area of parity game solving carry over to
satisfiability checking.

– Like the tableaux-based approach, it keeps a very close relationship between the input
formula and the structure of the parity game thus enabling feedback from a (counter-)model
for applications in specification and verification.

– Satisfiability checking procedures based on this framework are implemented in the
MLSolver platform [FL10] which uses the high-performance parity game solver PG-
Solver [FL09] as its algorithmic backbone — see the corresponding remark about the
separation between characterisation and algorithm above.

Organisation. The rest of the paper is organised as follows. Section 2 recalls CTL∗. Section 3
presents the satisfiability games. Section 4 gives the formal soundness and completeness
proofs for the presented system. Section 5 describes the decision procedure, i.e. the reduction
to parity games. Section 6 presents the simplifications one can employ in both the games
and the reduction when dealing with formulas of CTL, respectively CTL+. Section 7
compares the games presented here with other decision procedures for branching-time logics,
in particular with respect to technical similarities, pragmatic aspects, results that follow

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 5

from them, etc. Section 8 concludes with some remarks on possible further work into this
direction.

2. The Full Branching Time Logic

Let P be a countably infinite set of propositional constants. A transition system is a tuple
T = (S, s∗,→, λ) with (S,→) being a directed graph, s∗ ∈ S being a designated starting
state and λ : S → 2P is a labeling function. We assume transition systems to be total,
i.e. every state has at least one successor. A path π in T is an infinite sequence of states
s0, s1, . . . s.t. si → si+1 for all i. With πk we denote the suffix of π starting with state sk,
and π(k) denotes sk in this case.

Branching-time temporal formulas in negation normal form1 are given by the following
grammar.

ϕ ::= tt | ff | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕRϕ | Eϕ | Aϕ
where p ∈ P. Formulas of the form tt, ff, p or ¬p are called literals.

Boolean constructs other than conjunction and disjunction, like → for instance, are
derived as usual. Temporal operators other than the ones given here are also defined as
usual: Fϕ := ttUϕ and Gϕ := ffRϕ.

The set of subformulas of a formula ϕ, written as Sub(ϕ), is defined as usual, in
particular the set contains ϕ. In contrast, a formula ψ is a proper subformula of ϕ if both are
different and ψ is a subformula of ϕ. The Fischer-Ladner closure of ϕ is the least set FL(ϕ)
that is closed under taking subformulas, and contains, for each ψ1Uψ2 or ψ1Rψ2, also the
formulas X(ψ1Uψ2) respectively X(ψ1Rψ2). Note that |FL(ϕ)| is at most twice the number of
subformulas of ϕ. Let FLR(ϕ) consist of all formulas in FL(ϕ) that are of the form ψ1Rψ2

or X(ψ1Rψ2). The notation is extended to formula sets in the usual way. The size |ϕ| of a
formula ϕ is number of its subformulas. Formulas are interpreted over paths π of a transition
systems T = (S, s∗,→, λ). We have T , π |= tt but not T , π |= ff for any T and π; and the
semantics of the other constructs is given as follows.

T , π |= p iff p ∈ λ(π(0))
T , π |= ¬p iff p /∈ λ(π(0))
T , π |= ϕ ∨ ψ iff T , π |= ϕ or T , π |= ψ
T , π |= ϕ ∧ ψ iff T , π |= ϕ and T , π |= ψ
T , π |= Xϕ iff T , π1 |= ϕ
T , π |= ϕUψ iff ∃k ∈ N, T , πk |= ψ and ∀j < k : T , πj |= ϕ
T , π |= ϕRψ iff ∀k ∈ N, T , πk |= ψ or ∃j < k : T , πj |= ϕ
T , π |= Eϕ iff ∃π′, s.t. π′(0) = π(0) and T , π′ |= ϕ
T , π |= Aϕ iff ∀π′, if π′(0) = π(0) then T , π′ |= ϕ

Two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, if for all paths π of all transition
systems T : T , π |= ϕ iff T , π |= ψ.

A formula ϕ is called a state formula if for all T , π, π′ with π(0) = π′(0) we have
T , π |= ϕ iff T , π′ |= ϕ. Hence, satisfaction of a state formula in a path only depends on the
first state of the path. Note that ϕ is a state formula iff ϕ ≡ Eϕ. For state formulas we also

1Alternatively, we could have admitted negations everywhere—not only in front of a proposition. However,
for any formula of one form there is an equivalent and linearly sized formula of the other form: just apply De
Morgan’s laws to the binary propositional connectors, e.g. ¬(ϕ1 ∧ ϕ2) ≡ (¬ϕ1) ∨ (¬ϕ2), fixpoint duality to
fixpoints, e.g. ¬(ϕ1Uϕ2) ≡ (¬ϕ1)R(¬ϕ2) and the property ¬Xϕ ≡ X¬ϕ.

6 O. FRIEDMANN, M. LATTE, AND M. LANGE

write T , s |= ϕ for s ∈ S. CTL∗ is the set of all branching-time formulas which are state
formulas. A CTL∗ formula ϕ is satisfiable if there is a transition system T with an initial
state s∗ s.t. T , s∗ |= ϕ.

Finally, we introduce the two most well-known fragments of CTL∗, namely CTL and
CTL+. In CTL, no Boolean combinations or nestings of temporal operators are allowed;
they have to be immediately preceded by a path quantifier. The syntax is given by the
following grammar starting with ϕ.

ϕ ::= tt | ff | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ (2.1)

ψ ::= Xϕ | ϕUϕ | ϕRϕ (2.2)

Formulas generated by ϕ are state formulas.
The logic CTL+ lifts the syntactic restriction slightly: it allows Boolean combinations of

path operators inside a path quantifier, but no nestings thereof. It is defined by the following
grammar starting with ϕ.

ϕ ::= tt | ff | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ (2.3)

ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | Xϕ | ϕUϕ | ϕRϕ (2.4)

It should be clear that CTL is a fragment of CTL+ which is, in turn, a fragment of CTL∗.
However, only the latter inclusion is proper w.r.t. expressivity as stated in the following.

Proposition 1 ([EH86]). CTL∗ is strictly more expressive than CTL+, and CTL+ is as
expressive as CTL.

Nevertheless, there are families of properties which can be expressed in CTL+ using a
family of formulas that is linearly growing in size, whereas every family of CTL formulas
expressing these properties must have exponential growth. This is called an exponential
succinctness gap between the two logics.

Proposition 2 ([Wil99, AI01, Lan08]). There is an exponential succinctness gap between
CTL+ and CTL.

Such a succinctness gap can cause different complexities of decision procedures for the
involved logics despite equal expressive power. This is true in this case.

Proposition 3 ([EH85, FL79]). Satisfiability checking for CTL is EXPTIME-complete.

The exponential succinctness gap causes on exponentially more difficult satisfiability
problem which is shared with that of the more expressive CTL∗.

Proposition 4 ([EJ00, VS85, JL03]). Satisfiability checking for CTL∗ and for CTL+ are
both 2EXPTIME-complete.

3. Satisfiability Games for CTL∗

Here we are concerned with special 2-player zero-sum games of perfect information. They
can be seen as a finite, directed graph whose node set is partitioned into sets belonging
to each player. Formally, a game is a tuple G = (V, V0, E, v0, L) where (V,E) is a directed
graph. We restrict our attention to total graphs, i.e. every node is assumed to have at least
one successor. The set V0 ⊆ V consists of all nodes owned by player 0. This naturally

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 7

induces the set V1 := V \ V0 of all nodes owned by player 1. The node v0 is the designated
initial node.

Any play starts from this initial node by placing a token there. Whenever the token is
on a node that belongs to player i, it is his/her turn to push it along an edge to a successor
node. In the infinite, this results in a play, and the winning condition L ⊆ V ω prescribes
which of these plays are won by player 0.

A strategy for player i is a function σ : V ∗Vi → V which tells him/her how to move in
any given situation in a play. Formally, a play v0, v1, . . . conforms to strategy σ for player i,
if for every j with vj ∈ Vi we have vj+1 = σ(v0 . . . vj). A winning strategy for player i is a
strategy such that he/she wins any play regardless of the opponent’s choices. Formally, σ is
a winning strategy if for all plays π = v0, v1, . . . that conform to σ we have π ∈ L.

It is easy to relax the requirements of totality. In that case we attach two additional
designated nodes win0 and win1 such that every node originally without successors gets an
edge to either of them, each of these only has one edges to itself, and the winning condition L
includes all words of the form V ∗winω0 and excludes all of the form V ∗winω1 . In the following
we will therefore allow ourselves to have plays ending in states without successors which can
be turned into total games using this simple transformation. In other words every dead end
is lost by the player who owns the node.

3.1. The Game Rules. We present satisfiability games for branching-time state formulas
in negation normal form. Let ϑ be a CTL∗-formula fixed for the remainder of this section.
For convenience, the games will be presented w.r.t. to this particular formula ϑ.

We need the following notions: Σ and Π are finite (possibly empty) sets of formulas with
Σ being interpreted as a disjunction of formulas and Π as a conjunction. A quantifier-bound
formula block is an E- or A-labelled set of formulas, i.e. either a EΠ or a AΣ. Any set under
an E-bound resp. A-bound block is assumed to be read as a conjunction resp. disjunction of
the formulas. We identify an empty Σ with ff and an empty Π with tt. We write Λ for a
set of literals. For a set of formulas Γ let XΓ := {Xψ | ψ ∈ Γ}.

In order to ease readability we will omit as many curly brackets as possible and often
use round brackets to group formulas into a set. For instance E(ϕ ∧ ψ,Π) denotes a block
that is prefixed by E and which consists of the union of Π and {ϕ ∧ ψ}, implicitly assuming
that this does not occur in Π already.

A configuration (for ϑ) is a non-empty set of the form

AΣ1, . . . , AΣn, EΠ1, . . . , EΠm,Λ

where n,m ≥ 0, and Σ1, . . . ,Σn,Π1, . . . ,Πm,Λ are subsets of FL(ϑ). The meaning of such a
configuration is given by the state formula

n∧
i=1

A
(∨
ψ∈Σi

ψ
)
∧

m∧
i=1

E
(∧
ψ∈Πi

ψ
)
∧
∧
`∈Λ

` .

Note that a configuration only contains existentially quantified conjunctions and universally
quantified disjunctions as blocks. There are no blocks of the form EΣ or AΠ simply because
an existential path quantifier commutes with a disjunction, and so does a universal path
quantifier with a conjunction. Thus, AΣ would be equivalent to

∧{Aϕ | ϕ ∈ Σ} for instance.
A configuration C is consistent if it does not contain ff and there is no p ∈ P s.t. p ∈ C

and ¬p ∈ C. Note that the meaning of an inconsistent configuration is unsatisfiable, but the

8 O. FRIEDMANN, M. LATTE, AND M. LANGE

A(ϕ,Σ), A(ψ,Σ),Φ
(A∧)

A(ϕ ∧ ψ,Σ),Φ

A(ϕ,ψ,Σ),Φ
(A∨)

A(ϕ ∨ ψ,Σ),Φ

`,Φ | AΣ,Φ
(Al)

A(`,Σ),Φ

A(ψ,ϕ,Σ), A(ψ, X(ϕUψ),Σ),Φ
(AU)

A(ϕUψ,Σ),Φ

A(ψ,Σ), A(ϕ, X(ϕRψ),Σ),Φ
(AR)

A(ϕRψ,Σ),Φ

Aϕ,Φ | AΣ,Φ
(AA)

A(Aϕ,Σ),Φ

Eϕ,Φ | AΣ,Φ
(AE)

A(Eϕ,Σ),Φ
Φ(Ett)

Ett,Φ

E(ϕ,Π),Φ | E(ψ,Π),Φ
(E∨)

E(ϕ ∨ ψ,Π),Φ

E(ϕ,ψ,Π),Φ
(E∧)

E(ϕ ∧ ψ,Π),Φ

EΠ, `,Φ
(El)

E(`,Π),Φ

E(ψ,Π),Φ | E(ϕ, X(ϕUψ),Π),Φ
(EU)

E(ϕUψ,Π),Φ

Eϕ, EΠ,Φ
(EE)

E(Eϕ,Π),Φ

E(ψ,ϕ,Π),Φ | E(ψ, X(ϕRψ),Π),Φ
(ER)

E(ϕRψ,Π),Φ

Aϕ, EΠ,Φ
(EA)

E(Aϕ,Π),Φ

AΣ1, . . . , AΣm(X0)
AXΣ1, . . . , AXΣm,Λ

EΠ1, AΣ1, . . . , AΣm | · · · | EΠn, AΣ1, . . . , AΣm
(X1)

EXΠ1, . . . , EXΠn, AXΣ1, . . . , AXΣm,Λ

Figure 1: The game rules for CTL∗.

converse does not hold because consistency is only concerned with the occurrence of literals.
Unsatisfiability can also be given be conflicting temporal operators, e.g. E(Xp, X¬p).

We write Conf (ϑ) for the set of all consistent configurations for ϑ. Note that this is a
finite set of at most doubly exponential size in |ϑ|.
Definition 5. The satisfiability game Gϑ for the formula ϑ is a game (Conf (ϑ), V0, E, v0, L)
whose nodes are all possible configurations and whose edge relation is given by the game
rules in Figure 1. They also determine which configurations belong to player 0, i.e. to V0,
namely all but those to which rule (X1) is applied.

