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Abstract. We consider Presburger arithmetic (PA) extended by scalar multiplication by
an algebraic irrational number α, and call this extension α-Presburger arithmetic (α-PA).
We show that the complexity of deciding sentences in α-PA is substantially harder than in
PA. Indeed, when α is quadratic and r ≥ 4, deciding α-PA sentences with r alternating
quantifier blocks and at most c r variables and inequalities requires space at least
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tower of height r − 3
)
,

where the constants c, K, C > 0 only depend on α, and `(S) is the length of the given α-PA
sentence S. Furthermore deciding ∃6∀4∃11 α-PA sentences with at most k inequalities is
PSPACE-hard, where k is another constant depending only on α. When α is non-quadratic,
already four alternating quantifier blocks suffice for undecidability of α-PA sentences.

1. Introduction

1.1. Main results. Let α be a real number. An α-Presburger sentence (short: an α-PA
sentence) is a statement of the form

Q1x1 ∈ Zn1 . . . Qrxr ∈ Znr Φ(x1, . . . ,xr), (1.1)

where Q1, . . . , Qr ∈ {∀, ∃} are r alternating quantifiers, x1, . . . ,xr are r blocks of integer
variables, and Φ is a Boolean combination of linear inequalities in x1, . . . ,xr with coefficients
and constant terms in Z[α]. As the number r of alternating quantifier blocks and the
dimensions n1, . . . , nr increase, the truth of α-PA sentences becomes harder to decide. In
this paper, we study the computational complexity of deciding α-PA sentences.

Sentences of the form (1.1) have nice geometric interpretations in many special cases. Assume
the formula Φ is a conjunction of linear equations and inequalities, then Φ defines a convex
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polyhedron P defined over Q[α]. For r = 1 and Q1 = ∃, a sentence of the form (1.1) asks
for existence of an integer point in P :

∃x ∈ P ∩ Zn. (1.2)

In a special case of r = 2, Q1 = ∀ and Q2 = ∃, the sentence S can ask whether projections
of integer points in a convex polyhedron P ⊆ Rk+m cover all integer points in another
polyhedron R ⊆ Rk:

∀x ∈ R ∩ Zk ∃y ∈ Zm : (x,y) ∈ P . (1.3)

Here both P and R are defined over Q[α]. When α is rational, the classical problems (1.2)
and (1.3) are repectively known as Integer Programming and Parametric Integer Programming
(see eg. [Schr], [Len], [Kan]). Further variations on the theme and increasing number of
quantifiers allow more general formulas with integer valuations of the polytope algebra. For
a survey of this area, see Barvinok [Bar].

Recall that classical Presburger arithmetic (PA) is the first-order theory of (Z, <,+), intro-
duced by Presburger in [Pre]. When α ∈ Q, then deciding the truth of α-PA sentence is
equivalent to deciding whether or not a PA sentence is true. The latter decision problem has
been studied extensively and we review some of their results below. The focus of this paper
is the case when α is irrational, which is implicitly assumed whenever we mention α-PA.

Let α ∈ Qalg, where Qalg is the field of real algebraic numbers. We think of α ∈ Qalg as being
given by its defining Z[x]-polynomial of degree d, with a rational interval to single out a
unique root. We say that α ∈ Qalg is quadratic if d = 2. Similarly, the elements γ ∈ Z[α] are

represented in the form γ = c0 + c1α+ . . .+ cd−1α
d−1, where c0, . . . , cd−1 ∈ Z. For example,

α =
√

2 is quadratic and given by {α2 − 2 = 0, α > 0}. Thus Z[
√

2] = {a+ b
√

2, a, b ∈ Z}.
For γ ∈ Z[α], the encoding length `(γ) is the total bit length of the ci’s defined above.
Similarly, the encoding length `(S) of an α-PA sentence S is defined to be the total bit
length of all symbols in S, with integer coefficients and constants represented in binary.

The only existing result that directly relates to the complexity of deciding α-PA sentences is
the following theorem due to Khachiyan and Porkolab, which extends Lenstra’s classical
result [Len] on Integer Programming in fixed dimensions.

Theorem 1.1 [KP]. For every fixed n, sentences of the form ∃y ∈ Zn : Ay ≤ b with
A ∈ Qm×n

alg , b ∈ Qm
alg can be decided in polynomial time.

Note that the system Ay ≤ b in Theorem 1.1 can involve arbitrary algebraic irrationals.
This is a rare positive result on irrational polyhedra. Indeed, for a non-quadratic α, this
gives the only positive result on deciding α-PA sentences that we know of.

In this paper we establish that Theorem 1.1 is an exception and in general deciding α-PA
sentences is often substantially harder. We first consider the case of α being quadratic. In
this situation the theory α-PA is decidable, and in this paper we prove both lower and upper
bounds on the complexity of deciding the truth of a given α-PA sentence. In the following
theorems, the constants K,C vary from one context to another.
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Theorem 1.2. Let α ∈ Qalg be a quadratic irrational number, and let r ≥ 1. An α-PA
sentence S with r alternating quantifier blocks can be decided in time at most

K 22 .
. .

2C `(S) (
tower of height r

)
,

where the constants K, C > 0 depend only on α.

In the opposite direction, we have the following lower bound:

Theorem 1.3. Let α ∈ Qalg be a quadratic irrational number, and let r ≥ 4. Then deciding
α-PA sentences with r alternating quantifier blocks and at most c r variables and inequalities
requires space at least:

K 22 .
. .

2C `(S) (
tower of height r − 3

)
,

where the constants c, K, C > 0 only depend on α.

These results should be compared with the triply exponential upper bound and doubly
exponential lower bounds for PA (discussed in Section 1.2). In the borderline case of r = 3,
the problem is especially interesting. We give the following lower bound, which only needs a
few variables:

Theorem 1.4. Let α ∈ Qalg be a quadratic irrational number. Then deciding ∃6∀4∃11 α-PA
sentences with at most K inequalities is PSPACE-hard, where the constant K depends only
on α. Furthermore, for α =

√
2, one can take K = 106.

This should be compared with Grädel’s theorem on ΣP
2 -completeness for ∃∗∀∗∃∗ integer

sentences in PA (also discussed in Section 1.2). The sudden jump from the polynomial
hierarchy in PA is due to the power of irrational quadratics. Specifically, any irrational
quadratic α has an infinite periodic continued fraction, and this allows us to work with
Ostrowski representations of integers in base α. Because of this we are able to code string
relations such as shifts, suffix/prefix and subset, which were not at all possible to define in
PA. Such operations are rich enough to encode arbitrary automata computation, and in fact
Turing Machine computation in bounded space. Section 1.3 further discusses our method.

The situation is even worse when α is a non-quadratic irrational number. In this case α-PA
is undecidable and we prove here that just four alternating quantifier blocks are enough.

Theorem 1.5. Let α ∈ Qalg be a non-quadratic irrational number. Then ∃k∀k∃k∀k α-PA
sentences are undecidable, where k = 20000.

1.2. Previous results. In this paper, we build on earlier related works on certain expansions
of the real ordered additive group. Let Sα := (R, <,+,Z, x 7→ αx). Denote by Tα the first-
order theory of Sα; this is the first-order theory of the real numbers viewed as a Q(α)-vector
space with a predicate for the set of the integers. This theory is an extension of Presburger
Arithmetic, and it is not hard to see that Tα contains an α-PA sentence if only if the α-PA
sentence is true.

It has long been known that Tα is decidable when α is rational. This is arguably due to
Skolem [Sko] and was later rediscovered independently by Weispfenning [W2] and Miller [Mil].
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More recently, Hieronymi [H2] proved that Tα is still decidable when α is quadratic. Thus it
was known that checking α-PA sentences is decidable for quadratic α.

When α is irrational non-quadratic, the theory Tα is undecidable by Hieronymi and Ty-
chonievich [HTy]. This result itself does not imply undecidability of α-PA sentences in
this case, as Tα is a proper extension of α-PA. However, the undecidability of α-PA can
be obtained by a careful analysis of the proof in [HTy]. In Theorem 1.5, we not only give
an explicit proof of this result, but also precisely quantify this result by showing that four
alternating quantifier blocks are enough for undecidability. While our argument is based on
the ideas in [HTy], substantial extra work is necessary to reduce the number of alternations
to four from the lower bound implicit in the proofs in [HTy].

While this paper is the first systematic study of the complexity of decision problems related
to α-PA, there is a large body of work for Presburger arithmetic. A quantifier elimination
algorithm for PA was given by Cooper [Coo] to effectively solve the decision problem.
Oppen [Opp] showed that such sentences can be decided in at most triply exponential time
(see also [RL]). In the opposite direction, a nondeterministic doubly exponential lower
bound was obtained by Fischer and Rabin [FR] (see also [W1]). We also refer the reader to
Berman [Ber] for the precise complexity of Presburger arithmetic. As one restricts the number
of alternations, the complexity of PA drops by roughly one exponent (see [Für, Sca, RL]),
but still remains exponential.

For a bounded number of variables, two important cases are known to be polynomial time
decidable, namely the analogues of (1.2) and (1.3) with rational polyhedra P and R. These
are classical results by Lenstra [Len] and Kannan [Kan], respectively. Scarpellini [Sca]
showed that all ∃n-sentences are still polynomial time decidable for every n fixed. However,
for two alternating quantifiers, Schöning proved in [Schö] that deciding ∃y∀x : Φ(x, y) is
NP-complete. Here Φ is any Boolean combination of linear inequalities in two variables,
instead of those in the particular form (1.3). This improved an earlier result by Grädel
in [Grä], who also showed that PA sentences with m+ 1 alternating quantifier blocks and
m+ 5 variables are complete for the m-th level in the Polynomial Hierarchy PH. In these
results, the number of inequalities (atoms) in Φ is still part of the input, i.e., allowed to vary.

Much of the recent work concerns the most restricted PA sentences for which the number of
alternations (r+ 2), number of variables and number of inequalities in Φ are all fixed. Thus,
the input is essentially a bounded list of integer coefficients and constants in Φ, encoded
in binary. For r = 0, such sentences are polynomial time decidable by Woods [Woo]. For
r = 1, Nguyen and Pak [NP] showed that deciding ∃1∀2∃2 PA-sentences with at most 10
inequalities is NP-complete. More generally, they showed that such sentences with r + 2
alternations, O(r) variables and inequalities are complete for the r-th level in PH. Thus,
limiting the “format” of a PA formula does not reduce the complexity by a lot. This is our
main motivation for the lower bounds in Theorems 1.3 and 1.4 for α-PA sentences.

1.3. Proofs outline. Let S1S be the monadic second order theory of (N,+1), where +1
denotes the usual successor function, and let WS1S be the weak monadic second order theory
of (N,+1), that is the monadic second order logic of (N,+1) in which quantification over
sets is restricted to quantification over finite subsets. The main results of [H2] states that
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for quadratic α, one can decide Tα-sentences by translating them into corresponding S1S-
sentences, and then decide the latter. Since α-PA sentences form a subset of all Tα-sentences,
this method can be used to decide α-PA sentences. Thus, upper complexity bounds for S1S
can theoretically be transferred to deciding α-PA sentences. Moreover, the work in [H2]
also shows that one can translate S1S-sentences into Tα-sentences. However, no efficient
direct translation between Lα-sentence and S1S-sentence was given in [H1, H2]. Ideally, one
would like to do this translation with as few extra alternations of quantifiers as possible. In
Theorems 1.2 and 1.3, we explicitly quantify this translation. We strengthen the result from
[H2] by showing that one can translate α-PA sentences to WS1S-sentences. The translation
then allows to us find upper and lower complexity bounds for deciding α-PA sentences.

The most powerful feature of α-PA sentences is that we can talk about Ostrowski represen-
tation of integers, which will be used throughout the paper as the main encoding tool. We
first obtain the upper bound in Theorem 1.2 by directly translating α-PA sentences into
the statements about automata using Ostrowski encoding and using known upper bounds
for certain decision problems about automata. Next, we show the lower bound for three
alternating quantifiers (Theorem 1.4) by a general argument on the Halting Problem with
polynomial space constraint, again using Ostrowski encoding. We generalize the above
argument to get a lower bound for r ≥ 3 alternating quantifier blocks (Theorem 1.3). For
the latter result, we first translate WS1S-sentences to α-PA sentences with only one extra
alternation, and then invoke a known tower lower bound for WS1S. Finally in the proof of
Theorem 1.5, we again use the expressibility of Ostrowski representation to reduce the upper
bound of the number of alternating quantifier blocks needed for undecidability of α-PA
sentences. The use of Ostrowski representations allows us to replace more general arguments
from [HTy] by explicit computations, and thereby reduce the quantifier-complexity of certain
α-PA sentences.

Notation. We use bold notation like x,y to indicate vectors of variables.

2. Continued fractions and Ostrowski representation

Ostrowski representation and continued fractions play a crucial role throughout this paper.
We recall basic definitions and facts in this subsection. We refer the reader to Rockett and
Szüsz [RS] for more details and proofs.

