
Logical Methods in Computer Science
Vol. 5 (2:14) 2009, pp. 1–17
www.lmcs-online.org

Submitted Jan. 5, 2007
Published Jun. 3, 2009

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS

GUILLAUME BONFANTE AND YVES GUIRAUD

INRIA Nan
y, 615 rue du Jardin Botanique, CS 20101, 54603 Villers-lès-Nan
y, Fran
e

e-mail address: {guillaume.bonfante,yves.guiraud}�inria.fr

Abstra
t. We study the
omputational model of polygraphs. For that, we
onsider

polygraphi
 programs, a sub
lass of these obje
ts, as a formal des
ription of �rst-order

fun
tional programs. We explain their semanti
s and prove that they form a Turing-

omplete
omputational model. Their algebrai
 stru
ture is used by analysis tools,
alled

polygraphi
 interpretations, for
omplexity analysis. In parti
ular, we delineate a sub
lass

of polygraphi
 programs that
ompute exa
tly the fun
tions that are Turing-
omputable

in polynomial time.

Introdu
tion

Polygraphs as a
omputational model. Polygraphs (or
omputads) are presentations by

"generators" and "relations" of some higher-dimensional
ategories [41, 12, 42, 43℄. Albert

Burroni has proved that they provide an algebrai
 stru
ture to equational theories [12℄. Yves

Lafont and the se
ond author have explored some of the
omputational properties of these

obje
ts, mainly termination,
on�uen
e and their links with term rewriting systems [27, 18℄.

The present study, extending notions and results presented earlier by the same authors [9℄,

on
erns the
omplexity analysis of polygraphs.

On a �rst approa
h, one
an think of these obje
ts as rewriting systems on algebrai

ir
uits: instead of
omputing on synta
ti
al terms, polygraphs make use of a net of
ells,

whi
h individually behave a

ording to some lo
al transition rules, as do John von Neu-

mann's
ellular automata [46℄ and Yves Lafont's intera
tion nets [26℄.

Following Neil Jones' thesis that programming languages and semanti
s have strong

onnexions with
omplexity theory [24℄, we think that the synta
ti
 features o�ered by

polygraphs, with respe
t to terms, play an important role from the point of view of impli
it

omputational
omplexity. As a running example, we
onsider the divide-and-
onquer algo-

rithm of fusion sort. It
omputes the fun
tion f taking a list l and returning the list made

of the same elements, yet sorted a

ording to some given order relation. For that, it uses a

divide-and-
onquer strategy: it splits l into two sublists l1 and l2 of equivalent sizes, then

it re
ursively applies itself on ea
h one to get f(l1) and f(l2) and, �nally, it merges these

1998 ACM Subje
t Classi�
ation: F.1.1, F.4.

Key words and phrases: Polygraph; Polygraphi
 program; Polygraphi
 interpretation; Computability;

Complexity; Polynomial time.

This work has been partially supported by ANR Inval proje
t (ANR-05-BLAN-0267).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (2:14) 2009

c© G. Bonfante and Y. Guiraud
CC© Creative Commons

http://creativecommons.org/about/licenses

2 G. BONFANTE AND Y. GUIRAUD

two results to produ
e f(l). The following program, written in Caml [13℄, implements this

algorithm:

let re
 split = fun
tion

| [℄ -> ([℄,[℄)

| x::[℄ -> (x::[℄,[℄)

| x::y::l -> let (l1,l2)=split(l) in (x::l1,y::l2)

let re
 merge = fun
tion

| ([℄,l) -> l

| (l,[℄) -> l

| (x::l,y::m) -> if x<=y then x::merge(l,y::m) else y::merge(x::l,m)

let re
 sort = fun
tion

| [℄ -> [℄

| x::[℄ -> x::[℄

| x::y::l -> let (l1,l2)=split(l) in merge(sort(x::l1),sort(y::l2))

In a polygraph, one
an
onsider, at the same level as other operations, fun
tion symbols

with many outputs. For example, the above de�nition of the split fun
tion be
omes, in the

polygraphi
 language:

⇛⇛ ⇛

With these rules, one
an a
tually "see" how the
omputation is made, by "unzipping"

lists. Also, one
an internalize in polygraphs the sharing operation of termgraphs [39℄,

des
ribed as an expli
it and lo
al dupli
ation. As a
onsequen
e, the rules generating

omputations be
ome linear: the operations for pointers management
an be "seen" within

the rules. A
tually, in our analysis, we evaluate expli
itly the number of stru
tural steps of

omputation: allo
ations, deallo
ations and swit
hes of pointers. In other words, we make

expli
it the design of a garbage
olle
tor.

The question of sharing has been widely studied for e�
ient implementations of fun
tio-

nal programming languages and several solutions have been suggested: for instan
e, Dan

Dougherty, Pierre Les
anne and Luigi Liquori proposed the formalism of addressed term

rewriting systems [15℄. Let us mention another approa
h for this kind of issues due to

Martin Hofmann [23℄: he developed a typing dis
ipline, with a diamond type, for a fun
tional

language whi
h allows a
ompilation into an imperative language su
h as C, without dynami

allo
ation.

The
omputational model of polygraphi
 programs, a sub
lass of polygraphs, is explai-

ned in the �rst part of this do
ument, where we give their semanti
s and prove a
ompleteness

result: every Turing-
omputable fun
tion
an be
omputed by a polygraphi
 program.

Complexity analysis of polygraphi
 programs. Here we use tools inspired by polyno-

mial interpretations, whi
h have been introdu
ed by Dallas Lankford to prove termination of

term rewriting systems [30℄. They asso
iate to ea
h term a polynomial with natural numbers

as
oe�
ients, in a way that is naturally
ompatible with
ontexts and substitutions. When,

for ea
h rule, the interpretation of the left-hand side is greater than the one of the right-hand

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 3

side, one gets a termination proof. For example, let us
onsider the following term rewriting

system that
omputes the double fun
tion on natural numbers:

d(0) → 0 d(s(x)) → s(s(d(x))).

One proves its termination with the interpretation de�ned by ϕ(0) = 1, ϕ(s(x)) = ϕ(x) + 1
and ϕ(d(x)) = 3ϕ(x). Indeed, one
he
ks that the following inequalities hold:

ϕ(d(0)) = 3 > 1 = ϕ(0) and ϕ(d(s(x))) = 3ϕ(x) + 3 > 3ϕ(x) + 2 = ϕ(s(s(d(x)))).

Moreover, on top of termination results, polynomial interpretations
an be used to study

omplexity. For instan
e, Dieter Hofbauer and Clemens Lautemann have established a

doubly exponential bound on the derivation length of systems with polynomial interpreta-

tions [22℄. Adam Ci
hon and Pierre Les
anne have
onsidered more pre
isely the
omputa-

tional power of these systems [14℄. Adam Ci
hon, Jean-Yves Marion and Hélène Touzet, with

the �rst author, have identi�ed
omplexity
lasses by means of restri
tions on polynomial

interpretations [7, 8℄.

Let us explain how this works on the example of the double fun
tion. The given

interpretation sends the term d(sn(0)) to the natural number 3n + 3: sin
e ea
h rule

appli
ation will stri
tly de
rease this number, one knows that it takes at most 3n + 3 steps

to get from this term to its normal form s2n(0). A
tually, the
onsidered interpretation gives

a polynomial bound, with respe
t to the size of the argument, on the time taken to
ompute

the double fun
tion with this program.

In order to analyze polygraphs, we use algebrai
 tools
alled polygraphi
 interpretations,

whi
h have been introdu
ed to prove termination of polygraphs [18℄. Intuitively, one
onsiders

that
ir
uits are
rossed by ele
tri
al
urrents. Depending on the intensity of the
urrents

that arrive to it, ea
h
ir
uit gate produ
es some heat. Then one
ompares
ir
uits a

ording

to the total heat ea
h one produ
es. Building a polygraphi
 interpretation amounts at �xing

how
urrents are transmitted by ea
h gate and how mu
h heat ea
h one emits.

The
urrent part is
alled a fun
torial interpretation. Algebrai
ally, it is similar to

a polynomial interpretation of terms and we also use it as an estimation of the size of

values, like quasi-interpretations [10℄. The heat part is
alled a di�erential interpretation

and it is spe
i�
 to the algebrai
 stru
ture of polygraphs. We use it to bound the number

of
omputation steps remaining before rea
hing a result. Let us note that the distin
tion

between these two parts makes it possible for polygraphi
 interpretations to
ope with

non-simplifying termination proofs, like Thomas Arts and Jürgen Giesl's dependen
y pairs

[2℄.

However, some new di�
ulties arise with polygraphs. For example, sin
e dupli
ation and

erasure are expli
it in our model, we must show how to get rid of them for the interpretation.

In our setting, the programmer fo
uses on
omputational steps (as opposed to stru
tural

steps) for whi
h he has to give an interpretation. From this interpretation, we give a

polynomial upper bound on the number of stru
tural steps that will be performed.

In this work, we fo
us on polynomial-time
omputable fun
tions or, shorter, fptime

fun
tions. The reason
omes from Stephen Cook's thesis stating that this
lass
orresponds

to feasible
omputable fun
tions. But it is strongly
onje
tured that the preliminary results

developed in this paper
an be used for other
hara
terizations. In parti
ular, the
urrent

interpretations
an be seen as sup-interpretations, following [35℄: this means that values

have polynomial size.

4 G. BONFANTE AND Y. GUIRAUD

Coming ba
k to fptime, in the �eld of impli
it
omputational
omplexity, the notion

of strati�
ation has shown to be a fundamental tool of the dis
ipline. This has been

developed by Daniel Leivant and Jean-Yves Marion [31, 32℄ and by Stephen Bellantoni

and Stephen Cook [6℄ to delineate fptime. Other
hara
terizations in
lude Neil Jones'

"Life without
ons" WHILE programs [25℄ and Karl-Heinz Niggl and Henning Wunderli
h's

hara
terization of imperative programs [38℄. There is also a logi
al approa
h to impli
it

omputational
omplexity, based on a linear type dis
ipline, in the seminal work of Jean-Yves

Girard on light linear logi
 [16℄, Yves Lafont on soft linear logi
 [28℄ or Patri
k Baillot and

Kazushige Terui [5℄.

The se
ond part of this do
ument is devoted to general results about polygraphi

interpretations of polygraphs. There, we explore the pie
es of information they
an give us

about size issues. Then, in the third part, we apply these results to polygraphi
 programs.

In parti
ular, we identify a sub
lass P of these obje
ts that
ompute exa
tly the fun
tions

that
an be
omputed in polynomial-time by a Turing ma
hine, or fptime fun
tions for

short.

General notations. Throughout this do
ument, we use several notations that we prefer

to group here for easier further referen
e.

If X is a set and p is a natural number, we denote by Xp
the
artesian produ
t of p

opies of X. If X is an ordered set, we equip Xp
with the produ
t order, whi
h is de�ned

by (x1, . . . , xp) ≤ (y1, . . . , yp) whenever xi ≤ yi holds for every i ∈ {1, . . . , p}.
If f : X → X ′

and g : Y → Y ′
are maps, then f × g denotes the produ
t map from

X×X ′
to Y ×Y ′

. Let f, g : X → Y be two maps. If Y is equipped with a binary relation ⊳,

then one
ompares f and g pointwise, whi
h means that f ⊳ g holds when, for every x ∈ X,

one has f(x) ⊳ g(x) in Y . Similarly, if Y is equipped with a binary operation ⋄, then one

de�nes f ⋄ g as the map from X to Y sending ea
h x of X to the element f(x) ⋄ g(x) in Y .

The sets N of natural numbers and Z of integers are always assumed to be equipped with

their natural order. For every n in N, we denote by µn the maximum map max {x1, . . . , xn}
and by N[x1, . . . , xn] the set of polynomials over n variables and with
oe�
ients in N. If

f : N
m → N

n
is a map and if k ∈ N, one denotes by kf the map sending (x1, . . . , xm) to

(ky1, . . . , kyn), if (y1, . . . , yn) is f(x1, . . . , xm).

1. A
omputational model based on polygraphs

1.1. A �rst glan
e at polygraphs. On a �rst approa
h, one
an
onsider polygraphs as

rewriting systems on algebrai

ir
uits, made of:

Types. They are the wires,
alled 1-
ells. Ea
h one
onveys information of some elementary

type. To represent produ
t types, one uses several wires, in parallel,
alling su
h a
onstru
-

tion a 1-path. For example, the following 1-path represents the type of quadruples made of

an integer, a boolean, a real number and a boolean:

i
n
t

b
o
o
l

r
e
a
l

b
o
o
l

The 1-paths
an be
omposed in one way, by putting them in parallel:

vu v =⋆0
u

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 5

Operations. They are represented by
ir
uits,
alled 2-paths. The gates used to build

them are
alled 2-
ells. The 2-paths
an be
omposed in two ways, either by juxtaposition

(parallel
omposition) or by
onne
tion (sequential
omposition):

⋆1=f fg g⋆0 f g =
f

g

Ea
h 2-path (or 2-
ell) has a �nite number of typed inputs, a 1-path
alled its 1-sour
e, and
a �nite number of typed outputs, a 1-path
alled its 1-target:

t1(f)
f

s1(f)

Several
onstru
tions represent the same operation. In parti
ular, wires
an be stret
hed

or
ontra
ted, provided one does not
ross them or break them. This
an be written either

graphi
ally or algebrai
ally:

≡f
f

fg
g

g
≡

(

f ⋆0 s1(g)
)

⋆1

(

t1(f) ⋆0 g
)

≡ f ⋆0 g ≡
(

s1(f) ⋆0 g
)

⋆1

(

f ⋆0 t1(g)
)

.

Computations. They are rewriting paths,
alled 3-paths, transforming a given 2-path,

alled its 2-sour
e, into another one,
alled its 2-target. The 3-paths are generated by lo
al

rewriting rules,
alled 3-
ells. The 2-sour
e and the 2-target of a 3-
ell or 3-path are required

to have the same input and output, i.e., the same 1-sour
e and the same 1-target. A 3-path
is represented either as a redu
tion on 2-paths or as a genuine 3-dimensional obje
t:

t2(F)⇛:F s2(F)
s2(F)

F t1(F)

t2(F)

s1(F)

The 3-paths
an be
omposed in three ways, two parallel ones
oming from the stru
ture of

the 2-paths, plus one new, sequential one:

F

s2(F) s2(G) t2(F) t2(G): ⇛=F ⋆0 G

G

G

s2(F)

s2(G)

t2(F)

t2(G)
: ⇛=F ⋆1 G

F

G

s2(F) t2(G)⇛:=F ⋆2 G

F

6 G. BONFANTE AND Y. GUIRAUD

The 3-paths are identi�ed modulo relations that in
lude topologi
al moves su
h as:

≡

≡

≡

≡

≡

≡

These graphi
al relations have an algebrai
 version given, for 0 ≤ i < j ≤ 2, by:
(

F ⋆i sj(G)
)

⋆j

(

tj(F) ⋆i G
)

≡ F ⋆i G ≡
(

sj(F) ⋆i G
)

⋆j

(

F ⋆i tj(G)
)

.

