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Abstrat. We study the omputational model of polygraphs. For that, we onsider

polygraphi programs, a sublass of these objets, as a formal desription of �rst-order

funtional programs. We explain their semantis and prove that they form a Turing-

omplete omputational model. Their algebrai struture is used by analysis tools, alled

polygraphi interpretations, for omplexity analysis. In partiular, we delineate a sublass

of polygraphi programs that ompute exatly the funtions that are Turing-omputable

in polynomial time.

Introdution

Polygraphs as a omputational model. Polygraphs (or omputads) are presentations by

"generators" and "relations" of some higher-dimensional ategories [41, 12, 42, 43℄. Albert

Burroni has proved that they provide an algebrai struture to equational theories [12℄. Yves

Lafont and the seond author have explored some of the omputational properties of these

objets, mainly termination, on�uene and their links with term rewriting systems [27, 18℄.

The present study, extending notions and results presented earlier by the same authors [9℄,

onerns the omplexity analysis of polygraphs.

On a �rst approah, one an think of these objets as rewriting systems on algebrai

iruits: instead of omputing on syntatial terms, polygraphs make use of a net of ells,

whih individually behave aording to some loal transition rules, as do John von Neu-

mann's ellular automata [46℄ and Yves Lafont's interation nets [26℄.

Following Neil Jones' thesis that programming languages and semantis have strong

onnexions with omplexity theory [24℄, we think that the syntati features o�ered by

polygraphs, with respet to terms, play an important role from the point of view of impliit

omputational omplexity. As a running example, we onsider the divide-and-onquer algo-

rithm of fusion sort. It omputes the funtion f taking a list l and returning the list made

of the same elements, yet sorted aording to some given order relation. For that, it uses a

divide-and-onquer strategy: it splits l into two sublists l1 and l2 of equivalent sizes, then

it reursively applies itself on eah one to get f(l1) and f(l2) and, �nally, it merges these
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two results to produe f(l). The following program, written in Caml [13℄, implements this

algorithm:

let re split = funtion

| [℄ -> ([℄,[℄)

| x::[℄ -> (x::[℄,[℄)

| x::y::l -> let (l1,l2)=split(l) in (x::l1,y::l2)

let re merge = funtion

| ([℄,l) -> l

| (l,[℄) -> l

| (x::l,y::m) -> if x<=y then x::merge(l,y::m) else y::merge(x::l,m)

let re sort = funtion

| [℄ -> [℄

| x::[℄ -> x::[℄

| x::y::l -> let (l1,l2)=split(l) in merge(sort(x::l1),sort(y::l2))

In a polygraph, one an onsider, at the same level as other operations, funtion symbols

with many outputs. For example, the above de�nition of the split funtion beomes, in the

polygraphi language:

⇛⇛ ⇛

With these rules, one an atually "see" how the omputation is made, by "unzipping"

lists. Also, one an internalize in polygraphs the sharing operation of termgraphs [39℄,

desribed as an expliit and loal dupliation. As a onsequene, the rules generating

omputations beome linear: the operations for pointers management an be "seen" within

the rules. Atually, in our analysis, we evaluate expliitly the number of strutural steps of

omputation: alloations, dealloations and swithes of pointers. In other words, we make

expliit the design of a garbage olletor.

The question of sharing has been widely studied for e�ient implementations of funtio-

nal programming languages and several solutions have been suggested: for instane, Dan

Dougherty, Pierre Lesanne and Luigi Liquori proposed the formalism of addressed term

rewriting systems [15℄. Let us mention another approah for this kind of issues due to

Martin Hofmann [23℄: he developed a typing disipline, with a diamond type, for a funtional

language whih allows a ompilation into an imperative language suh as C, without dynami

alloation.

The omputational model of polygraphi programs, a sublass of polygraphs, is explai-

ned in the �rst part of this doument, where we give their semantis and prove a ompleteness

result: every Turing-omputable funtion an be omputed by a polygraphi program.

Complexity analysis of polygraphi programs. Here we use tools inspired by polyno-

mial interpretations, whih have been introdued by Dallas Lankford to prove termination of

term rewriting systems [30℄. They assoiate to eah term a polynomial with natural numbers

as oe�ients, in a way that is naturally ompatible with ontexts and substitutions. When,

for eah rule, the interpretation of the left-hand side is greater than the one of the right-hand
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side, one gets a termination proof. For example, let us onsider the following term rewriting

system that omputes the double funtion on natural numbers:

d(0) → 0 d(s(x)) → s(s(d(x))).

One proves its termination with the interpretation de�ned by ϕ(0) = 1, ϕ(s(x)) = ϕ(x) + 1
and ϕ(d(x)) = 3ϕ(x). Indeed, one heks that the following inequalities hold:

ϕ(d(0)) = 3 > 1 = ϕ(0) and ϕ(d(s(x))) = 3ϕ(x) + 3 > 3ϕ(x) + 2 = ϕ(s(s(d(x)))).

Moreover, on top of termination results, polynomial interpretations an be used to study

omplexity. For instane, Dieter Hofbauer and Clemens Lautemann have established a

doubly exponential bound on the derivation length of systems with polynomial interpreta-

tions [22℄. Adam Cihon and Pierre Lesanne have onsidered more preisely the omputa-

tional power of these systems [14℄. Adam Cihon, Jean-Yves Marion and Hélène Touzet, with

the �rst author, have identi�ed omplexity lasses by means of restritions on polynomial

interpretations [7, 8℄.

Let us explain how this works on the example of the double funtion. The given

interpretation sends the term d(sn(0)) to the natural number 3n + 3: sine eah rule

appliation will stritly derease this number, one knows that it takes at most 3n + 3 steps

to get from this term to its normal form s2n(0). Atually, the onsidered interpretation gives

a polynomial bound, with respet to the size of the argument, on the time taken to ompute

the double funtion with this program.

In order to analyze polygraphs, we use algebrai tools alled polygraphi interpretations,

whih have been introdued to prove termination of polygraphs [18℄. Intuitively, one onsiders

that iruits are rossed by eletrial urrents. Depending on the intensity of the urrents

that arrive to it, eah iruit gate produes some heat. Then one ompares iruits aording

to the total heat eah one produes. Building a polygraphi interpretation amounts at �xing

how urrents are transmitted by eah gate and how muh heat eah one emits.

The urrent part is alled a funtorial interpretation. Algebraially, it is similar to

a polynomial interpretation of terms and we also use it as an estimation of the size of

values, like quasi-interpretations [10℄. The heat part is alled a di�erential interpretation

and it is spei� to the algebrai struture of polygraphs. We use it to bound the number

of omputation steps remaining before reahing a result. Let us note that the distintion

between these two parts makes it possible for polygraphi interpretations to ope with

non-simplifying termination proofs, like Thomas Arts and Jürgen Giesl's dependeny pairs

[2℄.

However, some new di�ulties arise with polygraphs. For example, sine dupliation and

erasure are expliit in our model, we must show how to get rid of them for the interpretation.

In our setting, the programmer fouses on omputational steps (as opposed to strutural

steps) for whih he has to give an interpretation. From this interpretation, we give a

polynomial upper bound on the number of strutural steps that will be performed.

In this work, we fous on polynomial-time omputable funtions or, shorter, fptime

funtions. The reason omes from Stephen Cook's thesis stating that this lass orresponds

to feasible omputable funtions. But it is strongly onjetured that the preliminary results

developed in this paper an be used for other haraterizations. In partiular, the urrent

interpretations an be seen as sup-interpretations, following [35℄: this means that values

have polynomial size.
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Coming bak to fptime, in the �eld of impliit omputational omplexity, the notion

of strati�ation has shown to be a fundamental tool of the disipline. This has been

developed by Daniel Leivant and Jean-Yves Marion [31, 32℄ and by Stephen Bellantoni

and Stephen Cook [6℄ to delineate fptime. Other haraterizations inlude Neil Jones'

"Life without ons" WHILE programs [25℄ and Karl-Heinz Niggl and Henning Wunderlih's

haraterization of imperative programs [38℄. There is also a logial approah to impliit

omputational omplexity, based on a linear type disipline, in the seminal work of Jean-Yves

Girard on light linear logi [16℄, Yves Lafont on soft linear logi [28℄ or Patrik Baillot and

Kazushige Terui [5℄.

The seond part of this doument is devoted to general results about polygraphi

interpretations of polygraphs. There, we explore the piees of information they an give us

about size issues. Then, in the third part, we apply these results to polygraphi programs.

In partiular, we identify a sublass P of these objets that ompute exatly the funtions

that an be omputed in polynomial-time by a Turing mahine, or fptime funtions for

short.

General notations. Throughout this doument, we use several notations that we prefer

to group here for easier further referene.

If X is a set and p is a natural number, we denote by Xp
the artesian produt of p

opies of X. If X is an ordered set, we equip Xp
with the produt order, whih is de�ned

by (x1, . . . , xp) ≤ (y1, . . . , yp) whenever xi ≤ yi holds for every i ∈ {1, . . . , p}.
If f : X → X ′

and g : Y → Y ′
are maps, then f × g denotes the produt map from

X×X ′
to Y ×Y ′

. Let f, g : X → Y be two maps. If Y is equipped with a binary relation ⊳,

then one ompares f and g pointwise, whih means that f ⊳ g holds when, for every x ∈ X,

one has f(x) ⊳ g(x) in Y . Similarly, if Y is equipped with a binary operation ⋄, then one

de�nes f ⋄ g as the map from X to Y sending eah x of X to the element f(x) ⋄ g(x) in Y .

The sets N of natural numbers and Z of integers are always assumed to be equipped with

their natural order. For every n in N, we denote by µn the maximum map max {x1, . . . , xn}
and by N[x1, . . . , xn] the set of polynomials over n variables and with oe�ients in N. If

f : N
m → N

n
is a map and if k ∈ N, one denotes by kf the map sending (x1, . . . , xm) to

(ky1, . . . , kyn), if (y1, . . . , yn) is f(x1, . . . , xm).

1. A omputational model based on polygraphs

1.1. A �rst glane at polygraphs. On a �rst approah, one an onsider polygraphs as

rewriting systems on algebrai iruits, made of:

Types. They are the wires, alled 1-ells. Eah one onveys information of some elementary

type. To represent produt types, one uses several wires, in parallel, alling suh a onstru-

tion a 1-path. For example, the following 1-path represents the type of quadruples made of

an integer, a boolean, a real number and a boolean:

i
n
t

b
o
o
l

r
e
a
l

b
o
o
l

The 1-paths an be omposed in one way, by putting them in parallel:

vu v =⋆0
u
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Operations. They are represented by iruits, alled 2-paths. The gates used to build

them are alled 2-ells. The 2-paths an be omposed in two ways, either by juxtaposition

(parallel omposition) or by onnetion (sequential omposition):

⋆1=f fg g⋆0 f g =
f

g

Eah 2-path (or 2-ell) has a �nite number of typed inputs, a 1-path alled its 1-soure, and
a �nite number of typed outputs, a 1-path alled its 1-target:

t1(f)
f

s1(f)

Several onstrutions represent the same operation. In partiular, wires an be strethed

or ontrated, provided one does not ross them or break them. This an be written either

graphially or algebraially:

≡f
f

fg
g

g
≡

(

f ⋆0 s1(g)
)

⋆1

(

t1(f) ⋆0 g
)

≡ f ⋆0 g ≡
(

s1(f) ⋆0 g
)

⋆1

(

f ⋆0 t1(g)
)

.

Computations. They are rewriting paths, alled 3-paths, transforming a given 2-path,
alled its 2-soure, into another one, alled its 2-target. The 3-paths are generated by loal

rewriting rules, alled 3-ells. The 2-soure and the 2-target of a 3-ell or 3-path are required

to have the same input and output, i.e., the same 1-soure and the same 1-target. A 3-path
is represented either as a redution on 2-paths or as a genuine 3-dimensional objet:

t2(F )⇛:F s2(F )
s2(F )

F t1(F )

t2(F )

s1(F )

The 3-paths an be omposed in three ways, two parallel ones oming from the struture of

the 2-paths, plus one new, sequential one:

F

s2(F ) s2(G) t2(F ) t2(G): ⇛=F ⋆0 G

G

G

s2(F )

s2(G)

t2(F )

t2(G)
: ⇛=F ⋆1 G

F

G

s2(F ) t2(G)⇛:=F ⋆2 G

F
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The 3-paths are identi�ed modulo relations that inlude topologial moves suh as:

≡

≡

≡

≡

≡

≡

These graphial relations have an algebrai version given, for 0 ≤ i < j ≤ 2, by:
(

F ⋆i sj(G)
)

⋆j

(

tj(F ) ⋆i G
)

≡ F ⋆i G ≡
(

sj(F ) ⋆i G
)

⋆j

(

F ⋆i tj(G)
)

.

So far, we have desribed a speial ase of 3-polygraphs. A n-polygraph is a similar objet,

made of ells, paths, soures, targets and ompositions in all dimensions up to n.