A finite continued fraction expansion [a0; a1, . . . , ak] is an expression of the form

a0 +
1

a1 + 1
a2+ 1

. . .+ 1
ak

For a real number α, we say [a0; a1, . . . , ak, . . . ] is the continued fraction expansion of α if
α = limk→∞[a0; a1, . . . , ak] and a0 ∈ Z, ai ∈ N>0 for i > 0. For the rest of this subsection,
fix a positive irrational real number α and let [a0; a1, a2, . . . ] be the continued fraction
expansion of α.

Let k ≥ 1. A quotient pk/qk ∈ Q is said to be the k-th convergent of α if pk ∈ N, qk ∈ Z,
gcd(pk, qk) = 1 and

pk
qk

= [a0; a1, . . . , ak].
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It is well known that the convergents of α follow the recurrence relation:

(p−1, q−1) = (1, 0); (p0, q0) = (a0, 1);

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 for n ≥ 1.
(2.1)

This can be written as:(
pn pn−1

qn qn−1

)
= Γ0 · · ·Γn , where Γi =

(
ai 1
1 0

)
. (2.2)

Fact 2.1 [RS, Chapter II.2 Theorem 2]. The set of best rational approximations of α is
precisely the set of all convergents {pk/qk} of α. In other words, for every pk/qk, we have:

∀x, y ∈ Z (0 < y < qk)→ |yα− x| > |qkα− pk|. (2.3)

The k-th difference of α is defined as βk := qkα− pk. We use the following properties of the
k-th difference:

βn > 0 if 2|n, βn < 0 if 2 - n. (2.4)

β0 > −β1 > β2 > −β3 > . . . (2.5)

− βn = an+2βn+1 + an+4βn+3 + an+6βn+5 + . . . ∀n ∈ N. (2.6)

These can be easily proved using (2.1). We now introduce a class of numeration systems
introduced by Ostrowski [Ost].

Fact 2.2. Let X ∈ N. Then X can be written uniquely as

X =
N∑
n=0

bn+1qn. (2.7)

where 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 whenever bn+1 = an+1.

Proof. See [RS, Ch. II-§4].

We refer to (2.7) as the α-Ostrowski representation of X. When α is clear from the context,
we simply say the Ostrowski representation of X. We also denote the coefficients bn+1

in (2.7) by [qn](X). When X is obvious from the context, we just write [qn]. We denote by
Ost(X) the set of qn with [qn](X) > 0.

Observe that a0−α ∈ (−1, 0). Let Iα be the interval
[
a0−α, 1+(a0−α)

)
. Define fα : N→ Iα

to be the function that maps X to αX − U , where U is the unique natural number such
that αX − U ∈ Iα. In other words:

fα(X) = αX − U ⇐⇒ a0 − α ≤ αX − U < 1 + (a0 − α) . (2.8)

Let gα : N→ N be the function that maps X to the natural number U satisfying αX−U ∈ Iα.
The reader can check that αX = fα(X) + gα(X).

Fact 2.3. Let X ∈ N. Then

fα(X) =
∑
n=0

bn+1βn and gα(X) =
∑
n=0

bn+1pn, (2.9)

where the coefficients bn are from (2.7), and fα(N) = {fα(X) : X ∈ N} is a dense subset of
the interval [− 1

ζα
, 1− 1

ζα
).

Proof. See [RS, Th. 1 on p. 25] and [RS, Th. 1 on p. 33].
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2.1. Periodic continued fractions. Lagrange’s theorem states that an irrational number
α is quadratic if and only if it has a periodic continued fraction expansion (see [RS, Chapter
III.1 Theorem 1 and 2]). In this situation, we write

α = [a0; a1, . . . , am, c0, c1, . . . , ckα−1],

where c0, . . . , ckα−1 is the repeating block in the continued fraction expansion with the
minimum period kα.

Let γ = [c0; c1, . . . , ck−1]. It is easy to see that γ = (cα+ d)/(eα+ f) for some c, d, e, f ∈ Z.
Therefore, α-PAs sentences can be expressed in γ-PA sentences and vice versa. Since α is
constant, so are c, d, e and f . Thus, for our complexity purposes, we can always assume that
our quadratic irrational α is purely periodic, i.e.,

α = [a0; a1, . . . , akα−1] (2.10)

with the minimum period kα.

Fact 2.4. Let i ∈ N. There exist ci, di ∈ Z such that for every n ∈ N with kα|n, we have:

(pn+i, qn+i) = ci(pn, qn) + di(pn+1, qn+1).

The coefficients ci, di can be computed in time poly(i).

Proof. By (2.2), we have:(
pn+i+1 pn+i

qn+i+1 qn+i

)
= Γ0 · · · Γn+1 Γn+2 · · ·Γn+i+1 =

(
pn+1 pn
qn+1 qn

)
Γn+2 · · ·Γn+i+1 .

Since Γk+t = Γt for every t ∈ N and kα|n, we have Γn+2 . . .Γn+i+1 = Γ2 · · ·Γi+1. Let
ci, di, c

′
i, d
′
i ∈ Z be such that (

d′i di
c′i ci

)
= Γ2 · · · Γi+1 . (2.11)

This choice immediately gives that(
pn+i+1 pn+i

qn+i+1 qn+i

)
=

(
pn+1 pn
qn+1 qn

)(
d′i di
c′i ci

)
.

Thus (pn+i, qn+i) = ci(pn, qn) + di(pn+1, qn+1). Note that ci, di only depend on i and can
be computed in time poly(i) by (2.11).

Remark 2.5. For i = 0, we have c0 = 1, d0 = 0. For i = 1, we have c1 = 0, d1 = 1.
By (2.11), if we let γi(v, v

′) := civ + div
′ then they follow the recurrence:

γ0(v, v′) = v, γ1(v, v′) = v′, γi(v, v
′) = aiγi−1(v, v′) + γi−2(v, v′), (2.12)

as similar to (2.1).

Fact 2.6. There are µ, ν, µ′, ν ′ ∈ Q such that for all n ∈ N

pn = µqn + µ′qn+kα , qn = νpn + ν ′pn+kα

Proof. From (2.2), for every n ∈ N we have:(
pn
qn

)
= Γ0 Γ1 · · · Γn

(
1
0

)
.
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Since Γi+kα = Γi,(
pn+kα

qn+kα

)
=
(
Γ0 . . .Γkα−1

)
(Γkα · · ·Γn+kα)

(
1
0

)
=
(
Γ0 · · ·Γkα−1

) (
Γ0 · · ·Γn

)(1
0

)
=
(
Γ0 · · ·Γkα−1

)(pn
qn

)
=

(
pkα−1 pkα−2

qkα−1 qkα−2

)(
pn
qn

)
.

Note that pkα−1, qkα−1, pkα−1, qkα−2 do not depend on n. From here we easily get µ, ν, µ′, ν ′

with the desired property.

3. α-Presburger formulas

Fix some α ∈ R. An α-PA formula is of the form

Q1y1 . . . Qryr Φ(y1, . . . ,yr,x),

where Φ is a Boolean combination of linear inequalities in y1 ∈ Zn1 , . . . ,yr ∈ Znr ,x ∈ Zm
with coefficients and constant terms in Z[α] and y1, . . . ,yr,x are integer variables; or any
logically equivalent first-order formula in the language Lα = {+, 0, 1, <, λp : p ∈ Z[α]} where
λp is a unary function symbol for multiplication by p ∈ Z[α]. We will denote a generic
α-PA formula as F (x), where x are the free variables of F , i.e., those not associated with a
quantifier. An α-PA sentence is an α-PA formula without free variables.

Given an α-PA formula F (x) and X ∈ Z|x|, we say F (X) holds (or is true) if the statement
obtained by replacing the free variables in F by X and letting the quantified variables yi
range over Zni , is true. We say that a set S ⊆ Zm is α-PA definable (or an α-PA set) if
there exists an α-PA formula F (x) such that

S = {X ∈ Z|x| : F (X)}.
When α = 0, then a α-PA formula is just a classical PA-formula. Hence 0-PA is just PA,
and therefore decidable. Let Sα = (R, <,+,Z, x 7→ αx). As pointed out in the introduction,
the first-order theory Tα of Sα contains all true α-PA sentence. Since Tα is decidable by
[H2], we have:

Theorem 3.1. Let α be quadratic. Then α-PA is decidable.

The main difference between the situation when α is rational and when it is irrational, is that
when α is irrational, α-PA formulas can express properties of the α-Ostrowski representation
of natural numbers. This increases the computational complexity of the decision procedure
of α-PA in comparison to the one for PA.

3.1. α-PA formulas for working with Ostrowski representation. Let α be an irra-
tional number, not necessarily quadratic. In this section, we will show that various properties
of Ostrowski representations can be expressed using α-PA formulas.

By Fact 2.1 the convergents {pn/qn} of α can be characterized by the best approximation
property. Namely, u/v with v > 1 is a convergent pn/qn for some n ∈ N if and only if

∀w, z (0 < z < v)→ |zα− w| > |vα− u|. (3.1)

Here gcd(u, v) = 1 is implied, since if k = gcd(u, v) > 1, then |αv/k − u/k| < |αv −
u| and 0 < v/k < v. Now consider two consecutive convergents (u, v) = (pn, qn) and
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(u′, v′) = (pn+1, qn+1) for some n ∈ N. For any integers 0 < z < v′ and w, first we have
|zα − w| > |v′α − u′|. If |zα − w| < |vα − u|, then first we must have v < z < v′. Then
among all such pairs (w, z), the one with the minimum |zα−w| must necessarily be another
convergent of α, which is impossible since we assumed that (u, v) and (u′, v′) are consecutive.
Thus, a necessary and sufficient condition for (u, v) and (u′, v′) to be consecutive convergents
is simply:

C∀ (u, v, u′, v′) := 0 < v < v′ ∧ ∀w, z
(
0 < z < v′ →

|zα− w| ≥ |vα− u| > |v′α− u′|
)
.

(3.2)

Note that C∀ is a ∀-formula. More generally, consider the α-PA formula:

C∀ (u0, v0, . . . , uk, vk) := 1 < v0 < v1 < · · · < vk ∧

∀w, z
k∧
i=0

(
0 < z < vi+1 → |zα− w| ≥ |viα− ui| > |vi+1α− ui+1|

)
.

(3.3)

Then C∀ is true if and only if (u0, v0) = (pn, qn), . . . , (uk, vk) = (pn+k, qn+k) for some n with
qn > 1, i.e., k + 1 consecutive convergents of α.

Define the following quantifier-free α-PA formulas:

After(u, v, u′, v′, Z, Z ′) :=
(
−αv + u < αZ − Z ′ < −αv′ + u′

)
∨
(
−αv′ + u′ < αZ − Z ′ < −αv + u

)
.

(3.4)

Ãfter(u, v, u′, v′, Z, Z ′) :=
(
−αv + u− αv′ + u′ < αZ − Z ′ < −αv′ + u′

)
∨
(
−αv′ + u′ < αZ − Z ′ < −αv + u− αv′ + u′

)
.

(3.5)

Fact 3.2. Let u, v, u′, v′ ∈ N and n ∈ N such that (u, v) = (pn, qn) and (u′, v′) = (pn+1, qn+1),
and let Z ∈ N. Then

(i) Ost(Z) ⊆ {qn+1, qn+2, . . . } if and only if After(u, v, u′, v′, Z, Z ′) holds for some Z ′ ∈ N.

(ii) Ost(Z) ⊆ {qn+1, qn+2, . . . } and [qn+1](Z) < an+2 if and only if Ãfter(u, v, u′, v′, Z, Z ′)
holds for some Z ′ ∈ N.

Also Z ′ is uniquely determined by Z if After or Ãfter holds.

Proof. This proof is similar to the proofs of Lemmas 4.6, 4.7 and 4.8 in [H2].

i) Assume n is odd. If Ost(Z) ⊆ {qn+1, qn+2, . . . }, then the α-Ostrowski representation of Z

is Z =
∑N

k=n+1 bk+1qk for some N ≥ n+ 1. From Fact 2.3, we have fα(Z) =
∑N

k=n+1 bk+1βk.
By (2.4), we have have βk > 0 if k is even and βk < 0 if k is odd. Combining this with
bk+1 ≤ ak+1, we obtain

an+3βn+2 + an+5βn+4 + . . . < fα(Z) =
N∑

k=n+1

bk+1βk < an+2βn+1 + an+4βn+3 + . . .

By (2.6), this can be written as −βn+1 < fα(Z) < −βn. By (2.8), we have fα(Z) = αZ−Z ′,
where Z ′ ∈ N is unique such that aZ−Z ′ ∈ Iα. Also note that βn = αv−u and βn+1 = αv′−u′.
So the above inequalities can be written as −αv′+u′ < αZ−Z ′ < −αv+u. When n is even,
the inequalities reverse to −αv+u < αZ−Z ′ < −αv′+u′. Thus Ost(Z) ⊆ {qn+1, qn+2, . . . }
implies After(u, v, u′, v′, Z, Z ′). The converse direction can be proved similarly, using (2.5)
and (2.6).
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ii) The only difference here is that [qn+1](Z) = bn+2 can be at most an+2 − 1. Details are
left to the reader.

