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Abstract. Partial model checking was proposed by Andersen in 1995 to verify a temporal
logic formula compositionally on a composition of processes. It consists in incrementally
incorporating into the formula the behavioural information taken from one process — an
operation called quotienting — to obtain a new formula that can be verified on a smaller
composition from which the incorporated process has been removed. Simplifications of the
formula must be applied at each step, so as to maintain the formula at a tractable size. In
this paper, we revisit partial model checking. First, we extend quotienting to the network
of labelled transition systems model, which subsumes most parallel composition operators,
including m-among-n synchronisation and parallel composition using synchronisation in-
terfaces, available in the E-Lotos standard. Second, we reformulate quotienting in terms
of a simple synchronous product between a graph representation of the formula (called
formula graph) and a process, thus enabling quotienting to be implemented efficiently and
easily, by reusing existing tools dedicated to graph compositions. Third, we propose sim-
plifications of the formula as a combination of bisimulations and reductions using Boolean
equation systems applied directly to the formula graph, thus enabling formula simplifica-
tions also to be implemented efficiently. Finally, we describe an implementation in the
Cadp (Construction and Analysis of Distributed Processes) toolbox and present some ex-
perimental results in which partial model checking uses hundreds of times less memory
than on-the-fly model checking.

1. Introduction

Concurrent safety critical systems can be verified using model checking [13], i.e., automatic
evaluation of a temporal property against a formal model of the system. Although success-
ful in many applications, model checking may face state explosion, particularly when the
number of concurrent processes grows.

State explosion can be tackled by divide-and-conquer approaches regrouped under the
name compositional verification, which take advantage of the compositional structure of
the concurrent system under verification. One such approach, which we call compositional

model generation in this paper, consists in building the model of the system — usually an
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Lts (Labelled Transition System) — in a stepwise manner, by successive compositions and
minimisations modulo equivalence relations, possibly using interface constraints [26, 30] to
avoid explosion of intermediate compositions. Tools using this approach [21, 31, 32, 15] are
available in the Cadp (Construction and Analysis of Distributed Processes) [22, 23] toolbox.

In this paper, we explore a dual approach named partial model checking, proposed by
Andersen [2, 3] for concurrent processes running asynchronously and composed using Ccs
parallel composition and restriction operators. For a modal µ-calculus [29] formula ϕ and
a process composition P1|| . . . ||Pn, Andersen uses an operation ϕ//P1 called quotienting of
the formula ϕ w.r.t. the process P1, so that P1|| . . . ||Pn satisfies ϕ if and only if the smaller
composition P2|| . . . ||Pn satisfies ϕ//P1. In addition, simplifications can (and must) be
applied to ϕ//P1 to reduce its size. Partial model checking is the incremental application of
quotienting and simplifications, so that state explosion is avoided if the size of intermediate
formulas can be kept sufficiently small.

Partial model checking has been adapted and used successfully in various contexts, such
as state-based models [5, 4], synchronous state/event systems [9], and timed systems [8, 11,
36, 37, 38]. It has also been specialised for security properties [40]. More recently, it has
been generalised to the full Ccs process algebra, with an application to the verification of
parameterised systems [7]. These various developments of partial model checking, although
successful, were relatively scarce, which may be explained by the complexity of the method:
obtaining a fully operational partial model checker requires a significant implementation
effort and extensive experiments for fine-tuning and optimization.

In this paper, we focus on partial model checking of the modal µ-calculus applied to (un-
timed) concurrent asynchronous processes. By considering only binary associative parallel
composition operators (such as Ccs and Csp parallel compositions), previous works [2, 3, 7]
are not directly applicable to more general operators, such as m-among-n synchronisation
(where among n processes executing in parallel, any m of them must synchronise on a
given action) and parallel composition by synchronisation interfaces (where all processes
containing a given action in their synchronisation interface must synchronise on that ac-
tion) [24], present in the E-Lotos standard and variants [12, 28]. Our first contribution
in this paper is thus a generalisation of partial model checking to networks of Ltss [31],
a general model that subsumes parallel composition, hiding, cutting, and renaming oper-
ators of standard process languages (Ccs, Csp, µCrl, Lotos, E-Lotos, etc.), including
the above-mentioned parallel composition operators. Regarding the communication of data
values, our approach is applicable to classical (i.e., with static communication) value-passing
process algebras equipped with early operational semantics. This framework encompasses
a significant fragment of the π-calculus (containing channel mobility and bounded process
creation), which can be translated into classical value-passing process algebras [44].

In realistic cases, partial model checking handles huge formulas and processes, thus
requiring efficient implementations. Our second contribution is a reformulation of quoti-
enting as a synchronous product (which can itself be represented in the network model)
between a graph representing the formula (called a formula graph) and the behaviour graph
of a process, thus enabling efficient implementation using existing tools dedicated to graph
manipulations. We prove that this reformulation is sound. Our third contribution is the
reformulation of formula simplifications as a combination of graph reductions (including
minimisations modulo equivalence relations and bisimulations) and partial evaluation of
the formula graph using a Bes (Boolean Equation System) [1].
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Verifying modal µ-calculus formulas of arbitrary alternation depth is generally exponen-
tial in the size of the process graph, while verifying the alternation-free fragment remains of
linear complexity. Our fourth contribution is a specialisation of the technique to alternation-
free µ-calculus formulas. We also present how this specialisation can be again generalised
to handle also useful fairness operators of alternation 2 in linear time without developing
the complex machinery to evaluate general alternation-2 µ-calculus formulas. Finally, we
present an implementation in Cadp and a case-study that illustrates the complementarity
between partial and on-the-fly model checking.

Paper Overview. The modal µ-calculus is presented in Section 2. The network of Ltss
model is presented in Section 3. The generalisation of quotienting to networks and its
reformulation as a synchronous product is presented in Section 4. The simplification rules
are presented in Section 5. The rules specific to alternation-free µ-calculus formulas are
presented in Section 6. The way we handle fairness operators is presented in Section 7. Our
implementation of partial model checking of the regular alternation-free µ-calculus extended
with fairness operators is presented in Section 8. Experimental results are presented in
Section 9. Concluding remarks are given in Section 10. This paper is an extended version
of an earlier paper [34].

2. The Modal µ-Calculus

We consider systems whose behavioural semantics can be represented using an Lts (Labelled
Transition System), and whose properties can be expressed in the modal µ-calculus [29].

Definition 2.1 (Lts). An Lts is a tuple (Σ, A,−→, s0), where:

• Σ is a set of states,
• A is a set of labels,
• −→ ⊆ Σ×A× Σ is the (labelled) transition relation,
• and s0 ∈ Σ is the initial state.

For an Lts S = (Σ, A,−→, s0), we may also write s
a

−→s′ ∈ S (or simply s
a

−→s′ when
S is clear from the context) instead of (s, a, s′) ∈ →.

Definition 2.2 (Syntax of the modal µ-calculus). The modal µ-calculus formulas (ϕ) are
terms built from Boolean constants (ff , tt), Boolean connectors (disjunction ∨, conjunction
∧, and negation ¬), modalities (possibility 〈 〉 and necessity [ ]), and fix-point operators
(minimal µ and maximal ν) over propositional variables X, generated by the following
grammar:

ϕ ::= ff | ϕ1 ∨ ϕ2 | 〈a〉ϕ0 | µX.ϕ0

| tt | ϕ1 ∧ ϕ2 | [a]ϕ0 | νX.ϕ0

| ¬ϕ0 | X

To ensure a proper definition of fix-point operators, a commonly adopted and sufficient
condition is that formulas ϕ are syntactically monotonic [29], i.e., have an even number
of negations on every path between a variable occurrence X and the µ or ν operator that
binds X. Therefore, we will only consider syntactically monotonic formulas. We write Lµ
for the set of µ-calculus formulas.

We write fv (ϕ) for the set of variables free in ϕ, and bv (ϕ) for the set of variables
bound in ϕ. We call a closed formula any formula ϕ such that fv (ϕ) = ∅. We assume that
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[[ff ]] ρ = ∅
[[tt]] ρ = Σ

[[ϕ1 ∨ ϕ2]] ρ = [[ϕ1]] ρ ∪ [[ϕ2]] ρ
[[ϕ1 ∧ ϕ2]] ρ = [[ϕ1]] ρ ∩ [[ϕ2]] ρ
[[〈a〉ϕ0]] ρ = {s ∈ Σ | (∃s′ ∈ Σ) s

a
−→s′ ∧ s′ ∈ [[ϕ0]] ρ}

[[[a]ϕ0]] ρ = {s ∈ Σ | (∀s′ ∈ Σ) s
a

−→s′ =⇒ s′ ∈ [[ϕ0]] ρ}
[[µX.ϕ0]] ρ =

⋂

{U ⊆ Σ | [[ϕ0]] (ρ⊘ [U/X]) ⊆ U}
[[νX.ϕ0]] ρ =

⋃

{U ⊆ Σ | U ⊆ [[ϕ0]] (ρ⊘ [U/X])}
[[¬ϕ0]] ρ = Σ \ [[ϕ0]] ρ
[[X]] ρ = ρ(X)

Figure 1: Semantics of the modal µ-calculus

all bound variables have distinct names, and for X ∈ bv (ϕ), we write ϕ[X] for the (unique)
sub-formula of ϕ of either form µX.ϕ0 or νX.ϕ0. Given ϕ1 and ϕ2, we write ϕ1[ϕ2/X] for
substituting all free occurrences of X in ϕ1 by ϕ2 (while implicitly applying α-conversion
to maintain the unicity of bound variables).

Definition 2.3 (Semantics of the modal µ-calculus). The semantics of the modal µ-calculus
are formally defined by the equations of Figure 1. A propositional context ρ is a partial
function mapping propositional variables to sets of states and ρ⊘ [U/X] stands for a propo-
sitional context identical to ρ except that X is mapped to U . The interpretation [[ϕ]] ρ (also
written [[ϕ]] if ρ is empty) of a state formula on an Lts in a propositional context ρ (which
maps each variable free in ϕ to a set of states) denotes the subset of states satisfying ϕ in
that context. The Boolean connectors are interpreted as usual in terms of set operations.
The possibility modality 〈a〉ϕ0 (resp. the necessity modality [a]ϕ0) denotes the states for
which some (resp. all) of their outgoing transitions labelled by a lead to states satisfying
ϕ0. The minimal fix-point operator µX.ϕ0 (resp. the maximal fix-point operator νX.ϕ0)
denotes the least (resp. greatest) solution of the equation X = ϕ0 interpreted over the
complete lattice

〈

2Σ, ∅,Σ,∩,∪,⊆
〉

. A state s satisfies a closed formula ϕ if and only if
s ∈ [[ϕ]].

Proposition 2.4. The modal µ-calculus satisfies the following identities:

¬tt = ff
¬ff = tt

¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) = ¬ϕ1 ∧ ¬ϕ2

¬ [a]ϕ0 = 〈a〉 ¬ϕ0

¬ 〈a〉ϕ0 = [a]¬ϕ0

¬νX.ϕ0 = µX.¬ϕ0[¬X/X]
¬µX.ϕ0 = νX.¬ϕ0[¬X/X]

Definition 2.5 (Positive form and disjunctive form). Every modal µ-calculus formula ϕ
can be rewritten in both of the following forms:

• A formula is in positive form if it contains any of the modal µ-calculus operators but the
negation operator ¬. Note that syntactic monotonicity implies that every negation can
be eliminated using the identities of Proposition 2.4. Given a modal µ-calculus formula
ϕ, we write ϕ+ the corresponding formula in positive form.
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• A formula is in disjunctive form if it contains only the constant ff , disjunctions, possibility
modalities, minimal fix-points, propositional variables and negations. Every formula can
be put in disjunctive form using the identities of Proposition 2.4. Note that a formula in
disjunctive form is not necessarily a disjunctive formula due to the presence of negations.

