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Abstra
t. We study the 
omputational model of polygraphs. For that, we 
onsider

polygraphi
 programs, a sub
lass of these obje
ts, as a formal des
ription of �rst-order

fun
tional programs. We explain their semanti
s and prove that they form a Turing-


omplete 
omputational model. Their algebrai
 stru
ture is used by analysis tools, 
alled

polygraphi
 interpretations, for 
omplexity analysis. In parti
ular, we delineate a sub
lass

of polygraphi
 programs that 
ompute exa
tly the fun
tions that are Turing-
omputable

in polynomial time.

Introdu
tion

Polygraphs as a 
omputational model. Polygraphs (or 
omputads) are presentations by

"generators" and "relations" of some higher-dimensional 
ategories [41, 12, 42, 43℄. Albert

Burroni has proved that they provide an algebrai
 stru
ture to equational theories [12℄. Yves

Lafont and the se
ond author have explored some of the 
omputational properties of these

obje
ts, mainly termination, 
on�uen
e and their links with term rewriting systems [27, 18℄.

The present study, extending notions and results presented earlier by the same authors [9℄,


on
erns the 
omplexity analysis of polygraphs.

On a �rst approa
h, one 
an think of these obje
ts as rewriting systems on algebrai



ir
uits: instead of 
omputing on synta
ti
al terms, polygraphs make use of a net of 
ells,

whi
h individually behave a

ording to some lo
al transition rules, as do John von Neu-

mann's 
ellular automata [46℄ and Yves Lafont's intera
tion nets [26℄.

Following Neil Jones' thesis that programming languages and semanti
s have strong


onnexions with 
omplexity theory [24℄, we think that the synta
ti
 features o�ered by

polygraphs, with respe
t to terms, play an important role from the point of view of impli
it


omputational 
omplexity. As a running example, we 
onsider the divide-and-
onquer algo-

rithm of fusion sort. It 
omputes the fun
tion f taking a list l and returning the list made

of the same elements, yet sorted a

ording to some given order relation. For that, it uses a

divide-and-
onquer strategy: it splits l into two sublists l1 and l2 of equivalent sizes, then

it re
ursively applies itself on ea
h one to get f(l1) and f(l2) and, �nally, it merges these
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two results to produ
e f(l). The following program, written in Caml [13℄, implements this

algorithm:

let re
 split = fun
tion

| [℄ -> ([℄,[℄)

| x::[℄ -> (x::[℄,[℄)

| x::y::l -> let (l1,l2)=split(l) in (x::l1,y::l2)

let re
 merge = fun
tion

| ([℄,l) -> l

| (l,[℄) -> l

| (x::l,y::m) -> if x<=y then x::merge(l,y::m) else y::merge(x::l,m)

let re
 sort = fun
tion

| [℄ -> [℄

| x::[℄ -> x::[℄

| x::y::l -> let (l1,l2)=split(l) in merge(sort(x::l1),sort(y::l2))

In a polygraph, one 
an 
onsider, at the same level as other operations, fun
tion symbols

with many outputs. For example, the above de�nition of the split fun
tion be
omes, in the

polygraphi
 language:

⇛⇛ ⇛

With these rules, one 
an a
tually "see" how the 
omputation is made, by "unzipping"

lists. Also, one 
an internalize in polygraphs the sharing operation of termgraphs [39℄,

des
ribed as an expli
it and lo
al dupli
ation. As a 
onsequen
e, the rules generating


omputations be
ome linear: the operations for pointers management 
an be "seen" within

the rules. A
tually, in our analysis, we evaluate expli
itly the number of stru
tural steps of


omputation: allo
ations, deallo
ations and swit
hes of pointers. In other words, we make

expli
it the design of a garbage 
olle
tor.

The question of sharing has been widely studied for e�
ient implementations of fun
tio-

nal programming languages and several solutions have been suggested: for instan
e, Dan

Dougherty, Pierre Les
anne and Luigi Liquori proposed the formalism of addressed term

rewriting systems [15℄. Let us mention another approa
h for this kind of issues due to

Martin Hofmann [23℄: he developed a typing dis
ipline, with a diamond type, for a fun
tional

language whi
h allows a 
ompilation into an imperative language su
h as C, without dynami


allo
ation.

The 
omputational model of polygraphi
 programs, a sub
lass of polygraphs, is explai-

ned in the �rst part of this do
ument, where we give their semanti
s and prove a 
ompleteness

result: every Turing-
omputable fun
tion 
an be 
omputed by a polygraphi
 program.

Complexity analysis of polygraphi
 programs. Here we use tools inspired by polyno-

mial interpretations, whi
h have been introdu
ed by Dallas Lankford to prove termination of

term rewriting systems [30℄. They asso
iate to ea
h term a polynomial with natural numbers

as 
oe�
ients, in a way that is naturally 
ompatible with 
ontexts and substitutions. When,

for ea
h rule, the interpretation of the left-hand side is greater than the one of the right-hand
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side, one gets a termination proof. For example, let us 
onsider the following term rewriting

system that 
omputes the double fun
tion on natural numbers:

d(0) → 0 d(s(x)) → s(s(d(x))).

One proves its termination with the interpretation de�ned by ϕ(0) = 1, ϕ(s(x)) = ϕ(x) + 1
and ϕ(d(x)) = 3ϕ(x). Indeed, one 
he
ks that the following inequalities hold:

ϕ(d(0)) = 3 > 1 = ϕ(0) and ϕ(d(s(x))) = 3ϕ(x) + 3 > 3ϕ(x) + 2 = ϕ(s(s(d(x)))).

Moreover, on top of termination results, polynomial interpretations 
an be used to study


omplexity. For instan
e, Dieter Hofbauer and Clemens Lautemann have established a

doubly exponential bound on the derivation length of systems with polynomial interpreta-

tions [22℄. Adam Ci
hon and Pierre Les
anne have 
onsidered more pre
isely the 
omputa-

tional power of these systems [14℄. Adam Ci
hon, Jean-Yves Marion and Hélène Touzet, with

the �rst author, have identi�ed 
omplexity 
lasses by means of restri
tions on polynomial

interpretations [7, 8℄.

Let us explain how this works on the example of the double fun
tion. The given

interpretation sends the term d(sn(0)) to the natural number 3n + 3: sin
e ea
h rule

appli
ation will stri
tly de
rease this number, one knows that it takes at most 3n + 3 steps

to get from this term to its normal form s2n(0). A
tually, the 
onsidered interpretation gives

a polynomial bound, with respe
t to the size of the argument, on the time taken to 
ompute

the double fun
tion with this program.

In order to analyze polygraphs, we use algebrai
 tools 
alled polygraphi
 interpretations,

whi
h have been introdu
ed to prove termination of polygraphs [18℄. Intuitively, one 
onsiders

that 
ir
uits are 
rossed by ele
tri
al 
urrents. Depending on the intensity of the 
urrents

that arrive to it, ea
h 
ir
uit gate produ
es some heat. Then one 
ompares 
ir
uits a

ording

to the total heat ea
h one produ
es. Building a polygraphi
 interpretation amounts at �xing

how 
urrents are transmitted by ea
h gate and how mu
h heat ea
h one emits.

The 
urrent part is 
alled a fun
torial interpretation. Algebrai
ally, it is similar to

a polynomial interpretation of terms and we also use it as an estimation of the size of

values, like quasi-interpretations [10℄. The heat part is 
alled a di�erential interpretation

and it is spe
i�
 to the algebrai
 stru
ture of polygraphs. We use it to bound the number

of 
omputation steps remaining before rea
hing a result. Let us note that the distin
tion

between these two parts makes it possible for polygraphi
 interpretations to 
ope with

non-simplifying termination proofs, like Thomas Arts and Jürgen Giesl's dependen
y pairs

[2℄.

However, some new di�
ulties arise with polygraphs. For example, sin
e dupli
ation and

erasure are expli
it in our model, we must show how to get rid of them for the interpretation.

In our setting, the programmer fo
uses on 
omputational steps (as opposed to stru
tural

steps) for whi
h he has to give an interpretation. From this interpretation, we give a

polynomial upper bound on the number of stru
tural steps that will be performed.

In this work, we fo
us on polynomial-time 
omputable fun
tions or, shorter, fptime

fun
tions. The reason 
omes from Stephen Cook's thesis stating that this 
lass 
orresponds

to feasible 
omputable fun
tions. But it is strongly 
onje
tured that the preliminary results

developed in this paper 
an be used for other 
hara
terizations. In parti
ular, the 
urrent

interpretations 
an be seen as sup-interpretations, following [35℄: this means that values

have polynomial size.
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Coming ba
k to fptime, in the �eld of impli
it 
omputational 
omplexity, the notion

of strati�
ation has shown to be a fundamental tool of the dis
ipline. This has been

developed by Daniel Leivant and Jean-Yves Marion [31, 32℄ and by Stephen Bellantoni

and Stephen Cook [6℄ to delineate fptime. Other 
hara
terizations in
lude Neil Jones'

"Life without 
ons" WHILE programs [25℄ and Karl-Heinz Niggl and Henning Wunderli
h's


hara
terization of imperative programs [38℄. There is also a logi
al approa
h to impli
it


omputational 
omplexity, based on a linear type dis
ipline, in the seminal work of Jean-Yves

Girard on light linear logi
 [16℄, Yves Lafont on soft linear logi
 [28℄ or Patri
k Baillot and

Kazushige Terui [5℄.

The se
ond part of this do
ument is devoted to general results about polygraphi


interpretations of polygraphs. There, we explore the pie
es of information they 
an give us

about size issues. Then, in the third part, we apply these results to polygraphi
 programs.

In parti
ular, we identify a sub
lass P of these obje
ts that 
ompute exa
tly the fun
tions

that 
an be 
omputed in polynomial-time by a Turing ma
hine, or fptime fun
tions for

short.

General notations. Throughout this do
ument, we use several notations that we prefer

to group here for easier further referen
e.

If X is a set and p is a natural number, we denote by Xp
the 
artesian produ
t of p


opies of X. If X is an ordered set, we equip Xp
with the produ
t order, whi
h is de�ned

by (x1, . . . , xp) ≤ (y1, . . . , yp) whenever xi ≤ yi holds for every i ∈ {1, . . . , p}.
If f : X → X ′

and g : Y → Y ′
are maps, then f × g denotes the produ
t map from

X×X ′
to Y ×Y ′

. Let f, g : X → Y be two maps. If Y is equipped with a binary relation ⊳,

then one 
ompares f and g pointwise, whi
h means that f ⊳ g holds when, for every x ∈ X,

one has f(x) ⊳ g(x) in Y . Similarly, if Y is equipped with a binary operation ⋄, then one

de�nes f ⋄ g as the map from X to Y sending ea
h x of X to the element f(x) ⋄ g(x) in Y .

The sets N of natural numbers and Z of integers are always assumed to be equipped with

their natural order. For every n in N, we denote by µn the maximum map max {x1, . . . , xn}
and by N[x1, . . . , xn] the set of polynomials over n variables and with 
oe�
ients in N. If

f : N
m → N

n
is a map and if k ∈ N, one denotes by kf the map sending (x1, . . . , xm) to

(ky1, . . . , kyn), if (y1, . . . , yn) is f(x1, . . . , xm).

1. A 
omputational model based on polygraphs

1.1. A �rst glan
e at polygraphs. On a �rst approa
h, one 
an 
onsider polygraphs as

rewriting systems on algebrai
 
ir
uits, made of:

Types. They are the wires, 
alled 1-
ells. Ea
h one 
onveys information of some elementary

type. To represent produ
t types, one uses several wires, in parallel, 
alling su
h a 
onstru
-

tion a 1-path. For example, the following 1-path represents the type of quadruples made of

an integer, a boolean, a real number and a boolean:

i
n
t

b
o
o
l

r
e
a
l

b
o
o
l

The 1-paths 
an be 
omposed in one way, by putting them in parallel:

vu v =⋆0
u
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Operations. They are represented by 
ir
uits, 
alled 2-paths. The gates used to build

them are 
alled 2-
ells. The 2-paths 
an be 
omposed in two ways, either by juxtaposition

(parallel 
omposition) or by 
onne
tion (sequential 
omposition):

⋆1=f fg g⋆0 f g =
f

g

Ea
h 2-path (or 2-
ell) has a �nite number of typed inputs, a 1-path 
alled its 1-sour
e, and
a �nite number of typed outputs, a 1-path 
alled its 1-target:

t1(f)
f

s1(f)

Several 
onstru
tions represent the same operation. In parti
ular, wires 
an be stret
hed

or 
ontra
ted, provided one does not 
ross them or break them. This 
an be written either

graphi
ally or algebrai
ally:

≡f
f

fg
g

g
≡

(

f ⋆0 s1(g)
)

⋆1

(

t1(f) ⋆0 g
)

≡ f ⋆0 g ≡
(

s1(f) ⋆0 g
)

⋆1

(

f ⋆0 t1(g)
)

.

Computations. They are rewriting paths, 
alled 3-paths, transforming a given 2-path,

alled its 2-sour
e, into another one, 
alled its 2-target. The 3-paths are generated by lo
al

rewriting rules, 
alled 3-
ells. The 2-sour
e and the 2-target of a 3-
ell or 3-path are required

to have the same input and output, i.e., the same 1-sour
e and the same 1-target. A 3-path
is represented either as a redu
tion on 2-paths or as a genuine 3-dimensional obje
t:

t2(F )⇛:F s2(F )
s2(F )

F t1(F )

t2(F )

s1(F )

The 3-paths 
an be 
omposed in three ways, two parallel ones 
oming from the stru
ture of

the 2-paths, plus one new, sequential one:

F

s2(F ) s2(G) t2(F ) t2(G): ⇛=F ⋆0 G

G

G

s2(F )

s2(G)

t2(F )

t2(G)
: ⇛=F ⋆1 G

F

G

s2(F ) t2(G)⇛:=F ⋆2 G

F
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The 3-paths are identi�ed modulo relations that in
lude topologi
al moves su
h as:

≡

≡

≡

≡

≡

≡

These graphi
al relations have an algebrai
 version given, for 0 ≤ i < j ≤ 2, by:
(

F ⋆i sj(G)
)

⋆j

(

tj(F ) ⋆i G
)

≡ F ⋆i G ≡
(

sj(F ) ⋆i G
)

⋆j

(

F ⋆i tj(G)
)

.

