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Abstract. We propose an extension of the join calculus with pattern matching on alge-
braic data types. Our initial motivation is twofold: to provide an intuitive semantics of the
interaction between concurrency and pattern matching; to define a practical compilation
scheme from extended join definitions into ordinary ones plus ML pattern matching. To
assess the correctness of our compilation scheme, we develop a theory of the applied join
calculus, a calculus with value passing and value matching. We implement this calculus
as an extension of the current JoCaml system.

1. Introduction

The join calculus [15, 16] is a process calculus in the tradition of the π-calculus of
Milner et al. [33]. One distinctive feature of join calculus is the simultaneous definition of
all receptors on several channels through join definitions. A join definition is structured
as a list of reaction rules, with each reaction rule being a pair of one join pattern and one
guarded process. A join pattern is in turn a list of channel names (with formal arguments),
specifying the synchronization among those channels: namely, a join pattern is matched
only if there are messages present on all its channels. Finally, the reaction rules of one
join definition define competing behaviors with a non-deterministic choice of which guarded
process to trigger when several join patterns are satisfied.

In this paper, we extend the matching mechanism of join patterns, such that message
contents are also taken into account. As an example, let us consider the following list-based
implementation of a concurrent stack:1

def pop(r) & State(x::xs) ⊲ r(x ) & State(xs)
or push(v) & State(ls) ⊲ State (v::ls)
in State([]) & . . .

1998 ACM Subject Classification: D.1.3, D.3.3, F.3.2.
Key words and phrases: join-calculus, pattern-matching, process calculus, concurrency.

∗ Extended version of [28].
1We use the OCaml syntax for lists, with Nil being [] and Cons being the infix ::.
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The second join pattern push(v) & State(ls) is an ordinary one: it is matched whenever
there are messages on both State and push. By contrast, the first join pattern is an extended
one, where the formal argument of channel State is an algebraic pattern, matched only by
messages that are cons cells. Thus, when the stack is empty (i.e., when message [] is
pending on channel State), pop requests are delayed. Note that we follow the convention
that capitalized channels are private: only push and pop will be visible outside.

A similar stack can be implemented without using extended join patterns, but instead,
using an extra private channel and ML pattern matching in guarded processes:

def pop(r) & Some(ls) ⊲ match ls with
| [x] → r(x ) & Empty()
| y::x::xs → r(y) & Some(x::xs)

or push(v) & Empty() ⊲ Some ([v])
or push(v) & Some(ls) ⊲ Some (v::ls)
in Empty() & . . .

This second definition encodes the empty/non-empty status of the stack as a message on
channels Empty and Some respectively. Pop requests on an empty stack are still delayed,
since there is no rule for the join pattern pop(r) & Empty(). The second definition obviously
requires more programming effort. Moreover, it is not immediately apparent that messages
on Some are non-empty lists, and that the partial ML pattern matching thus never fails.

Join definitions with (constant) pattern arguments appear informally in functional
nets [36]. Here we generalize this idea to full algebraic patterns. A similar attempt has also
been scheduled by Benton et al. as an interesting future work for Cω [7].

The new semantics is a smooth extension, since both join pattern matching and pattern
matching rest upon classical substitution (or semi-unification). However, an efficient im-
plementation is more involved. Our idea is to address this issue by transforming programs
whose definitions contain extended join patterns into equivalent programs whose definitions
use ordinary join patterns and whose guarded processes use ML pattern matching. Doing
so, we leave most of the burden of pattern matching compilation to an ordinary ML pattern
matching compiler. However, such a transformation is far from obvious. More specifically,
there is a gap between (extended) join pattern matching, which is non-deterministic, and ML
pattern matching, which is deterministic (following the “first match policy”). For example,
in our definition of a concurrent stack with extended join patterns, State(ls) is still matched
by any message on State , regardless of the presence of the more precise State(x::xs) in the
competing reaction rule that precedes it. Our solution to this problem relies on partitioning
matching values into non-intersecting sets. In the case of our concurrent stack, those sets
simply are the singleton {[]} and the set of non-empty lists. Then, pattern State(ls) is
matched by values from both sets, while pattern State(x::xs) is matched only by values of
the second set.

The rest of the paper is organized as follows: Section 2 first gives a brief review of al-
gebraic patterns and ML pattern matching. Section 3 presents the applied join calculus —
an extension of join with algebraic pattern matching. We introduce the semantics and the
appropriate equivalence relations. Section 4 informally explains the key ideas to transform
the extension to the ordinary join calculus, and especially how we deal with the nonde-
terminism problem. Section 5 formalizes the transformation as a compilation scheme and
presents the algorithm which essentially works by building a meet semi-lattice of patterns.
We go through a complete example in Section 6, and finally, we deal with the correctness of
the compilation scheme in Section 7. Implementation has been carried out as an extension
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of the JoCaml system. We discuss the issues that have arisen during the implementation
work in Section 8.

An earlier version of this paper (lacking the detailed proofs and the discussion of the
implementation) appeared as [28].

2. Algebraic data types and ML pattern matching

This section serves as a brief introduction to algebraic data types and ML pattern
matching. Interested readers are referred to [30, 26] for further details.

2.1. Algebraic data types. In functional languages, new types can be introduced by using
data type definitions and such types are algebraic data types. For example, using OCaml
syntax, binary trees can be defined as follows:

type tree = Empty | Leaf of int | Node of tree ∗ tree
The complete signature of type tree has three constructors: Empty , Leaf , and Node, which
are used to build the values of this type. Every constructor has an arity, i.e. the number of
arguments it requires and meanwhile specifies the corresponding types of each argument. In
this definition, Empty is of arity zero, Leaf is of arity one (and accepts integer arguments),
and Node is of arity two (both its arguments being themselves of type tree). A constructor
of zero arity is sometimes called a constant constructor.

Most native ML data types can be seen as particular instances of algebraic data types.
For example, lists are defined by two constructors: constant Nil (written []) for empty lists
and Cons (written as the infix ::) for nonempty ones; pairs are defined by one constructor
with arity two, (written as the infix “,”); and integers are defined by infinitely many (or
231) constant constructors.

Formally, the algebraic values (for short values) of type t are well-typed terms built
from the constructors of t. “Well-typed” here means correct with respect to constructor
arity and argument types. Assuming a countable set of identifiers for constructors, ranged
over by κ, we give the formal definition of values as follows:

v ::= Algebraic values
κ(v1, v2, . . . , vn) κ of arity n ≥ 0

Type correctness is left implicit: we shall consider well typed terms only.
Algebraic patterns (for short patterns) of type t are also well-typed terms built from the

constructors of t, but with variables.2 The formal definition of patterns is given as follows.

π ::= Algebraic patterns
x variable
κ(π1, π2, . . . , πn) κ of arity n ≥ 0

We further require all variables in a pattern to be pairwise distinct, that is, we only consider
linear patterns.

Again, we assume a typed context. More precisely, we rely on the ML type system to
guarantee that values and patterns are well-typed. Moreover, we rely on a ML type inferer
to enrich syntax with explicit types (which we leave implicit), and consider that the type of
any syntactic structure is available whenever needed. Doing so, we focus on our main issue
and avoid complications that would be of little explanatory value.

2We freely replace variables whose names are of no importance by wildcards “ ”.
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Patterns are used to discriminate values according to their structures. More specifically,
a pattern denotes a set of values that have a common prefix specified by the pattern. We
say a value v (of type t) is an instance of pattern π (of type t), or that v matches π, when
π describes the prefix of v, in other words, when there exists a substitution σ, such that
πσ = v. For linear patterns, the instance relation can be defined inductively as follows:

Definition 2.1 (Instance). Let π be a pattern and v be a value, such that π and v have
the same type, the instance relation π � v is defined as:

� v

κ(π1, . . . , πn) � κ(v1, . . . , vn) iff πi � vi for all 1 ≤ i ≤ n

We write Ins(π) for the set of the instances of pattern π. The instance relation induces the
following relations among patterns. These relations apply to patterns π1 and π2 that have
the same type.

Definition 2.2 (Pattern relations).

• Patterns π1 and π2 are compatible when they share at least one instance. Otherwise π1
and π2 are incompatible written π1#π2. Two compatible patterns admit a least upper
bound written π1 ↑π2, whose instance set is Ins(π1) ∩ Ins(π2).

• Pattern π1 is less precise than pattern π2 written π1 � π2 when Ins(π2) ⊆ Ins(π1).
• Patterns π1 and π2 are equivalent written π1 ≡ π2 when Ins(π1) = Ins(π2). If so, their
least upper bound is their representative, written πi lπ2.

Note that we use the same notation � for both relations: “being an instance of” (which is
between a pattern and a value) and “being less precise” (which is between two patterns).
Indeed, values are in fact a special case of patterns (with no variables), and in that case,
both relations collapse.

The least upper bound of two patterns can be computed at the same time when com-
patibility is checked by the following rules:

↑π = π

π ↑ = π

κ(π1, . . . , πn) ↑κ(ω1, . . . , ωn) = κ(π1 ↑ω1, . . . , πn ↑ωn)

Deciding the relation “being less precise” is more involved. Because of typing, there
exists nontrivial such relations, for instance ( , ) � . The JoCaml compiler relies on
an efficient algorithm for this task, called the U algorithm, with U standing for “Useful-
ness” [30]. Algorithm U takes two parameters: a list of patterns Π and a pattern π, and
returns a boolean. Roughly speaking, it checks the usefulness of π with respect to Π. More
specifically, algorithm U tests the existence of at least one value v such that π admits v as
an instance, and none of the patterns in Π does.

From the point of view of algorithm U , deciding the relation π1 � π2 amounts to
compute the negation of U([π1], π2). Namely, π1 is less precise then π2, if and only if all the
instances of π2 are instances of π1.

π1 � π2 ⇐⇒ U([π1], π2) = useless

We now give a simplified definition of algorithm U . The simplified definition suffices for our
needs and also conveys the basic idea behind the algorithm.

Consider U([π1], π2), where π1 and π2 are patterns of a common type t. The following
two cases are distinguished.
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Case π2 = κ(ω1, . . . , ωn)

• If π1 = κ(γ1, . . . , γn), then check if ∃i, 1 ≤ i ≤ n, s.t. U([γi], ωi).
• If π1 = κ′(γ1, . . . , γn) and κ 6= κ′, then useful (i.e. false for π1 � π2).
• If π1 = , then useless (i.e. true for π1 � π2).

Case π2 =

• If π1 = , then useless (i.e. true for π1 � π2).
• If π1 = κ(γ1, . . . , γn),
− if κ is the unique constructor of type t, then check if ∃i, 1 ≤ i ≤ n, s.t. U([γi], ).
− otherwise useful (i.e. false for π1 � π2).

Once we can decide relation “�”, we can easily decide pattern equivalence, since, by defi-
nition, π1 ≡ π2 means π1 � π2 and π2 � π1.

2.2. ML pattern matching. In ML, operating on algebraic data types is performed by
the use of the following match construct that we extend to processes (Q1, Q2 etc. below
are processes of the join calculus).

match v with π1 → Q1 | π2 → Q2 | . . . | πn → Qn
Above, we attempt a matching of value v against a sequence of patterns π1, . . . , πn of the
same type.

ML pattern matching is deterministic. It follows the “first match policy”. That is,
when value v is an instance of more than one of the patterns πi, the match construct
chooses the one with the smallest index i. This can be seen as checking patterns π1, π2,
. . . , πn for admitting v as an instance sequentially, stopping as soon as a match is found.
As a consequence, pattern πi is matched only by the values in set Ins(πi) \ (

⋃
1≤j<iIns(πj)).

Moreover, patterns in ML pattern matching also act as binding constructs. Once a successful
match is found, say πk � v, the variables in πk are all bound to the corresponding subterms
of v in the guarded process Qk.

Additionally, we say a match construct is exhaustive when ∪1≤i≤nIns(πj) is the whole
set of values of the considered type. We accept non-exhaustive match constructs.

3. The applied join calculus

We define the applied join calculus by analogy with the applied π-calculus [1]. The
applied join calculus inherits its capabilities of communication and concurrency from pure
join. Moreover it supports algebraic value passing and algebraic pattern matching in both
join patterns and processes.

3.1. Syntax and scopes. The syntax of the applied join calculus is given in Figure 1.
As it is customary in process calculi definitions, we assume an infinite set of identifiers for
variables, ranged over by x, y, z.

With respect to pure join calculus, two new syntactic categories are introduced: expres-
sions and patterns. At first glance, both expressions e and patterns π are terms constructed
from variables and constructors, where n stands for the arity of constructor κ. We make
them different syntactic categories for clarity, and also because we require patterns to be
linear. We also formalize the ML pattern matching in processes, as the new match con-
struct. Moreover, in contrast to ordinary name passing join calculus, there are two other,
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P ::= Processes
0 null process
x(e) message sending
P &P parallel
def D in P definition
match e with π1 → P1 | . . . | πm → Pm pattern matching

D ::= Join definitions
⊤ empty definition
J ⊲ P reaction
D or D disjunction

J ::= Join patterns
x(π) message pattern
J & J synchronization

π ::= Algebraic patterns
x variable
κ(π1, π2, . . . , πn) constructor pattern

e ::= Expressions
x variable
κ(e1, e2, . . . , en) constructor expression

Figure 1: Syntax of the applied join calculus

more radical, extensions: first, in message sending, message contents become expressions
as x(e), that is, we have value passing; second, when a channel name is defined in a join
pattern, in addition to the synchronization requirement, we also specify what pattern the
message content should satisfy by x(π).