Definition 2.6. A formula ϕ is alternation-free if ϕ+ does not contain any sub-formula of
the form µX.ϕ1 (resp. νX.ϕ1) containing a sub-formula of the form νY.ϕ2 (resp. µY.ϕ2)
such that X ∈ fv (ϕ2). The fix-point sign of a variable X in ϕ is µ (resp. ν) if ϕ+[X]
has the form µX.ϕ0 (resp. νX.ϕ0). We write Lµ1 for the set of alternation-free µ-calculus
formulas, and more generally Lµn for the set of µ-calculus formulas of alternation up to n
(for some n).

Definition 2.7 (Block-labelled formula). In this paper, we consider block-labelled formulas
ϕ in disjunctive form, in which each propositional variable X is labelled by a natural number
k, called its block number.

Intuitively, a block-labelling is well-formed if the µ-calculus formula can be converted
into an equivalent set of µ-calculus equations partitioned into blocks, so that all variables
having the same block number are defined in the same block and if k < k′ then the equations
within block number k occur before the equations within block number k′. The proof is
beyond the scope of this paper. The well-formedness conditions are the following:

(1) All occurrences of a given variable X are labelled by the same block number k.
(2) All variables sharing the same block number have the same fix-point sign.

(3) For all Xk ∈ bv (ϕ), Y k′ ∈ fv(ϕ[Xk]) it holds that k′ ≤ k.

By convention, we assume without loss of generality that the even block numbers are
associated to variables of sign µ and odd block numbers are associated to variables of sign
ν.

Initially, every unlabelled formula ϕ in disjunctive form can be turned into the well-
formed block-labelled formula bl (ϕ, tt, 0, []), where bl (ψ, b, k, γ) is defined as follows, γ de-
noting a mapping from variables to block numbers:

bl (ff , b, k, γ) = ff

bl (X, b, k, γ) = Xγ (X)

bl (¬ϕ0, b, k, γ) = ¬bl (ϕ0,¬b, k, γ)
bl (ϕ1 ∨ ϕ2, b, k, γ) = bl (ϕ1, b, k, γ) ∨ bl (ϕ2, b, k, γ)
bl (〈a〉ϕ0, b, k, γ) = 〈a〉 bl (ϕ0, b, k, γ)

bl (µX.ϕ0, b, k, γ) =

{

µXk.bl (ϕ0, tt, k, γ[X 7→ k]) if b = tt
µXk+1.bl (ϕ0, tt, k + 1, γ[X 7→ k + 1]) otherwise

We write blocks(ϕ) for the set of block numbers occurring in ϕ. A block-labelled formula ϕ

in disjunctive form is alternation-free if k′ = k for all Xk ∈ bv(ϕ), Y k′ ∈ fv(ϕ[Xk ]).

A well-known result of the µ-calculus is that the variables of an alternation-free formula
can be partitioned into blocks that have no cyclic dependencies. Another way to state this
result is that any unlabelled formula in disjunctive form is alternation-free if and only if
it can be block-labelled so that it satisfies the definition of alternation-free block-labelled
formula.

In the remainder of this paper, we will consider block-labelled formulas in disjunctive
form. At last, we consider the following notion of formula equivalence, which is a slight
generalisation of syntactic equality to enclose also the semantic notions of renaming, com-
mutativity, and idempotence.
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Definition 2.8. Let f be a bijective function from the set of propositional variables to
itself, called a renaming. For formulas in disjunctive form, we define syntactic equality
modulo commutativity, idempotence and f -renaming as the smallest relation, written =f ,
such that if ϕi =f ϕ

′
i (i ∈ 0..2) then:

• ff =f ff , ¬ϕ0 =f ¬ϕ′
0, 〈a〉ϕ0 =f 〈a〉ϕ′

0, ϕ1 ∨ ϕ2 =f ϕ
′
1 ∨ ϕ

′
2, X =f f(X), and µX.ϕ0 =f

µf(X).ϕ′
0 for each propositional variable X (syntactic equality modulo renaming),

• ϕ1 ∨ ϕ2 =f ϕ
′
2 ∨ ϕ

′
1 (commutativity),

• ϕ0 ∨ ϕ0 =f ϕ
′
0 and ϕ0 =f ϕ

′
0 ∨ ϕ

′
0 (idempotence).

3. Networks of LTSs

Networks of LTSs (or networks for short) are inspired from the Mec [6] and Fc2 [10]
synchronisation vectors and were introduced in [31] as an intermediate model to represent
compositions of Ltss using various operators.

Definition 3.1 (Vector and vector projection). We write n..m for the set of integers ranging
from n to m, or the empty set if n > m. A vector v of size n is a total function on 1..n.
For i ∈ 1..n, we write v[i] for v applied to i, denoting the element of v stored at index i.
We write (e1, . . . , en) for the vector v of size n such that (∀i ∈ 1..n) v[i] = ei. In particular,
() denotes a vector of size 0.

Given n ≥ 1 and i ∈ 1..n, v\i denotes the projection of v on to the set of indices
1..n \ {i}, defined as the vector of size n − 1 such that (∀j ∈ 1..i − 1) v\i[j] = v[j] and
(∀j ∈ i..n− 1) v\i[j] = v[j + 1].

Definition 3.2 (Network of LTSs). A network of LTSs N of size n is a pair (S, V ), where
S is a vector of Ltss (called individual LTSs) of size n, and V is a set of synchronisation
rules. Each synchronisation rule has the form (t, a) with a a label and t a vector of size n,
called the synchronisation vector, of labels and occurrences of a special symbol • distinct
from any label. Let S[i] = (Σi, Ai,−→i, s

0
i ) (i ∈ 1..n). N can be associated to a (global)

Lts lts (N) which is the parallel composition of individual Ltss. Each (t, a) ∈ V defines
transitions labelled by a, obtained either by synchronisation (if more than one index i is
such that t[i] 6= •) or by interleaving (otherwise) of individual Lts transitions. Formally,
lts (N) = (Σ, A,−→, s0), where:

• Σ = Σ1 × . . .× Σn,
• A = {a | (t, a) ∈ V },
• s0 = (s01, . . . , s

0
n), and

• −→ is the relation satisfying s
a

−→s′ if and only if there exists (t, a) ∈ V such that for all
i ∈ 1..n:

{

s′[i] = s[i] if t[i] = •
s[i]

t[i]
−→is

′[i] otherwise

We write A(t) for the set of active Lts (indices), defined by {i | i ∈ 1..n ∧ t[i] 6= •}.

Example 3.3. Let a, b, c, and d be labels, and P1, P2, and P3 be the processes defined in
Figure 2 (top), where the initial states are denoted by bold circles. Let N = ((P1, P2, P3), V )
with V = {((a, a, •), a), ((a, •, a), a), ((b, b, b), b), ((c, c, •), τ), ((•, •, d), d)}, whose global Lts
is depicted in Figure 2 (bottom left). The first two rules express a nondeterministic syn-
chronisation on a between either P1 and P2, or P1 and P3. The third rule expresses a
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Figure 2: Labelled Transition Systems for N defined in Example 3.3

multiway synchronisation on b. The fourth rule yields an internal (τ) transition. The fifth
rule expresses full interleaving of transitions labelled by d.

The network of Ltss model is used in the tool Exp.Open [31] of Cadp as an intermedi-
ate model for representing Ltss composed using the hiding, renaming, cutting, and parallel
composition operators present in the process algebras Ccs, Csp, Lotos, and µCrl, but
also more expressive operators, such as m-among-n synchronisation and parallel compo-
sition using synchronisation interfaces [24] present in E-Lotos [28] and Lotos NT [12].
For instance, the rules {((a, a, •), a), ((a, •, a), a), ((•, a, a), a)} realize 2-among-3 synchroni-
sation on a.

Computing the interactions of a process Pi with its environment in a composition of
processes ||j∈1..nPj is easy when || is a binary and associative parallel composition operator,
since ||j∈1..nPj = Pi || (||j∈1..n\{i}Pj). However, as argued in [24], binary and associative
parallel composition operators are of limited use when considering, e.g., m-among-n syn-
chronisation. A more involved operation named sub-network extraction is necessary for
networks.

Definition 3.4 (Sub-network extraction). N = (S, V ) being a network of size n, we assume
a function α (t, a) that assigns a unique unused label to each (t, a) ∈ V . Given i ∈ 1..n,
we define N\i = (S\i, V\i) the sub-network of N modeling the environment of S[i] in N ,
where V\i = {(t\i, a) | (t, a) ∈ V ∧ i /∈ A(t)} ∪ {(t\i, α (t, a)) | (t, a) ∈ V ∧ {i} ⊂ A(t)}. N
is semantically equivalent to the network ((S[i], lts (N\i)), V

′) with V ′ the following set of
rules, which define the interactions between S[i] and N\i:

{ ((•, a), a) | (t, a) ∈ V ∧ i /∈ A(t) } ∪
{ ((t[i], α (t, a)), a) | (t, a) ∈ V ∧ {i} ⊂ A(t) } ∪
{ ((a, •), a) | (t, a) ∈ V ∧ {i} = A(t) }

Each α(t, a) is a unique interaction label between S[i] and N\i, which aims at avoiding
erroneous interactions in case of nondeterministic synchronisation.
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Example 3.5. N being defined in Example 3.3, N\3 has vector of Ltss (P1, P2), P1 and
P2 being defined in Figure 2 (top left and top middle), and rules

{((a, a), a), ((a, •), αa), ((b, b), αb), ((c, c), τ)}

with αa = α ((a, •, a), a) and αb = α ((b, b, b), b); lts(N\3) is depicted in Figure 2 (bottom
right); Composing it with P3 using {((•, a), a), ((a, αa), a), ((b, αb), b), ((•, τ), τ), ((d, •), d)}
yields lts(N).

Note that if a had been used instead of αa in the above synchronisation rules, then
the composition of N\3 with P3 would have enabled, in addition to the (correct) binary
synchronisations on a between P1 and P2 and between P1 and P3, the (incorrect) multiway
synchronisation on a between the three of P1, P2, and P3. Indeed, the label a resulting
from the synchronisation between P1 and P2 in N\3 — rule ((a, a), a) in N\3 — could
synchronise with the label a in P3 — rule ((a, a), a) in the composition between N\3 and
P3. Note however that t[i] can be used instead of α(t, a) when the network does not have
nondeterministic synchronisation on t[i], as is the case for b and αb in this example. In this
paper we use α(t, a) uniformly to avoid complications.

4. Quotienting for Networks using Networks

To check a closed formula ϕ on a network N = (S, V ), one can choose an individual Lts
S[i], compute the quotient of the formula ϕ with respect to S[i], and check the resulting
quotient formula on the smaller (at least in number of individual Ltss, but also hopefully
in global Lts size) network N\i.