Note that the rules are written such that a configuration at the bottom of the rule has,
as its successors, all configurations at the top of the rule. It is only rules (Al), (AA), (AE),
(E∨), (EU), and (ER) which always produce two successors, rule (X1) can have an arbitrary
number of successors that is at least one. It is understood that the formulas which are
stated explicitly under the line do not occur in the sets Λ or Φ. The symbol ` stands for an
arbitrary literal.

The initial configuration is v0 = Eϑ. The winning condition L will be described in
Definition 15 in the next subsection.

As for the representation, examples in this paper will use tailored rules for the ab-
breviations F and G instead of the rules (AU), (EU), (AR) and (ER). Take for instance a
construct of the form AFψ. A rule for this can easily be derived by applying the rules for
the unabbreviated version of this.

A(ψ, XFψ,Σ),Φ, tt
(Al)

A(ψ, tt,Σ), A(ψ, XFψ,Σ),Φ
(AU)

A(ttUψ︸ ︷︷ ︸
= Fψ

,Σ),Φ

The additional tt in the literal part does not affect consistency of a configuration, nor the
applicability of any other rule. Hence, it can be dropped. Therefore, we can use the following

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 9

rule for this construct.
A(ψ, XFψ,Σ),Φ

(AF)
A(Fψ,Σ),Φ

The other abbreviated rules follow the same lines.

A(ψ,Σ), A(XGψ,Σ),Φ
(AG)

A(Gψ,Σ),Φ

E(ψ,Π),Φ | E(XFψ,Π),Φ
(EF)

E(Fψ,Π),Φ

E(ψ, XGψ,Π),Φ
(EG)

E(Gψ,Π),Φ

Note that for the (EG) rule — which is based on the (ER) rule — it is never the wrong choice
to select the right alternative instead of the left one. Choosing the left one would leave us
with a configuration denoting E(ψ ∧ ff ∧∧Π) ∧∧Φ which can never be satisfied because of
the constant ff.

Example 6. A strategy for player 0 in the game on AFGp ∧ EGEF¬p is represented in
Figure 2. Note that such strategies can be seen as infinite trees. The bold arrows in Figure 2
point towards repeating configurations in this strategy. This is meant to represent the
infinite tree that is obtained by repeatedly continuing as it is done in the two finite branches.
Also note that in general, strategies may not be representable in a finite way like this. The
twin lines indicate hidden configurations whenever unary rules can be applied in parallel. For
instance, the double line at the bottom represents the application of the rules (AF) and (EG).
The thin arrows will only be used in the next subsection in order to explain the winning
conditions in the satisfiability games. A strategy for player 0 induces canonically a tree
model by collapsing successive configurations that are not separated by applications of the
rules (X0) and (X1). Doing this to the strategy in Figure 2 results in the following transition
system. Note that the tableau of Figure 2 gives no specification on whether p should be
included in the right-most node. It is natural to only include those propositions that are
required to be true.

p ¬p ¬p

Note that it does not satisfy the formula AFGp ∧ EGEF¬p. The overall goal is to characterise
satisfiability in CTL∗ through these games. Hence, it is important to define the winning
conditions such that this strategy is not a winning strategy.

3.2. The Winning Conditions. An occurrence of a formula is called principal if it gets
transformed by a rule. For example, the occurrence of ϕ∧ψ is principal in (E∧). A principal
formula has descendants in the successor configurations. For example, both occurrences of
ϕ and ψ are descendants of the principal ϕ ∧ ψ in rule (E∧).

Note that in the modal rules (X0) and (X1), every formula apart from those in the literal
part is principal. Literals in the literal part can never be principal, but literals inside of an
A- or E-block are principal in rules (Al) and (El). Finally, any non-principal occurrence of a
formula in a configuration may have a copy in one of the successor configurations. The copy
is the same formula since it has not been transformed. For instance, any formula in Σ in
rule (Al) has a copy in the successor written on the right but does not have a copy in the
successor on the left.

10 O. FRIEDMANN, M. LATTE, AND M. LANGE

A(Gp, FGp), A(FGp)
(X0)

A(XGp, XFGp), A(XFGp)

A(XGp, XFGp), A(p,XFGp)

A(Gp, XFGp)

A(Gp, FGp), A(FGp)
(X0)

A(XGp, XFGp), A(XFGp),¬p
A(XGp, XFGp), A(p,XFGp),¬p

A(Gp, XFGp), E(¬p)
A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)
A(Gp, FGp), E(GEF¬p)

(X1)
p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)
A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)
E(AFGp, EGEF¬p)
E(AFGp ∧ EGEF¬p)

Figure 2: A strategy for player 0 in the satisfiability game for AFGp ∧ EGEF¬p.

The gap between the existence of strategies for player 0 and satisfiability is caused
by unfulfilled eventualities: an eventuality is a formula of the form U or its abbreviation
F. Note how the rules handle these by unfolding using the CTL∗ equivalence Q(ψ1Uψ2) ≡
Q(ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2))) for any Q ∈ {E, A}. The rules for the Boolean operators and for the
X-modalities can lead to a configuration in which ψ1Uψ2 occurs again inside of a Q-block.
Note that inside an E-block this is only possible if player 0 decides not to choose the successor
containing ψ2. Inside of an A-block the situation is slightly different; player 0 has no choices
there. Still, it is important to note that a U-formula should not be unfolded infinitely often
because ψ1Uψ2 asserts that eventually ψ2 will be true, and unfolding postpones this by one
state in a possible model. Thus, the winning conditions have to ensure that player 0 cannot
let an eventuality formula get unfolded infinitely many times without its right argument
being satisfied infinitely many times as well.

In order to track the infinite behaviour of eventualities, one needs to follow single
formulas through the branches that get transformed by a rule from time to time. Note that
a formula can occur inside of several blocks. Thus it is important to keep track of the block
structure as well.

In the following we develop the technical definitions that are necessary in order to
capture such unfulfilled eventualities and present some of their properties.

Definition 7. A quantifier-bound block AΣ or EΠ is called principal as well if it contains a
principal formula. A quantifier-bound block might have descendants in the successor(s). For
example, A(ϕ ∧ ψ,Σ) has two descendants A(ϕ,Σ) and A(ψ,Σ) in an application of (A∧).

Definition 8. Let C1 be a configuration to which a rule r is applicable and let C2 be one of
its successors. Furthermore, let Q1∆1, resp. Q2∆2 with Q1, Q2 ∈ {E, A} and ∆1,∆2 ⊆ FL(ϑ)
be quantifier-bound blocks occurring in the A- or E-part of C1, resp. C2. We say that Q1∆1

is connected to Q2∆2 in C1 and C2, if either

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 11

• Q1∆1 is principal in r, and Q2∆2 is one of its descendants in C2; or
• Q1∆1 is not principal in r and Q2∆2 is a copy of Q1∆1 in C2.

We write this as (C1, Q1∆1) ; (C2, Q2∆2). If the rule instance can be inferred from the
context we may also simply write Q1∆1 ; Q2∆2. Additionally, let ψ1, resp. ψ2 be a formula
occurring in ∆1, resp. ∆2. We say that ψ1 is connected to ψ2 in (C1, Q1∆1) and (C2, Q2∆2),
if either

• ψ1 is principal in r, and ψ2 is one of its descendants in C2; or
• ψ1 is not principal in r and ψ2 is a copy of ψ1 in C2.

We write this as (C1, Q1∆1, ψ1) ; (C2, Q2∆2, ψ2). If the rule instance can be inferred
from the context we may also simply write (Q1∆1, ψ1) ; (Q2∆2, ψ2). A block connection
(C1, Q1∆1) ; (C2, Q2∆2) is called spawning if there is a formula ψ s.t. Q2ψ ∈ ∆1 is
principal and ∆2 = {ψ}. The only rules that possibly induce a spawning block connection
are (EE), (EA), (AA) and (AE). For example (C1, A{q, Ep}) ; (C2, E{p}) is spawning while
(C1, A{q, Ep}) ; (C2, A{q}) is not.

Definition 9. Let C0, C1, . . . be an infinite play of a satisfiability game for some formula ϑ.
A trace Ξ in this play is an infinite sequence Q0∆0, Q1∆1, . . . s.t. for all i ∈ N: (Ci, Qi∆i) ;
(Ci+1, Qi+1∆i+1). A trace Ξ is called an E-trace, resp. A-trace if there is an i ∈ N s.t. Qj = E,
resp. Qj = A for all j ≥ i. We say that a trace is finitely spawning if it contains only finitely
many spawning block connections.

Lemma 10. Every infinite play contains infinitely many applications of rules (X0) or (X1).

Proof. First, we define the duration of a formula ψ as the syntactic height when X-subformulas
are treated as atoms. More formally:

dur : ψ 7→

1 if ψ ≡ tt, ff, p,¬p, Xψ′
1 + dur(ψ′) if ψ ≡ Eψ′, Aψ′

1 + max(dur(ψ1),dur(ψ2)) if ψ ≡ ψ1 ∨ ψ2, ψ1 ∧ ψ2, ψ1Uψ2, ψ1Rψ2

A well-ordering < on the duration of formulas is induced by the well-ordering on natural
numbers. Let F be {dur(ϕ) | ϕ ∈ FL(ϑ)}, the range of these durations, and let B be the
range of all block sizes, that is {0, . . . , |FL(ϑ)|}. Both sets are finite.

Second, we define the duration of a block Q∆ as a map dur(Q∆) : F → B that returns
the number of subformulas of a certain duration. More formally:

dur(Q∆) : n 7→ |∆ ∩ dur−1(n)|
A well-ordering ≺ on the duration of blocks is given as follows (as the domain of the duration
is finite and its range is well-founded).

f ≺ g :⇐⇒ ∃n ∈ F : f(n) < g(n) ∧ ∀m > n : f(m) = g(m)

Third, we define the duration of a configuration C as a map dur(C) : BF → N that
returns the number of blocks of a certain duration. More formally:

dur(C) : f 7→ |C ∩ dur−1(f)|
A well-ordering � on the duration of configurations is given as follows.

C �D :⇐⇒ ∃f ∈ BF : C(f) < D(f) ∧ ∀g � f : C(g) = D(g)

Indeed, � is well-founded as the domain of durations, BF , is finite.

12 O. FRIEDMANN, M. LATTE, AND M. LANGE

The claim now follows from the fact that every rule application except for (X0) and (X1)
strictly decreases the duration of the configuration.

Definition 11. Let C0, C1, . . . be an infinite play. A thread t in a trace Ξ = Q0∆0, Q1∆1, . . .
within C0, C1, . . . is an infinite sequence ψ0, ψ1, . . . s.t. for all i ∈ N: (Ci, Qi∆i, ψi) ;

(Ci+1, Qi+1∆i+1, ψi+1). Such a thread t is called a U-thread, resp. R-thread if there is a
formula ϕUψ ∈ FL(ϑ), resp. ϕRψ ∈ FL(ϑ) s.t. ψj = ϕUψ, resp. ψj = ϕRψ for infinitely
many j.

An E-trace is called good iff it has no U-thread; similarly, an A-trace is called good iff it
has an R-thread. In other words, an E-trace is called bad if it contains an U-thread, and an
A-trace is called bad if it contains no R-thread.

Lemma 12. Every trace in an infinite play is either an A-trace or an E-trace, and is only
finitely spawning.

Proof. Let Q0∆0, Q1∆1, . . . be a trace and assume that {i | Qi∆i ; Qi+1∆i+1 is spawning}
is infinite. Let i0 < i1 < . . . be the ascending sequence of numbers in this infinite set and
let φij denote the formula in the singleton set ∆ij+1. Note that for all j it is the case that
φij+1 is a proper subformula of φij . Hence the set cannot be infinite. Now note that every
finitely spawning trace eventually must be either an A- or an E-trace because the change of
the quantifier on the current block in a trace is only possible in a moment that the trace is
spawning.

Lemma 13. Every thread in a trace of an infinite play is either a U- or an R-thread.

Proof. Let t = ψ0, ψ1, . . . be a thread. Assume that t is neither a U- nor an R-thread, hence
there is a position i∗ s.t. ψi is neither of the form ψ′Uψ′′ nor of the form ψ′Rψ′′ for all i ≥ i∗,
hence ψi+1 is a subformula of ψi for all i ≥ i∗. By Lemma 10 it follows that ψi+1 6= ψi
for infinitely many i which cannot be the case, hence t has to be a U- or an R-thread.
Finally, assume that t is both a U- and an R-thread, i.e. there are positions i0 < i1 < i2 s.t.
ψi0 = ψi2 = ψ′Rψ′′ and ψi1 = ϕ′Uϕ′′. Hence ψi1 is a proper subformula of ψi0 and ψi2 is a
proper subformula of ψi1 , thus ψi0 would be a proper subformula of itself.