So far, we have des
ribed a spe
ial 
ase of 3-polygraphs. A n-polygraph is a similar obje
t,

made of 
ells, paths, sour
es, targets and 
ompositions in all dimensions up to n.

Remark 1.1. Polygraphs provide a uniform, algebrai
 and graphi
al des
ription of obje
ts


oming from di�erent domains: abstra
t, string and term rewriting systems [27, 17, 18℄,

abstra
t algebrai
 stru
tures [12, 17, 33℄, Feynman and Penrose diagrams [4℄, braids, knots

and tangle diagrams equipped with Reidemeister moves [1, 17℄, Petri nets [20℄ and propositional

proofs of 
lassi
al and linear logi
s [19℄.

1.2. Polygraphs. On a �rst reading, one 
an skip the formal de�nition of polygraph and

just keep in mind the graphi
al introdu
tion. We de�ne n-polygraphs by indu
tion on

the dimension n: given a de�nition of (n − 1)-polygraphs, we de�ne a n-polygraph as a

base (n − 1)-polygraph extended with a set of n-
ells. Let us initiate the indu
tion with

0-polygraphs and 1-polygraphs.

De�nition 1.2. A 0 -polygraph is a set P. Its 0 -
ells and 0 -paths are its elements.

De�nition 1.3. A 1 -polygraph is a data P = (B,P1, s, t) made of a 0-polygraph B, a set P1

and two maps s and t from P1 to B. The 0 -
ells and 0 -paths of P are the ones of B. Its

1 -
ells are the elements of P1. One indu
tively de�nes the set 〈P1〉 of 1 -paths of P, together

with the 0 -sour
e map s0 and the 0 -target map t0, both from 1-paths to 0-paths, as follows:

• Every 0-
ell x is a 1-path, with s0(x) = t0(x) = x.
• Every 1-
ell ξ is a 1-path, with s0(ξ) = s(ξ) and t0(ξ) = t(ξ).
• If u and v are 1-paths su
h that t0(u) = s0(v), then u ⋆0 v is a 1-path 
alled the 0 -


omposition of u and v. One de�nes s0(u ⋆0 v) = s0(u) and t0(u ⋆0 v) = t0(v).

The 1-paths are identi�ed modulo the following relations:

• Asso
iativity: (u ⋆0 v) ⋆0 w = u ⋆0 (v ⋆0 w) .
• Lo
al units: s0(u) ⋆0 u = u = u ⋆0 t0(u) .

Example 1.4. A graph yields a 1-polygraph, with verti
es as 0-
ells and arrows as 1-
ells.
The 1-paths are the paths in the graph.
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Example 1.5. A set X 
an be seen as a 1-polygraph, with one 0-
ell and itself as set of

1-
ells: in that 
ase, the set 〈X〉 of 1-paths is exa
tly the free monoid generated by X or,

equivalently, the set of words over the alphabet X.

Example 1.6. An abstra
t rewriting system is a binary relation R over a set X. Su
h an

obje
t yields a 1-polygraph P with P0 = X, P1 = R, s0(x, y) = x and t0(x, y) = y. Then,
the 1-paths of this 1-polygraph are in bije
tive 
orresponden
e with the rewriting paths

generated by (X,R).

Now, let us �x a natural number n ≥ 2 and assume that one has de�ned what a (n −
1)-polygraph P is, how one builds its sets Pk of k-
ells and 〈Pk〉 of k-paths, k ∈ {0, . . . , n},
and its j-sour
e map sj and j-target map tj from 〈Pk〉 to 〈Pj〉, j ∈ {0, . . . , k − 1}.

De�nition 1.7. An n-polygraph is a data P = (B,Pn, s, t) made of an (n−1)-polygraph B,

a set Pn and two maps s and t from Pn to 〈Bn−1〉, su
h that the globular relations hold:

sn−2 ◦ s = sn−2 ◦ t and tn−2 ◦ s = tn−2 ◦ t.

For every k in {0, . . . , n − 1}, the k -
ells and k -paths of P are the ones of B. The n-
ells

of P are the elements of Pn. One indu
tively de�nes the set 〈Pn〉 of n-paths of P, the

(n − 1 )-sour
e map sn−1, the (n − 1 )-target map tn−1 and, for every k ∈ {0, . . . , n − 2},
extensions to n-paths of the k-sour
e map sk and the k-target map tk of B:

• For every k ∈ {0, . . . , n − 1}, every k-
ell ξ is an n-path, with sn−1(ξ) = tn−1(ξ) = ξ.
Values of other sour
e and target maps do not 
hange.

• Every n-
ell ϕ is an n-path, with sn−1(ϕ) = s(ϕ) and tn−1(ϕ) = t(ϕ). If k ∈ {0, . . . , n − 2},
then sk and tk are respe
tively extended by sk(ϕ) = sk ◦ sn−1(ϕ) and by tk(ϕ) =
tk ◦ tn−1(ϕ).

• If k ∈ {0, . . . , n − 1} and if f and g are n-paths su
h that tk(f) = sk(g) holds, then f ⋆k g
is an n-path 
alled the k -
omposition of f and g. For j ∈ {0, . . . , n − 2}, one de�nes:

sj(f ⋆k g) =

{

sj(f) if j ≤ k

sj(f) ⋆k sj(g) if j > k
and tj(f ⋆k g) =

{

tj(g) if j ≤ k

tj(f) ⋆k tj(g) if j > k.

One does not distinguish two n-paths that only di�er by the following relations:

• Asso
iativity: (f ⋆k g) ⋆k h = f ⋆k (g ⋆k h), for 0 ≤ k ≤ n − 1.
• Lo
al units: sk(f) ⋆k f = f = f ⋆k tk(f), for 0 ≤ k ≤ n − 1.
• Ex
hange: (f1 ⋆j f2) ⋆k (g1 ⋆j g2) = (f1 ⋆k g1) ⋆j (f2 ⋆k g2), for 0 ≤ j < k ≤ n − 1.

Example 1.8. Let us 
onsider a word rewriting system (X,R), made of set X and a binary

relation R over 〈X〉. From it, one builds a 2-polygraph P with one 0-
ell, P1 = X, P2 = R,

s1(u, v) = u and t1(u, v) = v. There is a bije
tion between the 2-paths of P and the

rewriting paths generated by (X,R), 
onsidered modulo the 
ommutation squares between

two non-overlapping rule appli
ations. Moreover the 
ir
uit-like pi
tures provide graphi
al

representations for word rewriting: wires are letters, gates are appli
ations of rewriting rules

and 
ir
uits are tra
es of 
omputations.

Example 1.9. Term rewriting systems generate 3-polygraphs, as explained by Albert

Burroni [12℄, Yves Lafont [27℄ and the se
ond author [18, 19℄. The polygraphi
 programs

one 
onsiders here are light versions of these [21℄.

Example 1.10. Petri nets 
orrespond exa
tly to 3-polygraphs with one 0-
ell and no 1-
ell:
one identi�es pla
es with 2-
ells and transitions with 3-
ells [20℄.
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De�nition 1.11. Let us �x a natural number n and an n-polygraph P. The polygraph P

is �nite when it has a �nite number of 
ells in every dimension. A family X of n-
ells of P


an be seen as an n-polygraph with the same 
ells as P up to dimension n − 1.
If 0 ≤ j < k ≤ n, two k-paths f and g are j -
omposable when tj(f) = sj(g). They

are j -parallel when sj(f) = sj(g) and tj(f) = tj(g). When j = k − 1, one simply says


omposable and parallel. Similarly, the (k − 1)-sour
e and (k − 1)-target of a k-path are

simply 
alled its sour
e and target.

If 0 ≤ k ≤ n, given a subset X of Pk and a k-path f , the size of f with respe
t to X is

the natural number denoted by ||f ||X and de�ned as follows, by stru
tural indu
tion on f :

||f ||X =











0 if f is a 
ell and f /∈ X,

1 if f ∈ X,

||g||X + ||h||X if f = g ⋆j h, for some 0 ≤ j < k.

When X is redu
ed to one 
ell ϕ, one writes ||f ||ϕ instead of ||f ||{ϕ}. The size of f is its

size with respe
t to Pk, simply written ||f ||. A k-path is degenerate when it has size 0 and

elementary when its size is 1.

Remark 1.12. One must 
he
k that the de�nition of the size of a k-path (with respe
t

to a set of k-
ells X) is 
orre
t. This is done by 
omputing this map on both sides of the

relations of asso
iativity, lo
al units and ex
hange and ensuring that both results are equal.

One proves that any non-degenerate k-path f of size p 
an be written

f = f1 ⋆k−1 · · · ⋆k−1 fp,

where ea
h fi is an elementary k-path. Moreover, if k ≥ 1, then any elementary k-path f

an be written as follows:

f = gk ⋆k−1

(

gk−1 ⋆k−2 · · · ⋆1 (g1 ⋆0 ϕ ⋆0 h1) ⋆1 · · · ⋆k−2 hk−1

)

⋆k−1 hk,

where ϕ is a uniquely de�ned k-
ell, while gj and hj are j-paths, for every j ∈ {1, . . . , k}.
For example, any elementary 3-path F 
an be de
omposed as F = f ⋆1 (u ⋆0 α ⋆0 v) ⋆1 g,
where α is a uniquely determined 3-
ell, f and g are 2-paths, u and v are 1-paths. As a


onsequen
e:

g

s2F = u vs2α

f

t2F = u vt2α

f

g

s2F = f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g t2F = f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g

In order to study the 
omputational properties of polygraphs, we use notions of higher-di-

mensional rewriting theory [18℄ that, in turn, make referen
e to abstra
t rewriting ones [3℄.

De�nition 1.13. The redu
tion graph asso
iated to an n-polygraph P is the graph with

(n − 1)-paths of P as obje
ts and elementary n-paths of P as arrows. Rewriting notions of

normal forms, termination, (lo
al) 
on�uen
e, 
onvergen
e, et
. are de�ned on P by taking

ba
k the ones of its redu
tion graph.

Remark 1.14. One 
an 
he
k that, given two parallel (n − 1)-paths f and g in an n-poly-
graph P, there exists a path from f to g in the redu
tion graph of P if and only if there

exists a non-degenerate n-path F with sour
e f and target g in P.
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In what follows, we fo
us on 3-polygraphs and introdu
e some spe
ial notions and notations

for them.

De�nition 1.15. Let P be a 3-polygraph. The fa
t that f is a k-path of P with sour
e x
and target y is denoted by f : x → y when k = 1, by f : x ⇒ y when k = 2, by f : x ⇛ y
when k = 3. If f is a k-path of P and X a family of k-
ells then, instead of ||f ||X , one
writes |f |X when k = 1 and |||f |||X when k = 3. When f : x ⇒ y, then |x|, |y| and (|x| , |y|)
are respe
tively 
alled the arity, the 
oarity and the valen
e of f .

1.3. Polygraphi
 programs.

De�nition 1.16. A polygraphi
 program is a �nite 3-polygraph P with one 0-
ell, thereafter
denoted by ∗, and su
h that its sets of 2-
ells and of 3-
ells respe
tively de
ompose into

P2 = PS
2 ∐ PC

2 ∐ PF
2 and P3 = PS

3 ∐ PR
3 , with the following 
onditions:

• The set PS
2 is made of the following elements, 
alled stru
ture 2 -
ells, where ξ and ζ range

over the set of 1-
ells of P:

ξ,ζ
: ξ ⋆0 ζ ⇒ ζ ⋆0 ξ,

ξ
: ξ ⇒ ξ ⋆0 ξ,

ξ
: ξ ⇒ ∗.

When the 
ontext is 
lear, one simply writes , and . The following elements of

〈

PS
2

〉

are 
alled stru
ture 2-paths and they are de�ned by stru
tural indu
tion on their 1-sour
e:

∗

∗ ξ

=
ξ

∗ξ

=
ξ

=
ξ ⋆0 xζ

ζ ξ x

x ⋆0 ξ

x ξ

∗

= ∗

=

=

ξx

=
x ⋆0 ξ ζ

ζξx

∗ x ⋆0 ξ

=

• The set PC
2 is made of 2-
ells with 
oarity 1, i.e., of the shape , 
alled 
onstru
tor

2 -
ells.

• The elements of PF
2 are 
alled fun
tion 2 -
ells.

• The elements of PS
3 , 
alled stru
ture 3 -
ells, are de�ned, for every 
onstru
tor 2-
ell :

x ⇒ ξ and every 1-
ell ζ, by:
x ζ

ζ ξ

ζ x

ξ ζ

x

ξ ξ

x

ξ ξ

x

⇛ ⇛ ⇛ ⇛

xx ζ

ζ ξ

xζ

ξ ζ

• The elements of PR
3 are 
alled 
omputation 3 -
ells and ea
h one has a 2-sour
e of the

shape t ⋆1 , with t ∈
〈

PC
2

〉

and ∈ PF
2 .

Remark 1.17. In this study, we have de
ided to split stru
ture 
ells from 
omputation


ells. From a traditional programming perspe
tive, permutations, dupli
ations and erasers

are given for free in the syntax. With polygraphs, this is not the 
ase. However, by putting

these operations in a "spe
ial" sublayer, we show that the programmer has not to bother

with stru
ture 
ells: one 
an stay at the top-level, letting the sublevel work on its own.

Example 1.18. The following polygraphi
 program D 
omputes the eu
lidean division on

natural numbers (we formally de�ne what this means later):

(1) It has one 1-
ell n, standing for the type of natural numbers.
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(2) Apart from the �xed three stru
ture 2-
ells, it has two 
onstru
tor 2-
ells, : ∗ ⇒ n for

zero and : n ⇒ n for the su

essor operation, and two fun
tion 2-
ells, : n ⋆0 n ⇒ n

for the minus fun
tion and : n ⋆0 n ⇒ n for the division fun
tion.