So far, we have des
ribed a spe
ial
ase of 3-polygraphs. A n-polygraph is a similar obje
t,

made of
ells, paths, sour
es, targets and
ompositions in all dimensions up to n.

Remark 1.1. Polygraphs provide a uniform, algebrai
 and graphi
al des
ription of obje
ts

oming from di�erent domains: abstra
t, string and term rewriting systems [27, 17, 18℄,

abstra
t algebrai
 stru
tures [12, 17, 33℄, Feynman and Penrose diagrams [4℄, braids, knots

and tangle diagrams equipped with Reidemeister moves [1, 17℄, Petri nets [20℄ and propositional

proofs of
lassi
al and linear logi
s [19℄.

1.2. Polygraphs. On a �rst reading, one
an skip the formal de�nition of polygraph and

just keep in mind the graphi
al introdu
tion. We de�ne n-polygraphs by indu
tion on

the dimension n: given a de�nition of (n − 1)-polygraphs, we de�ne a n-polygraph as a

base (n − 1)-polygraph extended with a set of n-
ells. Let us initiate the indu
tion with

0-polygraphs and 1-polygraphs.

De�nition 1.2. A 0 -polygraph is a set P. Its 0 -
ells and 0 -paths are its elements.

De�nition 1.3. A 1 -polygraph is a data P = (B,P1, s, t) made of a 0-polygraph B, a set P1

and two maps s and t from P1 to B. The 0 -
ells and 0 -paths of P are the ones of B. Its

1 -
ells are the elements of P1. One indu
tively de�nes the set 〈P1〉 of 1 -paths of P, together

with the 0 -sour
e map s0 and the 0 -target map t0, both from 1-paths to 0-paths, as follows:

• Every 0-
ell x is a 1-path, with s0(x) = t0(x) = x.
• Every 1-
ell ξ is a 1-path, with s0(ξ) = s(ξ) and t0(ξ) = t(ξ).
• If u and v are 1-paths su
h that t0(u) = s0(v), then u ⋆0 v is a 1-path
alled the 0 -

omposition of u and v. One de�nes s0(u ⋆0 v) = s0(u) and t0(u ⋆0 v) = t0(v).

The 1-paths are identi�ed modulo the following relations:

• Asso
iativity: (u ⋆0 v) ⋆0 w = u ⋆0 (v ⋆0 w) .
• Lo
al units: s0(u) ⋆0 u = u = u ⋆0 t0(u) .

Example 1.4. A graph yields a 1-polygraph, with verti
es as 0-
ells and arrows as 1-
ells.
The 1-paths are the paths in the graph.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 7

Example 1.5. A set X
an be seen as a 1-polygraph, with one 0-
ell and itself as set of

1-
ells: in that
ase, the set 〈X〉 of 1-paths is exa
tly the free monoid generated by X or,

equivalently, the set of words over the alphabet X.

Example 1.6. An abstra
t rewriting system is a binary relation R over a set X. Su
h an

obje
t yields a 1-polygraph P with P0 = X, P1 = R, s0(x, y) = x and t0(x, y) = y. Then,
the 1-paths of this 1-polygraph are in bije
tive
orresponden
e with the rewriting paths

generated by (X,R).

Now, let us �x a natural number n ≥ 2 and assume that one has de�ned what a (n −
1)-polygraph P is, how one builds its sets Pk of k-
ells and 〈Pk〉 of k-paths, k ∈ {0, . . . , n},
and its j-sour
e map sj and j-target map tj from 〈Pk〉 to 〈Pj〉, j ∈ {0, . . . , k − 1}.

De�nition 1.7. An n-polygraph is a data P = (B,Pn, s, t) made of an (n−1)-polygraph B,

a set Pn and two maps s and t from Pn to 〈Bn−1〉, su
h that the globular relations hold:

sn−2 ◦ s = sn−2 ◦ t and tn−2 ◦ s = tn−2 ◦ t.

For every k in {0, . . . , n − 1}, the k -
ells and k -paths of P are the ones of B. The n-
ells

of P are the elements of Pn. One indu
tively de�nes the set 〈Pn〉 of n-paths of P, the

(n − 1)-sour
e map sn−1, the (n − 1)-target map tn−1 and, for every k ∈ {0, . . . , n − 2},
extensions to n-paths of the k-sour
e map sk and the k-target map tk of B:

• For every k ∈ {0, . . . , n − 1}, every k-
ell ξ is an n-path, with sn−1(ξ) = tn−1(ξ) = ξ.
Values of other sour
e and target maps do not
hange.

• Every n-
ell ϕ is an n-path, with sn−1(ϕ) = s(ϕ) and tn−1(ϕ) = t(ϕ). If k ∈ {0, . . . , n − 2},
then sk and tk are respe
tively extended by sk(ϕ) = sk ◦ sn−1(ϕ) and by tk(ϕ) =
tk ◦ tn−1(ϕ).

• If k ∈ {0, . . . , n − 1} and if f and g are n-paths su
h that tk(f) = sk(g) holds, then f ⋆k g
is an n-path
alled the k -
omposition of f and g. For j ∈ {0, . . . , n − 2}, one de�nes:

sj(f ⋆k g) =

{

sj(f) if j ≤ k

sj(f) ⋆k sj(g) if j > k
and tj(f ⋆k g) =

{

tj(g) if j ≤ k

tj(f) ⋆k tj(g) if j > k.

One does not distinguish two n-paths that only di�er by the following relations:

• Asso
iativity: (f ⋆k g) ⋆k h = f ⋆k (g ⋆k h), for 0 ≤ k ≤ n − 1.
• Lo
al units: sk(f) ⋆k f = f = f ⋆k tk(f), for 0 ≤ k ≤ n − 1.
• Ex
hange: (f1 ⋆j f2) ⋆k (g1 ⋆j g2) = (f1 ⋆k g1) ⋆j (f2 ⋆k g2), for 0 ≤ j < k ≤ n − 1.

Example 1.8. Let us
onsider a word rewriting system (X,R), made of set X and a binary

relation R over 〈X〉. From it, one builds a 2-polygraph P with one 0-
ell, P1 = X, P2 = R,

s1(u, v) = u and t1(u, v) = v. There is a bije
tion between the 2-paths of P and the

rewriting paths generated by (X,R),
onsidered modulo the
ommutation squares between

two non-overlapping rule appli
ations. Moreover the
ir
uit-like pi
tures provide graphi
al

representations for word rewriting: wires are letters, gates are appli
ations of rewriting rules

and
ir
uits are tra
es of
omputations.

Example 1.9. Term rewriting systems generate 3-polygraphs, as explained by Albert

Burroni [12℄, Yves Lafont [27℄ and the se
ond author [18, 19℄. The polygraphi
 programs

one
onsiders here are light versions of these [21℄.

Example 1.10. Petri nets
orrespond exa
tly to 3-polygraphs with one 0-
ell and no 1-
ell:
one identi�es pla
es with 2-
ells and transitions with 3-
ells [20℄.

8 G. BONFANTE AND Y. GUIRAUD

De�nition 1.11. Let us �x a natural number n and an n-polygraph P. The polygraph P

is �nite when it has a �nite number of
ells in every dimension. A family X of n-
ells of P

an be seen as an n-polygraph with the same
ells as P up to dimension n − 1.
If 0 ≤ j < k ≤ n, two k-paths f and g are j -
omposable when tj(f) = sj(g). They

are j -parallel when sj(f) = sj(g) and tj(f) = tj(g). When j = k − 1, one simply says

omposable and parallel. Similarly, the (k − 1)-sour
e and (k − 1)-target of a k-path are

simply
alled its sour
e and target.

If 0 ≤ k ≤ n, given a subset X of Pk and a k-path f , the size of f with respe
t to X is

the natural number denoted by ||f ||X and de�ned as follows, by stru
tural indu
tion on f :

||f ||X =











0 if f is a
ell and f /∈ X,

1 if f ∈ X,

||g||X + ||h||X if f = g ⋆j h, for some 0 ≤ j < k.

When X is redu
ed to one
ell ϕ, one writes ||f ||ϕ instead of ||f ||{ϕ}. The size of f is its

size with respe
t to Pk, simply written ||f ||. A k-path is degenerate when it has size 0 and

elementary when its size is 1.

Remark 1.12. One must
he
k that the de�nition of the size of a k-path (with respe
t

to a set of k-
ells X) is
orre
t. This is done by
omputing this map on both sides of the

relations of asso
iativity, lo
al units and ex
hange and ensuring that both results are equal.

One proves that any non-degenerate k-path f of size p
an be written

f = f1 ⋆k−1 · · · ⋆k−1 fp,

where ea
h fi is an elementary k-path. Moreover, if k ≥ 1, then any elementary k-path f

an be written as follows:

f = gk ⋆k−1

(

gk−1 ⋆k−2 · · · ⋆1 (g1 ⋆0 ϕ ⋆0 h1) ⋆1 · · · ⋆k−2 hk−1

)

⋆k−1 hk,

where ϕ is a uniquely de�ned k-
ell, while gj and hj are j-paths, for every j ∈ {1, . . . , k}.
For example, any elementary 3-path F
an be de
omposed as F = f ⋆1 (u ⋆0 α ⋆0 v) ⋆1 g,
where α is a uniquely determined 3-
ell, f and g are 2-paths, u and v are 1-paths. As a

onsequen
e:

g

s2F = u vs2α

f

t2F = u vt2α

f

g

s2F = f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g t2F = f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g

In order to study the
omputational properties of polygraphs, we use notions of higher-di-

mensional rewriting theory [18℄ that, in turn, make referen
e to abstra
t rewriting ones [3℄.

De�nition 1.13. The redu
tion graph asso
iated to an n-polygraph P is the graph with

(n − 1)-paths of P as obje
ts and elementary n-paths of P as arrows. Rewriting notions of

normal forms, termination, (lo
al)
on�uen
e,
onvergen
e, et
. are de�ned on P by taking

ba
k the ones of its redu
tion graph.

Remark 1.14. One
an
he
k that, given two parallel (n − 1)-paths f and g in an n-poly-
graph P, there exists a path from f to g in the redu
tion graph of P if and only if there

exists a non-degenerate n-path F with sour
e f and target g in P.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 9

In what follows, we fo
us on 3-polygraphs and introdu
e some spe
ial notions and notations

for them.

De�nition 1.15. Let P be a 3-polygraph. The fa
t that f is a k-path of P with sour
e x
and target y is denoted by f : x → y when k = 1, by f : x ⇒ y when k = 2, by f : x ⇛ y
when k = 3. If f is a k-path of P and X a family of k-
ells then, instead of ||f ||X , one
writes |f |X when k = 1 and |||f |||X when k = 3. When f : x ⇒ y, then |x|, |y| and (|x| , |y|)
are respe
tively
alled the arity, the
oarity and the valen
e of f .

1.3. Polygraphi
 programs.

De�nition 1.16. A polygraphi
 program is a �nite 3-polygraph P with one 0-
ell, thereafter
denoted by ∗, and su
h that its sets of 2-
ells and of 3-
ells respe
tively de
ompose into

P2 = PS
2 ∐ PC

2 ∐ PF
2 and P3 = PS

3 ∐ PR
3 , with the following
onditions:

• The set PS
2 is made of the following elements,
alled stru
ture 2 -
ells, where ξ and ζ range

over the set of 1-
ells of P:

ξ,ζ
: ξ ⋆0 ζ ⇒ ζ ⋆0 ξ,

ξ
: ξ ⇒ ξ ⋆0 ξ,

ξ
: ξ ⇒ ∗.

When the
ontext is
lear, one simply writes , and . The following elements of

〈

PS
2

〉

are
alled stru
ture 2-paths and they are de�ned by stru
tural indu
tion on their 1-sour
e:

∗

∗ ξ

=
ξ

∗ξ

=
ξ

=
ξ ⋆0 xζ

ζ ξ x

x ⋆0 ξ

x ξ

∗

= ∗

=

=

ξx

=
x ⋆0 ξ ζ

ζξx

∗ x ⋆0 ξ

=

• The set PC
2 is made of 2-
ells with
oarity 1, i.e., of the shape ,
alled
onstru
tor

2 -
ells.

• The elements of PF
2 are
alled fun
tion 2 -
ells.

• The elements of PS
3 ,
alled stru
ture 3 -
ells, are de�ned, for every
onstru
tor 2-
ell :

x ⇒ ξ and every 1-
ell ζ, by:
x ζ

ζ ξ

ζ x

ξ ζ

x

ξ ξ

x

ξ ξ

x

⇛ ⇛ ⇛ ⇛

xx ζ

ζ ξ

xζ

ξ ζ

• The elements of PR
3 are
alled
omputation 3 -
ells and ea
h one has a 2-sour
e of the

shape t ⋆1 , with t ∈
〈

PC
2

〉

and ∈ PF
2 .

Remark 1.17. In this study, we have de
ided to split stru
ture
ells from
omputation

ells. From a traditional programming perspe
tive, permutations, dupli
ations and erasers

are given for free in the syntax. With polygraphs, this is not the
ase. However, by putting

these operations in a "spe
ial" sublayer, we show that the programmer has not to bother

with stru
ture
ells: one
an stay at the top-level, letting the sublevel work on its own.

Example 1.18. The following polygraphi
 program D
omputes the eu
lidean division on

natural numbers (we formally de�ne what this means later):

(1) It has one 1-
ell n, standing for the type of natural numbers.

10 G. BONFANTE AND Y. GUIRAUD

(2) Apart from the �xed three stru
ture 2-
ells, it has two
onstru
tor 2-
ells, : ∗ ⇒ n for

zero and : n ⇒ n for the su

essor operation, and two fun
tion 2-
ells, : n ⋆0 n ⇒ n

for the minus fun
tion and : n ⋆0 n ⇒ n for the division fun
tion.

(3) Its 3-
ells are made of eight stru
ture 3-
ells, plus the following �ve
omputation 3-
ells:

⇛⇛⇛ ⇛ ⇛

Example 1.19. The following program F
omputes the fusion sort fun
tion on lists of

natural numbers lower or equal than some
onstant N ∈ N:

(1) Its 1-
ells are n, for natural numbers, and l, for lists of natural numbers.

(2) Its 2-
ells are made of eight stru
ture 2-
ells, plus:
(a) Constru
tor 2-
ells, for the natural numbers 0, . . . , N , the empty list and the list

onstru
tor:

(

n : ∗ ⇒ n

)

0≤n≤N
, : ∗ ⇒ l, : n ⋆0 l ⇒ l.

(b) Fun
tion 2-
ells, respe
tively for the main sort and the two auxiliary split and merge:

: l ⇒ l, : l ⇒ l ∗0 l, : l ∗0 l ⇒ l.