Remark 1.1. Polygraphs provide a uniform, algebrai and graphial desription of objets

oming from di�erent domains: abstrat, string and term rewriting systems [27, 17, 18℄,

abstrat algebrai strutures [12, 17, 33℄, Feynman and Penrose diagrams [4℄, braids, knots

and tangle diagrams equipped with Reidemeister moves [1, 17℄, Petri nets [20℄ and propositional

proofs of lassial and linear logis [19℄.

1.2. Polygraphs. On a �rst reading, one an skip the formal de�nition of polygraph and

just keep in mind the graphial introdution. We de�ne n-polygraphs by indution on

the dimension n: given a de�nition of (n − 1)-polygraphs, we de�ne a n-polygraph as a

base (n − 1)-polygraph extended with a set of n-ells. Let us initiate the indution with

0-polygraphs and 1-polygraphs.

De�nition 1.2. A 0 -polygraph is a set P. Its 0 -ells and 0 -paths are its elements.

De�nition 1.3. A 1 -polygraph is a data P = (B,P1, s, t) made of a 0-polygraph B, a set P1

and two maps s and t from P1 to B. The 0 -ells and 0 -paths of P are the ones of B. Its

1 -ells are the elements of P1. One indutively de�nes the set 〈P1〉 of 1 -paths of P, together

with the 0 -soure map s0 and the 0 -target map t0, both from 1-paths to 0-paths, as follows:

• Every 0-ell x is a 1-path, with s0(x) = t0(x) = x.
• Every 1-ell ξ is a 1-path, with s0(ξ) = s(ξ) and t0(ξ) = t(ξ).
• If u and v are 1-paths suh that t0(u) = s0(v), then u ⋆0 v is a 1-path alled the 0 -

omposition of u and v. One de�nes s0(u ⋆0 v) = s0(u) and t0(u ⋆0 v) = t0(v).

The 1-paths are identi�ed modulo the following relations:

• Assoiativity: (u ⋆0 v) ⋆0 w = u ⋆0 (v ⋆0 w) .
• Loal units: s0(u) ⋆0 u = u = u ⋆0 t0(u) .

Example 1.4. A graph yields a 1-polygraph, with verties as 0-ells and arrows as 1-ells.
The 1-paths are the paths in the graph.
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Example 1.5. A set X an be seen as a 1-polygraph, with one 0-ell and itself as set of

1-ells: in that ase, the set 〈X〉 of 1-paths is exatly the free monoid generated by X or,

equivalently, the set of words over the alphabet X.

Example 1.6. An abstrat rewriting system is a binary relation R over a set X. Suh an

objet yields a 1-polygraph P with P0 = X, P1 = R, s0(x, y) = x and t0(x, y) = y. Then,
the 1-paths of this 1-polygraph are in bijetive orrespondene with the rewriting paths

generated by (X,R).

Now, let us �x a natural number n ≥ 2 and assume that one has de�ned what a (n −
1)-polygraph P is, how one builds its sets Pk of k-ells and 〈Pk〉 of k-paths, k ∈ {0, . . . , n},
and its j-soure map sj and j-target map tj from 〈Pk〉 to 〈Pj〉, j ∈ {0, . . . , k − 1}.

De�nition 1.7. An n-polygraph is a data P = (B,Pn, s, t) made of an (n−1)-polygraph B,

a set Pn and two maps s and t from Pn to 〈Bn−1〉, suh that the globular relations hold:

sn−2 ◦ s = sn−2 ◦ t and tn−2 ◦ s = tn−2 ◦ t.

For every k in {0, . . . , n − 1}, the k -ells and k -paths of P are the ones of B. The n-ells

of P are the elements of Pn. One indutively de�nes the set 〈Pn〉 of n-paths of P, the

(n − 1 )-soure map sn−1, the (n − 1 )-target map tn−1 and, for every k ∈ {0, . . . , n − 2},
extensions to n-paths of the k-soure map sk and the k-target map tk of B:

• For every k ∈ {0, . . . , n − 1}, every k-ell ξ is an n-path, with sn−1(ξ) = tn−1(ξ) = ξ.
Values of other soure and target maps do not hange.

• Every n-ell ϕ is an n-path, with sn−1(ϕ) = s(ϕ) and tn−1(ϕ) = t(ϕ). If k ∈ {0, . . . , n − 2},
then sk and tk are respetively extended by sk(ϕ) = sk ◦ sn−1(ϕ) and by tk(ϕ) =
tk ◦ tn−1(ϕ).

• If k ∈ {0, . . . , n − 1} and if f and g are n-paths suh that tk(f) = sk(g) holds, then f ⋆k g
is an n-path alled the k -omposition of f and g. For j ∈ {0, . . . , n − 2}, one de�nes:

sj(f ⋆k g) =

{

sj(f) if j ≤ k

sj(f) ⋆k sj(g) if j > k
and tj(f ⋆k g) =

{

tj(g) if j ≤ k

tj(f) ⋆k tj(g) if j > k.

One does not distinguish two n-paths that only di�er by the following relations:

• Assoiativity: (f ⋆k g) ⋆k h = f ⋆k (g ⋆k h), for 0 ≤ k ≤ n − 1.
• Loal units: sk(f) ⋆k f = f = f ⋆k tk(f), for 0 ≤ k ≤ n − 1.
• Exhange: (f1 ⋆j f2) ⋆k (g1 ⋆j g2) = (f1 ⋆k g1) ⋆j (f2 ⋆k g2), for 0 ≤ j < k ≤ n − 1.

Example 1.8. Let us onsider a word rewriting system (X,R), made of set X and a binary

relation R over 〈X〉. From it, one builds a 2-polygraph P with one 0-ell, P1 = X, P2 = R,

s1(u, v) = u and t1(u, v) = v. There is a bijetion between the 2-paths of P and the

rewriting paths generated by (X,R), onsidered modulo the ommutation squares between

two non-overlapping rule appliations. Moreover the iruit-like pitures provide graphial

representations for word rewriting: wires are letters, gates are appliations of rewriting rules

and iruits are traes of omputations.

Example 1.9. Term rewriting systems generate 3-polygraphs, as explained by Albert

Burroni [12℄, Yves Lafont [27℄ and the seond author [18, 19℄. The polygraphi programs

one onsiders here are light versions of these [21℄.

Example 1.10. Petri nets orrespond exatly to 3-polygraphs with one 0-ell and no 1-ell:
one identi�es plaes with 2-ells and transitions with 3-ells [20℄.
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De�nition 1.11. Let us �x a natural number n and an n-polygraph P. The polygraph P

is �nite when it has a �nite number of ells in every dimension. A family X of n-ells of P

an be seen as an n-polygraph with the same ells as P up to dimension n − 1.
If 0 ≤ j < k ≤ n, two k-paths f and g are j -omposable when tj(f) = sj(g). They

are j -parallel when sj(f) = sj(g) and tj(f) = tj(g). When j = k − 1, one simply says

omposable and parallel. Similarly, the (k − 1)-soure and (k − 1)-target of a k-path are

simply alled its soure and target.

If 0 ≤ k ≤ n, given a subset X of Pk and a k-path f , the size of f with respet to X is

the natural number denoted by ||f ||X and de�ned as follows, by strutural indution on f :

||f ||X =











0 if f is a ell and f /∈ X,

1 if f ∈ X,

||g||X + ||h||X if f = g ⋆j h, for some 0 ≤ j < k.

When X is redued to one ell ϕ, one writes ||f ||ϕ instead of ||f ||{ϕ}. The size of f is its

size with respet to Pk, simply written ||f ||. A k-path is degenerate when it has size 0 and

elementary when its size is 1.

Remark 1.12. One must hek that the de�nition of the size of a k-path (with respet

to a set of k-ells X) is orret. This is done by omputing this map on both sides of the

relations of assoiativity, loal units and exhange and ensuring that both results are equal.

One proves that any non-degenerate k-path f of size p an be written

f = f1 ⋆k−1 · · · ⋆k−1 fp,

where eah fi is an elementary k-path. Moreover, if k ≥ 1, then any elementary k-path f
an be written as follows:

f = gk ⋆k−1

(

gk−1 ⋆k−2 · · · ⋆1 (g1 ⋆0 ϕ ⋆0 h1) ⋆1 · · · ⋆k−2 hk−1

)

⋆k−1 hk,

where ϕ is a uniquely de�ned k-ell, while gj and hj are j-paths, for every j ∈ {1, . . . , k}.
For example, any elementary 3-path F an be deomposed as F = f ⋆1 (u ⋆0 α ⋆0 v) ⋆1 g,
where α is a uniquely determined 3-ell, f and g are 2-paths, u and v are 1-paths. As a

onsequene:

g

s2F = u vs2α

f

t2F = u vt2α

f

g

s2F = f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g t2F = f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g

In order to study the omputational properties of polygraphs, we use notions of higher-di-

mensional rewriting theory [18℄ that, in turn, make referene to abstrat rewriting ones [3℄.

De�nition 1.13. The redution graph assoiated to an n-polygraph P is the graph with

(n − 1)-paths of P as objets and elementary n-paths of P as arrows. Rewriting notions of

normal forms, termination, (loal) on�uene, onvergene, et. are de�ned on P by taking

bak the ones of its redution graph.

Remark 1.14. One an hek that, given two parallel (n − 1)-paths f and g in an n-poly-
graph P, there exists a path from f to g in the redution graph of P if and only if there

exists a non-degenerate n-path F with soure f and target g in P.
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In what follows, we fous on 3-polygraphs and introdue some speial notions and notations

for them.

De�nition 1.15. Let P be a 3-polygraph. The fat that f is a k-path of P with soure x
and target y is denoted by f : x → y when k = 1, by f : x ⇒ y when k = 2, by f : x ⇛ y
when k = 3. If f is a k-path of P and X a family of k-ells then, instead of ||f ||X , one
writes |f |X when k = 1 and |||f |||X when k = 3. When f : x ⇒ y, then |x|, |y| and (|x| , |y|)
are respetively alled the arity, the oarity and the valene of f .

1.3. Polygraphi programs.

De�nition 1.16. A polygraphi program is a �nite 3-polygraph P with one 0-ell, thereafter
denoted by ∗, and suh that its sets of 2-ells and of 3-ells respetively deompose into

P2 = PS
2 ∐ PC

2 ∐ PF
2 and P3 = PS

3 ∐ PR
3 , with the following onditions:

• The set PS
2 is made of the following elements, alled struture 2 -ells, where ξ and ζ range

over the set of 1-ells of P:

ξ,ζ
: ξ ⋆0 ζ ⇒ ζ ⋆0 ξ,

ξ
: ξ ⇒ ξ ⋆0 ξ,

ξ
: ξ ⇒ ∗.

When the ontext is lear, one simply writes , and . The following elements of

〈

PS
2

〉

are alled struture 2-paths and they are de�ned by strutural indution on their 1-soure:

∗

∗ ξ

=
ξ

∗ξ

=
ξ

=
ξ ⋆0 xζ

ζ ξ x

x ⋆0 ξ

x ξ

∗

= ∗

=

=

ξx

=
x ⋆0 ξ ζ

ζξx

∗ x ⋆0 ξ

=

• The set PC
2 is made of 2-ells with oarity 1, i.e., of the shape , alled onstrutor

2 -ells.

• The elements of PF
2 are alled funtion 2 -ells.

• The elements of PS
3 , alled struture 3 -ells, are de�ned, for every onstrutor 2-ell :

x ⇒ ξ and every 1-ell ζ, by:
x ζ

ζ ξ

ζ x

ξ ζ

x

ξ ξ

x

ξ ξ

x

⇛ ⇛ ⇛ ⇛

xx ζ

ζ ξ

xζ

ξ ζ

• The elements of PR
3 are alled omputation 3 -ells and eah one has a 2-soure of the

shape t ⋆1 , with t ∈
〈

PC
2

〉

and ∈ PF
2 .

Remark 1.17. In this study, we have deided to split struture ells from omputation

ells. From a traditional programming perspetive, permutations, dupliations and erasers

are given for free in the syntax. With polygraphs, this is not the ase. However, by putting

these operations in a "speial" sublayer, we show that the programmer has not to bother

with struture ells: one an stay at the top-level, letting the sublevel work on its own.

Example 1.18. The following polygraphi program D omputes the eulidean division on

natural numbers (we formally de�ne what this means later):

(1) It has one 1-ell n, standing for the type of natural numbers.
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(2) Apart from the �xed three struture 2-ells, it has two onstrutor 2-ells, : ∗ ⇒ n for

zero and : n ⇒ n for the suessor operation, and two funtion 2-ells, : n ⋆0 n ⇒ n

for the minus funtion and : n ⋆0 n ⇒ n for the division funtion.