There are two kinds of bindings: the definition process def D in P binds all the channel
names defined in D (written dv[D]) with scope P ; and the reaction rule J ⊲ P or the ML
pattern matching match e with π1 → P1 | . . . | πm → Pm bind all the local variables
(written rv[J ] or rv[πi]) with scope P or Pi, i ∈ {1, . . . ,m}. The definition of the sets of
defined channel names dv[·] is the same as in pure join. By contrast, the definition of sets
rv[·] has to be extended, so as to take pattern arguments into account. Meanwhile, the
definition of sets fv[·] should also be extended, to cater for the new match process and
expressions. We present the formal definitions of dv[·], rv[·], and fv[·] in Figure 2. In these
rules, ⊎ is the disjoint union, which expresses linearity constraints on both algebraic and
join patterns.

In applied join, values become of two kinds: channel names or algebraic values. We
assume a type discipline in the style of the type system of the join-calculus [18], extended
with algebraic data types and the rule for ML pattern matching. Without making the
type discipline more explicit, we consider only well-typed terms (whose type we know),
and assume that substitutions preserve types. It should be observed that tuples are now
represented as a kind of constructed expressions and the arity checking of polyadic join
calculus is now replaced by a well-typing assumption in applied join, which is thus monadic.
One important consequence of typing is that any (free) variable in a term possesses a type
and that we know this type. Hence, we can discriminate between those variables that are
of a type of constructed values and those that are of channel type. Following the semantics
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For algebraic patterns :

rv[x] def
= {x}

rv[κ(π1, π2, . . . , πn)]
def
= rv[π1] ⊎ rv[π2] ⊎ . . . ⊎ rv[πn]

For expressions :

fv[x] def
= {x}

fv[κ(e1, e2, . . . , en)]
def
= fv[e1] ∪ fv[e2] ∪ . . . ∪ fv[en]

For join patterns :

rv[x(π)] def
= rv[π]

rv[J1 & J2]
def
= rv[J1] ⊎ rv[J2]

dv[x(π)] def
= {x}

dv[J1 & J2]
def
= dv[J1] ⊎ dv[J2]

For join definitions :

dv[⊤]
def
= ∅

dv[J ⊲ P ] def
= dv[J ]

dv[D1 or D2]
def
= dv[D1] ∪ dv[D2]

fv[⊤]
def
= ∅

fv[J ⊲ P ] def
= dv[J ] ∪ (fv[P ] \ rv[J ])

fv[D1 or D2]
def
= fv[D1] ∪ fv[D2]

For processes :

fv[0] def
= ∅

fv[x(e)] def
= {x} ∪ fv[e]

fv[P1 &P2]
def
= fv[P1] ∪ fv[P2]

fv[def D in P ]
def
= (fv[D] ∪ fv[P ]) \ dv[D]

fv[match e with|i∈I πi → Pi]
def
= fv[e] ∪ (

⋃
i∈I fv[Pi] \ rv[πi])

For solutions :

dv[D]
def
=

⋃
D∈D dv[D]

fv[D]
def
=

⋃
D∈D fv[D]

fv[P]
def
=

⋃
P∈P fv[P ]

Figure 2: Bindings and scopes in the applied join calculus
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Str-Null ⊢ 0 ⇋ ⊢
Str-Par ⊢ P1 &P2 ⇋ ⊢ P1, P2

Str-Top ⊤ ⊢ ⇋ ⊢
Str-Def ⊢ def D in P ⇋ D ⊢ P
React J ⊲ P or D ⊢ Jσ −→ J ⊲ P or D ⊢ Pσ
Match ⊢ match πiη with π1 → P1 | . . . | πm → Pm

−→ ⊢ Piη

Side conditions:
Str-Def dv[D] is fresh
React σ substitutes closed expressions for rv[J ]
Match η substitutes closed expressions for rv[πi]

and ∀j < i, πj � πiη

Figure 3: RCHAM of the applied join calculus

of name passing calculi such as join, we treat the latter kind of variables as channel names,
that is, values. While, in any reasonable semantics, the former kind of variables cannot be
treated so. We call a term variable-closed (closed for short) when its free variables are all
of channel type, and otherwise open.

3.2. Chemical semantics. We establish the semantics following the reflexive chemical
abstract machine (RCHAM) style — the reflexive variant of CHAM [8], whose states are
chemical solutions. A chemical solution is a pair D ⊢ P, whereD is a multiset of (active) join
definitions, and P is a multiset of (running) processes. Extending the notion of closeness
to solutions in the member-wise manner, we say a solution is closed when all its active
join definitions and running processes are closed, namely, free variables are all of channel
type. We define semantics only on closed solutions. The chemical rewriting rules are given
in Figure 3, consisting of two kinds as in join: structural rules ⇀ or ⇁ represent the
syntactical rearrangement of the terms, and reduction rules −→ represent the computation
steps. We follow the convention to omit the part of the solution that remains unchanged
during rewrite. This can also be expressed by the following context rule:

Context

D0 ⊢ P0
⇀
−→
⇁

D1 ⊢ P1

D,D0 ⊢ P0,P
⇀
−→
⇁

D,D1 ⊢ P1,P

where
⇀
−→
⇁

stands for either ⇋ or −→, and D and P are the independent context of the

considered subsolution. Rule Str-Def is a bit of exception because its side condition ac-
tually requires the following relationship hold between the rewriting part and its context:
dv[D] ∩ (fv[D] ∪ fv[P]) = ∅.

Finally, it is perhaps to be noticed that, amongst the various, slightly different, seman-
tics of join-machines, we extend the one of [18], which is adapted to static typing. This
means that we need to state explicitly that or is an associative-commutative operator. As
a consequence, the notation J ⊲P or D in rule React stands for a definition that possesses
a reaction rule whose pattern is J .
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Matching of message contents against formal pattern arguments is integrated in the
substitution σ in rule React. As a consequence this rule does not formally change with
respect to ordinary join calculus. However its semantical power has much increased. The
Match rule is new and expresses ML pattern matching. Its side condition enforces the first
match policy.

According to the convention of processes as solutions, namely P as ⊢ P , the semantics
is also defined on closed processes in the following sense.

Definition 3.1. Let ⇋∗ denote the transitive closure of ⇀ ∪⇁,

(1) P ≡ Q iff ⊢ P ⇋∗ ⊢ Q
(2) P −→ Q iff ⊢ P ⇋∗−→⇋∗ ⊢ Q

Subsequently, we have the following structural rule:

Lemma 3.2. If P −→ Q, P ≡ P ′, and Q ≡ Q′, then P ′ −→ Q′.

Proof. Trivially follow the definitions of ≡ and −→, and the transitivity of ⇋∗.

3.3. Equivalence relation. In this section, we equip the applied join calculus with equiv-
alence relations to allow reasoning over processes. The classical notion of barbed congruence
is a sensible behavioral equivalence based on a reduction semantics and barb predicates. It
was initially proposed by Milner and Sangiorgi for CCS [34], and adapted to many other
process calculi [22, 3], including the join calculus. We take weak barbed congruence [34] as
our basic notion of behavioral equivalence for closed processes.

3.3.1. Observational equivalence for closed processes.

Definition 3.3 (Barb predicates). Let P be a closed process, and x be a free channel name
in P ,

(1) P has a strong barb on channel x: P ↓x, iff P ≡ def D in Q&x(e), for some D, Q and
e, where x 6∈ dv[D].

(2) P has a weak barb on channel x: P ⇓x, iff P −→∗ P ′, such that P ′ ↓x.

where −→∗ denotes the reflexive and transitive closure of −→.

Following the definition, it is easy to check that two structurally congruent processes
maintain the same barbs, i.e. the lemma below.

Lemma 3.4. For two closed processes P and Q, whenever P ≡ Q, we have P ↓x iff Q↓x,
and P ⇓x iff Q⇓x.

Proof. The part for strong barb holds following the transitivity of ≡, and the part for weak
barb holds following Lemma 3.2.
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Definition 3.5 (Weak barbed bisimulation). A binary relation R on closed processes is a
weak barbed bisimulation, iff whenever P R Q, we have:

(1) If P −→∗ P ′, then ∃Q′, such that Q −→∗ Q′ and P ′ R Q′, and vice versa. (R is a
reduction bisimulation.)

(2) P ⇓x implies Q⇓x for any channel x, and vice versa. (R preserves barbs.)

To make the definition easier to work with, we prove the following lemma where P −→∗

P ′ is replaced by P −→ P ′ in the first clause, and P ⇓x is replaced by P ↓x in the second
clause.

Lemma 3.6. Let R be a binary relation on closed processes that satisfies the following two
conditions for any processes P and Q such that P R Q:

(1) If P −→ P ′, then ∃Q′, such that Q −→∗ Q′ and P ′ R Q′, and vice versa.
(2) P ↓x implies Q⇓x for any channel x, and vice versa.

Then R is a weak barbed bisimulation.

Proof. We check against the two clauses of Definition 3.5 for one direction. The proof of
the other direction is symmetric.

(1) R is a reduction bisimulation, that is

P −→∗ P ′ =⇒ ∃Q′, s.t. Q −→∗ Q′ and P ′ R Q′

We reason on the length of the derivation P −→∗ P ′, written n.

Base case. n = 0, 1, trivial.

Induction case. As illustrated in the following diagram chase,

n−1 *

*

R

R

R

P

P1

P ′

Q

Q1

Q′

we have P −→n−1 P1 −→ P ′. By induction hypothesis, we have ∃Q1, s.t. Q −→∗

Q1 and P1 R Q1. By applying hypothesis (1) to to P1 andQ1, we also have ∃Q′, s.t. Q1 −→∗

Q′ and P ′ R Q′. And we conclude.
(2) R preserves barbs, that is P ⇓x =⇒ Q⇓x. We thus assume P ⇓x. That is,

∃P ′, P −→∗ P ′ and P ′ ↓x

By (1) above,
∃Q′, Q −→∗ Q′ and P ′ R Q′

Then by applying hypothesis (2) to P ′ and Q′, we get Q′⇓x. Hence we have Q⇓x.
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In later discussion, we sometimes directly check against the two conditions of Lemma 3.6
instead of the ones of Definition 3.5 for weak barbed bisimulation.

We define a context as a term built by the grammar of process with a single process
placeholder [·]. An evaluation context E[·] is a context in which the placeholder is not
guarded. Namely:

E[·]
def
= [·] | E[·] &P | P &E[·] | def D in E[·]

In addition to evaluation contexts, there are two kinds of guarded contexts, referred to
as definition contexts (i.e. def J ⊲ [·] or D in P ) and pattern matching contexts (i.e.
match e with . . . | πk → [·] | . . .). We say that a context is closed if all the free variables
in it are of channel types.

Definition 3.7 (Weak barbed congruence). A binary relation on closed processes is a weak
barbed congruence, iff it is a weak barbed bisimulation and closed by application of any
closed evaluation context. We denote the largest weak barbed congruence as ≈.

The weak barbed congruence ≈ is defined on the closed subset of the applied join
calculus. Although the definition itself only requires the closure of evaluation contexts,
it can be proved that the full congruence does not provide more discriminative power.
Similarly to what Fournet has established for the pure join calculus in his thesis [15], we
first have the property that ≈ is closed by substitution because, roughly, name substitutions
may be mimicked by evaluation contexts with “forwarders”.

Lemma 3.8. Given two closed processes P and Q, if P ≈ Q, then for any substitution σ,
Pσ ≈ Qσ. (Note that “closed” stands for “variable-closed”.)

Proof. The main idea is to build an evaluation context E[·] whose task is to forward messages
from names to names according to the substitution σ, and to prove the equivalences Pσ ≈
E[P ] and Qσ ≈ E[Q]. Because ≈ is closed by evaluation contexts, we also have P ≈ Q =⇒
E[P ] ≈ E[Q]. Then we conclude by the transitivity of ≈. Refer to the proof of Fournet
in [15, Lemma 4.14 of Chapter 4] for details.

Then based on this property, the full congruence is also guaranteed considering the fact
that the essence of a guarded context is substitution.

Theorem 3.9. Weak barbed congruence ≈ is closed by application of any closed context.

Proof. Corollary of Theorem 3.19 that we prove later on.

Up to now, we have defined the weak barbed congruence to express the equivalence of
two closed processes. However, our purpose is to study the correctness of a static transfor-
mation. Since static transformations apply perfectly well to processes with free variables
of non-channel type, restricting ourselves to the world of closed processes is not an option.
In the next section, we will derive an equivalence relation for open processes. But before
getting into the definition, let us first establish some up-to techniques on the closed sub-set
of the calculus. Such up-to techniques will be used during the courses of proving upcoming
lemmas and theorems.