(3) Its 3-
ells are made of eight stru
ture 3-
ells, plus the following �ve 
omputation 3-
ells:

⇛⇛⇛ ⇛ ⇛

Example 1.19. The following program F 
omputes the fusion sort fun
tion on lists of

natural numbers lower or equal than some 
onstant N ∈ N:

(1) Its 1-
ells are n, for natural numbers, and l, for lists of natural numbers.

(2) Its 2-
ells are made of eight stru
ture 2-
ells, plus:
(a) Constru
tor 2-
ells, for the natural numbers 0, . . . , N , the empty list and the list


onstru
tor:

(

n : ∗ ⇒ n

)

0≤n≤N
, : ∗ ⇒ l, : n ⋆0 l ⇒ l.

(b) Fun
tion 2-
ells, respe
tively for the main sort and the two auxiliary split and merge:

: l ⇒ l, : l ⇒ l ∗0 l, : l ∗0 l ⇒ l.

(3) Its 3-
ells are made of 6N + 18 stru
ture 3-
ells, plus N2 + 2N + 8 
omputation 3-
ells:

⇛⇛ ⇛

⇛⇛ ⇛

p > q
p q

p

q

p q

⇛⇛

p

q

⇛

p ≤ q

⇛

Remark 1.20. One may obje
t that sorting lists when the a priori bound N is known


an be performed in a linear number of steps: one reads the list and 
ounts the number of

o

urren
es of ea
h element, then produ
es the sorted list from this information. Neverthe-

less, the presented algorithm (up to the test ≤ on the natural numbers p and q) really mimi
s

the "me
hani
s" of the fusion sort algorithm and, a
tually, we redis
over the 
omplexity

bound as given by Yiannis Mos
hovakis [36℄.

Why don't we internalize the 
omparison of numbers within the polygraphi
 program?

This 
omes from the fa
t that the if-then-else 
onstru
tion impli
itly involves an evaluation

strategy: one �rst 
omputes the test argument then, depending on this result, one 
omputes

exa
tly one of the other two arguments. As de�ned here, polygraphs algebrai
ally des
ribe

the 
omputation steps, but not the evaluation strategy. We let su
h a task for further

resear
h.
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1.4. Semanti
s of polygraphi
 programs. One de�nes an interpretation J·K of the ele-

ments of a polygraphi
 program into sets and maps, then one uses it to de�ne the notion of

fun
tion 
omputed by su
h a program.

De�nition 1.21. Let P be a polygraphi
 program. For a 1-path u, a value of type u is

a 2-path in

〈

PC
2

〉

with sour
e ∗ and target u; their set is denoted by JuK. Given a 2-path
f : u ⇒ v, one denotes by JfK the (partial) map from JuK to JvK de�ned as follows: if t
is a value of type u and if t ⋆1 f has a unique normal form t′ that is a value (of type v),
then JfK (t) is t′; otherwise f is unde�ned on t.

Among the following properties, the one for degenerate 2-paths explains the fa
t that JuK
has two meanings: it is either the set of values of type u or the identity of this set.

Proposition 1.22. Let P be a polygraphi
 program. The following properties hold on 1-
paths:

• The set J∗K is redu
ed to the 0-
ell ∗.
• For every u and v, one has Ju ⋆0 vK = JuK × JvK.
The following properties hold on 2-paths:

• If u is degenerate then it is sent by J·K to the identity of the set JuK.
• For every f and g, one has Jf ⋆0 gK = JfK × JgK.
• If f and g are 
omposable, then Jf ⋆1 gK = JgK ◦ JfK holds.

Finally, for every 3-path F , the equality Js2F K = Jt2F K holds.

De�nition 1.23. Let P be a polygraphi
 program. Let u, v be 1-paths and let f be a

(partial) map from JuK to JvK. One says that P 
omputes f when there exists a 2-
ell

su
h that

q y
= f .

Example 1.24. In a polygraphi
 program P, every 
onstru
tor 2-
ell with arity n

satis�es the equality

q y
(t1, . . . , tn) = (t1 ⋆0 · · · ⋆0 tn) ⋆1 . Sin
e the right member

is always a normal form, one 
an identify values of 
oarity 1 with the 
losed terms of a

term algebra. Moreover, the polygraphi
 program P 
omputes erasers, dupli
ations and

permutations on these terms, sin
e

q y
(t) = ∗,

q y
(t) = (t, t) and

q y
(t, t′) = (t′, t)

hold.

Thus, every polygraphi
 program 
omputes one total map for ea
h of its stru
ture and


onstru
tor 2-
ells. We give su�
ient 
onditions to ensure that this is also the 
ase on

fun
tion 2-
ells.

De�nition 1.25. A polygraphi
 program P is 
omplete if every 2-path of the form t ⋆1

is redu
ible when t is a value and is a fun
tion 2-
ell.

Proposition 1.26. Let P be a 
onvergent and 
omplete polygraphi
 program. Then, for

every stru
ture or fun
tion 2-
ell : u ⇒ v, the map

q y
: JuK → JvK is total.

Proof. We start by re
alling that the stru
ture 3-
ells, alone, are 
onvergent [18, 19℄. Furthermore,

they are orthogonal to the 
omputation 3-
ells and every 2-path of the shape t ⋆1 is

redu
ible when t is a value and is a stru
ture 2-
ell. Hen
e, as a polygraph, P is 
onvergent

and the 2-paths ∗ ⇒ x that are in normal form are exa
tly the values of type x.
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Example 1.27. Let us 
he
k that the polygraphi
 program D 
omputes eu
lidean division.

The set JnK is equipotent to the set N of natural numbers through the bije
tion 0 = and

n + 1 = n ⋆1 . This polygraphi
 program is weakly orthogonal, hen
e lo
ally 
on�uent,

and 
omplete. We will also see later that it terminates. Thus it 
omputes two maps from

Jn ⋆0 nK ≃ N
2
to JnK ≃ N, one for and one for . By indu
tion on the arguments, one

gets: q y
(m,n) = max {0,m − n} and

q y
(m,n) = ⌊m/(n + 1)⌋.

Example 1.28. In the polygraphi
 program F, one has JnK ≃ {0, . . . , N} and JlK ≃
〈0, . . . , N〉, thanks to the bije
tive 
orresponden
es n = n

, [ ] = and x :: l = (x ⋆0 l) ⋆1 .

This polygraphi
 program is weakly orthogonal, hen
e lo
ally 
on�uent, and 
omplete. It

is also terminating, as we shall see later. Thus, it 
omputes one map for ea
h of ,

and . For example, the map

q y
takes a list of natural numbers as input and returns

the 
orresponding ordered list. Figure 1 gives an example of 
omputation generated by this

program, with explanations following.

(

2 1

)

⋆1 3 :

1

2

⇛

2

1

⋆2

1
⋆1

(

2 ⋆0 1 ,
⋆0

)

⋆1 :

1

2

⇛

12

⋆2

(

12

)

⋆1

(

2 ⋆0 2

)

⋆1 :

2 1

⇛

2 1

⋆2

( )

⋆1 3
( 2 , 1 ) :

2 1

⇛ 1

2

⋆2

2

⋆1

(

1 ⋆0 2

)

⋆1 :

2

1 ⇛

2

1 .

Figure 1: Normalizing 3-path in a polygraphi
 program

Let us 
onsider the list [2; 1] of natural numbers and apply the fusion sort fun
tion on it.

The list is 
oded by the following value:

[2; 1] =
(

1 ⋆0

)

⋆1

(

2 ⋆0

)

⋆1 =
1

2 .
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The value

q y(
[2; 1]

)

is, by de�nition, the unique normal form of the 2-path [2; 1] ⋆1 .

Figure 1 presents a normalizing 3-path, obtained by ⋆2-
omposition of smaller 3-paths, where
we have given self-explanatory "names" to the involved 3-
ells, without further explanations.

After 
omputation, one gets the expe
ted

q y(
[2; 1]

)

= [1; 2] as the target of this 3-path.

1.5. Polygraphi
 programs are Turing-
omplete. This 
ompleteness result is not a

surprising one. Indeed, one 
ould argue, for instan
e, that polygraphi
 programs simulate

term rewriting systems, a Turing-
omplete model of 
omputation. Our proof, similar to

the one 
on
erning intera
tion nets [26℄, prepares for the en
oding of Turing ma
hines with


lo
ks, used for Theorem 3.27.

De�nition 1.29. A Turing ma
hine is a family M = (Σ, Q, q0, qf , δ) made of:

• A �nite set Σ, 
alled the alphabet ; one denotes by Σ its extension with a new element,

denoted by ♯ and 
alled the blank 
hara
ter.

• A �nite set Q, whose elements are 
alled states, two distinguished elements q0, the initial

state, and qf , the �nal state.

• A map δ : (Q−{qf})×Σ → Q×Σ×{L,R}, 
alled the transition fun
tion, where {L,R}
is any set with two elements.

A 
on�guration of M is an element (q, a, wl, wr) of the produ
t set Q×Σ×
〈

Σ
〉

×
〈

Σ
〉

: here q
is the 
urrent state of the ma
hine, a is the 
urrently read symbol, wl is the word at the

left-hand side of a and wr is the word at the right-hand side of a. For further 
onvenien
e,
the word wl is written in reverse order, so that its �rst letter is the one that is immediately

at the left of a.
The transition relation of M is the binary relation denoted by →M and de�ned on the

set of 
on�gurations of M as follows, where e denotes the neutral element of 〈Σ〉:

• If δ(q1, a) = (q2, c, L) then

{

(q1, a, e, wr) →M (q2, ♯, e, cwr) ,
(q1, a, bwl, wr) →M (q2, b, wl, cwr) .

• If δ(q1, a) = (q2, c, R) then

{

(q1, a, wl, e) →M (q2, ♯, cwl, e) ,
(q1, a, wl, bwr) →M (q2, b, cwl, wr) .

One denotes by →∗
M

the re�exive and transitive 
losure of →M. Let f : 〈Σ〉 → 〈Σ〉 be a

map. One says that M 
omputes f when, for any w in 〈Σ〉, there exists a 
on�guration of

the shape (qf , a, v, f(w)) su
h that (q0, ♯, e, w) →∗
M

(qf , a, v, f(w)) holds (in that 
ase, this

�nal 
on�guration is unique).

Theorem 1.30. Polygraphi
 programs form a Turing-
omplete model of 
omputation.

Proof. We �x a Turing ma
hine M = (Σ, Q, q0, qf , δ) and a map f 
omputed by M. From

this Turing ma
hine, we build the following polygraphi
 program P(M):

(1) It has one 1-
ell w, standing for the type of words over Σ.
(2) Apart from the three stru
ture 2-
ells, its 2-
ells 
onsist of:

(a) Constru
tor 2-
ells: : ∗ ⇒ w, for the empty word, plus one

a : w ⇒ w for ea
h a in

Σ.
(b) Fun
tion 2-
ells: : w ⇒ w, for the map f , plus one q a : w ⋆0 w ⇒ w for ea
h pair

(q, a) in Q × Σ̄, for the behaviour of the Turing ma
hine.
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(3) Its 3-
ells are the stru
ture ones, plus the following 
omputation 3-
ells � the �rst one

initializes the 
omputation, the four subsequent families simulate the transitions of the

Turing ma
hine and the �nal 
ell starts the 
omputation of the result:

c

c

b c

c

⇛

⇛

⇛

both when δ(q1, a) = (q2, c, L)

both when δ(q1, a) = (q2, c, R)

⇛

b

⇛

⇛

q2

a

♯

q2 ♯b

q0 ♯

a q1 aq1

q1 a q1 a

q2

q2 b

qf

One 
he
ks that JwK ≃ 〈Σ〉 through e = and aw = w ⋆1 a
. Then, to every 
on�guration

(q, a, wl, wr), one asso
iates the 2-path (q, a, wl, wr) =
(

wl ⋆0 wr

)

⋆1 q a
. The four 
ases in

the de�nition of the transition relation of M are in one-to-one 
orresponden
e with the four

middle families of 3-
ells of the polygraph P(M). Hen
e the following equivalen
e holds:

(q, a, wl, wr) →∗
M (q′, a′, w′

l, w
′
r) if and only if (q, a, wl, wr) ⇛ (q′, a′, w′

l, w
′
r).

Finally, let us �x a w in 〈Σ〉. Sin
e M 
omputes f , there exists a unique 
on�guration

(qf , a, v, f(w)), su
h that (q0, ♯, e, w) →∗
M

(qf , a, v, f(w)) holds. As a 
onsequen
e, w ⋆1

has a unique normal form, so that the following equalities hold, yielding

q y
= f :

q y
(w) =

r
q0 ♯

z
(

⋆0 w
)

=
r

qf a

z(
v ⋆0 f(w)

)

= f(w).

2. Polygraphi
 interpretations

Here, we present general results about information that 
an be re
overed from fun
torial

and di�erential interpretations of 3-polygraphs.

2.1. Fun
torial interpretations.

De�nition 2.1. A fun
torial interpretation of a 3-polygraph P is a pair ϕ = (ϕ1, ϕ2)

onsisting of:

(1) a map ϕ1 sending every 1-path u of size n to a non-empty part of (N − {0})n;
(2) a map ϕ2 sending every 2-path f : u ⇒ v to a monotone map from ϕ1(u) to ϕ1(v).

The following equalities, 
alled fun
torial relations, must be satis�ed:

• if u is a degenerate 2-path, then ϕ2(u) is the identity of ϕ1(u);
• if u and v are 0-
omposable 1-paths, then ϕ1(u ⋆0 v) = ϕ1(u) × ϕ1(v) holds;
• if f and g are 0-
omposable 2-paths, then ϕ2(f ⋆0 g) = ϕ2(f) × ϕ2(g) holds;
• if f and g are 1-
omposable 2-paths, then ϕ2(f ⋆1 g) = ϕ2(g) ◦ ϕ2(f) holds.