The relation v ∈ Ost(X), meaning that v = qn appears in Ost(X), is definable by an
existential α-PA formula:

∃Z1, Z2, Z3 (v ≤ Z1 < v′) ∧ Ãfter(u, v, u′, v′, Z2, Z3) ∧ X = Z1 + Z2 (3.6)

and by a universal α-PA formula:

∀Z1, Z2, Z3

[
(Z1 < v) ∧ After(u, v, u′, v′, Z2, Z3)

]
→ Z1 + Z2 6= X. (3.7)

To see this, note that v /∈ Ost(X) if and only if X = Z1 + Z2 for some Z1, Z2 with
Ost(Z1) ⊆ {q0, q1, . . . , qn−1} and Ost(Z2) ⊆ {qn+1, qn+2, . . . }.
We will need one more quantifier-free α-PA formula:

Compatible(u, v, u′, v′, X, Z, Z ′) := X < v′ ∧ After(u, v, u′, v′, Z, Z ′)

∧
(
X ≥ v → Ãfter(u, v, u′, v′, Z, Z ′)

)
.

(3.8)

Fact 3.3. Let u, v, u′, v′ ∈ N and n ∈ N such that (u, v) = (pn, qn) and (u′, v′) = (pn+1, qn+1),
and let X,Z ∈ N. Then Compatible(u, v, u′, v′, X, Z, Z ′) holds for some Z ′ ∈ N if and only
if

• Ost(X) ⊆ {q0, . . . , qn} (by X < v′),
• Ost(Z) ⊆ {qn+1, qn+2, . . . } (by After),

• if qn ∈ Ost(X), then [qn+1](Z) < an+2 (by Ãfter).

In other words, Compatible is satisfied if and only if Ost(X) and Ost(Z) can be directly
concatenated at the point v = qn to form Ost(X + Z) (see (2.7)).

4. Quadratic irrationals: Upper bound

In this section we prove Theorem 1.2. Let α ∈ R be an irrational quadratic number. We will
show that for every α-PA formula F (x), there is a finite automaton A such that A accepts
precisely those words that are Ostrowski representations of numbers satisfying F . This will
then allow to use automata-based decision procedure to decide α-PA sentence. It should be
emphasized that the tower height in Theorem 1.2 only depends on the number of alternating
quantifiers, but not on the number of variables in the sentence.

4.1. Finite automata and Ostrowski representations. We first remind the reader of
the definitions of finite automata and recognizability. For more details, we refer the reader
to Khoussainov and Nerode [KN]. Let Σ be a finite set. We denote by Σ∗ the set of words
of finite length on Σ.

Definition 4.1. A nondeterministic finite automaton (NFA) A over Σ is a tuple (S, I, T, F ),
where S is a finite non-empty set, called the set of states of A, I is a subset of S, called
the set of initial states, T ⊆ S × Σ× S is a non-empty set, called the transition table of A
and F is a subset of S, called the set of final states of A. An automaton A = (S, I, T, F )
is deterministic (DFA) if I contains exactly one element, and for every s ∈ S and σ ∈ Σ
there is exactly one s′ ∈ S such that (s, σ, s′) ∈ T . We say that an automaton A on Σ
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accepts a word w = wn . . . w1 ∈ Σ∗ if there is a sequence sn, . . . , s1, s0 ∈ S such that sn ∈ I,
s0 ∈ F and for i = 1, . . . , n, (si, wi, si−1) ∈ T . A subset L ⊆ Σ∗ is recognized by A if L
is the set of Σ-words that are accepted by A. We say that L ⊆ Σ∗ is recognizable if L is
recognized by some DFA.

By the size of an automaton, we mean its number of states. It is well known that recogniz-
ability by NFA and DFA are equivalent:

Fact 4.2 [KN, Theorem 2.3.3]. If L is recognized by an NFA of size m, then L is recognized
by a DFA of size 2m.

Let Σ be a set containing 0. Let z = (z1, . . . , zn) ∈ (Σ∗)n and let m be the maximal length
of z1, . . . , zn. We add to each zi the necessary number of 0’s to get a word z′i of length m.
The convolution of z is defined as the word z1 ∗ · · · ∗ zn ∈ (Σn)∗ whose i-th letter is the
element of Σn consisting of the i-th letters of z′1, . . . , z

′
n.

Definition 4.3. A subset X ⊆ (Σ∗)n is called Σ-recognizable if the set{
z1 ∗ · · · ∗ zn : (z1, . . . , zn) ∈ X

}
is Σn-recognizable.

Σ-recognizable sets are closed under Boolean operations and first order quantifiers:

Fact 4.4 [KN, §2.3]. If X1, X2 ⊆ (Σ∗)n are recognized by DFAs of size m1 and m2, respec-
tively, then:

a) Xc
1 is recognized by a DFA of size m1.

b) X1 ∩X2, X1 ∪X2 by DFAs of size m1m2.

Fact 4.5. If Z ⊆ (Σ∗)n1+n2 is recognized by an NFA of size m, then

X = {x ∈ (Σ∗)n1 : ∃y ∈ (Σ∗)n2 (x, y) ∈ Z} and Xc = {x ∈ (Σ∗)n1 : ∀y ∈ (Σ∗)n2 (x, y) ∈ Zc}

are recognized by DFAs of size 2m.

Proof. The set X is recognized by an NFA of size m (see [KN, Theorem 2.3.9]). Thus X
is recognized by an DFA of size 2m by Fact 4.2. It follows from Fact 4.4 that Xc can be
recognized by a DFA of size 2m.

Let α be a quadratic irrational. Since the continued fraction expansion [a0; a1, a2, . . . ] of α
is periodic, it is bounded. Let M ∈ N be the maximum of the ai’s. Set Σα := {0, . . . ,M}.
Recall from Fact 2.2 that every N ∈ N can be written uniquely as N =

∑n
k=0 bk+1qk such

that bn 6= 0, bk ∈ N such that b1 < a1, bk ≤ ak and, if bk = ak, bk−1 = 0. We denote the
Σα-word b1 . . . bn by ρα(N).

Definition 4.6. Let X ⊆ Nn. We say that X is α-recognized by a finite automaton A
over Σn

α if the set

{ρα(N1) ∗ · · · ∗ ρα(Nn) : (N1, . . . , Nn) ∈ X, l1, . . . , ln ∈ N}

is recognized by A. We say X is α-recognizable if it is α-recognized by some finite
automaton.

It follows easily from general facts about sets recognizable by finite automata that α-
recognizable sets are closed under boolean operations and coordinate projections (see [KN,
Chapter 2.3]). A crucial tool is the following results from Hieronymi and Terry [HTe].
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Theorem 4.7 [HTe, Theorem B]. Let α be quadratic. Then {(x, y, z) ∈ N3 : x+ y = z} is
α-recognizable.

Next, recall fα and gα from (2.8) and Fact 2.3.

Fact 4.8. The sets A = {(u, v) ∈ N2 : u < v} and B = {(u, v) ∈ N2 : fα(u) < fα(v)} are
α-recognizable.

Proof. For A, note that u < v if and only if ρα(u) is lexicographically smaller than ρα(v)
when read from right to left. For B, let u, v ∈ N. Take b1, b

′
1, b2, b

′
2, · · · ∈ N such that

ρα(u) = b1 b2 . . . and ρα(v) = b′1 b
′
2 . . . . Let n be the smallest index where bn 6= b′n. It

follows easily from (2.4) and Fact 2.3 that when

n odd : bn < b′n if and only if fα(u) < fα(v),

n even : bn < b′n if and only if fα(u) > fα(v).

(see [H2, Fact 2.13]). It is an easy exercise to construct a finite automaton that α-recognizes
{(u, v) ∈ N2 : fα(u) < fα(v)}.

Lemma 4.9. The graph of the function gα : N→ N is α-recognizable.

Proof. We can assume that α is purely periodic, with minimum period k (see Section 2.1).
By Fact 2.6, there are µ, µ′ ∈ Q such that

pn = µqn + µ′qn+k for every n ≥ 0.

For x ∈ N with Ostrowski representation x =
∑N

n=0 bn+1qn we define:

Shift(x) :=
N∑
n=0

bn+1qn+k.

In other words, if ρα(x) = b1 b2 . . . , then ρα(Shift(x)) = 0k b1 b2 . . . . So x 7→ Shift(x) is
clearly α-recognizable. By Fact 2.3:

gα(x) =
∑
n=0

bn+1pn =
∑
n=0

bn+1(µqn + µ′qn+k) = µx+ µ′ Shift(x).

Since gα(x) is a linear combination of x and Shift(x), we see that gα is α-recognizable.

Proposition 4.10. Let F (x) be a quantifier-free α-PA formula with variables x ∈ Zd. Then

there is a NFA A of size 2δ `(F ) that α-recognizes F , in the sense that:

{x ∈ Zd : F (x) = true} = {x ∈ Zd : ∃x′ ∈ Zd
′ A accepts (x,x′)}. (4.1)

Here x′ ∈ Zd′ is a tuple of some auxiliary variables of length d′ ≤ δd. A has the extra
property that it accepts at most one tuple (x,x′) ∈ Zd+d′ for every x ∈ Zd. Finally, the
constant δ only depends on α.

Proof. Each single variable x in F takes value over Z, but can be replaced by x1−x2 for two
variables x1, x2 ∈ N. Hence, we can assume that all variables take values over N. It is easy
to see that we can assume F to be negation free. Recall that coefficients/constants in Z[α]
are given in the form cα+ d with c, d ∈ Z. Hence, each inequality in F can be reorganized
into the form:

ay + αb z ≤ c t + αdw.

Here a, b, c, d are tuples of coefficients in N, and y, z, t,w are subtuples of x. For each
homogeneous term ay, we use an additional variable u = ay and replace each appearance
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of ay in the inequalities by u. Note that the length `(F ) grows at most linearly after adding
all such extra variables. The atoms in our formulas are either equalities of the form:

u = ay (?)

or inequalities of the form:
u+ αv ≤ w + αz. (??)

We can rewrite each equality u = ay into single additions by utilizing binary representations
of the coefficients. For example, the equality u = 5y + 2z can be replaced by the following
conjunction:

y1 = y + y ∧ y2 = y1 + y1 ∧ y3 = y2 + y ∧ z1 = z + z ∧ u = y3 + z1 .

Note that the number of variables we introduce is linear in the length of the binary
representation of a. So we still `(F ) grows linearly when we introduce the new variables.

We have that αx = fα(x) + gα(x) for every x ∈ Z. Here gα(x) ∈ Z and fα(x) always lies in
the unit length interval Iα. For u, v, w, z ∈ N, we have u+ αv < w + αz if and only if:

u+ gα(v) < w + gα(z), or u+ gα(v) = w + gα(z) ∧ fα(v) < fα(z).1

Now we see that each atom in F , which is of type (?) or (??), can be substituted by a Boolean
combinations of simpler operation/functions, namely fα, gα, single additions x+ y = z and

comparisons x < y. We collect into a tuple x′ ∈ Zd′ all the auxiliary variables introduced
in these substitutions. Observe that the total length `(F ), which also includes d′, only
increased by some linear factor δ = δ(α).

By Theorem 4.7, Fact 4.8 and Lemma 4.9 each of the above simpler operations/functions
can be recognized by a DFA of constant size. Using Fact 4.4, we can combine those DFA to
get a DFA of size 2γ `(F ) that recognizes F in the sense of (4.1). Note that for each value

x ∈ Zd of the original variables, the auxiliary x′ ∈ Zd′ are uniquely determined by x.

Corollary 4.11. Let S ⊆ Nn be α-PA definable. Then S is α-recognizable.

Proof. Follows directly from the above proposition, combined with Fact 4.5 for quantifier
elimination.

Proof of Theorem 1.2. Consider an α-PA sentence S of the form (1.1). Without loss of
generality, we can change domains from xi ∈ Zni to xi ∈ Nni , as shown in the proof
of Proposition 4.10. Also by negating S if necessary, we can assume that Qr = ∃. By
Proposition 4.10, there is an NFA A of size 2δ `(F ) that α-recognizes the quantifier-free part
Φ(x1, . . . ,xr) in the sense of (4.1). We can rewrite:

{x1 : Q2x2 . . . Qrxr Φ(x1, . . . ,xr)} = {x1 : Q2x2 . . . Qrxr ∃x′ A accepts (x1, . . . ,xr,x
′)}.