Definition 3.10 (Weak barbed congruence up to ≡). A binary relation R on closed pro-
cesses is a weak barbed congruence up to ≡, iff P R Q implies:

(1) for any closed evaluation context E[·], E[P ] ≡R≡ E[Q] (R is closed under evaluation
contexts up to ≡);
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(2) whenever P −→∗ P ′, ∃Q′, such that Q −→∗ Q′ and P ′ ≡R≡ Q′, and vice versa (R is a
reduction bisimulation up to ≡);

(3) P ⇓x implies Q⇓x for any channel x, and vice versa. (R preserves barbs.)

As we did for plain weak barbed bisimulation (Definition 3.5) in Lemma 3.6, we intro-
duce the following weakened conditions for checking weak barbed congruence up to ≡.

Lemma 3.11. Let R be a binary relation on closed processes and R that satisfies the
following three conditions for any processes P and Q such that P R Q:

(1) for any closed evaluation context E[·], E[P ] ≡R≡ E[Q];
(2) If P −→ P ′, then ∃Q′, such that Q −→∗ Q′ and P ′ ≡R≡ Q′, and vice versa.
(3) P ↓x implies Q⇓x for any channel x, and vice versa.

Then R is a weak barbed congruence up to ≡.

Proof. We check against the three clauses of Definition 3.10.

(1) The first clause is the same as clause (1) of Definition 3.10.
(2) We show:

P −→∗ P ′ =⇒ ∃Q′, s.t. Q −→∗ Q′ and P ′ ≡R≡ Q′

We reason on the length of the derivation P −→∗ P ′, written n.

Base case. n = 0, 1, trivial.

Induction case. As illustrated in the following diagram chase,

n−1 *

* *

RP

P1

P ′

Q

Q1RP2≡ ≡Q2

R≡ ≡ Q′

we have P −→n−1 P1 −→ P ′. By induction hypothesis, we have ∃Q1, Q2, P2, s.t.
Q −→∗ Q1 and P1 ≡ P2 R Q2 ≡ Q1. Following Lemma 3.2, we have P2 −→ P ′, too. By
applying hypothesis (2) to P2 and Q2, we also have ∃Q′, s.t. Q2 −→∗ Q′ and P ′ ≡R≡
Q′. Then by Lemma 3.2 again, we have Q1 −→∗ Q′, too. To conclude, we have
∃Q′, s.t. Q −→∗ Q′ and P ′ ≡R≡ Q′.

The proof of the other direction is symmetric.
(3) We show:

P ⇓x =⇒ Q⇓x
We thus assume P ⇓x:

∃P1, s.t. P −→∗ P1 and P1 ↓x

By (2) above, we get:

∃Q1, Q2, P2, s.t. Q −→∗ Q1 and P1 ≡ P2 R Q2 ≡ Q1

By Lemma 3.4, we have P2 ↓x. Applying hypothesis (3) to P2 and Q2, we get Q2 ⇓x.
Then by Lemma 3.4 again, we have Q1⇓x. To conclude, we have Q −→∗ Q1 and Q1⇓x,
i.e. Q⇓x. The proof of the other direction is symmetric.
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Lemma 3.12. If R is a weak barbed congruence up to ≡, then R⊆≈.

Proof. We first show ≡R≡ ⊆ ≈, i.e. ≡R≡ is a weak barbed congruence.

(1) ≡R≡ is closed under evaluation contexts. Given P ≡R≡ Q, there exist P1 and Q1 such
that P ≡ P1 R Q1 ≡ Q. Let us name two properties:
(a) ≡ is closed under evaluation contexts;
(b) clause (1) of Definition 3.10.
Then, for any closed evaluation context E[·], we have:

E[P ]
(a)
≡ E[P1]

(b)︷ ︸︸ ︷
≡R≡E[Q1]

(a)
≡ E[Q]

By transitivity of ≡, we conclude:

E[P ] ≡R≡ E[Q]

(2) ≡R≡ is a reduction bisimulation. We use clause (2) of Definition 3.10 and then
Lemma 3.2 to reason by diagram chase as follows:

* * **

Q1R

R ≡ Q′

P1≡P

≡P ′

≡ Q P1 R

R≡P ′

Q1 Q

Q′

≡P ≡

≡

(3) ≡R≡ preserves barbs. Given P ≡R≡ Q, we have P ≡ P1 R Q1 ≡ Q, and the following
statement,

P ↓x
Lemma 3.4

=⇒ P1 ↓x
Def 3.10.(3)

=⇒ Q1⇓x
Lemma 3.4

=⇒ Q⇓x , and vice versa.

Then because R ⊆ ≡R≡ ⊆ ≈, we conclude that R ⊆ ≈.

A standard proof technique is then to consider weak barbed congruence up to ≈. How-
ever, as demonstrated in [41], such a technique does not work in general in weak settings.
Thus, we instead define another relation, where up to ≈ is performed on one side only. This
new relation is sound, as shown by the forthcoming Lemma 3.15.

Definition 3.13 (Weak barbed congruence up to Id 3). A binary relation R on closed
processes is a weak barbed congruence up to Id , iff P R Q implies:

(1) for any closed evaluation context E[·], E[P ] ≡R≡ E[Q] (R is closed under evaluation
contexts up to ≡);

(2) whenever P −→∗ P ′, ∃Q′, such that Q −→∗ Q′ and P ′ R≈ Q′;
(3) whenever Q −→∗ Q′, ∃P ′, such that P −→∗ P ′ and P ′ ≈R Q′;

(The two clause above say that R is a reduction bisimulation up to Id .)
(4) P ⇓x implies Q⇓x for any channel x, and vice versa. (R preserves barbs.)

Again, we first derive the following alternative conditions for checking weak barbed
congruence up to Id .

3Id stands for the identity relation on closed processes. Note that this relation is derived from “bisimula-
tion up to almost-weak bisimulation” in [41], because Id is included in almost-weak bisimulation, with some
adjustments to the barbed setting.
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Lemma 3.14. R is a binary relation on closed processes and R satisfies the following
conditions for any processes P and Q such that P R Q:

(1) for any closed evaluation context E[·], E[P ] ≡R≡ E[Q];
(2) whenever P −→ P ′, ∃Q′, such that Q −→∗ Q′ and P ′ R≈ Q′;
(3) whenever Q −→ Q′, ∃P ′, such that P −→∗ P ′ and P ′ ≈R Q′;
(4) P ↓x implies Q⇓x for any channel x, and vice versa.

Then R is a weak barbed congruence up to Id.

Proof. We check against the clauses of Definition 3.13.

(1) The first clause is the same.
(2) We show:

P −→∗ P ′ =⇒ ∃Q′, s.t. Q −→∗ Q′ and P ′ R≈ Q′

We reason on the length of the derivation P −→∗ P ′, written n.

Base case. n = 0, 1, trivial.

Induction case. As illustrated in the following diagram chase,

*n−1

**

RP

P1

P ′ Q3

Q

R Q2 Q1≈

Q′≈R ≈

we have P −→n−1 P1 −→ P ′. By induction hypothesis, we get ∃Q1, such that
Q −→∗ Q1 and P1 R≈ Q1. That is, ∃Q2, such that P1 R Q2 ≈ Q1. By applying
hypothesis (2) to P1 and Q2, we have ∃Q3 such that Q2 −→∗ Q3 and P ′ R≈ Q3.
Because Q2 ≈ Q1, we also have ∃Q′ such that Q1 −→∗ Q′ and Q3 ≈ Q′ — remember
that ≈ is the largest weak barbed congruence and thus a reduction bisimulation.
We conclude by transitivity of ≈.

(3) Symmetric of (2) above.
(4) We show:

P ⇓x =⇒ Q⇓x
We thus assume P ⇓x. That is, we have:

∃P1 s.t P −→∗ P1 and P1 ↓x

By (2) above, we get:

∃Q1, Q2, s.t. Q −→∗ Q1 and P1 R Q2 ≈ Q1

Applying hypothesis (4) to P1 and Q2, we get Q2 ⇓x. Applying clause (2) of Defi-
nition 3.5 to Q2 and Q1, we then get Q1 ⇓x. To conclude, we have Q −→∗ Q1 and
Q1⇓x, i.e. Q⇓x. The proof of the other direction is symmetric.
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Lemma 3.15. If R is a weak barbed congruence up to Id, then R⊆≈.

Proof. We first show ≈R≈ ⊆ ≈, i.e. ≈R≈ is a weak barbed congruence.

(1) ≈R≈ is closed under evaluation contexts. Given P ≈R≈ Q, there exist P1 and Q1 such
that P ≈ P1 R Q1 ≈ Q. Let us name two properties:
(a) ≈ is closed under evaluation contexts;
(b) clause (1) of Definition 3.13;
Then, for any closed evaluation context E[·], we have:

E[P ]
(a)
≈ E[P1]

(b)︷ ︸︸ ︷
≡R≡E[Q1]

(a)
≈ E[Q]

Because ≡ ⊆ ≈, we have ≡R≡ ⊆ ≈R≈. Hence we have:

E[P ] ≈ E[P1] ≈R≈ E[Q1] ≈ E[Q]

And we conclude, by transitivity of ≈.
(2) ≈R≈ is a reduction bisimulation. We use clause (1) of Definition 3.5, clause (2) of

Definition 3.13, clause (1) of Definition 3.5, and the transitivity of ≈, in the proof
sketched by the following diagram:

* **** *

Q′
1

R≈P ′
1

≈P ′ ≈ Q′ Q′P ′
1

≈R Q′
1

≈≈P ′

P1 R Q1 ≈ Q≈PQ1RP1≈P ≈ Q

≈P ′ ≈ Q′R Q′≈≈P ′ R

(3) ≈R≈ preserves barbs. Given P ≈R≈ Q, we have P ≈ P1 R Q1 ≈ Q, and the following
statement,

P ↓x
Def 3.5.(2)

=⇒ P1⇓x
Def 3.13.(3)

=⇒ Q1⇓x
Def 3.5.(2)

=⇒ Q⇓x , and vice versa.

Then because R ⊆ ≈R≈ ⊆ ≈, we conclude that R ⊆ ≈.

3.3.2. Observational equivalence for open processes. The approach we follow here is to lift
the equivalence relation of closed processes to open processes by closing up by all substitu-
tions, and we call the resulting relation open equivalence.

Although both are “open”, our open equivalence is unrelated to the open bisimilarity
of Sangiorgi in [40]. We use “open” to name our equivalence relation because it relates
open terms. By contrast, “open” in open bisimilarity emphasizes a characteristic of the
bisimulation definition, namely free names are open to equality throughout the bisimulation
game. From the perspective of where and when to apply name substitutions, for open
equivalence, we instantiate free names (and variables) only at the beginning before we test
the resulting (closed) processes for weak barbed congruence. On the contrary, in the case
of open bisimilarity, such instantiation happens at every co-inductive step.

Another way to define equivalence relations on open terms could be to adapt the seman-
tics to symbolic transition system and to define a symbolic barbed congruence like in [5].
Although the symbolic method is claimed to be easier for analysis and verification, we found
open equivalence to be lighter and more intuitive. As a matter of fact, it is not uncommon
to define functions extensionally, i.e. by considering application to all possible arguments.
Moreover, as can be seen in Section 7, our proofs remain tractable.
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Definition 3.16 (Open equivalence ≎ ). Two processes P and Q are open equivalent,
written P ≎ Q, iff for any substitution σ such that Pσ and Qσ are closed, we have
Pσ ≈ Qσ.

As a corollary, ≎ is closed by any substitution.

Lemma 3.17. P ≎ Q =⇒ ∀σ.Pσ ≎ Qσ

Proof. We assume P ≎ Q and let σ be a substitution. We need to prove that Pσ ≎ Qσ.
That is, we need to prove that, for all closing substitution ρ, we have:

(Pσ)ρ ≈ (Qσ)ρ

Thus, we need to prove that, for all closing substitution ρ, we have:

P (ρ ◦σ) ≈ Q(ρ ◦σ) (3.1)

where ◦ stands for substitution composition, i.e. P (ρ ◦σ)
def
= (Pσ)ρ. It remains to observe

that ρ ◦σ closes both processes P and Q, and to apply the definition of P ≎ Q, before
concluding that statement (3.1) above holds.

We aim at proving that ≎ is closed by any contexts (Theorem 3.19 below). To prove
the theorem, we need the following rather unusual lemma, to state the fact that although
we have introduced “deterministic” reduction into the process calculus by extending it with
the match construct, this kind of determinism does not impact process equivalence.

Lemma 3.18. We say a closed process P deterministically reduces to P ′, iff for all P ′′

such that P −→ P ′′, we have P ′ ≡ P ′′. For any such pair of closed processes P and P ′, we
have P ≈ P ′ .

Proof. Let R be the relation {(def D in P &Q, def D in P ′ &Q), (S, S)} for all closed
definitions D, closed processes Q and S, and all (P,P ′) pairs such that P deterministically
reduces to P ′. We prove that R is a weak barbed congruence up to ≡.