One simply writes ϕ for both ϕ1 and ϕ2. Intuitively, for every 2-
ell , the map ϕ( ) tells

us how , seen as a 
ir
uit gate, transmits 
urrents downwards. In pra
ti
e, one 
omputes

the value of a 
urrent interpretation on a 2-path by 
omputing it on the 2-
ells it 
ontains
and assembling them in an intuitive way. The following result formalizes this fa
t.
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Lemma 2.2. A fun
torial interpretation of a 3-polygraph P is entirely and uniquely de�ned

by its values on the 1-
ells and 2-
ells of P.

Proof. Using the fun
torial relations, one 
he
ks that a fun
torial interpretation takes the

same values on both sides of the relations of asso
iativity, lo
al units and ex
hange on

2-paths: this property 
omes from the fa
t that set-theoreti
 maps satisfy these same

relations. Then the fun
torial relations give the values of a 
urrent interpretation on 2-paths
of size n + 1 from its values on 2-paths of size k ≤ n.

A dire
t 
onsequen
e of Lemma 2.2 is that, when one wants to introdu
e a fun
torial

interpretation, one only has to give its values on the 1-
ells and on the 2-
ells.

Example 2.3. Let P be a polygraphi
 program with no 
onstru
tor 2-
ell and no fun
tion

2-
ell. Then, given a non-empty part ϕ(ξ) of N−{0} for every 1-
ell ξ, the following values

extend ϕ into a fun
torial interpretation of P:

ϕ
(

ξ,ζ

)

(x, y) = (y, x) and ϕ
(

ξ

)

(x) = (x, x).

Let us note that every fun
torial interpretation ϕ must send the 0-
ell ∗ to some single-ele-

ment part of N − {0}. Hen
e, it must assign ea
h

ξ
to the only map from ϕ(ξ) to ϕ(∗).

Example 2.4. The following values extend the ones of Example 2.3 into a fun
torial inter-

pretation of the polygraphi
 program D of division:

ϕ(n) = N − {0} , ϕ( ) = 1, ϕ( )(x) = x + 1,

ϕ( )(x, y) = ϕ( )(x, y) = x.

Example 2.5. For the polygraphi
 program F of fusion sort, we extend the fun
torial inter-

pretation of Example 2.3 with the following values, where ⌈·⌉ and ⌊·⌋ stand for the rounding

fun
tions, respe
tively by ex
ess and by default:

ϕ(n) = {1} , ϕ(l) = 2N + 1, ϕ( n ) = ϕ( ) = 1, ϕ( )(x, y) = x + y + 1,

ϕ( )(x) = x, ϕ( )(x, y) = x+ y− 1, ϕ( )(2x + 1) =
(

2 ·
⌈x

2

⌉

+ 1, 2 ·
⌊x

2

⌋

+ 1
)

.

Example 2.6. Let P be a polygraphi
 program. One denotes by ν the fun
torial interpreta-

tion on the subpolygraph

〈

PC
2

〉

de�ned, for every 1-
ell ξ, by ν(ξ) = N − {0} and, for every


onstru
tor 2-
ell with arity n, by:

ν( )(x1, . . . , xn) = x1 + · · · + xn + 1.

One 
he
ks that ν(t) = ||t|| holds for every value t with 
oarity 1. Thus, given values t1,
. . . , tn with 
oarity 1, the following equality holds in N

n
:

ν(t1 ⋆0 · · · ⋆0 tn) =
(

||t1|| , . . . , ||tn||
)

.

We use the fun
torial interpretation ν to des
ribe the size of arguments of a fun
tion.

Lemma 2.7. Let ϕ be a fun
torial interpretation of a 3-polygraph P. Let f , g, h and k be

2-paths su
h that ϕ(f) ≤ ϕ(g) and ϕ(h) ≤ ϕ(k) hold. Then, for every i ∈ {0, 1} su
h that

f ⋆i h is de�ned, the inequality ϕ(f ⋆i h) ≤ ϕ(g ⋆i k) is satis�ed.
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Proof. One has:

ϕ(f ⋆0 h) = ϕ(f) × ϕ(h) ≤ ϕ(g) × ϕ(k) = ϕ(g ⋆0 k).

Indeed, the two equalities are given by the fun
torial relations that ϕ satis�es, while the

middle inequality 
omes from the hypotheses and the fa
t that one uses a produ
t order.

Then one has:

ϕ(f ⋆1 h) = ϕ(h) ◦ ϕ(f) ≤ ϕ(h) ◦ ϕ(g) ≤ ϕ(k) ◦ ϕ(g) = ϕ(g ⋆1 k).

The equalities 
ome from the fun
torial relations; the �rst inequality uses the hypothesis

ϕ(f) ≤ ϕ(g) and the fa
t that ϕ(h) is monotone; the se
ond inequality uses ϕ(h) ≤ ϕ(k)
and the fa
t that maps are 
ompared pointwise.

2.2. Compatible fun
torial interpretations.

De�nition 2.8. Let ϕ be a fun
torial interpretation of a 3-polygraph P. For every 3-
ell α
of P, one says that ϕ is 
ompatible with α when the inequality ϕ(s2α) ≥ ϕ(t2α) holds. One
says that ϕ is 
ompatible when it is 
ompatible with every 3-
ell of P.

Example 2.9. The fun
torial interpretations given in Examples 2.4 and 2.5 are 
ompatible

with all the 3-
ells of the 
orresponding 3-polygraph. We will see later that the values

they take on stru
ture 2-
ells ensure that they are 
ompatible with all the stru
ture 3-
ells.
Con
erning the 
omputation 3-
ells, let us 
onsider, for example, the third one asso
iated

to the sort fun
tion 2-
ell . For the sour
e, one gets:

ϕ

( )

(1, 1, 2x + 1) = ϕ

( )

(

1, ϕ( )(1, 2x + 1)
)

= ϕ( ) ◦ ϕ( )(1, 2x + 3)

= ϕ( )(2x + 5)

= 2x + 5.

Now, for the target, going qui
ker:

ϕ












(1, 1, 2x + 1) = ϕ( )

(

2 · ⌈x/2⌉ + 3, 2 · ⌊x/2⌋ + 3
)

= 2x + 5.

Proposition 2.10. Let ϕ be a 
ompatible fun
torial interpretation of a polygraphi
 program.

Then, for every 3-path F , the inequality ϕ(s2F ) ≥ ϕ(t2F ) holds.

Proof. We pro
eed by indu
tion on the size of 3-paths. If F is a degenerate 3-path, then
s2F = t2F holds and, thus, so does ϕ(s2F ) = ϕ(t2F ).

Let us assume that F is an elementary 3-path. Then one de
omposes s2F and t2F ,

using a 3-
ell α, 2-paths f , g and 1-paths u, v, yielding:

ϕ(s2F ) = ϕ
(

f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g
)

and ϕ(t2F ) = ϕ
(

f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g
)

.

The fun
torial interpretation ϕ is 
ompatible with α, hen
e ϕ(s2α) ≥ ϕ(t2α) holds. Then

one applies Lemma 2.7 four times to get ϕ(s2F ) ≥ ϕ(t2F ).
Now, let us �x a non-zero natural number N and assume that the property holds for

every 3-path of size N . Let us 
onsider a q3-path F of size N + 1. Then one de
omposes F
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into G ⋆2 H where G is a 3-path of size N and H is an elementary 3-path. One 
on
ludes

using the indu
tion hypothesis on G and the previous 
ase on H.

2.3. Di�erential interpretations. In this work, we use di�erential interpretations as

an abstra
tion of "heats", but also, later, to de�ne the property of 
onservativeness on

"
urrents". For this reason, we introdu
e the following abstra
tion:

De�nition 2.11. A (stri
tly) ordered 
ommutative monoid is an ordered set (M,�) equip-
ped with a 
ommutative monoid stru
ture (+, 0) su
h that + is (stri
tly) monotone in both

arguments.

Example 2.12. Con
retely, in what follows, we 
onsider N equipped with its natural order

and either the addition (stri
t 
ase) or the maximum map (non-stri
t 
ase), both with 0 as

neutral element.

De�nition 2.13. Let M be an ordered 
ommutative monoid, let P be a 3-polygraph and

let ϕ be a fun
torial interpretation of P. A di�erential interpretation of P over ϕ into M is

a map ∂ that sends ea
h 2-path of P with 1-sour
e u to a monotone map ∂ from ϕ(u)
to M , su
h that the following 
onditions, 
alled di�erential relations, are satis�ed:

• If u is degenerate then ∂u = 0.
• If f and g are 0-
omposable then ∂(f ⋆0 g)(x, y) = ∂f(x) + ∂g(y) holds.
• If f and g are 1-
omposable then ∂(f ⋆1 g) = ∂f + ∂g ◦ ϕ(f) holds.

Intuitively, given a 2-
ell , the map ∂ tells us how mu
h heat it produ
es, when seen

as a 
ir
uit gate, depending on the intensities of in
oming 
urrents. In order to 
ompute

the heat produ
ed by a 2-path, one determines the 
urrents that its 2-
ells propagate and,
from those values, the heat ea
h one produ
es; then one sums up all these heats.

Lemma 2.14. A di�erential interpretation of a polygraph P is entirely and uniquely deter-

mined by its values on the 2-
ells of P.

Proof. First, we prove that the di�erential relations imply that a di�erential interpretation

takes the same values on ea
h side of the relations of asso
iativity, lo
al units and ex
hange.

For example, let us 
he
k this for the ex
hange relation. For that, let us �x 2-paths f ,
g, h and k su
h that both t1(f) = s1(h) and t1(g) = s1(k) are satis�ed. We 
onsider x
in ϕ(s1(f)) and y in ϕ(s1(g)) and, using the fun
torial relations of ϕ and the di�erential

relations of ∂, we 
ompute ea
h one of the following equalities in M :

∂
(

(f ⋆0 g) ⋆1 (h ⋆0 k)
)

(x, y) =
(

∂f(x) + ∂g(y)
)

+
(

∂h ◦ ϕ(f)(x) + ∂k ◦ ϕ(g)(y)
)

,

∂
(

(f ⋆1 h) ⋆0 (g ⋆1 k)
)

(x, y) =
(

∂f(x) + ∂h ◦ ϕ(f)(x)
)

+
(

∂g(y) + ∂k ◦ ϕ(g)(y)
)

.

One 
on
ludes using the asso
iativity and 
ommutativity of + in M . After that, one 
he
ks

that the di�erential relations determine the values of a di�erential interpretation on 2-paths
of size n + 1 from its values on 2-paths of size k ≤ n.
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Lemma 2.14 allows one to de�ne a di�erential interpretation by giving its values on 2-
ells.

Example 2.15. The trivial fun
torial interpretation of a 3-polygraph P sends every 1-
ell
to some �xed one-element part ∗ of N−{0} and every 2-path from u to v to the only possible

map from ϕ(u) ≃ ∗ to ϕ(v) ≃ ∗. Now, let us �x a family X of 2-
ells in P. One 
an 
he
k

that the map ||·||X is the di�erential interpretation of P over the trivial interpretation and

into (N,+, 0), sending a 2-
ell to 1 if it is in X and 0 otherwise.

Example 2.16. We 
onsider the di�erential interpretation of the division polygraphi


program D, over the fun
torial interpretation given in Example 2.4, into (N,+, 0), sending
every 
onstru
tor and stru
ture 2-
ell to zero and:

∂ (x, y) = y + 1 and ∂ (x, y) = xy + x,

Example 2.17. For the polygraphi
 program F of fusion sort, we 
onsider the di�erential

interpretation, over the fun
torial interpretation of Example 2.5, into (N,+, 0), sending every

onstru
tor and stru
ture 2-
ells to zero and:

∂ (2x+1) = 2x2+1, ∂ (2x+1) = ⌊x/2⌋+1, ∂ (2x+1, 2y+1) =

{

1 if xy = 0,

x + y otherwise.

Lemma 2.18. Let P be a 3-polygraph, with a di�erential interpretation ∂, over a fun
torial

interpretation ϕ, into an ordered 
ommutative monoid (M,+, 0,�). Let f , g, h, k be 2-
paths su
h that the inequalities ϕ(f) ≤ ϕ(g), ∂f � ∂g and ∂h � ∂k hold. Then, for every

i ∈ {0, 1} su
h that f ⋆i h is de�ned, one has ∂(f ⋆i h) � ∂(g ⋆i k). Moreover, when M is

stri
tly ordered and either ∂f ≺ ∂g or ∂h ≺ ∂k hold, one has ∂(f ⋆i h) ≺ ∂(g ⋆i k).

Proof. One 
omputes, for x ∈ ϕ(s1f) and y ∈ ϕ(s1h):

∂(f ⋆0 h)(x, y) = ∂f(x) + ∂h(y) � ∂g(x) + ∂k(y) = ∂(g ⋆0 k)(x, y).

Indeed, the two equalities are given by the di�erential relations that ∂ satis�es; the inequality

uses the hypotheses, the fa
t that maps are 
ompared pointwise and the monotony of +.

Moreover, if + is stri
tly monotone and if one of ∂f ≺ ∂g or ∂h ≺ ∂k holds, then the middle

inequality is stri
t. Now, one 
he
ks:

∂(f ⋆1 h) = ∂f + ∂h ◦ ϕ(f) � ∂g + ∂k ◦ ϕ(g) = ∂(g ⋆1 k).

The equalities 
ome from the di�erential relations; the inequality 
omes from the hypotheses

∂f � ∂g, ∂h � ∂k and ϕ(f) ≤ ϕ(g), plus the monotony of ∂h and + and the fa
t that maps

are 
ompared pointwise. When + is stri
tly monotone and when either ∂f ≺ ∂g or ∂h ≺ ∂k
hold, the middle inequality is stri
t.