Lemma 14. For every U- and every R-thread ψ0, ψ1, . . . in a trace of an infinite play there
is an i ∈ N such that ψi is a U-, or an R-formula resp., and ψj = ψi or ψj = Xψi for all j ≥ i.
Proof. For all i ∈ N, it holds that ψi+1 is a subformula ψi, or ψi+1 = Xψi provided that
ψi is a U- or an R-formula. The map which removes the frontal X from a formula converts
the thread into a chain which is weakly decreasing with respect to the subformula order.
Because this order is well-founded, the chain is eventually constant, say from n onwards. By
Lemma 10, either (X0) or (X1) has been applied at a position i− 1 for some i > n. Hence,
ψi is either a U- or an R-formula, and i meets the claimed property.

We now have obtained all the necessary technical material that is needed to define the
winning conditions in the satisfiability game Gϑ.

Definition 15. The winning condition L of Gϑ = (Conf (ϑ), V0, E, v0, L) consists of every
finite play which ends in a consistent set of literals, and of every infinite play which does not
contain a bad trace.

In other words, player 0’s objective is to create a play in which every U-formula inside of
an E-trace gets fulfilled eventually. She can control this using rule (EU). Inside of an A-trace

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 13

A(Gp, XFGp)

A(Gp, FGp)
(X0)

p, A(XGp, XFGp)

A(p, XFGp), A(XGp, XFGp)

A(Gp, XFGp)

A(FGp), A(Gp, FGp)
(X0)

A(XFGp), A(XGp, XFGp),¬p
A(p, XFGp), A(XGp, XFGp),¬p

A(Gp, XFGp), E(¬p)
A(Gp, FGp), E(F¬p)

A(Gp, XFGp), E(EF¬p, XGEF¬p)
A(Gp, FGp), E(GEF¬p)

(X1)
p, A(XGp, XFGp), E(XF¬p), E(XGEF¬p)

A(p, XFGp), A(XGp, XFGp), E(F¬p), E(XGEF¬p)
A(Gp, XFGp), E(EF¬p, XGEF¬p)

A(FGp), E(GEF¬p)
E(AFGp, EGEF¬p)
E(AFGp ∧ EGEF¬p)

Figure 3: A winning strategy for player 0 in the satisfiability game on AFGp ∧ EGEF¬p.

She must hope that not every formula that gets unfolded infinitely often is of the U-type.
Note that sets inside of an E-block are conjunctions, hence, one unfulfilled formula makes
the entire block false. Inside of an A-block the sets are disjunctions though, hence, in order
to make this block true it suffices to satisfy one of the formula therein. An R-formula that
gets unfolded infinitely often is—unlike an U-formula—indeed satisfied.

Example 16. Consider the strategy in Figure 2 again. It is not a winning strategy because
its left branch contains a bad A-trace, i.e. the eventuality FGp is postponed for an infinite
number of steps, which is the only thread contained in the trace. Since this thread is an
U-thread, there is no R-thread contained in the trace.

Figure 3 shows a winning strategy for player 0 in the game on this formula AFGp ∧ EGEF¬p.
Infinite threads are being depicted using thin arrows. It is not hard to see that every A-trace
contains a R-thread and that every E-trace only contains R-threads. Again, this strategy
induces a canonic model, but this time a satisfying one because it is in fact a winning
strategy:

p ¬p p

Note that in this case, all paths starting in the leftmost state will eventually only visit states
that satisfy p. Furthermore, there is a path—namely the loop on this state—on which every
state is the beginning of a path—namely the one moving over to the right—on which ¬p
holds at some point.

Winning strategies, as opposed to ordinary strategies, exactly characterise satisfiability
of CTL∗-formulas in the following sense.

14 O. FRIEDMANN, M. LATTE, AND M. LANGE

Theorem 17. For all ϑ ∈ CTL∗: ϑ is satisfiable iff player 0 has a winning strategy for the
satisfiability game Gϑ.

The proof is given in the following section.

4. Correctness Proofs

This section contains the proof of Theorem 17; both implications – soundness and complete-
ness – are considered separately. The completeness proof is technically tedious but does not
use any heavy machinery once the right invariants are found. Given a model for ϑ we use
these invariants to construct a winning strategy for player 0 in a certain way. Soundness can
be shown by collapsing a winning strategy into a tree-like transition system and verifying
that it is indeed a model of ϑ.

4.1. Soundness.

Theorem 18. Suppose that player 0 has a winning strategy for the satisfiability game Gϑ.
Then ϑ is satisfiable.

Proof. We treat the winning strategy, say σ, as a tree T with nodes V and a root r. The
nodes are labelled with configurations corresponding to the strategy. Thus, labels which
belong to player 0 have at most one successor. Only a node which is the objective of the
rule (X1) can have more successors.

Let S be those nodes which are leaves or on which the rules (X0) or (X1) are applied.
The tree defines a transition system as described just before of Subsection 3.2. Formally, for
any node s let ŝ be the oldest descendants —including s— of s in S. Since player 0 owns
all configurations besides those which rule (X1) can handle, Lemma 10 ensures that this
assignment is total. The edge relation → ⊆ S × S is defined as

{(t, ŝ) | s is a child of t in T} ∪ {(s, s) | s is a leaf in T} .

The induced transition system is Tϑ = (S, r̂,→, `) where `(s) = C ∩ P for any s ∈ S labelled
with a configuration C. Note that Tϑ is total. In the following, we omit the transition system
Tϑ in front of the symbol |=. Moreover, we identify a node with its annotated configuration.

For the sake of a contradiction, assume that Tϑ, r̂ 6|= Eϑ. We will show that the
winning strategy σ admits an infinite play which contains a bad trace. For this purpose,
we simultaneously construct a maximal play C0, C1, . . . which conforms to σ, a maximal
connected sequence of blocks Q0Γ0, Q1Γ1, . . . in this play, and a partial sequence πi of paths
in Tϑ such that the following properties hold for all indices i and for all formulas ϕ and ψ.

(Ξ-1) If Qi = E then Ĉi 6|= E(
∧

Γi).
(Ξ-2) If Qi = E, the rule (EE) or (EA) is applied to Ci with EΓi and ϕ as principals, and

Ĉi 6|= ϕ, then QiΓi = ϕ.

(Ξ-3) If Qi = A then πi is defined, Ĉi = πi(0), and πi 6|=
∨

Γi.
(Ξ-4) If Qi = Qi+1 = A, and the rule (X0) or (X1) is applied to Ci then πi+1 = π1

i holds.
(Ξ-5) If Qi = Qi+1 = A, and neither (X0) nor (X1) is applied to Ci then πi+1 = πi holds.
(Ξ-6) If QiΓi = A(ϕRψ,Σ), if the rule (AR) is applied to Ci such that ϕRψ and QiΓi are

principal, and if Qi+1Γi+1 = A(ϕ, X(ϕRψ),Σ) then πi |= ψ.

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 15

The construction is straight forward. We detail the proof for some cases, and thereto use

formulas and notations as shown in Figure 1. As for the rule (EA), if Ĉi 6|= E(Aϕ ∧∧Π) then

Ĉi 6|= Aϕ or Ĉi 6|= E(
∧

Π). If the first case does not apply then the trace is continued with EΠ.

Otherwise, Qi+1Γi+1 = Aϕ holds and πi+1 is an arbitrary path in Tϑ which starts at Ĉi and
which fulfills πi+1 6|= ϕ. As for the rule (AR), we have πi 6|= ϕRψ ∨∨Σ. Using that πi = πi+1

and an unrolling of the R-operator, πi+1 6|= ψ or πi+1 6|= ϕ ∨ X(ϕRψ) holds. In the first case
the trace is continued with A(ψ,Σ), and with A(ϕ, X(ϕRψ),Σ) otherwise. As for case of (X0)
and (X1), the constraints determine the successor uniquely.

Back to the main proof: if the play is finite the last configuration consists of literals
only. On the other hand, the last block of the sequence Ξ reaches this leaf. Therefore, the
play must be infinite. In particular, the sequence Ξ is a trace, and by Lemma 12 it is either
an E- or an A-trace.

Trace Ξ is an E-trace: Let n be minimal such that (QiΓi, Qi+1Γi+1) is not spawning for
all i ≥ n. Therefore, all these quantifiers Qis are E, and the set Γn is a singleton. By π
we denote the subsequence of the play (Ci)i≥n which consists of nodes in S only. For a

node C in the play, we write πC to denote the suffix of π starting at Ĉ. The trace contains
a thread ξ0, ξ1, . . . such that

(ξ-1) πCi 6|= ξi, and
(ξ-2) if ξi = ϕRψ, the rule (ER) is applied to Ci with EΓi and ξi as principals, and

πCi 6|= ψ, then ξi+1 = ψ.
for all i ≥ n and all formulas ϕ and ψ. Indeed, the thread can be constructed step by
step. Obviously, there is a sequence of connected formulas ξ0, . . . ξn within the trace
because the set Γn is a singleton. The rules (E∨), (E∧), (EU) and (ER) clearly preserve the
properties (ξ-1) and (ξ-2). As for the rule (El), the formula ξi cannot be the principal
literal because πCi is a countermodel of ξi but the literal survives until the next application
of the model rules which defines the first state of πCi . If the rule (EE) or (EA) is applied,
the property (Ξ-2) keeps ξi from being the principal formula because the considered
suffix is the trace is not spawning.

By Lemma 13, ξ is either a U- or an R-thread. In the first case, the thread ξ attests
that the trace is bad although player 0 wins the play. Otherwise, suppose that ξ is an
R-thread. By Lemma 14, there are m ≥ n and formulas ϕ and ψ such that ξm = ϕRψ,
and ξi = ϕRψ or ξi = X(ϕRψ) for all i ≥ m, Along the play (Ci)i≥m, between any two
consecutive applications of the rules (X0) or (X1), the rule (ER) must have been applied
with ξi = ϕRψ and QiΓi as principals for some i ≥ m. The property (ξ-2) ensures that
πCi |= ψ. Since this is true for any such two consecutive applications, πCi |= ψ for all
i ≥ m. Therefore, πCm models ϕRψ. But this situation contradicts the property (ξ-1) for
i being one the infinity many positions on which the rule (ER) is applied to QiΓi and ξi.

Trace Ξ is an A-trace: It suffices to show that Ξ is a bad trace. Suppose for the sake of
a contradiction that Ξ contains an R-thread (ξi)i∈N. Let n ∈ N and ϕ,ψ ∈ FL(ϑ) such
that Qi = A, ξn = ϕRψ, and ξi = ϕRψ or ξi = X(ϕRψ) for all i ≥ n, cf. Lemma 14.

Along the play (Ci)i≥n, between any two consecutive applications of the rules (X0) or
(X1), the rule (AR) must have been applied such that ξi and QiΓi are principal for some
i ∈ N. In this situation, the formula ξi is ϕRψ. Because ξi+1 is either ϕRψ or X(ϕRψ),
the following element, Qi+1Γi+1, of the trace is A(ϕ, X(ϕRψ),Σ) for some Σ ⊆ FL(ϑ).
Hence, thanks to (Ξ-6) we have πi |= ψ. Because the block quantifier remains A, the

properties (Ξ-4) and (Ξ-5) show that πjn |= ψ for all j ∈ N. Therefore, πn |= ϕRψ holds.

16 O. FRIEDMANN, M. LATTE, AND M. LANGE

As the formula ϕRψ is ξn, the path πn satisfies
∨

Γn. However, this situation contradicts
the property (Ξ-3). Thus, the considered play contains Ξ as a bad trace.

4.2. Completeness. To show completeness, we need a witness for satisfiable E-formulas.
For this purpose, let T = (S, s∗,→, λ) be a transition system, s ∈ S be a state and ψ
be a formula such that s |= Eψ. We may assume a well-ordering �T on the set of paths
in T [Zer04]. The minimal s-rooted path that satisfies ψ is denoted by ξT (s, ψ) and fulfills the
following properties: ξT (s, ψ)(0) = s, ξT (s, ψ) |= ψ, and there is no path π with π�T ξT (s, ψ),
π(0) = s and π |= ψ.

A T -labelled (winning) strategy is a (winning) strategy with every configuration being
labelled with a state such that the root is labelled with s∗, and for every s-labelled configu-
ration and every s′-labelled successor configuration it holds that s→ s′ if the corresponding
rule application is (X1) or (X0) and s = s′ otherwise.

Theorem 19. Let ϑ ∈ CTL∗ be satisfiable. Then player 0 has a winning strategy for the
satisfiability game Gϑ.

Proof. Let ϑ be a formula, T = (S, s∗,→, λ) be a transition system, and s∗ ∈ S be a state
s.t. T , s∗ |= Eϑ. In the following we may omit the system T in front of the symbol |=.

We inductively construct an S-labelled strategy for player 0 as follows. Starting with
the labelled configuration s∗ : Eϑ, we apply the rules in an arbitrary but eligible ordering
systematically by preserving s |= Φ for every state-labelled configuration s : Φ and by
preferring small formulas. In particular, the strategy is defined the following properties.

(S-1) If the rule application to follow Φ is (Al), (AE) or (AA), with A(ψ,Σ) being the principal
block in Φ and ψ being the principal (state) formula, and s |= ψ, then the successor
configuration of Φ follows ψ and discards the original A-block.

(S-2) If the rule application to follow Φ is (EU), with E(ϕUψ,Π) being the principal block in
Φ and ϕUψ being the principal formula, then the successor configuration of Φ follows
ψ iff ξT (s, (ϕUψ) ∧∧Π) |= ψ.