• By definition, R is closed by evaluation contexts up to ≡ (i.e. Lemma 3.11.(1)).
• We show that R preserves barbs (i.e. Lemma 3.11.(3)). We omit the (trivial) discussion
of pairs of identical processes (S, S) in R. We show that (def D in P &Q)↓x =⇒ (def
D in P ′ &Q)⇓x. We distinguish the cases that make (def D in P &Q)↓x hold.
− P ↓x. Obviously reduction cannot erase a barb (x 6∈ dv[D]), i.e. we have P ′ ↓x. Hence,

we have (def D in P ′ &Q)↓x.
− Q↓x. Trivial.
As to the opposite direction i.e. (def D in P ′ &Q)↓x =⇒ (def D in P &Q)⇓x, it holds
trivially because def D in P &Q −→ def D in P ′&Q.

• We show R to be a reduction bisimulation up to ≡ (i.e. Lemma 3.11.(2)). We omit the
trivial case of pairs of identical processes in R, that is, we only consider process pairs of
form: (def D in P &Q, def D in P ′ &Q).
− If the reduction of the left part is caused by a reduction on Q alone or by the interaction

between D and Q, yielding def D in P &Q′, then the right part can perform the same
reduction step, yielding def D in P ′ &Q′. The resulting two processes are still in
relation R with Q being Q′. Vice versa.

− If the reduction of the left part is caused by a reduction on P alone, then, because P
deterministically reduces to P ′, the resulting process is def D in P ′&Q (up to ≡).
Thus, the right part simulates with no reduction and def D in P ′ &Q satisfies relation
R with itself.
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− If the reduction of the left part is caused by the interaction between D and P , then we
must have P ≡ P0 & Jσ where J ⊲G is a reaction rule in D and the resulting process is
def D in P0 &Q&Gσ. Because Jσ does not reduce by itself and P deterministically
reduces to P ′, we have P ′ ≡ P ′

0 & Jσ and P0 deterministically reduces to P ′
0. Therefore,

the right part simulates by an identical reduction and gives def D in P ′
0 &Q&Gσ.

The resulting two processes are still in relation R with Q being Q&Gσ, P being P0,
and P ′ being P ′

0.
− If the reduction of the right part is caused by a reduction on P ′ itself or by the

interaction between D and P ′, then the left part can always simulate the reduction by
first reducing def D in P &Q to def D in P ′ &Q.

Following the analysis above, R is a weak barbed congruence up to ≡. Besides we have

P ≡ (def ⊤ in P &0) R (def ⊤ in P ′
&0) ≡ P ′

Moreover, by the proof of Lemma 3.12, relation ≡R≡ is a weak barbed congruence. Hence
we conclude P ≈ P ′.

Theorem 3.19. The open equivalence ≎ is a full congruence.

Proof. We demonstrate ≎ is closed by 1. evaluation contexts, 2. definition contexts, and
3. pattern matching contexts. In the proof, we locally use A, B, R, S, T , V , W , X, Y , Z
to denote various processes.

1. Closed by evaluation contexts: E[·]. We show:

P ≎ Q =⇒ E[P ] ≎ E[Q]

For any substitution σ such that (E[P ])σ and (E[Q])σ are closed, we need to prove (E[P ])σ ≈
(E[Q])σ. We write (E[P ])σ as Eσ[Pσ1] and (E[Q])σ as Eσ[Qσ1], where Eσ[·], Pσ1, Qσ1
are closed and σ1 is σ minus the (possible) bindings for the channel names bound by E in
[·]. By hypothesis P ≎ Q, we have Pσ1 ≈ Qσ1. Then, Eσ[·] being a closed evaluation
context, we conclude, by definition of ≈.

2. Closed by definition contexts: def J ⊲ [·] or D in R. We show:

P ≎ Q =⇒ (def J ⊲ P or D in R) ≎ (def J ⊲ Q or D in R)

For any substitution σ such that (def J ⊲ P or D in R)σ and (def J ⊲ Q or D in R)σ are
closed, we need to prove:

(def J ⊲ P or D in R)σ ≈ (def J ⊲ Q or D in R)σ

namely,

def J ⊲ Pσ1 or Dσ2 in Rσ2 ≈ def J ⊲ Qσ1 or Dσ2 in Rσ2 (3.1)

where σ2 is σ minus the (possible) bindings for the channel names defined in J ⊲P or D (i.e.
dv[J ⊲P or D]), and σ1 is σ2 minus the (possible) bindings for the variables of rv[J ]. Notice
that, by contrast with the subcomponents Dσ2 and Rσ2 that are closed, the processes Pσ1
and Qσ1 may not be closed, since some of the variables in rv[J ] may be of an algebraic
type. Nevertheless, by hypothesis P ≎ Q and Lemma 3.17, we have Pσ1 ≎ Qσ1.

Then, we build the following relation R on closed processes:

R= {(def J ⊲ S or D in A,def J ⊲ T or D in B) | S ≎ T and A ≈ B}.
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We analyze the following three aspects of R: closure by closed evaluation contexts; preserv-
ing barbs; and reduction bisimulation.

• R is closed by closed evaluation contexts up to ≡ (i.e. Lemma 3.14.(1)). For any closed
E[·], with necessary α-conversions left implicit, we have:

E[def J ⊲ S or D in A] ≡ def J ⊲ S or (D or D′) in (A&K)

E[def J ⊲ T or D in B] ≡ def J ⊲ T or (D or D′) in (B&K)

where A&K ≈ B&K, because ≈ is preserved by the closed evaluation context [·] &K.
• R preserves barbs (i.e. Lemma 3.14.(4)). We write D[X,Y ] for the closed process def
J ⊲ X or D in Y . Since R is a symmetric relation, we only need to prove:

D[S,A]↓x =⇒ D[T,B]⇓x

Because D[S,A]↓x implies A↓x and x 6∈ (dv[J ] ∪ dv[D]), we also have D[T,A]↓x. More-
over, because D[T, ·] is a closed evaluation context, and by hypothesis A ≈ B, we have

D[T,A] ≈ D[T,B] (3.2)

By clause (2) of Definition 3.5, we finally get D[T,B]⇓x.
• R is a reduction bisimulation up to Id (i.e. Lemma 3.14.(2) and (3)). We first prove the
following statement. For any two D[S,A] and D[T,A], we have:

If D[S,A] −→W , then D[T,A] −→ V , and W R V . (3.3)

There are three subcases, depending on the nature of the reduction to W .
(1) A −→ A′ and W = D[S,A′]. Then D[T,A] −→ D[T,A′], with obviously D[S,A′] R

D[T,A′], since A′ ≈ A′.
(2) A ≡ A0 &Jη and W = D[S,A0 &Sη]. Then D[T,A] −→ D[T,A0&Tη]. Notice that

Sη and Tη are closed. Then, from S ≎ T , we get Sη ≈ Tη, and thus A0&Sη ≈
A0&Tη. That is, we get D[S,A0 &Sη] R D[T,A0 &Tη].

(3) A ≡ A0 &Jiηi, D has form . . . or Ji ⊲ Pi or . . ., and W = D[S,A0 &Piηi]. Then
D[T,A] −→ D[T,A0 &Piηi]. And we conclude, as we did in case 1 above.

Moreover, from equivalence (3.2) and since ≈ is a bisimulation, we have:

If D[T,A] −→ V , then ∃V ′ s.t. D[T,B] −→∗ V ′, and V ≈ V ′. (3.4)

Combining both statements (3.3) and (3.4), we get:

If D[S,A] −→W , then ∃V ′ s.t. D[T,B] −→∗ V ′, and W R≈ V ′. (3.5)

The proof of the other direction is by symmetry.

Following the analysis above, R is a weak barbed congruence up to Id , hence by
Lemma 3.15, R⊆≈. Obviously, the two processes of statement (3.1) are related by R.
Therefore, (3.1) holds. In other words, ≎ is closed by any definition context.



ALGEBRAIC PATTERN MATCHING IN JOIN CALCULUS ∗ 19

3. Closed by pattern matching contexts: match e with . . . | πk → [·] | . . .. We show:

P ≎ Q =⇒

(match e with . . . | πk → P | . . .) ≎ (match e with . . . | πk → Q | . . .) (3.6)

To establish the right part, we need to show:

(match e with . . . | πk → P | . . .)σ ≈ (match e with . . . | πk → Q | . . .)σ

for all σ, s.t. (match e with . . . | πk → P | . . .)σ and (match e with . . . | πk → Q | . . .)σ
are closed. Namely,

match eσ with . . . | πk → Pσk | . . . ≈ match eσ with . . . | πk → Qσk | . . . (3.7)

where σk is σ minus the (possible) bindings for the variables of rv[πk]. Notice that eσ is
closed, while Pσk and Qσk may not be.

By the semantics of ML pattern matching, match eσ with . . . | πk → Pσk | . . .
deterministically reduces to either P (ηk ◦σk) or Riηi, depending on the value of eσ. Process
Ri is the ith guarded process (i 6= k) in this pattern matching, ηk and ηi stand for the
substitutions that originate from algebraic matching. Notice that P (ηk ◦σk) and Riηi now
are closed processes. We have the similar statement formatch eσ with . . . | πk → Qσk | . . ..
Therefore, by Lemma 3.18, we have either:

match eσ with . . . | πk → Pσk | . . . ≈ P (ηk ◦σk) (3.8)

match eσ with . . . | πk → Qσk | . . . ≈ Q(ηk ◦σk) (3.9)

or we have:

match eσ with . . . | πk → Pσk | . . . ≈ Riηi (3.10)

match eσ with . . . | πk → Qσk | . . . ≈ Riηi (3.11)

Obviously we have Riηi ≈ Riηi. Moreover, since P ≎ Q, we get P (ηk ◦σk) ≈ Q(ηk ◦σk).
Then, by the transitivity of ≈ and, either by (3.8)–(3.9), or by (3.10)–(3.11), we conclude
that the statement (3.7) holds.

Additionally, in the case where eσ matches none of the patterns in (3.7), both processes
are blocked and are ≈ to the null process 0.

There is still a good property worth noticing: for the closed subset of the applied join-
calculus, the equivalences ≎ and ≈ coincide. This is straightforward by the definition
of ≎ and by Lemma 3.8. Then, Theorem 3.9 follows as a corollary.

4. Transforming pattern arguments into ML pattern matching

The extension of the join calculus that we have presented up to now remains quite
simple, in particular as regards chemical semantics. However, an efficient implementation
is more involved. Our approach is to first transform the extended join definitions into
ordinary ones plus ML pattern matching, then reuse the existing implementation of join.
In this section, we explain informally the key ideas of the transformation.

The extended join-pattern matching in applied join requires to test message contents
against pattern arguments, while the ordinary join-pattern matching in join is only capa-
ble of testing message presence. Our idea is to separate algebraic pattern testing from
join-pattern synchronization, and to perform the former operation by using ML pattern
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matching. To avoid inappropriate message consumption, message contents are tested first.
Let us consider the following join definition where channel x has two pattern arguments:

def x (π1) & y1(. . .) ⊲ P1

or x (π2) & y2(. . .) ⊲ P2

We refine channel x into more precise ones, each of which carries the instances of patterns π1
or π2:

def xπ1(. . .) & y1(. . .) ⊲ P1

or xπ2(. . .) & y2(. . .) ⊲ P2

Then, we add a new reaction rule to dispatch the messages on channel x to either xπ1 or xπ2 :

or x (z ) ⊲ match z with
| π1 → xπ1(...)
| π2 → xπ2(...)
| → 0

Note that the null process is used in the last matching rule to discard messages that match
neither π1 nor π2.

The simple compilation above works perfectly, as long as π1 and π2 are incompatible.
Unfortunately, it falls short when π1 and π2 have common instances. Consider the situation
where there is a message pending on channel y2, none on y1, and also a message v on x
where v is a common instance of patterns π1 and π2. Then, following the first match policy,
the deterministic ML pattern matching can only dispatch x(v) to the refined channel xπ1 .
As a result, the guarded process P2 is not triggered, whereas it could have been.4 To tackle
this problem, further refinements are called for according to the following cases.