Definition 4.1 (Quotient formula). The quotient formula is written ϕ//∅i s
i
0 and defined

as follows for closed formulas in disjunctive form:

ff //Bi s = ff

Xk //Bi s = ϕ[Xk] //Bi s

(¬ϕ0) //
B
i s = ¬(ϕ0 //

B
i s)

(ϕ1 ∨ ϕ2) //
B
i s = (ϕ1 //

B
i s) ∨ (ϕ2 //

B
i s)

(µXk.ϕ0) //
B
i s =

{

Xk
s if Xk

s ∈ B

µXk
s .(ϕ0 //

B∪{Xk
s }

i s) otherwise

(〈a〉ϕ0) //
B
i s =

∨

(t,a)∈V







( i /∈ A(t) ∧ 〈a〉 (ϕ0 //
B
i s) ) ∨

({i} ⊂ A(t) ∧
∨

s
t[i]
−→is′

〈α (t, a)〉 (ϕ0 //
B
i s′)) ∨

({i} = A(t) ∧
∨

s
t[i]
−→is′

(ϕ0 //
B
i s′))







This definition follows and generalises Andersen’s [2] (specialised for Ccs) to networks.
The main difference is the definition of (〈a〉ϕ0) //

B
i s, Ccs composition corresponding to

vectors ((a, •), a), ((•, a), a), or ((a, a), τ), a and a being an action and its Ccs co-action,
making the use of special labels α(t, a) not necessary. A minor difference is that we use
µ-calculus terms instead of equations1. Any sub-formula produced by quotienting has the

1Note that terms will be compiled into graphs, thus enabling the sharing of sub-formulas that is also
possible using equations.
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same block number as the original sub-formula, reflecting the order of equation blocks in
Andersen’s definition. The set B keeps track of new variables already introduced in the
quotient formula. Quotienting is well-defined, because formulas are finite, every ϕ[Xk] has
the form µXk.ϕ0 (because the formula is in disjunctive form), and the size of the set B is
bounded by | bv (ϕ)| × |Σi|. Note that well-formedness of the block-labelling is preserved

by quotienting, because for every variable Xk
s ∈ bv (ϕ//∅i s0) we have Xk ∈ bv (ϕ) and for

every variable Y k′

s′ ∈ fv ((ϕ//∅i s0)[X
k
s ]) we have Y k′ ∈ fv (ϕ[Xk]), and therefore k′ ≤ k.

Example 4.2. The µ-calculus formula µX0.〈a〉tt∨〈b〉X0 (existence of a path of zero or more
b leading to an a) can be rewritten to disjunctive form as µX0.〈a〉¬ff ∨ 〈b〉X0. Quotienting
of this formula with respect to P3 in the network N introduced in Example 3.3 (page 6)
yields the formula µX0

0 .〈a〉¬ff ∨ 〈αa〉¬ff ∨ 〈αb〉µX
0
2 .〈a〉¬ff ∨ ff . In other words, an action

a can be reached after a (possibly empty) sequence of b actions in the network N if and
only if an action a, or an action αa, or an action αb followed by an action a, can be reached
immediately in N\3, given the behaviour of P3 depicted in Figure 2 (page 7).

We now show that quotienting can be implemented as a network that realises a product
between an Lts encoding the formula (called a formula graph) and an individual Lts of the
network under verification.

Definition 4.3 (Circuit). Let S = (Σ, A,→, s0) be an Lts and T ⊆ → be a subset of its
transitions. The states of T are defined as the set st (T ) = {s, s′ ∈ Σ | (s, σ, s′) ∈ T}. T is
a circuit of S if for all s, s′ ∈ st (T ) there is a sequence of transitions belonging to T from s
to s′. A state s ∈ st (T ) is a root of the circuit T if there is a sequence of transitions from
s0 to s that does not traverse any transition of T .

Definition 4.4 (Formula graph). A formula graph is an Lts (Σ, A,→, s0) such that:

(1) Every label σ ∈ A has either form ∨, ¬, 〈a〉 (for some a belonging to a fixed set of
action names), or µk (for some k ∈ N).

(2) If s0
δ

−→s
µk

−→s′ for some δ ∈ A∗ and k ∈ N, then k is even if and only if δ contains an
even number of occurrences of the label ¬.

(3) If s ∈ Σ is a root of a circuit then (a) the circuit contains a µk-transition and (b) if the
first µk-transition traversed on the circuit starting in s has block number k′ then every
µk-transition belonging to the circuit satisfies k ≥ k′.

Every formula graph can be decoded into a closed formula as follows.

Definition 4.5 (Decoding a formula graph). A formula graph P = (Σ, A,→, s0) encodes the
modal µ-calculus formula decs (P, s0, ∅), where decs (P, s,E) is defined as follows (E ⊆ Σ).
In our decoding every variable is uniquely identified by the source state s and the block
number k of the µ-transition, which we write sk.

decs (P, s,E) =
∨

s
σ

−→s′∈P

dect (P, s
σ

−→s′, E)

where
dect (P, s

∨
−→s′, E) = decs (P, s

′, E)

dect (P, s
¬

−→s′, E) = ¬ decs (P, s
′, E)

dect (P, s
〈a〉
−→s′, E) = 〈a〉 decs (P, s

′, E)

dect (P, s
µk

−→s′, E) =

{

sk if s ∈ E
µsk. decs (P, s

′, E ∪ {s}) otherwise
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4 2 5 6

0 1 3

¬〈b〉

〈a〉∨∨
∨µ0

9 143

1

∨

5 8
¬¬ 〈a〉 〈αa〉

6

0
∨

2
〈αb〉

4
∨

7 10

∨

∨

12
〈a〉

13
¬

µ0 µ0

11

(a) (b)
〈αb〉 〈a〉 ¬

0 1 2 3

〈αa〉

〈a〉

(c)
Figure 3: Examples of formula graphs

This definition implies that a deadlock state decodes as ff (empty disjunction). Function
decs is well-defined. In particular, it terminates because every cyclic path contains a label
of the form µk. By recording in the set E the source states of traversed µk-transitions, we
thus avoid infinite traversals of cycles. In practice (see next section), formula graphs need
not be decoded except for correctness proofs.

Definition 4.6 (Encoding a formula into a formula graph). The formula graph correspond-
ing to a formula ϕ in disjunctive form is an Lts written enc (ϕ), whose states are identified
with sub-formulas of ϕ. The initial state of the formula graph is ϕ, ff is a deadlock state,
and each sub-formula has transitions as follows:

Xk ∨
−→ϕ[Xk] ¬ϕ0

¬
−→ϕ0 〈a〉ϕ0

〈a〉
−→ϕ0

ϕ1 ∨ ϕ2
∨

−→ϕ1 ϕ1 ∨ ϕ2
∨

−→ϕ2 µXk.ϕ0
µk

−→ϕ0

Although the states of a formula graph are identified by formulas, only the transition labels
are required for decoding. In figures, states will be simply identified by numbers.

Note that the formula graph obtained by encoding a formula satisfies the conditions
given in Definition 4.4. Condition (2) is a direct consequence of the block-labelling con-
vention stated in Definition 2.7. Condition (3) comes from the fact that the roots of the
circuits are the states associated to formulas of the form µXk.ψ such that Xk occurs free in
ψ. In particular, subcondition (b) is a consequence on the third well-formedness condition
given in Definition 2.7.

Example 4.7. The formula graph corresponding to the formula µX0.(〈a〉tt)∨ 〈b〉X0 intro-
duced in Example 4.2 is depicted in Figure 3 (a).

We now prove that our encoding of closed formulas into formula graphs is sound, in
the sense that the formula can be recovered from the formula graph into which the formula
is encoded. This is stated formally in Proposition 4.9 below, which is a corollary of the
following Lemma:

Lemma 4.8. Let ϕ be a closed formula in disjunctive form and f be a renaming that maps

each propositional variable Xk ∈ bv (ϕ) to ϕ[Xk]
k
. For every sub-formula ψ of ϕ, if {ϕ[Y k] |

Y k ∈ fv (ψ)} ⊆ E and E ∩ {ϕ[Y k] | Y k ∈ bv (ψ)} = ∅, then decs (enc (ϕ), ψ,E) =f ψ.

Proof. We proceed by structural induction on ψ:
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Case ψ = ff : By definition of enc (ϕ), the state ψ has no outgoing transition. Therefore by
definition of decs, we have decs (enc (ϕ),ff , E) = ff .

Case ψ = Xk: By definition of enc (ϕ), the state ψ has a single transition Xk ∨
−→ϕ[Xk].

Therefore by definition of decs, we have decs (enc (ϕ),X
k , E) = decs (enc (ϕ), ϕ[X

k ], E).
Since Xk ∈ fv (Xk), by the hypothesis ϕ[Xk] ∈ E. It follows by definition of decs that

decs (enc (ϕ),X
k , E) = ϕ[Xk]

k
=f X

k.

Case ψ = ¬ψ0: By definition of enc (ϕ), the state ψ has a single transition ¬ψ0
¬

−→ψ0.
Therefore by definition of decs, we have decs (enc (ϕ),¬ψ0, E) = ¬ decs (enc (ϕ), ψ0, E).
Since fv (ψ0) = fv (ψ) and bv(ψ0) = bv (ψ), the induction hypothesis holds and then
decs (enc (ϕ), ψ0, E) =f ψ0. It follows immediately that decs (enc (ϕ),¬ψ0, E) =f ¬ψ0.

Case ψ = ψ1 ∨ ψ2: By definition of enc (ϕ), the state ψ has two transitions ψ1 ∨ ψ2
∨

−→ψ1

and ψ1 ∨ ψ2
∨

−→ψ2. Therefore by definition of decs, we have decs (enc (ϕ), ψ1 ∨ ψ2, E) =
decs (enc (ϕ), ψ1, E)∨decs (enc (ϕ), ψ2, E) (modulo commutativity if the transitions are enu-
merated in the opposite order, and idempotence if the transitions are identical). Since
fv (ψ1) ∪ fv (ψ2) = fv (ψ) and bv(ψ1) ∪ bv (ψ2) = bv (ψ), the induction hypothesis holds and
then we have both decs (enc (ϕ), ψ1, E) =f ψ1 and decs (enc (ϕ), ψ2, E) =f ψ2. It follows
that decs (enc (ϕ), ψ1 ∨ ψ2, E) =f ψ1 ∨ ψ2.

Case ψ = 〈a〉ψ0: By definition of enc (ϕ), the state ψ has a single transition 〈a〉ψ0
〈a〉
−→ψ0.

Therefore by definition of decs, we have decs (enc (ϕ), 〈a〉ψ0, E) = 〈a〉 decs (enc (ϕ), ψ0, E).
Since fv (ψ0) = fv (ψ) and bv(ψ0) = bv (ψ), the induction hypothesis holds and then
decs (enc (ϕ), ψ0, E) =f ψ0. It follows immediately that decs (enc (ϕ), 〈a〉ψ0, E) =f 〈a〉ψ0.

Case ψ = µXk.ψ0: By definition of enc (ϕ), the state ψ has a single transition µXk.ψ0
µk

−→ψ0.
Also, µXk.ψ0 /∈ E because µXk.ψ0 = ϕ[Xk], Xk ∈ bv (ψ) and, by hypothesis, E ∩ {ϕ[Y k] |
Y k ∈ bv (ψ)} = ∅. As a consequence and by definition of decs, we have

decs (enc (ϕ), µX
k .ψ0, E) = µµXk.ψ0

k
. decs (enc (ϕ), ψ0, E ∪ {µXk.ψ0}).