(3) Its 3-
ells are made of 6N + 18 stru
ture 3-
ells, plus N2 + 2N + 8
omputation 3-
ells:

⇛⇛ ⇛

⇛⇛ ⇛

p > q
p q

p

q

p q

⇛⇛

p

q

⇛

p ≤ q

⇛

Remark 1.20. One may obje
t that sorting lists when the a priori bound N is known

an be performed in a linear number of steps: one reads the list and
ounts the number of

o

urren
es of ea
h element, then produ
es the sorted list from this information. Neverthe-

less, the presented algorithm (up to the test ≤ on the natural numbers p and q) really mimi
s

the "me
hani
s" of the fusion sort algorithm and, a
tually, we redis
over the
omplexity

bound as given by Yiannis Mos
hovakis [36℄.

Why don't we internalize the
omparison of numbers within the polygraphi
 program?

This
omes from the fa
t that the if-then-else
onstru
tion impli
itly involves an evaluation

strategy: one �rst
omputes the test argument then, depending on this result, one
omputes

exa
tly one of the other two arguments. As de�ned here, polygraphs algebrai
ally des
ribe

the
omputation steps, but not the evaluation strategy. We let su
h a task for further

resear
h.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 11

1.4. Semanti
s of polygraphi
 programs. One de�nes an interpretation J·K of the ele-

ments of a polygraphi
 program into sets and maps, then one uses it to de�ne the notion of

fun
tion
omputed by su
h a program.

De�nition 1.21. Let P be a polygraphi
 program. For a 1-path u, a value of type u is

a 2-path in

〈

PC
2

〉

with sour
e ∗ and target u; their set is denoted by JuK. Given a 2-path
f : u ⇒ v, one denotes by JfK the (partial) map from JuK to JvK de�ned as follows: if t
is a value of type u and if t ⋆1 f has a unique normal form t′ that is a value (of type v),
then JfK (t) is t′; otherwise f is unde�ned on t.

Among the following properties, the one for degenerate 2-paths explains the fa
t that JuK
has two meanings: it is either the set of values of type u or the identity of this set.

Proposition 1.22. Let P be a polygraphi
 program. The following properties hold on 1-
paths:

• The set J∗K is redu
ed to the 0-
ell ∗.
• For every u and v, one has Ju ⋆0 vK = JuK × JvK.
The following properties hold on 2-paths:

• If u is degenerate then it is sent by J·K to the identity of the set JuK.
• For every f and g, one has Jf ⋆0 gK = JfK × JgK.
• If f and g are
omposable, then Jf ⋆1 gK = JgK ◦ JfK holds.

Finally, for every 3-path F , the equality Js2F K = Jt2F K holds.

De�nition 1.23. Let P be a polygraphi
 program. Let u, v be 1-paths and let f be a

(partial) map from JuK to JvK. One says that P
omputes f when there exists a 2-
ell

su
h that

q y
= f .

Example 1.24. In a polygraphi
 program P, every
onstru
tor 2-
ell with arity n

satis�es the equality

q y
(t1, . . . , tn) = (t1 ⋆0 · · · ⋆0 tn) ⋆1 . Sin
e the right member

is always a normal form, one
an identify values of
oarity 1 with the
losed terms of a

term algebra. Moreover, the polygraphi
 program P
omputes erasers, dupli
ations and

permutations on these terms, sin
e

q y
(t) = ∗,

q y
(t) = (t, t) and

q y
(t, t′) = (t′, t)

hold.

Thus, every polygraphi
 program
omputes one total map for ea
h of its stru
ture and

onstru
tor 2-
ells. We give su�
ient
onditions to ensure that this is also the
ase on

fun
tion 2-
ells.

De�nition 1.25. A polygraphi
 program P is
omplete if every 2-path of the form t ⋆1

is redu
ible when t is a value and is a fun
tion 2-
ell.

Proposition 1.26. Let P be a
onvergent and
omplete polygraphi
 program. Then, for

every stru
ture or fun
tion 2-
ell : u ⇒ v, the map

q y
: JuK → JvK is total.

Proof. We start by re
alling that the stru
ture 3-
ells, alone, are
onvergent [18, 19℄. Furthermore,

they are orthogonal to the
omputation 3-
ells and every 2-path of the shape t ⋆1 is

redu
ible when t is a value and is a stru
ture 2-
ell. Hen
e, as a polygraph, P is
onvergent

and the 2-paths ∗ ⇒ x that are in normal form are exa
tly the values of type x.

12 G. BONFANTE AND Y. GUIRAUD

Example 1.27. Let us
he
k that the polygraphi
 program D
omputes eu
lidean division.

The set JnK is equipotent to the set N of natural numbers through the bije
tion 0 = and

n + 1 = n ⋆1 . This polygraphi
 program is weakly orthogonal, hen
e lo
ally
on�uent,

and
omplete. We will also see later that it terminates. Thus it
omputes two maps from

Jn ⋆0 nK ≃ N
2
to JnK ≃ N, one for and one for . By indu
tion on the arguments, one

gets: q y
(m,n) = max {0,m − n} and

q y
(m,n) = ⌊m/(n + 1)⌋.

Example 1.28. In the polygraphi
 program F, one has JnK ≃ {0, . . . , N} and JlK ≃
〈0, . . . , N〉, thanks to the bije
tive
orresponden
es n = n

, [] = and x :: l = (x ⋆0 l) ⋆1 .

This polygraphi
 program is weakly orthogonal, hen
e lo
ally
on�uent, and
omplete. It

is also terminating, as we shall see later. Thus, it
omputes one map for ea
h of ,

and . For example, the map

q y
takes a list of natural numbers as input and returns

the
orresponding ordered list. Figure 1 gives an example of
omputation generated by this

program, with explanations following.

(

2 1

)

⋆1 3 :

1

2

⇛

2

1

⋆2

1
⋆1

(

2 ⋆0 1 ,
⋆0

)

⋆1 :

1

2

⇛

12

⋆2

(

12

)

⋆1

(

2 ⋆0 2

)

⋆1 :

2 1

⇛

2 1

⋆2

()

⋆1 3
(2 , 1) :

2 1

⇛ 1

2

⋆2

2

⋆1

(

1 ⋆0 2

)

⋆1 :

2

1 ⇛

2

1 .

Figure 1: Normalizing 3-path in a polygraphi
 program

Let us
onsider the list [2; 1] of natural numbers and apply the fusion sort fun
tion on it.

The list is
oded by the following value:

[2; 1] =
(

1 ⋆0

)

⋆1

(

2 ⋆0

)

⋆1 =
1

2 .

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 13

The value

q y(
[2; 1]

)

is, by de�nition, the unique normal form of the 2-path [2; 1] ⋆1 .

Figure 1 presents a normalizing 3-path, obtained by ⋆2-
omposition of smaller 3-paths, where
we have given self-explanatory "names" to the involved 3-
ells, without further explanations.

After
omputation, one gets the expe
ted

q y(
[2; 1]

)

= [1; 2] as the target of this 3-path.

1.5. Polygraphi
 programs are Turing-
omplete. This
ompleteness result is not a

surprising one. Indeed, one
ould argue, for instan
e, that polygraphi
 programs simulate

term rewriting systems, a Turing-
omplete model of
omputation. Our proof, similar to

the one
on
erning intera
tion nets [26℄, prepares for the en
oding of Turing ma
hines with

lo
ks, used for Theorem 3.27.

De�nition 1.29. A Turing ma
hine is a family M = (Σ, Q, q0, qf , δ) made of:

• A �nite set Σ,
alled the alphabet ; one denotes by Σ its extension with a new element,

denoted by ♯ and
alled the blank
hara
ter.

• A �nite set Q, whose elements are
alled states, two distinguished elements q0, the initial

state, and qf , the �nal state.

• A map δ : (Q−{qf})×Σ → Q×Σ×{L,R},
alled the transition fun
tion, where {L,R}
is any set with two elements.

A
on�guration of M is an element (q, a, wl, wr) of the produ
t set Q×Σ×
〈

Σ
〉

×
〈

Σ
〉

: here q
is the
urrent state of the ma
hine, a is the
urrently read symbol, wl is the word at the

left-hand side of a and wr is the word at the right-hand side of a. For further
onvenien
e,
the word wl is written in reverse order, so that its �rst letter is the one that is immediately

at the left of a.
The transition relation of M is the binary relation denoted by →M and de�ned on the

set of
on�gurations of M as follows, where e denotes the neutral element of 〈Σ〉:

• If δ(q1, a) = (q2, c, L) then

{

(q1, a, e, wr) →M (q2, ♯, e, cwr) ,
(q1, a, bwl, wr) →M (q2, b, wl, cwr) .

• If δ(q1, a) = (q2, c, R) then

{

(q1, a, wl, e) →M (q2, ♯, cwl, e) ,
(q1, a, wl, bwr) →M (q2, b, cwl, wr) .

One denotes by →∗
M

the re�exive and transitive
losure of →M. Let f : 〈Σ〉 → 〈Σ〉 be a

map. One says that M
omputes f when, for any w in 〈Σ〉, there exists a
on�guration of

the shape (qf , a, v, f(w)) su
h that (q0, ♯, e, w) →∗
M

(qf , a, v, f(w)) holds (in that
ase, this

�nal
on�guration is unique).

Theorem 1.30. Polygraphi
 programs form a Turing-
omplete model of
omputation.

Proof. We �x a Turing ma
hine M = (Σ, Q, q0, qf , δ) and a map f
omputed by M. From

this Turing ma
hine, we build the following polygraphi
 program P(M):

(1) It has one 1-
ell w, standing for the type of words over Σ.
(2) Apart from the three stru
ture 2-
ells, its 2-
ells
onsist of:

(a) Constru
tor 2-
ells: : ∗ ⇒ w, for the empty word, plus one

a : w ⇒ w for ea
h a in

Σ.
(b) Fun
tion 2-
ells: : w ⇒ w, for the map f , plus one q a : w ⋆0 w ⇒ w for ea
h pair

(q, a) in Q × Σ̄, for the behaviour of the Turing ma
hine.

14 G. BONFANTE AND Y. GUIRAUD

(3) Its 3-
ells are the stru
ture ones, plus the following
omputation 3-
ells � the �rst one

initializes the
omputation, the four subsequent families simulate the transitions of the

Turing ma
hine and the �nal
ell starts the
omputation of the result:

c

c

b c

c

⇛

⇛

⇛

both when δ(q1, a) = (q2, c, L)

both when δ(q1, a) = (q2, c, R)

⇛

b

⇛

⇛

q2

a

♯

q2 ♯b

q0 ♯

a q1 aq1

q1 a q1 a

q2

q2 b

qf

One
he
ks that JwK ≃ 〈Σ〉 through e = and aw = w ⋆1 a
. Then, to every
on�guration

(q, a, wl, wr), one asso
iates the 2-path (q, a, wl, wr) =
(

wl ⋆0 wr

)

⋆1 q a
. The four
ases in

the de�nition of the transition relation of M are in one-to-one
orresponden
e with the four

middle families of 3-
ells of the polygraph P(M). Hen
e the following equivalen
e holds:

(q, a, wl, wr) →∗
M (q′, a′, w′

l, w
′
r) if and only if (q, a, wl, wr) ⇛ (q′, a′, w′

l, w
′
r).

Finally, let us �x a w in 〈Σ〉. Sin
e M
omputes f , there exists a unique
on�guration

(qf , a, v, f(w)), su
h that (q0, ♯, e, w) →∗
M

(qf , a, v, f(w)) holds. As a
onsequen
e, w ⋆1

has a unique normal form, so that the following equalities hold, yielding

q y
= f :

q y
(w) =

r
q0 ♯

z
(

⋆0 w
)

=
r

qf a

z(
v ⋆0 f(w)

)

= f(w).

2. Polygraphi
 interpretations

Here, we present general results about information that
an be re
overed from fun
torial

and di�erential interpretations of 3-polygraphs.

2.1. Fun
torial interpretations.

De�nition 2.1. A fun
torial interpretation of a 3-polygraph P is a pair ϕ = (ϕ1, ϕ2)

onsisting of:

(1) a map ϕ1 sending every 1-path u of size n to a non-empty part of (N − {0})n;
(2) a map ϕ2 sending every 2-path f : u ⇒ v to a monotone map from ϕ1(u) to ϕ1(v).

The following equalities,
alled fun
torial relations, must be satis�ed:

• if u is a degenerate 2-path, then ϕ2(u) is the identity of ϕ1(u);
• if u and v are 0-
omposable 1-paths, then ϕ1(u ⋆0 v) = ϕ1(u) × ϕ1(v) holds;
• if f and g are 0-
omposable 2-paths, then ϕ2(f ⋆0 g) = ϕ2(f) × ϕ2(g) holds;
• if f and g are 1-
omposable 2-paths, then ϕ2(f ⋆1 g) = ϕ2(g) ◦ ϕ2(f) holds.

One simply writes ϕ for both ϕ1 and ϕ2. Intuitively, for every 2-
ell , the map ϕ() tells

us how , seen as a
ir
uit gate, transmits
urrents downwards. In pra
ti
e, one
omputes

the value of a
urrent interpretation on a 2-path by
omputing it on the 2-
ells it
ontains
and assembling them in an intuitive way. The following result formalizes this fa
t.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 15

Lemma 2.2. A fun
torial interpretation of a 3-polygraph P is entirely and uniquely de�ned

by its values on the 1-
ells and 2-
ells of P.

Proof. Using the fun
torial relations, one
he
ks that a fun
torial interpretation takes the

same values on both sides of the relations of asso
iativity, lo
al units and ex
hange on

2-paths: this property
omes from the fa
t that set-theoreti
 maps satisfy these same

relations. Then the fun
torial relations give the values of a
urrent interpretation on 2-paths
of size n + 1 from its values on 2-paths of size k ≤ n.

A dire
t
onsequen
e of Lemma 2.2 is that, when one wants to introdu
e a fun
torial

interpretation, one only has to give its values on the 1-
ells and on the 2-
ells.

Example 2.3. Let P be a polygraphi
 program with no
onstru
tor 2-
ell and no fun
tion

2-
ell. Then, given a non-empty part ϕ(ξ) of N−{0} for every 1-
ell ξ, the following values

extend ϕ into a fun
torial interpretation of P:

ϕ
(

ξ,ζ

)

(x, y) = (y, x) and ϕ
(

ξ

)

(x) = (x, x).

Let us note that every fun
torial interpretation ϕ must send the 0-
ell ∗ to some single-ele-

ment part of N − {0}. Hen
e, it must assign ea
h

ξ
to the only map from ϕ(ξ) to ϕ(∗).

Example 2.4. The following values extend the ones of Example 2.3 into a fun
torial inter-

pretation of the polygraphi
 program D of division:

ϕ(n) = N − {0} , ϕ() = 1, ϕ()(x) = x + 1,

ϕ()(x, y) = ϕ()(x, y) = x.