Since Qr = ∃, we can group xr and x′ into one quantifier block. Repeatedly applying
Fact 4.4 and 4.5 one after another, we can successively eliminate all r − 1 quantifier blocks.
This blows up the size of A by at most r − 1 exponentiations. The resulting DFA A′ has
size at most a tower of height r in δ `(F ), and satisfies:

{x1 : Q2x2 . . . Qrxr Φ(x1, . . . ,xr)} = {x1 : A′ accepts x1}
So deciding S is equivalent deciding the whether “Q1x1 A′ accepts x1”. Note that Q1 can
be ∃ or ∀. However, since A′ is deterministic, we can freely take its complement without
blowing up its size. Thus, we can safely assume Q1 = ∃. Now, viewing A′ as a directed

1The case of a sharp inequality can be handled similarly.
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graph, the sentence “∃x1 A′ accepts x1” can be easily decided by a breadth first search
argument. This can be done in time linear to the size of A′.

5. Quadratic irrationals: PSPACE-hardness

We now give a proof of Theorem 1.4. Throughout this section, fix a PSPACE-complete
language L ⊆ {0, 1}∗ and a 1-tape Turing Machine (TM) M that decides L. This means
that given a finite input word x ∈ {0, 1}∗ on its tape T , the Turing machine M will run in
space poly(|x|) and output 1 if x ∈ L and 0 otherwise.

The main technical theorem we establish in this section is the following:

Theorem 5.1. Let α ∈ Qalg be a quadratic irrational. For every s ∈ N, there is a map
X : {0, 1}s → N and an ∃6∀4∃11 α-PA formula Accept such that:

Accept(X(x)) holds if and only if x ∈ L.
Both X(x) and Accept can be computed in time O(sc) for all x ∈ {0, 1}s and all s ∈ N,
where the constant c only depends on α. Furthermore, the number of inequalities in Accept
only depends on α but not on s.

The main argument of the proof of Theorem 5.1 translates Turing machine computations into
Ostrowski representations of natural numbers. This argument is presented in Subsection 5.3.
An explicit bound on the number of variables and inequalities for the constructed sentences
are then given in Subsection 5.4, where we also treat the case α =

√
2. Theorem 1.4 follows.

Before proving Theorem 5.1, we construct in Subsection 5.1 some explicit α-PA formulas
to deal with the Ostrowski representation, exploiting the periodicity of the continued
fraction expansion of α. Then we recall the definitions of Turing machine computations in
Subsection 5.2.

5.1. Ostrowski representation for quadratic irrationals. Let α be a quadratic irra-
tional. Recall from Section 2.1 that we only need to consider a purely periodic α with
minimum period k. Set K := lcm(2, k) and keep this K for the remainder of this section.

We first construct α-PA formula that defines the set of convergents (pn, qn) for which K|n.
Recall γi from Remark 2.5 (also see Fact 2.4). Now define the α-PA formula:

DK
∀ (u, v, u′, v′) := 1 < v < v′ ∧ 0 < αv − u ∧ ∀w, z (5.1)

k+1∧
i=0

(
0 < z < γi+1(v, v′)→ |w − αz| ≥ |γi(u, u′)− αγi(v, v′)| > |γi+1(u, u′)− αγi+1(v, v′)|

)
.

Lemma 5.2. Let u, v, u′, v′ ∈ N. Then DK
∀ (u, v, u′, v′) holds if and only if (u, v) = (ptK , qtK)

and (u′, v′) = (ptK+1, qtK+1) for some t > 0.

Proof. First, the condition ∀w, z
[
0 < z < γi+1(v, v′) → . . .

]
implies that the pairs(

γi(u, u
′), γi(v, v

′)
)

0≤i≤k+1
are k + 2 consecutive convergents (see (3.1) and (3.2)). In other

words, there is an n > 0 such that:(
γi(u, u

′), γi(v, v
′)
)

= (pn+i, qn+i), 0 ≤ i ≤ k + 1.
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Also by Remark 2.5, we have
(
γ0(u, u′), γ0(v, v′)

)
= (u, v) and

(
γ1(u, u′), γ1(v, v′)

)
= (u′, v′).

So (u, v) = (pn, qn) and (u′, v′) = (pn+1, qn+1). Then by (2.12):(
γ2(u, u′), γ2(v, v′)

)
= (a2u

′ + u, a2v
′ + v) = (a2pn+1 + pn, a2qn+1 + qn)

must be the next convergent (pn+2, qn+2). Combined with (2.1), we have

pn+2 = an+2pn+1 + pn = a2pn+1 + pn,

which implies an+2 = a2. Similarly, we have an+i = ai for all 2 ≤ i ≤ k + 1. Since k is the
minimum period of α, we must have k|n. Also because 0 < αv − u = αqn − pn, we have 2|n
(see (2.4)). Therefore, DK

∀ (u, v, u′, v′) = true if and only if there is some t ≥ 1 such that
(u, v) = (ptK , qtK) and (u′, v′) = (ptK+1, qtK+1).

In prenex normal form, DK
∀ is a ∀2-formula.

Next, we can also define the set of convergents qn for which M |n, where M > 10 is some
multiple of K (see Subsection 5.3.1 for why we need M > 10). To do this, we take a large
enough prime P . There must exist some multiple M of K for which

(qM , qM+1) ≡ (q0, q1) (mod P ).

To see this, recall from Subsection 2.1 that:(
pmK+1 pmK
qmK+1 qmK

)
= Γ0 · · · ΓmK+1 = Γ0 Γ1 (Γ2 · · · ΓK−1 Γ0 Γ1)m.

The matrix Γ2 · · ·ΓK−1Γ0Γ1 is invertible mod P if P is large enough. For every matrix A
invertible mod P , there is m > 0 such that Am ≡ I (mod P ). So there is a smallest m > 0
such that: (

pmK+1 pmK
qmK+1 qmK

)
≡ Γ0Γ1 =

(
p0 p1

q0 q1

)
(mod P ).

Also by the recurrence (2.1), we have (pmK+i, qmK+i) ≡ (pi, qi) (mod P ) for every i.

Clearly if P is large enough then M > 10. Now define:

DM
∀ (u, v, u′, v′) := DK

∀ (u, v, u′, v′) ∧ v ≡ q0 (mod P ) ∧ v′ ≡ q1 (mod P ). (5.2)

Note that congruences can be expressed by ∀-formula with one extra variable2. So DM
∀ is a

∀3-formula in prenex normal form. To summarize:

Lemma 5.3. Let u, v, u′, v′ ∈ N. Then DM
∀ (u, v, u′, v′) holds if and only if there exists t ≥ 1

such that (u, v) = (ptM , qtM ) and (u′, v′) = (ptM+1, qtM+1).

Recall from (2.7) that every T ∈ N has a unique Ostrowski representation:

T =

N∑
n=0

bn+1qn,

with 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 if bn+1 = an+1. We denoted [qn](T ) := bn+1.
We often just write [qn] when the natural number T is clear from the context.

In the proof of Theorem 1.4, we consider numbers T such that [qn](T ) = 0 when n is odd,
and [qn](T ) is either 0 or 1 when n is even. The reader can easily check that there is a
bijection between the set of such natural numbers and finite words on {0, 1}. We will use

2We have x1 ≡ x2 (mod P ) if and only if ∀w x1 − x2 − Pw = 0 ∨ |x1 − x2 − Pw| ≥ P .
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this observation through out this section. In order to do so, we first observe that the above
set of natural numbers is definable by the following α-PA formula:

ZeroOne∀∃ (T ) := ∀u, v, u′, v′ C∀ (u, v, u′, v′) → ∃Z1, Z2, Z3(
0 > αv − u→

[
Z1 < v ∧ After(u, v, u′, v′, Z2, Z3) ∧ T = Z1 + Z2

])
∧(

0 < αv − u→
[
Z1 < 2v ∧ Compatible(u, v, u′, v′, Z1, Z2, Z3) ∧ T = Z1 + Z2

])
,

(5.3)

where After and Compatible as defined in (3.4) and (3.8).

Lemma 5.4. Let T ∈ N. Then ZeroOne∀∃ (T ) holds if and only if for all n ∈ N

[qn](T ) = 0 if 2 - n,
[qn](T ) = 0, 1 if 2|n.

Proof. The statement follows easily from (2.4) and Facts 3.2 and 3.3.

Note that ZeroOne∀∃ is a ∀4∃3-formula.

Let T,X be natural numbers. If ZeroOne∀∃ (T ) and ZeroOne∀∃ (X), we can think of T
and X as finite words on {0, 1}. Thus, it is natural to ask whether we can express that the
word corresponding to X is a prefix of the word corresponding T , by an α-PA formula. It is
not hard to see that the following α-PA formula is able to do so:

Pref∀∃ (X,T ) := ∀u, v, u′, v′
(
C∀ (u, v, u′, v′) ∧ v ≤ X ∧ X < v′

)
→

∃Z,Z ′ Compatible(u, v, u′, v′, X, Z, Z ′) ∧ T = X + Z.
(5.4)

Note that Pref∀∃ is an ∀4∃2-formula in prenex normal form.

5.2. Universal Turing machines. Recall that we fixed a PSPACE-complete language
L ⊆ {0, 1}∗ and a 1-tape Turing Machine M that decides L. Neary and Woods [NW]
constructed a small universal 1-tape Turing machine (UTM)

U = (Q,Σ, σ1, δ, q1, q2),

with |Q| = 8 states and |Σ| = 4 tape symbols.3

Using U , we can simulate M in polynomial time and space. More precisely, let x ∈ {0, 1}∗
be an input toM. Then we can encodeM and x in polynomial time as a string 〈Mx〉 ∈ Σ∗.
Upon input 〈Mx〉, the UTM U simulates M on x, and halts with one of the two possible
configurations:

U(〈Mx〉) = “yes” if M(x) = 1, U(〈Mx〉) = “no” if M(x) = 0. (5.5)

Here “yes” and “no” are the final state-tape configurations of U , which correspond to M’s
final configurations (H, 10 . . . ) and (H, 00 . . . ), respectively. By the encoding in [NW], these
final “yes”/“no” configurations of U have lengths O(|M|), which are constant when we fixM.
Furthermore, the computation U(〈Mx〉) takes time/space polynomial in the time/space of
the computation M(x).4 Since M(x) runs in space poly(|x|), so does U upon input 〈Mx〉.

3Q – states, Σ – tape symbols, σ1 ∈ Σ – blank symbol, δ : Q×Σ→ Q×Σ×{L,R} – transitions, q1 ∈ Q
– start state, q2 ∈ Q – unique halt state.

4It actually takes linear space and quadratic time.
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It is worth pointing out here that we take this detour via a universal Turing machine to
keep the number of variables constant.

Let λ = λ(|x|) be the polynomial bound on the tape length, so that the computation
U(〈Mx〉) always use less than λ tape positions.

Let x ∈ {0, 1}∗. We now consider the simulation U(〈Mx〉). Denote by Ti(x) ∈ Σλ−1 the
contents of U ’s tape on step i of the computation U(〈Mx〉). For j ≤ λ− 1, Ti,j(x) ∈ Σ is
the j-th symbol of Ti(x). Also denote by si(x) ∈ Q the state of U on step i. We denote the
i-th head position of U by πi(x). Note that 1 ≤ πi(x) ≤ λ− 1. As usual, we will suppress
the dependence on x if x is clear from the context.

Set B := {[×,×]} ∪ ({×} ×Σ) ∪ (Q×Σ), where × is a special marker symbol. For each
step i, we now encode the tape content Ti(x), the state si(x) and the tape head position
πi(x) by the finite B-word:

T ′i (x) = [×,×][×, Ti,1] . . . [×, Ti,πi−1] [si, Ti,πi ] [×, Ti,πi+1] . . . [×, Ti,λ−1], (5.6)

The marker block [×,×] is at the beginning of each T ′i (x), which is distinct from the other
λ − 1 blocks in T ′i (x). Note that T ′i (x) has in total λ blocks. Observe T ′1 (x) codes the
starting configuration 〈Mx〉 of the simulation U(〈Mx〉). Now we concatenate T ′i over all
steps 1 ≤ i ≤ ρ, where ρ is the terminating step of the simulation. We set

T (x) := T ′1 (x) . . . T ′ρ(x),

and call T (x) the transcript of U on input 〈Mx〉, denoted by T (x) = U(〈Mx〉). The last
segment in T ′ρ(x) contains the “yes” configuration if and only if M(x) = 1. In total, T (x)
has λρ blocks.

Let x ∈ {0, 1}∗. Let T (x) = U(〈Mx〉). Let Bt(x) ∈ B be the t-th block in T (x). By the
transition rules of U , the block Bt+λ(x) depends on Bt−1(x), Bt(x) and Bt+1(x). Thus, there
is a function f : B3 → B such that for all inputs x ∈ {0, 1}∗:

Bt+λ(x) = f(Bt−1(x), Bt(x), Bt+1(x)) for every 0 ≤ t < λ(ρ− 1).

Note that for the separator block [×,×], we should have f(B, [×,×], B′) = [×,×] for all
B,B′ ∈ B.