Since µXk.ψ0 = ϕ[Xk], the latter formula is also equal to µϕ[Xk]
k
. decs (enc (ϕ), ψ0, E ∪

{ϕ[Xk]}). To apply the induction hypothesis, we must show that {ϕ[Y k] | Y k ∈ fv (ψ0)} ⊆
E ∪ {ϕ[Xk ]} and that (E ∪ {ϕ[Xk]}) ∩ {ϕ[Y k] | Y k ∈ bv (ψ0)} = ∅. This is true by
hypothesis and because fv (ψ0) = fv (ψ) ∪ {Xk} and bv (ψ0) = bv (ψ) \ {Xk}. There-
fore, decs (enc (ϕ), ψ0, E) =f ψ0. It follows immediately that decs (enc (ϕ), µX

k.ψ0, E) =f

µXk.ψ0.

Proposition 4.9. If ϕ is a closed formula in disjunctive form, then decs (enc (ϕ), ϕ, ∅) =f ϕ

where f maps each propositional variable Xk ∈ bv (ϕ) to ϕ[Xk]
k
.

Proof. If ϕ is a closed formula, then fv (ϕ) = ∅. We have {ϕ[Y k] | Y k ∈ fv (ϕ)} = ∅.
Therefore, the hypotheses of Lemma 4.8 are satisfied, which implies decs (enc (ϕ), ϕ, ∅) =f ϕ.

Using this encoding, the quotient of a formula with respect to the ith Lts of a network
can be computed as a synchronous product using a network called quotient formula network.

Definition 4.10 (Quotient formula network). Let ϕ be a modal µ-calculus formula in
disjunctive form, N = (S, V ) be a network of size n, and i ∈ 1..n. The quotient formula
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network of ϕ with respect to S[i] is defined as the network ((enc (ϕ),S[i]), V//i), where V//i
denotes the following set of rules:

{ ((σ, •), σ) | σ ∈ {¬,∨} ∪ {µk | k ∈ blocks(ϕ)} } ∪
{ ((〈a〉, •), 〈a〉) | (t, a) ∈ V ∧ i /∈ A(t) } ∪
{ ((〈a〉, t[i]), 〈α (t, a)〉) | (t, a) ∈ V ∧ {i} ⊂ A(t) } ∪
{ ((〈a〉, t[i]), ∨) | (t, a) ∈ V ∧ {i} = A(t) }

Note that the Lts corresponding to the quotient formula network is a formula graph. This
can easily be shown by observing that, if (ψ1, s1)

δ
−→(ψn, sn) is a transition sequence of

the quotient formula network, then there exists a transition sequence of the form ψ1
δ′

−→ψn

in the input formula graph, such that the µ-projection of δ′ (i.e., the sequence obtained
from δ′ by keeping only the µk-labels) and the µ-projection of δ are identical. In addition,
if the transition sequence labelled by δ is a circuit, then δ′ can be found such that the
transition sequence labelled by δ′ is also a circuit. This ensures that conditions (2) and (3)
of Definition 4.4 are preserved in the Lts corresponding to the quotient formula network.

We now prove that the Lts corresponding to the quotient formula network indeed
encodes the quotient correctly. This is stated formally in Proposition 4.8 below, which is a
corollary of the following Lemma:

Lemma 4.11. Let ϕ be a closed formula in disjunctive form, N = (S, V ) be a network

of size n, i ∈ 1..n, P = lts ((enc (ϕ),S[i]), V//i) be the quotient formula network of ϕ with

respect to S[i], s be a state of S[i], and f be a renaming that maps each propositional variable

Y k
t ∈ bv (ϕ//Bi si0) to (ϕ[Y k], t)

k
. If E = {(ϕ[Y k], t) | Y k

t ∈ B} then for every sub-formula

ψ of ϕ, decs (P, (ψ, s), E) =f ψ //
B
i s.

Proof. We proceed by case on ψ and by structural induction on the formula ψ //Bi s (which
is finite):

Case ψ = ff : By definition of P , the state (ff , s) has no outgoing transition, because by
definition of enc (ϕ) the state ff has no outgoing transition, and V//i contains no synchronisa-
tion rule of the form ((•, a), b). Therefore, by definition of decs we have decs (P, (ff , s), E) =
ff and by definition of quotienting we have ff //Bi s = ff . It follows immediately that
decs (P, (ff , s), E) =f ff //Bi s.

Case ψ = Xk: By definition of P , the state (Xk, s) has a transition (Xk, s)
∨

−→(ϕ[Xk], s),
because by definition of enc (ϕ) the state Xk has a transition Xk ∨

−→ϕ[Xk] and V//i con-
tains the synchronisation rule ((∨, •),∨). The state (Xk, s) has no other transition in P ,
because the state Xk has no other transition and V//i does not contain other synchronisa-
tion rules of either form ((•, a), b) or ((∨, a), b). Therefore, we have decs (P, (X

k, s), E) =
decs (P, (ϕ[X

k ], s), E) by definition of decs. As formulas are in disjunctive form, ϕ[Xk] has
the form µXk.ψ0. The rest of the proof for this case is identical to the case ψ = µXk.ψ0

detailed below.

Case ψ = ¬ψ0: By definition of P , the state (¬ψ0, s) has a transition (¬ψ0, s)
¬

−→(ψ0, s),
because by definition of enc (ϕ) the state ¬ψ0 has a transition ¬ψ0

¬
−→ψ0 and V//i con-

tains the synchronisation rule ((¬, •),¬). The state (¬ψ0, s) has no other transition in
P , because the state ¬ψ0 has no other transition and V//i does not contain other syn-
chronisation rules of either form ((•, a), b) or ((¬, a), b). On the one hand, we thus have
decs (P, (¬ψ0, s), E) = ¬ decs (P, (ψ0, s), E) by definition of decs. On the other hand, we have
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(¬ψ0) //
B
i s = ¬(ψ0 //

B
i s) by definition of quotienting. Also ψ0 //

B
i s is a proper sub-formula

of ψ //Bi s. Therefore, by induction hypothesis we have decs (P, (ψ0, s), E) =f ψ0 //
B
i s. It

follows immediately that decs (P, (¬ψ0, s), E) =f (¬ψ0) //
B
i s.

Case ψ = ψ1 ∨ ψ2: By definition of P , the state (ψ1 ∨ ψ2, s) has transitions (ψ1 ∨
ψ2, s)

∨
−→(ψ1, s) and (ψ1∨ψ2, s)

∨
−→(ψ2, s), because by definition of enc (ϕ) the state ψ1∨ψ2

has transitions ψ1 ∨ ψ2
∨

−→ψ1 and ψ1 ∨ ψ2
∨

−→ψ2 and V//i contains the synchronisation rule
((∨, •),∨). The state (ψ1 ∨ ψ2, s) has no other transition in P , because the state ψ1 ∨ ψ2

has no other transition and V//i does not contain other synchronisation rules of either
form ((•, a), b) or ((∨, a), b). On the one hand, we thus have decs (P, (ψ1 ∨ ψ2, s), E) =
decs (P, (ψ1, s), E) ∨ decs (P, (ψ2, s), E) by definition of decs. On the other hand, we have
(ψ1 ∨ ψ2) //

B
i s = (ψ1 //

B
i s) ∨ (ψ2 //

B
i s) by definition of quotienting. Also ψ1 //

B
i s and

ψ2 //
B
i s are proper sub-formulas of ψ //Bi s. Therefore, by induction hypothesis we have

decs (P, (ψ1, s), E) =f ψ1 //
B
i s and decs (P, (ψ2, s), E) =f ψ2 //

B
i s. It follows immediately

that decs (P, (ψ1 ∨ ψ2, s), E) =f (ψ1 ∨ ψ2) //
B
i s.

Case ψ = 〈a〉ψ0: By definition of enc (ϕ), the state 〈a〉ψ0 has a transition 〈a〉ψ0
〈a〉
−→ψ0. By

definition of P , the state (〈a〉ψ0, s) has three kinds of transitions:

• A transition of the form (〈a〉ψ0, s)
〈a〉
−→(ψ0, s) for each (t, a) ∈ V such that i /∈ A(t), be-

cause V//i contains the synchronisation rule ((〈a〉, •), 〈a〉). This corresponds to a disjunct
of the form i /∈ A(t) ∧ 〈a〉(ψ0 //

B
i s) in the definition of (〈a〉ψ0) //

B
i s.

• A transition of the form (〈a〉ψ0, s)
〈α (t,a)〉
−→ (ψ0, s

′) for each (t, a) ∈ V such that {i} ⊂
A(t) and for each transition s

t[i]
−→is

′ in S[i], because V//i contains the synchronisation
rule ((〈a〉, t[i]), 〈α (t, a)〉). This corresponds to a disjunct of the form {i} ⊂ A(t) ∧
∨

s
t[i]
−→is′

〈α (t, a)〉(ψ0 //
B
i s′) in the definition of (〈a〉ψ0) //

B
i s.

• A transition of the form (〈a〉ψ0, s)
∨

−→(ψ0, s
′) for each (t, a) ∈ V such that {i} = A(t)

and for each transition s
t[i]
−→is

′ in S[i], because V//i contains the synchronisation rule
((〈a〉, t[i]),∨). This corresponds to a disjunct of the form {i} = A(t)∧

∨

s
t[i]
−→is′

(ψ0 //
B
i s′)

in the definition of (〈a〉ψ0) //
B
i s.

The state (〈a〉ψ0, s) has no other transitions in P , because the state 〈a〉ψ0 has no other
transition and V//i does not contain other synchronisation rules of either form ((•, b), c) or
((〈a〉, b), c). Also, ψ0 //

B
i s and ψ0 //

B
i s′ are proper sub-formulas of ψ //Bi s. By induction

hypothesis, we have decs (P, (ψ0, s), E) =f ψ0 //
B
i s and decs (P, (ψ0, s

′), E) =f ψ0 //
B
i s′. It

then follows immediately that decs (P, (〈a〉ψ0, s), E) =f (〈a〉ψ0) //
B
i s.

Case ψ = µXk.ψ0: By definition of P , and since by definition of enc (ϕ) the state µXk.ψ0

has a transition µXk.ψ0
µk

−→ψ0 and V//i contains the synchronisation rule ((µk, •), µk), the
state (µXk.ψ0, s) has a transition (µXk.ψ0, s)

µk

−→(ψ0, s). The state (µX
k.ψ0, s) has no other

transition in P , because the state µXk.ψ0 has no other transition and V//i does not contain
other synchronisation rules of either form ((•, a), b) or ((µ, a), b). We consider two cases:

• If (µXk.ψ0, s) ∈ E then by hypothesis Xk
s ∈ B. On the one hand, we thus have

decs (P, (µX
k.ψ0, s), E) = (µXk.ψ0, s)

k
by definition of decs. On the other hand, we

have (µXk.ψ0) //
B
i s = Xk

s by definition of quotienting. We also have (µXk.ψ0, s)
k
=f

Xk by definition of =f and because µXk.ψ0 = ϕ[Xk]. It follows immediately that

decs (P, (µX
k.ψ0, s), E) =f (µXk.ψ0) //

B
i s.
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• If (µXk.ψ0, s) /∈ E then by hypothesis Xk
s /∈ B. On the one hand, we thus have

decs (P, (µX
k.ψ0, s), E) = µ(µXk.ψ0, s)

k
. decs (P, (ψ0, s), E

′) where E′ = E ∪ {µXk.ψ0},

by definition of decs. On the other hand, we have (µXk.ψ0) //
B
i s = µXk

s .(ψ0 //
B∪{Xk

s }
i s)

by definition of quotienting. Also, ψ0 //
B∪{Xk

s }
i s is a proper sub-formula of ψ //Bi s.