(3) Its 3-ells are made of eight struture 3-ells, plus the following �ve omputation 3-ells:

⇛⇛⇛ ⇛ ⇛

Example 1.19. The following program F omputes the fusion sort funtion on lists of

natural numbers lower or equal than some onstant N ∈ N:

(1) Its 1-ells are n, for natural numbers, and l, for lists of natural numbers.

(2) Its 2-ells are made of eight struture 2-ells, plus:
(a) Construtor 2-ells, for the natural numbers 0, . . . , N , the empty list and the list

onstrutor:

(

n : ∗ ⇒ n

)

0≤n≤N
, : ∗ ⇒ l, : n ⋆0 l ⇒ l.

(b) Funtion 2-ells, respetively for the main sort and the two auxiliary split and merge:

: l ⇒ l, : l ⇒ l ∗0 l, : l ∗0 l ⇒ l.

(3) Its 3-ells are made of 6N + 18 struture 3-ells, plus N2 + 2N + 8 omputation 3-ells:

⇛⇛ ⇛

⇛⇛ ⇛

p > q
p q

p

q

p q

⇛⇛

p

q

⇛

p ≤ q

⇛

Remark 1.20. One may objet that sorting lists when the a priori bound N is known

an be performed in a linear number of steps: one reads the list and ounts the number of

ourrenes of eah element, then produes the sorted list from this information. Neverthe-

less, the presented algorithm (up to the test ≤ on the natural numbers p and q) really mimis

the "mehanis" of the fusion sort algorithm and, atually, we redisover the omplexity

bound as given by Yiannis Moshovakis [36℄.

Why don't we internalize the omparison of numbers within the polygraphi program?

This omes from the fat that the if-then-else onstrution impliitly involves an evaluation

strategy: one �rst omputes the test argument then, depending on this result, one omputes

exatly one of the other two arguments. As de�ned here, polygraphs algebraially desribe

the omputation steps, but not the evaluation strategy. We let suh a task for further

researh.
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1.4. Semantis of polygraphi programs. One de�nes an interpretation J·K of the ele-

ments of a polygraphi program into sets and maps, then one uses it to de�ne the notion of

funtion omputed by suh a program.

De�nition 1.21. Let P be a polygraphi program. For a 1-path u, a value of type u is

a 2-path in

〈

PC
2

〉

with soure ∗ and target u; their set is denoted by JuK. Given a 2-path
f : u ⇒ v, one denotes by JfK the (partial) map from JuK to JvK de�ned as follows: if t
is a value of type u and if t ⋆1 f has a unique normal form t′ that is a value (of type v),
then JfK (t) is t′; otherwise f is unde�ned on t.

Among the following properties, the one for degenerate 2-paths explains the fat that JuK
has two meanings: it is either the set of values of type u or the identity of this set.

Proposition 1.22. Let P be a polygraphi program. The following properties hold on 1-
paths:

• The set J∗K is redued to the 0-ell ∗.
• For every u and v, one has Ju ⋆0 vK = JuK × JvK.
The following properties hold on 2-paths:

• If u is degenerate then it is sent by J·K to the identity of the set JuK.
• For every f and g, one has Jf ⋆0 gK = JfK × JgK.
• If f and g are omposable, then Jf ⋆1 gK = JgK ◦ JfK holds.

Finally, for every 3-path F , the equality Js2F K = Jt2F K holds.

De�nition 1.23. Let P be a polygraphi program. Let u, v be 1-paths and let f be a

(partial) map from JuK to JvK. One says that P omputes f when there exists a 2-ell

suh that

q y
= f .

Example 1.24. In a polygraphi program P, every onstrutor 2-ell with arity n

satis�es the equality

q y
(t1, . . . , tn) = (t1 ⋆0 · · · ⋆0 tn) ⋆1 . Sine the right member

is always a normal form, one an identify values of oarity 1 with the losed terms of a

term algebra. Moreover, the polygraphi program P omputes erasers, dupliations and

permutations on these terms, sine

q y
(t) = ∗,

q y
(t) = (t, t) and

q y
(t, t′) = (t′, t)

hold.

Thus, every polygraphi program omputes one total map for eah of its struture and

onstrutor 2-ells. We give su�ient onditions to ensure that this is also the ase on

funtion 2-ells.

De�nition 1.25. A polygraphi program P is omplete if every 2-path of the form t ⋆1

is reduible when t is a value and is a funtion 2-ell.

Proposition 1.26. Let P be a onvergent and omplete polygraphi program. Then, for

every struture or funtion 2-ell : u ⇒ v, the map

q y
: JuK → JvK is total.

Proof. We start by realling that the struture 3-ells, alone, are onvergent [18, 19℄. Furthermore,

they are orthogonal to the omputation 3-ells and every 2-path of the shape t ⋆1 is

reduible when t is a value and is a struture 2-ell. Hene, as a polygraph, P is onvergent

and the 2-paths ∗ ⇒ x that are in normal form are exatly the values of type x.
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Example 1.27. Let us hek that the polygraphi program D omputes eulidean division.

The set JnK is equipotent to the set N of natural numbers through the bijetion 0 = and

n + 1 = n ⋆1 . This polygraphi program is weakly orthogonal, hene loally on�uent,

and omplete. We will also see later that it terminates. Thus it omputes two maps from

Jn ⋆0 nK ≃ N
2
to JnK ≃ N, one for and one for . By indution on the arguments, one

gets: q y
(m,n) = max {0,m − n} and

q y
(m,n) = ⌊m/(n + 1)⌋.

Example 1.28. In the polygraphi program F, one has JnK ≃ {0, . . . , N} and JlK ≃
〈0, . . . , N〉, thanks to the bijetive orrespondenes n = n

, [ ] = and x :: l = (x ⋆0 l) ⋆1 .

This polygraphi program is weakly orthogonal, hene loally on�uent, and omplete. It

is also terminating, as we shall see later. Thus, it omputes one map for eah of ,

and . For example, the map

q y
takes a list of natural numbers as input and returns

the orresponding ordered list. Figure 1 gives an example of omputation generated by this

program, with explanations following.

(

2 1

)

⋆1 3 :

1

2

⇛

2

1

⋆2

1
⋆1

(

2 ⋆0 1 ,
⋆0

)

⋆1 :

1

2

⇛

12

⋆2

(

12

)

⋆1

(

2 ⋆0 2

)

⋆1 :

2 1

⇛

2 1

⋆2

( )

⋆1 3
( 2 , 1 ) :

2 1

⇛ 1

2

⋆2

2

⋆1

(

1 ⋆0 2

)

⋆1 :

2

1 ⇛

2

1 .

Figure 1: Normalizing 3-path in a polygraphi program

Let us onsider the list [2; 1] of natural numbers and apply the fusion sort funtion on it.

The list is oded by the following value:

[2; 1] =
(

1 ⋆0

)

⋆1

(

2 ⋆0

)

⋆1 =
1

2 .
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The value

q y(
[2; 1]

)

is, by de�nition, the unique normal form of the 2-path [2; 1] ⋆1 .

Figure 1 presents a normalizing 3-path, obtained by ⋆2-omposition of smaller 3-paths, where
we have given self-explanatory "names" to the involved 3-ells, without further explanations.

After omputation, one gets the expeted

q y(
[2; 1]

)

= [1; 2] as the target of this 3-path.

1.5. Polygraphi programs are Turing-omplete. This ompleteness result is not a

surprising one. Indeed, one ould argue, for instane, that polygraphi programs simulate

term rewriting systems, a Turing-omplete model of omputation. Our proof, similar to

the one onerning interation nets [26℄, prepares for the enoding of Turing mahines with

loks, used for Theorem 3.27.

De�nition 1.29. A Turing mahine is a family M = (Σ, Q, q0, qf , δ) made of:

• A �nite set Σ, alled the alphabet ; one denotes by Σ its extension with a new element,

denoted by ♯ and alled the blank harater.

• A �nite set Q, whose elements are alled states, two distinguished elements q0, the initial

state, and qf , the �nal state.

• A map δ : (Q−{qf})×Σ → Q×Σ×{L,R}, alled the transition funtion, where {L,R}
is any set with two elements.

A on�guration of M is an element (q, a, wl, wr) of the produt set Q×Σ×
〈

Σ
〉

×
〈

Σ
〉

: here q
is the urrent state of the mahine, a is the urrently read symbol, wl is the word at the

left-hand side of a and wr is the word at the right-hand side of a. For further onveniene,
the word wl is written in reverse order, so that its �rst letter is the one that is immediately

at the left of a.
The transition relation of M is the binary relation denoted by →M and de�ned on the

set of on�gurations of M as follows, where e denotes the neutral element of 〈Σ〉:

• If δ(q1, a) = (q2, c, L) then

{

(q1, a, e, wr) →M (q2, ♯, e, cwr) ,
(q1, a, bwl, wr) →M (q2, b, wl, cwr) .

• If δ(q1, a) = (q2, c, R) then

{

(q1, a, wl, e) →M (q2, ♯, cwl, e) ,
(q1, a, wl, bwr) →M (q2, b, cwl, wr) .

One denotes by →∗
M

the re�exive and transitive losure of →M. Let f : 〈Σ〉 → 〈Σ〉 be a

map. One says that M omputes f when, for any w in 〈Σ〉, there exists a on�guration of

the shape (qf , a, v, f(w)) suh that (q0, ♯, e, w) →∗
M

(qf , a, v, f(w)) holds (in that ase, this

�nal on�guration is unique).

Theorem 1.30. Polygraphi programs form a Turing-omplete model of omputation.

Proof. We �x a Turing mahine M = (Σ, Q, q0, qf , δ) and a map f omputed by M. From

this Turing mahine, we build the following polygraphi program P(M):

(1) It has one 1-ell w, standing for the type of words over Σ.
(2) Apart from the three struture 2-ells, its 2-ells onsist of:

(a) Construtor 2-ells: : ∗ ⇒ w, for the empty word, plus one

a : w ⇒ w for eah a in

Σ.
(b) Funtion 2-ells: : w ⇒ w, for the map f , plus one q a : w ⋆0 w ⇒ w for eah pair

(q, a) in Q × Σ̄, for the behaviour of the Turing mahine.
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(3) Its 3-ells are the struture ones, plus the following omputation 3-ells � the �rst one

initializes the omputation, the four subsequent families simulate the transitions of the

Turing mahine and the �nal ell starts the omputation of the result:

c

c

b c

c

⇛

⇛

⇛

both when δ(q1, a) = (q2, c, L)

both when δ(q1, a) = (q2, c, R)

⇛

b

⇛

⇛

q2

a

♯

q2 ♯b

q0 ♯

a q1 aq1

q1 a q1 a

q2

q2 b

qf

One heks that JwK ≃ 〈Σ〉 through e = and aw = w ⋆1 a
. Then, to every on�guration

(q, a, wl, wr), one assoiates the 2-path (q, a, wl, wr) =
(

wl ⋆0 wr

)

⋆1 q a
. The four ases in

the de�nition of the transition relation of M are in one-to-one orrespondene with the four

middle families of 3-ells of the polygraph P(M). Hene the following equivalene holds:

(q, a, wl, wr) →∗
M (q′, a′, w′

l, w
′
r) if and only if (q, a, wl, wr) ⇛ (q′, a′, w′

l, w
′
r).

Finally, let us �x a w in 〈Σ〉. Sine M omputes f , there exists a unique on�guration

(qf , a, v, f(w)), suh that (q0, ♯, e, w) →∗
M

(qf , a, v, f(w)) holds. As a onsequene, w ⋆1

has a unique normal form, so that the following equalities hold, yielding

q y
= f :

q y
(w) =

r
q0 ♯

z
(

⋆0 w
)

=
r

qf a

z(
v ⋆0 f(w)

)

= f(w).

2. Polygraphi interpretations

Here, we present general results about information that an be reovered from funtorial

and di�erential interpretations of 3-polygraphs.

2.1. Funtorial interpretations.

De�nition 2.1. A funtorial interpretation of a 3-polygraph P is a pair ϕ = (ϕ1, ϕ2)
onsisting of:

(1) a map ϕ1 sending every 1-path u of size n to a non-empty part of (N − {0})n;
(2) a map ϕ2 sending every 2-path f : u ⇒ v to a monotone map from ϕ1(u) to ϕ1(v).

The following equalities, alled funtorial relations, must be satis�ed:

• if u is a degenerate 2-path, then ϕ2(u) is the identity of ϕ1(u);
• if u and v are 0-omposable 1-paths, then ϕ1(u ⋆0 v) = ϕ1(u) × ϕ1(v) holds;
• if f and g are 0-omposable 2-paths, then ϕ2(f ⋆0 g) = ϕ2(f) × ϕ2(g) holds;
• if f and g are 1-omposable 2-paths, then ϕ2(f ⋆1 g) = ϕ2(g) ◦ ϕ2(f) holds.