5.3. Proof of Theorem 5.1. The detailed description of X(x) and Accept will be provided
in Subsection 5.3.5. Here, we give an initial outline of the proof. We begin by associating to
transcript T a natural number T . Our goal then is to construct an α-PA formula Accept(X)
consisting of four subformulas:

∃T ZeroOne∀∃ (T ) ∧ Pref∀∃ (T,X) ∧ Transcript∀∃(T ) ∧ E∃∀ (T ) (5.7)

In this formula, Transcript∀∃(T ) ensures that there is a transcript T to which T corresponds.
The formula Pref∀∃ (X,T ) guarantees that X is a prefix of T , and E∃∀ (T ) says that T ends
in “yes”. We will need associate to each x ∈ {0, 1}∗ an X(x) ∈ N such that the conclusion
of Theorem 1.4 holds.

For the rest of the proof, the meaning of ci, di, a, b will change depending on the context.
Recall the formulas DK

∀ , DM
∀ , ZeroOne∀∃ , Pref∀∃ from Section 5.1.
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5.3.1. Encoding transcripts. We first encode the transcripts T by a number T ∈ N satisfy-
ing ZeroOne∀∃ (T ). Recall that T is a finite B-word, and observe that |B| = 37. From now
on, we view B as a set of 37 distinct strings in {0, 1}6, each containing at least one 1. Then
we pick a large enough prime P in DM

∀ so that M > 10.

Definition 5.5. Let T be a transcript, and let Bt ∈ B be the t-th block in T . We associate
to T the natural number T ∈ N such that ZeroOne∀∃ (T ) and for all t ∈ N
(1) [qtM ](T )[qtM+2](T ) . . . [qtM+10](T ) = Bt, and
(2) [qtM+12](T ) . . . [q(t+1)M−2](T ) = 0 . . . 0.

5.3.2. Constructing NextB,B
′,B′′

∃ . Let B,B′, B′′ ∈ B, and let u, v, u′, v′ ∈ N and t ≥ 1 be
such that (u, v) = (ptM , qtM ) and (u′, v′) = (ptM+1, qtM+1). We construct an α-PA formula

NextB,B
′,B′

∃ (u, v, u′, v′, T ) that holds if the block Bt+λ in T agrees with f(B,B′, B′′).

Let r1 = λM and r2 = (λ+ 1)M . Then the block Bt+λ of T correspond to those [qtM+i](T )
with r1 ≤ i < r2. By Fact 2.4, we can write each convergent (ptM+i, qtM+i) with r1 − 1 ≤
i ≤ r2 as a linear combination ci(u, v) + di(u

′, v′). Note that the coefficients ci, di ∈ Z are
independent of t, but do depend on λ. They can be computed explicitly in time poly(λ).

Let B̃ = f(B,B′, B′′). Then we sum up all qtM+r1+2j for every 0 ≤ j < 6 such that the j-th

bit in B̃ is ‘1’. This sum can be expressed as av + bv′ for some a, b ∈ Z computable in time
poly(λ). Again, ci, di and a, b depend on λ and also the triple B,B′, B′′, but is independent

of t. Then Bt+λ = B̃ if and only if we can uniquely write T = W1 + (av + bv′) +W2, where
W1 < qtM+r1−1 and Ost(W2) ⊂ {qn : n ≥ tM + r2}. Let Z1 = W1 + (av+ bv′) and Z2 = W2.

Thus if Bt+λ = B̃, they satisfy:

i) 0 ≤ Z1 − (av + bv′) < qtM+r1−1 ,
ii) Ost(Z2) ⊂

{
qn : n ≥ tM + r2

}
.

Both (i) and (ii) can be expressed using quantifier-free α-PA formulas. For (i), recall that
qtM+r1−1 is again linear combination of v, v′, so the corresponding α-PA formula is just a
conjunction of two linear inequalities in Z1, v, v

′. For (ii), using an auxiliary variable Z3, we
can express it as After(ptM+r2−1, qtM+r2−1, ptM+r2 , qtM+r2 , Z2, Z3) (see (3.4)). Thus final
α-PA formula we want is:

NextB,B
′B′′

∃ (u, v, u′, v′, T ) := ∃Z1, Z2, Z3 i) ∧ ii) ∧ T = Z1 + Z2. (5.8)

5.3.3. Constructing ReadB,B
′,B′′

∃ . Let B,B′, B′′ ∈ B, and let u, v, u′, v′ ∈ N and t ≥ 1 be
such that (u, v) = (ptM , qtM ) and (u′, v′) = (ptM+1, qtM+1). We will construct an α-PA

formula ReadB,B
′,B′′

∃ (u, v, u′, v′, T ) that holds if the three blocks Bt−1, Bt, Bt+1 in T match

with B,B′, B′′. Since the construction is very similar to the one of NextB,B
′,B′′

∃ , we will leave
verifying some of the details to the reader. Note that the blocks Bt−1BtBt+1 in T correspond
to [qn](T ) with (t − 1)M ≤ n < (t + 2)M . So we just need to express (ptM+i, qtM+i) for
−M − 1 ≤ i ≤ 2M as linear combinations ci(u, v) + di(u

′, v′). Then we sum up all qtM+i

that should correspond to the ‘1’ bits in B,B′, B′′, which is again some linear combination
av + bv′. This time the coefficients ci, di, a, b do not depend on λ and can be computed in
constant time. Now we have Bt−1BtBt+1 = BB′B′′ if and only if we can uniquely write
T = Z1 + Z2, where Z1 and Z2 satisfy two conditions i’-ii’) similar to i-ii) above. Again, we
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can express these two condition as quantifier free α-PA formula. Thus the α-PA formula we
want is:

ReadB,B
′,B′′

∃ (u, v, u′, v′, T ) := ∃Z1, Z2, Z3 i’) ∧ ii’) ∧ T = Z1 + Z2. (5.9)

5.3.4. Recognizing transcripts. A single transition of T from B,B′, B′′ to f(B,B′, B′′) can
now be encoded in the α-PA formula:

TranB,B
′,B′′

∃ (u, v, u′, v′, T ) := ReadB,B
′,B′′

∃ (u, v, u′, v′, T )

∧ NextB,B
′,B′′

∃ (u, v, u′, v′, T ).
(5.10)

Note that Tran∃ is an ∃6-formula. Let c, d ∈ Q be such that q(t+λ)M = cqtM + dqtM+1. To

ensure that T obeys the transition rule f : B3 → B everywhere, we simply require:

Transcript∀∃(T ) :=

∀u, v, u′, v′
(
DM
∀ (u, v, u′, v′) ∧ cv + dv′ ≤ T

)
→

∨
B,B′,B′′∈B

TranB,B
′,B′′

∃ (u, v, u′, v′, T ).

(5.11)
In this formula, DM

∀ (u, v, u′, v′) guarantees that v = qtM is the beginning of some block Bt,
and q(t+λ)M = cv + dv′ is the beginning of the block Bt+λ, should it not exceed T . Thus
for all T ∈ N, we have Transcript∀∃(T ) holds if and only if there is a transcript T with
T (T ) = T .

We now argue that Transcript∀∃ is a ∀4∃6 α-PA formula. First, there are ∀4 variables

u, v, u′, v′. Each TranB,B
′,B′′

∃ is an ∃6-formula, which also commutes with the big disjunction.

Also ¬DM
∀ is an ∃3-formula, which can be merged with the ∃6 part.5 Thus Transcript∀∃ is

a ∀4∃6 formula.

We need one last α-PA formula to say that the computation corresponding to T ends in the
“yes” configuration (see (5.5)). Recall that “yes” has fixed length. Assume “yes” starts at
v = qtM . Then just like before, we can sum up all qtM+i that correspond to ‘1’ bits in “yes”.
This sum can be written as av + bv′, with a, b ∈ Z explicit constants independent of λ. Also
observe that qtM−1 = qtM+1 − a1qtM = v′ − a1v. So we define an α-PA formula as follows:

E∃∀ (T ) := ∃u, v, u′, v′, Z DM
∀ (u, v, u′, v′) ∧ Z < v′ − a1v ∧ T = Z + av + bv′. (5.12)

Observe that E∃∀ (T ) holds if and only if the computation corresponding to T ends in “yes”.
Note that E∃∀ is a ∃5∀3-formula.

5.3.5. Completing the construction. Finally, given x ∈ {0, 1}∗, we can easily construct in
time poly(|x|) the content of the first segment T ′1 (x) in T (x) (see (5.6)). Again, T ′1 (x) is the
starting configuration of the simulation U(〈Mx〉), which is basically just 〈Mx〉. We denote
by X(x) the natural number X such that ZeroOne∀∃ (X) and for all t ∈ N
(1) [qt](X) = 0 for t > 10,
(2) [q0](X)[q2](X) . . . [q10](X) = T ′1 (x).

5We need to rewrite every implication “a→ b” as “¬a ∨ b”.
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It is easy to see that we can compute X(x) in time poly(|x|).
Now construct the α-PA formula Accept(X):

∃T ZeroOne∀∃ (T ) ∧ Pref∀∃ (T,X) ∧ Transcript∀∃(T ) ∧ E∃∀ (T ) (5.13)

From the construction it is clear that Accept is an ∃∗∀∗∃∗ α-PA formula such that:

Accept(X(x)) holds if and only if x ∈ L.
Finally, recall that in all constructed α-PA formulas of Subsection 5.3.1 and also Accept,
the number of quantifiers/variables is constant, the number of linear inequalities (atoms)
only depend on α, and the linear coefficients/constants can be computed in time poly(|x|).
This completes the proof of Theorem 5.1. �

5.4. Analysis of Accept. Recall that ZeroOne∀∃ , Pref∀∃ and Transcript∀∃ in Sec-
tion 5.1 are of the forms ∀4∃3 and ∀4∃2 and ∀4∃6 respectively. Since we are taking their
conjunctions, their outer ∀4 variables can be merged. However, their ∃ variables need to
be concatenated. Overall, we have ∀4∃11 for ZeroOne∀∃ , Pref∀∃ and Transcript∀∃. The
term E∃∀ is ∃5∀3. Merging its ∀3 variables with the other three terms, we have ∃5∀4∃11.
Lasly, we add in ∃T and get a ∃6∀4∃11 sentence.

x = y 2
|x| ≥ |y|, |x| > |y| 4

After, Ãfter 4
Compatible 10

C∀ 12
ZeroOne∀∃ 34

Pref∀∃ 26
Read∃ 8
Next∃ 8
Tran∃ 16

DK
∀ 3 + 10(k + 2)

DM
∀ 11 + 10(k + 2)

E∃∀ 14 + 10(k + 2)

Figure 1: Number of inequalities of the various α-PA formulas

The number of inequalities in all constructed formulas is bounded in Figure 1. Overall, the
number of inequalities in (5.13) is at most:

34 + 26 + 14 + 10(k + 2) + 12 + 10(k + 2) + 16|B|3 = 810, 534 + 20(k + 2),

where k is the minimum period of the continued fraction of α. We conclude:

Theorem 5.6. Deciding ∃6∀4∃11 α-PA sentences with at most 810, 574 + 20kα inequalities
is PSPACE-hard.

Corollary 5.7. Deciding ∃6∀4∃11
√

2-PA sentences with at most 106 inequalities is PSPACE-
hard.

Proof. Note that
√

2 + 1 = [2; 2, . . . ] has minimum period k = 1.
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6. Quadratic irrationals: General lower bound

In this section, we establish Theorem 1.3. Its proof follows the proof of Theorem 5.1 very
closely. For a Turing machine M and s ∈ N, recall that in Theorem 1.4 we constructed
an ∀6∃4∀11 α-PA formula Accept a function X : {0, 1}s → N such that for every input
x ∈ {0, 1}s, Accept(X(x)) holds if and only if M accepts x within space poly(s). Here we
show that we can extend the space in whichM accepts x in exchange for adding alternating
blocks of quantifiers in the α-PA formula. For λ ∈ N we define

g0(s) = s and gr+1(s) = gr(s) 2gr(s), r ≥ 0.

The following is the main theorem we establish in this section.

Theorem 6.1. Let α ∈ Qalg be a quadratic irrational and r ≥ 1. For every Turing machine
M and s ∈ N, there exist an α-PA formula Accept with (r + 3) of alternating quantifier
blocks and a function X : {0, 1}s → N such that for every input x ∈ {0, 1}s,

Accept(X(x)) holds if and only if M accepts x within space gr(s).

Moreover, both X(x) and Accept can be computed in time O(c s) for all x ∈ {0, 1}s and all
s ∈ N, where the constant c only depends on α and M .

By a basic diagonalization argument the problem whether given a Turing machine M halts
on an input string x within space gr(|M|+ |x|) itself requires space at least gr(|M|+ |x|) to
decide. Theorem 1.3 follows.