• If π1 � π2, (but π2 6� π1), that is if all instances of π2 are instances of π1, then, to get a
chance of meeting its instances, pattern π2 must come first:

or x (z ) ⊲ match z with
| π2 → xπ2(...)
| π1 → xπ1(...)
| → 0

But now, channel xπ1 does not carry all the possible instances of pattern π1 any more,
instances shared by pattern π2 are dispatched to xπ2 . As a consequence, the actual
transformation of the initial reaction rules is as follows:

def xπ1(. . .) & y1(. . .) ⊲ P1

or xπ2(. . .) & y1(. . .) ⊲ P1

or xπ2(. . .) & y2(. . .) ⊲ P2

Observe that nondeterminism is now more explicit: an instance of π2 sent on channel x
can be consumed by either the second or the third reaction rule to trigger either P1 or
P2. We can shorten the new definition a little by using or in join patterns:

def (xπ1(. . .) or xπ2(. . .)) & y1(. . .) ⊲ P1

or xπ2(. . .) & y2(. . .) ⊲ P2

Here the disjunctive composition (J1 or J2) in join patterns works as syntactic sugar, in
the following sense:

J &(J1 or J2) ⊲ P
def
= (J & J1 ⊲ P ) or (J & J2 ⊲ P )

• If π1 ≡ π2, then matching by their representative is enough:

4Given our implementation “limited fairness guarantee”, it can be argued that P2 should be triggered.
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def xπ1 l π2(. . .) & y1(. . .) ⊲ P1

or xπ1 lπ2(. . .) & y2(. . .) ⊲ P2

or x (z ) ⊲ match z with
| π1 lπ2 → xπ1 lπ2(. . .)
| → 0

• Finally, if neither π1 � π2 nor π2 � π1 holds, with π1 and π2 being nevertheless compat-
ible, then an extra matching by pattern π1 ↑π2 is needed:

def (xπ1(. . .) or xπ1 ↑π2(. . .)) & y1(. . .) ⊲ P1

or (xπ2(. . .) or xπ1 ↑π2(. . .)) & y2(. . .) ⊲ P2

or x (z ) ⊲ match z with
| π1 ↑π2 → xπ1 ↑π2(. . .)
| π1 → xπ1(. . .) | π2 → xπ2(. . .)
| → 0

Note that the relative order of π1 and π2 is irrelevant here.

In the transformation rules above, we paid little attention to variables in patterns,
by writing xπ(. . .). We now show variable management by means of the concurrent stack
example. Here, the relevant patterns are π1 = ls and π2 = x::xs and we are in the case
where π1 � π2 (and π2 6� π1 because of instance empty list []). Our idea is to let dispatching
focus on instance checking, and to perform variable binding after synchronization:

def pop(r) & Statex::xs(z ) ⊲ match z with x::xs → r(x ) & State(xs)
or push(v) & (Statex::xs(z ) or State ls(z )) ⊲ match z with ls → State(v::ls)
or State(z ) ⊲ match z with

| :: → Statex::xs(z )
| → State ls(z )

One may believe that the matching of the pattern x::xs needs to be performed twice (once
in the dispatcher, once in the first reaction rule), but it is not necessary. The compiler
should know that the matching of z against x::xs in the first reaction rule cannot fail,
and as a consequence, no test needs to be performed here, only the binding of the pattern
variables. See Section 8.2 for details.

5. The compilation J·K

We formalize the intuitive idea described in Section 4 as a transformer Yx, which trans-
forms a join definition D with respect to channel x. The algorithm essentially works by
constructing the meet semi-lattice of the formal pattern arguments of channel x in D,
modulo pattern equivalence ≡, with the less precise relation � being the partial order.
Moreover, we visualize the lattice as a Directed Acyclic Graph (DAG), namely, vertices as
patterns, and edges representing the partial order. If we reason more on instance sets than
on patterns, this structure is quite close to the “subset graph” of [38].

Algorithm Yx: Given D, a join definition, where x is a channel defined by D.

Step 0: Preprocess.
(1) Collect all the pattern arguments of channel x into the sequence:

Πx = πx1 ;π
x
2 ; . . . ;π

x
n

(2) Let Π′
x be formed from Πx by replacing all variables by wildcards “ ” and taking the

l of all equivalent patterns; thus Π′
x is a sequence of pairwise nonequivalent patterns.
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(3) Perform exhaustiveness check on Π′
x, if not exhaustive, issue a warning.

(4) IF: There is only one pattern in Π′
x, and that Π′

x is exhaustive
THEN: goto Step 5. (In that case, no dispatching is needed.)

Step 1: Closure by least upper bound.
For any pattern π and pattern sequence Π = π1;π2; . . . ;πn, we define π ↑Π as the sequence
π ↑πi1 ;π ↑πi2 ; . . . ;π ↑πim , where the πik s are the patterns from Π that are compatible
with π.

We also define function F , which takes a pattern sequence Π as argument and returns
a pattern sequence.
IF: Π is empty
THEN: F (Π) = Π
ELSE: Decompose Π as π; Π′ and state F (Π) = π;F (Π′);π ↑F (Π′)

Compute the sequence Ω′ = F (Π′
x). It is worth noticing that Ω′ is the sequence of all

valid patterns (πx
′

i1
↑ . . . (πx

′

ik−1
↑πx

′

ik
) . . .), with 1 ≤ i1 < i2 < . . . < ik ≤ n, and 1 ≤ k ≤ n,

where we decompose Π′
x as πx

′

1 ;πx
′

2 ; . . . ;πx
′

n .
Step 2: Up to equivalence.
As in Step 0.2, build Ω by taking the l of all equivalent patterns in Ω′.
Step 3: Build DAG:
Corresponding to the semi-lattice (Ω,�), build a directed acyclic graph G(V, E).
(1) V = ∅, E = ∅.
(2) For each pattern ω in Ω, add a new vertex v into V and annotate the vertex with ω.
(3) ∀(v, v′) ∈ V × V, v 6= v′, with annotations ω and ω′ respectively, if ω � ω′, then add

an edge from v′ to v into E .
Step 4: Add dispatcher.
Following one topological order, the vertices of G are indexed as v1, . . . , vm, correspond-
ingly with annotations ω1, . . . , ωm. We extend the join definition D with a dispatcher on
channel x of the form: x(z) ⊲ match z with Λ, where z is a fresh variable and Λ is built
as follows:
(1) Let j ranges over {1, . . . ,m}. Following the topological order above, for all vertices vj

in V append a rule “| ωj → xωj
(z)” to Λ, where xωj

is a fresh channel name assigned
to vertex vj whose annotation is ωj. Such fresh channels are here for the purpose of
carrying messages originally sent to x then forwarded by the dispatcher, hence are
also referred to as forwarding channels.

(2) If Πx is not exhaustive, then add a rule “| → 0” at the end.
Step 5: Rewrite reaction rules.
For each reaction rule defining channel x in D: Ji&x(πxi ) ⊲Qi, we rewrite it according to
the following policy. Let Q′

i = match zi with πxi → Qi, where zi is a fresh variable.
IF: coming from Step 0
THEN: rewrite to Ji&x(zi) ⊲ Q

′
i

ELSE:
(1) Let vji be the unique vertex in V, s.t. its annotation ωji ≡ πxi .
(2) We collect all the predecessors of vji in G, and we record the indices of them, together

with ji, into a set that we note I(πxi ).

(3) Rewrite to Ji&(
∨

j∈I(πx
i )
xωj

(zi)) ⊲ Q
′
i, where

∨
is the generalized or construct of

join patterns.



ALGEBRAIC PATTERN MATCHING IN JOIN CALCULUS ∗ 23

Given a join definition D, we note dv[D] = {x1, . . . , xn} (n ≥ 0), that is we order the
channel names arbitrarily. To transform D, we apply Yxn . . . Yx1(D). And the compilation
of processes J·K is inductively defined as follows:

J0K
def
= 0

Jx(e)K
def
= x(e)

JP1 &P2K
def
= JP1K&JP2K

Jdef D in P K
def
= def Yxn . . . Yx1(JDK) in JP K

Jmatch e with|i∈I πi → PiK
def
= match e with|i∈I πi → JPiK

J⊤K
def
= ⊤

JJ ⊲ P K
def
= J ⊲ JP K

JD1 or D2K
def
= JD1K or JD2K

Observe that the compilation preserves the interface of join definitions. Namely, it only
affects the join definitions, never suppressing a channel, while message sending remains the
same.

6. Example of compilation

Given the following join definition for an enriched integer stack:

def push(v) & State(ls) ⊲ State (v::ls)
or pop(r) & State(x::xs) ⊲ r(x ) & State(xs)
or insert(n) & State(0::xs) ⊲ State(0::n::xs)
or last(r) & State([x]) ⊲ r(x ) & State([x])
or swap() & State(x 1::x 2::xs) ⊲ State(x 2::x 1::xs)
or pause(r ) & State([]) ⊲ r()
or resume(r) ⊲ State([]) & r()

The insert channel inserts an integer as the second topmost element, but only when the
topmost element is 0. The last channel gives back the last element in the stack, keeping
the stack unchanged. The swap channel exchange the topmost two elements in the stack.
The pause channel temporarily freezes the stack when it is empty, while the resume channel
brings the stack back into work. We now demonstrate our transformation with respect to
channel State.

Step 0: We collect the pattern arguments of channel State into ΠState:

ΠState = ls; x::xs; 0::xs; [x]; x1::x2::xs; []; []

We drop the last equivalent [] pattern during the up to equivalence substep 0.2, and we
get:

Π′
State = ls; x::xs; 0::xs; [x]; x1::x2::xs; []

Additionally, Π′
State

is exhaustive (pattern ls alone covers all possibilities). Note that in
the demonstration of this example, we sometimes keep variable names in patterns for
readers’ convenience. They are not necessary and are actually all replaced by “ ” in the
implementation.
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Step 1,2: Ω′ extends Π′
State

with all possible least upper bounds. Then we form Ω from
Ω′ by taking the l of all equivalent patterns.

Ω = ls; x::xs; 0::xs; [x]; x1::x2::xs; []; 0::x2::xs; [0]

Note that the last two patterns are new, where:

0::x2::xs = 0::xs ↑ x1::x2::xs
[0] = 0::xs ↑ [x]

Step 3: We build the semi-lattice (Ω,�), see Figure 4.

1. 0::x2::xs

2. [0]

3. x1::x2::xs

4. 0::xs

5. [x]

6. x::xs

7. []

8. ls

[]x::xs

0::xs

ls

[0]0::x2::xs

x1::x2::xs [x]

Figure 4: The semi-lattice of patterns and the topological order

Step 4: One possible topological order of the vertices is also given at the right of Figure 4.
Following that order, we build the dispatcher on channel State .

or State(z ) ⊲ match z with
| 0:: :: → State1(z )
| [0] → State2(z )
| :: :: → State3(z )
| 0:: → State4(z )
| [ ] → State5(z )
| :: → State6(z )
| [] → State7(z )
| → State8(z )

where State1, . . ., State8 are the fresh forwarding channels.
Step 5: We rewrite the original reaction rules. As an example, consider the third reaction
rule for the insert behavior: the pattern in State(0::xs) corresponds to vertex 4 with
annotation 0::xs in the graph, which has two predecessors: vertex 1 with annotation
0::x2::xs and vertex 2 with annotation [0]. Therefore, the reaction rule is rewritten to:

insert(n) & (State1(z 3) or State2(z 3) or State4(z 3))
⊲ match z 3 with 0::xs → State(0::n::xs)

where z3 is a fresh variable.

As a final result of our transformation, we get the disjunction of the following rules and of
the dispatcher built in Step 4.

def push(v) & (State1(z 1) or . . . or State8(z 1))
⊲ match z 1 with ls → State (v::ls)

or pop(r) & (State1(z 2) or . . . or State6(z 2))
⊲ match z 2 with x::xs → r(x ) & State(xs)

or insert(n) & (State1(z 3) or State2(z 3) or State4(z 3))
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⊲ match z 3 with 0::xs → State(0::n::xs)
or last(r) & (State2(z 4) or State5(z 4))

⊲ match z 4 with [x] → r(x ) & State([x])
or swap() & (State1(z 5) or State3(z 5))

⊲ match z 5 with x 1::x 2::xs → State(x 2::x 1::xs)
or pause(r ) & State7(z 6) ⊲ match z 6 with [] → r()
or resume(r) ⊲ State([]) & r()

7. Correctness

A program written in the applied join calculus of Section 3 is a process P . The com-
pilation JP K replaces all the join definitions D in P by Yxn . . . Yx1(D), where dv[D] =
{x1, . . . , xn}. To guarantee the correctness, we require the programs before and after the
compilation be open equivalent. Namely, the following theorem should hold.

Theorem 7.1. For any process P , JP K ≎ P .

Proof. By structural induction on processes. Because ≎ is a full congruence and a tran-
sitive relation, it suffices to prove one step of the compilation, that is, Yx is correct (see
Lemma 7.2 below).

Lemma 7.2. For any join definition D, channel name x ∈ dv[D], and process P , we have:

def D in P ≎ def Yx(D) in P

This lemma is crucial to the correctness of the compilation. We elaborate the proof in
the coming sections. First, we recall the notations of algorithm Yx in Section 7.1. Then,
we discuss the properties of the dispatcher built by Yx in Section 7.2. Finally, we prove
Lemma 7.2 in Section 7.3.

7.1. Summary of notations. We summarize the connection between the input and the
output of Yx. For simplicity, we omit the x superscripts everywhere. According to the
algorithm given in Section 5, there are two cases during the procedure of Yx, chosen at the
end of Step 0:

Case “jump”. The case where Steps 1 to 4 are skipped. Then, for any reaction rule of
the form Ji&x(πi) ⊲ Qi of D, i = 1 . . . n, the pattern πi is irrefutable, namely, πi ≡ . And
in Yx(D), we have the corresponding reaction rule Ji&x(zi) ⊲match zi with πi → Qi,
where zi is fresh.