One simply writes ϕ for both ϕ1 and ϕ2. Intuitively, for every 2-ell , the map ϕ( ) tells

us how , seen as a iruit gate, transmits urrents downwards. In pratie, one omputes

the value of a urrent interpretation on a 2-path by omputing it on the 2-ells it ontains
and assembling them in an intuitive way. The following result formalizes this fat.
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Lemma 2.2. A funtorial interpretation of a 3-polygraph P is entirely and uniquely de�ned

by its values on the 1-ells and 2-ells of P.

Proof. Using the funtorial relations, one heks that a funtorial interpretation takes the

same values on both sides of the relations of assoiativity, loal units and exhange on

2-paths: this property omes from the fat that set-theoreti maps satisfy these same

relations. Then the funtorial relations give the values of a urrent interpretation on 2-paths
of size n + 1 from its values on 2-paths of size k ≤ n.

A diret onsequene of Lemma 2.2 is that, when one wants to introdue a funtorial

interpretation, one only has to give its values on the 1-ells and on the 2-ells.

Example 2.3. Let P be a polygraphi program with no onstrutor 2-ell and no funtion

2-ell. Then, given a non-empty part ϕ(ξ) of N−{0} for every 1-ell ξ, the following values

extend ϕ into a funtorial interpretation of P:

ϕ
(

ξ,ζ

)

(x, y) = (y, x) and ϕ
(

ξ

)

(x) = (x, x).

Let us note that every funtorial interpretation ϕ must send the 0-ell ∗ to some single-ele-

ment part of N − {0}. Hene, it must assign eah

ξ
to the only map from ϕ(ξ) to ϕ(∗).

Example 2.4. The following values extend the ones of Example 2.3 into a funtorial inter-

pretation of the polygraphi program D of division:

ϕ(n) = N − {0} , ϕ( ) = 1, ϕ( )(x) = x + 1,

ϕ( )(x, y) = ϕ( )(x, y) = x.

Example 2.5. For the polygraphi program F of fusion sort, we extend the funtorial inter-

pretation of Example 2.3 with the following values, where ⌈·⌉ and ⌊·⌋ stand for the rounding

funtions, respetively by exess and by default:

ϕ(n) = {1} , ϕ(l) = 2N + 1, ϕ( n ) = ϕ( ) = 1, ϕ( )(x, y) = x + y + 1,

ϕ( )(x) = x, ϕ( )(x, y) = x+ y− 1, ϕ( )(2x + 1) =
(

2 ·
⌈x

2

⌉

+ 1, 2 ·
⌊x

2

⌋

+ 1
)

.

Example 2.6. Let P be a polygraphi program. One denotes by ν the funtorial interpreta-

tion on the subpolygraph

〈

PC
2

〉

de�ned, for every 1-ell ξ, by ν(ξ) = N − {0} and, for every

onstrutor 2-ell with arity n, by:

ν( )(x1, . . . , xn) = x1 + · · · + xn + 1.

One heks that ν(t) = ||t|| holds for every value t with oarity 1. Thus, given values t1,
. . . , tn with oarity 1, the following equality holds in N

n
:

ν(t1 ⋆0 · · · ⋆0 tn) =
(

||t1|| , . . . , ||tn||
)

.

We use the funtorial interpretation ν to desribe the size of arguments of a funtion.

Lemma 2.7. Let ϕ be a funtorial interpretation of a 3-polygraph P. Let f , g, h and k be

2-paths suh that ϕ(f) ≤ ϕ(g) and ϕ(h) ≤ ϕ(k) hold. Then, for every i ∈ {0, 1} suh that

f ⋆i h is de�ned, the inequality ϕ(f ⋆i h) ≤ ϕ(g ⋆i k) is satis�ed.
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Proof. One has:

ϕ(f ⋆0 h) = ϕ(f) × ϕ(h) ≤ ϕ(g) × ϕ(k) = ϕ(g ⋆0 k).

Indeed, the two equalities are given by the funtorial relations that ϕ satis�es, while the

middle inequality omes from the hypotheses and the fat that one uses a produt order.

Then one has:

ϕ(f ⋆1 h) = ϕ(h) ◦ ϕ(f) ≤ ϕ(h) ◦ ϕ(g) ≤ ϕ(k) ◦ ϕ(g) = ϕ(g ⋆1 k).

The equalities ome from the funtorial relations; the �rst inequality uses the hypothesis

ϕ(f) ≤ ϕ(g) and the fat that ϕ(h) is monotone; the seond inequality uses ϕ(h) ≤ ϕ(k)
and the fat that maps are ompared pointwise.

2.2. Compatible funtorial interpretations.

De�nition 2.8. Let ϕ be a funtorial interpretation of a 3-polygraph P. For every 3-ell α
of P, one says that ϕ is ompatible with α when the inequality ϕ(s2α) ≥ ϕ(t2α) holds. One
says that ϕ is ompatible when it is ompatible with every 3-ell of P.

Example 2.9. The funtorial interpretations given in Examples 2.4 and 2.5 are ompatible

with all the 3-ells of the orresponding 3-polygraph. We will see later that the values

they take on struture 2-ells ensure that they are ompatible with all the struture 3-ells.
Conerning the omputation 3-ells, let us onsider, for example, the third one assoiated

to the sort funtion 2-ell . For the soure, one gets:

ϕ

( )

(1, 1, 2x + 1) = ϕ

( )

(

1, ϕ( )(1, 2x + 1)
)

= ϕ( ) ◦ ϕ( )(1, 2x + 3)

= ϕ( )(2x + 5)

= 2x + 5.

Now, for the target, going quiker:

ϕ












(1, 1, 2x + 1) = ϕ( )

(

2 · ⌈x/2⌉ + 3, 2 · ⌊x/2⌋ + 3
)

= 2x + 5.

Proposition 2.10. Let ϕ be a ompatible funtorial interpretation of a polygraphi program.

Then, for every 3-path F , the inequality ϕ(s2F ) ≥ ϕ(t2F ) holds.

Proof. We proeed by indution on the size of 3-paths. If F is a degenerate 3-path, then
s2F = t2F holds and, thus, so does ϕ(s2F ) = ϕ(t2F ).

Let us assume that F is an elementary 3-path. Then one deomposes s2F and t2F ,

using a 3-ell α, 2-paths f , g and 1-paths u, v, yielding:

ϕ(s2F ) = ϕ
(

f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g
)

and ϕ(t2F ) = ϕ
(

f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g
)

.

The funtorial interpretation ϕ is ompatible with α, hene ϕ(s2α) ≥ ϕ(t2α) holds. Then

one applies Lemma 2.7 four times to get ϕ(s2F ) ≥ ϕ(t2F ).
Now, let us �x a non-zero natural number N and assume that the property holds for

every 3-path of size N . Let us onsider a q3-path F of size N + 1. Then one deomposes F
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into G ⋆2 H where G is a 3-path of size N and H is an elementary 3-path. One onludes

using the indution hypothesis on G and the previous ase on H.

2.3. Di�erential interpretations. In this work, we use di�erential interpretations as

an abstration of "heats", but also, later, to de�ne the property of onservativeness on

"urrents". For this reason, we introdue the following abstration:

De�nition 2.11. A (stritly) ordered ommutative monoid is an ordered set (M,�) equip-
ped with a ommutative monoid struture (+, 0) suh that + is (stritly) monotone in both

arguments.

Example 2.12. Conretely, in what follows, we onsider N equipped with its natural order

and either the addition (strit ase) or the maximum map (non-strit ase), both with 0 as

neutral element.

De�nition 2.13. Let M be an ordered ommutative monoid, let P be a 3-polygraph and

let ϕ be a funtorial interpretation of P. A di�erential interpretation of P over ϕ into M is

a map ∂ that sends eah 2-path of P with 1-soure u to a monotone map ∂ from ϕ(u)
to M , suh that the following onditions, alled di�erential relations, are satis�ed:

• If u is degenerate then ∂u = 0.
• If f and g are 0-omposable then ∂(f ⋆0 g)(x, y) = ∂f(x) + ∂g(y) holds.
• If f and g are 1-omposable then ∂(f ⋆1 g) = ∂f + ∂g ◦ ϕ(f) holds.

Intuitively, given a 2-ell , the map ∂ tells us how muh heat it produes, when seen

as a iruit gate, depending on the intensities of inoming urrents. In order to ompute

the heat produed by a 2-path, one determines the urrents that its 2-ells propagate and,
from those values, the heat eah one produes; then one sums up all these heats.

Lemma 2.14. A di�erential interpretation of a polygraph P is entirely and uniquely deter-

mined by its values on the 2-ells of P.

Proof. First, we prove that the di�erential relations imply that a di�erential interpretation

takes the same values on eah side of the relations of assoiativity, loal units and exhange.

For example, let us hek this for the exhange relation. For that, let us �x 2-paths f ,
g, h and k suh that both t1(f) = s1(h) and t1(g) = s1(k) are satis�ed. We onsider x
in ϕ(s1(f)) and y in ϕ(s1(g)) and, using the funtorial relations of ϕ and the di�erential

relations of ∂, we ompute eah one of the following equalities in M :

∂
(

(f ⋆0 g) ⋆1 (h ⋆0 k)
)

(x, y) =
(

∂f(x) + ∂g(y)
)

+
(

∂h ◦ ϕ(f)(x) + ∂k ◦ ϕ(g)(y)
)

,

∂
(

(f ⋆1 h) ⋆0 (g ⋆1 k)
)

(x, y) =
(

∂f(x) + ∂h ◦ ϕ(f)(x)
)

+
(

∂g(y) + ∂k ◦ ϕ(g)(y)
)

.

One onludes using the assoiativity and ommutativity of + in M . After that, one heks

that the di�erential relations determine the values of a di�erential interpretation on 2-paths
of size n + 1 from its values on 2-paths of size k ≤ n.
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Lemma 2.14 allows one to de�ne a di�erential interpretation by giving its values on 2-ells.

Example 2.15. The trivial funtorial interpretation of a 3-polygraph P sends every 1-ell
to some �xed one-element part ∗ of N−{0} and every 2-path from u to v to the only possible

map from ϕ(u) ≃ ∗ to ϕ(v) ≃ ∗. Now, let us �x a family X of 2-ells in P. One an hek

that the map ||·||X is the di�erential interpretation of P over the trivial interpretation and

into (N,+, 0), sending a 2-ell to 1 if it is in X and 0 otherwise.

Example 2.16. We onsider the di�erential interpretation of the division polygraphi

program D, over the funtorial interpretation given in Example 2.4, into (N,+, 0), sending
every onstrutor and struture 2-ell to zero and:

∂ (x, y) = y + 1 and ∂ (x, y) = xy + x,

Example 2.17. For the polygraphi program F of fusion sort, we onsider the di�erential

interpretation, over the funtorial interpretation of Example 2.5, into (N,+, 0), sending every
onstrutor and struture 2-ells to zero and:

∂ (2x+1) = 2x2+1, ∂ (2x+1) = ⌊x/2⌋+1, ∂ (2x+1, 2y+1) =

{

1 if xy = 0,

x + y otherwise.

Lemma 2.18. Let P be a 3-polygraph, with a di�erential interpretation ∂, over a funtorial

interpretation ϕ, into an ordered ommutative monoid (M,+, 0,�). Let f , g, h, k be 2-
paths suh that the inequalities ϕ(f) ≤ ϕ(g), ∂f � ∂g and ∂h � ∂k hold. Then, for every

i ∈ {0, 1} suh that f ⋆i h is de�ned, one has ∂(f ⋆i h) � ∂(g ⋆i k). Moreover, when M is

stritly ordered and either ∂f ≺ ∂g or ∂h ≺ ∂k hold, one has ∂(f ⋆i h) ≺ ∂(g ⋆i k).

Proof. One omputes, for x ∈ ϕ(s1f) and y ∈ ϕ(s1h):

∂(f ⋆0 h)(x, y) = ∂f(x) + ∂h(y) � ∂g(x) + ∂k(y) = ∂(g ⋆0 k)(x, y).

Indeed, the two equalities are given by the di�erential relations that ∂ satis�es; the inequality

uses the hypotheses, the fat that maps are ompared pointwise and the monotony of +.

Moreover, if + is stritly monotone and if one of ∂f ≺ ∂g or ∂h ≺ ∂k holds, then the middle

inequality is strit. Now, one heks:

∂(f ⋆1 h) = ∂f + ∂h ◦ ϕ(f) � ∂g + ∂k ◦ ϕ(g) = ∂(g ⋆1 k).

The equalities ome from the di�erential relations; the inequality omes from the hypotheses

∂f � ∂g, ∂h � ∂k and ϕ(f) ≤ ϕ(g), plus the monotony of ∂h and + and the fat that maps

are ompared pointwise. When + is stritly monotone and when either ∂f ≺ ∂g or ∂h ≺ ∂k
hold, the middle inequality is strit.