By induction hypothesis, we thus have decs (P, (ψ0, s), E
′) =f ψ0 //

B∪{Xk
s }

i s using E′ =

E ∪ {(µXk.ψ0, s)} = {(ϕ[Y k], t) | Y k
t ∈ B ∪ {Xk

s }}. It then follows immediately that
decs (P, (µX

k.ψ0, s), E) =f (µXk.ψ0) //
B
i s.

Proposition 4.12. The Lts corresponding to the quotient formula network of ϕ with respect

to S[i] encodes the quotient of ϕ with respect to S[i].

Proof. Let P be the quotient formula network of ϕ with respect to S[i], in other words, P =
lts ((enc (ϕ),S[i]), V//i). Since {(ϕ[Y k], t) | Y k

t ∈ ∅} = ∅, then we have by Lemma 4.11 that

decs (P, (ϕ, s
i
0), ∅) =f ϕ//

∅
i s

i
0, where f maps each propositional variable Y k

t ∈ bv (ϕ//Bi si0)

to (ϕ[Y k], t)
k
. In other words P , the quotient formula network of ϕ with respect to S[i],

encodes ϕ//∅i s
i
0, which is the quotient of ϕ with respect to S[i].

Example 4.13. Consider the network N of Example 3.3 (page 6) and the formula of
Example 4.7 (page 10). Quotienting of the formula with respect to P3 involves the following
set of rules:

{((¬, •),¬), ((∨, •),∨), ((µ0 , •), µ0), ((〈a〉, •), 〈a〉), ((〈a〉, a), 〈αa〉), ((〈b〉, b), 〈αb〉)}
It yields the formula graph depicted in Figure 3 (b), page 10. This graph encodes as
expected the quotient formula of Example 4.2 (page 9), which can be evaluated on N\3.

Working with formulas in disjunctive form is crucial: branches in the formula graph
denote disjunctions between sub-formulas (or-nodes). During composition between the
formula graph and an individual Lts, the impossibility to synchronise on a modality 〈a〉 (no
transition labelled by t[i] in the current state of the individual Lts) denotes invalidation of
the corresponding sub-formula, which merely disappears, in conformance with the equality
ff ∨ ϕ0 = ϕ0.

5. Formula Graph Simplifications

The quotient of a formula graph with n states with respect to an Lts with m states may
have up to n×m states. Hence, as observed by Andersen [2], simplifications are needed to
keep intermediate quotiented formulas at a reasonable size. We present in Figure 4 several
simplifications applying to formula graphs, as conditional rules of the form “l r (cond)”
where l and r are transition relations and cond is a Boolean condition. l, r, and cond are
expressed using variables representing either states (written s, s1, s2, . . .) or labels (written
σ, σ1, σ2, . . .), such that every variable occurring in r or in cond must also occur in l. It
means that all transitions matching the left-hand side so that cond is satisfied can be
replaced by the transitions of the right-hand side.
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(1) s1
∨��

s2σ3

~~⑥⑥
⑥

σn

  ❆
❆❆

s3 . . . sn

 s1
σ3

��

σn

��

s2σ3

~~⑥⑥
⑥

σn

  ❆
❆❆

s3 . . . sn

(s3, . . . , sn are all
the successors of s2)

(2) s1

µk

WW  s1

(3) s1
¬ // s2

¬ // s3  s1

∨

77s2
¬ // s3

(s2 has a single
outgoing transition)

(4) s1
µk

// s2  s1
∨ // s2

(decoding of s2 does

not contain s1
k)

(5) s1
¬ // s2  s1 s2 (s2 evaluates to tt)

(6) s1σ2

~~⑥⑥
⑥

σn

  ❆
❆❆

s2 . . . sn

 s1
¬ // ff

s2 . . . sn

(s1 evaluates to tt)

(7) s1
σ // s2  s1 s2

(σ 6= ¬ and s2
evaluates to ff)

(8) s1σ2

~~⑥⑥
⑥

σn

  ❆
❆❆

s2 . . . sn

 s1

s2 . . . sn

(s1 evaluates to ff)

Figure 4: Simplification rules applying to formula graphs

Elimination of ∨-transitions (1). This rule allows transitions generated by synchronisa-
tion rules of the form ((〈a〉, t[i]),∨) in the quotient formula network to be eliminated. This
elimination can be achieved efficiently by applying reduction modulo τ∗.a equivalence [17],
∨-transitions being interpreted as internal (τ) transitions.

Elimination of unguarded variables (2). When combined with the previous rule, this
rule allows unguarded variable occurrences to be eliminated. Indeed, an unguarded variable
is characterized by a (possibly empty) sequence of ∨-transitions connecting the target and
source of a µ-transition. The elimination of this sequence of ∨ transitions then produces a
self-looping transition labelled by µ, which can be thereafter eliminated using the current
rule.

Elimination of double-negations (3). This rule can be used to simplify formulas of
the form ¬¬ϕ, which often occur in quotient formulas. For instance, a double-negation is
introduced in the quotient of the formula ¬〈a〉¬ϕ′ with respect to an Lts that offers an
action synchronising with a (thus having the modality disappear if the synchronisation is
binary).
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Elimination of µ-transitions (4). In this rule, the transition from s1 to s2 denotes the
binder of a propositional variable s1

k. If this variable does not occur free in the sub-formula
denoted by state s2, then the µ-transition can be replaced by an ∨-transition, which can be
subsequently eliminated using rule (1). Determining whether s1

k occurs free would require
to decode the formula graph, which should be avoided in practice. For this reason, we only
consider the following sufficient conditions, which can be checked in linear-time:

• s1 and s2 are not in the same strongly connected component (i.e., there is no path from
s2 to s1), or

• s1 is not the initial state and has a single predecessor p, and either p has a single outgoing
transition (which necessarily goes to s1) and this transition is labelled by µk

′
, or p satisfies

the same condition as s1, recursively (this recursive condition is well-founded as long as
it is applied to states reachable from the initial state)

Evaluation of constant sub-formulas (5–8). These four rules apply when some state
denotes a sub-formula that evaluates to a constant in any context. This can be determined
by using the following Bes, which implements partial evaluation of the formula. This Bes
consists of blocks T k and F k (k ∈ 0..n) of respective signs µ and ν, n being the greatest
block number in the formula graph. Blocks are ordered so that k < k′ implies T k (resp.

F k) is before T k′ (resp. F k′):

T k :
{

T k
s =µ

∨

s
∨

−→s′ T
k
s′ ∨

∨

s
¬

−→s′ F
k
s′ ∨

∨

s
µk

′

−→s′ T
k′

s′

}

s∈Σ

F k :
{

F k
s =ν

∧

s
∨

−→s′ F
k
s′ ∧

∧

s
〈β〉
−→s′ F

k
s′ ∧

∧

s
¬

−→s′ T
k
s′ ∧

∧

s
µk

′

−→s′ F
k′

s′

}

s∈Σ

We consider only the variables reachable from T 0
s0

or F 0
s0
, s0 being the initial state of the

formula graph. A state s denotes tt (resp. ff) if the Boolean variables T k
s (resp. F k

s )
evaluate to tt in all (reachable) blocks k. Due to the presence of modalities, there may be
states s and blocks k such that T k

s and F k
s are both false, indicating that the corresponding

sub-formula is not constant. Intuitively, T k
s expresses that s evaluates to tt in block k if

one of its successors following a transition labelled by ∨ or µk
′
evaluates to tt, or one of its

successors following a transition labelled by ¬ evaluates to ff . Variable F k
s expresses that

state s evaluates to ff in block k if all its successors following transitions labelled by ∨,
µk

′
, or modalities (by applying the identity 〈a〉ff = ff) evaluate to ff and all its successors

following transitions labelled by ¬ evaluate to tt. Regarding fix-point signs, observe that
for the formula µXk.Xk (which is equivalent to the constant ff), F k

µXk .Xk and T k
µXk .Xk are

defined respectively by the greatest fix-point equation F k
µXk .Xk =ν F

k
µXk .Xk and the least fix-

point equation T k
µXk .Xk =µ T

k
µXk.Xk . This Bes has the solution F k

µXk .Xk = tt, T k
µXk .Xk = ff ,

reflecting the constant value false of µXk.Xk as expected.
Repeated application of quotienting progressively eliminates modalities, until none of

them remains in the formula graph, which then necessarily evaluates to a constant equal to
the result of evaluating the formula on the whole network.

Sharing of equivalent sub-formulas. In addition to the above eight rules, reducing a
formula graph modulo strong bisimulation does not change its decoding, modulo idempo-
tence, renaming of propositional variables, and unification of equivalent variables defined
in the same block. Strong bisimulation reduction can thus decrease the size of intermediate
formula graphs.
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Example 5.1. After applying the above simplifications to the formula graph of Exam-
ple 4.13 (page 14), we obtain the (smaller) formula graph depicted in Figure 3 (c), page 10,
which corresponds to the formula (〈a〉tt) ∨ (〈αa〉tt) ∨ (〈αb〉〈a〉tt).

Example 5.2. The graph corresponding to µX0.(〈a〉µY 0.〈b〉X0) ∨ 〈c〉X0 reduces as ex-
pected to a deadlock state representing the constant ff (left as an exercise).

Note that the simplification of a formula graph produces a formula graph. In particular,
the parity of the number of occurrences of the label ¬ on paths leading to a µk-transition
is not changed by any rule, including rule (3) which eliminates negations by pair. Also,
the simplifications do not create new circuits and every µk-transition eliminated by rule (4)
cannot be the first µk-transition occurring on any circuit.

All the simplifications that we propose in this paper correspond more or less to simpli-
fications already proposed by Andersen [2], but we apply them directly on formula graphs
instead of systems of µ-calculus equations. For the interested reader, we review below the
simplifications proposed by Andersen and detail how they map to our simplification rules:

• Reachability analysis is included in our setting, due to our definition of the quotient on
formulas (instead of systems of equations), which necessarily yields connected formulas
(or formula graphs). In practice, reachability analysis is achieved using on-the-fly graph
traversals, in particular on-the-fly generation of the Lts corresponding to the quotient
network.

• Simple evaluation, constant propagation, and trivial equation elimination are implemented
by rules 5–8. The Bes that we have proposed for partial evaluation seems however slightly
more general than Andersen’s simplification rules, which do not seem to provide means
to evaluate X to ff in the system of equations “X =µ 〈a〉Y ∨ 〈c〉X,Y =µ 〈b〉X”, whereas
the corresponding formula (see Example 5.2) evaluates as expected to ff in our setting.

• The approximation of equivalence reduction proposed by Andersen, which relies on a
heuristic, is the same as our sharing of equivalent sub-formulas, implemented by strong
bisimulation reduction. This can be seen easily as the definition of the heuristic in [2]
looks very similar to the definition of strong bisimulation on Ltss.

• Unguarded equations elimination is implemented by the combination of rules 1–3.

