
Logical Methods in Computer Science

Vol. 8 (1:24) 2012, pp. 1–45

www.lmcs-online.org

Submitted Jul. 4, 2011

Published Mar. 15, 2012

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS ∗

GIUSEPPE CASTAGNA a, MARIANGIOLA DEZANI-CIANCAGLINI b, AND LUCA PADOVANI c

a CNRS, PPS, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
e-mail address: Giuseppe.Castagnapps.jussieu.fr

b,c Dipartimento di Informatica, Università degli Studi di Torino, Torino, Italy
e-mail address: {dezani,padovani}di.unito.it

Abstract. Global types are formal specifications that describe communication protocols
in terms of their global interactions. We present a new, streamlined language of global
types equipped with a trace-based semantics and whose features and restrictions are se-
mantically justified. The multi-party sessions obtained projecting our global types enjoy
a liveness property in addition to the traditional progress and are shown to be sound and
complete with respect to the set of traces of the originating global type. Our notion of com-
pleteness is less demanding than the classical ones, allowing a multi-party session to leave
out redundant traces from an underspecified global type. In addition to the technical con-
tent, we discuss some limitations of our language of global types and provide an extensive
comparison with related specification languages adopted in different communities.

1. Introduction

Relating the global specification of a system of communicating entities with an implemen-
tation (or description) of the single entities is a standard problem in many different areas
of computer science. The recent development of session-oriented interactions has renewed
the interest in this problem. In this work we attack it from the behavioral type and process
algebra perspectives and briefly compare the approaches used in other areas.

A (multi-party) session is a place of interaction for a restricted number of participants
that communicate messages. The interaction may involve the exchange of arbitrary se-
quences of messages of possibly different types. Sessions are restricted to a (usually fixed)
number of participants, which makes them suitable as a structuring construct for systems of
communicating entities. In this work we define a language to describe the interactions that
may take place among the participants implementing a given session. In particular, we aim
at a definition based on few “essential” assumptions that should not depend on the way each

1998 ACM Subject Classification: F.1.2, F.3.3, H.3.5, H.5.3.
Key words and phrases: Web services, concurrency theory, type theory, subtyping, global types, session

types.
∗ This work was presented as invited talk at FMOODS & FORTE 2011, joint 13th IFIP International

Conference on Formal Methods for Open Object-based Distributed Systems and 31th IFIP International
Conference on FORmal TEchniques for Networked and Distributed Systems. A short version was included
in the proceedings thereof.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:24) 2012

c© G. Castagna, M. Dezani-Ciancaglini, and L. Padovani
CC© Creative Commons

http://creativecommons.org/about/licenses

2 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

single participant is implemented. To give an example, a bargaining protocol that includes
two participants, “seller” and “buyer”, can be informally described as follows:

Seller sends buyer a price and a description of the product; then buyer sends
seller acceptance or it quits the conversation.

If we abstract from the value of the price and the content of the description sent by the
seller, this simple protocol describes just two possible executions, according to whether the
buyer accepts or quits. If we consider that the price and the description are in distinct mes-
sages then the possible executions become four, according to which communication happens
first. While the protocol above describes a finite set of possible interactions, it can be easily
modified to accommodate infinitely many possible executions, as well as additional conver-
sations: for instance the protocol may allow “buyer” to answer “seller” with a counteroffer,
or it may interleave this bargaining with an independent bargaining with a second seller.

All essential features of protocols are in the example above, which connects some basic
communication actions by the flow control points we underlined in the text. More generally,
we interpret a protocol as a possibly infinite set of finite sequences of interactions between
a fixed set of participants. We argue that the sequences that characterize a protocol—and
thus the protocol itself—can be described by a language with one form of atomic action and
three composition operators.

Atomic actions: The only atomic action is the interaction, which consists of one (or
more) sender(s) (e.g., “seller sends”), the content of the communication (e.g., “a price”, “a
description”, “acceptance”), and one (or more) receiver(s) (e.g., “buyer”).

Compound actions: Actions and, more generally, protocols can be composed in three
different ways. First, two protocols can be composed sequentially (e.g., “Seller sends buyer
a price. . . ; then buyer sends. . . ”) thus imposing a precise order between the actions of
the composed protocols. Alternatively, two protocols can be composed without specifying
any constraint (e.g., “Seller sends a price and (sends) a description”) thus indicating that
any order between the actions of the composed protocols is acceptable. Finally, protocols
can be composed in alternative (e.g., “buyer sends acceptance or it quits”), thus offering
a choice between two or more protocols only one of which may be chosen.

More formally, we use p
a

−→ q to state that participant p sends participant q a message
whose content is described by a, and we use « ;», «∧ », and «∨ » to denote sequential,
unconstrained, and alternative composition, respectively. Our initial example can thus be
rewritten as follows:

(seller
descr
−→ buyer ∧ seller

price
−→ buyer);

(buyer
accept
−→ seller ∨ buyer

quit
−→ seller)

(1.1)

The first two actions are composed without constraints, and they are to be followed by
one (and only one) action of the alternative before ending. Interactions of unlimited length
can be defined by resorting to a Kleene star notation. For example to extend the previous
protocol so that the buyer may send a counter-offer and wait for a new price, it suffices to
add a Kleene-starred line:

(seller
descr
−→ buyer ∧ seller

price
−→ buyer);

(buyer
offer
−→ seller; seller

price
−→ buyer)*;

(buyer
accept
−→ seller ∨ buyer

quit
−→ seller)

(1.2)

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 3

The description above states that, after having received (in no particular order) the price
and the description from the seller, the buyer can initiate a loop of zero or more interactions
and then decide whether to accept or quit.