2.4. Compatible di�erential interpretations.

De�nition 2.19. Let P be a 3-polygraph equipped with a fun
torial interpretation ϕ and

a di�erential interpretation ∂ of P over ϕ and into an ordered 
ommutative monoid M . For

every 3-
ell α, one says that ∂ is 
ompatible with α when ∂(s2α) � ∂(t2α) holds. It is said
to be stri
tly 
ompatible with α when ∂(s2α) ≻ ∂(t2α) holds. One says that ∂ is (stri
tly)


ompatible when it is with every 3-
ell of P.
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Example 2.20. The di�erential interpretations given in Examples 2.16 and 2.17 are 
om-

patible with every stru
ture 3-
ell and stri
tly 
ompatible with every 
omputation 3-
ell of
their 3-polygraph.

Indeed, in the sour
e and the target of every stru
ture 3-
ell α, only 
onstru
tor and

stru
ture 2-
ells appear. The 
onsidered di�erential interpretations sends these to zero,

yielding ∂(s2α) = ∂(t2α) = 0.
For an example of 
ompatibility with a 
omputation 3-
ell, we 
onsider the third 3-
ell

of the fusion sort fun
tion 2-
ell . On one hand, one gets:

∂

( )

(1, 1, 2x + 1) = ∂ (2x + 5) = 2(x + 2)2 + 1 = 2x2 + 8x + 9.

And, on the other hand, one 
omputes:

∂












(1, 1, 2x + 1) =







∂
(

2 ⌈x/2⌉ + 3
)

+ ∂
(

2 ⌊x/2⌋ + 3
)

+ ∂ (2x + 1) + ∂
(

2 ⌈x/2⌉ + 3, 2 ⌊x/2⌋ + 3
)

= 2 ·
(

⌈x/2⌉ + 1
)2

+ 2 ·
(

⌊x/2⌋ + 1
)2

+ x + ⌊x/2⌋ + 4

= 2 ⌈x/2⌉2 + 2 ⌊x/2⌋2 + x + 4 ⌈x/2⌉ + 5 ⌊x/2⌋ + 8

≤ 2x2 + 6x + 8.

Proposition 2.21. Let ∂ be a 
ompatible di�erential interpretation of a polygraphi
 pro-

gram P, over a 
ompatible fun
torial interpretation ϕ and into an ordered 
ommutative

monoid M . Then, for every 3-path F , the inequality ∂(s2F ) � ∂(t2F ) holds. When M is

stri
tly ordered, ∂ is stri
tly 
ompatible and F is non-degenerate, then ∂(s2F ) ≻ ∂(t2F ) also
holds. Moreover, if M is N equipped with addition, then |||F ||| ≤ ∂(s2F ) − ∂(t2F ) holds.

Proof. We pro
eed by indu
tion on the size of 3-paths. If F is a degenerate 3-path, then
one has s2F = t2F and, thus, ∂(s2F ) = ∂(t2F ) also.

Let us assume that F is an elementary 3-path. We de
ompose F using a 3-
ell α,
2-paths f , g and 1-paths u, v, yielding:

∂(s2F ) = ∂
(

f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g
)

and ∂(t2F ) = ∂
(

f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g
)

.

By assumption, ϕ and ∂ are 
ompatible with α, hen
e ϕ(s2α) ≥ ϕ(t2α) and ∂(s2α) � ∂(t2α)
hold. Then one applies Lemmas 2.7 and 2.18 to get ∂(s2F ) � ∂(t2F ) and, when ∂ is stri
tly


ompatible with the 3-
ell α, ∂(s2F ) ≻ ∂(t2F ). If M is N, this means:

∂(s2F ) − ∂(t2F ) ≥ 1 = |||F ||| .

Finally, let us �x a non-zero natural number N and assume that the property holds for every

3-path of size N . Let us 
onsider a 3-path F of size N + 1. Then one de
omposes F into

G ⋆2 H where G is a 3-path of size N and H is an elementary 3-path. Then we apply the

indu
tion hypothesis to G and the previous 
ase to H to 
on
lude.
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2.5. Conservative fun
torial interpretations. Intuitively, the following de�nition gives

a bound on all the intensities of 
urrents that one 
an �nd in the vi
inity of any 2-
ell inside
a 2-path.

De�nition 2.22. Let P be a 3-polygraph equipped with a fun
torial interpretation ϕ. One
denotes by ∂ϕ the di�erential interpretation of P, over ϕ and into (N,max, 0), sending

every 2-
ell with valen
e (m,n), i.e., with arity m and 
oarity n, to the following map

from ϕ(s1 ) to N:

∂ϕ = max
{

µm, µn ◦ ϕ( )
}

,

i.e., ∂ϕ (x1, . . . , xm) = max {x1, . . . , xm, y1, . . . , yn}, if (y1, . . . , yn) = ϕ( )(x1, . . . , xm).
For every 3-
ell α of P, one says that ϕ is 
onservative on α when ∂ϕ is 
ompatible with α.
One says that ϕ is 
onservative when it is 
onservative on every 3-
ell of P, i.e., when ∂ϕ is


ompatible.

Example 2.23. The fun
torial interpretations of Examples 2.4 and 2.5 are 
onservative.

Indeed, we shall see later that their values on stru
ture and 
onstru
tor 2-
ells ensure that
they are 
onservative on stru
ture 3-paths. Let us 
he
k 
onservativeness on, for example,

the last 
omputation 3-
ell of the sort fun
tion 2-
ell :

∂ϕ

( )

(1, 1, 2x + 1) = max
{

1, 2x + 1, 2x + 2, 2x + 3
}

= 2x + 3

= max
{

1, 2x + 1, 2 · ⌊x/2⌋ + 1, 2 · ⌈x/2⌉ + 1,

2 · ⌊x/2⌋ + 2, 2 · ⌈x/2⌉ + 2, 2x + 3
}

= ∂ϕ












(1, 1, 2x + 1).

When a fun
torial interpretation is both 
ompatible and 
onservative, the intensities of


urrents inside 2-paths do not in
rease during 
omputations.

Proposition 2.24. Let ϕ be a 
ompatible and 
onservative fun
torial interpretation of a

polygraphi
 program. Then, for every 3-path F , the inequality ∂ϕ(s2F ) ≥ ∂ϕ(t2F ) holds.

Proof. By de�nition of 
onservativeness and using Proposition 2.21 on ∂ϕ.

2.6. Polygraphi
 interpretations.

De�nition 2.25. A polygraphi
 interpretation of a 3-polygraph P is a pair (ϕ, ∂) made of a

fun
torial interpretation ϕ of P, together with a di�erential interpretation ∂ of P over ϕ and

into (N,+, 0). In that 
ase, ϕ and ∂ respe
tively are the fun
torial part and the di�erential

part of (ϕ, ∂).
Let us �x a 3-
ell α. A polygraphi
 interpretation (ϕ, ∂) is 
ompatible (with α) when

both ϕ and ∂ are. It is stri
tly 
ompatible (with α) when ϕ is 
ompatible with α and ∂ is

stri
tly 
ompatible (with α). It is 
onservative (on α) when ϕ is.
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Example 2.26. The fun
torial and di�erential interpretations we have built on the poly-

graphi
 programs of division and of fusion sort are two examples of polygraphi
 interpreta-

tions that are 
onservative, 
ompatible with every stru
ture 3-
ell and stri
tly 
ompatible

with every 
omputation 3-
ell.
Let us 
onsider the trivial fun
torial interpretation and the di�erential interpretation

||·||X over it, for some family X of 2-
ells. They form a polygraphi
 interpretation that is


onservative but that has no general reason to be 
ompatible with any 3-
ell.

We re
all the following theorem:

Theorem 2.27 ([18℄). If a 3-polygraph has a polygraphi
 interpretation whi
h is stri
tly


ompatible with all of its 3-
ells, then it terminates.

Proof. By appli
ation of Proposition 2.21, one knows that ∂(s2F ) > ∂(t2F ) holds for every
elementary 3-
ell F . Furthermore, these are maps with values into N. Sin
e there is no

in�nite stri
tly de
reasing sequen
e of su
h maps for the pointwise order, one 
on
ludes

that P must terminate.

In what follows, we use Theorem 2.27 in several steps, thanks to the following result:

Proposition 2.28. Let P be a 3-polygraph and let X be a set of 3-
ells of P. Let us

assume that there exists a 
ompatible polygraphi
 interpretation on P whose restri
tion to X
is stri
tly 
ompatible. Then P terminates if and only if P − X does.

Proof. If P terminates, its redu
tion graph has no in�nite path. Sin
e it 
ontains the

redu
tion graph of the 3-polygraph P−X, the latter does not have any in�nite path either.

Hen
e P − X terminates.

Conversely, let us assume that P does not terminate. Then there exists an in�nite

sequen
e (Fn)n∈N of elementary 3-paths in P su
h that, for every n ∈ N, Fn and Fn+1 are


omposable. The polygraphi
 interpretation is 
ompatible, hen
e one 
an apply Proposition

2.21 to get the following in�nite sequen
e of inequalities in N:

∂(s2F0) ≥ ∂(t2F0) = ∂(s2F1) ≥ (· · · ) = ∂(s2Fn) ≥ ∂(t2Fn) = ∂(s2Fn+1) ≥ (· · · )

Furthermore, for every n ∈ N su
h that Fn ∈ 〈X〉, one has a stri
t inequality ∂(s2Fn) >
∂(t2Fn), sin
e the polygraphi
 interpretation is stri
tly 
ompatible with every 3-
ell of X.

Hen
e, there are only �nitely many n in N su
h that Fn is in 〈X〉: otherwise, one 
ould

extra
t, from (∂(s2Fn))n∈N, an in�nite, stri
tly de
reasing sequen
e of maps with values

in N. Thus, there exists some n0 ∈ N su
h that (Fn)n≥n0
is an in�nite path in the redu
tion

graph of P − X: this means that P − X does not terminate.

Example 2.29. Let us 
onsider the polygraphi
 programs for division and fusion sort, given

in Examples 1.18 and 1.19. We have seen that ea
h one admits a 
ompatible polygraphi


interpretation that is stri
tly 
ompatible with their 
omputation 3-
ells. Furthermore,

as proved later, the stru
ture 3-
ells, alone, terminate. Thus Proposition 2.28 gives the

termination of both polygraphi
 programs.

A
tually, in what 
omes next, we produ
e a standard di�erential interpretation that is

stri
tly 
ompatible with stru
ture 3-
ells. However, in general, it is not 
ompatible, even

in a non-stri
t way, with 
omputation 3-
ells: informally, ea
h appli
ation of su
h a 
ell


an in
rease the "stru
ture heat". The purpose of the rest of this se
tion is to bound this

potential augmentation.
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Lemma 2.30. Let P be a 3-polygraph equipped with a polygraphi
 interpretation (ϕ, ∂).
Then, for every 2-path f in P and every x in ϕ(s1f), the following inequality holds in N:

∂f(x) ≤
∑

∈P2

||f || · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

.

Remark 2.31. Let us note that we apply ∂ to arguments ∂ϕf(x) that are not ne
essarily

in its domain. In that 
ase, one 
onsiders an extension of ∂ sending x to ∂ (y), where y

is the maximum element of the set ϕ(s1 ) that is below x.

Proof. We pro
eed by indu
tion on the size of the 2-path f . Let us assume that f is

degenerate. Then one has ||f || = 0 for every 2-
ell and, sin
e ∂ is a di�erential

interpretation, ∂f = 0. Hen
e both sides of the sought inequality are equal to 0.
Now, let us 
onsider an elementary 2-path f . One de
omposes f into u ⋆0 ⋆0 v,

where is a 2-
ell and u and v are 1-paths. Then ||f || is 1 when is and 0 otherwise.

Let us �x x, y and z respe
tively in ϕ(u), ϕ(s1 ) and ϕ(v). Using the di�erential relations

of ∂ and ∂ϕ, one gets ∂f(x, y, z) = ∂ (y) and ∂ϕf(x, y, z) = ∂ϕ (y). If has valen
e

(m,n) and y = (y1, . . . , ym), one uses the de�nition of ∂ϕ to get, for every i ∈ {1, . . . ,m}:

∂ϕ (y) = max
{

µm(y), µn ◦ ϕ( )(y)
}

≥ yi.

Then one 
omputes:

∑

∈P2

||f || · ∂
(

∂ϕf(x, y, z), . . . , ∂ϕf(x, y, z)
)

= ∂
(

∂ϕ (y), . . . , ∂ϕ (y)
)

≥ ∂ (y1, . . . , ym)

= ∂f(x, y, z).

Finally, let us �x a non-zero natural number N and assume that the property holds for every

2-path of size at most N . We 
onsider a 2-path f of size N +1: there exists a de
omposition

f = g⋆1 h where g and h are 2-paths of size at most N . Then, using the di�erential relations

of ||·|| , for any 2-
ell , and of ∂ϕ, one gets:

||f || = ||g|| + ||h|| and ∂ϕ(f) = max { ∂ϕg, ∂ϕh ◦ ϕ(g) } .

We �x a x in ϕ(s1f) and we 
ompute:

∂f(x) = ∂(g ⋆1 h)(x)

= ∂g(x) + ∂h ◦ ϕ(g)(x)

≤
∑

∈P2

||g|| · ∂
(

∂ϕg(x), . . . , ∂ϕg(x)
)

+
∑

∈P2

||h|| · ∂
(

∂ϕh ◦ ϕ(g)(x), . . . , ∂ϕh ◦ ϕ(g)(x)
)

≤
∑

∈P2

||g|| · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

+
∑

∈P2

||h|| · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)
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We fa
torize the right-hand side to 
on
lude the proof:

∂f(x) ≤
∑

∈P2

(

||g|| + ||h||
)

· ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

=
∑

∈P2

||f || · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

.