(S-3) If the rule application to follow Φ is (E∨), with E(ψ1 ∨ψ2,Π) being the principal block
in Φ and ψ1 ∨ ψ2 being the principal formula, and ξT (s, (ψ1 ∨ ψ2) ∧∧Π) |= ψi for
some i ∈ {1, 2}, then the successor configuration of Φ follows ψi.

(S-4) If the rule application to follow Φ is (X0) and its successor configuration is labelled
with a state s′ such that s→ s′ and successor configuration Φ′ then player 0 labels
this successor with the state s′.

(S-5) If player 1 applies the rule (X1) to a configuration Φ which is labelled with a state s
and obtains successor configuration EΠ,Φ′ then player 0 labels this successor with the
state ξT (s, XΠ)(1).

Such a strategy exists because the property s : Φ can be maintained. Note that every finite
play ends in a node labelled with consistent literals only. Clearly, player 0 wins such a play.

For the sake of contradiction, assume that player 0 does not win if she follows the
strategy. Hence, there is an infinite labelled play s0 : Φ0, s1 : Φ1, . . . (with s0 = s∗ and

Φ0 = Eϑ) containing a bad trace B0, B1, We define a lift operation î that selects the
next modal rule application as follows.

î := min{j ≥ i | Φj is the bottom of an application of (X1) or (X0)}

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 17

Due to Lemma 10, î is well-defined for every i. Additionally, we define the modal distance

δ(i, k) := |{j | i ≤ j < k and j = ĵ}|
as well that counts the number of modal rule application between i and k. Every position i
induces a generic path πi by

πi : j 7→ smin{k|k≥i and δ(i,k)=j}

and note that the path πi indeed is well-defined for every i.
By Lemma 12, the bad trace is either an A- or an E-trace that is eventually not spawning,

i.e. there is a position n such that Bi ≡ EΠi or Bi ≡ AΣi for all i ≥ n with (Bi, Bi+1) being
not spawning. Let n be the least of such kind.

Next, the bad trace gives rise to a U-thread in it that is satisfied by the transition system.
For this purpose we construct a U-thread φ0, φ1, . . . in B0, B1, . . . such that all i ≥ n satisfy
the following properties.

(φ-1) πi |= φi.
(φ-2) For all formulas ϕ and ψ we have: If φi = ϕUψ, φi 6= φi+1 and if πi |= ψ, then

φi+1 = ψ.

The construction of the thread depends on the kind of the trace.

Trace B0, B1, . . . is an E-trace: The paths πi and ξT (si,Πi) coincide for all i ≥ n for
two reasons. First, whenever a rules besides (X0) and (X1) justifies the move from the
configuration Φi to Φi+1 for i ≥ n, then ξT (si,Πi) and ξT (si+1,Πi+1) are equal. Second,
this E-trace overcomes the application of the rules (X0) and (X1). Thus, the minimal
paths ξT define the labels sn, sn+1, . . . and, in this way, the paths π.

Since n is the least index s.t. (Bi, Bi+1) is not spawning for all i ≥ n, the set Πn has
to be a singleton. Define φn to be the single formula in Πn. Because sn |= EΠn, the path
ξT (sn,Πn) satisfies φn.

As the trace is assumed to be bad, it contains a U-thread, say φ0, φ1, The
construction of the strategy ensures that ξT (si,Πi) |= φi for all i ≥ n. Hence, πi |= φi.
Additionally, the constraint (S-2) yields the property (φ-2).

Trace B0, B1, . . . is an A-trace: Since n is the least index such that (Bi, Bi+1) is not
spawning i ≥ n, the set Σn has to be a singleton. Define φn to be the single formula in
Σn.

For i ≥ n the formula φi+1 bases on φi as follows. If î = i, that is, one of the modal
rules (X0) and (X1) is to be applied next, then set φi+1 = φ′ where φi = X(φ′) for some

formula φ′. Otherwise, î 6= i holds. If Bi or φi is not principal in the rule instance then
set φi+1 := φi. Because (Bi, Bi+1) is not spawning, φi+1 belongs to Bi+1. Otherwise,
Bi and φi are principal. The formula φ is neither a literal nor an E- nor an A-formula,
because otherwise the property (S-1) together with πi |= φi would entail the end of this
sequence of blocks or would show that the connection (Bi, Bi+1) is spawning. Thus, the
applied rule is either (AR), (AU), (A∧) or (A∨). If φi = ψ1Rψ2 let φi+1 be one of the
successors ψ′ of φi contained in Bi+1 with πi |= ψ′ and note that there is at least one. If
φi = ϕUψ, then set φi+1 := ψ iff πi |= ψ and, otherwise, set φi+1 to the other successor,
that is ϕ or X(ϕUψ), of φi in Bi+1. Finally, if φi = ψ1 ∧ ψ2 or φi = ψ1 ∨ ψ2, then set
φi+1 := ψk s.t. ψk is connected to φi in Bi+1 and πi |= ψk.

Putting suitable formulas in front of the sequence φn, φn+1, . . . entails a thread in the
trace B0, B1, . . . , Bn, Bn+1, By assumption the trace is bad and by Lemma 13, the
thread is a U-thread.

18 O. FRIEDMANN, M. LATTE, AND M. LANGE

Since φ0, φ1, . . . is a U-thread, there are formulas ϕ0 and ϕ1 such that φi = ϕ0Uϕ1 for
infinitely many indices i. The set

A := {i > n | φi−1 = X(ϕ1Uϕ2) and φi = ϕ1Uϕ2}
is infinite by Lemma 10 and 14. Let i0 < i1 < . . . be the ascending enumeration of A.
Between every two immediately consecutive elements either the rule (X1) or (X0) is applied
exactly once. Therefore, π1

ij
= πij+1 for all indices j ≥ 0. By property (φ-1) we have

πi0 |= ϕ1Uϕ2. Hence, there is a k ≥ 0 such that πki0 |= ϕ2. In particular, πik |= ϕ2 and so
πik |= ϕ1Uϕ2. For some ` between ik and ik+1 the formula φ` must be turned from ϕ1Uϕ2

into X(ϕ1Uϕ2) to finally pass the application of (X0) and (X1) at position ik+1 − 1. However,
the property (φ-2) shows that φ` is just ϕ2.

5. A Decision Procedure for CTL∗

5.1. Using Deterministic Automata to Check the Winning Condition. Plays can
be represented as infinite words over a certain alphabet, and we will show that the language
of plays that are won by player 0 is ω-regular, i.e. recognisable by a nondeterministic Büchi
automaton for instance.

The goal is then to replace the global condition on plays of having only good traces by
an annotation of the game configurations with automaton states and a global condition on
these states. For instance, if the resulting automaton was of Büchi type, then the game
would become a Büchi game: in order to solve the satisfiability game it suffices to check
whether player 0 has a winning strategy in the game with the annotations in the sense that
she can enforce plays which are accepted by the Büchi automaton for the annotations.

Now note that the automaton recognising such plays needs to be deterministic: suppose
there are two plays uv and uw with a common prefix u s.t. both are accepted by an
automaton A. If A is nondeterministic then it may have two different accepting runs on uv
and uw that differ on the common prefix u already. This could be resolved by allowing two
annotations on the nodes of the common prefix, but an infinite tree can have infinitely many
branches and it is not clear how to bound the number of needed annotations. However, if A
is deterministic then it has a unique run on the common prefix, and an annotation with a
single state of a deterministic automaton suffices.

It is known that every ω-regular language can be recognised by a deterministic Muller
[McN66], Rabin [Saf88] or parity automaton [Pit06]. A simple consequence of the last result
is the fact that every game with an ω-regular winning condition can be reduced to a parity
game. Thus, we could simply show that the winning conditions of the satisfiability games of
Section 3 are ω-regular and appeal to this result as well as known algorithms for solving
parity games in order to have a decision procedure for CTL∗. While this does not seem
avoidable entirely, it turns out that the application of this technique, which is not very
efficient in practice, can be reduced to a minimum. The rest of this section is devoted to the
analysis of the satisfiability games’ winning conditions as a formal and ω-regular language
with a particular focus on the question of determinisability.

In our proposed reduction to parity games we will use annotations with states from two
different deterministic automata: one checks that all E-traces are good, the other one checks
that all A-traces are good. The reason for this division is the fact that the former check is
much simpler than the latter. It is possible to directly define a deterministic automaton

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 19

that checks for absence of a bad E-trace. It is not clear at all though, how to directly
define a deterministic automaton that checks for absence of a bad A-trace. We therefore use
nondeterministic automata and known constructions for complementing and determinising
them. The next part recalls the automata theory that is necessary for this, and in particular
shows how these two automata used in the annotations can be merged into one.

5.2. Büchi, co-Büchi and Parity Automata on Infinite Words. We will particularly
need the models of Büchi, co-Büchi and parity automata [GTW02].

Definition 20. A nondeterministic parity automaton (NPA) is a tuple A = (Q,Σ, q0, δ,Ω)
with Q being a finite set of states, Σ a finite alphabet, q0 ∈ Q an initial state, δ ⊆ Q×Σ×Q
the transition relation and Ω : Q→ N a priority function. A run of A on a a0a1 . . . ∈ Σω

is an infinite sequence q0, q1, . . . s.t. (qi, ai, qi+1) ∈ δ for all i ∈ N. It is accepting if
max{Ω(q) | q = qi for infinitely many i ∈ N} is even, i.e. if the maximal priority of a state
that is seen infinitely often in this run is even. The language of the NPA A is L(A) = {w |
there is an accepting run of A on w}. The index of an NPA A is the number of different
priorities occurring in it, i.e. |Ω[Q]|. The size of A, written as |A|, is the number of its
states.

Nondeterministic Büchi and co-Büchi automata (NBA / NcoBA) are special cases of
NPA. An NBA is an NPA as above with Ω : Q → {1, 2}, and an NcoBA is an NPA with
Ω : Q→ {0, 1}. Hence, an accepting run of an NBA has infinitely many occurrences of a state
with priority 2, and an accepting run of an NcoBA has almost only occurrences of states with
priority 0. Traditionally, in an NBA the states with priority 2 are called the final set, and
one defines an NBA as (Q,Σ, q0, δ, F) where, in our terminology, F := {q ∈ Q | Ω(q) = 2}.
An NcoBA can equally defined with an acceptance set F rather than a priority function Ω,
but then F := {q ∈ Q | Ω(q) = 0}.

An NPA / NBA / NcoBA with transition relation δ is deterministic (DPA / DBA /
DcoBA) if |{q′ | (q, a, q′) ∈ δ}| = 1 for all q ∈ Q and a ∈ Σ. In this case we may view δ as
function from Q× Σ into Q.

Determinism and the duality between Büchi and co-Büchi condition as well as the
self-duality of the parity acceptance condition makes it easy to complement a DcoBA to a
DBA as well as a DPA to a DPA again. The following is a standard and straight-forward
result [GTW02, Section 1.2] in the theory of ω-word automata.

Lemma 21. For every DcoBA, resp. DPA, A there is a DBA, resp. DPA, A with L(A) =

L(A) and |A| = |A|.
In order to be able to turn presence of a bad trace—which may be easy to recognise

using a nondeterministic automaton—into absence of such which is required by the winning
condition, we need complementation of nondeterministic automata as well. Luckily, an
NcoBA can be determinised into a DcoBA using the Miyano-Hayashi construction [MH84]
which can easily be complemented into a DBA according to Lemma 21.

Theorem 22 ([MH84]). For every NcoBA A with n states there is a DBA A with at most

3n states s.t. L(A) = L(A).

NBA cannot be determinised into DBA, but into automata with stronger acceptance
conditions [Saf88, Pit06, KW08, Sch09]. We are particularly interested in constructions that
yield parity automata.

20 O. FRIEDMANN, M. LATTE, AND M. LANGE

Theorem 23 ([Pit06]). For every NBA with n states there is an equivalent DPA with at
most n2n+2 states and index at most 2n− 1.

For the decision procedure presented below we also need a construction that intersects
a deterministic Büchi and a deterministic parity automaton. This will allow us to consider
absence of bad E- and bad A-traces separately.

Lemma 24. For every DBA A with n states and DPA B with m states and index k there is
a DPA C with at most n ·m · k many states and index at most k+ 1 s.t. L(C) = L(A)∩L(B).

Proof. Let A = (Q1,Σ, q
0
1, δ1, F) and B = (Q2,Σ, q

0
2, δ2,Ω). Define C as (Q1 × Q2 ×

Ω[Q2],Σ, (q0
1, q

0
2,Ω(q0

2)), δ,Ω′) where

δ
(
(q1, q2, p), a

)
:=

{(
δ1(q1, a), δ2(q2, a),Ω(δ2(q2, a))) , if q1 ∈ F(
δ1(q1, a), δ2(q2, a),max{p,Ω(δ2(q2, a))}

)
, if q1 6∈ F

Note that C simulates two runs of A and B in parallel on a word w ∈ Σω, and additionally
records in its third component the maximal priority that has been seen in B’s run since the
last visit of a final state in the run of A if it exists. Thus, in order to determine whether or
not both simulated runs are accepting it suffices to examine the priorities at those positions
at which the A-component is visiting a final state. In all other cases we choose a low odd
priority.