Recall that in NextB,B
′B′′

∃ , if v = qtM and v′ = qtM+1 then the shifted convergent q(t+λ)M

can be written as cv+dv′, with c, d ∈ Z having lengths poly(λ). The resulting sentence (5.13)
has length poly(λ), and is PSPACE-complete to decide. To prove Theorem 6.1 we need
to construct α-PA formula Sr such that Sr has length poly(`), at most r − 2 alternating
quantifiers, and defines the graph of the shift map

Shiftr : qtM 7→ q(t+gr(λ))M .

The following construction is classical. It was first used in Meyer [Mey] to prove that WS1S
has non-elementary decision complexity, and was later improved on in Stockmeyer [Sto]. An
expository version is given in Reinhardt [Rei]. For clarity and completeness, we reproduce it
below in the setting of WS1S. Afterwards, we translate it to α-PA formulas.

6.1. A lower bound for WS1S. Let WS1S be the weak monadic second order theory
of (N,+1), that is the monadic second order logic of (N,+1) in which quantification over
sets is restricted to quantification over finite subsets of N. Formulas in the language of
this theory are called WS1S-formulas. We will use lower case letters x, y, t, u, z to denote
variables ranging over N and use upper case letters A,C,D,E to denote variables ranging
over finite subsets of N.

We think of each subset X ∈ Pfin(N) as an infinite word in {0, 1} that is eventually 0. When
we write X = x0x1 . . . xn0ω, we mean that X is the finite set {i ∈ {0, . . . , n} : xi = 1}.
The relation i ∈ X simply means that the i-th digit xi is 1.
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Lemma 6.2 [Rei]. Let λ, r ∈ N. There exists a WS1S-formula F λr+1(x, y,A,C) which holds
if and only if:

y = x+ gr+1(λ),

A = 0x|100 . . . 0|100 . . . 0|100 . . . 0|100 . . . 0| . . . |100 . . . 0|10ω ,

C = 0x|000 . . . 0|100 . . . 0|010 . . . 0|110 . . . 0| . . . |111 . . . 1|00ω ,

where A,C each has 2gr(λ) + 2 blocks, all of which except the first and last have length gr(λ).

In statement of Lemma 6.2, the separator | is inserted just to improve the readability. The

blocks in C represent the integers 0, 1, . . . , 2gr(λ) − 1 in binary. The blocks in A mark the
beginning of the blocks in C. The first ‘1’ in A is at position x and the last ‘1’ in A is at
position y.6 In total, the difference y − x is gr(λ)2gr(λ) = gr+1(λ).

Proof of Lemma 6.2. We construct the F λr recursively, starting with the base case:

F λ0 (x, y,A,C) := y = x+ λ.

Here x+ λ represents λ iterations of the successor function sN. For F λ0 we will not need any
conditions on A,C.

Let r > 0 and suppose we have already constructed F λr (x, y,A,C) with the desired property.

We will exploit the fact the blocks in C represent the integers 0, 1, . . . , 2gr(λ) − 1 in binary,
and that adding 1 to the integer represented by one block gives the integer represented by the
next block. For that, we will use least-significant digit first encoding. We recall the carry rule
for addition by 1 in binary: if X = x0x1 . . . , Y = y0y1 . . . , then

∑∞
i=0 yi2

−i = 1+
∑

i=0 xi2
−i

if and only if for all i ∈ N

x0 = ¬y0

xi+1 =

{
¬yi+1, if xi = 1 and yi = 0,

yi+1, otherwise.

The two conditions can be expressed by WS1S-formulas:

0 ∈ X ↔ 0 /∈ Y ; (6.1)

(i ∈ X ∧ i /∈ Y ) ↔ (i+ 1 ∈ X ↔ i+ 1 /∈ Y ). (6.2)

Observe that if we apply these rules on blocks of length gr(λ), starting with 0 . . . 0, then we
get:

00 . . . 0|10 . . . 0|01 . . . 0| . . . |11 . . . 1|00 . . . 0|10 . . . 0| . . .

So the blocks cycle back to 0 . . . 0 eventually. Thus we will characterize C as the binary
words obtained by applying this transformation rule until the block 0 . . . 0 is reached. We

6Position indexing starts at 0.
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define:

F λr+1(x, y,A,C) := x < y; ∀z, w, t,D,E
(
F λr (z, w,D,E) →[

z = x ∨ z = y → z ∈ A, z /∈ C; z < x ∨ y < z → z /∈ A, z /∈ C;

z = x, z < t < w → t /∈ A, t /∈ C; x ≤ z < w ≤ y → (z ∈ A↔ w ∈ A);

z ∈ A, w < y → (z ∈ C ↔ w /∈ C);

x ≤ z < w < y, z + 1 /∈ A →
(
z ∈ C, w /∈ C ↔ (z + 1 ∈ C ↔ w + 1 /∈ C)

)
;

x ≤ z < w < y, z + 1 ∈ A → (z ∈ C → w ∈ C);

w = y, z ≤ t < w → t ∈ C
] )

.

(6.3)

For readability, we use commas and semicolons to denote conjunctions of atoms and sub-
clauses in (6.3). Lines 2-3 of (6.3) set up the block structures in A and C. They make sure
that A and C are empty outside the range [x, y], and that the blocks in A are of the form
100 . . . . Line 4 of (6.3) expresses the increment rule (6.1) for every two consecutive blocks in
C. Here z, w represent the first digits in two consecutive blocks. Line 5 of of (6.3) expresses
the carry rule (6.2). Line 6 of (6.3) ensures that the blocks in C do not cycle back to 0 . . . 0,
because their last digits cannot decrease from 1 down to 0. The last line of (6.3) ensures
that the last block in C is 1 . . . 1.

By induction, it is easy to see that F λr has r alternating quantifier blocks, starting with ∀.
Observe that F λr+1 has 5 more variables than F λr , namely z, w,D,E, t. Therefore, we have

again by induction that F λr has at most 5(r + 1) variables. We can also bound their lengths:

`(F λ0 ) = O(λ) and `(F λr+1) = `(F λr ) +O(1) = O(λ+ r).

Here `(F λ0 ) = O(λ) instead of O(1) because we needed to iterate the successor function sN λ
times to represent y = x+ λ.

Theorem 6.3. Deciding WS1S-sentences S with k + 3 alternating quantifiers in requires
space at least:

ρ 2 .
. .

2 η`(S)

, where the tower has height k,

and ρ, η are absolute constants.

Sketch of proof. Consider the following decidable problem: Given a Turing machine M and
an input string X, doesM halt on X within space gr(|M|+ |X|)? By the same construction
as in Theorem 5.1, we can write down a WS1S-sentence S with length O(|M|+ |X|) so that
S holds if and only if M halts on x within space gr(|M|+ |X|). Here λ = Ω(|M|+ |X|).
The last part [∀u, v, u′, v′ . . . ] in (5.13) should be replaced by:

∀x, y,A,C Fr(x, y,A,C)→ transition rules . . .

Here x and y are bits in the transcript T = U(〈MX〉), with y = x+ gr(λ).7 The resulting
sentence S has the form ∃ . . . ∀ . . .¬Fr ∨ . . . Since Fr has r alternating quantifiers, S has
r + 2 alternating quantifiers. The length `(S) is roughly the input length |M|+ |X| plus
`(Fr), which is also O(|M|+ |X|).

7Here U is the universal TM used to emulate M(X).
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6.2. Proof of Theorem 6.1. We first translate the WS1S-formula F λr (x, y,A,C) with r
alternating quantifiers into an α-PA formula Sr with (r + 1) alternating quantifiers. To
do this, we replace in F λr each variable x ranging over individuals by a separate quadruple
(ux, vx, u

′
x, v
′
x), where (ux, vx) = (pxM , qxM ) and (u′x, v

′
x) = (pxM+1, qxM+1), and add the

condition DM
∀ (ux, vx, u

′
x, v
′
x). We replace each variable ranging over sets by an integer

variable. We replace the relation x ∈ X in F λr by the relation whether x is in Ost(X).
By (3.6) and (3.7), this relation is definable by an ∃ α-PA formula and by an ∀ α-PA
formula. Recall from Fact 2.4 that there are constants c, d ∈ Z such that if v = qtM and
v′ = qtM+1, then q(t+1)M = cv + dv′ for all t ∈ N. We replace every x + 1 term in F λr
by cvx + dv′x. Similarly, note there are cλ, dλ ∈ Z with log(cλ), log(dλ) = O(λ) such that
q(t+λ)M = cλv+dλv

′ for all t. So the relation y = x+λ in F λ0 is replaced by vy = cλvx+dλv
′
x.

Observe that S0 has just O(1) terms, instead of O(λ) terms like F0. By induction, Sr
has O(r) inequalities and variables. The total length `(Sr) (including symbols and integer
coefficients) is still O(r + λ).

Because of the DM
∀ predicate, S0 now has one quantifier. For r > 0, we can merge the

∀ quantifiers in DM
∀ predicates with the ∀z, w, t, . . . quantifiers in F λr (of course replaced

by quadruples). Because x ∈ Ost(X) is definable by both an ∃ PA-formula and an ∀
α-PA formula, the body of the sentence Sr+1, consisting of Boolean combinations in ∈//∈,
can be written using only ∀ quantifiers. These extra ∀ quantifiers can again be merged
into the ∀z, w, t part. This means Sr+1 has only one more alternating quantifiers than Sr.
So Sr(ux, vx, u

′
x, v
′
x, uy, vy, u

′
y, v
′
y, A,C) is an α-PA formula quantifier formula with (r + 1)

alternating quantifier blocks.

Now we are back to encoding Turing machine computations. We give a brief outline how the
construction follows the proof of Theorem 5.1. In the definition of Transcript∀∃ in (5.11),
we replace [∀u, v, u′, v′ . . . ] by:

∀ ux, vx, u′x, v′x, uy, vy, u′y, v′y, A,C(
Sr(ux, vx, u

′
x, v
′
x, uy, vy, u

′
y, v
′
y, A,C) ∧ vy ≤ τ

)
→ transition rules . . .

In these transition rules, ReadB,B
′,B′′

∃ is kept as before with ux, vx, u
′
x, v
′
x, but NextB,B

′,B′′

∃
can be rewritten using the shifted convergents uy, vy, u

′
y, v
′
y. Altogether, this expresses the

transition rule for each jump y = x + gr(λ). The resulting formula Transcript′ has the
form ∀ . . .¬Sr ∨ . . . . Since Sr has r + 1 alternating quantifiers, this formula has r + 2
alternating quantifiers. We now construct AcceptM,s,r using Transcript′ as is in (5.13).
This α-PA formula has r + 3 alternating blocks of quantifiers and the number of variables
and inequalities used is just O(r).

7. Non-quadratic irrationals: Undecidablity

In this section, we consider the case that α is non-quadratic. As pointed out in the
introduction it follows from [HTy] that α-PA is undecidable whenever α is non-quadratic.
Here we will show that even α-PA sentences with only four alternating quantifier blocks are
undecidable. We prove a slightly stronger result for which we have to introduce an extension
of α-PA.
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Let K be a subfield of R. An K-Presburger sentence (short: K-PA sentence) is a statement
of the form

Q1x1 ∈ Zn1 . . . Qrxr ∈ Znr Φ(x1, . . . ,xr), (7.1)

where Q1, . . . , Qr ∈ {∀, ∃} are r alternating quantifiers, and Φ is a Boolean combination of
linear inequalities in x1, . . . ,xr with coefficients and constant terms in K. We define K-PA
formulas and other relevant notations analogous to the case of α-PA sentences in Section 3.
The following is the main result of this section.

Theorem 7.1. Suppose that 1, α, β are Q-linearly independent. Then ∃k∀k∃k∀k Q(α, β)-PA
sentences are undecidable, where k = 20000.

When α is non-quadratic, then 1, α, α2 are Q-linearly independent. As Q(α, α2) = Q(α),
Theorem 1.5 follows from Theorem 7.1.

7.1. Further tools. In this section we are working with two different irrationals α and β,
and we will need to refer to the Ostrowski representation based on α and β. We denote by
pn/qn and p′n/q

′
n the n-th convergent of α and β, respectively. Let Ostα := {qn : n ∈ N}

and Ostβ := {q′n : n ∈ N}. For X ∈ N, denote by Ostα(X) the set of qn with non-zero
coefficients in the α-Ostrowski representation of X. Then Ostβ(X) is defined accordingly
for the β-Ostrowski representation of X. All earlier notations can be easily adapted to α
and β separately. For brevity, we define the remaining functions and notations just for α.
The corresponding versions for β are defined accordingly, with obvious relabelings.

For X ∈ N with α-Ostrowski representation X =
∑∞

n=0 bn+1qn and d ∈ Ostα, define

X
∣∣α
d

:=
∑

n∈N, qn≤d
bn+1qn. (7.2)

The relation Y = X
∣∣α
d

from (7.2) is ∃2-definable by α-PA formula:

Y < v+ ∧ ∃Z,Z ′ Compatible(u, v, u+, v+, Y, Z, Z ′) ∧ Y + Z = X.

Here Compatible is from (3.8).