Case “go through”. The general case. We recall the notations of the DAG G(V, E) built
by the algorithm. G has m vertices, and following the topological order, the vertices are
indexed as v1, . . . , vm with pattern annotations ω1, . . . , ωm. Each vertex is also assigned a
fresh forwarding channel, written xωj

.
For any reaction rule of the form Ji&x(πi) ⊲ Qi of D, i = 1 . . . n, there exists a unique

vertex in G called vji , such that its annotation ωji ≡ πi. We use I(πi) to record the indices
of the predecessors of vji as well as ji. Note that we have πi � ωj iff j ∈ I(πi). In Yx(D), we

have a corresponding reaction rule as Ji&(
∨

j∈I(πi)

xωj
(zi)) ⊲match zi with πi → Qi, where

the variable zi is fresh. Moreover, we add a dispatcher on channel x into Yx(D) as:
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x (z ) ⊲ match z with
| ω1 → xω1

(z)
| . . .
| ωm → xωm(z)
| → 0 (∗ if non−exhaustive ∗)

where z is a fresh variable.

7.2. Property of the dispatcher. We go on to discuss the property of the dispatcher built
during the transformation on channel x. Let u range over closed expressions, that is over
values. Modulo pattern equivalence ≡, the patterns of the dispatcher (ωj, j = 1, . . . ,m)
are all the least upper bounds of the pattern arguments of channel x in the original D
(πi, i = 1, . . . , n). Thus, the πi s and the ωj s admit the same instances:

⋃
1≤i≤n Ins(πi) =⋃

1≤j≤m Ins(ωj). As an immediate consequence, on one hand, for the set of values that do

not match any of the original πi s, written ℵ = {u | ∀i, u 6∈ Ins(πi)}, the values of ℵ do
not match any ωj either, and those values are silently eaten by the dispatcher. On the
other hand, given any value u such that there exists at least one πi with u ∈ Ins(πi), then
the dispatcher must forward u onto one of the forwarding channels. More precisely, the
following lemma holds.

Lemma 7.3. For any value u that is an instance of some original pattern argument πi,
the dispatcher forwards u to the forwarding channel assigned to a vertex in G, whose index
belongs to I(πi).

Proof. We thus assume u ∈ Ins(πi). Let K be the set of indices {k | u ∈ Ins(πk)} and
ΠK = {πk | k ∈ K}. Let ω be the least upper bound of the patterns in ΠK , written ↑ΠK
(ω exists, since ΠK is non-empty). By steps 1–3 of the compilation algorithm Yx, there
must exist some vertex denoted by vjK in G with annotation ωjK ≡ ω. The dispatcher
forwards message u onto the forwarding channel xωjK

, for the following two reasons.

(1) Value u is an instance of ωjK .
(2) No pattern of the dispatcher that appears before ωjK admits u as an instance. Namely,

any pattern of the dispatcher ωj, 1 ≤ j ≤ m, such that u ∈ Ins(ωj) must be the
least upper bound of a subset of ΠK . Then, since the patterns of the dispatchers are
ordered topologically (with precision order �), ωjK must be the foremost pattern in
the dispatcher which has u as an instance. Namely, precision order � applied to least
upper bounds is reverse set inclusion applied to instance sets.

Moreover, because πi ∈ ΠK and ωjK ≡ ω = ↑ΠK , we have πi � ωjK . Thus, by definition
of I(πi), we have jK ∈ I(πi).

In the following, given some value u, we write xu for the forwarding channel to which
u is sent by the dispatcher. Using the new notation, Lemma 7.3 is reformulated as follows:
if u ∈ Ins(πi), then xu exists and we have xu ∈ {xωj

| j ∈ I(πi)}.

7.3. Proof of Lemma 7.2.

Proof. Following the definition of ≎ , we should prove (def D in P )σ ≈ (def Yx(D) in P )σ,
for any closing substitution σ. In other words, since Yx(D)σ = Yx(Dσ), we should prove:

def Dσ in Pσ1 ≈ def Yx(Dσ) in Pσ1 (7.1)
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where σ1 is σ minus the (possible) bindings of the variables of dv[D]. Notice that all
subcomponents Dσ, Yx(Dσ) and Pσ1 are closed. Hence, to prove (7.1), it suffices to prove
that Yx is correct for closed terms (Lemma 7.4 below).

Lemma 7.4. For any closed join definition D, channel name x ∈ dv[D], and closed process
P , we have:

def D in P ≈ def Yx(D) in P

Proof. There are two subcases.

Case “go through”. We construct the following relation R:

R= {(def D in (P &Q), def Yx(D) in (P & Q̂))}

Above, process P and definition D range respectively over closed processes and closed

definitions; while Q and Q̂ are particular. Dissect the structure of D as:

D = . . . or Ji&x(πi) ⊲ Qi or . . .

We define Q and Q̂ to be:

Q = (
∏

δ∈∆
x(πiδ)) & (

∏
ψ∈Ψ

Qiψ) & (
∏

u∈U
x(u))

Q̂ = (
∏

δ∈∆
xπiδ(πiδ)) & (

∏
ψ∈Ψ

match πiψπi with πi → QiψJi)

We note
∏

the generalized parallel composition. Note that processes Q and Q̂ are (im-

plicitly) parameterized by the multisets of substitutions ∆ and Ψ, and by the multiset of
values U . In the definition of R, ∆, Ψ and U range over all appropriate multisets. More
precisely, given any reaction rule Ji&x(πi) ⊲ Qi from D, we note δ any (closed) substitu-
tion on domain rv[πi]. Then, ∆ stands for any multiset of such substitutions δ. Similarly,
let ψ be a (closed) substitution on domain rv[Ji] ⊎ rv[πi]. Moreover, for any such ψ, let
ψπi be ψ ↾ rv[πi] (the restriction of ψ on domain rv[πi]), and ψJi be ψ ↾ rv[Ji]. Because
rv[πi]∩ rv[Ji] = ∅, the substitution ψ is the sum of ψπi and ψJi , written ψ = ψπi ⊎ ψJi , and
we further require ψπi ◦ψJi = ψJi ⊎ ψπi . Then, Ψ is any multiset of such substitutions ψ.
Finally, U is a multiset of elements from ℵ.

Intuitively, we use Q and Q̂ to bridge the differences caused by D and Yx(D). More
specifically: a message x(πiδ) may be forwarded to xπiδ(πiδ) by the dispatcher in Yx(D);
furthermore, if a guarded process Qiψ is triggered from D, then from Yx(D), we have the
corresponding guarded process match πiψπi with πi → QiψJi triggered; finally, a message
on channel x with a non-matching content, that is from ℵ, will be eaten by Yx(D).

We analyze the following three aspects of R: closure by (closed) evaluation contexts;
reduction bisimulation; and preservation of barbs.

• R is closed by closed evaluation contexts up to ≡ (i.e. Lemma 3.11.(1)). For any closed
evaluation context E[·], we have:

E[def D in (P &Q)] ≡ def D or D′ in (P &P ′
&Q)

E[def Yx(D) in (P & Q̂)] ≡ def Yx(D) or D′ in (P &P ′
& Q̂)

where dv[D] ∩ dv[D′] = ∅, so that Yx(D) or D′ = Yx(D or D′). Therefore, we have

E[def D in (P &Q)] ≡R≡ E[def Yx(D) in (P & Q̂)].
• R is a reduction bisimulation (i.e. a special case of Lemma 3.11.(2) because the identity
in included in ≡). We only detail the nontrivial cases.
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def Yx(D) in (P & bQ)def D in (P &Q)

x(u)

∅

x(u)

Jiη&x(πiδ)

Qi(δ ◦ η)

match πiδ with πi → Qiη

Qi(δ ◦ η)

Jiη& xπiδ(πiδ)

Jiη& x(πiδ)

Figure 5: Reduction chasing in case “go through”

(1) If there is a message x(πiδ
′) in P , the right part can forward it to a message xπiδ′(πiδ

′)
by the dispatcher in Yx(D). This reduction is simulated in the left part by no reduc-
tion, and we add the new substitution δ′ into ∆.

(2) Similarly, if there is a message x(u′) in P , for some u′ ∈ ℵ, the right part can eat the
message by the dispatcher in Yx(D). This reduction is simulated by no reduction in
the left part and we add u′ into U .

(3) If a reduction according to the reaction rule Ji&x(πi) ⊲ Qi consumes a molecule
Jiη&x(πiδ) in the left part, for some δ ∈ ∆ (i.e. x(πiδ) occurs in Q) and Jiη from P ,
with dom(η) = rv[Ji]; it can be simulated by consuming Jiη&xπiδ(πiδ) in the right

part, using the corresponding reaction rule Ji&(
∨

j∈I(πi)

xωj
(zi))⊲match zi with πi →

Qi, because xπiδ ∈ {xωj
| j ∈ I(πi)} (Lemma 7.3). The derivatives are still in R, with

∆ shrinking to ∆ \ {δ}, and Ψ expanding to Ψ ∪ {η ⊎ δ}. We assume α-conversion
when necessary to guarantee δ ◦ η = η ⊎ δ. Vice versa.

(4) Similar to the previous case but this time the left part consumes a molecule Jiη&x(πiδ
′),

where δ′ is not from ∆. Then, the right part simulates this reduction by first for-
warding the message x(πiδ

′) to the message xπiδ′(πiδ
′) as in case ?2, then consuming

the molecule Jiη&xπiδ′(πiδ
′). Ψ expands to Ψ ∪ {η ⊎ δ′}.

(5) The match πiψπi with πi → QiψJi in Q̂ of the right part can be reduced to
(QiψJi)ψπi by the semantic rule Match. Because we have ψπi ◦ψJi = ψJi ⊎ ψπi ,
the result of the reduction equals to Qi(ψJi ⊎ ψπi), that is Qiψ. This reduction is
simulated by no reduction in the left part. However, the process P becomes P &Qiψ,
and Ψ shrinks to Ψ \ {ψ}.

(6) If a reduction involves Qiψ from Q of the left part, for some ψ ∈ Ψ, it can be simulated

by first reducing the correspondent match πiψπi with πi → QiψJi from Q̂ into Qiψ
as in the previous case.

Figure 5 summarizes the various cases we just examined, where thick lines express the
R relation.
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Jiη& x(πiδ)

def Yx(D) in (P & bQ)def D in (P &Q)

Jiη&x(πiδ)

Qi(δ ◦ η) Qi(δ ◦ η)

match πiδ with πi → Qiη

Figure 6: Reduction chasing in case “jump”

• R preserves barbs (i.e. Lemma 3.11.(3)). We demonstrate def D in (P &Q) ↓y =⇒

def Yx(D) in (P & Q̂) ⇓y and vice versa. We distinguish the cases that make def D in
(P &Q)↓y hold.
(1) Q ↓y. We have y 6∈ dv[D]. Because all variables in dv[Yx(D)] \ dv[D] are fresh, we

also have y 6∈ dv[Yx(D)]. According to the structure of Q, we must have Qiψ ↓y
for some ψ ∈ Ψ. Then in Q̂, we have match πiψπi with πi → QiψJi reduces

to Qiψ and Qiψ ↓y. That is, (match πiψπi with πi → QiψJi) ⇓y, i.e. Q̂ ⇓y, i.e.

def Yx(D) in (P & Q̂)⇓y.
(2) P ↓y. Obvious.

The proof of the other direction, i.e. def Yx(D) in (P & Q̂)↓y =⇒ def D in (P &Q)⇓y,

is obvious since the only case for def Yx(D) in (P & Q̂)↓y is when P ↓y.
Following the analysis above, R is a weak barbed congruence up to ≡. By Lemma 3.12,

we have R is a weak barbed congruence.
Let ∆, Ψ and U be empty sets. We have the two processes of Lemma 7.4 satisfy

relation R, hence ≈. That is, we proved that Lemma 7.4 holds for case “go through”.

Case “jump”. We build another relation R, with Q and Q̂ defined as follows:

Q =
∏

ψ∈Ψ
Qiψ

Q̂ =
∏

ψ∈Ψ
match πiψπi with πi → QiψJi

and we summarize the property of reduction bisimulation by the diagram of Figure 6.

8. Implementing applied join

We carried out the practical implementation work of the applied join calculus as an
extension of the JoCaml system. The extended system is publicly released [31]. The release
includes a tutorial that makes extensive use of algebraic patterns in join patterns. In this
section, we first sketch out the structure of the extended JoCaml compiler, pointing out
where the transformation should take place. Then some optimizations of our algorithm Yx
are reported.
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8.1. Front end of the (extended) JoCaml compiler. The JoCaml compiler is an ex-
tension of the OCaml compiler, as the JoCaml language is an extension of the OCaml
language. Extensions are confined to the first four phases of the compiler.