Ω′(q1, q2, p) :=

{
p+ 2 , if q1 ∈ F
1 , if q1 6∈ F

Then the highest priority occurring infinitely often in a run of C is even iff so is the one in
the simulated run of B and A visits infinitely many final states at the same time.

It should be clear that the number of states in C is bounded by n ·m · k, and that it
uses at most one priority more than B.

To define an automaton which checks the absence of bad A-traces, we need the intersection
of Büchi with co-Büchi automata as well as alphabet projections of Büchi automata.

Lemma 25. For every DBA A with n states and every DcoBA B with m states there is an
NBA C with at most n ·m · 2 states such that L(C) = L(A) ∩ L(B).

Proof. Let A be (Q1,Σ, q
0
1, δ1, F1) and B be (Q2,Σ, q

0
2, δ2, F2). Then define the NBA C as

(Q,Σ, (q0
1, q

0
2, 0), δ, F1 × F2 × {1}) with Q = (Q1 × Q2 × {0}) ∪ (Q1 × F2 × {1}), where δ

realises the synchronous product of δ1 and δ2 on Q1 ×Q2 × {0} and on Q1 × F2 × {1}. In
addition, for every transition from (q1, q2, 0) to (q′1, q

′
2, 0) there is also one with the same

alphabet symbol to (q′1, q
′
2, 1) if q′2 ∈ F2. Note that this creates nondeterminism.

Lemma 26. Let C be an NBA over the alphabet ΣA × ΣB. There is a NBA A over the
alphabet ΣA such that |A| ≤ |C| and for all words a0a1 . . . ∈ Σω

A it holds that

a0a1 . . . ∈ L(A) iff there is a word b0b1 . . . ∈ Σω
B with (a0, b0)(a1, b1) . . . ∈ L(C) .

Proof. The automaton C is almost A. Let δA be the transition relation of A. Clearly, the set
{(q, a, q′) | (q, (a, b), q′) ∈ δA for some b ∈ ΣB} is adequate as a transition relation for C.

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 21

5.3. An Alphabet of Rule Applications. Clearly, an infinite play in the game for some
formula ϑ can be regarded as an ω-word over the alphabet of all possible configurations.
This alphabet would have doubly exponential size in the size of the input formula. It is
possible to achieve the goals stated above with a more concise alphabet.

Definition 27. A rule application in a play for ϑ is a pair of a configuration and one of
its successors. Note that such a pair is entirely determined by the principal block and the
principal formula of the configuration and a number specifying the successor. This enables a
smaller symbolic encoding. For instance, the transition from the configuration A(Eϕ,Σ),Φ
to the successor AΣ,Φ in rule (AE) can be represented by the quadruple (A, {Eϕ} ∪ Σ, Eϕ, 1).
The other possible successor would have index 0 instead. There are three exceptions to
this: applications of rules (Ett) and (X0) can be represented using a constant name, and
the successor in rule (X1) is entirely determined by one of the E-blocks in the configuration.
Hence, let

Σpl
ϑ :=

(
{A, E} × 2FL(ϑ) × FL(ϑ)× {0, 1}

)
∪ {Ett, X0} ∪

(
{X1} × 2FL(ϑ)

)
Note that |Σpl

ϑ | = 2O(|ϑ|).

An infinite play π = C0, C1, . . . then induces a word π′ = r0, r1, . . . ∈ (Σpl
ϑ)ω in a

straight-forward way: ri is the symbolic representation of the configuration/successor pair
(Ci, Ci+1). We will not formally distinguish between an infinite play π and its induced

ω-word π′ over Σpl
ϑ .

For every r ∈ Σpl
ϑ let conE

r(·) be a partial function from E-blocks to E-blocks which
satisfies the connection relation ; and avoids spawning connections. Thus, the function is
undefined for r = Ett and the argument E∅, only. For all other parameters and arguments
the function is uniquely defined.

5.4. DPA for the Absence of Bad A-Traces. An A-trace-marked play is a (symbolic
representation of a) play together with an A-trace therein. It can be represented as an
infinite word over the extended alphabet

Σtmp
ϑ := Σpl

ϑ × {A, E} × 2FL(ϑ) .

The second and the last components of the alphabet simply name a block on the marked
trace. Note that these components are half a step behind the first component because the
latter links between two consecutive configuration. Remember that an A-trace can proceed
through finitely many E-blocks before it gets trapped in A-blocks only. We define a co-Büchi
automaton CAϑ which recognises exactly those A-trace-marked plays which contain an R-thread

in the marked trace. It is CAϑ = ({W}∪FLR(ϑ),Σtmp
ϑ , W, δ,FLR(ϑ)). We describe the transition

relation δ intuitively. A formal definition can easily be derived from this. Starting in the
waiting state W it eventually guesses a formula of the form ψ1Rψ2 which occurs in the marked
A-trace. It then tracks this formula in its state for as long as it is unfolded with rule (AR)
and remains in the marked trace. If it leaves the marked trace in the sense that the trace
proceeds through a block which does not contain this subformula anymore, or an E-block
occurs as part of the marked trace then CAϑ simply stops. The following proposition is easily
seen to be true using Definition 9 and Lemma 14.

Lemma 28. Let w ∈ (Σtmp
ϑ)ω be an A-trace-marked play of a game for ϑ. Then w ∈ L(CAϑ)

iff the marked trace of w contains an R-thread.

22 O. FRIEDMANN, M. LATTE, AND M. LANGE

DBA for “marked A-trace is bad” over Σtmp
ϑ

NcoBA CAϑ for “marked A-trace is good” over Σtmp
ϑ

DcoBA BAϑ for “marking is an A-trace” over Σtmp
ϑ

NBA for “marking witnesses a bad A-trace” over Σtmp
ϑ

NBA for “some A-trace is bad” over Σpl
ϑ

DPA AA
ϑ for “all A-traces are good” over Σpl

ϑ

complementation Theorem 22

intersection, Lemma 25

Lemma 26alphabet projection

Theorem 23 and
Lemma 21

determinisation and
complementation

Figure 4: Construction of the DPA for Theorem 30.

On the way to construct an automaton which recognises plays without bad A-traces we
need to eliminate the restriction on w in the previous lemma. In other words, an automaton
is needed which decides whether or not the annotated sequence of blocks is an A-trace.

Lemma 29. There is a DcoBA BAϑ over Σtmp
ϑ of size O(2|ϑ|) such that the equivalence

((ri, Qi,∆i))i∈N ∈ L(BAϑ) iff (Qi∆i)i∈N is an A-trace in the play (ri)i∈N

holds for all infinite plays r0, r1, . . . ∈ Σpl
ϑ and all sequences of blocks (Qi∆i)i∈N.

Proof. Take as BAϑ the deterministic co-Büchi automaton with states

Q := {E, A} × 2FL(ϑ) ,

initial state (E, {ϑ}) and final states {A} × 2FL(ϑ). The automaton verifies that the last two
components of the input indeed form an A-trace. For this purpose, the state bridges between
two successive blocks in the input sequence. Due to the co-Büchi acceptance condition, the
input is accepted if the block quantifier eventually remains A. However, these properties
define an A-trace.

Formally, given a state (Q0,∆0) and a letter (r,Q1,∆1), a move into the state (Q2,∆2)
is only possible iff Q0 = Q1, ∆0 = ∆1, and the rule instance r transfers the block Q1∆1 into
the block Q2∆2. Note that the sequence of blocks might end if the rules (Ett) and (X1) are
applied. In such a situation, the automaton gets stuck and rejects thereby.

Figure 4 explains how the previously defined automata CAϑ and BAϑ can then be transformed
into a deterministic parity automaton, called AA

ϑ, that checks for presence of an R-thread in
all A-traces of a given play. It is obtained using complementation twice, intersection and the

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 23

projection of the alphabet Σtmp
ϑ to Σpl

ϑ . The four automata shown at the top are defined
over the extended alphabet of plays with marked traces, whereas the others work on the

alphabet Σpl
ϑ of symbolic rule applications only. Almost all operations keep the automata

small besides the determinisation. All in all, we obtain the following property.

Theorem 30. For every CTL∗-formula ϑ there is a DPA AA
ϑ of size 22O(|ϑ|)

and of index

2O(|ϑ|) s.t. for all plays π ∈ (Σpl
ϑ)ω we have: π ∈ L(AA

ϑ) iff π does not contain a bad A-trace.

5.5. DBA for the Absence of Bad E-Traces. Remember that a bad E-trace is one that
contains a U-thread. It is equally possible to construct an NcoBA which checks in a play for
such a trace and then use complementation and determinisation constructions as it is done
for A-traces. However, it is also possible to define a DBA AE

ϑ directly which accepts a play
iff it does not contain a bad E-trace. This requires a bit more insight into the combinatorics
of plays but leads to smaller automata in the end.

Let ϕ0Uψ0, . . . , ϕk−1Uψk−1 be an enumeration of all U-formulas in ϑ. The DBA Bϑ
consists of the disjoint union of k components C0, . . . , Ck−1 with Ci = {i} ∪ {i}× 2FL(ϑ). In
the i-th component, state i is used to wait for either of two occurrences: the i-th U-formula
gets unfolded or one of the rules for X-formulas is being seen. In the first case the automaton
starts to follow the thread of this particular U-formula. In the second case, the automaton
starts to look for the next U-formula in line to check whether it forms a thread. Hence, the
transitions in state i are the following.

δ(i, r) =

(i,Π) if r = (E,Π, ϕiUψi, 1)

(i+ 1) mod k if r = X0 or r = (X1,Π) for some Π

i otherwise

In order to follow a thread of the i-th U-formula, the automaton uses the states of the form
{i} × 2FL(ϑ) in which it can store the block that the current formula on the thread occurs in.
It then only needs to compare this block to the principal block of the next rule application
to decide whether or not this block has been transformed. If it has been then the automaton
changes its state accordingly, otherwise it remains in the same state because the next rule
application has left that block unchanged. Once a rule application terminates the possible
thread of the i-th U-formula, the automaton starts observing the next U-formula in line.
There are two possibilities for this: either the next rule application fulfils the U-formula, or
the E-trace simply ends, for instance through an application of rule (X1).

δ((i,Π), r) =

(i+ 1) mod k if r = (E,Π, ϕiUψi, 0)

(i,Π′) otherwise, if conE
r(EΠ) = EΠ′

(i+ 1) mod k otherwise

where conE
r is defined at the end of Subsection 5.3. The function δ is always defined as the

second component of the state contains ϕiUψi or X(ϕiUψi) whenever the first component is i.
Note that there is no transition for the case of the next rule being (X0) because it

only applies when there is no E-block which is impossible if the automaton is following an
U-formula inside an E-trace.

It is helpful to depict the transition structure graphically.

24 O. FRIEDMANN, M. LATTE, AND M. LANGE

0 1 2 . . . k−1

C0 C1 C2 Ck−1

Note that every occurrence of rule (X0) or (X1) sends this automaton from any state i into
the next component modulo k. Furthermore, when unfolding the i-th U-formula in state i,
it moves up into the component Ci where it follows the E-trace that it is in. From this
component it can only get to state i+ 1 mod k if this U-formula gets fulfilled.

Thus, since any infinite play must contain infinitely many applications of rule (X0) or
(X1), there are only two possible types of runs of this automaton on such plays: those that
eventually get trapped in some component Ci \ {i}, and those that visit all of 0, 1, . . . , k − 1
infinitely often in this order.

It remains to be seen that this automaton—equipped with a suitable acceptance con-
dition—recognises exactly those plays that do not contain a bad E-trace.

Theorem 31. For every CTL∗ formula ϑ with k U-subformulas there is a DBA AE
ϑ of size

at most k · (1 + 2|FL(ϑ)|) s.t. for all plays π ∈ Σω
ϑ : π ∈ L(AE

ϑ) iff π does not contain a bad
E-trace.

Proof. As above, suppose that ϕ0Uψ0, . . . , ϕk−1Uψk−1 are all the U-formulas occurring in
FL(ϑ). Let AE

ϑ := (C0 ∪ . . . ∪ Ck−1,Σϑ, 0, δ, {0}) be a Büchi automaton whose state set is
the (disjoint) union of the components defined above and whose transition relation δ is also
as defined above. It is easy to check that AE

ϑ is indeed deterministic and of the size that is
stated above. It remains to be seen that it is correct.

Let π be play. First we prove completeness, i.e. suppose that π 6∈ L(AE
ϑ). Observe that

in states of the form i it can always react to any input symbol whereas in states of the
form (i,Π) it can react to all input symbols apart from (X0). However, such states are only
reachable from states of the former type by reading a symbol of the form (E,Π, ϕUψ, 1) which
is only possible when there is an E-block to which this rule is being applied. Furthermore,
the automaton only stays in such states for as long as this block still contains this U-formula,
and E-blocks can only disappear with rule (Ett) when they become empty. Thus, AE

ϑ has a
(necessarily unique) run on every play, and π can therefore only be rejected if this run does
not contain infinitely many occurrences of state 0.