The function fα defined in (2.8) and its interaction with the corresponding function fβ play
a crucial role. We collect two easy facts about fα here.

Fact 7.2. Let X ∈ N. Then there is an interval I ⊆ R around fα(X) and d ∈ Ostα such
that for all Y ∈ N

fα(Y ) ∈ I =⇒ Y
∣∣α
d

= X.

Proof. Let
∑m

n=0 bn+1qn be the α-Ostrowski representation of X. Without loss of generality,
we may assume that αqm − pm > 0. Then set

Z2 = X + qm+2 and Z1 = X + qm+3.

Since αqm+2 − pm+2 > 0 and αqm+3 − pm+3 < 0, we get from Fact 2.3 that

fα(Z1) < fα(X) < fα(Z2).

Now it follows easily from [H2, Fact 2.13] and Fact 2.3 that for all Y ∈ N

fα(Z1) < fα(Y ) < fα(Z2) =⇒ Y
∣∣α
qm

= X,

as desired.
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Fact 7.3. Let X ∈ N and let J ⊆ R be an open interval around fα(X). Then there is
d ∈ Ostα such that for all Y ∈ N

Y
∣∣α
d

= X =⇒ fα(Y ) ∈ J.

Proof. Let
∑m

n=0 bn+1qn be the α-Ostrowski representation of X. Let n ∈ N be such that

• n > m+ 1,
• αqn − pn > 0 and
•
(
fα(X) + (αqn+1 − pn+1), fα(X) + (αqn − pn)

)
⊆ J .

Let Y ∈ N be such that Y
∣∣α
qn+2

= X. It is left to show that fα(Y ) ∈ J . By Fact 2.3 and

[H2, Fact 2.13] we get that

fα(X) + (αqn+1 − pn+1) = fα(X + qn+1) < fα(Y ) < fα(X + qn) = fα(X) + (αqn − pn).

Thus fα(Y ) ∈ J .

7.2. Uniform definition of all finite subsets of N2. Let α, β be two positive irrational
numbers such that 1, α, β are Q-linearly independent. The goal of this section is to produce
a 6-ary Q(α, β)-PA formula Member such that for every set S ⊆ N2 there is X ∈ N4 such
that for all (s, t) ∈ N2,

(s, t) ∈ S ⇐⇒Member(X, s, t).

The Q-linear independence of 1, α, β is necessary as we will see that the existence of such a
relation implies the undecidability of the theory. The failure of our argument in the case of
Q-linear dependence of 1, α, β can be traced back to the fact that the following lemma fails
when 1, α, β are Q-linearly dependent.

Hereafter, we let X = (X1, X2), Y = (Y1, Y2) and Z = (Z1, Z2).

Lemma 7.4. Let X,Y ∈ N2. Then

|fα(X1)− fβ(X2)| = |fα(Y1)− fβ(Y2)| =⇒ X = Y .

Proof. Assume the LHS holds, then there are U1, U2, V1, V2 ∈ N such that:∣∣αX1 − U1 − βX2 + U2

∣∣ =
∣∣αY1 − V1 − βY2 + V2

∣∣.
By Q-linear independence of 1, α, β, we get that X1 = Y1 and X2 = Y2.

Definition 7.5. Define g : N4 → R to be the function that maps (X,Y ) to∣∣fα(X2)− fα(X1)− |fα(Y2)− fβ(Y1)|
∣∣.

Definition 7.6. Let Best be the relation on N × N × N2 × N that holds precisely for all
tuples (d, e,X, Y1) for which there is a Y2 ∈ N such that

• Y1 ≤ d, Y2 ≤ e,
• g(X,Y ) < g(X,Z) for all Z ∈ N≤d × N≤e with Z 6= Y .

Observe that for given (d, e,X) ∈ N × N × N2 there is at most one Y1 ∈ N≤d such that

Best(d, e,X, Y1) holds. We will later see in Lemma 7.8 that for given d ∈ N we can take
e ∈ N large enough such that for all X1 ∈ N and Y1 ≤ d the set

{X2 ∈ N : Best(d, e,X1, X2, Y )}
is cofinal in N.
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Lemma 7.7. Best is definable by an ∃5∀4 Q(α, β)-PA formula.

Proof. Observe that Best(d, e,X, Y1) holds if and only if

∃Y2, U1, U2, V1, V2 ∀Z1, Z2,W1,W2

[
Y1 ≤ d ∧ Y2 ≤ e ∧

fα(X1) = αX1 − U1 ∧ fα(X2) = αX2 − U2 ∧ fα(Y1) = αY1 − V1 ∧ fβ(Y2) = βY2 − V2 ∧[(
Z1 ≤ d ∧ Z2 ≤ e ∧ fα(Z1) = αZ1 −W1 ∧ fβ(Z2) = βZ2 −W2

∧ (Z1, Z2) 6= (Y1, Y2)
)
→
∣∣(αX2 − U2)− (αX1 − U1)− |(βY2 − V2)− (αY1 − V1)|

∣∣
<
∣∣(αX2 − U2)− (αX1 − U1)− |(βZ2 −W2)− (αZ1 −W1)|

∣∣]].
This implies the result.

The following lemma is crucial in what follows. It essentially says that for every subinterval
of Iα ∩ Iβ and every d ∈ Ostα, we can recover (Ostα)≤d just using parameters from this
interval and Ostβ. This should be compared to condition (ii) in [HTy, Th. A].

Lemma 7.8. Let d ∈ Ostα, e0 ∈ Ostβ, X ∈ N2 and s ∈ N be such that

(1) fα(X1), fα(X2) ∈ Iβ,
(2) fα(X1) < fα(X2),
(3) s ≤ d.

Then there is e ∈ Ostβ and an open interval J ⊆
(
fα(X1), fα(X2)

)
such that e ≥ e0 and for

all Z ∈ N
fα(Z) ∈ J =⇒ Best(d, e,X1, Z, s).

Proof. Let e ∈ Ostβ be large enough such that for every w1 ∈ N≤d there is w2 ∈ N≤e such
that

fα(w1) ∈ Iβ =⇒ |fα(w1)− fβ(w2)| < fα(X2)− fα(X1).

The existence of such an e follows from the finiteness of N≤d and the density of fβ(N) in Iβ .
Let w ∈ N≤e be such that

|fα(s)− fβ(w)| < fα(X2)− fα(X1).

By Lemma 7.4 we can find an ε > 0 such that for all (w1, w2) ∈ N≤d × N≤e with (w1, w2) 6=
(s, w) ∣∣|fα(w1)− fβ(w2)| − |fα(s)− fβ(w)|

∣∣ > ε.

Set
δ := fα(X1) + |fα(s)− fβ(w)|.

Set J := (δ − ε
2 , δ + ε

2). Let Z ∈ N be such that fα(Z) ∈ J . It is left to show that
Best(d, e,X1, Z, s) holds. We have that for all (w1, w2) ∈ N≤d × N≤e with (w1, w2) 6= (s, w)

g(X1, Z, w1, w2) =
∣∣fα(Z)− fα(X1)− |fα(w1)− fβ(w2)|

∣∣
=
∣∣fα(Z)− δ + |fα(s)− fβ(w)| − |fα(w1)− fβ(w2)|

∣∣
≥
∣∣∣|fα(Z)− δ| −

∣∣|fα(s)− fβ(w)| − |fα(w1)− fβ(w2)|
∣∣∣∣∣ > ε

2
.

Moreover,

g(X1, Z, s, w) =
∣∣fα(Z)− fα(X1)− |fα(s)− fβ(w)|

∣∣ ≤ ∣∣fα(Z)− δ
∣∣ ≤ ε

2
.
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Thus Best(d, e,X1, Z, s) holds, as desired.

Lemma 7.9. Let d ∈ Ostα, s ∈ N, X ∈ N2 be such that

(1) fα(X1), fα(X2) ∈ Iβ,
(2) fα(X1) < fα(X2),
(3) s ≤ d.

Then there are e1 ∈ Ostβ, e2 ∈ Ostα, Y ∈ N such that

(i) fα(X1) < fα(Y ) < fα(X2),
(ii) d < e1 < e2

(iii) for all Z ∈ N
Z
∣∣α
e2

= Y =⇒ Best(d, e1, X1, Z, s).

Proof. By Lemma 7.8 there is an open interval J ⊆
(
fα(X1), fα(X2)

)
and e1 ∈ Ostβ such

that e1 > d and for all Z ∈ N
fα(Z) ∈ J =⇒ Best(d, e1, X1, Z, s).

Take Y ∈ N such that fα(Y ) ∈ J . By Fact 7.3 we can find e2 ∈ Ostα arbitrarily large such
that fα(Z) ∈ J for all Z ∈ N with Z

∣∣α
e2

= Y . The statement of the Lemma follows.

Definition 7.10. Define Admissible to be the relation on Ost4
α × Ost2

β × N6 that holds
precisely for all tuples

(d1, d2, d3, d4, e1, e2, X1, X2, X3, X4, s, t) ∈ Ost4
α ×Ost2

β × N6

such that

• d1, d2, d3 are consecutive elements of Ostα(X1),
• d4 ∈ Ostα(X3) and d1 ≤ d4 < d2,
• e1, e2 ∈ Ostβ(X2) and d1 ≤ e1 < d2 ≤ e2 < d3

• Best(d1, e1, X4

∣∣α
d1
, X4, s)

• Best(d2, e2, X4

∣∣α
d2
, X4, t)

Define Member to be the 6-ary relation on N that exactly for all tuples (X1, X2, X3, X4, s, t) ∈
N6 such that there exist d1, d2, d3, d4 ∈ Ostα, e1, e2 ∈ Ostβ with

Admissible(d1, d2, d3, d4, e1, e2, X1, X2, X3, X4, s, t).

Theorem 7.11. Let S ⊆ N2 be finite. Then there are X1, X2, X3, X4 ∈ N such that for all
s, t ∈ N

(s, t) ∈ S ⇔Member(X1, X2, X3, X4, s, t).

Proof. Let S ⊆ N2 be finite. Let c1, . . . , c2n ∈ N be such that

S = {(c1, c2), . . . , (c2n−1, c2n)}.
Recall that the convergents of α and β are {pn/qn} and {p′n/q′n}, respectively. We will
construct two strictly increasing sequences (ki)i=0,...,2n, (li)i=1,...,2n of non-consecutive natural
numbers and another sequence (Wi)i=0,...,2n of natural numbers such that for all i = 0, . . . , 2n

(1) Wj = Wi

∣∣α
qkj

for all j ≤ i, and fα(Wi) ∈ Iβ,

(2) qki > max{c1, . . . , c2n},
and furthermore if i ≥ 1, then

(3) qki−1
< q′li < qki ,
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(4) for all Z ∈ N
Z
∣∣α
qki

= Wi =⇒ Best(qki−1
, q′li ,Wi−1, Z, ci).

We construct these sequences recursively. For i = 0, pick k0 ∈ N such that

qk0 > max{c1, . . . , c2n}.

Pick W0 ∈ N such that W0 = W0

∣∣α
qk0

and fα(W0) ∈ Iβ. Now suppose that i > 0 and that

we already constructed k0, k1, . . . , ki−1, l1, . . . , li−1 and W1, . . . ,Wi−1 such that the above
conditions (1)-(4) hold for j = 1, . . . , i− 1. We now have to find ki, li and Wi that (1)-(4)
also hold for i. We do so by applying Lemma 7.9. By Fact 7.2 we can take T ∈ N such that

(a) fα(T ) > fα(Wi−1), T
∣∣α
qki−1

= Wi−1, fα(T ) ∈ Iβ and

(b) for all Z ∈ N,
(
fα(Wi−1) < fα(Z) < fα(T ) =⇒ Z

∣∣α
qki−1

= Wi−1

)
.

We now apply Lemma 7.9 with X1 := Wi−1, X2 := T, d := qki−1
and s := ci−1. We obtain

e1 ∈ Ostβ , e2 ∈ Ostα and Y ∈ N such that d < e1 < e2, fα(Wi−1) < fα(Y ) < fα(T ) and for
all Z ∈ N

Z
∣∣α
e2

= Y =⇒ Best(qki−1
, e1,Wi−1, Z, ci−1).

If necessary, we increase e2 such that Y
∣∣α
e2

= Y . Choose ki such that qki = e2, choose li
such that q′li = e1. Set Wi := Y . It is immediate that (2)-(4) hold for i = 1, . . . , n. For (1),

observe that since fα(Wi−1) < fα(Y ) < fα(T ), we deduce from (b) that

Wi

∣∣α
qki−1

= Y
∣∣α
qki−1

= Wi−1.

Since (1) holds for i− 1, we get that for j = 1, . . . , i− 2

Wi

∣∣α
qkj

= Wi−1

∣∣α
qkj

= Wj .

Thus (1) holds for i.