More precisely, there are additional tokens in the lexer (such as the keyword def).
Then, all the constructs of Figure 1 are parsed and rendered as specific constructs in the
abstract syntax tree. Typed syntax undergoes a similar extension. Amongst those first
three compiler phases, only the typer significantly differs from the original OCaml compiler,
since the JoCaml compiler has to deal with the specific rules for typing the join calculus
polymorphically [18]. Finally, the typed syntax is translated to lambda-code, which basically
is λ-calculus enriched with primitive types and calls to the runtime library. All constructs
specific to JoCaml disappear, being replaced by calls to specific primitives in a “Join”
library, built on top of one of the OCaml thread libraries. In the following, we denote as
“the JoCaml runtime”, the ordinary (thread aware) OCaml runtime, plus the thread library,
plus the Join library. To summarize, extending the OCaml system to the JoCaml system
amounts to modifying the front end of the compiler, and to writing the Join library.

Tokens

Lambda

code

A
S

T

Typed

syntax

Typed syntaxTyped syntax

Extended

JoCaml code

J·K

Lexing

Translation

Parsing

Typing

Figure 7: The extended JoCaml compiler front end

Extending JoCaml to handle pattern arguments in join definitions requires further mod-
ifications. Figure 7 shows the structure of the extended JoCaml compiler. With respect to
plain JoCaml (without algebraic pattern matching in join definitions), the parser and the
typer have to be modified to take pattern arguments in channel definitions into account.
However these extensions are mechanical. The critical modification manifests itself as an
extra sub-phase (enclosed in the dashed polygon) between the typing phase and the trans-
lation phase. Not surprisingly, the additional phase carries out the transformation from
extended join definitions to plain ones, by implementing the compilation scheme J·K of Sec-
tion 5. Once this new transformation is performed, all join definitions in the typed trees are
plain ones (without pattern arguments). Then, the translator to lambda-code and, more
importantly, the JoCaml runtime system need not be changed, with respect to the ones of
the original JoCaml system.

We in fact also slightly extended the translator, for the sake of performing a few opti-
mizations (see Section 8.2) and of avoiding excessive duplications of guarded processes (see
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Section 8.3). The optimizations we perform make use of the sophisticated pattern matching
compiler and analyzer that are already present in the standard OCaml compiler.

8.2. Matching optimizations.

8.2.1. Avoiding redundant matchings. As discussed at the end of Section 4, the compilation
introduces redundant matchings. For instance, in the stack example, we get:

def pop(r) & Statex::xs(z ) ⊲ match z with x::xs → r(x ) & State(xs)
. . .

or State(y) ⊲ match y with
| :: → Statex::xs(y)

. . .

A pop operation apparently involves matching the State argument twice: once in the dis-
patcher, to select the appropriate forwarding channel Statex::xs, and again in the reaction
rule, to perform the bindings of variables x and xs to the head and tail of the cons-cell z .

However, by construction, the value of argument z is guaranteed to be an instance
of the pattern x::xs . This remark is general (see Lemma 7.3): for any matching match
zi with πi → Qi introduced in reaction rules by Step 5 of algorithm Yx, the value of zi
always matches the pattern πi. In other words, the matching match zi with πi → Qi never
fails, hence no test need to be performed at all. As a consequence, in the case of the pattern
x::xs, we aim at getting the the following lambda-code:5

let x = field 0 z in
let xs = field 1 z in
. . .

Primitives “field 0 z” and “field 1 z” extract the head and tail from the cons-cell z.
The requirement is then to write a specific matching compiler that does not issue tests

when test outputs can be predicted at compile time. In fact, such a matching compiler
is already present in the OCaml compiler: as it stands, the optimizing pattern matching
compiler of [26] can output such code, provided it is informed that the compiled matching
has only one clause and never fails, which is exactly the case for all the matchings match
zi with πi → Qi introduced in reaction rules by Step 5 of algorithm Yx. Incidentally, the
condition “the matching can never fail” is expressed simply as “the matching is exhaustive”.
We also rely on a later phase of the OCaml compiler to inline let-bindings when appropriate.

As a final remark, it is worth observing that, when the original pattern does not contain
variables, the compilation of match zi with πi → · · · yields no code: neither test, nor
binding.

8.2.2. Avoiding useless forwarding channels. Simple analysis of the dispatcher matching
enables use to spare some of the forwarding channels. Let us first re-consider the example
of the complete stack. Our transformer Y applied to channel State yields the following
dispatcher:

5In examples, we show lambda-code as OCaml code, enriched with a few primitives.
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or State(z ) ⊲ match z with
| 0:: :: → State1(z )
| [0] → State2(z )
| :: :: → State3(z )
| 0:: → State4(z )
| [ ] → State5(z )
| :: → State6(z )
| [] → State7(z )
| → State8(z )

In the matching above, some clauses are never matched at runtime. For instance, the
last clause “ → State8(z )” is useless, because of the two immediately preceding clauses
“ :: → . . .” and “[] → . . .” that obviously match all the lists. As a consequence, the
forwarding channel State8 never carries any message hence it is also useless. Similarly,
channels State4 and channel State6 are useless. We can optimize by removing both the
useless clauses from the dispatcher and all occurrences of useless channels from the rewritten
join patterns.

To summarize, by applying the optimizations discussed so far, the stack example after
compilation looks as follows:

def push(v) & (State1(z 1) or State2(z 1) or State3(z 1) or State5(z 1) or State7(z 1))
⊲ State (v::z 1)

or pop(r) & (State1(z 2) or State2(z 1) or State3(z 1) or State5(z 1))
⊲ r(field 0 z 2) & State(field 1 z 2)

or insert(n) & (State1(z 3) or State2(z 3))
⊲ State(0::n::field 1 z 3)

or last(r) & (State2(z 4) or State5(z 4))
⊲ let x = field 0 z 4 in r(x ) & State([x])

or swap() & (State1(z 5) or State3(z 5))
⊲ let m = field 1 z 5 in State(field 0 m::field 0 z 5::field 1 m)

or pause(r ) & State7(z 6) ⊲ r()
or resume(r) ⊲ State([]) & r()
or State(z ) ⊲ match z with

| 0:: :: → State1(z )
| [0] → State2(z )
| :: :: → State3(z )
| [ ] → State5(z )
| [] → State7(z )

Thanks to the optimization, three cases are spared from the dispatcher, three channels are
not allocated, and the size of the or join-patterns decrease significantly.

To integrate this optimization into the implementation, we modify the algorithm Yx, as
regards dispatcher construction (Step 4) and rewriting of reaction rules (Step 5). In Step
4, after the topological sort, we check the usefulness of each vertex. More specifically, to
check whether vertex vk is useful or not, with respect to the preceding vertices v1, . . . , vk−1

in the topological order, we check the usefulness of pattern ωk with respect to patterns
ω1, . . . , ωk−1, where ωi is the annotation pattern of vertex vi. For that purpose, we use
the standard usefulness checker of OCaml [30], of which we present a simplified version in
Section 2.1. Then, in Step 5 of the algorithm we retain only the vk’s that are useful.
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8.3. Compiling or in join patterns. The compilation scheme J·K introduces disjunctive
composition into join patterns, a construct that JoCaml did not support before the intro-
duction of pattern argument in join definitions. In this section, we describe our extensions
to the JoCaml compiler so as to integrate this new feature.

When we introduced or in join patterns, we claimed that it is syntactic sugar. That is,
we define this new construct by distributing & over or, until or reaches the reaction rule
level, where we finally duplicate the reaction rules themselves.

(J1 or J2 or · · · or Jn) ⊲ P
def
= (J1 ⊲ P ) or (J2 ⊲ P ) or · · · or (Jn ⊲ P )

The whole process of distributing & over or and of duplicating the rules can be summarized
as “expansion of or in join patterns”.

It is not difficult to see that the above mentioned expansion easily produces an expo-
nential number of reaction rules. For instance, consider the definition:

def a1(true) ⊲ P1 or a2(true) ⊲ P2 . . . or an(true) ⊲ Pn

or a1( ) & a2( ) & · · · & an( ) ⊲ P0

For each channel ai there are two forwarding channels ai
true

and ai . As a consequence, after
rewriting, the last reaction rule from the definition above becomes:

or (a1
true

(z 1) or a1(z 1)) & (a2
true

(z 2) or a2(z 2)) & · · · & (an
true

(zn) or an(zn)) ⊲ P0

And the expansion of or in join patterns finally yields 2n reaction rules.
The extended JoCaml compiler indeed performs the expansion of or in join patterns as

sketched above, except for one point: the guarded processes (P0 in example) is not dupli-
cated. Instead, guarded processes are compiled into (lambda-code) closures and duplication
of guarded processes is performed by duplication of pointers to those closures.

We will illustrate two successive refinements of the idea of sharing guarded processes.
But before that, let us first examine how guarded processes are compiled and triggered in
the general case.

def a(x ) & b(y) ⊲ P
or a(x ) & c(y) ⊲ Q

The above join definition defines three channels organized in two reaction rules. Target
lambda-code can be sketched as follows:

1 let jdef =
2 . . . . . .

3 let g{a,b} = fun jdef →
4 let x = Join.get queue jdef ia in
5 let y = Join.get queue jdef ib in
6 Join.unlock jdef ;
7 Join.spawn (fun () → JP Kλ) in
8 let g{a,c} = fun jdef →
9 let x = Join.get queue jdef ia in
10 let y = Join.get queue jdef ic in
11 Join.unlock jdef ;
12 Join.spawn (fun () → JQKλ) in
13 . . .

The presented lambda-code only describes the compilation of guarded processes to closures
g{a,b} and g{a,c}. Those guarded closures are subparts of the complete compilation of the
join definition. They appear as local bindings in the more complete definition jdef , which
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is not shown. We refer to [25] for a full explanation about how the JoCaml compiler deals
with join definitions and guarded processes. Nevertheless, we give a brief description, based
upon the example. Join definitions are compiled into vector-like structures, and channels
are pairs of a pointer to such a structure and of a channel slot (written ia etc. above).
Channel slots are small integers. Here, we assume ia to be 0, ib to be 1, and ic to be 2.
Based upon channel slots, join patterns are compiled into bitsets. In this example, we
have 110 for pattern “a(x ) & b(y)” and 101 for “a(x ) & c(y)”. The join definition runtime
structure holds a list of pairs made of such a bitset and of a pointer to a guarded closure
([(110,g{a,b} ; (101,g{a,c})] in our example). This join matching list can be seen as the
result of reaction rules compilation. The definition structure also holds a mutex, an array
of queues (indexed by channel slots), and an internal bitset that describes the current status
of queues. In response to message sending over a channel, specific code from the Join library
first locks the mutex, alters the internal bitset, stores the message in the appropriate queue,
and then attempt a match. In case a match is found, the corresponding closure (g{a,b} or
g{a,c} above) is called, with the definition itself as an argument.

Notice that the closures g{a,b} or g{a,c} have the responsibility to bind formal arguments
x and y to the appropriate actual arguments, which are extracted from the appropriate
queues (lines 4–5) and 9–10), and to release the mutex (lines 6 and 11). The guarded
process is finally triggered by the means of the primitive Join.spawn that takes a closure
as argument (lines 7 and 12) and creates a new thread to run that closure. Here, JP Kλ and
JQKλ represent the compilation to lambda-code of P and Q respectively. It is to be noticed
that formal parameters may occur free in P and Q.

Now let us consider the compilation of join definitions with or in their join patterns,
such as this one: def a(x ) & (b(y) or c(y)) ⊲ P . Target lambda-code can be sketched as
follows:

1 let jdef =
2 . . . . . .

3 let p = fun jdef x y →
4 Join.unlock jdef ;
5 Join.spawn (fun () → JP Kλ) in
6 let g{a,b} = fun jdef →
7 let x = Join.get queue jdef ia in
8 let y = Join.get queue jdef ib in
9 p jdef x y in
10 let g{a,c} = fun jdef →
11 let x = Join.get queue jdef ia in
12 let y = Join.get queue jdef ic in
13 p jdef x y in
14 . . . . . .

As a consequence of the expansion of the disjunctive pattern “b(y) or c(y)”, the join match-
ing list is [(110,g{a,b} ; (101,g{a,c})], like in the previous example. The two guarded closures
g{a,b} and g{a,c} are different, because the value bound to the formal argument y has to be
extracted either from the queue of channel b or from the queue of channel c, depending
upon the matched join pattern being “a(x ) & b(y)” or “a(x ) & c(y)”. However, the task
of unlocking the mutex and of triggering the process P is common to both and is performed
by a third closure p (lines 3–5), which is called by the two guarded closures g{a,b} and g{a,c}
at lines 9 and 13 respectively. As a result, duplication of most of the guarded process code
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is avoided and a reasonable amount of sharing is achieved. One should observe that the
interface between the library code that performs join matching and the guarded closures is
preserved: guarded closures are still functions that take a join structure as argument.