About correctness of the simplifications. The eight simplification rules preserve the
semantics of the encoded formula. We do not provide the formal proof of this statement,
but we give the intuitions behind this result. Intuitively, every rule defines a rather simple
transformation on a set of equations. Rule (1) replaces the set {s1 = s2, s2 = ψ} by
{s1 = ψ, s2 = ψ}, which is correct independently of the fix-point sign. Rule (2) replaces
the equation {s1 =µ s1 ∨ ψ} by {s1 =µ ψ}, which is a well-known transformation of the
µ-calculus. Rule (3) replaces {s1 = ¬s2 ∨ψ, s2 = ¬s3} by {s1 = s3 ∨ψ, s2 = ¬s3}. Rule (4)
reflects the fact that the fix-point sign of an equation does not influence the result of its
resolution if the bound variable has no free occurrence in the set of equations. Rules (5)
to (8) express that any variable can be replaced by its solution. At last, the sharing of
equivalent formulas reflect that two variables can be merged if they are defined in the same
block and if they have the same definition modulo variable names. The correctness of a
similar transformation has been proven in [2].
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6. Simplification of Alternation-Free Formula Graphs

Simplifications apply to µ-calculus formulas of arbitrary alternation depth. We focus here
on the alternation-free µ-calculus fragment (Lµ1), which has a linear-time model checking
complexity [14] and is therefore more suitable for scaling up to large Ltss. We propose a
variant of constant sub-formula evaluation specialised for alternation-free formulas, using
alternation-free Bess [1].

Even in the case of alternation-free formulas, the above Bes is not alternation-free
due to the cyclic dependency between T k and F k, e.g., when evaluating sequences of ¬-
transitions. In Figure 5, we propose a refinement of this Bes, which splits each variable
T k
s of sign µ into two variables T+k

s of sign µ and F−k
s of sign ν, which evaluate to true

iff the sub-formula corresponding to state s is preceded by an even (for T+k
s ) or odd (for

F−k
s ) number of negations and evaluates to true. Variable F k

s is split similarly. This Bes
is a generalisation, for formula graphs containing negations and modalities, of the Bes
characterising the solution of alternation-free Boolean graphs outlined in [41].

T k :

{

T+k
s =µ

∨

s
∨

−→s′ T
+k
s′ ∨

∨

s
¬
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s′ ∨

∨

s
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′
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+k′

s′
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∧

s
∨
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s′ ∧

∧

s
〈β〉
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¬
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s
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∧

s
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∧
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Figure 5: Bes for the evaluation of constant alternation-free formulas

For general formulas, this Bes is not alternation-free due to the cyclic dependencies between
T k and F k′ , of different fix-point signs. Yet, for alternation-free block-labelled formulas, it is
alternation-free, since each dependency from T k to F k′ (or from F k to T k′) always traverses
a µ-transition preceded by an odd number of negations, which switches to a different block
number k′ > k.

7. Handling fairness operators

In the previous sections, we described a partial model checking procedure for the full modal
µ-calculus Lµ, which we then specialised to the alternation-free fragment Lµ1. This frag-
ment allows to express certain simple fairness operators, such as the fair reachability of
actions (i.e., potential reachability by skipping cycles), originally proposed in the state-
based setting [48]. The fair reachability of an action a is expressed by the following Lµ1
formula (where ¬a denotes all actions except a), stating that as long as a has not been
encountered, it is still possible to reach it: νX.(µY.(〈a〉 tt∨〈tt〉Y )∧ [¬a]X). An equivalent,
more concise, formulation of this property using the operators of Pdl [18] is [(¬a)∗] 〈tt∗.a〉 tt.

More elaborate fairness properties can be conveniently expressed by characterizing un-
fair cycles using the infinite looping operator ∆R of Pdl-∆ [49], which states the existence of
an infinite transition sequence made by concatenation of subsequences that satisfy the regu-
lar expression R. The ∆R operator can be translated into the fix-point formula νX. 〈R〉X,
which can be further expanded into a plain µ-calculus formula [16]. This operator can
encode the existence of accepting cycles in Büchi automata, and therefore it is able to
capture Ltl properties; in fact, this operator brings significant expressive power to Pdl,
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making Pdl-∆ more expressive than Ctl∗ [50]. When the regular expression R contains
Kleene star operators, the operator ∆R yields a formula of Lµ2, the µ-calculus fragment
of alternation depth 2. Although this fragment has a quadratic worst-case model checking
complexity [16], the ∆R operator can be checked on-the-fly in linear-time by formulating
the problem as a Bes resolution and applying the A4cyc algorithm [46]. This algorithm
generalizes the resolution algorithm A4 for disjunctive Bess [43] by enabling the detection
of cycles in the underlying Boolean graphs that pass through marked Boolean variables, in
a way similar to the detection of accepting cycles in Büchi automata. However, this does
not yield a linear-time model checking for Ltl (resp. Ctl∗) because the translations from
Ltl model checking problems to Büchi automata (resp. from Ctl∗ formulas to Pdl-∆) are
not succinct.

We propose a way to evaluate the ∆R operator on a network of Ltss using partial
model checking, without developing the complex (and quadratic-time) machinery needed
to evaluate general Lµ2 formulas. We rely instead on the approach proposed in [46], which
transforms the evaluation of ∆R into the resolution of an alternation-free Bes containing
marked Boolean variables. We first illustrate this approach using an example of ∆R operator
where R contains star operators, and then we show its application in the partial model
checking framework.

Consider the formula ∆((a|b)∗.c), which is equivalent to the Lµ formula νX. 〈(a|b)∗.c〉X.
The regular diamond modality can be further expanded by repeatedly applying the classical
Pdl identities (〈R1.R2〉ϕ = 〈R1〉 〈R2〉ϕ, 〈R1|R2〉ϕ = 〈R1〉ϕ∨〈R2〉ϕ, and 〈R∗〉ϕ = µY.(ϕ∨
〈R〉Y )) until all regular operators have been eliminated:

νX. 〈(a|b)∗.c〉X = νX. 〈(a|b)∗〉 〈c〉X
= νX.µY.(〈c〉X ∨ 〈a|b〉Y )
= νX.µY.(〈c〉X ∨ 〈a〉Y ∨ 〈b〉Y )

The resulting Lµ2 formula can be written equivalently as a modal equation system contain-
ing two mutually recursive blocks with opposite fix-point signs:

{X=νY }, {Y =µ 〈c〉X ∨ 〈a〉Y ∨ 〈b〉Y }

The evaluation of variable X on a state s is reformulated as the resolution of the Boolean
variable Xs of the following Bes:

{Xs=νYs}s∈S, {Ys=µ

∨

s
c
→s′

Xs′ ∨
∨

s
a
→s′

Ys′ ∨
∨

s
b
→s′

Ys′}s∈S

We observe that the ν-block contains only singular equations, the µ-block is disjunctive (i.e.,
all right-hand sides of equations contain only disjunctions), and does not contain tt constants
but possibly ff constants (which correspond to empty disjunctions). This structure, which
is guaranteed by construction for every Bes encoding the evaluation of a ∆R operator,
enables to obtain a linear-time resolution procedure in the following way: (a) The ν-block
is merged into the µ-block by changing the fix-point sign of its equations (this operation
is abusive, since it changes the semantics of the Bes); (b) In the resulting µ-block, the
Xs Boolean variables are marked (with the superscript @) in order to retrieve the original
semantics of the Bes during resolution. For the example considered, this procedure yields
the following single-block Bes:

{X@
s =µYs, Ys=µ

∨

s
c
→s′

X@
s′ ∨

∨

s
a
→s′

Ys′ ∨
∨

s
b
→s′

Ys′}s∈S
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If the Lts does not contain any infinite sequence belonging to the ω-regular language
((a|b)∗.c)ω, the initial formula ∆((a|b)∗.c) evaluates to ff , which is also the result of eval-
uating variable Xs0 in the µ-block above. If there exists such an infinite sequence going
out of the initial state s0, the initial formula evaluates to tt, whereas variable Xs0 in the
µ-block above does still evaluate to ff (given the absence of tt constants in this Bes). The
existence of such an infinite sequence in the Lts corresponds to a cycle in the Boolean graph
associated to the Bes, which passes through some Xs variable. Therefore, to retrieve the
original semantics of the two-block Bes the resolution algorithm must mark the Xs vari-
ables and detect whether one of these variables X@

s belongs to a cycle; if this is the case,
then the variable is replaced by a tt constant, which forces (by back-propagation through
the disjunctive operators) the variable Xs0 to evaluate to tt.

This kind of resolution is carried out in linear-time by the A4cyc algorithm [46], based
on a depth-first search of the Boolean graph with detection of cycles containing marked
variables by computing the strongly connected components. This algorithm is robust w.r.t.
repeated invocations, i.e., a sequence of calls has a cumulated linear-time complexity, which
enables the evaluation of ∆R operators nested with (alternation-free) fix-point operators
without losing the overall linear-time complexity in the size of the Bes.

This evaluation procedure for ∆R operators can be applied in the partial model checking
setting by abusively merging the two equation blocks into a single one, producing the
formula graph in which the X variable is marked (using an outgoing transition labeled by a
special action µ@), carrying out the projection steps, obtaining in the last step a modality-
free formula graph corresponding to a Bes with marked variables, and solving this Bes
using the A4cyc algorithm. During the projection steps, partial evaluation is carried out on
the formula graph by using the same Bes as in Section 6, slightly extended to take into
account the transitions labeled by µk@ corresponding to marked variables. Every µ-block
corresponding to a ∆R operator (with marked variables) is assigned a unique block number.
Partial evaluation is carried out using algorithm A4cyc every time a variable Y belonging
to such a block is encountered: if the algorithm detects a modality-free cycle containing a
marked variable of that block, the variable Y evaluates to tt.

Figure 6 illustrates the partial model checking of a formula containing an infinite looping
operator on a network representing a semaphore-based mutual exclusion protocol. The
network N = ((P0, S, P1), V ), shown in Figure 6(a), consists of two processes P0 and P1

competing for a shared resource, and a semaphore S guarding the access to the resource.
Each process Pi (for i ∈ {0, 1}) cyclically executes the following sequence: first it performs
its non-critical section ncsi, then it requests the access to the resource by synchronising
with the semaphore on req i, then it accesses the resource during its critical section cs i, and
finally it releases the semaphore by synchronising on rel i. The three processes interact via
the following set of synchronisation vectors:

V = { ((req0, req0, •), req 0), ((rel 0, rel 0, •), rel 0),
((•, req1, req1), req1), ((•, rel 1, rel1), rel 1),
((ncs0, •, •),ncs0), ((cs0, •, •), cs0),
((•, •,ncs1),ncs1), ((•, •, cs 1), cs1) }

The Pdl-∆ formula checked on the network N is [ncs0] ∆((¬any0)
∗.ncs1.(¬any0)

∗.cs1),
stating that after P0 executes its non-critical section, it may never access the shared resource
because of a systematic overtaking by P1 (the action formula ¬any0 denotes the set of actions
not executed by P0, i.e., {ncs1, req1, cs1, rel1}). This formula can be expressed in Lµ as
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Figure 6: Partial model checking of a fairness property on a network
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νX.µY.(〈ncs1〉µZ.(〈cs1〉X∨〈¬any0〉Z)∨〈¬any0〉Y ), or equivalently as the modal equation
system {U =µ ¬ 〈ncs0〉 ¬X

@,X@ =µ Y, Y =µ 〈ncs1〉Z ∨ 〈¬any0〉Y,Z =µ 〈cs1〉X
@ ∨

〈¬any0〉Z}, in which the equation defining X@ has been abusively merged into the minimal
fix-point block. The graph corresponding to this formula, where X@ is marked by means
of an outgoing transition labeled by µ1@, is shown in Figure 6(b).