We have constructed (ki)i=0,...,2n, (li)i=1,...,2n and (Wi)i=0,...,2n satisfying (1)-(4) for each
i = 0, 1, . . . , 2n. We now define (Z1, Z2, Z3, Z4) ∈ N4 by

Z1 :=
2n∑
i=0

qki , Z2 :=
2n∑
i=1

q′li , Z3 :=
n∑
i=0

qk2i , and Z4 := W2n .

Observe that we require the sequences (ki)i=0,...,2n and (li)i=1,...,2n to be increasing sequences
of non-consecutive natural numbers. Therefore the above description of Z1, Z2 and Z3

immediately gives us the α-Ostrowski representations of Z1 and Z3 and the β-Ostrowski
representation of Z2. In particular,

Ostα(Z1) =
{
qki : i = 0, . . . , n

}
, Ostβ(Z2) =

{
q′li : i = 1, . . . , n

}
,

and Ostα(Z3) =
{
qki : i = 0, . . . , n, i even

}
.

(7.3)

It is now left to prove that for all s, t ∈ N

(s, t) ∈ S ⇐⇒Member(Z1, Z2, Z3, Z4, s, t).

“⇒”: Let (s, t) ∈ S. Let i ∈ {1, . . . , 2n} be such that (s, t) = (ci, ci+1). Observe that i is odd.
We show that

Admissible(qki−1
, qki , qki+1

, qki−1
, qli , qli+1

, Z1, Z2, Z3, Z4, ci, ci+1) (7.4)
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holds. By (7.3) and the fact that i− 1 is even, we have that

qki−1
, qki , qki+1

∈ Ostα(Z1), q′li , q
′
li+1
∈ Ostβ(Z2), qki−1

∈ Ostα(Z3).

Trivially, qki−1
≤ qki−1

< qki . By (3) qki−1
< q′li < qki < q′li+1

< qki+1
. Now observe that by

(1) we have

Z4

∣∣α
qki−1

= W2n

∣∣α
qki−1

= Wi−1,

Z4

∣∣α
qki

= W2n

∣∣α
qki

= Wi,

Z4

∣∣α
qki+1

= W2n

∣∣α
qki+1

= Wi+1.

Thus by (4)

Best(qki−1
, q′li , Z4

∣∣α
qki−1

, Z4, ci) ∧ Best(qki , q
′
li+1

, Z4

∣∣α
qki
, Z4, ci+1).

Thus (7.4) holds.

“⇐”: Suppose that Member(Z1, Z2, Z3, Z4, s, t) holds. Let d1, d2, d3, d4 ∈ Ostα, e1, e2 ∈
Ostβ be such that

Admissible(d1, d2, d3, d4, e1, e2, Z1, Z2, Z3, Z4, s, t) (7.5)

holds. Then d1, d2, d3 are consecutive elements of Ostα(Z1). Thus there is i ∈ {1, . . . , 2n−1}
such that

d1 := qki−1
, d2 := qki , d3 := qki+1

.

Since d4 ∈ Ostα(Z3) and d1 ≤ d4 < d2, it follows that d4 = d1 = qki−1
and that i is odd.

Since e1, e2 ∈ Ostβ(Z2) and

d1 = qki−1
≤ e1 < d2 = qki ≤ e2 ≤ d3 = qki+1

,

we get from (3) that e1 = q′li and e2 = q′li+1
. Thus by (7.5)

Best(qki−1
, q′li , Z4

∣∣α
qki−1

, Z4, s) ∧ Best(qki , q
′
li+1

, Z4

∣∣α
qki
, Z4, t).

By (4) we get that s = ci and t = ci+1. Since i is odd, (s, t) = (ci, ci+1) ∈ S.

Lemma 7.12. Admissible and Member are definable by ∃∗∀∗ Q(α, β)-PA formulas.

Proof. For Admissible (Definition 7.10), we replace each variable di, which earlier repre-
sented some convergent qn ∈ Ostα, by a 6-tuple di = (u−i , v

−
i , ui, vi, u

+
i , v

+
i ) such that:

(u−i , v
−
i , ui, vi, u

+
i , v

+
i ) = (pn−1, qn−1, pn, qn, pn+1, qn+1) for some n. (7.6)

We require that C∀,α(u−i , v
−
i , ui, vi, u

+
i , v

+
i ) holds, in order to guarantee (7.6). Here vi takes

the earlier role of di. Similarly, we replace each ei in Admissible by a 6-tuple ei and also
require that C∀,β(ei) holds. Here C∀,α and C∀,β are from (3.3), with the extra subscript α
or β indicating which irrational is being considered. These C∀,α and C∀,β conditions can be
combined into a ∀2-part. Altogether, the new Admissible has 42 variables.

Recall that Best is ∃5∀4-definable (Lemma 7.7). The relation Y = X
∣∣α
d

from (7.2) is

∃2-definable. Here Compatible is from (3.8).

The relation d ∈ Ostα(X), meaning v appears in Ostα(X), is ∃3-definable (see (3.6)). The
same holds for e ∈ Ostβ(X) (just replace α by β).
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The relation

Consec∃ (d1, d2, X) := v1 < v2 ∧ d1 ∈ Ostα(X) ∧ d2 ∈ Ostα(X) ∧
∃Y1, Y2 Y1 = X

∣∣α
d1
∧ Y2 = X

∣∣α
d2
∧ After(u−2 , v

−
2 , ui, vi, Y2 − Y1)

means v1 < v2 appear consecutively in Ostα(X). This is ∃12-definable.

It is now easy to see that Admissible is ∃∗∀∗-definable, and so is Member. A direct count
reveals that Admissible is at most ∃50∀10, and Member is at most ∃100∀10.

7.3. Proof of Theorem 7.1. Here we follow an argument given in the proof of Thomas [Tho,
Th. 16.5]. Consider U = (Q,Σ, σ1, δ, q1, q2) a universal 1-tape Turing machine with 8 states
and 4 symbols, as given in [NW]. Here Q = {q1, . . . , q8} are the states, Σ = {σ1, . . . , σ4}
are the tape symbols, σ1 is the blank symbol, q1 is the start state and q2 is the unique halt
state. Also, δ : [8]× [4]→ [8]× [4]×{±1} is the transition function. In other words, we have
δ(i, j) = (i′, j′, d) if upon state qi and symbol σj , the machine changes to state qi′ , writes
symbol σj′ and moves left (d = −1) or right (d = 1). Given an input x ∈ Σ∗, we will now
produce an ∃∗∀∗∃∗∀∗ α-PA sentence ϕx such that ϕx holds if and only if U(x) halts.

We will now use sets A1, . . . , A8 ⊆ N2 and B1, . . . B4 ⊆ N2 to code the computation on U(x).
The Ai’s code the current state of the Turing machine. That is, for (s, t) ∈ N2, we have
(s, t) ∈ Ai if and only if at step s of the computation, U is in state qi and its head is over
the t-th cell of the tape. The Bj ’s code which symbols are written on the tape at a given
step of the computation. We have (s, t) ∈ Bj if and only if at step s of the computation, the
symbol σj is written on t-th cell of the tape. The computation U(x) then halts if and only
if there are A1, . . . , A8 ⊆ N2 and B1, . . . B4 ⊆ N2 such that:

a) Ai’s are pairwise disjoint; Bj ’s are pairwise disjoint.
b) (0, 0) ∈ A1, i.e., the computation starts in the initial state.
c) There exists some (u, v) ∈ A2, i.e., the computation eventually halts.
d) For each s ∈ N, there is at most one t ∈ N such that (s, t) ∈ ∪iAi, i.e., at each step of

the computation, U can only be in exactly one state.
e) If x = x0 . . . xn ∈ Σ∗, then for every 0 ≤ t ≤ n, we have xt = σj ⇐⇒ (0, t) ∈ Bj , i.e.,

the first rows of the Bj ’s code the input string x.
f) Whenever (s, t) ∈ Bj ,

f1) if (s, t) /∈ Ai for all i ∈ [8], then (s+ 1, t) ∈ Bj . That is, if the current head position
is not at t, then the t-th symbol does not change.

f2) if (s, t) ∈ Ai for some i ∈ [8] and δ(i, j) = (δ1
ij , δ

2
ij , δ

3
ij) ∈ [8] × [4] × {±1}, then

(s+ 1, t) ∈ Bδ2ij and (s+ 1, t+ δ3
ij) ∈ Aδ1ij . That is, if the head position is at t, and

the state is i, then a transition rule is applied.

We use the predicate Member to code membership (s, t) ∈ Ai, Bj . By Theorem 7.11, there
should exist tuples Xi = (Xi1, . . . , Xi4), Yj = (Yj1, . . . , Yj4) ∈ N4 that represent Ai and Bj .
In other words, we have

(s, t) ∈ Ai ⇐⇒ Member(Xi, s, t) , (s, t) ∈ Bj ⇐⇒ Member(Yj , s, t).

For the input condition e), there exist Zj = (Zj1, . . . , Zj4) ∈ N4 so that

xt = σj ⇐⇒ Member(Zj , 0, t) ∀ 0 ≤ t ≤ n.
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Note that Zj can be explicitly constructed from the input x (see Theorem 7.11’s proof).
Now the sentence ϕx that encodes halting of U(x) is:

ϕx := ∃X1, . . . ,X8, Y1, . . . ,Y4 ∈ N4, u, v ∈ N ∀s, t, t′ ∈ N∧
i 6=i′
¬
(
Member(Xi, s, t) ∧ Member(Xi′ , s, t)

)
∧
∧
j 6=j′
¬
(
Member(Yj , s, t) ∧ Member(Yj′ , s, t)

)
∧Member(X1, 0, 0) ∧ Member(X2, u, v)

∧
[(∨

i

Member(Xi, s, t)
)
∧
(∨

i

Member(Xi, s, t
′)
)
→ t = t′

]
∧
∧
j

(
Member(Zj , 0, t)→Member(Yj , 0, t)

)
∧
∧
j

(
Member(Yj , s, t)→

[ ∧
i

¬Member(Xi, s, t) ∧ Member(Yj , s+ 1, t)
]

∨
∨
i

[
Member(Xi, s, t) ∧ Member(Yδ2ij

, s+ 1, t) ∧ Member(Xδ1ij
, s+ 1, t+ δ3

ij)
] )
.

Since Member is ∃∗∀∗-definable, the sentence ϕx is ∃∗∀∗∃∗∀∗. Whether U(x) halts or not
is undecidable, and so is ϕx. A direct count shows that Member appears at most 200 times
in ϕx. From the last estimate in the proof of Lemma 7.12, we see that ϕx is at most a
∃k∀k∃k∀k sentence, where k = 20000. This completes the proof. �

8. Final remarks and open problems

8.1. Comparing Theorem 1.1 and Theorem 1.4, we see a big complexity jump by going
from one to three alternating quantifier blocks, even when α is quadratic. It is an interesting
open problem to determine the complexity of α-PA sentence when r = 2, 3. Here we make
the following conjecture:

Conjecture 8.1. Let α be non-quadratic. Then α-PA sentences with three alternating
blocks of quantifiers are undecidable.

Similarly, when α is quadratic we make the following conjecture:

Conjecture 8.2. Let α be quadratic. Then deciding α-PA sentences with two alternating
blocks of quantifiers and a fixed number of variables and inequalities is NP-hard.

We note that ∃∗∀∗
√

5-PA sentences can already express non-trivial questions, such as the
following: Given a, b ∈ Z, decide whether there is a Fibonacci number Fn congruent to a
modulo b? Note that the sequence {Fn mod b} is periodic with period O(b), called the
Pisano period. These periods were introduced by Lagrange and heavily studied in number
theory (see e.g. [Sil, §29]), but the question above is likely computationally hard.
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8.2. The main theorem by Khachiyan and Porkolab in [KP] is the following general integer
optimization result on convex semialgebraic sets.

Theorem 8.3 [KP]. Consider a first order formula F (y) over the reals of the form:

y ∈ Rk : Q1x1 ∈ Rn1 . . . Qmxm ∈ Rnm P (y,x1, . . . ,xm),

where P (y,x1, . . . ,xw) is a Boolean combination of equalities/inequalities of the form

gi(y,x1, . . . ,xw) ∗i 0

with ∗i ∈ {>,<,=} and gi ∈ Z[y,x1, . . . ,xw]. Let k,m, n1, . . . , nm be fixed, and suppose
that the set

SF := {y ∈ Rn : F (y) = true}
is convex. Then we can either decide in polynomial time that SF ∩ Zk = ∅, or produce in
polynomial time some y ∈ SF ∩ Zk.

This immediately implies Theorem 1.1. Here there is no restriction on the number of gi’s
and their degrees. The coefficients of gi’s are encoded in binary. Note that convexity is
crucially important in the theorem. In Manders and Adleman [MA], it is shown that given
a, b, c ∈ Z, deciding ∃y ∈ N2 : ay2

1 + by2 + c = 0 is NP-complete. Here the semialgebraic set{
y ∈ R2 : 0 ≤ ay2

1 + by2 + c < 1
}

is not necessarily convex.
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