2.4. Compatible di�erential interpretations.

De�nition 2.19. Let P be a 3-polygraph equipped with a funtorial interpretation ϕ and

a di�erential interpretation ∂ of P over ϕ and into an ordered ommutative monoid M . For

every 3-ell α, one says that ∂ is ompatible with α when ∂(s2α) � ∂(t2α) holds. It is said
to be stritly ompatible with α when ∂(s2α) ≻ ∂(t2α) holds. One says that ∂ is (stritly)

ompatible when it is with every 3-ell of P.
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Example 2.20. The di�erential interpretations given in Examples 2.16 and 2.17 are om-

patible with every struture 3-ell and stritly ompatible with every omputation 3-ell of
their 3-polygraph.

Indeed, in the soure and the target of every struture 3-ell α, only onstrutor and

struture 2-ells appear. The onsidered di�erential interpretations sends these to zero,

yielding ∂(s2α) = ∂(t2α) = 0.
For an example of ompatibility with a omputation 3-ell, we onsider the third 3-ell

of the fusion sort funtion 2-ell . On one hand, one gets:

∂

( )

(1, 1, 2x + 1) = ∂ (2x + 5) = 2(x + 2)2 + 1 = 2x2 + 8x + 9.

And, on the other hand, one omputes:

∂












(1, 1, 2x + 1) =







∂
(

2 ⌈x/2⌉ + 3
)

+ ∂
(

2 ⌊x/2⌋ + 3
)

+ ∂ (2x + 1) + ∂
(

2 ⌈x/2⌉ + 3, 2 ⌊x/2⌋ + 3
)

= 2 ·
(

⌈x/2⌉ + 1
)2

+ 2 ·
(

⌊x/2⌋ + 1
)2

+ x + ⌊x/2⌋ + 4

= 2 ⌈x/2⌉2 + 2 ⌊x/2⌋2 + x + 4 ⌈x/2⌉ + 5 ⌊x/2⌋ + 8

≤ 2x2 + 6x + 8.

Proposition 2.21. Let ∂ be a ompatible di�erential interpretation of a polygraphi pro-

gram P, over a ompatible funtorial interpretation ϕ and into an ordered ommutative

monoid M . Then, for every 3-path F , the inequality ∂(s2F ) � ∂(t2F ) holds. When M is

stritly ordered, ∂ is stritly ompatible and F is non-degenerate, then ∂(s2F ) ≻ ∂(t2F ) also
holds. Moreover, if M is N equipped with addition, then |||F ||| ≤ ∂(s2F ) − ∂(t2F ) holds.

Proof. We proeed by indution on the size of 3-paths. If F is a degenerate 3-path, then
one has s2F = t2F and, thus, ∂(s2F ) = ∂(t2F ) also.

Let us assume that F is an elementary 3-path. We deompose F using a 3-ell α,
2-paths f , g and 1-paths u, v, yielding:

∂(s2F ) = ∂
(

f ⋆1 (u ⋆0 s2α ⋆0 v) ⋆1 g
)

and ∂(t2F ) = ∂
(

f ⋆1 (u ⋆0 t2α ⋆0 v) ⋆1 g
)

.

By assumption, ϕ and ∂ are ompatible with α, hene ϕ(s2α) ≥ ϕ(t2α) and ∂(s2α) � ∂(t2α)
hold. Then one applies Lemmas 2.7 and 2.18 to get ∂(s2F ) � ∂(t2F ) and, when ∂ is stritly

ompatible with the 3-ell α, ∂(s2F ) ≻ ∂(t2F ). If M is N, this means:

∂(s2F ) − ∂(t2F ) ≥ 1 = |||F ||| .

Finally, let us �x a non-zero natural number N and assume that the property holds for every

3-path of size N . Let us onsider a 3-path F of size N + 1. Then one deomposes F into

G ⋆2 H where G is a 3-path of size N and H is an elementary 3-path. Then we apply the

indution hypothesis to G and the previous ase to H to onlude.
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2.5. Conservative funtorial interpretations. Intuitively, the following de�nition gives

a bound on all the intensities of urrents that one an �nd in the viinity of any 2-ell inside
a 2-path.

De�nition 2.22. Let P be a 3-polygraph equipped with a funtorial interpretation ϕ. One
denotes by ∂ϕ the di�erential interpretation of P, over ϕ and into (N,max, 0), sending

every 2-ell with valene (m,n), i.e., with arity m and oarity n, to the following map

from ϕ(s1 ) to N:

∂ϕ = max
{

µm, µn ◦ ϕ( )
}

,

i.e., ∂ϕ (x1, . . . , xm) = max {x1, . . . , xm, y1, . . . , yn}, if (y1, . . . , yn) = ϕ( )(x1, . . . , xm).
For every 3-ell α of P, one says that ϕ is onservative on α when ∂ϕ is ompatible with α.
One says that ϕ is onservative when it is onservative on every 3-ell of P, i.e., when ∂ϕ is

ompatible.

Example 2.23. The funtorial interpretations of Examples 2.4 and 2.5 are onservative.

Indeed, we shall see later that their values on struture and onstrutor 2-ells ensure that
they are onservative on struture 3-paths. Let us hek onservativeness on, for example,

the last omputation 3-ell of the sort funtion 2-ell :

∂ϕ

( )

(1, 1, 2x + 1) = max
{

1, 2x + 1, 2x + 2, 2x + 3
}

= 2x + 3

= max
{

1, 2x + 1, 2 · ⌊x/2⌋ + 1, 2 · ⌈x/2⌉ + 1,

2 · ⌊x/2⌋ + 2, 2 · ⌈x/2⌉ + 2, 2x + 3
}

= ∂ϕ












(1, 1, 2x + 1).

When a funtorial interpretation is both ompatible and onservative, the intensities of

urrents inside 2-paths do not inrease during omputations.

Proposition 2.24. Let ϕ be a ompatible and onservative funtorial interpretation of a

polygraphi program. Then, for every 3-path F , the inequality ∂ϕ(s2F ) ≥ ∂ϕ(t2F ) holds.

Proof. By de�nition of onservativeness and using Proposition 2.21 on ∂ϕ.

2.6. Polygraphi interpretations.

De�nition 2.25. A polygraphi interpretation of a 3-polygraph P is a pair (ϕ, ∂) made of a

funtorial interpretation ϕ of P, together with a di�erential interpretation ∂ of P over ϕ and

into (N,+, 0). In that ase, ϕ and ∂ respetively are the funtorial part and the di�erential

part of (ϕ, ∂).
Let us �x a 3-ell α. A polygraphi interpretation (ϕ, ∂) is ompatible (with α) when

both ϕ and ∂ are. It is stritly ompatible (with α) when ϕ is ompatible with α and ∂ is

stritly ompatible (with α). It is onservative (on α) when ϕ is.
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Example 2.26. The funtorial and di�erential interpretations we have built on the poly-

graphi programs of division and of fusion sort are two examples of polygraphi interpreta-

tions that are onservative, ompatible with every struture 3-ell and stritly ompatible

with every omputation 3-ell.
Let us onsider the trivial funtorial interpretation and the di�erential interpretation

||·||X over it, for some family X of 2-ells. They form a polygraphi interpretation that is

onservative but that has no general reason to be ompatible with any 3-ell.

We reall the following theorem:

Theorem 2.27 ([18℄). If a 3-polygraph has a polygraphi interpretation whih is stritly

ompatible with all of its 3-ells, then it terminates.

Proof. By appliation of Proposition 2.21, one knows that ∂(s2F ) > ∂(t2F ) holds for every
elementary 3-ell F . Furthermore, these are maps with values into N. Sine there is no

in�nite stritly dereasing sequene of suh maps for the pointwise order, one onludes

that P must terminate.

In what follows, we use Theorem 2.27 in several steps, thanks to the following result:

Proposition 2.28. Let P be a 3-polygraph and let X be a set of 3-ells of P. Let us

assume that there exists a ompatible polygraphi interpretation on P whose restrition to X
is stritly ompatible. Then P terminates if and only if P − X does.

Proof. If P terminates, its redution graph has no in�nite path. Sine it ontains the

redution graph of the 3-polygraph P−X, the latter does not have any in�nite path either.

Hene P − X terminates.

Conversely, let us assume that P does not terminate. Then there exists an in�nite

sequene (Fn)n∈N of elementary 3-paths in P suh that, for every n ∈ N, Fn and Fn+1 are

omposable. The polygraphi interpretation is ompatible, hene one an apply Proposition

2.21 to get the following in�nite sequene of inequalities in N:

∂(s2F0) ≥ ∂(t2F0) = ∂(s2F1) ≥ (· · · ) = ∂(s2Fn) ≥ ∂(t2Fn) = ∂(s2Fn+1) ≥ (· · · )

Furthermore, for every n ∈ N suh that Fn ∈ 〈X〉, one has a strit inequality ∂(s2Fn) >
∂(t2Fn), sine the polygraphi interpretation is stritly ompatible with every 3-ell of X.

Hene, there are only �nitely many n in N suh that Fn is in 〈X〉: otherwise, one ould

extrat, from (∂(s2Fn))n∈N, an in�nite, stritly dereasing sequene of maps with values

in N. Thus, there exists some n0 ∈ N suh that (Fn)n≥n0
is an in�nite path in the redution

graph of P − X: this means that P − X does not terminate.

Example 2.29. Let us onsider the polygraphi programs for division and fusion sort, given

in Examples 1.18 and 1.19. We have seen that eah one admits a ompatible polygraphi

interpretation that is stritly ompatible with their omputation 3-ells. Furthermore,

as proved later, the struture 3-ells, alone, terminate. Thus Proposition 2.28 gives the

termination of both polygraphi programs.

Atually, in what omes next, we produe a standard di�erential interpretation that is

stritly ompatible with struture 3-ells. However, in general, it is not ompatible, even

in a non-strit way, with omputation 3-ells: informally, eah appliation of suh a ell

an inrease the "struture heat". The purpose of the rest of this setion is to bound this

potential augmentation.
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Lemma 2.30. Let P be a 3-polygraph equipped with a polygraphi interpretation (ϕ, ∂).
Then, for every 2-path f in P and every x in ϕ(s1f), the following inequality holds in N:

∂f(x) ≤
∑

∈P2

||f || · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

.

Remark 2.31. Let us note that we apply ∂ to arguments ∂ϕf(x) that are not neessarily

in its domain. In that ase, one onsiders an extension of ∂ sending x to ∂ (y), where y

is the maximum element of the set ϕ(s1 ) that is below x.

Proof. We proeed by indution on the size of the 2-path f . Let us assume that f is

degenerate. Then one has ||f || = 0 for every 2-ell and, sine ∂ is a di�erential

interpretation, ∂f = 0. Hene both sides of the sought inequality are equal to 0.
Now, let us onsider an elementary 2-path f . One deomposes f into u ⋆0 ⋆0 v,

where is a 2-ell and u and v are 1-paths. Then ||f || is 1 when is and 0 otherwise.

Let us �x x, y and z respetively in ϕ(u), ϕ(s1 ) and ϕ(v). Using the di�erential relations

of ∂ and ∂ϕ, one gets ∂f(x, y, z) = ∂ (y) and ∂ϕf(x, y, z) = ∂ϕ (y). If has valene

(m,n) and y = (y1, . . . , ym), one uses the de�nition of ∂ϕ to get, for every i ∈ {1, . . . ,m}:

∂ϕ (y) = max
{

µm(y), µn ◦ ϕ( )(y)
}

≥ yi.

Then one omputes:

∑

∈P2

||f || · ∂
(

∂ϕf(x, y, z), . . . , ∂ϕf(x, y, z)
)

= ∂
(

∂ϕ (y), . . . , ∂ϕ (y)
)

≥ ∂ (y1, . . . , ym)

= ∂f(x, y, z).

Finally, let us �x a non-zero natural number N and assume that the property holds for every

2-path of size at most N . We onsider a 2-path f of size N +1: there exists a deomposition

f = g⋆1 h where g and h are 2-paths of size at most N . Then, using the di�erential relations

of ||·|| , for any 2-ell , and of ∂ϕ, one gets:

||f || = ||g|| + ||h|| and ∂ϕ(f) = max { ∂ϕg, ∂ϕh ◦ ϕ(g) } .

We �x a x in ϕ(s1f) and we ompute:

∂f(x) = ∂(g ⋆1 h)(x)

= ∂g(x) + ∂h ◦ ϕ(g)(x)

≤
∑

∈P2

||g|| · ∂
(

∂ϕg(x), . . . , ∂ϕg(x)
)

+
∑

∈P2

||h|| · ∂
(

∂ϕh ◦ ϕ(g)(x), . . . , ∂ϕh ◦ ϕ(g)(x)
)

≤
∑

∈P2

||g|| · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

+
∑

∈P2

||h|| · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)
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We fatorize the right-hand side to onlude the proof:

∂f(x) ≤
∑

∈P2

(

||g|| + ||h||
)

· ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

=
∑

∈P2

||f || · ∂
(

∂ϕf(x), . . . , ∂ϕf(x)
)

.