Proposition 2.32. Let P be a 3-polygraph, let α be a 3-
ell of P and let F be an elementary

3-path in 〈α〉. One assumes that P is equipped with a polygraphi
 interpretation (ϕ, ∂) su
h

that ϕ is 
ompatible with and 
onservative on α. Then, for every x ∈ ϕ(s1F ), the following

inequality holds in Z:

∂(t2F )(x) − ∂(s2F )(x) ≤
∑

∈P2

||t2(α)|| · ∂
(

∂ϕ(s2F )(x), . . . , ∂ϕ(s2F )(x)
)

.

Proof. Sin
e F is a 3-path of size 1 in 〈α〉, one 
an de
ompose s2F and t2F as follows:

g

s2F = u vs2α

f

and t2F = u vt2α

f

g

.

Let us denote by p, q and m the respe
tive sizes of u, v and s1F . The map ϕ(f) takes

its values in a part of N
p+m+q

: we de
ompose it into three maps denoted by ϕ1(f), ϕ2(f)
and ϕ3(f), with the same domain and respe
tively taking their values in parts of N

p
, N

m

and N
q
. Let us �x a x ∈ ϕ(s1F ). The fun
torial and di�erential relations give:

∂(s2F )(x) = ∂f(x) + ∂(s2α) ◦ ϕ2(f)(x) + ∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

.

With the same arguments, one gets the same de
omposition for ∂(t2F ), with s2α repla
ed

by t2α. Thus, the following holds in Z:

∂(t2F )(x) − ∂(s2F )(x) = ∂(t2α) ◦ ϕ2(f)(x) − ∂(s2α) ◦ ϕ2(f)(x)

+ ∂g
(

ϕ1(f)(x), ϕ(t2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

− ∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

.

Let us prove that ∂(t2F )(x)−∂(s2F )(x) ≤ ∂(t2α)◦ϕ2(f)(x) holds. First, one has ∂(s2α) ≥ 0.
Moreover, ϕ is 
ompatible with α, whi
h means that ϕ(s2α) ≥ ϕ(t2α) holds; sin
e the

map ∂g is monotone, the following holds in N:

∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ϕ2(f)(x), ϕ3(f)(x)
)

≥ ∂g
(

ϕ1(f)(x), ϕ(t2α) ◦ϕ2(f)(x), ϕ3(f)(x)
)

.

It remains to bound ∂(t2α) ◦ ϕ2(f)(x). One applies Lemma 2.30 to t2(α) to get:

∂(t2α) ◦ ϕ2(f)(x) ≤
∑

∈P2

||t2(α)|| · ∂
(

∂ϕ(t2α) ◦ ϕ2(f)(x), . . . , ∂ϕ(t2α) ◦ ϕ2(f)(x)
)

.

By assumption, ϕ is 
onservative on α, thus ∂ϕt2(α) ◦ϕ2(f)(x) ≤ ∂ϕs2(α) ◦ϕ2(f)(x) holds.
Moreover, using the di�erential properties satis�ed by ∂ϕ, one gets ∂ϕs2(α) ◦ ϕ2(f)(x) ≤

∂ϕ(s2F ). One 
on
ludes by invoking the monotony of ∂ .
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3. Complexity of polygraphi
 programs

In this se
tion, we spe
ialize polygraphi
 interpretations to polygraphi
 programs to get

information on their 
omplexity. In parti
ular, we introdu
e additive polygraphi
 interpreta-

tions and use them as an estimation of the size of values. This way, we give bounds on the

size of 
omputations, with respe
t to the size of the arguments. We 
on
lude this work

with a 
hara
terisation of a 
lass of polygraphi
 programs that 
ompute exa
tly the fptime

fun
tions.

3.1. Additive fun
torial interpretations and the size of values.

De�nition 3.1. Let P be a polygraphi
 program. One says that a fun
torial interpretation ϕ
of P is additive when, for every 
onstru
tor 2-
ell of arity n, there exists a non-zero natural

number c su
h that, for every (x1, . . . , xn) in ϕ(s1 ), the following equality holds in N:

ϕ( )(x1, . . . , xn) = x1 + · · · + xn + c .

In that 
ase, one denotes by γ the greatest of these numbers, i.e., :

γ = max
{

c , ∈ P
C
2

}

.

A polygraphi
 interpretation is additive when its fun
torial part is.

Example 3.2. The fun
torial interpretations we have built for the polygraphi
 programs D

and F are additive. In both 
ases, γ is 1.

Lemma 3.3. Let ϕ be an additive fun
torial interpretation of a polygraphi
 program P and

let t be a value with 
oarity 1. Then the following equality holds in N:

ϕ(t) =
∑

∈PC
2

||t|| · c .

Proof. Let us prove this result by indu
tion on the size of the 2-path t. There is no degenerate
value with 
oarity 1. If t is an elementary value with 
oarity 1, then t is a 
onstru
tor 2-
ell

with arity 0. Sin
e ϕ is additive, one has ϕ( ) = c . Moreover, ||t|| is 1 when =
holds and 0 otherwise, yielding the equality one seeks.

Now, let us �x a non-zero natural number N and assume that the result holds for every

value with 
oarity 1 and size at most N . Let us �x a value t with 
oarity 1 and size N + 1.
Then t admits a de
omposition t =

(

t1 ⋆0 · · · ⋆0 tn
)

⋆1 , where is a 
onstru
tor 2-
ell
with arity n and ea
h ti, i ∈ {1, . . . , n}, is a value with 
oarity 1 and size at most N . As a


onsequen
e, for every 
onstru
tor 2-
ell , one has:

||t|| =

{

||t1|| + · · · + ||tn|| + 1 if = ,

||t1|| + · · · + ||tn|| otherwise.
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Finally, one 
omputes:

ϕ(t) = ϕ( ) ◦
(

ϕ(t1) × · · · × ϕ(tn)
)

from the fun
torial relations of ϕ,

= ϕ(t1) + · · · + ϕ(tn) + c sin
e ϕ is additive,

=
∑

∈PC
2

(

||t1|| + · · · + ||tn||
)

· c + c by indu
tion hypothesis

=
∑

∈PC
2

||t|| · c from previous remark.

Proposition 3.4. Let ϕ be an additive fun
torial interpretation of a polygraphi
 program P.

Then, for every value t with 
oarity 1, the inequalities ||t|| ≤ ϕ(t) ≤ γ ||t|| hold in N. As

a 
onsequen
e, for every value t, one has ν(t) ≤ ϕ(t) ≤ γν(t), where ν is the fun
torial

interpretation introdu
ed in Example 2.6.

Proof. Let us assume that t is a value with 
oarity 1. From Lemma 3.3, one has:

ϕ(t) =
∑

∈PC
2

||t|| · c .

By additivity of ϕ and by de�nition of γ, one has 1 ≤ c ≤ γ for every 
onstru
tor 2-
ell .

One 
on
ludes by using the following equality, that holds sin
e t is in
〈

PC
2

〉

:

||t|| =
∑

∈PC
2

||t|| .

When t1, . . . , tn are values with 
oarity 1 and when t = t1 ⋆0 · · · ⋆0 tn, one 
on
ludes thanks
to the equalities ϕ(t) =

(

ϕ(t1), . . . , ϕ(tn)
)

and ν(t) =
(

||t1|| , . . . , ||tn||
)

.

Lemma 3.5. Let ϕ be an additive fun
torial interpretation of a polygraphi
 program P. For

every value t with 
oarity 1, the equality ∂ϕt = ϕ(t) holds. As a 
onsequen
e, for every

value t with 
oarity n, one has ∂ϕt = µn ◦ ϕ(t).

Proof. Let us pro
eed by indu
tion on the size of t. If is a 
onstru
tor 2-
ell with arity 0,

then the equality holds by de�nition of ∂ϕ .

Now, let us �x a non-zero natural number N and assume that the result holds for every

value with 
oarity 1 and size at most N . Let us 
onsider a value t with 
oarity 1 and size

N + 1. One de
omposes t into t = (t1 ⋆0 · · · ⋆0 tn) ⋆1 , with a 
onstru
tor 2-
ell and
where ti is a value with 
oarity 1 and size at most N , for every i ∈ {1, . . . , n}. Using the

di�erential relations of ∂ϕ, one gets:

∂ϕt = max
{

∂ϕ(t1), . . . , ∂ϕ(tn), ∂ϕ

(

ϕ(t1), . . . , ϕ(tn)
) }

.

The de�nition of ∂ϕ gives:

∂ϕ

(

ϕ(t1), . . . , ϕ(tn)
)

= max
{

ϕ(t1), . . . , ϕ(tn), ϕ( )
(

ϕ(t1), . . . , ϕ(tn)
) }

.

Sin
e ϕ is additive, ϕ( )
(

ϕ(t1), . . . , ϕ(tn)
)

is greater than every ϕ(ti), whi
h is ∂ϕ(ti)
by indu
tion hypothesis applied to ti. Thus one gets the following equality and uses the

fun
torial relations of ϕ to 
on
lude:

∂ϕt = ϕ( )
(

ϕ(t1), . . . , ϕ(tn)
)

.
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Finally, let us 
onsider a value t with 
oarity n. One denotes by (t1, . . . , tn) the family of

values with 
oarity 1 su
h that t = t1 ⋆0 · · · ⋆0 tn holds. One invokes the di�erential relations

of ∂ϕ to get the equality ∂ϕt = max
{

∂ϕ(t1), . . . , ∂ϕ(tn)
}

. One uses the indu
tion hypothesis

on ea
h ti and 
on
ludes, thanks to the fun
torial relations satis�ed by ϕ.

Proposition 3.6. Let ϕ be an additive fun
torial interpretation on a polygraphi
 program P.

For every fun
tion 2-
ell and every value t of type s1( ), one has ∂ϕ(t ⋆1 ) = ∂ϕ ◦
ϕ(t).

Proof. Let us assume that has valen
e (m,n). One uses the di�erential relations of ∂ϕ

to produ
e:

∂ϕ(t ⋆1 ) = max
{

∂ϕt, ∂ϕ ◦ ϕ(t)
}

.

But, by de�nition of ∂ϕ, one has ∂ϕ ◦ϕ(t) ≥ µm ◦ϕ(t). There remains to use Lemma 3.5

on t to get ∂ϕt = µn ◦ ϕ(t).

Notation 3.7. Let be a fun
tion 2-
ell with arity m in a polygraphi
 program P,

equipped with an additive fun
torial interpretation ϕ. Thereafter, we denote by M the

map from N
m
to N de�ned by:

M (x1, . . . , xm) = ∂ϕ

(

γx1, . . . , γxm

)

.

The next result uses the map M and the size of the initial arguments to bound the size

of intermediate values produ
ed during 
omputations, hen
e of the arguments of potential

re
ursive 
alls.

Proposition 3.8. Let P be a polygraphi
 program, equipped with an additive, 
ompatible

and 
onservative fun
torial interpretation ϕ. Let be a fun
tion 2-
ell and let t be a value

of type s1 . Then, for every 3-path F with sour
e t ⋆1 , the following inequality holds

in N:

∂ϕ(t2F ) ≤ M ◦ ν(t).

Proof. The fun
torial interpretation ϕ is 
ompatible and 
onservative: by Proposition 2.24,

we know that ∂ϕ(t2F ) ≤ ∂ϕ(t ⋆1 ) holds. Sin
e ϕ is additive, one may use Proposition 3.6

to produ
e the equality ∂ϕ(t ⋆1 ) = ∂ϕ ◦ ϕ(t). Furthermore, Proposition 3.4 gives

ϕ(t) ≤ γν(t): one argues that ∂ϕ is monotone to 
on
lude.

Example 3.9. Applied to Example 1.19, Proposition 3.8 tells us that, given a list t, any
intermediate value produ
ed by the 
omputation of the sorted list (t) has its size bounded
by M (||t||) = ||t||. This means that re
ursive 
alls made during this 
omputation are

applied to arguments of size at most ||t||.

3.2. Cartesian polygraphi
 interpretations and the size of stru
ture 
omputa-

tions. Here we bound the number of stru
ture 3-
ells that 
an appear in a 
omputation.

For that, we 
onsider polygraphi
 interpretations that take spe
ial values on stru
ture 2-
ells.

De�nition 3.10. Let P be a polygraphi
 program. A fun
torial interpretation ϕ of P is

said to be 
artesian when the following 
onditions hold, for every 1-
ells ξ and ζ:

ϕ
(

ξ

)

(x) = (x, x) and ϕ
(

ξ,ζ

)

(x, y) = (y, x).

A polygraphi
 interpretation is 
artesian when its fun
torial part is 
artesian and when its

di�erential part sends every 
onstru
tor and stru
ture 2-
ell to zero.
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Proposition 3.11. If a fun
torial interpretation of a polygraphi
 program P is 
artesian,

then it is 
ompatible with and 
onservative on all the stru
ture 3-
ells.

Proof. Let ϕ be a 
artesian fun
torial interpretation of a polygraphi
 program P. We start

by 
omputing the values of ϕ and ∂ϕ on the stru
ture 2-paths, by indu
tion on their size.

This way, one proves that the following equalities hold, for any 1-path u and x ∈ ϕ(u), any
1-
ell ξ and y ∈ ϕ(ξ):

ϕ
(

u,ξ

)

(x, y) = (y, x), ϕ
(

ξ,u

)

(y, x) = (x, y),

ϕ
(

u

)

(x) = (x, x), ϕ
(

u

)

(x) = ∗.

Then, when u = ∗, all these 2-paths are degenerate, so that they are sent on 0 by the

di�erential interpretation ∂ϕ. Now, when u is non-degenerate, with x = (x1, . . . , xn), one
gets:

∂ϕ

(

u,ξ

)

(x, y) = max {x1, . . . , xn, y} = ∂ϕ

(

ξ,u

)

(y, x),

∂ϕ

(

u

)

(x) = max {x1, . . . , xn} = ∂ϕ

(

u

)

(x).