Example 2.5. For the polygraphi
 program F of fusion sort, we extend the fun
torial inter-

pretation of Example 2.3 with the following values, where ⌈·⌉ and ⌊·⌋ stand for the rounding

fun
tions, respe
tively by ex
ess and by default:

ϕ(n) = {1} , ϕ(l) = 2N + 1, ϕ(n) = ϕ() = 1, ϕ()(x, y) = x + y + 1,

ϕ()(x) = x, ϕ()(x, y) = x+ y− 1, ϕ()(2x + 1) =
(

2 ·
⌈x

2

⌉

+ 1, 2 ·
⌊x

2

⌋

+ 1
)

.

Example 2.6. Let P be a polygraphi
 program. One denotes by ν the fun
torial interpreta-

tion on the subpolygraph

〈

PC
2

〉

de�ned, for every 1-
ell ξ, by ν(ξ) = N − {0} and, for every

onstru
tor 2-
ell with arity n, by:

ν()(x1, . . . , xn) = x1 + · · · + xn + 1.

One
he
ks that ν(t) = ||t|| holds for every value t with
oarity 1. Thus, given values t1,
. . . , tn with
oarity 1, the following equality holds in N

n
:

ν(t1 ⋆0 · · · ⋆0 tn) =
(

||t1|| , . . . , ||tn||
)

.

We use the fun
torial interpretation ν to des
ribe the size of arguments of a fun
tion.

Lemma 2.7. Let ϕ be a fun
torial interpretation of a 3-polygraph P. Let f , g, h and k be

2-paths su
h that ϕ(f) ≤ ϕ(g) and ϕ(h) ≤ ϕ(k) hold. Then, for every i ∈ {0, 1} su
h that

f ⋆i h is de�ned, the inequality ϕ(f ⋆i h) ≤ ϕ(g ⋆i k) is satis�ed.

16 G. BONFANTE AND Y. GUIRAUD

Proof. One has:

ϕ(f ⋆0 h) = ϕ(f) × ϕ(h) ≤ ϕ(g) × ϕ(k) = ϕ(g ⋆0 k).

Indeed, the two equalities are given by the fun
torial relations that ϕ satis�es, while the

middle inequality
omes from the hypotheses and the fa
t that one uses a produ
t order.

Then one has:

ϕ(f ⋆1 h) = ϕ(h) ◦ ϕ(f) ≤ ϕ(h) ◦ ϕ(g) ≤ ϕ(k) ◦ ϕ(g) = ϕ(g ⋆1 k).

The equalities
ome from the fun
torial relations; the �rst inequality uses the hypothesis

ϕ(f) ≤ ϕ(g) and the fa
t that ϕ(h) is monotone; the se
ond inequality uses ϕ(h) ≤ ϕ(k)
and the fa
t that maps are
ompared pointwise.

2.2. Compatible fun
torial interpretations.

De�nition 2.8. Let ϕ be a fun
torial interpretation of a 3-polygraph P. For every 3-
ell α
of P, one says that ϕ is
ompatible with α when the inequality ϕ(s2α) ≥ ϕ(t2α) holds. One
says that ϕ is
ompatible when it is
ompatible with every 3-
ell of P.

Example 2.9. The fun
torial interpretations given in Examples 2.4 and 2.5 are
ompatible

with all the 3-
ells of the
orresponding 3-polygraph. We will see later that the values

they take on stru
ture 2-
ells ensure that they are
ompatible with all the stru
ture 3-
ells.
Con
erning the
omputation 3-
ells, let us
onsider, for example, the third one asso
iated

to the sort fun
tion 2-
ell . For the sour
e, one gets:

ϕ

()

(1, 1, 2x + 1) = ϕ

()

(

1, ϕ()(1, 2x + 1)
)

= ϕ() ◦ ϕ()(1, 2x + 3)

= ϕ()(2x + 5)

= 2x + 5.

Now, for the target, going qui
ker:

ϕ












(1, 1, 2x + 1) = ϕ()

(

2 · ⌈x/2⌉ + 3, 2 · ⌊x/2⌋ + 3
)

= 2x + 5.

Proposition 2.10. Let ϕ be a
ompatible fun
torial interpretation of a polygraphi
 program.

Then, for every 3-path F , the inequality ϕ(s2F) ≥ ϕ(t2F) holds.

Proof. We pro
eed by indu
tion on the size of 3-paths. If F is a degenerate 3-path, then
s2F = t2F holds and, thus, so does ϕ(s2F) = ϕ(t2F).

Let us assume that F is an elementary 3-path. Then one de
omposes s2F and t2F ,

using a 3-
ell α, 2-paths f , g and 1-paths u, v, yielding:

ϕ(s2F) = ϕ
(

f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g
)

and ϕ(t2F) = ϕ
(

f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g
)

.

The fun
torial interpretation ϕ is
ompatible with α, hen
e ϕ(s2α) ≥ ϕ(t2α) holds. Then

one applies Lemma 2.7 four times to get ϕ(s2F) ≥ ϕ(t2F).
Now, let us �x a non-zero natural number N and assume that the property holds for

every 3-path of size N . Let us
onsider a q3-path F of size N + 1. Then one de
omposes F

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 17

into G ⋆2 H where G is a 3-path of size N and H is an elementary 3-path. One
on
ludes

using the indu
tion hypothesis on G and the previous
ase on H.

2.3. Di�erential interpretations. In this work, we use di�erential interpretations as

an abstra
tion of "heats", but also, later, to de�ne the property of
onservativeness on

"
urrents". For this reason, we introdu
e the following abstra
tion:

De�nition 2.11. A (stri
tly) ordered
ommutative monoid is an ordered set (M,�) equip-
ped with a
ommutative monoid stru
ture (+, 0) su
h that + is (stri
tly) monotone in both

arguments.

Example 2.12. Con
retely, in what follows, we
onsider N equipped with its natural order

and either the addition (stri
t
ase) or the maximum map (non-stri
t
ase), both with 0 as

neutral element.

De�nition 2.13. Let M be an ordered
ommutative monoid, let P be a 3-polygraph and

let ϕ be a fun
torial interpretation of P. A di�erential interpretation of P over ϕ into M is

a map ∂ that sends ea
h 2-path of P with 1-sour
e u to a monotone map ∂ from ϕ(u)
to M , su
h that the following
onditions,
alled di�erential relations, are satis�ed:

• If u is degenerate then ∂u = 0.
• If f and g are 0-
omposable then ∂(f ⋆0 g)(x, y) = ∂f(x) + ∂g(y) holds.
• If f and g are 1-
omposable then ∂(f ⋆1 g) = ∂f + ∂g ◦ ϕ(f) holds.

Intuitively, given a 2-
ell , the map ∂ tells us how mu
h heat it produ
es, when seen

as a
ir
uit gate, depending on the intensities of in
oming
urrents. In order to
ompute

the heat produ
ed by a 2-path, one determines the
urrents that its 2-
ells propagate and,
from those values, the heat ea
h one produ
es; then one sums up all these heats.

Lemma 2.14. A di�erential interpretation of a polygraph P is entirely and uniquely deter-

mined by its values on the 2-
ells of P.

Proof. First, we prove that the di�erential relations imply that a di�erential interpretation

takes the same values on ea
h side of the relations of asso
iativity, lo
al units and ex
hange.

For example, let us
he
k this for the ex
hange relation. For that, let us �x 2-paths f ,
g, h and k su
h that both t1(f) = s1(h) and t1(g) = s1(k) are satis�ed. We
onsider x
in ϕ(s1(f)) and y in ϕ(s1(g)) and, using the fun
torial relations of ϕ and the di�erential

relations of ∂, we
ompute ea
h one of the following equalities in M :

∂
(

(f ⋆0 g) ⋆1 (h ⋆0 k)
)

(x, y) =
(

∂f(x) + ∂g(y)
)

+
(

∂h ◦ ϕ(f)(x) + ∂k ◦ ϕ(g)(y)
)

,

∂
(

(f ⋆1 h) ⋆0 (g ⋆1 k)
)

(x, y) =
(

∂f(x) + ∂h ◦ ϕ(f)(x)
)

+
(

∂g(y) + ∂k ◦ ϕ(g)(y)
)

.

One
on
ludes using the asso
iativity and
ommutativity of + in M . After that, one
he
ks

that the di�erential relations determine the values of a di�erential interpretation on 2-paths
of size n + 1 from its values on 2-paths of size k ≤ n.

18 G. BONFANTE AND Y. GUIRAUD

Lemma 2.14 allows one to de�ne a di�erential interpretation by giving its values on 2-
ells.

Example 2.15. The trivial fun
torial interpretation of a 3-polygraph P sends every 1-
ell
to some �xed one-element part ∗ of N−{0} and every 2-path from u to v to the only possible

map from ϕ(u) ≃ ∗ to ϕ(v) ≃ ∗. Now, let us �x a family X of 2-
ells in P. One
an
he
k

that the map ||·||X is the di�erential interpretation of P over the trivial interpretation and

into (N,+, 0), sending a 2-
ell to 1 if it is in X and 0 otherwise.

Example 2.16. We
onsider the di�erential interpretation of the division polygraphi

program D, over the fun
torial interpretation given in Example 2.4, into (N,+, 0), sending
every
onstru
tor and stru
ture 2-
ell to zero and:

∂ (x, y) = y + 1 and ∂ (x, y) = xy + x,

Example 2.17. For the polygraphi
 program F of fusion sort, we
onsider the di�erential

interpretation, over the fun
torial interpretation of Example 2.5, into (N,+, 0), sending every

onstru
tor and stru
ture 2-
ells to zero and:

∂ (2x+1) = 2x2+1, ∂ (2x+1) = ⌊x/2⌋+1, ∂ (2x+1, 2y+1) =

{

1 if xy = 0,

x + y otherwise.

Lemma 2.18. Let P be a 3-polygraph, with a di�erential interpretation ∂, over a fun
torial

interpretation ϕ, into an ordered
ommutative monoid (M,+, 0,�). Let f , g, h, k be 2-
paths su
h that the inequalities ϕ(f) ≤ ϕ(g), ∂f � ∂g and ∂h � ∂k hold. Then, for every

i ∈ {0, 1} su
h that f ⋆i h is de�ned, one has ∂(f ⋆i h) � ∂(g ⋆i k). Moreover, when M is

stri
tly ordered and either ∂f ≺ ∂g or ∂h ≺ ∂k hold, one has ∂(f ⋆i h) ≺ ∂(g ⋆i k).

Proof. One
omputes, for x ∈ ϕ(s1f) and y ∈ ϕ(s1h):

∂(f ⋆0 h)(x, y) = ∂f(x) + ∂h(y) � ∂g(x) + ∂k(y) = ∂(g ⋆0 k)(x, y).

Indeed, the two equalities are given by the di�erential relations that ∂ satis�es; the inequality

uses the hypotheses, the fa
t that maps are
ompared pointwise and the monotony of +.

Moreover, if + is stri
tly monotone and if one of ∂f ≺ ∂g or ∂h ≺ ∂k holds, then the middle

inequality is stri
t. Now, one
he
ks:

∂(f ⋆1 h) = ∂f + ∂h ◦ ϕ(f) � ∂g + ∂k ◦ ϕ(g) = ∂(g ⋆1 k).

The equalities
ome from the di�erential relations; the inequality
omes from the hypotheses

∂f � ∂g, ∂h � ∂k and ϕ(f) ≤ ϕ(g), plus the monotony of ∂h and + and the fa
t that maps

are
ompared pointwise. When + is stri
tly monotone and when either ∂f ≺ ∂g or ∂h ≺ ∂k
hold, the middle inequality is stri
t.

2.4. Compatible di�erential interpretations.

De�nition 2.19. Let P be a 3-polygraph equipped with a fun
torial interpretation ϕ and

a di�erential interpretation ∂ of P over ϕ and into an ordered
ommutative monoid M . For

every 3-
ell α, one says that ∂ is
ompatible with α when ∂(s2α) � ∂(t2α) holds. It is said
to be stri
tly
ompatible with α when ∂(s2α) ≻ ∂(t2α) holds. One says that ∂ is (stri
tly)

ompatible when it is with every 3-
ell of P.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 19

Example 2.20. The di�erential interpretations given in Examples 2.16 and 2.17 are
om-

patible with every stru
ture 3-
ell and stri
tly
ompatible with every
omputation 3-
ell of
their 3-polygraph.

Indeed, in the sour
e and the target of every stru
ture 3-
ell α, only
onstru
tor and

stru
ture 2-
ells appear. The
onsidered di�erential interpretations sends these to zero,

yielding ∂(s2α) = ∂(t2α) = 0.
For an example of
ompatibility with a
omputation 3-
ell, we
onsider the third 3-
ell

of the fusion sort fun
tion 2-
ell . On one hand, one gets:

∂

()

(1, 1, 2x + 1) = ∂ (2x + 5) = 2(x + 2)2 + 1 = 2x2 + 8x + 9.

And, on the other hand, one
omputes:

∂












(1, 1, 2x + 1) =







∂
(

2 ⌈x/2⌉ + 3
)

+ ∂
(

2 ⌊x/2⌋ + 3
)

+ ∂ (2x + 1) + ∂
(

2 ⌈x/2⌉ + 3, 2 ⌊x/2⌋ + 3
)

= 2 ·
(

⌈x/2⌉ + 1
)2

+ 2 ·
(

⌊x/2⌋ + 1
)2

+ x + ⌊x/2⌋ + 4

= 2 ⌈x/2⌉2 + 2 ⌊x/2⌋2 + x + 4 ⌈x/2⌉ + 5 ⌊x/2⌋ + 8

≤ 2x2 + 6x + 8.

Proposition 2.21. Let ∂ be a
ompatible di�erential interpretation of a polygraphi
 pro-

gram P, over a
ompatible fun
torial interpretation ϕ and into an ordered
ommutative

monoid M . Then, for every 3-path F , the inequality ∂(s2F) � ∂(t2F) holds. When M is

stri
tly ordered, ∂ is stri
tly
ompatible and F is non-degenerate, then ∂(s2F) ≻ ∂(t2F) also
holds. Moreover, if M is N equipped with addition, then |||F ||| ≤ ∂(s2F) − ∂(t2F) holds.

Proof. We pro
eed by indu
tion on the size of 3-paths. If F is a degenerate 3-path, then
one has s2F = t2F and, thus, ∂(s2F) = ∂(t2F) also.

Let us assume that F is an elementary 3-path. We de
ompose F using a 3-
ell α,
2-paths f , g and 1-paths u, v, yielding:

∂(s2F) = ∂
(

f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g
)

and ∂(t2F) = ∂
(

f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g
)

.

By assumption, ϕ and ∂ are
ompatible with α, hen
e ϕ(s2α) ≥ ϕ(t2α) and ∂(s2α) � ∂(t2α)
hold. Then one applies Lemmas 2.7 and 2.18 to get ∂(s2F) � ∂(t2F) and, when ∂ is stri
tly

ompatible with the 3-
ell α, ∂(s2F) ≻ ∂(t2F). If M is N, this means:

∂(s2F) − ∂(t2F) ≥ 1 = |||F ||| .