Proposition 2.32. Let P be a 3-polygraph, let α be a 3-ell of P and let F be an elementary

3-path in 〈α〉. One assumes that P is equipped with a polygraphi interpretation (ϕ, ∂) suh

that ϕ is ompatible with and onservative on α. Then, for every x ∈ ϕ(s1F ), the following

inequality holds in Z:

∂(t2F )(x) − ∂(s2F )(x) ≤
∑

∈P2

||t2(α)|| · ∂
(

∂ϕ(s2F )(x), . . . , ∂ϕ(s2F )(x)
)

.

Proof. Sine F is a 3-path of size 1 in 〈α〉, one an deompose s2F and t2F as follows:

g

s2F = u vs2α

f

and t2F = u vt2α

f

g

.

Let us denote by p, q and m the respetive sizes of u, v and s1F . The map ϕ(f) takes

its values in a part of N
p+m+q

: we deompose it into three maps denoted by ϕ1(f), ϕ2(f)
and ϕ3(f), with the same domain and respetively taking their values in parts of N

p
, N

m

and N
q
. Let us �x a x ∈ ϕ(s1F ). The funtorial and di�erential relations give:

∂(s2F )(x) = ∂f(x) + ∂(s2α) ◦ ϕ2(f)(x) + ∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

.

With the same arguments, one gets the same deomposition for ∂(t2F ), with s2α replaed

by t2α. Thus, the following holds in Z:

∂(t2F )(x) − ∂(s2F )(x) = ∂(t2α) ◦ ϕ2(f)(x) − ∂(s2α) ◦ ϕ2(f)(x)

+ ∂g
(

ϕ1(f)(x), ϕ(t2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

− ∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ ϕ2(f)(x), ϕ3(f)(x)
)

.

Let us prove that ∂(t2F )(x)−∂(s2F )(x) ≤ ∂(t2α)◦ϕ2(f)(x) holds. First, one has ∂(s2α) ≥ 0.
Moreover, ϕ is ompatible with α, whih means that ϕ(s2α) ≥ ϕ(t2α) holds; sine the

map ∂g is monotone, the following holds in N:

∂g
(

ϕ1(f)(x), ϕ(s2α) ◦ϕ2(f)(x), ϕ3(f)(x)
)

≥ ∂g
(

ϕ1(f)(x), ϕ(t2α) ◦ϕ2(f)(x), ϕ3(f)(x)
)

.

It remains to bound ∂(t2α) ◦ ϕ2(f)(x). One applies Lemma 2.30 to t2(α) to get:

∂(t2α) ◦ ϕ2(f)(x) ≤
∑

∈P2

||t2(α)|| · ∂
(

∂ϕ(t2α) ◦ ϕ2(f)(x), . . . , ∂ϕ(t2α) ◦ ϕ2(f)(x)
)

.

By assumption, ϕ is onservative on α, thus ∂ϕt2(α) ◦ϕ2(f)(x) ≤ ∂ϕs2(α) ◦ϕ2(f)(x) holds.
Moreover, using the di�erential properties satis�ed by ∂ϕ, one gets ∂ϕs2(α) ◦ ϕ2(f)(x) ≤

∂ϕ(s2F ). One onludes by invoking the monotony of ∂ .
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3. Complexity of polygraphi programs

In this setion, we speialize polygraphi interpretations to polygraphi programs to get

information on their omplexity. In partiular, we introdue additive polygraphi interpreta-

tions and use them as an estimation of the size of values. This way, we give bounds on the

size of omputations, with respet to the size of the arguments. We onlude this work

with a haraterisation of a lass of polygraphi programs that ompute exatly the fptime

funtions.

3.1. Additive funtorial interpretations and the size of values.

De�nition 3.1. Let P be a polygraphi program. One says that a funtorial interpretation ϕ
of P is additive when, for every onstrutor 2-ell of arity n, there exists a non-zero natural

number c suh that, for every (x1, . . . , xn) in ϕ(s1 ), the following equality holds in N:

ϕ( )(x1, . . . , xn) = x1 + · · · + xn + c .

In that ase, one denotes by γ the greatest of these numbers, i.e., :

γ = max
{

c , ∈ P
C
2

}

.

A polygraphi interpretation is additive when its funtorial part is.

Example 3.2. The funtorial interpretations we have built for the polygraphi programs D

and F are additive. In both ases, γ is 1.

Lemma 3.3. Let ϕ be an additive funtorial interpretation of a polygraphi program P and

let t be a value with oarity 1. Then the following equality holds in N:

ϕ(t) =
∑

∈PC
2

||t|| · c .

Proof. Let us prove this result by indution on the size of the 2-path t. There is no degenerate
value with oarity 1. If t is an elementary value with oarity 1, then t is a onstrutor 2-ell

with arity 0. Sine ϕ is additive, one has ϕ( ) = c . Moreover, ||t|| is 1 when =
holds and 0 otherwise, yielding the equality one seeks.

Now, let us �x a non-zero natural number N and assume that the result holds for every

value with oarity 1 and size at most N . Let us �x a value t with oarity 1 and size N + 1.
Then t admits a deomposition t =

(

t1 ⋆0 · · · ⋆0 tn
)

⋆1 , where is a onstrutor 2-ell
with arity n and eah ti, i ∈ {1, . . . , n}, is a value with oarity 1 and size at most N . As a

onsequene, for every onstrutor 2-ell , one has:

||t|| =

{

||t1|| + · · · + ||tn|| + 1 if = ,

||t1|| + · · · + ||tn|| otherwise.
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Finally, one omputes:

ϕ(t) = ϕ( ) ◦
(

ϕ(t1) × · · · × ϕ(tn)
)

from the funtorial relations of ϕ,

= ϕ(t1) + · · · + ϕ(tn) + c sine ϕ is additive,

=
∑

∈PC
2

(

||t1|| + · · · + ||tn||
)

· c + c by indution hypothesis

=
∑

∈PC
2

||t|| · c from previous remark.

Proposition 3.4. Let ϕ be an additive funtorial interpretation of a polygraphi program P.

Then, for every value t with oarity 1, the inequalities ||t|| ≤ ϕ(t) ≤ γ ||t|| hold in N. As

a onsequene, for every value t, one has ν(t) ≤ ϕ(t) ≤ γν(t), where ν is the funtorial

interpretation introdued in Example 2.6.

Proof. Let us assume that t is a value with oarity 1. From Lemma 3.3, one has:

ϕ(t) =
∑

∈PC
2

||t|| · c .

By additivity of ϕ and by de�nition of γ, one has 1 ≤ c ≤ γ for every onstrutor 2-ell .

One onludes by using the following equality, that holds sine t is in
〈

PC
2

〉

:

||t|| =
∑

∈PC
2

||t|| .

When t1, . . . , tn are values with oarity 1 and when t = t1 ⋆0 · · · ⋆0 tn, one onludes thanks
to the equalities ϕ(t) =

(

ϕ(t1), . . . , ϕ(tn)
)

and ν(t) =
(

||t1|| , . . . , ||tn||
)

.

Lemma 3.5. Let ϕ be an additive funtorial interpretation of a polygraphi program P. For

every value t with oarity 1, the equality ∂ϕt = ϕ(t) holds. As a onsequene, for every

value t with oarity n, one has ∂ϕt = µn ◦ ϕ(t).

Proof. Let us proeed by indution on the size of t. If is a onstrutor 2-ell with arity 0,

then the equality holds by de�nition of ∂ϕ .

Now, let us �x a non-zero natural number N and assume that the result holds for every

value with oarity 1 and size at most N . Let us onsider a value t with oarity 1 and size

N + 1. One deomposes t into t = (t1 ⋆0 · · · ⋆0 tn) ⋆1 , with a onstrutor 2-ell and
where ti is a value with oarity 1 and size at most N , for every i ∈ {1, . . . , n}. Using the

di�erential relations of ∂ϕ, one gets:

∂ϕt = max
{

∂ϕ(t1), . . . , ∂ϕ(tn), ∂ϕ

(

ϕ(t1), . . . , ϕ(tn)
) }

.

The de�nition of ∂ϕ gives:

∂ϕ

(

ϕ(t1), . . . , ϕ(tn)
)

= max
{

ϕ(t1), . . . , ϕ(tn), ϕ( )
(

ϕ(t1), . . . , ϕ(tn)
) }

.

Sine ϕ is additive, ϕ( )
(

ϕ(t1), . . . , ϕ(tn)
)

is greater than every ϕ(ti), whih is ∂ϕ(ti)
by indution hypothesis applied to ti. Thus one gets the following equality and uses the

funtorial relations of ϕ to onlude:

∂ϕt = ϕ( )
(

ϕ(t1), . . . , ϕ(tn)
)

.
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Finally, let us onsider a value t with oarity n. One denotes by (t1, . . . , tn) the family of

values with oarity 1 suh that t = t1 ⋆0 · · · ⋆0 tn holds. One invokes the di�erential relations

of ∂ϕ to get the equality ∂ϕt = max
{

∂ϕ(t1), . . . , ∂ϕ(tn)
}

. One uses the indution hypothesis

on eah ti and onludes, thanks to the funtorial relations satis�ed by ϕ.

Proposition 3.6. Let ϕ be an additive funtorial interpretation on a polygraphi program P.

For every funtion 2-ell and every value t of type s1( ), one has ∂ϕ(t ⋆1 ) = ∂ϕ ◦
ϕ(t).

Proof. Let us assume that has valene (m,n). One uses the di�erential relations of ∂ϕ

to produe:

∂ϕ(t ⋆1 ) = max
{

∂ϕt, ∂ϕ ◦ ϕ(t)
}

.

But, by de�nition of ∂ϕ, one has ∂ϕ ◦ϕ(t) ≥ µm ◦ϕ(t). There remains to use Lemma 3.5

on t to get ∂ϕt = µn ◦ ϕ(t).

Notation 3.7. Let be a funtion 2-ell with arity m in a polygraphi program P,

equipped with an additive funtorial interpretation ϕ. Thereafter, we denote by M the

map from N
m
to N de�ned by:

M (x1, . . . , xm) = ∂ϕ

(

γx1, . . . , γxm

)

.

The next result uses the map M and the size of the initial arguments to bound the size

of intermediate values produed during omputations, hene of the arguments of potential

reursive alls.

Proposition 3.8. Let P be a polygraphi program, equipped with an additive, ompatible

and onservative funtorial interpretation ϕ. Let be a funtion 2-ell and let t be a value

of type s1 . Then, for every 3-path F with soure t ⋆1 , the following inequality holds

in N:

∂ϕ(t2F ) ≤ M ◦ ν(t).

Proof. The funtorial interpretation ϕ is ompatible and onservative: by Proposition 2.24,

we know that ∂ϕ(t2F ) ≤ ∂ϕ(t ⋆1 ) holds. Sine ϕ is additive, one may use Proposition 3.6

to produe the equality ∂ϕ(t ⋆1 ) = ∂ϕ ◦ ϕ(t). Furthermore, Proposition 3.4 gives

ϕ(t) ≤ γν(t): one argues that ∂ϕ is monotone to onlude.

Example 3.9. Applied to Example 1.19, Proposition 3.8 tells us that, given a list t, any
intermediate value produed by the omputation of the sorted list (t) has its size bounded
by M (||t||) = ||t||. This means that reursive alls made during this omputation are

applied to arguments of size at most ||t||.

3.2. Cartesian polygraphi interpretations and the size of struture omputa-

tions. Here we bound the number of struture 3-ells that an appear in a omputation.

For that, we onsider polygraphi interpretations that take speial values on struture 2-ells.

De�nition 3.10. Let P be a polygraphi program. A funtorial interpretation ϕ of P is

said to be artesian when the following onditions hold, for every 1-ells ξ and ζ:

ϕ
(

ξ

)

(x) = (x, x) and ϕ
(

ξ,ζ

)

(x, y) = (y, x).

A polygraphi interpretation is artesian when its funtorial part is artesian and when its

di�erential part sends every onstrutor and struture 2-ell to zero.
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Proposition 3.11. If a funtorial interpretation of a polygraphi program P is artesian,

then it is ompatible with and onservative on all the struture 3-ells.

Proof. Let ϕ be a artesian funtorial interpretation of a polygraphi program P. We start

by omputing the values of ϕ and ∂ϕ on the struture 2-paths, by indution on their size.

This way, one proves that the following equalities hold, for any 1-path u and x ∈ ϕ(u), any
1-ell ξ and y ∈ ϕ(ξ):

ϕ
(

u,ξ

)

(x, y) = (y, x), ϕ
(

ξ,u

)

(y, x) = (x, y),

ϕ
(

u

)

(x) = (x, x), ϕ
(

u

)

(x) = ∗.

Then, when u = ∗, all these 2-paths are degenerate, so that they are sent on 0 by the

di�erential interpretation ∂ϕ. Now, when u is non-degenerate, with x = (x1, . . . , xn), one
gets:

∂ϕ

(

u,ξ

)

(x, y) = max {x1, . . . , xn, y} = ∂ϕ

(

ξ,u

)

(y, x),

∂ϕ

(

u

)

(x) = max {x1, . . . , xn} = ∂ϕ

(

u

)

(x).