Now, we �x a 1-path u, 1-
ells ξ, ζ and a 
onstru
tor 2-
ell : u → ξ in P. Let us


onsider x ∈ ϕ(u) and y ∈ ϕ(ζ) and 
he
k that the following equalities hold, yielding the


ompatibility of ϕ on stru
ture 3-
ells:

ϕ

( )

(x, y) = (y, ϕ(x)) = ϕ

( )

(x, y),

ϕ

( )

(y, x) = (ϕ(x), y) = ϕ

( )

(y, x),

ϕ

( )

(x) = (ϕ(x), ϕ(x)) = ϕ

( )

(x),

ϕ

( )

(x) = ∗ = ϕ
( )

(x).

With the same notations, we now 
he
k the 
onservativeness of ϕ with the stru
ture 3-
ells,
i.e., the 
ompatibility of ∂ϕ with them:

∂ϕ

( )

(x, y) = max
{

∂ϕ (x), y
}

≥ ∂ϕ

( )

(x, y),

∂ϕ

( )

(y, x) = max
{

∂ϕ( )(x), y
}

≥ ∂ϕ

( )

(y, x),

∂ϕ

( )

= ∂ϕ( ) = ∂ϕ

( )

,

∂ϕ

( )

= ∂ϕ( ) ≥ ∂ϕ

( )

.

De�nition 3.12. Let ϕ be a fun
torial interpretation of a polygraphi
 program P. We

denote by ∂S
ϕ and 
all stru
ture di�erential interpretation generated by ϕ the di�erential

interpretation of P, over ϕ and into (N,+, 0), that sends every 
onstru
tor and fun
tion

2-
ell to zero and su
h that the following hold:

∂S
ϕ (x, y) = xy, ∂S

ϕ (x) = x2, ∂S
ϕ (x) = x.
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Lemma 3.13. Let ϕ be a fun
torial interpretation of a polygraphi
 program P. If ϕ is both

additive and 
artesian, then ∂S
ϕ is stri
tly 
ompatible with all the stru
ture 3-
ells of P.

Proof. We start by 
omputing ∂S
ϕ on the stru
ture 2-paths, by indu
tion on their size:

∂S
ϕ

( )

(x1, . . . , xn, y) = ∂S
ϕ

( )

(y, x1, . . . , xn) = y ·
∑

1≤i≤n xi,

∂S
ϕ

( )

(x1, . . . , xn) =
∑

1≤i≤j≤n xi · xj , ∂S
ϕ

( )

(x1, . . . , xn) =
∑

1≤i≤n xi.

Now, let us �x a 
onstru
tor 2-
ell with arity n. Let us 
onsider x = (x1, . . . , xn) in

ϕ(s1 ). Sin
e ϕ is additive, one notes that ϕ( )(x) > x1 + · · · + xn holds. Then, given

a y ∈ N − {0}, one 
he
ks that the following stri
t inequalities hold in N − {0}:

∂S
ϕ

( )

(x, y) = y · ϕ( )(x) > y ·
∑

1≤i≤n

xi = ∂S
ϕ

( )

(x, y),

∂S
ϕ

( )

(x, y) = y · ϕ( )(x) > y ·
∑

1≤i≤n

xi = ∂S
ϕ

( )

(x, y),

∂S
ϕ

( )

(x) =
(

ϕ( )(x)
)2

>
∑

1≤i≤j≤n

xi · xj = ∂S
ϕ

( )

(x),

∂S
ϕ

( )

(x) = ϕ( )(x) >
∑

1≤i≤n

xi = ∂S
ϕ

( )

(x).

The following result gives su�
ient 
onditions on a polygraphi
 interpretation su
h that one

does not have to bother with the stru
ture 3-
ells to prove termination.

Proposition 3.14. If a polygraphi
 program admits an additive and 
artesian polygraphi


interpretation that is stri
tly 
ompatible with every 
omputation 3-
ell, then it terminates.

Proof. Let (ϕ, ∂) be a polygraphi
 interpretation with the required properties. One applies

Proposition 3.11 to get the 
ompatibility of ϕ with stru
ture 3-
ells. Then Lemma 3.13

tells us that (ϕ, ∂S
ϕ ) is stri
tly 
ompatible with stru
ture 3-
ells: hen
e Theorem 2.27 yields

termination of PS
3 .

Sin
e ∂ sends every 
onstru
tor and stru
ture 2-
ell to zero, one has ∂(s2α) = ∂(t2α) = 0
for every stru
ture 3-
ell α: thus (ϕ, ∂) is 
ompatible with every stru
ture 3-
ell and, by
hypothesis, stri
tly 
ompatible with every other 3-
ell. One applies Proposition 2.28 to


on
lude.

De�nition 3.15. Let P be a polygraphi
 program. One denotes by K the maximum number

of stru
ture 2-
ells one �nds in the targets of 
omputation 3-
ells:

K = max
{

||t2(α)||
PS

2

, α ∈ P
R
3

}

.

Let ϕ be an additive fun
torial interpretation of P. For every fun
tion 2-
ell with arity m,

one de�nes S as the map from N
m
to N given by:

S (x1, . . . , xm) = K · M2 (x1, . . . , xm).

The following lemma proves that, during a 
omputation, if one applies a 
omputation 3-
ell,
then the stru
ture heat in
rease is bounded by a polynomial in the size of the arguments.
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Lemma 3.16. Let P be a polygraphi
 program, equipped with an additive, 
artesian, 
om-

patible and 
onservative fun
torial interpretation ϕ. Let be a fun
tion 2-
ell and t be a

value of type s1( ). Let f and g be 2-paths su
h that t ⋆1 redu
es into f whi
h, in turn,

redu
es into g by appli
ation of a 
omputation 3-
ell α. Then, the following inequality holds

in Z:

∂S
ϕg − ∂S

ϕf ≤ S ◦ ν(t).

Proof. Sin
e ϕ is 
ompatible and 
onservative, one 
an apply Proposition 2.32 on the 3-path
from f to g, to get the following inequality:

∂S
ϕg − ∂S

ϕf ≤
∑

∈P2

||t2(α)|| · ∂S
ϕ

(

∂ϕ(f), . . . , ∂ϕ(f)
)

.

By de�nition of ∂S
ϕ , one has ∂S

ϕ = 0 ex
ept when is a stru
ture 2-
ell. Thus one gets:

∂S
ϕg − ∂S

ϕf

≤ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f), ∂ϕ(f)
)

+ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f)
)

+ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f)
)

= ||t2(α)|| ·
(

∂ϕ(f)
)2

+ ||t2(α)|| ·
(

∂ϕ(f)
)2

+ ||t2(α)|| · ∂ϕ(f)

≤ ||t2(α)||
PS

2

·
(

∂ϕ(f)
)2

≤ K ·
(

∂ϕ(f)
)2

.

Finally, we re
all that ϕ is additive, 
ompatible and 
onservative: an appli
ation of Proposi-

tion 3.8 to the 3-path with sour
e t⋆1 and target f yields ∂ϕ(f) ≤ M ◦ν(t) and 
on
ludes
the proof.

Example 3.17. For the polygraphi
 program of Example 1.19, we have K = 1. The

polynomials bounding the stru
ture interpretation in
rease after appli
ation of one of the


omputation 3-
ells of this polygraphi
 program are:

S (x) = x2, S (x) = x2, S (x, y) = (x + y − 1)2.

3.3. The size of 
omputations.

De�nition 3.18. Let P be a polygraphi
 program, with an additive polygraphi
 interpreta-

tion (ϕ, ∂). For every fun
tion 2-
ell with arity m, one denotes by P and by Q the

maps from N
m
to N de�ned by:

P (x1, . . . , xm) = ∂
(

γx1, . . . , γxm

)

,

Q (x1, . . . , xm) = P (x1, . . . , xm) ·
(

1 + S (x1, . . . , xm)
)

.

The following result bounds the number of 
omputation 3-
ells in a redu
tion 3-path, with
respe
t to the size of the arguments.

Proposition 3.19. Let P be a polygraphi
 program, equipped with an additive and 
artesian

polygraphi
 interpretation (ϕ, ∂) whi
h is stri
tly 
ompatible with every 
omputation 3-
ell.
Let be a fun
tion 2-
ell and t be a value of type s1( ). Then, for every 3-path F with

sour
e t ⋆1 , the following inequality holds:

|||F |||
PR

3

≤ P ◦ ν(t).
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Proof. If F is degenerate, then |||F |||
PR

3

= 0 holds. Otherwise, the 3-path F de
omposes

this way:

F = H0 ⋆2 G1 ⋆2 H1 ⋆2 G2 ⋆2 · · · ⋆2 Gk ⋆2 Hk,

where ea
h Gi is elementary in

〈

PR
3

〉

and ea
h Hj lives in
〈

PS
3

〉

. Hen
e |||F |||
PR

3

= k. Sin
e

the polygraphi
 interpretation is 
artesian, it is 
ompatible with every stru
ture 3-
ell, so
that one has ∂(s2Hj) ≥ ∂(t2Hj), for every j ∈ {0, . . . , k}. Sin
e it is also stri
tly 
ompatible

with every 
omputation 3-
ell, one applies Proposition 2.21 to get the following 
hain of

(in)equalities, for every i ∈ {0, . . . , k − 1}:

∂(s2Hi) ≥ ∂(t2Hi) = ∂(s2Gi) > ∂(t2Gi) = ∂(s2Hi+1).

By indu
tion on i, one proves the following 
hain of (in)equalities:

∂(t ⋆1 ) = ∂(s2G1) > ∂(s2G2) > · · · > ∂(s2Gk) > ∂(t2Gk).

Furthermore we have ∂(t2Gk) ≥ 0 and, 
onsequently:

|||F |||
PR

3

≤ ∂(t ⋆1 ).

Finally, let us bound ∂(t ⋆1 ), whi
h is equal to ∂ ◦ϕ(t) + ∂t, thanks to the di�erential

relations of ∂. But (ϕ, ∂) is 
artesian, yielding ∂t = 0, and Proposition 3.4 tells us that

ϕ(t) ≤ γν(t) holds. One uses the de�nition of P to 
on
lude.

Proposition 3.20. Let P be a polygraphi
 program, equipped with an additive and 
artesian

polygraphi
 interpretation (ϕ, ∂) whi
h is stri
tly 
ompatible with and 
onservative on every


omputation 3-
ells. Let be a fun
tion 2-
ell and let t be a value of type s1 . Then, for

every 3-path F with sour
e t ⋆1 , the following inequality holds:

|||F ||| ≤ Q ◦ ν(t).

Proof. If |||F ||| = 0, then the inequality does hold. Otherwise, there exists a 3-
ell that we

an apply to the starting 2-path t ⋆1 ; moreover, this is a 
omputation 3-
ell sin
e no

stru
ture 3-
ell 
an be applied to su
h a 2-path. Hen
e the 3-path F de
omposes this way:

F = G1 ⋆2 H1 ⋆2 G2 ⋆2 · · · ⋆2 Gk ⋆2 Hk,

where ea
h Gi is elementary in

〈

PR
3

〉

and ea
h Hj is in
〈

PS
3

〉

. As a 
onsequen
e, we have:

|||F ||| = k + |||H1||| + · · · + |||Hk||| .

Furthermore k = |||F |||
PR

3

holds and, thus, so does k ≤ P ◦ν(t) thanks to Proposition 3.19.

We prove that the following inequality holds to 
on
lude:

|||H1||| + · · · + |||Hk||| ≤ k ·
(

S ◦ ν(t)
)

.

Towards this goal, let us �x an i ∈ {1, . . . , k}. Sin
e ∂S
ϕ is stri
tly 
ompatible with every

stru
ture 3-
ell, one gets from Proposition 2.21:

|||Hi||| + ∂S
ϕ(t2Hi) ≤ ∂S

ϕ (s2Hi).

Furthermore, from Lemma 3.16, one knows that the following inequality holds:

∂S
ϕ(t2Gi) ≤ ∂S

ϕ(s2Gi) + S ◦ ν(t).

Sin
e t2Gi = s2Hi holds, one has:

|||Hi||| + ∂S
ϕ(t2Hi) ≤ ∂S

ϕ(s2Gi) + S ◦ ν(t).
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Or, written di�erently:

|||Hi||| ≤ ∂S
ϕ(s2Gi) − ∂S

ϕ(t2Hi) + S ◦ ν(t).

One sums this family of k inequalities, one for every i in {1, . . . , k}, to produ
e:

|||H1||| + · · · + |||Hk||| ≤
k
∑

i=1

∂S
ϕ(s2Gi) −

k
∑

i=1

∂S
ϕ(t2Hi) + k · S ◦ ν(t).

By hypothesis, one has s2G1 = t ⋆1 , t2Hk = t2F and, for every i ∈ {1, . . . , k}, t2Hi =
s2Gi+1, so that the following inequality holds:

|||H1||| + · · · + |||Hk||| ≤ ∂S
ϕ(s2F ) − ∂S

ϕ(t2F ) + k · S ◦ ν(t).

Finally, one argues that both ∂S
ϕ(t ⋆1 ) = 0 and ∂S

ϕ(t2F ) ≥ 0 hold by de�nition of ∂S
ϕ .

Example 3.21. Let us 
ompute these bounding maps for the fusion sort fun
tion 2-
ell
of the polygraphi
 program F:

P (2x + 1) = 2x2 + 1 and Q (2x + 1) = (2x2 + 1) ·
(

1 + (2x + 1)2
)

.

Let us �x a list [i1; . . . ; in] of natural numbers. One 
an 
he
k that, in F, this list is

represented by a 2-path t su
h that ϕ(t) = ||t|| = 2n + 1. The polynomial P tells us that,

during the 
omputation of the sorted list

q y
(t), there will be at most 2n2 + 1 appli
ations

of 
omputation 3-
ells. The polynomial Q bounds the total number of 3-
ells of any type.

For example, when n is 2, one 
omputes

q y
(t) by building a 3-path of size at most

Q (5) = 234, 
ontaining no more than P (5) = 9 
omputation 3-
ells. One 
an 
he
k that

the 3-path presented in Example 1.28 is (way) below these bounds: it is made of seven

3-
ells, six of whi
h are of the 
omputation kind.