Next we observe that AE
ϑ cannot get trapped in a state of the form i because every

infinite play contains infinitely many applications of rule (X0) or (X1)—cf. Lemma 10—which
send it to state (i+ 1) mod k. Thus, in order not to accept π it would have to get trapped
in some component of states of the form (i,Π) for a fixed i. However, it only gets there
when the i-th U-formula gets unfolded inside an E-block, and it leaves this component as
soon as this formula gets fulfilled. Thus, if it remains inside such a component forever, there
must be an U-thread inside E-blocks, i.e. a bad E-trace.

For soundness suppose that π contains a bad E-trace. We claim that AE
ϑ must get

trapped in some component Ci \ {i}. Since this does not contain any final states, it will not
accept π. Now note that at any moment in a play, all U-formulas which are top-level in some

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 25

E-block need to be unfolded with rule (EU) before rule (X0) or (X1) can be applied. Thus, if
AE
ϑ is in some state i, and the i-th U-formula occurs inside an E-block at top-level position,

then it will move to the component Ci \ {i} instead of to (i+ 1) mod k because the latter is
only possible with a rule that occurs later than the rule which triggers the former transition.

As observed above, AE
ϑ cannot remain in the only final state 0 forever. In order to

visit it infinitely often, it has to visit all states 0, 1, . . . , k − 1 infinitely often in this order.
Thus, if there is a bad E-trace with an U-thread formed by the i-th U-formula then there will
eventually be a moment in which this i-th U-formula gets unfolded and AE

ϑ is trapped in
some component Cj \ {j} for j 6= i and the rest of the run, or it is in state i. If the latter is
the case then it gets trapped in Ci \ {i} for the rest of the run before the next application of
rule (X0) or (X1). In either case, π is not accepted.

5.6. The Reduction to Parity Games. A parity game is a game G = (V, V0, E, v0,Ω)
s.t. (V,E) is a finite, directed graph with total edge relation E. V0 denotes the set of nodes
owned by player 0, and we write V1 := V \ V0 for its complement. The node v0 ∈ V is
a designated starting node, and Ω : V → N assigns priorities to the nodes. A play is an
infinite sequence v0, v1, . . . starting in v0 s.t. (vi, vi+1) ∈ E for all i ∈ N. It is won by player 0
if max{Ω(v) | v = vi for infinitely many i} is even. A (non-positional) strategy for player
i is a function σ : V ∗Vi → V , s.t. for all sequences v0 . . . vn with (vj , vj+1) ∈ E for all
j = 0, . . . , n− 1, and all vn ∈ Vi we have: (vn, σ(v0 . . . vn)) ∈ E. A play v0v1 . . . conforms
to a strategy σ for player i if for all j ∈ N we have: if vj ∈ Vi then vj+1 = σ(v0 . . . vj).
A strategy σ for player i is a winning strategy in node v if player i wins every play that
begins in v and conforms to σ. A (positional) strategy for player i is a strategy σ for
player i s.t. for all v0 . . . vn ∈ V ∗Vi and all w0 . . . wm ∈ V ∗Vi we have: if vn = wm then
σ(v0 . . . vn) = σ(w0 . . . wm). Hence, we can identify positional strategies with σ : Vi → V .
It is a well-known fact that for every node v ∈ V , there is a winning strategy for either
player 0 or player 1 for node v. In fact, parity games enjoy positional determinacy meaning
that there is even a positional winning strategy for node v for one of the two player [EJ91].
The problem of solving a parity game is to determine which player has a winning strategy
for v0. It is solvable [Sch07] in time polynomial in |V | and exponential in |Ω[V]|.
Definition 32. Let ϑ be a state formula, AA

ϑ be the DPA deciding absence of bad A-traces
according to Theorem 30, AE

ϑ be the DBA deciding absence of bad E-traces according

to Theorem 31 and Aϑ = (Q,Σpl
ϕ , q0, δ,Ω) the DPA recognising the intersection of the

languages of AA
ϑ and AE

ϑ according to Lemma 24. The satisfiability parity game for ϑ is
Pϑ = (V, V0, v0, E,Ω

′), defined as follows.

• V := Conf (ϑ)×Q
• V1 := {(C, q) ∈ V | rule (X1) applies to C}
• V0 := V \ V1

• v0 := (Eϑ, q0)
• ((C, q), (C ′, q′)) ∈ E iff (C,C ′) is an instance of a rule application which is symbolically

represented by r ∈ Σpl
ϑ and q′ = δ(q, r), or no rule is applicable to C and C = C ′ and

q = q′,

• Ω′(C, q) :=

0 if C is a consistent set of literals

Ω(q) if there is a rule applicable to C

1 otherwise

26 O. FRIEDMANN, M. LATTE, AND M. LANGE

The following theorem states correctness of this construction. It is not difficult to prove.
In fact, winning strategies in the satisfiability games and the satisfiability parity games
basically coincide.

Theorem 33. Player 0 has a winning strategy for Pϑ iff player 0 has a winning strategy
for Gϑ.

Proof. Let π be a play (C0, q0), (C1, q1), . . . of Pϑ, and let π′ = C0, C1, . . . be its projection
onto the first components which ends at the first configuration on which no rule can be
applied. The sequence π′ is indeed a play in Gϑ. Note that this projection is invertible: for
every play π′ in Gϑ there is a unique annotation with states of the deterministic automaton Aϑ
leading to a play π in Pϑ. Now we have the following.

π is won by player 0 ⇔ π′ is accepted by Aϑ, or π′ ends in a consistent set of literals

⇔ π′ is won by player 0

Thus, the projection of a winning strategy for player 0 in Pϑ is a winning strategy for her in
Gϑ, and conversely, every winning strategy there can be annotated with automaton states in
order for form a winning strategy for her in Pϑ.

Corollary 34. Deciding satisfiability for some ϑ ∈ CTL∗ is in 2EXPTIME.

Proof. The number of states in Pϑ is bounded by

|Conf (ϑ)| · |Q| = 22O(|ϑ|) · 22O(|ϑ|) · 2O(|ϑ|) · |ϑ| · (1 + 2O(|ϑ|)) = 22O(|ϑ|)

Note that the out-degree of the parity game graph is at most 2|ϑ| because of rule (X1). The

game’s index is 2O(|ϑ|). It is known that parity games of size m and index k can be solved
in time mO(k) [Sch07] from which the claim follows immediately.

5.7. Model Theory.

Corollary 35. Any satisfiable CTL∗ formula ϑ has a model of size at most 22O(|ϑ|)
and

branching-width at most 2|ϑ|.

Proof. Suppose ϑ is satisfiable. According to Theorems 17 and 33, player 0 has a winning
strategy for Pϑ. It is well-known that she then also has a positional winning strategy [Zie98].
A positional strategy can be represented as a finite graph of size bounded by the size of
the game graph. A model for ϑ can be obtained from this winning strategy as it is done
exemplarily in Section 3 and in detail in the proof of Theorem 18. The upper-bound on the
branching-width is given by the fact that rule (X1) can have at most 2|ϑ| many successors.

The exponential branching-width stated in Corollary 35 can be improved to a linear
one by restricting the rule applications. The following argumentation implicitly excludes
the rules (X0) and (X1). Therefore, any considered rule application has exactly one principal
formula.

We limit the application of every rule besides (X0) and (X1) to those applications where
the principal formula is a largest formula among those formulas in the configuration which
do not have X as their outermost connectives. Following the proof of Theorem 19, any
ordering on the rules does not affect the completeness.

As a measure of a configuration we take the number of its E-blocks plus the number
of formulas having the form Eϕ such that this formula is a subformula, but not under the

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 27

scope of an X-connective, of some formula in the configuration and such that E{ϕ} is not a
block in this configuration. This measure is bounded by |ϑ|+ 1 at the initial configuration
E{ϑ} and at every successor of the rules (X0) and (X1).

The size restriction ensures that any rule instance apart from (X0) and (X1) weakly
decreases the measure. First, we consider the contribution of formulas to the measure. An
inspection of the rules entails that any subformula Eϕ which contributes to the measure of
the configuration at the top of a rule occurs at the bottom as a subformula. For the sake of
contradiction, assume that Eϕ does not contribute to the measure of the configuration at
the bottom. Hence, the principal block is preventing Eϕ from being counted and, hence, it
has the shape E{ϕ}. Therefore, the formula which hosts Eϕ is larger than the principal. But
this situation contradicts the size restriction. Secondly, only the rules (EE) and (AE) can
produce new E-blocks. If a formula Eϕ is excluded from the measure of the configuration
at the bottom then and only then E{ϕ} is a block in this configuration. Therefore, in the
positive case this block is not new at the top. And in the negative case the new block at the
top is paid by the formula at the bottom and prevents other instances of this formula at the
top from being counted.

Putting this together with the argumentation in Corollary 35 yields the following.

Corollary 36. Any satisfiable CTL∗ formula ϑ has a model of size at most 22O(|ϑ|)
and

branching-width at most |ϑ|.
These upper bounds are asymptotically optimal, c.f. the proof of the 2EXPTIME–lower-

bound [VS85] and the satisfiable formula
∧n
i=1 EX(¬pi ∧ pi+1) ∧ ∧n

i=1 AX(pi → pi+1) which
forces any model to be of branching-width n.

6. On Fragments of CTL∗

The logic CTL∗ has two prominent fragments: CTL+ and CTL. These logics allow refining
the decision procedure detailed in Section 5. The obtained procedures are conceptionally
simpler and have an optimal time-complexity.

6.1. The Fragment CTL+. The satisfiability problem for CTL+ is 2EXPTIME-hard [JL03]
and hence —as a fragment of CTL∗— it is also 2EXPTIME-complete. Nevertheless, CTL+

is as expressive as CTL [EH85]. Hence, the question arises whether the lower expressivity
compared to CTL∗ leads to a simpler decision procedure.

As CTL+ is a fragment of CTL∗ we can apply the introduced games. However, the
occurring formulas will not necessarily be CTL+-formulas again, because the fixpoint rules
can prefix an X-constructor to the respective U- or R-formula. Nevertheless, the grammar for
CTL+ can be expanded accordingly. The new kinds are attached to line (2.4).

ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | Xϕ | ϕUϕ | ϕRϕ | X(ϕRϕ) | X(ϕUϕ) (2.4’)

The lines (2.3) and (2.4’) now define the grammar which every game follows. The usage of
these new formulas does not affect any of the used asymptotic measures. The restriction to
CTL+ does not allow major simplification for the automata AE

ϑ constructed in Subsection 5.5.
However, the automata AA

ϑ which rejects plays containing bad A-traces can be essentially
simplified: The refined construction bases on a coBüchi- instead of a Büchi-determinisation,
and hence leads to a simpler acceptance condition. Due to Theorem 22 it suffices to construct
an exponentially sized NcoBA which detects an A-trace which does not contain any R-thread.

28 O. FRIEDMANN, M. LATTE, AND M. LANGE

For the rest of the subsection, fix a CTL+-formula ϑ and consider an infinite play in the
game Gϑ. Let (Qi∆i)i∈N be a trace in this play. A position i0 in this trace is called X-stable
iff —firstly— the index i0 addresses some top configuration either of the rule (X0) or of (X1),
and —secondly— the connection Qi∆i ; Qi+1∆i+1 is not spawning for every i ≥ i0. By
Lemma 10 and 12 every trace has infinitely many X-stable indices.

Lemma 37. Let (Qi∆i)i∈N be a trace, let i0 be one of its X-stable positions, let N ∈ N and
let (ψi)i≤N be a sequence of connected formulas in the trace. If there is an i1 ≥ i0 such that
ψi1 is a state formula then ψj is a state formula for all j ≥ i1.

Proof. Every state formula in this trace eventually either disappears entirely —by the
rule (Al) for instance—, forms a new block outside the trace —by rule (EE) for instance—,
or get decomposed into a smaller state formula —by rule (E∨) for instance—. One of these
cases must happen before the rules (X0) or (X1) are applied. Finally, one of the two modal
rules must be applied eventually due to Lemma 10.

For every thread Lemma 14 reveals a position which describes the corresponding suffix
of the thread. Next, we can strengthen this position to an X-stable position.

Lemma 38. Let (Qi∆i)i∈N be a trace and let i0 be one of its X-stable positions. Every
thread (ψi)i∈N in the trace satisfies: ψi = ψi0 or ψi = Xψi0 , for all i ≥ i0.

Proof. The thread cannot hit any state formula, because by Lemma 37 the thread would
violate Lemma 14. The application of the rule (X0) or (X1) to the configuration at index
i0 − 1 entails that ψi0 is a U- or an R-formula. In particular along the remaining suffix, the
thread must not hit a state formula. Therefore, the formula ψi is either ψi0 or Xψi0 for all
i ≥ i0.

Theorem 39. Let (Qi∆i)i∈N be an A-trace and let i0 be one of its X-stable positions. We
have that: the trace is bad, iff ∆i does not contain any R- or XR-formula for some i ≥ i0.

Proof. It suffices to show that the trace contains an R-thread iff ∆i contains a R- or XR-
formula for every i ≥ i0. The “only if” direction is a consequence of Lemma 38. As for the
“if” direction, every R- or XR-formula can be reached from the initial configuration of the
game by a connected sequence of formulas. Due to König’s lemma there is a corresponding
infinite sequence. By Lemma 13, this sequence is either a U- or an R-thread. If the latter
case applies, we are done. In the first case, infinitely many of the said R- and XR-formulas are
reachable from a U-formula. Due to the grammar, a state formula must occur between the
U-formula and each of the considered R- and XR-formulas. However, this situation contradicts
Lemma 37.