Finally, let us �x a non-zero natural number N and assume that the property holds for every

3-path of size N . Let us
onsider a 3-path F of size N + 1. Then one de
omposes F into

G ⋆2 H where G is a 3-path of size N and H is an elementary 3-path. Then we apply the

indu
tion hypothesis to G and the previous
ase to H to
on
lude.

20 G. BONFANTE AND Y. GUIRAUD

2.5. Conservative fun
torial interpretations. Intuitively, the following de�nition gives

a bound on all the intensities of
urrents that one
an �nd in the vi
inity of any 2-
ell inside
a 2-path.

De�nition 2.22. Let P be a 3-polygraph equipped with a fun
torial interpretation ϕ. One
denotes by ∂ϕ the di�erential interpretation of P, over ϕ and into (N,max, 0), sending

every 2-
ell with valen
e (m,n), i.e., with arity m and
oarity n, to the following map

from ϕ(s1) to N:

∂ϕ = max
{

µm, µn ◦ ϕ()
}

,

i.e., ∂ϕ (x1, . . . , xm) = max {x1, . . . , xm, y1, . . . , yn}, if (y1, . . . , yn) = ϕ()(x1, . . . , xm).
For every 3-
ell α of P, one says that ϕ is
onservative on α when ∂ϕ is
ompatible with α.
One says that ϕ is
onservative when it is
onservative on every 3-
ell of P, i.e., when ∂ϕ is

ompatible.

Example 2.23. The fun
torial interpretations of Examples 2.4 and 2.5 are
onservative.

Indeed, we shall see later that their values on stru
ture and
onstru
tor 2-
ells ensure that
they are
onservative on stru
ture 3-paths. Let us
he
k
onservativeness on, for example,

the last
omputation 3-
ell of the sort fun
tion 2-
ell :

∂ϕ

()

(1, 1, 2x + 1) = max
{

1, 2x + 1, 2x + 2, 2x + 3
}

= 2x + 3

= max
{

1, 2x + 1, 2 · ⌊x/2⌋ + 1, 2 · ⌈x/2⌉ + 1,

2 · ⌊x/2⌋ + 2, 2 · ⌈x/2⌉ + 2, 2x + 3
}

= ∂ϕ












(1, 1, 2x + 1).

When a fun
torial interpretation is both
ompatible and
onservative, the intensities of

urrents inside 2-paths do not in
rease during
omputations.

Proposition 2.24. Let ϕ be a
ompatible and
onservative fun
torial interpretation of a

polygraphi
 program. Then, for every 3-path F , the inequality ∂ϕ(s2F) ≥ ∂ϕ(t2F) holds.

Proof. By de�nition of
onservativeness and using Proposition 2.21 on ∂ϕ.

2.6. Polygraphi
 interpretations.

De�nition 2.25. A polygraphi
 interpretation of a 3-polygraph P is a pair (ϕ, ∂) made of a

fun
torial interpretation ϕ of P, together with a di�erential interpretation ∂ of P over ϕ and

into (N,+, 0). In that
ase, ϕ and ∂ respe
tively are the fun
torial part and the di�erential

part of (ϕ, ∂).
Let us �x a 3-
ell α. A polygraphi
 interpretation (ϕ, ∂) is
ompatible (with α) when

both ϕ and ∂ are. It is stri
tly
ompatible (with α) when ϕ is
ompatible with α and ∂ is

stri
tly
ompatible (with α). It is
onservative (on α) when ϕ is.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 21

Example 2.26. The fun
torial and di�erential interpretations we have built on the poly-

graphi
 programs of division and of fusion sort are two examples of polygraphi
 interpreta-

tions that are
onservative,
ompatible with every stru
ture 3-
ell and stri
tly
ompatible

with every
omputation 3-
ell.
Let us
onsider the trivial fun
torial interpretation and the di�erential interpretation

||·||X over it, for some family X of 2-
ells. They form a polygraphi
 interpretation that is

onservative but that has no general reason to be
ompatible with any 3-
ell.

We re
all the following theorem:

Theorem 2.27 ([18℄). If a 3-polygraph has a polygraphi
 interpretation whi
h is stri
tly

ompatible with all of its 3-
ells, then it terminates.

Proof. By appli
ation of Proposition 2.21, one knows that ∂(s2F) > ∂(t2F) holds for every
elementary 3-
ell F . Furthermore, these are maps with values into N. Sin
e there is no

in�nite stri
tly de
reasing sequen
e of su
h maps for the pointwise order, one
on
ludes

that P must terminate.

In what follows, we use Theorem 2.27 in several steps, thanks to the following result:

Proposition 2.28. Let P be a 3-polygraph and let X be a set of 3-
ells of P. Let us

assume that there exists a
ompatible polygraphi
 interpretation on P whose restri
tion to X
is stri
tly
ompatible. Then P terminates if and only if P − X does.

Proof. If P terminates, its redu
tion graph has no in�nite path. Sin
e it
ontains the

redu
tion graph of the 3-polygraph P−X, the latter does not have any in�nite path either.

Hen
e P − X terminates.

Conversely, let us assume that P does not terminate. Then there exists an in�nite

sequen
e (Fn)n∈N of elementary 3-paths in P su
h that, for every n ∈ N, Fn and Fn+1 are

omposable. The polygraphi
 interpretation is
ompatible, hen
e one
an apply Proposition

2.21 to get the following in�nite sequen
e of inequalities in N:

∂(s2F0) ≥ ∂(t2F0) = ∂(s2F1) ≥ (· · ·) = ∂(s2Fn) ≥ ∂(t2Fn) = ∂(s2Fn+1) ≥ (· · ·)

Furthermore, for every n ∈ N su
h that Fn ∈ 〈X〉, one has a stri
t inequality ∂(s2Fn) >
∂(t2Fn), sin
e the polygraphi
 interpretation is stri
tly
ompatible with every 3-
ell of X.

Hen
e, there are only �nitely many n in N su
h that Fn is in 〈X〉: otherwise, one
ould

extra
t, from (∂(s2Fn))n∈N, an in�nite, stri
tly de
reasing sequen
e of maps with values

in N. Thus, there exists some n0 ∈ N su
h that (Fn)n≥n0
is an in�nite path in the redu
tion

graph of P − X: this means that P − X does not terminate.

Example 2.29. Let us
onsider the polygraphi
 programs for division and fusion sort, given

in Examples 1.18 and 1.19. We have seen that ea
h one admits a
ompatible polygraphi

interpretation that is stri
tly
ompatible with their
omputation 3-
ells. Furthermore,

as proved later, the stru
ture 3-
ells, alone, terminate. Thus Proposition 2.28 gives the

termination of both polygraphi
 programs.

A
tually, in what
omes next, we produ
e a standard di�erential interpretation that is

stri
tly
ompatible with stru
ture 3-
ells. However, in general, it is not
ompatible, even

in a non-stri
t way, with
omputation 3-
ells: informally, ea
h appli
ation of su
h a
ell

an in
rease the "stru
ture heat". The purpose of the rest of this se
tion is to bound this

potential augmentation.

22 G. BONFANTE AND Y. GUIRAUD

Lemma 2.30. Let P be a 3-polygraph equipped with a polygraphi
 interpretation (ϕ, ∂).
Then, for every 2-path f in P and every x in ϕ(s1f), the following inequality holds in N:

∂f(x) ≤
∑

∈P2

||f || · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

.

Remark 2.31. Let us note that we apply ∂ to arguments ∂ϕf(x) that are not ne
essarily

in its domain. In that
ase, one
onsiders an extension of ∂ sending x to ∂ (y), where y

is the maximum element of the set ϕ(s1) that is below x.

Proof. We pro
eed by indu
tion on the size of the 2-path f . Let us assume that f is

degenerate. Then one has ||f || = 0 for every 2-
ell and, sin
e ∂ is a di�erential

interpretation, ∂f = 0. Hen
e both sides of the sought inequality are equal to 0.
Now, let us
onsider an elementary 2-path f . One de
omposes f into u ⋆0 ⋆0 v,

where is a 2-
ell and u and v are 1-paths. Then ||f || is 1 when is and 0 otherwise.

Let us �x x, y and z respe
tively in ϕ(u), ϕ(s1) and ϕ(v). Using the di�erential relations

of ∂ and ∂ϕ, one gets ∂f(x, y, z) = ∂ (y) and ∂ϕf(x, y, z) = ∂ϕ (y). If has valen
e

(m,n) and y = (y1, . . . , ym), one uses the de�nition of ∂ϕ to get, for every i ∈ {1, . . . ,m}:

∂ϕ (y) = max
{

µm(y), µn ◦ ϕ()(y)
}

≥ yi.

Then one
omputes:

∑

∈P2

||f || · ∂
(

∂ϕf(x, y, z), . . . , ∂ϕf(x, y, z)
)

= ∂
(

∂ϕ (y), . . . , ∂ϕ (y)
)

≥ ∂ (y1, . . . , ym)

= ∂f(x, y, z).

Finally, let us �x a non-zero natural number N and assume that the property holds for every

2-path of size at most N . We
onsider a 2-path f of size N +1: there exists a de
omposition

f = g⋆1 h where g and h are 2-paths of size at most N . Then, using the di�erential relations

of ||·|| , for any 2-
ell , and of ∂ϕ, one gets:

||f || = ||g|| + ||h|| and ∂ϕ(f) = max { ∂ϕg, ∂ϕh ◦ ϕ(g) } .

We �x a x in ϕ(s1f) and we
ompute:

∂f(x) = ∂(g ⋆1 h)(x)

= ∂g(x) + ∂h ◦ ϕ(g)(x)

≤
∑

∈P2

||g|| · ∂
(

∂ϕg(x), . . . , ∂ϕg(x)
)

+
∑

∈P2

||h|| · ∂
(

∂ϕh ◦ ϕ(g)(x), . . . , ∂ϕh ◦ ϕ(g)(x)
)

≤
∑

∈P2

||g|| · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

+
∑

∈P2

||h|| · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 23

We fa
torize the right-hand side to
on
lude the proof:

∂f(x) ≤
∑

∈P2

(

||g|| + ||h||
)

· ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

=
∑

∈P2

||f || · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

.

Proposition 2.32. Let P be a 3-polygraph, let α be a 3-
ell of P and let F be an elementary

3-path in 〈α〉. One assumes that P is equipped with a polygraphi
 interpretation (ϕ, ∂) su
h

that ϕ is
ompatible with and
onservative on α. Then, for every x ∈ ϕ(s1F), the following

inequality holds in Z:

∂(t2F)(x) − ∂(s2F)(x) ≤
∑

∈P2

||t2(α)|| · ∂
(

∂ϕ(s2F)(x), . . . , ∂ϕ(s2F)(x)
)

.

Proof. Sin
e F is a 3-path of size 1 in 〈α〉, one
an de
ompose s2F and t2F as follows:

g

s2F = u vs2α

f

and t2F = u vt2α

f

g

.

Let us denote by p, q and m the respe
tive sizes of u, v and s1F . The map ϕ(f) takes

its values in a part of N
p+m+q

: we de
ompose it into three maps denoted by ϕ1(f), ϕ2(f)
and ϕ3(f), with the same domain and respe
tively taking their values in parts of N

p
, N

m

and N
q
. Let us �x a x ∈ ϕ(s1F). The fun
torial and di�erential relations give:

∂(s2F)(x) = ∂f(x) + ∂(s2α) ◦ ϕ2(f)(x) + ∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

.

With the same arguments, one gets the same de
omposition for ∂(t2F), with s2α repla
ed

by t2α. Thus, the following holds in Z:

∂(t2F)(x) − ∂(s2F)(x) = ∂(t2α) ◦ ϕ2(f)(x) − ∂(s2α) ◦ ϕ2(f)(x)

+ ∂g
(

ϕ1(f)(x), ϕ(t2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

− ∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

.

Let us prove that ∂(t2F)(x)−∂(s2F)(x) ≤ ∂(t2α)◦ϕ2(f)(x) holds. First, one has ∂(s2α) ≥ 0.
Moreover, ϕ is
ompatible with α, whi
h means that ϕ(s2α) ≥ ϕ(t2α) holds; sin
e the

map ∂g is monotone, the following holds in N:

∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ϕ2(f)(x), ϕ3(f)(x)
)

≥ ∂g
(

ϕ1(f)(x), ϕ(t2α) ◦ϕ2(f)(x), ϕ3(f)(x)
)

.

It remains to bound ∂(t2α) ◦ ϕ2(f)(x). One applies Lemma 2.30 to t2(α) to get:

∂(t2α) ◦ ϕ2(f)(x) ≤
∑

∈P2

||t2(α)|| · ∂
(

∂ϕ(t2α) ◦ ϕ2(f)(x), . . . , ∂ϕ(t2α) ◦ ϕ2(f)(x)
)

.

By assumption, ϕ is
onservative on α, thus ∂ϕt2(α) ◦ϕ2(f)(x) ≤ ∂ϕs2(α) ◦ϕ2(f)(x) holds.
Moreover, using the di�erential properties satis�ed by ∂ϕ, one gets ∂ϕs2(α) ◦ ϕ2(f)(x) ≤

∂ϕ(s2F). One
on
ludes by invoking the monotony of ∂ .

24 G. BONFANTE AND Y. GUIRAUD

3. Complexity of polygraphi
 programs

In this se
tion, we spe
ialize polygraphi
 interpretations to polygraphi
 programs to get

information on their
omplexity. In parti
ular, we introdu
e additive polygraphi
 interpreta-

tions and use them as an estimation of the size of values. This way, we give bounds on the

size of
omputations, with respe
t to the size of the arguments. We
on
lude this work

with a
hara
terisation of a
lass of polygraphi
 programs that
ompute exa
tly the fptime

fun
tions.

3.1. Additive fun
torial interpretations and the size of values.

De�nition 3.1. Let P be a polygraphi
 program. One says that a fun
torial interpretation ϕ
of P is additive when, for every
onstru
tor 2-
ell of arity n, there exists a non-zero natural

number c su
h that, for every (x1, . . . , xn) in ϕ(s1), the following equality holds in N:

ϕ()(x1, . . . , xn) = x1 + · · · + xn + c .

In that
ase, one denotes by γ the greatest of these numbers, i.e., :

γ = max
{

c , ∈ P
C
2

}

.

A polygraphi
 interpretation is additive when its fun
torial part is.

Example 3.2. The fun
torial interpretations we have built for the polygraphi
 programs D

and F are additive. In both
ases, γ is 1.

Lemma 3.3. Let ϕ be an additive fun
torial interpretation of a polygraphi
 program P and

let t be a value with
oarity 1. Then the following equality holds in N:

ϕ(t) =
∑

∈PC
2

||t|| · c .

Proof. Let us prove this result by indu
tion on the size of the 2-path t. There is no degenerate
value with
oarity 1. If t is an elementary value with
oarity 1, then t is a
onstru
tor 2-
ell

with arity 0. Sin
e ϕ is additive, one has ϕ() = c . Moreover, ||t|| is 1 when =
holds and 0 otherwise, yielding the equality one seeks.