3.4. Polygraphi
 programs and polynomial-time fun
tions.

De�nition 3.22. Let P be a polygraphi
 program. A di�erential interpretation ∂ of P is

polynomial when, for every fun
tion 2-
ell , the map ∂ is bounded by a polynomial. A

fun
torial interpretation ϕ of P is polynomial when ∂ϕ is. A polygraphi
 interpretation is

polynomial when both its fun
torial part and di�erential part are.

We denote by P the set of polygraphi
 programs whi
h are 
on�uent and 
omplete

and whi
h admit an additive, 
artesian and polynomial polygraphi
 interpretation that is


onservative on and stri
tly 
ompatible with their 
omputation 3-
ells.

Example 3.23. As a 
onsequen
e of previous results, the two polygraphi
 programs D,


omputing eu
lidean division, and F, 
omputing the fusion sort of lists, are in P.

De�nition 3.24. Let us denote by N the polygraphi
 program with the following 
ells:

(1) It has one 1-
ell n.
(2) Its 2-
ells are the three possible stru
ture 2-
ells plus:

(a) Constru
tor 2-
ells: for zero and for the su

essor.

(b) Fun
tion 2-
ells: for addition and for multipli
ation.

(3) Its 3-
ells are the eight stru
ture 3-
ells plus the following 
omputation 3-
ells:

⇛⇛ ⇛ ⇛
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Proposition 3.25. The polygraphi
 program N is in P and it 
omputes the addition and

multipli
ation of natural numbers.

Proof. The polygraphi
 program N is orthogonal, hen
e lo
ally 
on�uent, and 
omplete.

Furthermore, the following hold:

JnK ≃ N,
q y

(m,n) = m + n,
q y

(m,n) = mn.

Then, one 
he
ks that the following polygraphi
 interpretation has all the required properties:

ϕ(n) = N − {0} , c = c = 1, ϕ( )(x, y) = x + y, ϕ( )(x, y) = xy,

∂ (x, y) = x and ∂ (x, y) = (x + 1)y.

Remark 3.26. So N 
omputes addition and multipli
ation of natural numbers. As we have

seen, it also 
omputes dupli
ation and permutation on them. As a 
onsequen
e, for every

polynomial P in N[x], one 
an 
hoose a 2-path P
in N su
h that

q
P

y
is P . Moreover, by

indu
tion, one proves that ϕ( P ) = P and that ∂ P
is bounded by a polynomial in N[x].

Theorem 3.27. The polygraphi
 programs of P 
ompute exa
tly the fptime fun
tions.

Proof. The fa
t that a fun
tion 
omputed by a polygraphi
 program in P is in fptime

is a 
onsequen
e of the results of Proposition 3.20. Indeed, it proves that the size of any


omputation of

q y
is bounded by Q applied to the size of the arguments: from the

polynomial assumption and the de�nition of Q , this map is itself bounded by a polynomial.

Moreover ea
h 3-
ell appli
ation modi�es only �nitely many 2-
ells: hen
e the sizes of the

2-paths remain polynomial all along the 
omputation. Furthermore, any step of 
omputation


an be done in polynomial time with respe
t to the size of the 
urrent 2-path. Indeed, it


orresponds to �nding a pattern and, then, repla
e it by another one: it is just a reordering

of some pointers with a �nite number of memory allo
ations. So, the 
omputation involves

a polynomial number of steps, ea
h of whi
h 
an be performed in polynomial time. Thus,

the normalization pro
ess 
an be done in polynomial time.

Conversely, let f : 〈Σ〉 → 〈Σ〉 be a fun
tion of 
lass fptime. This means that there

exists a Turing ma
hine M = (Σ, Q, q0, qf , δ) and a polynomial P in N[x] su
h that the

ma
hine M 
omputes f and, for any word w of length n in 〈Σ〉, the number of transition

steps required by M to 
ompute f(w) is bounded by P (n). We extend the polygraphi


program N into P(M, P ), by adding the following extra 
ells, adapted from the ones of the

polygraphi
 Turing ma
hine P(M) used in the proof of Theorem 1.30, in order to use P as

a 
lo
k:

(1) An extra 1-
ell w.
(2) Extra 2-
ells in
lude the �ve new stru
ture 2-
ells plus:

(a) Constru
tor 2-
ells: the empty word : ∗ ⇒ w and ea
h letter

a : w ⇒ w of Σ.

(b) Fun
tion 2-
ells: the main : w ⇒ w for f , plus the modi�ed

q a
, q ∈ Q and

a ∈ Σ, now from n ⋆0 w ⋆0 w to w, plus an extra size fun
tion : w ⇒ n.

(3) Extra 3-
ells in
lude the new stru
ture ones plus:

(a) The 
omputation 3-
ells for the auxiliary fun
tion :

⇛
a

⇛

(b) Timed versions of the 
omputation 3-
ells for the Turing ma
hine:
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b c c

b c

P

c

both when δ(q1, a) = (q2, c, L)

⇛

⇛ ⇛

⇛

⇛

⇛

both when δ(q1, a) = (q2, c, R)

aq2 b

qf a

q0 ♯

q1 a

q1 a q2 b q1 a ♯

q2 ♯q1

q2

One 
he
ks that P(M, P ) is orthogonal and 
omplete. We equip it with the polygraphi


interpretation based on the one de�ned on N in the proof of Proposition 3.25, extended

with the following values:

c = c a = 1,

ϕ( )(x) = x, ϕ( q a )(x, y, z) = x + y + z, ϕ( )(x) = P (x) + x + 1,

∂ (x) = ∂ q a (x, y, z) = x, ∂ (x) = ∂ P (x) + P (x) + x + 1.

One 
he
ks that this polygraphi
 interpretation is additive, 
artesian, polynomial, 
ompati-

ble with and 
onservative on all the 
omputation 3-
ells. Hen
e, P(M, P ) is a polygraphi


program in P. Furthermore, one has JnK ≃ N and JwK ≃ 〈Σ〉. We also note that, among

fun
tions 
omputed by P(M, P ), one proves that
q y

: JwK → JnK is the length fun
tion.

The four middle families of 
omputation 3-
ells of N are on
e again in bije
tion with

the rules de�ning the transition relation of the Turing ma
hine M. Hen
e, the 
on�guration

(q, a, wl, wr) redu
es into (q′, a′, w′
l, w

′
r) in k ∈ N steps if and only if, for any n ≥ k, one has:

(

n ⋆0 wl ⋆0 wr

)

⋆1 q a ⇛

(

n − k ⋆0 w′
l ⋆0 w′

r

)

⋆1 q′ a′ .

Finally, let us �x a word w of length n in 〈Σ〉. The Turing ma
hine 
omputes f , so that

(q0, ♯, e, w) redu
es into a unique 
on�guration (qf , a, v, f(w)), after a �nite number k of

transition steps. Then we 
he
k the following 
hain of equalities, yielding

q y
= f :

q y
(w) =

r
q0 ♯

z(
P (n) ⋆0 ⋆0 w

)

=
r

qf a

z(
P (n) − k ⋆0 v ⋆0 f(w)

)

= f(w).

Future dire
tions

Polygraphi
 programs. The de�nition we have 
hosen for this study stays 
lose to the one

of �rst-order fun
tional programs. We shall explore generalization along di�erent dire
tions.

We think that an important resear
h trail 
on
erns the understanding of the algebrai


properties of the if-then-else 
onstru
tion in polygraphi
 terms. Towards this goal, we

want to des
ribe strategies as sets of 4-dimensional 
ells. The 3-paths will 
ontain all the


omputational paths one 
an build when there is no �xed evaluation strategy, while the

strategies and 
onditions will be represented by the 4-paths, seen as normalization pro
esses

of 3-paths. In parti
ular, this setting shall allow us to internalize the test used to 
ompute the

merge fun
tion in the fusion sort algorithm, but also to des
ribe 
onditional or probabilisti


rewriting systems.
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On another point, in the polygraphs we 
onsider here, we have �xed a sublayer made

of permutations, dupli
ations and erasers, together with natural polygraphi
 interpretations

for them. However, one 
an see them as a spe
ial kind of fun
tion 2-
ells. Thus, we shall

de�ne a notion of hierar
hi
al programs, where one builds fun
tions level after level, giving


omplexity bounds for them modulo the previously de�ned fun
tions. However, this does

not prevent us to build modules that a programmer 
an freely use as sublayers, without

bothering with the 
omplexity of their fun
tions: for example, a module that des
ribes

the evaluation and 
oevaluation. We think of this module system as a �rst possibility to

integrate polymorphism into the polygraphi
 setting.

Removing dupli
ation and erasure from the standard de�nition means that one moves

from a 
artesian setting to a monoidal one. A

ording to a variant of André Joyal's

paradox [29℄, this is ne
essary to des
ribe fun
tions su
h as linear maps on �nite-dimensional

ve
tor spa
es. Thus, one should be able to 
ompute, for example, algebrai
 
ooperations,

su
h as the ones found in Jean-Louis Loday's generalized bialgebras [33℄, or automorphisms

of C
n
, su
h as the universal Deuts
h gate [37℄ of quantum 
ir
uits.

Going further, at this step, there will be no reason anymore to 
onsider 
onstru
tor

2-
ells with one output only or values with no output. This way, one 
ould 
onsider

algorithms 
omputing, for example, on braids or knots. However, this also suggests to


hange our notion of fun
tion 2-
ells to some kind of "polygraphi
 
ontext", a notion of

2-path with holes whose algebrai
 stru
ture has yet to be understood. In parti
ular, this is

the se
ond solution we think of to des
ribe polymorphi
 types and fun
tions.

For all this resear
h, we shall 
onsider a more abstra
t de�nition of polygraphs: they

are spe
ial higher-dimensional 
ategories, namely the free ones. This formulation, though

leading to a steeper learning 
urve, shall provide enlightenments about the possibilities one

has when one wants to extend the setting. But, more importantly, this will make easier the

adaptation of tools from algebra for program analysis.

Analysis tools. In future work, we shall use other possibilities provided by polygraphi


interpretations, together with other algebrai
 tools, to study the 
omputational properties

of polygraphs.

We restri
ted interpretations to be polynomials with integer 
oe�
ients. This is 
lose

to the tools 
onsidered in [8℄. Following this last paper, a straightforward 
hara
terization

of exponential-time (resp. doubly exponential-time) 
an be done by 
onsidering linear (resp.

polynomial) interpretations for 
onstru
tors, instead of additive ones. However, some studies

are mu
h more promising. First, to turn to polynomials over reals give some pro
edures to

build interpretations (see [11℄) via Alfred Tarski's de
idability [44℄. Se
ond, we plan to


onsider di�erential interpretations with values in multisets (instead of natural numbers),

to 
hara
terize polynomial-spa
e 
omputations.

For ea
h generalization of the notion of polygraphi
 program, su
h as the ones mentioned

earlier, we shall adapt polygraphi
 interpretations in 
onsequen
e. We think that, if these

generalizations are done in an elegant way, this task will be easier. For example, if one


onsiders "symmetri
" values, i.e., values with inputs, one 
an use a third part of polygraphi


interpretations we have not used here: as
ending 
urrents, des
ribed by a 
ontravariant

fun
torial part, su
h as in the original de�nition [18℄.

As pointed earlier, polygraphs are higher dimensional-
ategories. Philippe Malbos and

the se
ond author are 
urrently adapting the �nite derivation 
riterion of Craig Squier

[40℄ to them, as was done before for 1-
ategories [34℄. We think that this will lead us
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to a 
omputable ne
essary 
ondition to ensure that a fun
tion admits a �nite, 
onvergent

polygraphi
 program that 
omputes it.

The same 
ollaboration has more long-term aims: using tools from homologi
al algebra

for program analysis. For example, the fun
torial and di�erential interpretations are spe
ial


ases of, respe
tively, left modules over the 2-
ategory of 2-paths (or bimodules, when there

are as
ending 
urrents) and derivations of this same 2-
ategory into the given module.

Moreover, a well-
hosen 
ohomology theory yields, in parti
ular, information on derivations:

thus, one 
an hope to get new tools su
h as negative results about the fa
t that a given

algorithm lives in a given 
omplexity 
lass.

Cat. The main 
on
rete obje
tive of this proje
t is to develop a new programming language,


odenamed Cat. In this setting, one will build a program as a polygraph, while using the

algebrai
 analysis tools we provide to produ
e 
erti�
ates that guarantee several properties of

the 
ode, su
h as grammati
al ones, 
omputational ones or semanti
al ones. As in Caml [13℄,

a Cat program will have two aspe
ts: an implementation and an interfa
e.

In the implementation, one builds the 
ode, des
ribing the 
ells and assembling them

to build paths, i.e., building the data types, the fun
tions, the 
omputation rules and the

evaluation strategies. Thanks to the dual nature of polygraphs, one shall be able to perform

this using an environment that is either totally graphi
al, totally synta
ti
al or some hybrid

possibility between those.

The interfa
e part 
ontains all the information the programmer 
an prove on its 
ode, in

the form of 
erti�
ates. These guaranteed properties will range from type information, as in

Caml, to polygraphi
 interpretations proving termination or giving 
omplexity bounds, to

proofs of semanti
al properties in the form of polygraphi
 three-dimensional proofs [19℄. For

all these 
erti�
ates, we shall propose assistants, with ta
ti
s that automatize the simpler

tasks and leave the programmer 
on
entrate on the harder parts.

Finally, given su
h a polygraphi
 program, the question of evaluation arises. One 
an

think of several solutions, whose respe
tive di�
ulty ranges from "feasible" to "s
ien
e-�
-

tion": �rst, a 
ompiler or an interpreter into some existing language, su
h as Tom [45℄, a task

that has already been started; then, a distributed exe
ution where ea
h 2-
ell is translated
into a pro
ess, whose behaviour is des
ribed by the 
orresponding 3-
ells; �nally, 
on
rete
ele
troni
 
hips dedi
ated to polygraphi
 
omputation.
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