The previous theorem is specific for CTL+. For CTL∗ an A-trace (Qi∆i)i∈N can be good,
even if ∆i does not contain any R- or XR-formula for some i ≥ i0. Indeed, the R-formula
witnessing that the trace is good might be hosted within a U-formula. A play might delay
the fulfillment of this U-formula by several applications of (X0) or (X1).

Theorem 39 allows us to do without the determinisation of Büchi-automata as used to
construct AA

ϑ in Subsection 5.4. Indeed, there is a NcoBA which accepts every trace which

contains a bad A-traces. Define the NcoBA CA,CTL+

ϑ by (Q,Σbr
ϑ , W, δ, F) where

Q := {W} ∪
(

2FL(ϑ) × {0, 1, 2}
)

, and F := 2FL(ϑ) × {2} .

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 29

The automaton starts in the waiting state W. Every A-trace contains a spawning connection
for the last time — at least one such connection occurs because the initial configuration is

an E-block. This connection is generated either by the rule (AA) or by (EA). Thus, CA,CTL+

ϑ
eventually jumps after the corresponding input symbol, that is (A, , Aϕ, 0) or (E, , Aϕ,),

into the state ({ϕ}, 0). Then, CA,CTL+

ϑ tries to successively guess an A-trace using the first
component. If the block sequence stops or is spawning then the automaton rejects. The value
0 in the second component indicates the range between the last spawning connection and
the first application of rules (X0) and (X1) afterwards. This application marks an X-stable
position. The flags 1 and 2 are responsible for the remaining sequence starting with value 1.
The value is switched to 2 iff a block contains neither an R- nor a XR-formula. In such a
situation, the automaton has to verify that the sequence does not break down. Therefore,
the final states of the NcoBA is defined as stated above.

The size of the automaton CA,CTL+

ϑ is exponential in |ϑ|. Hence, the complement of its
Miyano-Hayashi determinisation is of double-exponential size —c.f. Theorem 22— and can
be used in Subsection 5.6 instead of the general DPA AA

ϑ. Thus the time complexity of the
whole decision procedure is double-exponential.

The advantage of this approach tailored to CTL+ is the Miyano-Hayashi determin-
isation. Their construction is simple to implement because it bases on an elaborated
subset-construction only compared to known determinisation procedures for general Büchi
automata [Saf88, Pit06].

Because the small-formula strategy in Subsection 5.7 is indepenent of the fragement,
Corollary 36 also holds for CTL+. The lower bound for the size is also doubly exponen-
tial [Lan08].

6.2. The Fragment CTL. The satisfiability problem for CTL is EXPTIME-complete.
Again, the question arises whether the lower expressivity compared to CTL∗ leads to a
simpler decision procedure.

As CTL is a fragment of CTL∗ we could apply the introduced satisfiability game.
However, this would lead to games of doubly exponential size, resulting in an unoptimal
decision procedure.

Hence, we define a new set of configurations and games rules that handle CTL-formulas
in an optimal way. Due to the fact that subformulas of fixpoints in CTL are always state
formulas, there is no need to keep the immediate subformulas in the respective block after
unfolding. By placing them at the top-level of the configurations, we can do without the
concept of blocks, since every block contains exactly one subformula. Hence, these blocks
can be understood as CTL-formulas.

Here, a configuration (for ϑ) is a non-empty set of state formulas of the set {ϕ, EXϕ, AXϕ |
ϕ ∈ Sub(ϑ)}. The additional formulas EXϕ and AXϕ will be generated when unfolding
fixpoints. In return, the Fischer-Ladner closure is replaced with the set of subformulas. The
definition of consistency etc. is exactly the same as before.

Again, we write Conf (ϑ) for the set of all consistent configurations for ϑ. Note that
this is a finite set of at most exponential size in |ϑ|.
Definition 40. The satisfiability game for a CTL-formula ϑ is a directed graph Gϑ =
(Conf (ϑ), V0, E, v0, L) whose nodes are all possible configurations and whose edge relation
is given by the game rules in Figure 5. It is understood that the formulas which are stated

30 O. FRIEDMANN, M. LATTE, AND M. LANGE

ϕ1, ϕ2,Φ(∧)
ϕ1 ∧ ϕ2,Φ

ϕ1,Φ | ϕ2,Φ
(∨)

ϕ1 ∨ ϕ2,Φ

ϕ2,Φ | ϕ1, EXE(ϕ1Uϕ2),Φ
(EU)

E(ϕ1Uϕ2),Φ

ϕ2,Φ | ϕ1, AXA(ϕ1Uϕ2),Φ
(AU)

A(ϕ1Uϕ2),Φ

ϕ1, ϕ2,Φ | ϕ2, EXE(ϕ1Rϕ2),Φ
(ER)

E(ϕ1Rϕ2),Φ

ϕ1, ϕ2,Φ | ϕ2, AXA(ϕ1Rϕ2),Φ
(AU)

A(ϕ1Rϕ2),Φ

ϕ1, . . . , ϕn(X0)
AXϕ1, . . . , AXϕn,Λ

ϕ′1, ϕ1, . . . , ϕn | · · · | ϕ′m, ϕ1, . . . , ϕn
(X1)

EXϕ′1, . . . , EXϕ
′
m, AXϕ1, . . . , AXϕn,Λ

Figure 5: The game rules for CTL.

explicitly under the line do not occur in the sets Λ or Φ. The symbol ` stands for an arbitrary
literal. The initial configuration is v0 = ϑ. The winning condition L will be described next.

Again, we need to track the infinite behaviour of eventualities. However, the situation
is much easier here. First, we can do without the concept of blocks, implying that we
can do without the concept of traces as well. Second, there is no structural difference in
tracking bad threads contained in E- or A-blocks, any infinite trace contains exactly one
thread, i.e. existential quantification and universal quantification over threads in traces are
interchangeable.

The definition of principal formulas and plays is the same as before, and we again have
the definition of connectedness and write (C, ϕ) ; (C′, ϕ′) to indicate that ϕ ∈ C if connected
to the subsequent formula ϕ′ ∈ C′. There are still infinitely many applications of rules (X0)
or (X1) in a play.

Definition 41. Let C0, C1, . . . be an infinite play. A thread t within C0, C1, . . . again is an
infinite sequence of formulas ϕ0, ϕ1, . . . s.t. for all i ∈ N: (Ci, ϕi) ; (Ci+1, ϕi+1).

Again, such a thread t is called a U-thread, resp. an R-thread if there is a formula
ϕUψ ∈ Sub(ϑ), resp. ϕRψ ∈ Sub(ϑ) s.t. ψj = ϕUψ, resp. ψj = ϕRψ for infinitely many j.

Again, every play contains a thread and every thread is either an U-thread or a R-thread.

Definition 42. An infinite play π = C0, C1, . . . belongs to the winning condition L of
Gϑ = (Conf (ϑ), V0, E, v0, L) if π does not contain a U-thread.

The following can be shown in similar way as Theorem 17:

Theorem 43. For all ϑ ∈ CTL: ϑ is satisfiable iff player 0 has a winning strategy for the
satisfiability game Gϑ.

As decision procedure, we again propose to apply a reduction to parity games, similar
to the one of Subsection 5.6. The parity game is constructed the same way by using the
reduced configuration set of this section. Additionally, we can construct a much simpler
DPA for checking the winning conditions.

Due to the fact that there are no traces anymore resp. every trace now contains a
thread-singleton, we can either apply an automaton construction similar to the one of
Subsection 5.4 or to the one of Subsection 5.5. We follow the latter approach here.

Remember that the automaton of Subsection 5.5 was composed of the disjoint union of
k components C0, . . . , Ck−1 with Ci = {i} ∪ {i} × 2FL(ϑ), where ϕ0Uψ0, . . . , ϕk−1Uψk−1 was

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 31

an enumeration of all U-formulas in ϑ. We can simplify the automaton dramatically here
by considering the components Ci = {i} ∪ {i} × {ϕ, EXϕ, AXϕ | ϕ ∈ Sub(ϑ)} instead. The
transition function is updated accordingly, following now single formulas instead of blocks.
We can get a result similar to Theorem 31:

Theorem 44. For every CTL formula ϑ with k U-subformulas there is a DBA A of size at
most k · (1 + 3|ϑ|) s.t. for all plays π: π ∈ L(A) iff π does not contain a U-thread.

By attaching this automaton to our parity game, we obtain an optimal decision procedure
for CTL:

Corollary 45. Deciding satisfiability for some ϕ ∈ CTL is in EXPTIME.

Proof. The number of states in the constructed parity game is bounded by

2O(|ϑ|) · |ϑ| · (1 + 3|ϑ|) = 2O(|ϑ|) .

Note that the out-degree of the parity game graph is at most |ϑ| because of rule (X1) which
is bounded by the number of E-formulas in ϑ. The game’s index is 2 which makes it, in fact,
a Büchi game. It is well-known [CHP06] that Büchi games with n states and m edges can
be solved in time O(n ·m) from which the claim follows immediately.

The previous upper bound is optimal because the satisfiability problem for CTL-fragment
PDL is EXPTIME-hard [FL79]. Since each block in the configurations is mainly a subformula
of ϑ, the branching-width is bounded by |ϑ|. This bound is independent of the strategy as
compared with Corollary 36.

7. Comparison with Existing Methods

7.1. CTL∗. We compare the game-based approach with existing decision procedures for
CTL∗, namely Emerson/Jutla’s tree automata [EJ00], Kupferman/Vardi’s automata reduc-
tion [KV05], Reynolds’ proof system [Rey01], and Reynolds’ tableaux [Rey09] with respect
to several aspects like computational optimality, availability of an implementation etc., c.f.
Table 1.

Emerson/Jutla’s procedure transforms a CTL∗-formula ϕ in some normal form into
a tree-automaton recognising exactly the tree-unfoldings of fixed branching-width of all
models of ϕ. This uses a translation of linear-time formulas into Büchi automata and then
into deterministic (Rabin) automata for the same reasons as outlined in Subsection 5.1.
The game-based approach presented here does not use tree-automata as such, but player-
0-strategies resemble runs of a tree automaton. The crucial difference is the separation
between the use of machinery for the characterisation of satisfiability in CTL∗ and the use
of automata only in order to make the abstract winning conditions effectively decidable.
In particular, we do not need translations of linear-time temporal formula into ω-word
automata. The relationship between input formula and resulting structure (here: game) is
given by the rules. Furthermore, this separation enables the branching-width of models of ϕ
to be flexible; it is given by the number of successors of the rule (X1). In a tree automaton
setting it is a priori fixed to a number which is linear in the size of the input formula. While
this does not increase the asymptotic worst-case complexity, it may have an effect on the
efficiency in practice. Not surprisingly, we do not know of any attempt to implement the
tree-automata approach.

32 O. FRIEDMANN, M. LATTE, AND M. LANGE

Aspect

Method Emerson
& Jutla
[EJ00]

Reynolds
[Rey01]

Kupferman & Vardi
(& Wolper)

[KVW00, KV05]
here

Concept automata tableaux automata-reduction games

Worst-case complexity 2EXPTIME 2EXPTIME 2EXPTIME 2EXPTIME

Implementation available no yes no yes2

Model construction yes yes no yes

Out-degree O(n) O(n) O(n) O(n)

Requires small model
property

no yes no no

Derives small model
property

22
O(n)

— 22
O(n)

22
O(n)

Needs Büchi
determinisation

yes no no yes

Table 1: Comparison of the main decision methods for satisfiability in CTL∗.

Kupferman/Vardi’s approach is not just a particular decision procedure for CTL∗. In-
stead, it is a general approach to solving the emptiness problem for alternating parity tree
automata. While this can generally be done using determinisation of Büchi automata as in
Emerson/Jutla’s approach, Kupferman/Vardi have found a way to avoid Büchi determinisa-
tion by using universal co-Büchi automata instead. These are translated into alternating
weak tree automata and, finally, into nondeterministic Büchi tree automata. Emptiness of
the latter is relatively easy to check. In the case of CTL∗, a formula ϕ can be translated
into a hesitant alternating automaton of size O(|ϕ| · 2|ϕ|) [KVW00] whose emptiness can be
checked in time that is doubly exponential in |ϕ|.

The price to pay, though, is the use of a reduction that is only satisfiability-preserving.
Thus, their approach reduces the satisfiability problem for branching-time temporal logics
that can be translated into alternating parity tree automata to the emptiness problem for
tree automata which accept some tree iff the input formula is satisfiable. The translation does
not preserve models, though. There is a way of turning a tree model for the nondeterministic
Büchi automaton back into a tree model for the branching-time temporal logic formula
because the alphabet that the universal co-Büchi automaton uses is just a projection of the
hesitant alternating tree automaton’s alphabet. Still, this procedure does not seem to keep
a close connection between the subformulas of the input formulas and the structure of the
resulting tree automaton which is being checked for emptiness.