Now, let us �x a non-zero natural number N and assume that the result holds for every

value with
oarity 1 and size at most N . Let us �x a value t with
oarity 1 and size N + 1.
Then t admits a de
omposition t =

(

t1 ⋆0 · · · ⋆0 tn
)

⋆1 , where is a
onstru
tor 2-
ell
with arity n and ea
h ti, i ∈ {1, . . . , n}, is a value with
oarity 1 and size at most N . As a

onsequen
e, for every
onstru
tor 2-
ell , one has:

||t|| =

{

||t1|| + · · · + ||tn|| + 1 if = ,

||t1|| + · · · + ||tn|| otherwise.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 25

Finally, one
omputes:

ϕ(t) = ϕ() ◦
(

ϕ(t1) × · · · × ϕ(tn)
)

from the fun
torial relations of ϕ,

= ϕ(t1) + · · · + ϕ(tn) + c sin
e ϕ is additive,

=
∑

∈PC
2

(

||t1|| + · · · + ||tn||
)

· c + c by indu
tion hypothesis

=
∑

∈PC
2

||t|| · c from previous remark.

Proposition 3.4. Let ϕ be an additive fun
torial interpretation of a polygraphi
 program P.

Then, for every value t with
oarity 1, the inequalities ||t|| ≤ ϕ(t) ≤ γ ||t|| hold in N. As

a
onsequen
e, for every value t, one has ν(t) ≤ ϕ(t) ≤ γν(t), where ν is the fun
torial

interpretation introdu
ed in Example 2.6.

Proof. Let us assume that t is a value with
oarity 1. From Lemma 3.3, one has:

ϕ(t) =
∑

∈PC
2

||t|| · c .

By additivity of ϕ and by de�nition of γ, one has 1 ≤ c ≤ γ for every
onstru
tor 2-
ell .

One
on
ludes by using the following equality, that holds sin
e t is in
〈

PC
2

〉

:

||t|| =
∑

∈PC
2

||t|| .

When t1, . . . , tn are values with
oarity 1 and when t = t1 ⋆0 · · · ⋆0 tn, one
on
ludes thanks
to the equalities ϕ(t) =

(

ϕ(t1), . . . , ϕ(tn)
)

and ν(t) =
(

||t1|| , . . . , ||tn||
)

.

Lemma 3.5. Let ϕ be an additive fun
torial interpretation of a polygraphi
 program P. For

every value t with
oarity 1, the equality ∂ϕt = ϕ(t) holds. As a
onsequen
e, for every

value t with
oarity n, one has ∂ϕt = µn ◦ ϕ(t).

Proof. Let us pro
eed by indu
tion on the size of t. If is a
onstru
tor 2-
ell with arity 0,

then the equality holds by de�nition of ∂ϕ .

Now, let us �x a non-zero natural number N and assume that the result holds for every

value with
oarity 1 and size at most N . Let us
onsider a value t with
oarity 1 and size

N + 1. One de
omposes t into t = (t1 ⋆0 · · · ⋆0 tn) ⋆1 , with a
onstru
tor 2-
ell and
where ti is a value with
oarity 1 and size at most N , for every i ∈ {1, . . . , n}. Using the

di�erential relations of ∂ϕ, one gets:

∂ϕt = max
{

∂ϕ(t1), . . . , ∂ϕ(tn), ∂ϕ

(

ϕ(t1), . . . , ϕ(tn)
) }

.

The de�nition of ∂ϕ gives:

∂ϕ

(

ϕ(t1), . . . , ϕ(tn)
)

= max
{

ϕ(t1), . . . , ϕ(tn), ϕ()
(

ϕ(t1), . . . , ϕ(tn)
) }

.

Sin
e ϕ is additive, ϕ()
(

ϕ(t1), . . . , ϕ(tn)
)

is greater than every ϕ(ti), whi
h is ∂ϕ(ti)
by indu
tion hypothesis applied to ti. Thus one gets the following equality and uses the

fun
torial relations of ϕ to
on
lude:

∂ϕt = ϕ()
(

ϕ(t1), . . . , ϕ(tn)
)

.

26 G. BONFANTE AND Y. GUIRAUD

Finally, let us
onsider a value t with
oarity n. One denotes by (t1, . . . , tn) the family of

values with
oarity 1 su
h that t = t1 ⋆0 · · · ⋆0 tn holds. One invokes the di�erential relations

of ∂ϕ to get the equality ∂ϕt = max
{

∂ϕ(t1), . . . , ∂ϕ(tn)
}

. One uses the indu
tion hypothesis

on ea
h ti and
on
ludes, thanks to the fun
torial relations satis�ed by ϕ.

Proposition 3.6. Let ϕ be an additive fun
torial interpretation on a polygraphi
 program P.

For every fun
tion 2-
ell and every value t of type s1(), one has ∂ϕ(t ⋆1) = ∂ϕ ◦
ϕ(t).

Proof. Let us assume that has valen
e (m,n). One uses the di�erential relations of ∂ϕ

to produ
e:

∂ϕ(t ⋆1) = max
{

∂ϕt, ∂ϕ ◦ ϕ(t)
}

.

But, by de�nition of ∂ϕ, one has ∂ϕ ◦ϕ(t) ≥ µm ◦ϕ(t). There remains to use Lemma 3.5

on t to get ∂ϕt = µn ◦ ϕ(t).

Notation 3.7. Let be a fun
tion 2-
ell with arity m in a polygraphi
 program P,

equipped with an additive fun
torial interpretation ϕ. Thereafter, we denote by M the

map from N
m
to N de�ned by:

M (x1, . . . , xm) = ∂ϕ

(

γx1, . . . , γxm

)

.

The next result uses the map M and the size of the initial arguments to bound the size

of intermediate values produ
ed during
omputations, hen
e of the arguments of potential

re
ursive
alls.

Proposition 3.8. Let P be a polygraphi
 program, equipped with an additive,
ompatible

and
onservative fun
torial interpretation ϕ. Let be a fun
tion 2-
ell and let t be a value

of type s1 . Then, for every 3-path F with sour
e t ⋆1 , the following inequality holds

in N:

∂ϕ(t2F) ≤ M ◦ ν(t).

Proof. The fun
torial interpretation ϕ is
ompatible and
onservative: by Proposition 2.24,

we know that ∂ϕ(t2F) ≤ ∂ϕ(t ⋆1) holds. Sin
e ϕ is additive, one may use Proposition 3.6

to produ
e the equality ∂ϕ(t ⋆1) = ∂ϕ ◦ ϕ(t). Furthermore, Proposition 3.4 gives

ϕ(t) ≤ γν(t): one argues that ∂ϕ is monotone to
on
lude.

Example 3.9. Applied to Example 1.19, Proposition 3.8 tells us that, given a list t, any
intermediate value produ
ed by the
omputation of the sorted list (t) has its size bounded
by M (||t||) = ||t||. This means that re
ursive
alls made during this
omputation are

applied to arguments of size at most ||t||.

3.2. Cartesian polygraphi
 interpretations and the size of stru
ture
omputa-

tions. Here we bound the number of stru
ture 3-
ells that
an appear in a
omputation.

For that, we
onsider polygraphi
 interpretations that take spe
ial values on stru
ture 2-
ells.

De�nition 3.10. Let P be a polygraphi
 program. A fun
torial interpretation ϕ of P is

said to be
artesian when the following
onditions hold, for every 1-
ells ξ and ζ:

ϕ
(

ξ

)

(x) = (x, x) and ϕ
(

ξ,ζ

)

(x, y) = (y, x).

A polygraphi
 interpretation is
artesian when its fun
torial part is
artesian and when its

di�erential part sends every
onstru
tor and stru
ture 2-
ell to zero.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 27

Proposition 3.11. If a fun
torial interpretation of a polygraphi
 program P is
artesian,

then it is
ompatible with and
onservative on all the stru
ture 3-
ells.

Proof. Let ϕ be a
artesian fun
torial interpretation of a polygraphi
 program P. We start

by
omputing the values of ϕ and ∂ϕ on the stru
ture 2-paths, by indu
tion on their size.

This way, one proves that the following equalities hold, for any 1-path u and x ∈ ϕ(u), any
1-
ell ξ and y ∈ ϕ(ξ):

ϕ
(

u,ξ

)

(x, y) = (y, x), ϕ
(

ξ,u

)

(y, x) = (x, y),

ϕ
(

u

)

(x) = (x, x), ϕ
(

u

)

(x) = ∗.

Then, when u = ∗, all these 2-paths are degenerate, so that they are sent on 0 by the

di�erential interpretation ∂ϕ. Now, when u is non-degenerate, with x = (x1, . . . , xn), one
gets:

∂ϕ

(

u,ξ

)

(x, y) = max {x1, . . . , xn, y} = ∂ϕ

(

ξ,u

)

(y, x),

∂ϕ

(

u

)

(x) = max {x1, . . . , xn} = ∂ϕ

(

u

)

(x).

Now, we �x a 1-path u, 1-
ells ξ, ζ and a
onstru
tor 2-
ell : u → ξ in P. Let us

onsider x ∈ ϕ(u) and y ∈ ϕ(ζ) and
he
k that the following equalities hold, yielding the

ompatibility of ϕ on stru
ture 3-
ells:

ϕ

()

(x, y) = (y, ϕ(x)) = ϕ

()

(x, y),

ϕ

()

(y, x) = (ϕ(x), y) = ϕ

()

(y, x),

ϕ

()

(x) = (ϕ(x), ϕ(x)) = ϕ

()

(x),

ϕ

()

(x) = ∗ = ϕ
()

(x).

With the same notations, we now
he
k the
onservativeness of ϕ with the stru
ture 3-
ells,
i.e., the
ompatibility of ∂ϕ with them:

∂ϕ

()

(x, y) = max
{

∂ϕ (x), y
}

≥ ∂ϕ

()

(x, y),

∂ϕ

()

(y, x) = max
{

∂ϕ()(x), y
}

≥ ∂ϕ

()

(y, x),

∂ϕ

()

= ∂ϕ() = ∂ϕ

()

,

∂ϕ

()

= ∂ϕ() ≥ ∂ϕ

()

.

De�nition 3.12. Let ϕ be a fun
torial interpretation of a polygraphi
 program P. We

denote by ∂S
ϕ and
all stru
ture di�erential interpretation generated by ϕ the di�erential

interpretation of P, over ϕ and into (N,+, 0), that sends every
onstru
tor and fun
tion

2-
ell to zero and su
h that the following hold:

∂S
ϕ (x, y) = xy, ∂S

ϕ (x) = x2, ∂S
ϕ (x) = x.

28 G. BONFANTE AND Y. GUIRAUD

Lemma 3.13. Let ϕ be a fun
torial interpretation of a polygraphi
 program P. If ϕ is both

additive and
artesian, then ∂S
ϕ is stri
tly
ompatible with all the stru
ture 3-
ells of P.

Proof. We start by
omputing ∂S
ϕ on the stru
ture 2-paths, by indu
tion on their size:

∂S
ϕ

()

(x1, . . . , xn, y) = ∂S
ϕ

()

(y, x1, . . . , xn) = y ·
∑

1≤i≤n xi,

∂S
ϕ

()

(x1, . . . , xn) =
∑

1≤i≤j≤n xi · xj , ∂S
ϕ

()

(x1, . . . , xn) =
∑

1≤i≤n xi.

Now, let us �x a
onstru
tor 2-
ell with arity n. Let us
onsider x = (x1, . . . , xn) in

ϕ(s1). Sin
e ϕ is additive, one notes that ϕ()(x) > x1 + · · · + xn holds. Then, given

a y ∈ N − {0}, one
he
ks that the following stri
t inequalities hold in N − {0}:

∂S
ϕ

()

(x, y) = y · ϕ()(x) > y ·
∑

1≤i≤n

xi = ∂S
ϕ

()

(x, y),

∂S
ϕ

()

(x, y) = y · ϕ()(x) > y ·
∑

1≤i≤n

xi = ∂S
ϕ

()

(x, y),

∂S
ϕ

()

(x) =
(

ϕ()(x)
)2

>
∑

1≤i≤j≤n

xi · xj = ∂S
ϕ

()

(x),

∂S
ϕ

()

(x) = ϕ()(x) >
∑

1≤i≤n

xi = ∂S
ϕ

()

(x).

The following result gives su�
ient
onditions on a polygraphi
 interpretation su
h that one

does not have to bother with the stru
ture 3-
ells to prove termination.

Proposition 3.14. If a polygraphi
 program admits an additive and
artesian polygraphi

interpretation that is stri
tly
ompatible with every
omputation 3-
ell, then it terminates.

Proof. Let (ϕ, ∂) be a polygraphi
 interpretation with the required properties. One applies

Proposition 3.11 to get the
ompatibility of ϕ with stru
ture 3-
ells. Then Lemma 3.13

tells us that (ϕ, ∂S
ϕ) is stri
tly
ompatible with stru
ture 3-
ells: hen
e Theorem 2.27 yields

termination of PS
3 .

Sin
e ∂ sends every
onstru
tor and stru
ture 2-
ell to zero, one has ∂(s2α) = ∂(t2α) = 0
for every stru
ture 3-
ell α: thus (ϕ, ∂) is
ompatible with every stru
ture 3-
ell and, by
hypothesis, stri
tly
ompatible with every other 3-
ell. One applies Proposition 2.28 to

on
lude.

De�nition 3.15. Let P be a polygraphi
 program. One denotes by K the maximum number

of stru
ture 2-
ells one �nds in the targets of
omputation 3-
ells:

K = max
{

||t2(α)||
PS

2

, α ∈ P
R
3

}

.

Let ϕ be an additive fun
torial interpretation of P. For every fun
tion 2-
ell with arity m,

one de�nes S as the map from N
m
to N given by:

S (x1, . . . , xm) = K · M2 (x1, . . . , xm).

The following lemma proves that, during a
omputation, if one applies a
omputation 3-
ell,
then the stru
ture heat in
rease is bounded by a polynomial in the size of the arguments.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 29

Lemma 3.16. Let P be a polygraphi
 program, equipped with an additive,
artesian,
om-

patible and
onservative fun
torial interpretation ϕ. Let be a fun
tion 2-
ell and t be a

value of type s1(). Let f and g be 2-paths su
h that t ⋆1 redu
es into f whi
h, in turn,

redu
es into g by appli
ation of a
omputation 3-
ell α. Then, the following inequality holds

in Z:

∂S
ϕg − ∂S

ϕf ≤ S ◦ ν(t).

Proof. Sin
e ϕ is
ompatible and
onservative, one
an apply Proposition 2.32 on the 3-path
from f to g, to get the following inequality:

∂S
ϕg − ∂S

ϕf ≤
∑

∈P2

||t2(α)|| · ∂S
ϕ

(

∂ϕ(f), . . . , ∂ϕ(f)
)

.