Now, we �x a 1-path u, 1-ells ξ, ζ and a onstrutor 2-ell : u → ξ in P. Let us

onsider x ∈ ϕ(u) and y ∈ ϕ(ζ) and hek that the following equalities hold, yielding the

ompatibility of ϕ on struture 3-ells:

ϕ

( )

(x, y) = (y, ϕ(x)) = ϕ

( )

(x, y),

ϕ

( )

(y, x) = (ϕ(x), y) = ϕ

( )

(y, x),

ϕ

( )

(x) = (ϕ(x), ϕ(x)) = ϕ

( )

(x),

ϕ

( )

(x) = ∗ = ϕ
( )

(x).

With the same notations, we now hek the onservativeness of ϕ with the struture 3-ells,
i.e., the ompatibility of ∂ϕ with them:

∂ϕ

( )

(x, y) = max
{

∂ϕ (x), y
}

≥ ∂ϕ

( )

(x, y),

∂ϕ

( )

(y, x) = max
{

∂ϕ( )(x), y
}

≥ ∂ϕ

( )

(y, x),

∂ϕ

( )

= ∂ϕ( ) = ∂ϕ

( )

,

∂ϕ

( )

= ∂ϕ( ) ≥ ∂ϕ

( )

.

De�nition 3.12. Let ϕ be a funtorial interpretation of a polygraphi program P. We

denote by ∂S
ϕ and all struture di�erential interpretation generated by ϕ the di�erential

interpretation of P, over ϕ and into (N,+, 0), that sends every onstrutor and funtion

2-ell to zero and suh that the following hold:

∂S
ϕ (x, y) = xy, ∂S

ϕ (x) = x2, ∂S
ϕ (x) = x.
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Lemma 3.13. Let ϕ be a funtorial interpretation of a polygraphi program P. If ϕ is both

additive and artesian, then ∂S
ϕ is stritly ompatible with all the struture 3-ells of P.

Proof. We start by omputing ∂S
ϕ on the struture 2-paths, by indution on their size:

∂S
ϕ

( )

(x1, . . . , xn, y) = ∂S
ϕ

( )

(y, x1, . . . , xn) = y ·
∑

1≤i≤n xi,

∂S
ϕ

( )

(x1, . . . , xn) =
∑

1≤i≤j≤n xi · xj , ∂S
ϕ

( )

(x1, . . . , xn) =
∑

1≤i≤n xi.

Now, let us �x a onstrutor 2-ell with arity n. Let us onsider x = (x1, . . . , xn) in

ϕ(s1 ). Sine ϕ is additive, one notes that ϕ( )(x) > x1 + · · · + xn holds. Then, given

a y ∈ N − {0}, one heks that the following strit inequalities hold in N − {0}:

∂S
ϕ

( )

(x, y) = y · ϕ( )(x) > y ·
∑

1≤i≤n

xi = ∂S
ϕ

( )

(x, y),

∂S
ϕ

( )

(x, y) = y · ϕ( )(x) > y ·
∑

1≤i≤n

xi = ∂S
ϕ

( )

(x, y),

∂S
ϕ

( )

(x) =
(

ϕ( )(x)
)2

>
∑

1≤i≤j≤n

xi · xj = ∂S
ϕ

( )

(x),

∂S
ϕ

( )

(x) = ϕ( )(x) >
∑

1≤i≤n

xi = ∂S
ϕ

( )

(x).

The following result gives su�ient onditions on a polygraphi interpretation suh that one

does not have to bother with the struture 3-ells to prove termination.

Proposition 3.14. If a polygraphi program admits an additive and artesian polygraphi

interpretation that is stritly ompatible with every omputation 3-ell, then it terminates.

Proof. Let (ϕ, ∂) be a polygraphi interpretation with the required properties. One applies

Proposition 3.11 to get the ompatibility of ϕ with struture 3-ells. Then Lemma 3.13

tells us that (ϕ, ∂S
ϕ ) is stritly ompatible with struture 3-ells: hene Theorem 2.27 yields

termination of PS
3 .

Sine ∂ sends every onstrutor and struture 2-ell to zero, one has ∂(s2α) = ∂(t2α) = 0
for every struture 3-ell α: thus (ϕ, ∂) is ompatible with every struture 3-ell and, by
hypothesis, stritly ompatible with every other 3-ell. One applies Proposition 2.28 to

onlude.

De�nition 3.15. Let P be a polygraphi program. One denotes by K the maximum number

of struture 2-ells one �nds in the targets of omputation 3-ells:

K = max
{

||t2(α)||
PS

2

, α ∈ P
R
3

}

.

Let ϕ be an additive funtorial interpretation of P. For every funtion 2-ell with arity m,

one de�nes S as the map from N
m
to N given by:

S (x1, . . . , xm) = K · M2 (x1, . . . , xm).

The following lemma proves that, during a omputation, if one applies a omputation 3-ell,
then the struture heat inrease is bounded by a polynomial in the size of the arguments.
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Lemma 3.16. Let P be a polygraphi program, equipped with an additive, artesian, om-

patible and onservative funtorial interpretation ϕ. Let be a funtion 2-ell and t be a

value of type s1( ). Let f and g be 2-paths suh that t ⋆1 redues into f whih, in turn,

redues into g by appliation of a omputation 3-ell α. Then, the following inequality holds

in Z:

∂S
ϕg − ∂S

ϕf ≤ S ◦ ν(t).

Proof. Sine ϕ is ompatible and onservative, one an apply Proposition 2.32 on the 3-path
from f to g, to get the following inequality:

∂S
ϕg − ∂S

ϕf ≤
∑

∈P2

||t2(α)|| · ∂S
ϕ

(

∂ϕ(f), . . . , ∂ϕ(f)
)

.

By de�nition of ∂S
ϕ , one has ∂S

ϕ = 0 exept when is a struture 2-ell. Thus one gets:

∂S
ϕg − ∂S

ϕf

≤ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f), ∂ϕ(f)
)

+ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f)
)

+ ||t2(α)|| · ∂S
ϕ

(

∂ϕ(f)
)

= ||t2(α)|| ·
(

∂ϕ(f)
)2

+ ||t2(α)|| ·
(

∂ϕ(f)
)2

+ ||t2(α)|| · ∂ϕ(f)

≤ ||t2(α)||
PS

2

·
(

∂ϕ(f)
)2

≤ K ·
(

∂ϕ(f)
)2

.

Finally, we reall that ϕ is additive, ompatible and onservative: an appliation of Proposi-

tion 3.8 to the 3-path with soure t⋆1 and target f yields ∂ϕ(f) ≤ M ◦ν(t) and onludes
the proof.

Example 3.17. For the polygraphi program of Example 1.19, we have K = 1. The

polynomials bounding the struture interpretation inrease after appliation of one of the

omputation 3-ells of this polygraphi program are:

S (x) = x2, S (x) = x2, S (x, y) = (x + y − 1)2.

3.3. The size of omputations.

De�nition 3.18. Let P be a polygraphi program, with an additive polygraphi interpreta-

tion (ϕ, ∂). For every funtion 2-ell with arity m, one denotes by P and by Q the

maps from N
m
to N de�ned by:

P (x1, . . . , xm) = ∂
(

γx1, . . . , γxm

)

,

Q (x1, . . . , xm) = P (x1, . . . , xm) ·
(

1 + S (x1, . . . , xm)
)

.

The following result bounds the number of omputation 3-ells in a redution 3-path, with
respet to the size of the arguments.

Proposition 3.19. Let P be a polygraphi program, equipped with an additive and artesian

polygraphi interpretation (ϕ, ∂) whih is stritly ompatible with every omputation 3-ell.
Let be a funtion 2-ell and t be a value of type s1( ). Then, for every 3-path F with

soure t ⋆1 , the following inequality holds:

|||F |||
PR

3

≤ P ◦ ν(t).



30 G. BONFANTE AND Y. GUIRAUD

Proof. If F is degenerate, then |||F |||
PR

3

= 0 holds. Otherwise, the 3-path F deomposes

this way:

F = H0 ⋆2 G1 ⋆2 H1 ⋆2 G2 ⋆2 · · · ⋆2 Gk ⋆2 Hk,

where eah Gi is elementary in

〈

PR
3

〉

and eah Hj lives in
〈

PS
3

〉

. Hene |||F |||
PR

3

= k. Sine

the polygraphi interpretation is artesian, it is ompatible with every struture 3-ell, so
that one has ∂(s2Hj) ≥ ∂(t2Hj), for every j ∈ {0, . . . , k}. Sine it is also stritly ompatible

with every omputation 3-ell, one applies Proposition 2.21 to get the following hain of

(in)equalities, for every i ∈ {0, . . . , k − 1}:

∂(s2Hi) ≥ ∂(t2Hi) = ∂(s2Gi) > ∂(t2Gi) = ∂(s2Hi+1).

By indution on i, one proves the following hain of (in)equalities:

∂(t ⋆1 ) = ∂(s2G1) > ∂(s2G2) > · · · > ∂(s2Gk) > ∂(t2Gk).

Furthermore we have ∂(t2Gk) ≥ 0 and, onsequently:

|||F |||
PR

3

≤ ∂(t ⋆1 ).

Finally, let us bound ∂(t ⋆1 ), whih is equal to ∂ ◦ϕ(t) + ∂t, thanks to the di�erential

relations of ∂. But (ϕ, ∂) is artesian, yielding ∂t = 0, and Proposition 3.4 tells us that

ϕ(t) ≤ γν(t) holds. One uses the de�nition of P to onlude.

Proposition 3.20. Let P be a polygraphi program, equipped with an additive and artesian

polygraphi interpretation (ϕ, ∂) whih is stritly ompatible with and onservative on every

omputation 3-ells. Let be a funtion 2-ell and let t be a value of type s1 . Then, for

every 3-path F with soure t ⋆1 , the following inequality holds:

|||F ||| ≤ Q ◦ ν(t).

Proof. If |||F ||| = 0, then the inequality does hold. Otherwise, there exists a 3-ell that we
an apply to the starting 2-path t ⋆1 ; moreover, this is a omputation 3-ell sine no

struture 3-ell an be applied to suh a 2-path. Hene the 3-path F deomposes this way:

F = G1 ⋆2 H1 ⋆2 G2 ⋆2 · · · ⋆2 Gk ⋆2 Hk,

where eah Gi is elementary in

〈

PR
3

〉

and eah Hj is in
〈

PS
3

〉

. As a onsequene, we have:

|||F ||| = k + |||H1||| + · · · + |||Hk||| .

Furthermore k = |||F |||
PR

3

holds and, thus, so does k ≤ P ◦ν(t) thanks to Proposition 3.19.

We prove that the following inequality holds to onlude:

|||H1||| + · · · + |||Hk||| ≤ k ·
(

S ◦ ν(t)
)

.

Towards this goal, let us �x an i ∈ {1, . . . , k}. Sine ∂S
ϕ is stritly ompatible with every

struture 3-ell, one gets from Proposition 2.21:

|||Hi||| + ∂S
ϕ(t2Hi) ≤ ∂S

ϕ (s2Hi).

Furthermore, from Lemma 3.16, one knows that the following inequality holds:

∂S
ϕ(t2Gi) ≤ ∂S

ϕ(s2Gi) + S ◦ ν(t).

Sine t2Gi = s2Hi holds, one has:

|||Hi||| + ∂S
ϕ(t2Hi) ≤ ∂S

ϕ(s2Gi) + S ◦ ν(t).
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Or, written di�erently:

|||Hi||| ≤ ∂S
ϕ(s2Gi) − ∂S

ϕ(t2Hi) + S ◦ ν(t).

One sums this family of k inequalities, one for every i in {1, . . . , k}, to produe:

|||H1||| + · · · + |||Hk||| ≤
k
∑

i=1

∂S
ϕ(s2Gi) −

k
∑

i=1

∂S
ϕ(t2Hi) + k · S ◦ ν(t).

By hypothesis, one has s2G1 = t ⋆1 , t2Hk = t2F and, for every i ∈ {1, . . . , k}, t2Hi =
s2Gi+1, so that the following inequality holds:

|||H1||| + · · · + |||Hk||| ≤ ∂S
ϕ(s2F ) − ∂S

ϕ(t2F ) + k · S ◦ ν(t).

Finally, one argues that both ∂S
ϕ(t ⋆1 ) = 0 and ∂S

ϕ(t2F ) ≥ 0 hold by de�nition of ∂S
ϕ .

Example 3.21. Let us ompute these bounding maps for the fusion sort funtion 2-ell
of the polygraphi program F:

P (2x + 1) = 2x2 + 1 and Q (2x + 1) = (2x2 + 1) ·
(

1 + (2x + 1)2
)

.