Reynolds’ proof system [Rey01] is an approach at giving a sound and complete finite
axiomatisation for CTL∗. Its proof of correctness is rather intricate and the system itself
is useless for practical purposes since it lacks the subformula property and it is therefore
not even clear how a decision procedure, i.e. proof search could be done. In comparison,
the game-based calculus has the subformula property—formulas in blocks of successor
configurations are subformulas of those in the blocks of the preceding one—and comes with

2https://github.com/oliverfriedmann/mlsolver

https://github.com/oliverfriedmann/mlsolver

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 33

Aspect

Method Emerson & Halpern
[EH85]

Vardi & Wolper
[VW86]

Abate et al.
[AGW07]

here

Concept filtration automata tableaux games

Worst-case complexity EXPTIME EXPTIME 2EXPTIME EXPTIME

Implementation available no no yes yes

Model construction yes yes yes yes

Requires small model
property

yes no no no

Derives small model
property

— 2O(n) 22
O(n)

2O(n)

Table 2: Comparison of the main decision methods for satisfiability of CTL-formulas.

an implementable decision procedure. The only price to pay for this is the characterisation
of satisfiability through infinite objects instead.

Reynold’s tableau system [Rey11] shares some similarities with the games presented
here. He also uses sets of sets of formulas as well as traces (which he calls threads), etc.
Even though his tableaux are finite, the difference in this respect is marginal. Finiteness is
obtained through looping back, i.e. those branches might be called infinite as well. One of
the real differences between the two systems lies in the way that the semantics of the CTL∗

operators shows up. In Reynolds’ system it translates into technical requirements on nodes
in the tableaux, whereas the games come with relatively straight-forward game rules. The
other main difference is the loop-check. Reynolds says that “. . . we are only able to give
some preliminary results on mechanisms for tackling repetition. [. . .] The task of making a
quick and more generally usable repetition checker will be left to be advanced and presented
at a later date.” The game-based method comes with a non-trivial repetition checker: it is
given by the annotated automata.

7.2. The Fragments CTL+ and CTL. To the best of our knowledge, there are no
decision procedures that are especially tailored towards CTL+. Thus, the restriction of the
satisfiability games to CTL+ as presented in Section 6.1 is the first decision procedure for
this logic which does not also decide the whole of CTL∗.

The situation for CTL is entirely different. The first decision procedure for CTL was
given by Emerson and Halpern [EH85] using filtration. It starts with a graph of Hintikka sets
and successively removes edges from this graph in order to exclude unfulfilled eventualities.
This is similar to the game-based approach in that the game rules for Boolean connectives
mimic the rules for being a Hintikka set. On the other hand, the machinery for excluding
unfulfilled eventualities is an entirely different one.

There is a purely automata-theoretic decision procedure for CTL [VW86]: as such,
it constructs a tree automaton which recognises all tree-unfoldings of models of the in-
put formula. In order to obtain an asymptotically optimal decision procedure for CTL,
Vardi/Wolper use a new type of acceptance condition resulting in eventuality automata
whose emptiness problem can be decided in polynomial time. An exponential translation

34 O. FRIEDMANN, M. LATTE, AND M. LANGE

from CTL into such automata then yields a decision procedure for CTL. There are certain
similarities to the game-based approach presented here: the design of the simpler type of
acceptance condition is reminiscent of the manual creation of deterministic automata that
check the winning conditions.

There is a tableau-based decision procedure for CTL [AGW07]. As with Reynold’s
tableaux for CTL∗, the main difference to the game-based (and also automata-theoretic)
approach is the fact that the tableau calculi do not separate the decision procedure into
a syntactical characterisation (e.g. winning strategy) and an algorithm deciding existence
of such objects. This leads to correctness proofs which are even more complicated than
the ones for the CTL∗ games presented here. Also, this method does not yield a common
framework for dealing with unfulfilled eventualities which is given by the different types of
(deterministic) automata which are being used here in order to characterise the winning
conditions.

The work that is most closely related to the one presented here consists of the focus
game approach to CTL [LS01]. These are also satisfiability games, and the rules there extend
the rules here with a focus on a particular subformula which is under player 1’s control.
The focus game approach does not explicitly give an algorithm for deciding satisfiability. A
close analysis shows that the focus can be seen as an annotation with a nondeterministic
co-Büchi automaton to the game configurations, and a decision procedure could be obtained
by determinising this automaton. In this respect, the games presented here improve over
the focus games by showing how small deterministic Büchi automata suffice for this task.

Table 2 tabulates the comparison of the CTL satisfiability games with these other
approaches.

8. Further Work

The results of the previous section show that the game/automata approach to deciding
CTL∗ is reasonably viable in practice. Note that the implementation so far only features
optimisations on one of three fronts: it uses the latest and optimised technology for solving
the resulting games. However, there are two more fronts for optimisations which have
not been exploited so far. The main advantage of this approach is—as we believe—the
combination of tableau-, automata- and game-machinery and therefore the possible benefit
from optimisation techniques in any of these areas. It remains to be seen for instance
whether the automaton determinisation procedure can be improved or replaced by a better
one. Also, the tableau community has been extremely successful in speeding up tableau-
based procedures using various optimisations. It also remains to be seen how those can be
incorporated in the combined method.

Furthermore, it remains to expand this work to extensions of CTL∗, for example CTL∗

with past operators, multi-agent logics based on CTL∗, etc.

References

[AGW07] P. Abate, R. Goré, and F. Widmann. One-pass tableaux for computation tree logic. In Proc. 14th
Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’07, volume 4790
of LNCS, pages 32–46. Springer, 2007.

[AI01] M. Adler and N. Immerman. An n! lower bound on formula size. In Proc. 16th Symp. on Logic in
Computer Science, LICS’01, pages 197–208, Boston, MA, USA, 2001. IEEE.

SATISFIABILITY GAMES FOR BRANCHING-TIME LOGICS 35

[BDF99] A. Bolotov, C. Dixon, and M. Fisher. Clausal resolution for CTL∗. In Proc. 24th Int. Symp. on
Mathematical Foundations of Computer Science, MFCS’99, volume 1672 of LNCS, pages 137–148.
Springer, 1999.

[BF99] A. Bolotov and M. Fisher. A clausal resolution method for CTL branching-time temporal logic. J.
Exp. Theor. Artif. Intell, 11(1):77–93, 1999.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. In D. L. Dill, editor, Proc. 6th Conf. on Computer Aided Verification, CAV’94,
volume 818 of LNCS, pages 142–155, Stanford, 1994. Springer.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Logics of Programs: Workshop, volume 131 of LNCS, pages 52–71, Yorktown
Heights, New York, 1981. Springer.

[CHP06] Krishnendu Chatterjee, Tom Henzinger, and Nir Piterman. Algorithms for buchi games. In GDV
06, August 2006.

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic of
branching time. Journal of Computer and System Sciences, 30:1–24, 1985.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On branching versus
linear time temporal logic. J. of the ACM, 33(1):151–178, 1986.

[EJ91] E. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd Symp. on
Foundations of Computer Science, pages 368–377, San Juan, 1991. IEEE.

[EJ00] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs. SIAM
Journal on Computing, 29(1):132–158, 2000.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, chapter 16, pages 996–1072. Elsevier
and MIT Press, New York, USA, 1990.

[ES84] E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Information and Control,
61(3):175–201, 1984.

[Fis91] M. Fisher. A resolution method for temporal logic. In Proc. 12th Int. Joint Conference on Artificial
Intelligence, IJCAI’91, pages 99–104. Morgan Kaufmann, 1991.

[FL79] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18(2):194–211, 1979.

[FL09] O. Friedmann and M. Lange. Solving parity games in practice. In Proc. 7th Int. Symp. on Automated
Technology for Verification and Analysis, ATVA’09, volume 5799 of LNCS, pages 182–196, 2009.

[FL10] O. Friedmann and M. Lange. A solver for modal fixpoint logics. In Proc. 6th Workshop on Methods
for Modalities, M4M-6, volume 262 of Elect. Notes in Theor. Comp. Sc., pages 99–111, 2010.

[FLL10] O. Friedmann, M. Latte, and M. Lange. A Decision Procedure for CTL∗ Based on Tableaux and
Automata. In Jürgen Giesl and Reiner Hähnle, editors, Proc. of the 5th Int. Joint Conference on
Automated Reasoning, volume 6173 of Lecture Notes in Computer Science, pages 331–345. Springer,
2010.

[GP08] D. M. Gabbay and A. Pnueli. A sound and complete deductive system for CTL∗ verification. Logic
Journal of the IGPL, 16(6):499–536, 2008.

[GTW02] E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and Infinite Games, volume
2500 of LNCS. Springer, 2002.

[JL03] J. Johannsen and M. Lange. CTL+ is complete for double exponential time. In Proc. 30th Int.
Coll. on Automata, Logics and Programming, ICALP’03, volume 2719 of LNCS, pages 767 – 775.
Springer, 2003.

[KV05] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In Proc. 46th Ann. IEEE Symp. on
Foundations of Computer Science, FOCS’05, pages 531–542. IEEE, 2005.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, 2000.

[KW08] D. Kähler and Th. Wilke. Complementation, disambiguation, and determinization of Büchi
automata unified. In Proc. 35th Int. Coll. on Automata, Languages and Programming, ICALP’08,
volume 5125 of LNCS, pages 724–735. Springer, 2008.

[Lan08] M. Lange. A purely model-theoretic proof of the exponential succinctness gap between CTL+ and
CTL. Information Processing Letters, 108:308–312, 2008.

36 O. FRIEDMANN, M. LATTE, AND M. LANGE

[LS01] M. Lange and C. Stirling. Focus games for satisfiability and completeness of temporal logic. In
Proc. 16th Symp. on Logic in Computer Science, LICS’01, Boston, MA, USA, 2001. IEEE.

[LSS+05] X. Luo, K. Su, A. Sattar, Q. Chen, and G. Lv. Bounded model checking knowledge and branching
time in synchronous multi-agent systems. In Proc. 4th Int. Conf. on Auton. Agents and Multiagent
Syst., AAMAS’05, pages 1129–1130. ACM, 2005.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and
Control, 9(5):521–530, 1966.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on omega-words. TCS, 32(3):321–330,
1984.

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. TCS, 54(2-3):267–276,
1987.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata.
In Proc. 21st Symp. on Logic in Computer Science, LICS’06, pages 255–264. IEEE Computer
Society, 2006.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of Computer
Science, FOCS’77, pages 46–57, Providence, RI, USA, 1977. IEEE.

[PR88] A. Pnueli and R. Rosner. A framework for the synthesis of reactive modules. In Proc. Int. Conf.
on Concurrency, volume 335 of LNCS, pages 4–17. Springer, 1988.

[Rey01] M. Reynolds. An axiomatization of full computation tree logic. Journal of Symbolic Logic,
66(3):1011–1057, 2001.

[Rey09] M. Reynolds. A tableau for CTL∗. In Proc. 16th. Int. Symp. on Formal Methods, FM’09, volume
5850 of LNCS, pages 403–418. Springer, 2009. Long version availabe as technical report of the
University of Western Australia.

[Rey11] M. Reynolds. A tableau-based decision procedure for CTL∗. Journal of Formal Aspects of Com-
puting, pages 1–41, 2011.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th Symp. on Foundations of Computer
Science, FOCS’88, pages 319–327. IEEE, 1988.

[Sch07] S. Schewe. Solving parity games in big steps. In Proc. 27th Int. Conf. on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS’07, volume 4855 of LNCS, pages 449–460.
Springer, 2007.

[Sch09] S. Schewe. Tighter bounds for the determinisation of Büchi automata. In Proc. 12th Int. Conf.
on Foundations of Software Science and Computation Structures, FOSSACS’09, volume 5504 of
LNCS, pages 167–181. Springer, 2009.

[VS85] M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs.
In Proc. 17th Symp. on Theory of Computing, STOC’85, pages 240–251, Baltimore, USA, 1985.
ACM.

[VW86] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of programs. Journal
of Computer and System Sciences, 32:183–221, 1986.

[Wil99] T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th Conf. on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS’99, volume 1738 of LNCS, pages
110–121. Springer, 1999.

[Zer04] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen, 59:514–
516, 1904.

[ZHD10] L. Zhang, U. Hustadt, and C. Dixon. CTL-RP: A computation tree logic resolution prover. AI
Communications, 23(2-3):111–136, 2010.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. TCS, 200(1–2):135–183, 1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The Full Branching Time Logic
	3. Satisfiability Games for CTL*
	3.1. The Game Rules
	3.2. The Winning Conditions

	4. Correctness Proofs
	4.1. Soundness
	4.2. Completeness

	5. A Decision Procedure for CTL*
	5.1. Using Deterministic Automata to Check the Winning Condition
	5.2. Büchi, co-Büchi and Parity Automata on Infinite Words
	5.3. An Alphabet of Rule Applications
	5.4. DPA for the Absence of Bad A-Traces
	5.5. DBA for the Absence of Bad E-Traces
	5.6. The Reduction to Parity Games
	5.7. Model Theory

	6. On Fragments of CTL*
	6.1. The Fragment CTL+
	6.2. The Fragment CTL

	7. Comparison with Existing Methods
	7.1. CTL*
	7.2. The Fragments CTL+ and CTL

	8. Further Work
	References