By de�nition of ∂S
ϕ , one has ∂S

ϕ = 0 ex
ept when is a stru
ture 2-
ell. Thus one gets:

∂S
ϕg − ∂S

ϕf

≤ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f), ∂ϕ(f)
)

+ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f)
)

+ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f)
)

= ||t2(α)|| ·
(

∂ϕ(f)
)2

+ ||t2(α)|| ·
(

∂ϕ(f)
)2

+ ||t2(α)|| · ∂ϕ(f)

≤ ||t2(α)||
PS

2

·
(

∂ϕ(f)
)2

≤ K ·
(

∂ϕ(f)
)2

.

Finally, we re
all that ϕ is additive,
ompatible and
onservative: an appli
ation of Proposi-

tion 3.8 to the 3-path with sour
e t⋆1 and target f yields ∂ϕ(f) ≤ M ◦ν(t) and
on
ludes
the proof.

Example 3.17. For the polygraphi
 program of Example 1.19, we have K = 1. The

polynomials bounding the stru
ture interpretation in
rease after appli
ation of one of the

omputation 3-
ells of this polygraphi
 program are:

S (x) = x2, S (x) = x2, S (x, y) = (x + y − 1)2.

3.3. The size of
omputations.

De�nition 3.18. Let P be a polygraphi
 program, with an additive polygraphi
 interpreta-

tion (ϕ, ∂). For every fun
tion 2-
ell with arity m, one denotes by P and by Q the

maps from N
m
to N de�ned by:

P (x1, . . . , xm) = ∂
(

γx1, . . . , γxm

)

,

Q (x1, . . . , xm) = P (x1, . . . , xm) ·
(

1 + S (x1, . . . , xm)
)

.

The following result bounds the number of
omputation 3-
ells in a redu
tion 3-path, with
respe
t to the size of the arguments.

Proposition 3.19. Let P be a polygraphi
 program, equipped with an additive and
artesian

polygraphi
 interpretation (ϕ, ∂) whi
h is stri
tly
ompatible with every
omputation 3-
ell.
Let be a fun
tion 2-
ell and t be a value of type s1(). Then, for every 3-path F with

sour
e t ⋆1 , the following inequality holds:

|||F |||
PR

3

≤ P ◦ ν(t).

30 G. BONFANTE AND Y. GUIRAUD

Proof. If F is degenerate, then |||F |||
PR

3

= 0 holds. Otherwise, the 3-path F de
omposes

this way:

F = H0 ⋆2 G1 ⋆2 H1 ⋆2 G2 ⋆2 · · · ⋆2 Gk ⋆2 Hk,

where ea
h Gi is elementary in

〈

PR
3

〉

and ea
h Hj lives in
〈

PS
3

〉

. Hen
e |||F |||
PR

3

= k. Sin
e

the polygraphi
 interpretation is
artesian, it is
ompatible with every stru
ture 3-
ell, so
that one has ∂(s2Hj) ≥ ∂(t2Hj), for every j ∈ {0, . . . , k}. Sin
e it is also stri
tly
ompatible

with every
omputation 3-
ell, one applies Proposition 2.21 to get the following
hain of

(in)equalities, for every i ∈ {0, . . . , k − 1}:

∂(s2Hi) ≥ ∂(t2Hi) = ∂(s2Gi) > ∂(t2Gi) = ∂(s2Hi+1).

By indu
tion on i, one proves the following
hain of (in)equalities:

∂(t ⋆1) = ∂(s2G1) > ∂(s2G2) > · · · > ∂(s2Gk) > ∂(t2Gk).

Furthermore we have ∂(t2Gk) ≥ 0 and,
onsequently:

|||F |||
PR

3

≤ ∂(t ⋆1).

Finally, let us bound ∂(t ⋆1), whi
h is equal to ∂ ◦ϕ(t) + ∂t, thanks to the di�erential

relations of ∂. But (ϕ, ∂) is
artesian, yielding ∂t = 0, and Proposition 3.4 tells us that

ϕ(t) ≤ γν(t) holds. One uses the de�nition of P to
on
lude.

Proposition 3.20. Let P be a polygraphi
 program, equipped with an additive and
artesian

polygraphi
 interpretation (ϕ, ∂) whi
h is stri
tly
ompatible with and
onservative on every

omputation 3-
ells. Let be a fun
tion 2-
ell and let t be a value of type s1 . Then, for

every 3-path F with sour
e t ⋆1 , the following inequality holds:

|||F ||| ≤ Q ◦ ν(t).

Proof. If |||F ||| = 0, then the inequality does hold. Otherwise, there exists a 3-
ell that we

an apply to the starting 2-path t ⋆1 ; moreover, this is a
omputation 3-
ell sin
e no

stru
ture 3-
ell
an be applied to su
h a 2-path. Hen
e the 3-path F de
omposes this way:

F = G1 ⋆2 H1 ⋆2 G2 ⋆2 · · · ⋆2 Gk ⋆2 Hk,

where ea
h Gi is elementary in

〈

PR
3

〉

and ea
h Hj is in
〈

PS
3

〉

. As a
onsequen
e, we have:

|||F ||| = k + |||H1||| + · · · + |||Hk||| .

Furthermore k = |||F |||
PR

3

holds and, thus, so does k ≤ P ◦ν(t) thanks to Proposition 3.19.

We prove that the following inequality holds to
on
lude:

|||H1||| + · · · + |||Hk||| ≤ k ·
(

S ◦ ν(t)
)

.

Towards this goal, let us �x an i ∈ {1, . . . , k}. Sin
e ∂S
ϕ is stri
tly
ompatible with every

stru
ture 3-
ell, one gets from Proposition 2.21:

|||Hi||| + ∂S
ϕ(t2Hi) ≤ ∂S

ϕ (s2Hi).

Furthermore, from Lemma 3.16, one knows that the following inequality holds:

∂S
ϕ(t2Gi) ≤ ∂S

ϕ(s2Gi) + S ◦ ν(t).

Sin
e t2Gi = s2Hi holds, one has:

|||Hi||| + ∂S
ϕ(t2Hi) ≤ ∂S

ϕ(s2Gi) + S ◦ ν(t).

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 31

Or, written di�erently:

|||Hi||| ≤ ∂S
ϕ(s2Gi) − ∂S

ϕ(t2Hi) + S ◦ ν(t).

One sums this family of k inequalities, one for every i in {1, . . . , k}, to produ
e:

|||H1||| + · · · + |||Hk||| ≤
k
∑

i=1

∂S
ϕ(s2Gi) −

k
∑

i=1

∂S
ϕ(t2Hi) + k · S ◦ ν(t).

By hypothesis, one has s2G1 = t ⋆1 , t2Hk = t2F and, for every i ∈ {1, . . . , k}, t2Hi =
s2Gi+1, so that the following inequality holds:

|||H1||| + · · · + |||Hk||| ≤ ∂S
ϕ(s2F) − ∂S

ϕ(t2F) + k · S ◦ ν(t).

Finally, one argues that both ∂S
ϕ(t ⋆1) = 0 and ∂S

ϕ(t2F) ≥ 0 hold by de�nition of ∂S
ϕ .

Example 3.21. Let us
ompute these bounding maps for the fusion sort fun
tion 2-
ell
of the polygraphi
 program F:

P (2x + 1) = 2x2 + 1 and Q (2x + 1) = (2x2 + 1) ·
(

1 + (2x + 1)2
)

.

Let us �x a list [i1; . . . ; in] of natural numbers. One
an
he
k that, in F, this list is

represented by a 2-path t su
h that ϕ(t) = ||t|| = 2n + 1. The polynomial P tells us that,

during the
omputation of the sorted list

q y
(t), there will be at most 2n2 + 1 appli
ations

of
omputation 3-
ells. The polynomial Q bounds the total number of 3-
ells of any type.

For example, when n is 2, one
omputes

q y
(t) by building a 3-path of size at most

Q (5) = 234,
ontaining no more than P (5) = 9
omputation 3-
ells. One
an
he
k that

the 3-path presented in Example 1.28 is (way) below these bounds: it is made of seven

3-
ells, six of whi
h are of the
omputation kind.

3.4. Polygraphi
 programs and polynomial-time fun
tions.

De�nition 3.22. Let P be a polygraphi
 program. A di�erential interpretation ∂ of P is

polynomial when, for every fun
tion 2-
ell , the map ∂ is bounded by a polynomial. A

fun
torial interpretation ϕ of P is polynomial when ∂ϕ is. A polygraphi
 interpretation is

polynomial when both its fun
torial part and di�erential part are.

We denote by P the set of polygraphi
 programs whi
h are
on�uent and
omplete

and whi
h admit an additive,
artesian and polynomial polygraphi
 interpretation that is

onservative on and stri
tly
ompatible with their
omputation 3-
ells.

Example 3.23. As a
onsequen
e of previous results, the two polygraphi
 programs D,

omputing eu
lidean division, and F,
omputing the fusion sort of lists, are in P.

De�nition 3.24. Let us denote by N the polygraphi
 program with the following
ells:

(1) It has one 1-
ell n.
(2) Its 2-
ells are the three possible stru
ture 2-
ells plus:

(a) Constru
tor 2-
ells: for zero and for the su

essor.

(b) Fun
tion 2-
ells: for addition and for multipli
ation.

(3) Its 3-
ells are the eight stru
ture 3-
ells plus the following
omputation 3-
ells:

⇛⇛ ⇛ ⇛

32 G. BONFANTE AND Y. GUIRAUD

Proposition 3.25. The polygraphi
 program N is in P and it
omputes the addition and

multipli
ation of natural numbers.

Proof. The polygraphi
 program N is orthogonal, hen
e lo
ally
on�uent, and
omplete.

Furthermore, the following hold:

JnK ≃ N,
q y

(m,n) = m + n,
q y

(m,n) = mn.

Then, one
he
ks that the following polygraphi
 interpretation has all the required properties:

ϕ(n) = N − {0} , c = c = 1, ϕ()(x, y) = x + y, ϕ()(x, y) = xy,

∂ (x, y) = x and ∂ (x, y) = (x + 1)y.

Remark 3.26. So N
omputes addition and multipli
ation of natural numbers. As we have

seen, it also
omputes dupli
ation and permutation on them. As a
onsequen
e, for every

polynomial P in N[x], one
an
hoose a 2-path P
in N su
h that

q
P

y
is P . Moreover, by

indu
tion, one proves that ϕ(P) = P and that ∂ P
is bounded by a polynomial in N[x].

Theorem 3.27. The polygraphi
 programs of P
ompute exa
tly the fptime fun
tions.

Proof. The fa
t that a fun
tion
omputed by a polygraphi
 program in P is in fptime

is a
onsequen
e of the results of Proposition 3.20. Indeed, it proves that the size of any

omputation of

q y
is bounded by Q applied to the size of the arguments: from the

polynomial assumption and the de�nition of Q , this map is itself bounded by a polynomial.

Moreover ea
h 3-
ell appli
ation modi�es only �nitely many 2-
ells: hen
e the sizes of the

2-paths remain polynomial all along the
omputation. Furthermore, any step of
omputation

an be done in polynomial time with respe
t to the size of the
urrent 2-path. Indeed, it

orresponds to �nding a pattern and, then, repla
e it by another one: it is just a reordering

of some pointers with a �nite number of memory allo
ations. So, the
omputation involves

a polynomial number of steps, ea
h of whi
h
an be performed in polynomial time. Thus,

the normalization pro
ess
an be done in polynomial time.

Conversely, let f : 〈Σ〉 → 〈Σ〉 be a fun
tion of
lass fptime. This means that there

exists a Turing ma
hine M = (Σ, Q, q0, qf , δ) and a polynomial P in N[x] su
h that the

ma
hine M
omputes f and, for any word w of length n in 〈Σ〉, the number of transition

steps required by M to
ompute f(w) is bounded by P (n). We extend the polygraphi

program N into P(M, P), by adding the following extra
ells, adapted from the ones of the

polygraphi
 Turing ma
hine P(M) used in the proof of Theorem 1.30, in order to use P as

a
lo
k:

(1) An extra 1-
ell w.
(2) Extra 2-
ells in
lude the �ve new stru
ture 2-
ells plus:

(a) Constru
tor 2-
ells: the empty word : ∗ ⇒ w and ea
h letter

a : w ⇒ w of Σ.

(b) Fun
tion 2-
ells: the main : w ⇒ w for f , plus the modi�ed

q a
, q ∈ Q and

a ∈ Σ, now from n ⋆0 w ⋆0 w to w, plus an extra size fun
tion : w ⇒ n.

(3) Extra 3-
ells in
lude the new stru
ture ones plus:

(a) The
omputation 3-
ells for the auxiliary fun
tion :

⇛
a

⇛

(b) Timed versions of the
omputation 3-
ells for the Turing ma
hine:

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 33

b c c

b c

P

c

both when δ(q1, a) = (q2, c, L)

⇛

⇛ ⇛

⇛

⇛

⇛

both when δ(q1, a) = (q2, c, R)

aq2 b

qf a

q0 ♯

q1 a

q1 a q2 b q1 a ♯

q2 ♯q1

q2

One
he
ks that P(M, P) is orthogonal and
omplete. We equip it with the polygraphi

interpretation based on the one de�ned on N in the proof of Proposition 3.25, extended

with the following values:

c = c a = 1,

ϕ()(x) = x, ϕ(q a)(x, y, z) = x + y + z, ϕ()(x) = P (x) + x + 1,

∂ (x) = ∂ q a (x, y, z) = x, ∂ (x) = ∂ P (x) + P (x) + x + 1.

One
he
ks that this polygraphi
 interpretation is additive,
artesian, polynomial,
ompati-

ble with and
onservative on all the
omputation 3-
ells. Hen
e, P(M, P) is a polygraphi

program in P. Furthermore, one has JnK ≃ N and JwK ≃ 〈Σ〉. We also note that, among

fun
tions
omputed by P(M, P), one proves that
q y

: JwK → JnK is the length fun
tion.

The four middle families of
omputation 3-
ells of N are on
e again in bije
tion with

the rules de�ning the transition relation of the Turing ma
hine M. Hen
e, the
on�guration

(q, a, wl, wr) redu
es into (q′, a′, w′
l, w

′
r) in k ∈ N steps if and only if, for any n ≥ k, one has:

(

n ⋆0 wl ⋆0 wr

)

⋆1 q a ⇛

(

n − k ⋆0 w′
l ⋆0 w′

r

)

⋆1 q′ a′ .

Finally, let us �x a word w of length n in 〈Σ〉. The Turing ma
hine
omputes f , so that

(q0, ♯, e, w) redu
es into a unique
on�guration (qf , a, v, f(w)), after a �nite number k of

transition steps. Then we
he
k the following
hain of equalities, yielding

q y
= f :

q y
(w) =

r
q0 ♯

z(
P (n) ⋆0 ⋆0 w

)

=
r

qf a

z(
P (n) − k ⋆0 v ⋆0 f(w)

)

= f(w).

Future dire
tions

Polygraphi
 programs. The de�nition we have
hosen for this study stays
lose to the one

of �rst-order fun
tional programs. We shall explore generalization along di�erent dire
tions.