Let us �x a list [i1; . . . ; in] of natural numbers. One an hek that, in F, this list is

represented by a 2-path t suh that ϕ(t) = ||t|| = 2n + 1. The polynomial P tells us that,

during the omputation of the sorted list

q y
(t), there will be at most 2n2 + 1 appliations

of omputation 3-ells. The polynomial Q bounds the total number of 3-ells of any type.

For example, when n is 2, one omputes

q y
(t) by building a 3-path of size at most

Q (5) = 234, ontaining no more than P (5) = 9 omputation 3-ells. One an hek that

the 3-path presented in Example 1.28 is (way) below these bounds: it is made of seven

3-ells, six of whih are of the omputation kind.

3.4. Polygraphi programs and polynomial-time funtions.

De�nition 3.22. Let P be a polygraphi program. A di�erential interpretation ∂ of P is

polynomial when, for every funtion 2-ell , the map ∂ is bounded by a polynomial. A

funtorial interpretation ϕ of P is polynomial when ∂ϕ is. A polygraphi interpretation is

polynomial when both its funtorial part and di�erential part are.

We denote by P the set of polygraphi programs whih are on�uent and omplete

and whih admit an additive, artesian and polynomial polygraphi interpretation that is

onservative on and stritly ompatible with their omputation 3-ells.

Example 3.23. As a onsequene of previous results, the two polygraphi programs D,

omputing eulidean division, and F, omputing the fusion sort of lists, are in P.

De�nition 3.24. Let us denote by N the polygraphi program with the following ells:

(1) It has one 1-ell n.
(2) Its 2-ells are the three possible struture 2-ells plus:

(a) Construtor 2-ells: for zero and for the suessor.

(b) Funtion 2-ells: for addition and for multipliation.

(3) Its 3-ells are the eight struture 3-ells plus the following omputation 3-ells:

⇛⇛ ⇛ ⇛
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Proposition 3.25. The polygraphi program N is in P and it omputes the addition and

multipliation of natural numbers.

Proof. The polygraphi program N is orthogonal, hene loally on�uent, and omplete.

Furthermore, the following hold:

JnK ≃ N,
q y

(m,n) = m + n,
q y

(m,n) = mn.

Then, one heks that the following polygraphi interpretation has all the required properties:

ϕ(n) = N − {0} , c = c = 1, ϕ( )(x, y) = x + y, ϕ( )(x, y) = xy,

∂ (x, y) = x and ∂ (x, y) = (x + 1)y.

Remark 3.26. So N omputes addition and multipliation of natural numbers. As we have

seen, it also omputes dupliation and permutation on them. As a onsequene, for every

polynomial P in N[x], one an hoose a 2-path P
in N suh that

q
P

y
is P . Moreover, by

indution, one proves that ϕ( P ) = P and that ∂ P
is bounded by a polynomial in N[x].

Theorem 3.27. The polygraphi programs of P ompute exatly the fptime funtions.

Proof. The fat that a funtion omputed by a polygraphi program in P is in fptime

is a onsequene of the results of Proposition 3.20. Indeed, it proves that the size of any

omputation of

q y
is bounded by Q applied to the size of the arguments: from the

polynomial assumption and the de�nition of Q , this map is itself bounded by a polynomial.

Moreover eah 3-ell appliation modi�es only �nitely many 2-ells: hene the sizes of the

2-paths remain polynomial all along the omputation. Furthermore, any step of omputation

an be done in polynomial time with respet to the size of the urrent 2-path. Indeed, it

orresponds to �nding a pattern and, then, replae it by another one: it is just a reordering

of some pointers with a �nite number of memory alloations. So, the omputation involves

a polynomial number of steps, eah of whih an be performed in polynomial time. Thus,

the normalization proess an be done in polynomial time.

Conversely, let f : 〈Σ〉 → 〈Σ〉 be a funtion of lass fptime. This means that there

exists a Turing mahine M = (Σ, Q, q0, qf , δ) and a polynomial P in N[x] suh that the

mahine M omputes f and, for any word w of length n in 〈Σ〉, the number of transition

steps required by M to ompute f(w) is bounded by P (n). We extend the polygraphi

program N into P(M, P ), by adding the following extra ells, adapted from the ones of the

polygraphi Turing mahine P(M) used in the proof of Theorem 1.30, in order to use P as

a lok:

(1) An extra 1-ell w.
(2) Extra 2-ells inlude the �ve new struture 2-ells plus:

(a) Construtor 2-ells: the empty word : ∗ ⇒ w and eah letter

a : w ⇒ w of Σ.

(b) Funtion 2-ells: the main : w ⇒ w for f , plus the modi�ed

q a
, q ∈ Q and

a ∈ Σ, now from n ⋆0 w ⋆0 w to w, plus an extra size funtion : w ⇒ n.

(3) Extra 3-ells inlude the new struture ones plus:

(a) The omputation 3-ells for the auxiliary funtion :

⇛
a

⇛

(b) Timed versions of the omputation 3-ells for the Turing mahine:
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b c c

b c

P

c

both when δ(q1, a) = (q2, c, L)

⇛

⇛ ⇛

⇛

⇛

⇛

both when δ(q1, a) = (q2, c, R)

aq2 b

qf a

q0 ♯

q1 a

q1 a q2 b q1 a ♯

q2 ♯q1

q2

One heks that P(M, P ) is orthogonal and omplete. We equip it with the polygraphi

interpretation based on the one de�ned on N in the proof of Proposition 3.25, extended

with the following values:

c = c a = 1,

ϕ( )(x) = x, ϕ( q a )(x, y, z) = x + y + z, ϕ( )(x) = P (x) + x + 1,

∂ (x) = ∂ q a (x, y, z) = x, ∂ (x) = ∂ P (x) + P (x) + x + 1.

One heks that this polygraphi interpretation is additive, artesian, polynomial, ompati-

ble with and onservative on all the omputation 3-ells. Hene, P(M, P ) is a polygraphi

program in P. Furthermore, one has JnK ≃ N and JwK ≃ 〈Σ〉. We also note that, among

funtions omputed by P(M, P ), one proves that
q y

: JwK → JnK is the length funtion.

The four middle families of omputation 3-ells of N are one again in bijetion with

the rules de�ning the transition relation of the Turing mahine M. Hene, the on�guration

(q, a, wl, wr) redues into (q′, a′, w′
l, w

′
r) in k ∈ N steps if and only if, for any n ≥ k, one has:

(

n ⋆0 wl ⋆0 wr

)

⋆1 q a ⇛

(

n − k ⋆0 w′
l ⋆0 w′

r

)

⋆1 q′ a′ .

Finally, let us �x a word w of length n in 〈Σ〉. The Turing mahine omputes f , so that

(q0, ♯, e, w) redues into a unique on�guration (qf , a, v, f(w)), after a �nite number k of

transition steps. Then we hek the following hain of equalities, yielding

q y
= f :

q y
(w) =

r
q0 ♯

z(
P (n) ⋆0 ⋆0 w

)

=
r

qf a

z(
P (n) − k ⋆0 v ⋆0 f(w)

)

= f(w).

Future diretions

Polygraphi programs. The de�nition we have hosen for this study stays lose to the one

of �rst-order funtional programs. We shall explore generalization along di�erent diretions.

We think that an important researh trail onerns the understanding of the algebrai

properties of the if-then-else onstrution in polygraphi terms. Towards this goal, we

want to desribe strategies as sets of 4-dimensional ells. The 3-paths will ontain all the

omputational paths one an build when there is no �xed evaluation strategy, while the

strategies and onditions will be represented by the 4-paths, seen as normalization proesses

of 3-paths. In partiular, this setting shall allow us to internalize the test used to ompute the

merge funtion in the fusion sort algorithm, but also to desribe onditional or probabilisti

rewriting systems.



34 G. BONFANTE AND Y. GUIRAUD

On another point, in the polygraphs we onsider here, we have �xed a sublayer made

of permutations, dupliations and erasers, together with natural polygraphi interpretations

for them. However, one an see them as a speial kind of funtion 2-ells. Thus, we shall

de�ne a notion of hierarhial programs, where one builds funtions level after level, giving

omplexity bounds for them modulo the previously de�ned funtions. However, this does

not prevent us to build modules that a programmer an freely use as sublayers, without

bothering with the omplexity of their funtions: for example, a module that desribes

the evaluation and oevaluation. We think of this module system as a �rst possibility to

integrate polymorphism into the polygraphi setting.

Removing dupliation and erasure from the standard de�nition means that one moves

from a artesian setting to a monoidal one. Aording to a variant of André Joyal's

paradox [29℄, this is neessary to desribe funtions suh as linear maps on �nite-dimensional

vetor spaes. Thus, one should be able to ompute, for example, algebrai ooperations,

suh as the ones found in Jean-Louis Loday's generalized bialgebras [33℄, or automorphisms

of C
n
, suh as the universal Deutsh gate [37℄ of quantum iruits.

Going further, at this step, there will be no reason anymore to onsider onstrutor

2-ells with one output only or values with no output. This way, one ould onsider

algorithms omputing, for example, on braids or knots. However, this also suggests to

hange our notion of funtion 2-ells to some kind of "polygraphi ontext", a notion of

2-path with holes whose algebrai struture has yet to be understood. In partiular, this is

the seond solution we think of to desribe polymorphi types and funtions.

For all this researh, we shall onsider a more abstrat de�nition of polygraphs: they

are speial higher-dimensional ategories, namely the free ones. This formulation, though

leading to a steeper learning urve, shall provide enlightenments about the possibilities one

has when one wants to extend the setting. But, more importantly, this will make easier the

adaptation of tools from algebra for program analysis.

Analysis tools. In future work, we shall use other possibilities provided by polygraphi

interpretations, together with other algebrai tools, to study the omputational properties

of polygraphs.

We restrited interpretations to be polynomials with integer oe�ients. This is lose

to the tools onsidered in [8℄. Following this last paper, a straightforward haraterization

of exponential-time (resp. doubly exponential-time) an be done by onsidering linear (resp.

polynomial) interpretations for onstrutors, instead of additive ones. However, some studies

are muh more promising. First, to turn to polynomials over reals give some proedures to

build interpretations (see [11℄) via Alfred Tarski's deidability [44℄. Seond, we plan to

onsider di�erential interpretations with values in multisets (instead of natural numbers),

to haraterize polynomial-spae omputations.

For eah generalization of the notion of polygraphi program, suh as the ones mentioned

earlier, we shall adapt polygraphi interpretations in onsequene. We think that, if these

generalizations are done in an elegant way, this task will be easier. For example, if one

onsiders "symmetri" values, i.e., values with inputs, one an use a third part of polygraphi

interpretations we have not used here: asending urrents, desribed by a ontravariant

funtorial part, suh as in the original de�nition [18℄.

As pointed earlier, polygraphs are higher dimensional-ategories. Philippe Malbos and

the seond author are urrently adapting the �nite derivation riterion of Craig Squier

[40℄ to them, as was done before for 1-ategories [34℄. We think that this will lead us
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to a omputable neessary ondition to ensure that a funtion admits a �nite, onvergent

polygraphi program that omputes it.

The same ollaboration has more long-term aims: using tools from homologial algebra

for program analysis. For example, the funtorial and di�erential interpretations are speial

ases of, respetively, left modules over the 2-ategory of 2-paths (or bimodules, when there

are asending urrents) and derivations of this same 2-ategory into the given module.

Moreover, a well-hosen ohomology theory yields, in partiular, information on derivations:

thus, one an hope to get new tools suh as negative results about the fat that a given

algorithm lives in a given omplexity lass.

Cat. The main onrete objetive of this projet is to develop a new programming language,

odenamed Cat. In this setting, one will build a program as a polygraph, while using the

algebrai analysis tools we provide to produe erti�ates that guarantee several properties of

the ode, suh as grammatial ones, omputational ones or semantial ones. As in Caml [13℄,

a Cat program will have two aspets: an implementation and an interfae.

In the implementation, one builds the ode, desribing the ells and assembling them

to build paths, i.e., building the data types, the funtions, the omputation rules and the

evaluation strategies. Thanks to the dual nature of polygraphs, one shall be able to perform

this using an environment that is either totally graphial, totally syntatial or some hybrid

possibility between those.

The interfae part ontains all the information the programmer an prove on its ode, in

the form of erti�ates. These guaranteed properties will range from type information, as in

Caml, to polygraphi interpretations proving termination or giving omplexity bounds, to

proofs of semantial properties in the form of polygraphi three-dimensional proofs [19℄. For

all these erti�ates, we shall propose assistants, with tatis that automatize the simpler

tasks and leave the programmer onentrate on the harder parts.

Finally, given suh a polygraphi program, the question of evaluation arises. One an

think of several solutions, whose respetive di�ulty ranges from "feasible" to "siene-�-

tion": �rst, a ompiler or an interpreter into some existing language, suh as Tom [45℄, a task

that has already been started; then, a distributed exeution where eah 2-ell is translated
into a proess, whose behaviour is desribed by the orresponding 3-ells; �nally, onrete
eletroni hips dediated to polygraphi omputation.
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