It is in fact possible for the compiler to completely share guarded closures between
reactions rules that originate from or pattern expansion. But then, guarded closure code
must be abstracted further with respect to the exact join pattern that is matched. The
idea of dictionary can be used for this purpose. A dictionary is an array built by the
compiler. Dictionaries represent mappings from formal parameters to channel slots and
the compilation of a join pattern now yields a pair of a bitset and of a dictionary. More
significantly, disjunctive patterns are now compiled into a series of such pairs. For instance,
the pattern “a(x ) & (b(y) or c(y))” is now compiled into the two pairs “(110,[|0 ; 1|])”
and “(101,[|0 ; 2|])”, where for instance the dictionary component “[|0 ; 2|]” expresses
that the formal parameters x and y are to be bound to messages sent on channels a (at slot
0) and c (at slot 2) respectively. The compiler then generates guarded closures abstracted
with respect to dictionaries.

let g{a,(b|c)} = fun jdef dict →
let x = Join.get queue jdef (field 0 dict) in
let y = Join.get queue jdef (field 1 dict) in
Join.unlock jdef ;
Join.spawn (fun () → JP Kλ)

where “field i dict” returns the ith element of the dictionary “dict”. The join matching
list now becomes the following list of triples:

[ (110,[|0 ; 1|],g{a,(b|c)}) ; (101,[|0 ; 2|],g{a,(b|c)}) ]
In case a join-pattern bitset is matched, the corresponding closure in the triple is called,
with the join definition structure and additionally the dictionary in the triple as arguments.

Adding one dictionary component is the price we should pay to achieve complete sharing
of guarded closures. However, such a dictionary is not necessary for reaction rules whose
pattern is not disjunctive. In that case, the compiler can avoid the extra “field i dict”
calls and replace them by the appropriate channel slots, which are known at compile time.
However, for the sake of keeping an uniform structure of the join matching list, guarded
closures should always accept the extra “dict” argument, even when not needed. A simple
solution is to consider a dummy dictionary, to be passed to such guarded closures that do
not need a dictionary.

The current implementation of JoCaml does not use dictionaries. We are still lacking
experience to be able to assert whether they are worth the price or not.

9. Related work

Applied join is “impure” in the sense of Abadi and Fournet’s applied π-calculus [1].
We too extend an archetypal name passing calculus with pragmatic constructs, in order
to provide a full semantics that handles realistic language features without cumbersome
encodings. It is worth noticing that like in [1], we distinguish between variables and names
(only variables of channel type are treated as names), a distinction that is seldom made
in pure calculi. Since we aim to prove a program transformation correct, we define the
equivalence on open terms, those that contain free variables. Abadi and Fournet are able
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to require their terms to have no free variables, since their goal is to prove properties of
program execution, namely the correctness of security protocols.

Our compilation scheme presented in Section 5 can be seen as the combination of
two basic steps: refining channels and forwarding by dispatcher. The desired property
of the forwarding behavior (Lemma 7.3) constitutes the core of the correctness proof of
the compilation scheme, which essentially stems from pattern matching theory. There are
other work that perform the formal treatments of forwarders, for instance [32, 19], but in
different contexts. Our forwarder demultiplexes messages into separate channels according
to the pattern of the messages, while [32, 19] use plain channel-to-channel linear forwarders
to achieve the locality property, i.e. reception on a given channel takes place on an unique
site. It is to be noticed that the equivalence proof of [19] is with respect to ordinary
barbed congruence and by the means of a labelled transition system. Yet another example
is the correctness proof of the compilation of join patterns to smooth orchestrators in [24].
The compilation of [24] is less involved than ours since it basically amounts to inserting
forwarders.

We established the correctness of our compilation scheme by showing the programs be-
fore and after compilation to be behavioral congruent. It is usual practice in the literature
to prove correctness of program transformations by showing semantics preservation. ([11]
is a survey). Here, variations are numerous: they consist in different connections between
source and target formalism (two independent languages, or with the target being a sub-set
of the source), different semantics (denotational vs. operational), different equivalence rela-
tions (observational equivalence, refinement relation, simulation, etc.), and different settings
(sequential, concurrent, parallel, object-oriented, etc.), Consequently, proof techniques also
differ. For example, recent work of Blazy et al. [9] reports the formal verification of a C
compiler front-end in the Coq proof assistant. It handles two independent source and target
languages, both with big-step operational semantics. The major difficulty of the correct-
ness proof resides in relating the different memory states and evaluation environments of
the two languages. A simulation relation is demonstrated from target code to source code
by induction on evaluation derivation and case study over the last applied evaluation rule.
Closer to our work, [12] shows the correctness of an optimizing translation that compiles
away pattern matching in Scala. Proof techniques analogous with ours are applied, i.e. they
also tackle contexts explicitly by proving congruence and define observational equivalence
on open terms based on the one between closed terms and closing up by substitutions.
Moreover, specific to its extractor-base pattern matching, extractors are required to always
terminate without exception in order to achieve the correctness.

We now review some programming languages that support concurrency and examine
how our work can be related to those. Languages whose model for concurrency directly
stems from the join calculus should benefit from our work. More precisely, if a language al-
ready offers à la ML pattern matching and join definitions, then its authors can implement
our ideas in their framework, and their implementation effort would be small. An early
example of a language based upon the join calculus is Funnel [13]. Funnel later evolved
into Scala [14], where à la ML pattern matching is supported and join style concurrency
is provided in terms of a library [20]. Another similar work is [42], which introduces join
style concurrency in Haskell. We believe that extending the two settings above with alge-
braic patterns as formal arguments can be made by direct application of our techniques.
Smooth orchestrators [24] differ from join definitions in rather subtle ways: an orchestrator
is syntactically similar to a join definition and can be seen as defining competing reaction
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rules; however, (1) once a reaction rule of an orchestrator is selected and continuation fired,
the whole orchestrator (together with other non-selected competing rules) gets expired and
discarded; and (2) the definitions of channels and of orchestrators that synchronize them
are separated. Point (2) above is quite subtle: one can orchestrate receptions on channels
whose definitions are unknown, provided all the orchestrated channels are defined on the
same site. Nevertheless, orchestrators are controlled by finite automata that extends the
ones of [25] for join definitions. Thus, the adaptation of our techniques to orchestrators
looks feasible.

In addition, there is a sustained interest in integrating join calculus into object-oriented
languages : polyphonic C♯ and its successor Cω [7] for C♯; and JoinJava [23] for Java.
Unfortunately, the issue here is the lack of pattern matching, which neither C♯ nor Java
offers. A detailed discussion on the introduction of à la ML pattern matching in object-
oriented languages would be out of scope. Briefly, proposed solutions are either by the means
of preprocessing [6], or by tighter language integration [14, 39]. As our compilation scheme
requires precise information on pattern semantics (e.g. to decide the precision relation �),
we think that solutions of the second kind would facilitate the extension of the introduced
pattern matching to join patterns.

Erlang [4] features both pattern matching and concurrency. However, concurrency in
Erlang is based upon the actor model [21, 2]. In this model, messages are sent to actors
and actors manage a queue of messages. Moreover, the reception behavior of an actor can
be specified by the receive m construct. This construct is similar to ML pattern matching
match v with m, except for the value matched v, which is left implicit. The semantics of
receive m can be described as follows: attempt a match in the actor’s queue, scanning it
from the oldest to the most recent message, stopping when a match is found. This simple
combination of message passing and pattern matching proves convenient, as witnessed by
the success of Erlang. However, Erlang in general misses a simple and efficient handling
of synchronization between actors as join patterns offer. Lacking necessary knowledge of
Erlang internals, it is difficult for us to assess whether the selection of messages from actors
queues can benefit from our techniques or not. In any case, difference in semantics is
outstanding and we conjecture that an adaption of our technique would not be immediate.
In particular, the existence of one message queue per receiving agent is central to Erlang
model, while a join definition naturally handles several message queues.

Finally, we discuss the transplantation of our compilation scheme to a language whose
semantics for concurrency is based upon the original π-calculus of [33], like for instance
Pict [37], or PiDuce [10] without orchestrators. Such a task is apparently impossible.
Namely, on the one hand, we propose a compilation scheme, and we thus need to isolate
all the instances of reception on a given channel from program source ; while, on the other
hand, the π-calculus features unrestricted input capability. More precisely, in the π-calculus,
any process that knows of some channel x can input on it. As a channel name x can be
passed via messages, reception on x may occur anywhere. The join calculus originates from
a radical solution to the distributed implementation issue: channels and reception behaviors
are defined by a synthetic construct, and input on channels cannot occur anywhere else.
However, there are other solutions that retain the π-calculus as a basis while restricting input
capability, such as the localized π-calculus [32]. Moreover, the located channels of Nomadic
Pict [43] allows to lift such solutions to a distributed setting. Given such frameworks, we
shall assume that all receptors on a given channel are known statically. Then, we can
extend the input construct x(y).P as x(π).P , where π is pattern, and expect to be able to
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translate this extended language into ordinary π-calculus. In that process, we see at least
one additional complication. Let π1 and π2 be two patterns that are compatible (i.e. that
have instances in common), and let us consider the following program, an analog of the
simple examples of Section 4.

x(π1).P1 | x(π2).P2

The above process significantly differs from a join definition, since a successful input does
not discard the other input. A tentative translation in the spirit of ours would be the
parallel composition of a dispatcher:

! x(z).match z with π1 ↑π2 → xπ1 ↑π2(z) | π1 → xπ1(z) | π2 → xπ2(z)

and of the following process:

(xπ1 ↑π2(z).Q1 + xπ1(z).Q1) | (xπ1 ↑π2(z).Q2 + xπ2(z).Q2)

Where Qi is match z with πi → Pi, and “+” is internal choice that we use here to ex-
press input-guarded choice. Thus, we need input-guarded choice. This is a noticeable
complication, even though input-guarded choice can be expressed in the π-calculus without
choice [35]. Another concern is the usage of the replication operator “!” in the dispatcher.
Clearly, the adaptation of our technique to a π-calculus setting is not immediate.

10. Conclusion and future work

This paper is part of our effort to develop a practical concurrent programming language
with firm semantical foundations. In our opinion, a programming language is more than
an accumulation of features. That is, features interact sometimes in unexpected ways, es-
pecially when intimately entwined. Here, we have studied the interaction between pattern
matching and concurrency. The framework we have used was the applied join calculus —
an extension of the join calculus with algebraic data types. Applied join inherits its ca-
pabilities of communication and concurrency from join and supports value passing. More
significantly, it allows algebraic pattern matching in both formal arguments of channel defi-
nitions and guarded processes. Compared with join, applied join provides a more convenient
(or “pragmatic”), precise and realistic language model to programmers. From that perspec-
tive, pattern matching and join calculus appear to live well together, with mutual benefits.
The result of this work reinforces our interest in using à la ML pattern matching as a general
purpose programming paradigm, and join calculus as the basic paradigm for concurrency.

Exploiting the fact that JoCaml already had an efficient implementation for both ML
pattern matching and join primitives, we have designed the implementation of applied join
as defining a practical compilation scheme that transforms extended join definitions into
ordinary ones plus ML pattern matching. We have solved the non-determinism problem
during the design of this compilation scheme. Moreover, we have actually integrated it
into the JoCaml system with several optimizations. It is worth observing that a direct
implementation of extended join-pattern matching at the runtime level would significantly
complicate the management of message queues, which would then need to be scanned in
search of matching messages before consuming them. As we remarked, our compilation
technique may yield code of exponential size. However, we expect such blowup not to occur
in practice, an expectation which is apparently confirmed by our preliminary experiments
in the JoCaml system. Should this prove wrong in the future, we could face the issue in
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two manners : either complicate the runtime system as sketched above, or design a direct
implementation of or in join patterns.

A theory of process equivalence has also been developed in applied join in order to assess
the correctness of our compilation scheme. In archetypal name passing calculi, where every
free variable is of channel type, it is sufficient to only consider terms closed in our sense, i.e.
terms without free variables of non-channel type, when defining equivalence relations. By
contrast, applied join supports real values and its static transformations should apply to
open processes with free variables of non-channel type. To tackle this problem, we have first
defined a weak barbed congruence to express the equivalence of two closed processes, then
we have lifted the equivalence relation to open processes by closing up by all substitutions.
The resulting relation is called “open equivalence”. We have demonstrated it is also a full
congruence and have proved our compilation scheme correct by showing that the processes
before and after transformation are open equivalent. The proof technique we have used,
which can be summarized as “full abstraction”, stems from pattern matching theory and the
fact that inserting an internal forwarding step in communications does not change process
behavior.

In previous work, we have designed an object-oriented extension of the join calcu-
lus [17, 27, 29], which appeared to be more difficult. The difficulties reside in the refine-
ment of the synchronization behavior of objects by using the inheritance paradigm. We
solved the problem by designing a delicate way of rewriting join patterns at the class level.
However, the introduction of algebraic patterns in join patterns impacts this class-rewriting
mechanism. The interaction is not immediately clear. Up to now, we are aware of no
object-oriented language where the formal arguments of methods can be patterns. We thus
plan to investigate such a combination of pattern matching and inheritance, both at the
calculus and language level.

Another interesting future work would be to extend our framework with more sophis-
ticated patterns for XML data. As a matter of fact, the authors of Scala have already
extended the notion of pattern matching to the processing of XML data with the help of
regular expression patterns (a similar system is PiDuce [10]). Their extension makes Scala
suitable for developing web service applications. Our model of pattern matching in join cal-
culus works with general algebraic data types. At the moment, we do not see any particular
barrier that prevent our model from also working with XML trees.
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