We think that an important resear
h trail
on
erns the understanding of the algebrai

properties of the if-then-else
onstru
tion in polygraphi
 terms. Towards this goal, we

want to des
ribe strategies as sets of 4-dimensional
ells. The 3-paths will
ontain all the

omputational paths one
an build when there is no �xed evaluation strategy, while the

strategies and
onditions will be represented by the 4-paths, seen as normalization pro
esses

of 3-paths. In parti
ular, this setting shall allow us to internalize the test used to
ompute the

merge fun
tion in the fusion sort algorithm, but also to des
ribe
onditional or probabilisti

rewriting systems.

34 G. BONFANTE AND Y. GUIRAUD

On another point, in the polygraphs we
onsider here, we have �xed a sublayer made

of permutations, dupli
ations and erasers, together with natural polygraphi
 interpretations

for them. However, one
an see them as a spe
ial kind of fun
tion 2-
ells. Thus, we shall

de�ne a notion of hierar
hi
al programs, where one builds fun
tions level after level, giving

omplexity bounds for them modulo the previously de�ned fun
tions. However, this does

not prevent us to build modules that a programmer
an freely use as sublayers, without

bothering with the
omplexity of their fun
tions: for example, a module that des
ribes

the evaluation and
oevaluation. We think of this module system as a �rst possibility to

integrate polymorphism into the polygraphi
 setting.

Removing dupli
ation and erasure from the standard de�nition means that one moves

from a
artesian setting to a monoidal one. A

ording to a variant of André Joyal's

paradox [29℄, this is ne
essary to des
ribe fun
tions su
h as linear maps on �nite-dimensional

ve
tor spa
es. Thus, one should be able to
ompute, for example, algebrai

ooperations,

su
h as the ones found in Jean-Louis Loday's generalized bialgebras [33℄, or automorphisms

of C
n
, su
h as the universal Deuts
h gate [37℄ of quantum
ir
uits.

Going further, at this step, there will be no reason anymore to
onsider
onstru
tor

2-
ells with one output only or values with no output. This way, one
ould
onsider

algorithms
omputing, for example, on braids or knots. However, this also suggests to

hange our notion of fun
tion 2-
ells to some kind of "polygraphi

ontext", a notion of

2-path with holes whose algebrai
 stru
ture has yet to be understood. In parti
ular, this is

the se
ond solution we think of to des
ribe polymorphi
 types and fun
tions.

For all this resear
h, we shall
onsider a more abstra
t de�nition of polygraphs: they

are spe
ial higher-dimensional
ategories, namely the free ones. This formulation, though

leading to a steeper learning
urve, shall provide enlightenments about the possibilities one

has when one wants to extend the setting. But, more importantly, this will make easier the

adaptation of tools from algebra for program analysis.

Analysis tools. In future work, we shall use other possibilities provided by polygraphi

interpretations, together with other algebrai
 tools, to study the
omputational properties

of polygraphs.

We restri
ted interpretations to be polynomials with integer
oe�
ients. This is
lose

to the tools
onsidered in [8℄. Following this last paper, a straightforward
hara
terization

of exponential-time (resp. doubly exponential-time)
an be done by
onsidering linear (resp.

polynomial) interpretations for
onstru
tors, instead of additive ones. However, some studies

are mu
h more promising. First, to turn to polynomials over reals give some pro
edures to

build interpretations (see [11℄) via Alfred Tarski's de
idability [44℄. Se
ond, we plan to

onsider di�erential interpretations with values in multisets (instead of natural numbers),

to
hara
terize polynomial-spa
e
omputations.

For ea
h generalization of the notion of polygraphi
 program, su
h as the ones mentioned

earlier, we shall adapt polygraphi
 interpretations in
onsequen
e. We think that, if these

generalizations are done in an elegant way, this task will be easier. For example, if one

onsiders "symmetri
" values, i.e., values with inputs, one
an use a third part of polygraphi

interpretations we have not used here: as
ending
urrents, des
ribed by a
ontravariant

fun
torial part, su
h as in the original de�nition [18℄.

As pointed earlier, polygraphs are higher dimensional-
ategories. Philippe Malbos and

the se
ond author are
urrently adapting the �nite derivation
riterion of Craig Squier

[40℄ to them, as was done before for 1-
ategories [34℄. We think that this will lead us

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 35

to a
omputable ne
essary
ondition to ensure that a fun
tion admits a �nite,
onvergent

polygraphi
 program that
omputes it.

The same
ollaboration has more long-term aims: using tools from homologi
al algebra

for program analysis. For example, the fun
torial and di�erential interpretations are spe
ial

ases of, respe
tively, left modules over the 2-
ategory of 2-paths (or bimodules, when there

are as
ending
urrents) and derivations of this same 2-
ategory into the given module.

Moreover, a well-
hosen
ohomology theory yields, in parti
ular, information on derivations:

thus, one
an hope to get new tools su
h as negative results about the fa
t that a given

algorithm lives in a given
omplexity
lass.

Cat. The main
on
rete obje
tive of this proje
t is to develop a new programming language,

odenamed Cat. In this setting, one will build a program as a polygraph, while using the

algebrai
 analysis tools we provide to produ
e
erti�
ates that guarantee several properties of

the
ode, su
h as grammati
al ones,
omputational ones or semanti
al ones. As in Caml [13℄,

a Cat program will have two aspe
ts: an implementation and an interfa
e.

In the implementation, one builds the
ode, des
ribing the
ells and assembling them

to build paths, i.e., building the data types, the fun
tions, the
omputation rules and the

evaluation strategies. Thanks to the dual nature of polygraphs, one shall be able to perform

this using an environment that is either totally graphi
al, totally synta
ti
al or some hybrid

possibility between those.

The interfa
e part
ontains all the information the programmer
an prove on its
ode, in

the form of
erti�
ates. These guaranteed properties will range from type information, as in

Caml, to polygraphi
 interpretations proving termination or giving
omplexity bounds, to

proofs of semanti
al properties in the form of polygraphi
 three-dimensional proofs [19℄. For

all these
erti�
ates, we shall propose assistants, with ta
ti
s that automatize the simpler

tasks and leave the programmer
on
entrate on the harder parts.

Finally, given su
h a polygraphi
 program, the question of evaluation arises. One
an

think of several solutions, whose respe
tive di�
ulty ranges from "feasible" to "s
ien
e-�
-

tion": �rst, a
ompiler or an interpreter into some existing language, su
h as Tom [45℄, a task

that has already been started; then, a distributed exe
ution where ea
h 2-
ell is translated
into a pro
ess, whose behaviour is des
ribed by the
orresponding 3-
ells; �nally,
on
rete
ele
troni

hips dedi
ated to polygraphi

omputation.

Referen
es

[1℄ Colin Adams, The knot book, Ameri
an Mathemati
al So
iety, 2004.

[2℄ Thomas Arts and Jürgen Giesl, Termination of term rewriting using dependen
y pairs, Theoreti
al

Computer S
ien
e 236 (2000), no. 1-2, 133�178.

[3℄ Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge University Press, 1998.

[4℄ John Baez and Aaron Lauda, A history of n-
ategori
al physi
s, draft version, 2006.

[5℄ Patri
k Baillot and Kazushige Terui, Light types for polynomial time
omputation in lambda-
al
ulus,

Pro
eedings of the 19th Symposium on Logi
 in Computer S
ien
e (LICS 04), 2004, pp. 266�275.

[6℄ Stephen Bellantoni and Stephen Cook, A new re
ursion-theoreti

hara
terization of the poly-time fun
-

tions, Computational Complexity 2 (1992), 97�110.

[7℄ Guillaume Bonfante, Adam Ci
hon, Jean-Yves Marion, and Hélène Touzet, Complexity
lasses and

rewrite systems with polynomial interpretation, Pro
eedings of the 12th International Workshop on

Computer S
ien
e Logi
 (CSL 98), Le
ture Notes in Computer S
ien
e, vol. 1584, 1999, pp. 372�384.

[8℄ , Algorithms with polynomial interpretation termination proofs, Journal of Fun
tional Program-

ming 11 (2001), no. 1, 33�53.

36 G. BONFANTE AND Y. GUIRAUD

[9℄ Guillaume Bonfante and Yves Guiraud, Intensional properties of polygraphs, Pro
eedings of the 4th

International Workshop on Term Graph Rewriting (TERMGRAPH 07), vol. 203, Ele
troni
 Notes in

Computer S
ien
e, no. 1, 2008, pp. 65�77.

[10℄ Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen, Quasi-interpretations: a way to
ontrol

resour
es, Theoreti
al Computer S
ien
e (2005), to appear.

[11℄ Guillaume Bonfante, Jean-Yves Marion, Jean-Yves Moyen, and Romain Pé
houx, Synthesis of quasi-

interpretations, Logi
 and Complexity in Computer S
ien
e, 2005.

[12℄ Albert Burroni, Higher-dimensional word problems with appli
ations to equational logi
, Theoreti
al

Computer S
ien
e 115 (1993), no. 1, 43�62.

[13℄ The Caml Language,
aml.inria.fr.

[14℄ Adam Ci
hon and Pierre Les
anne, Polynomial interpretations and the
omplexity of algorithms, Le
ture

Notes in Arti�
ial Intelligen
e 607 (1992), 139�147.

[15℄ Daniel Dougherty, Pierre Les
anne, and Luigi Liquori, Addressed term rewriting systems: appli
ation

to a typed obje
t
al
ulus, Mathemati
al Stru
tures in Computer S
ien
e 16 (2006), no. 4, 667�709.

[16℄ Jean-Yves Girard, Light linear logi
, Information and Computation 143 (1998), no. 2, 175�204.

[17℄ Yves Guiraud, Présentations d'opérades et systèmes de réé
riture, Ph.D. thesis, Université Montpellier

2, June 2004.

[18℄ , Termination orders for 3-dimensional rewriting, Journal of Pure and Applied Algebra 207

(2006), no. 2, 341�371.

[19℄ , The three dimensions of proofs, Annals of Pure and Applied Logi
 141 (2006), no. 1-2, 266�295.

[20℄ , Two polygraphi
 presentations of Petri nets, Theoreti
al Computer S
ien
e 360 (2006), no. 1-3,

124�146.

[21℄ , Polygraphs for termination of left-linear term rewriting systems, preprint, 2007.

[22℄ Dieter Hofbauer and Clemens Lautemann, Termination proofs and the length of derivations, Le
ture

Notes in Computer S
ien
e 355 (1988), 167�177.

[23℄ Martin Hofmann, A type system for bounded spa
e and fun
tional in-pla
e update, Nordi
 Journal of

Computing 7 (2000), no. 4, 258�289.

[24℄ Neil Jones, Computability and
omplexity, from a programming perspe
tive, MIT Press, 1997.

[25℄ , Logspa
e and ptime
hara
terized by programming languages, Theroreti
al Computer S
ien
e

228 (1999), 151�174.

[26℄ Yves Lafont, Intera
tion nets, Pro
eedings of the 17th Symposium on Prin
iples of Programming Lan-

guages (POPL 90), 1990, pp. 95�108.

[27℄ , Towards an algebrai
 theory of boolean
ir
uits, Journal of Pure and Applied Algebra 184

(2003), no. 2-3, 257�310.

[28℄ , Soft linear logi
 and polynomial time, Theoreti
al Computer S
ien
e 318 (2004), 163�180.

[29℄ Joa
him Lambek and Philipp S
ott, Introdu
tion to higher-order
ategori
al logi
, Cambridge University

Press, 1986.

[30℄ Dallas Lankford, On proving term rewriting systems are noetherian, Te
h. report, Louisiana Te
h Uni-

versity, 1979.

[31℄ Daniel Leivant, A foundational delineation of
omputational feasability, Pro
eedings of the 6th Sympo-

sium on Logi
 in Computer S
ien
e (LICS 91), 1991, pp. 2�11.

[32℄ Daniel Leivant and Jean-Yves Marion, Lambda-
al
ulus
hara
terizations of poly-time, Fundamenta

Informati
ae 19 (1993), no. 1-2, 167�184.

[33℄ Jean-Louis Loday, Generalized bialgebras and triples of operads, preprint, 2006.

[34℄ Philippe Malbos, For string rewriting systems the homotopi
al and homologi
al �niteness
onditions

oin
ide, preprint, 2007.

[35℄ Jean-Yves Marion and Romain Pé
houx, Resour
e analysis by sup-interpretation, Le
ture Notes in

Computer S
ien
e 3945 (2006), 163�176.

[36℄ Yiannis Mos
hovakis, What is an algorithm?, Mathemati
s Unlimited � 2001 and Beyond (Björn En-

gquist and Wilfried S
hmid, eds.), Springer, 2001, pp. 919�936.

[37℄ Mi
hael Nielsen and Isaa
 Chuang, Quantum
omputation and quantum information, Cambridge Uni-

versity Press, 2000.

[38℄ Karl-Heinz Niggl and Henning Wunderli
h, Certifying polynomial time and linear/polynomial spa
e for

imperative programs, SIAM Journal of Computing 35 (2006), no. 5, 1122�1147.

POLYGRAPHIC PROGRAMS AND POLYNOMIAL-TIME FUNCTIONS 37

[39℄ Detlef Plump, Term graph rewriting, Handbook of Graph Grammars and Computing by Graph Trans-

formation 2 (1999), 3�61.

[40℄ Craig Squier, A �niteness
ondition for rewriting systems, Theoreti
al Computer S
ien
e 131 (1994),

no. 2, 271�294, Revised by Friedri
h Otto and Yuji Kobayashi.

[41℄ Ross Street, Limits indexed by
ategory-valued 2-fun
tors, J. Pure Appl. Algebra 8 (1976), no. 2, 149�

181.

[42℄ , The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), no. 3, 283�335.

[43℄ , Higher
ategories, strings,
ubes and simplex equations, Appl. Categ. Stru
tures 3 (1995), no. 1,

29�77.

[44℄ Alfred Tarski, A de
ision method for elementary algebra and geometry, University of California Press,

1951, 2nd edition.

[45℄ Tom, tom.loria.fr.

[46℄ John von Neumann, Theory of self-reprodu
ing automata, University of Illinois Press, 1966.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://
reative
ommons.org/li
enses/by-nd/2.0/ or send
a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	Polygraphs as a computational model
	Complexity analysis of polygraphic programs
	General notations

	1. A computational model based on polygraphs
	1.1. A first glance at polygraphs
	Types
	Operations
	Computations
	1.2. Polygraphs
	1.3. Polygraphic programs
	1.4. Semantics of polygraphic programs
	1.5. Polygraphic programs are Turing-complete

	2. Polygraphic interpretations
	2.1. Functorial interpretations
	2.2. Compatible functorial interpretations
	2.3. Differential interpretations
	2.4. Compatible differential interpretations
	2.5. Conservative functorial interpretations
	2.6. Polygraphic interpretations

	3. Complexity of polygraphic programs
	3.1. Additive functorial interpretations and the size of values
	3.2. Cartesian polygraphic interpretations and the size of structure computations
	3.3. The size of computations
	3.4. Polygraphic programs and polynomial-time functions

	Future directions
	Polygraphic programs
	Analysis tools
	Cat

	References