At the last step of the partial model checking procedure (i.e., after quotienting w.r.t.
processes P1 and S), the formula graph obtained contains a modality-free cycle passing
through X, indicated with thick arrows in Figure 6(c). This cycle is detected in linear-time
by applying the simplification procedure, which invokes the Bes resolution algorithm A4cyc.
We observe that the quotienting w.r.t. process P0 was not necessary (and not done), since
the presence of the cycle containing X was detected as soon as processes P1 and S were
taken into account.

8. Implementation

We have implemented partial model checking of the alternation-free µ-calculus extended
with the ∆R fairness operator. We used Cadp, which provided much of what was needed:

• Individual processes can be described in one of the numerous formats and languages
available in Cadp: directly as Ltss in, e.g. the Bcg file format2, or as high-level processes
in the Lotos [27], Lotos NT [12] (a variant of E-Lotos [28]), or Fsp [39] languages.
Cadp contains tools to generate Ltss in the Bcg format automatically from those three
languages. For the latter two, this is done via an automated generation of intermediate
Lotos code using translators [35, 12]. Other languages can easily be connected to Cadp
using either the same approach (for instance a connection of the applied π-calculus [44]),
or through the Open/Cæsar [19] Api of Cadp.

• Process compositions can be described in the Exp.Open 2.0 language [31], which provides
various parallel composition operators, such as synchronisation vectors [6], process algebra
operators (Lotos, Ccs, Csp, µCrl), and the generalised parallel composition operator
of E-Lotos/Lotos NT [24]. It also provides generalised operators for hiding, renaming,
and cutting labels based on a representation of label sets using regular expressions. The
Exp.Open 2.0 tool compiles its input into a network of Ltss. It then generates C code
for representing the transition relation using the Open/Cæsar interface [19], so that the
Lts can be either generated or traversed on-the-fly using various libraries.

For partial model checking, the Exp.Open 2.0 tool has been slightly extended both to
implement sub-network extraction and to generate the network representing the parallel
composition between the formula graph and a chosen individual Lts.

• Regular alternation-free µ-calculus formulas (i.e., an extension of the alternation-free
µ-calculus with action formulas and regular expressions inside modalities to represent
actions and sequences of actions) extended with the ∆R fairness operator can be handled
by the Evaluator on-the-fly model checker [45, 46]. Regular expressions inside modali-
ties are eliminated by Evaluator and replaced by ordinary fix-point formulas with mere
action formulas inside the modalities.

An option has been added for compiling the formula into a formula graph represented in
the Bcg format. This option also takes as input the set of actions potentially occurring

2http://cadp.inria.fr/man/bcg.html

http://cadp.inria.fr/man/bcg.html
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in the process composition (which can be obtained using Exp.Open 2.0), so that the
action formulas can be replaced by finite sets of actions.

• Reductions modulo τ∗.a equivalence and strong bisimulation are achieved using respec-
tively the Reductor and Bcg Min tools of Cadp, without any modification.

Elimination of double-negations, of µ-transitions, and evaluation of constant formulas (for
Lµ1 extended with the ∆R operator) have been implemented in a new prototype tool3 (1, 000
lines of C code), which relies on the Caesar Solve library [43] for solving alternation-free
Bes (extended to handle fairness as explained in Section 7). Finally, the Lts w.r.t. which
the formula is quotiented at each step is selected automatically using the smart heuristic,
described in [15].

9. Experimentation

We have used partial model checking in two case studies, one in avionics addressing the
verification of a communication protocol between a plane and the ground, based on Tftp
(Trivial File Transfer Protocol)/Udp (User Datagram Protocol) and the other one in hard-
ware, addressing the verification of the bus arbitration protocol used in the Scsi-2 standard.

9.1. Trivial File Transfer Protocol/User Datagram Protocol. The Tftp/Udp case-
study has been described by Garavel & Thivolle in [25]. In this section, we consider the
same specifications and compare our new partial model checking approach with on-the-fly
model checking.

The system consists of two instances (A and B) of the Tftp connected by Udp using
a Fifo buffer. Since the state space of the specification is very large in the general case,
Garavel & Thivolle have defined five scenarios named A to E, depending on whether each
instance may write and/or read a file (see Table 1). We have considered the same five sce-
narios in our study. All of them are specified in Lotos, as the parallel composition of eight
processes named TFTP A, TFTP B, MEDIUM A, MEDIUM B, RCV A, RCV B, SND A,
and SND B. The Ltss corresponding to those eight processes are generated automatically
from their Lotos specification using the Caesar tool of Cadp. Their parallel composition
is translated into a network of Ltss using the Exp.Open tool of Cadp. Table 2 provides
the sizes after reduction of the Ltss corresponding to the eight processes for each scenario,
as well as the size of their composition.

We considered the (alternation-free) µ-calculus (branching-time) properties named A01
to A28, studied in [25], as well as an additional alternation-2 fairness property A29 not
checked in [25]. We checked all properties both using the well-established on-the-fly model
checker Evaluator [45, 46] of Cadp and using the partial model checking approach de-
scribed in this paper. These experiments were done on a 64-bit computer with 148 gigabytes
of memory.

The results summarized in Table 3 give, for each scenario and each property, the peak
of memory in megabytes (MB) used by on-the-fly model checking (column fly) and partial
model checking (column pmc). Some properties being irrelevant to some scenarios (e.g.,
they concern a read or write operation absent in the corresponding scenario), they have not

3This prototype tool, accompanied with a shell-script implementing partial model checking, a manual,
and examples, can be downloaded at http://convecs.inria.fr/software/pmc. Cadp is required to be
installed for the script and the prototype tool to run. Cadp licenses are free for academic users.

http://convecs.inria.fr/software/pmc
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Scenario TFTP A TFTP B
read write read write

A X

B X

C X X

D X X

E X X

Table 1: The five scenarios of the TFTP/UDP case study

Scenario A Scenario B Scenario C Scenario D Scenario E
States Trans. States Trans. States Trans. States Trans. States Trans.

TFTP A 704 4,542 719 4,610 704 4,542 719 4,610 719 4,610

TFTP B 504 3,421 504 3,421 1,058 7,164 1,058 7,164 1,058 7,164

MEDIUM {A,B} 801 5,440 801 5,440 801 5,440 801 5,440 801 5,440

SND A, RCV B 1 4 1 4 1 7 1 5 1 6

SND B, RCV A 1 4 1 3 1 7 1 6 1 6

Product (×103) 1, 963 8, 527 867 3, 737 35, 024 151, 810 40, 856 189, 068 19, 436 83, 921

Table 2: Individual Lts sizes (in states and transitions) and product Lts size (in kilostates
and kilotransitions) for each scenario

been checked, which explains the shaded cells. The symbol “⋆” corresponds to verifications
that have been stopped because they took too long and used too much memory. The
execution times are given in Table 4. Note that the major part of time and memory are used
by formula simplifications, as compared to the rather low complexity of the synchronous
product operation used for quotienting.

These results confirm that partial model checking may be much more efficient (up to 600
times less memory in this example) than on-the-fly model checking. This is particularly the
case of some formulas of either form [R]ff or 〈R〉 tt, where R is a regular expression, which
denote the absence, respectively the existence, of a sequence of transitions that matches R.
The quotient evaluates to true (in the case of formulas of the form [R]ff) or false (in the
case of formulas of the form 〈R〉 tt) before all individual Ltss have been taken into account
in the quotient, because it has been possible to determine that none of the paths possible
in the parts of the system already taken into account in the quotient may yield a path
satisfying R in the global system. We illustrate this by giving details on the verification of
formula A09b on Scenario C. This formula has the form [R]ff and evaluates to true after
the partial model checking steps reported in the following table.

Step States Transitions

Initial formula graph 13 62

Simplification & reduction 7 56

Quotient wrt. TFTP A 125 1,964

Simplification & reduction 60 1,512

Quotient wrt. TFTP B 9,166 69,490

Simplification & reduction 5,308 50,799

Quotient wrt. MEDIUM B (encodes tt) 2 1
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Scenario A Scenario B Scenario C Scenario D Scenario E

Prop fly pmc fly pmc fly pmc fly pmc fly pmc

A01 199 6 89 6 2, 947 24 3, 351 27 1, 530 23

A02 207 6 93 6 3, 156 25 3, 631 28 1, 612 10

A03 182 6 80 6 2, 737 6 3, 162 6 1, 386 6

A04 199 6 89 6 2, 947 6 3, 351 29 1, 530 7

A05 10 6 7 6 7 6 7 6 10 10

A06 187 6 85 6 2, 808 6 3, 249 7 1, 428 6

A07 187 6 85 6 2, 808 6 3, 249 6 1, 428 6

A08 186 6 80 6 2, 745 6 3, 170 6 1, 390 6

A09a 3, 290 28 1, 488 6

A09b 2, 955 6

A10 3, 354 6 1, 674 6

A11 3, 206 6 4, 444 7 1, 711 6

A12 620 ⋆ 133 ⋆ 101 ⋆

A13 4, 499 ⋆ 2, 094 ⋆

A14 267 6 3, 988 23 2, 107 15

A15 118 15 521 ⋆ 156 ⋆ 1, 524 59

A16 186 8

A17 667 ⋆ 569 ⋆

A18 85 6 476 11 255 6 1, 391 6

A19 207 6 6, 352 90 8, 753 13 3, 104 55

A20 31 9 837 21 261 25

A21 374 6 4, 958 25 2, 817 25

A22 35 7 427 1, 271 191 650

A23 170 6 6, 909 9 3, 039 40

A24 41 9 427 1, 786

A25 391 6 5, 480 40

A26 195 6 2, 857 15 1, 477 10

A27 228 6 3, 534 6 1, 871 6

A28 102 6 3, 654 22 4, 032 6 1, 821 6

A29 198 7 88 7 2, 942 9 3, 350 7 1, 525 9

Table 3: Experimental results for the Tftp/Udp case study: memory (in megabytes)

The fairness formula A29 is also evaluated efficiently using partial model checking.
This formula is specified in Pdl as ∆ (tt∗.A1.(¬(A1 ∨A2))

∗.A3.(¬A1)
∗.A2) (or, in the Mcl

input language of Evaluator, as 〈tt∗.A1.(¬(A1 ∨A2))
∗.A3.(¬A1)

∗.A2〉@ ) and denotes the
existence of a cyclic sequence of transitions matching the regular expression tt∗.A1.(¬(A1 ∨
A2))

∗.A3.(¬A1)
∗.A2, where A1, A2, and A3 are particular actions. It evaluates to false on

all scenarios. The first steps of partial model checking for this formula on Scenario E are
detailed in the following table.

Step States Transitions

Initial formula graph 19 151

Simplification & reduction 7 139

Quotient wrt. TFTP B 903 20,388

Simplification & reduction 896 20,099

Quotient wrt. TFTP A 26,369 197,480

Simplification & reduction (encodes ff) 1 0

In a few other cases, partial model checking leads to combinatorial explosion (properties
A12, A13, A15, and A17) while on-the-fly model checking performs efficiently. We illustrate
this with the verification of formula A12 on scenario C. This formula has the form 〈R〉 tt and
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Scenario A Scenario B Scenario C Scenario D Scenario E

Prop fly pmc fly pmc fly pmc fly pmc fly pmc

A01 28 2 10 3 1, 324 3 1, 590 2 772 3

A02 31 3 12 3 1, 640 6 2, 010 7 883 6

A03 22 1 8 1 1, 210 1 1, 365 1 668 1

A04 26 3 10 3 1, 400 3 1, 598 3 770 3

A05 1 5 1 5 1 5 1 5 1 5

A06 23 3 9 3 1, 306 3 1, 540 3 667 3

A07 23 3 9 3 1, 299 3 1, 687 3 674 3

A08 22 3 8 3 1, 220 3 1, 620 3 625 3

A09a 1, 679 7 695 3

A09b 1, 415 8

A10 2, 112 3 929 3

A11 1, 722 3 3, 583 1 997 3

A12 76 ⋆ 8 ⋆ 6 ⋆

A13 3, 297 ⋆ 1, 446 ⋆

A14 54 3 2, 681 3 1, 443 3

A15 11 5 55 ⋆ 15 ⋆ 705 7

A16 40 1

A17 315 ⋆ 217 ⋆

A18 9 1 86 7 35 3 599 1

A19 53 3 6, 159 3 9, 393 3 2, 697 3

A20 1 3 224 6 39 6

A21 131 3 4, 004 3 2, 293 3

A22 1 12 147 2, 712 43 1, 007

A23 39 3 5, 605 9 2, 345 6

A24 1 13 148 3, 189

A25 133 3 4, 163 6

A26 25 3 1, 383 3 687 3

A27 38 3 2, 323 3 1, 196 3

A28 15 3 2, 538 3 2, 615 3 1, 277 3

A29 26 2 11 2 1, 524 6 1, 738 3 700 5

Table 4: Experimental results for the Tftp/Udp case study: time (in seconds)

evaluates to true. The first steps of partial model checking are detailed in the following table,
in which we provide the time and memory used to complete each step. The reduction step
includes both the pre-reduction modulo τ∗.a equivalence (i.e., elimination of τ -transitions)
and the reduction modulo strong bisimulation. Note that this may produce a graph that is
not minimal in number of transitions, although always minimal in number of states.
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Step Time (s) Memory (MB) States Transitions

Initial formula graph 8 56

Simplification 0 4 8 56

Reduction 0 66 4 52

Quotient wrt. TFTP A 0 66 210 5,687

Simplification 0 4 136 3,665

Reduction 0 66 134 3,587

Quotient wrt. TFTP B 0 66 21,172 168,172

Simplification 0 6 21,015 168,172

Reduction 1 66 14,042 119,789

Quotient wrt. MEDIUM B 14 66 1,648,096 10,327,294

Simplification 35 267 1,648,089 10,327,294

Reduction 72 234 1,551,338 14,773,975

Quotient wrt. MEDIUM A 686 540 40,572,824 229,050,227

. . .

This explosion seems inherent to the structure of the system and the formula, interme-
diate quotients needing to capture a large part of the behaviour before the truth value of
the formula can be computed. This shows that both partial and on-the-fly model checking
are complementary and worthy of being used concurrently.

9.2. The SCSI-2 Bus Arbitration Protocol. This case-study has been described by
Garavel & Hermanns in [20]. It was originally designed to illustrate the combination of
functional verification and performance evaluation features of Cadp. In this section, we
reuse the specification4 to compare on-the-fly verification of an alternation-2 fairness formula
with its verification using partial model checking.

The case-study represents a storage system (developed by Bull in the early 90’s) con-
sisting of up to eight devices (up to seven hard disks and a disk controller) connected by
a bus (which enables eight connections) implementing the Scsi-2 standard. Each device is
assigned a unique Scsi-number ranging between 0 and 7, the device assigned the highest
number having highest priority when several devices are ready to access the bus. Each
disk is represented by a process named DISK n, the controller by a process named CON-
TROLLER n, and each unused connection to the bus by a process named NO DEVICE n,
n corresponding to the assigned Scsi-number. The controller may send randomly to any
disk of number n a message “CMD !n” (command) indicating a transfer request (read/write
a block of data from/to the disk). After processing this command, the disk sends back to
the controller a message “REC !n” (reconnect).

We considered the alternation-2 fairness property expressing that after the controller
(of number c) sends a data transfer request to disk number n such that n < c, then for each
disk of number m such that m > n, there must exist a cyclic execution sequence matching
the regular expression (¬REC !n)∗ · CMD !m · (¬REC !n)∗ · REC !m, i.e., the processing of data
transfer request with a disk that has not priority over the controller does not prevent other
requests to be processed by disks of higher priority.

In a first step, we considered two different configurations (named A and B) of the
storage system, each consisting of three disks, one controller and four unused connections.
In configuration A, the controller is assigned number 7 and the disks are assigned numbers
0 to 2. In configuration B, the controller is assigned number 1 and the disks are assigned

4A Cadp demo available on-line at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo 31.
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numbers 0, 2, and 3. In both configurations, the Lts corresponding to the system has
56, 168 states and 154, 748 transitions5.

Configuration A satisfies the fairness property. On-the-fly model checking takes 1.67
seconds and 66 MB, whereas partial model checking takes 4 minutes and 107 MB. The
largest intermediate formula graph has 489, 983 states and 4, 336, 623 transitions. On the
contrary, configuration B violates the property. On-the-fly model checking takes 1.12 sec-
onds and 66 MB, whereas partial model checking takes 19.16 seconds and 66 MB. The
largest intermediate formula graph has 22, 171 states and 198, 467 transitions.

The performance of partial model checking on configuration B is interesting, because
intermediate formula graphs always remain smaller than the product Lts. To see how
this scales up, we evaluated the property on larger configurations, still assigning number
1 to the controller, but progessively replacing the unused connections by additional disks
(up to 6 disks, the configuration with 7 disks being too large for model checking). The
results are given in Table 5. Note that partial model checking scales well on this example
as, for configurations with five disks and more, it terminates faster than the product Lts
generation. We summarize in the following table the sizes of intermediate formula graphs
during the partial model checking of the configuration with 6 disks.

Step Time (s) Memory (MB) States Transitions

Initial formula graph 109 360

Simplification 0 4 9 28

Reduction 0 66 6 25

Quotient wrt. CONTROLLER 1 734 1,165 19,545,220 332,937,946

Simplification 1,021 7,630 19,072,829 332,937,946

Reduction 1,807 7,483 12,400,293 326,265,410

Quotient wrt. NO DEVICE 6 489 1,472 12,400,293 320,065,265

Simplification 801 7,234 12,400,293 320,065,265

Reduction 2,219 4,673 12,400,293 547,718,843

Quotient wrt. DISK 0 1,073 2,657 29,367,067 710,452,069

Simplification 721 17,594 1,345,007 36,186,832

Reduction 145 479 1,285,959 36,127,784

Quotient wrt. DISK 7 145 297 3,101,185 51,160,987

Simplification 271 1,129 3,101,177 , 51,160,987

Reduction 285 744 3,101,169 51,160,979

Quotient wrt. DISK 5 125 283 7,124,779 78,762,466

Simplification 389 1,765 7,124,771 78,762,466

Reduction 652 1,398 6,024,459 103,247,732

Quotient wrt. DISK 4 276 623 13,770,325 152,237,584

Simplification 971 3,449 13,770,317 152,237,584

Reduction 1,717 2,632 12,201,825 223,819,978

Quotient wrt. DISK 3 680 1,330 27,557,019 290,881,082

Simplification 1,721 6,667 27,557,011 290,881,082

Reduction 5,099 5,571 25,967,207 442,140,277

Quotient wrt. DISK 2 1,002 2,521 44,137,283 343,601,116

Simplification 417 7,791 1 0

10. Conclusion

The original contributions of this paper are the following:

5Actually, a third configuration C is proposed in the on-line Cadp demo, with the controller assigned
number 0. We have not considered this configuration as the fairness formula is trivially true in this case,
the controller yielding priority to all disks.
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Number of disks
3 4 5 6

DISK n size (states) 768 768 768 768

DISK n size (transitions) 5, 119 9, 215 17, 407 33, 791

CONTROLLER n size (states) 4, 617 53, 217 583, 929 6, 200, 145

CONTROLLER n size (transitions) 32, 373 630 828 12, 237, 723 238, 990, 986

NO DEVICE n size (states) 1 1 1 1

NO DEVICE n size (transitions) 16 32 64 128

Product Lts size (states) 56, 168 1, 384, 021 32, 003, 282 708, 174, 559

Product Lts size (transitions) 154, 748 4, 499, 237 119, 691, 662 2, 992, 012, 087

Generation time (seconds) 1 17 884 31, 193

Memory peak (MB) 66 66 680 17, 594

On-the-fly model checking

Verification time (seconds) 1 17 1, 273 47, 532

Memory peak (MB) 66 95 1, 705 39, 236

Partial model checking

Verification time (seconds) 19 61 759 24, 276

Memory peak (MB) 66 66 1, 007 16, 239

Largest formula graph (states) 22, 171 253, 723 2, 773, 147 29, 367, 067

Largest formula graph (transitions) 198, 467 3, 023, 449 45, 639, 547 710, 452, 069

Table 5: Experimental results for Scsi-2 bus arbitration, 3 to 6 disks (configuration B)

(1) Partial model checking has been generalised to the network model, which subsumes
many parallel composition operators.

(2) An efficient implementation of quotienting with respect to an individual Lts has been
proposed, using a synchronous product between this Lts and a graph representation
of the formula. A key is the representation of the formula in a disjunctive form (using
negations), which turns every node of the formula graph into an or-node.

(3) An efficient implementation of formula simplifications has also been proposed, using a
combination of existing algorithms (such as reductions modulo equivalence relations),
simple transformations, and traversals of the formula graph using a Bes solver. Us-
ing a graph equivalence relation to simplify the formula was already proposed in [7],
where the formula was translated into an and-or-graph and then reduced modulo strong
bisimulation. We use a weaker relation (τ∗.a equivalence) that enables more reduction
of the formula graph, and we apply it directly on simple Ltss, thus allowing efficient
Lts reduction tools to be used without any modification. Our simplifications integrate
smoothly in the approach, both quotienting and simplifications applying to the same
graph representation, without encoding and decoding formulas back and forth.

(4) A specialisation to the case of alternation-free formulas (using alternation-free Bes)
extended with the alternation-2 ∆R operator of Pdl-∆ has also been proposed, and
experiments have been conducted, showing that partial model checking may result in
much better performance than complementary approaches, such as on-the-fly model
checking. Only small software developments were required, thanks to the wealth of
functionalities available in Cadp. The approach would be also applicable to formulas
of arbitrary alternation depth using a solver for Bes of arbitrary alternation depth.

The implementation of quotienting as a synchronous product opens the way for combining
partial model checking with techniques originating from compositional model generation,
such as (compositional) τ -confluence reduction [33, 42, 47], or restriction using interface
constraints following the approach developed in [26] and refined in [21, 30, 32]. Note also that
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partial model checking and compositional model generation are complementary. Although it
is difficult in general to know which of them will be most efficient, a reasonable methodology
is to try compositional model generation first (because one then obtains a single model on
which all formulas of interest can be evaluated). In case of failure, partial model checking
can then be used for each formula.
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