Whenever there is an alternative there must be a participant that decides which path
to take. In both examples it is buyer that makes the choice by deciding whether to send
accept or quit. The presence of a participant that decides holds true in loops too, since it is
again buyer that decides whether to enter or repeat the iteration (by sending offer) or to
exit it (by sending accept or quit). We will later show that absence of such decision-makers
makes protocols impossible to implement. This last point critically depends on the main
hypothesis we assume about the systems we are going to the describe, that is the absence of
covert channels. On the one hand, we try to develop a protocol description language that
is as generic as possible; on the other hand, we limit the power of the system and require
all communications between different participants to be explicitly stated. In doing so we
rule out protocols whose implementation essentially relies on the presence of secret/invisible
communications between participants: a protocol description must contain all and only the
interactions used to implement it.

Protocol specifications such as the ones presented above are usually called global types
to emphasize the fact that they describe the acceptable behaviors of a system from a global
point of view. In an actual implementation of the system, though, each participant au-
tonomously implements a different part of the protocol. To understand whether an imple-
mentation satisfies a specification, one has to consider the set of all possible sequences of
synchronizations performed by the implementation and check whether this set satisfies five
basic properties:

(1) Sequentiality: if the specification states that two interactions must occur in a given
order (by separating them by a « ;»), then this order must be respected by all possible
executions. So an implementation in which buyer may send accept before receiving price
violates the specification (1.1) (and (1.2)).

(2) Alternativeness: if the specification states that two interactions are alternative, then
every execution must exhibit one and only one of these two actions. So an implementa-
tion in which buyer emits both accept and quit (or none of them) in the same execution
violates the specification (1.1).

(3) Shuffling: if the specification composes two sequences of interactions in an unconstrained
way, then all executions must exhibit some shuffling (in the sense used in combinatorics
and algebra) of these sequences. So an implementation in which seller emits price
without emitting descr violates the specification (1.1).

(4) Fitness: if the implementation exhibits a sequence of interactions, then this sequence
is expected by (i.e., it fits) the specification. So any implementation in which seller

sends buyer any message other than price and descr violates the specification (1.1).
(5) Exhaustivity: if some sequence of interactions is described by the specification, then

there must exist at least an execution of the implementation that exhibits these actions
(possibly in a different order). So an implementation in which no execution of buyer
emits accept violates the specification (1.1).

Checking whether an implemented system satisfies a specification by comparing the actual
and the expected sequences of interactions is non-trivial, for systems are usually infinite-
state. Therefore, on the lines of [HYC08], we proceed the other way round: we extract
from a global type the local specification (usually dubbed local type or session type [THK94,

4 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

HVK98]) of each participant in the system and we type-check the implementation of each
participant against the corresponding session type. If the projection operation is done
properly and the global specification satisfies some well-formedness conditions, then we are
guaranteed that the implementation satisfies the specification. As an example, the global
type (1.1) can be projected to the following behaviors for buyer and seller:

seller 7→ buyer!descr.buyer!price.(buyer?accept + buyer?quit)
buyer 7→ seller?descr.seller?price.(seller!accept ⊕ seller!quit)

or to

seller 7→ buyer!price.buyer!descr.(buyer?accept + buyer?quit)
buyer 7→ seller?price.seller?descr.(seller!accept ⊕ seller!quit)

where p!a denotes the output of a message a to participant p, p?a the input of a message a
from participant p, p?a.T + q?b.S the (external) choice to continue as T or S according to
whether a is received from p or b is received from q and, finally, p!a.T ⊕ q!b.S denotes the
(internal) choice between sending a to p and continue as T or sending b to q and continue as
S. We will call session environments the mappings from participants to their session types.
It is easy to see that any two processes implementing buyer and sellerwill satisfy the global
type (1.1) if and only if their visible behavior matches one of the two session environments
above (these session environments thus represent some sort of minimal typings of processes
implementing buyer and seller). In particular, both the above session environments are
fitting and exhaustive with respect to the specification since they precisely describe what
the single participants are expected and bound to do.

In this work we will discuss how to characterize a set of session environments (if any)
from participants to session types that is sound and complete, with respect to a given global
type. We will also show an algorithm that, in several practical cases, can effectively perform
the extraction of the session environment from a global type. Observe that there are global
types that are intrinsically flawed, in the sense that they do not admit any implementation
(without covert channels) satisfying them. We classify flawed global types in three categories,
according to the seriousness of their flaws.

No sequentiality: The mildest flaws are those in which the global type specifies some

sequentiality constraint between independent interactions, such as in (p
a

−→ q; r
b

−→ s),
since it is impossible to implement r so that it sends b only after that q has received a

(unless this reception is notified on a covert channel, of course). Therefore, it is possible
to find exhaustive (but not fitting) implementations that include some unexpected se-
quences which differ from the expected ones only by a permutation of interactions done
by independent participants. The specification at issue can be easily patched by replacing
some « ;»’s by «∧ »’s.

No knowledge for choice: A more severe kind of flaw occurs when the global type requires
some participant to behave in different ways in accordance with some choice it is unaware
of. For instance, in the global type

(p
a

−→ q; q
a

−→ r; r
a

−→ p) ∨ (p
b

−→ q; q
a

−→ r; r
b

−→ p)

participant p chooses the branch to execute, but after having received a from q participant
r has no way to know whether it has to send a or b. Also in this case it is possible to find
exhaustive (but not fitting) implementations of the global type where the participant r

chooses to send a or b independently of what p decided to do.

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 5

No knowledge, no choice: In the worst case it is not possible to find an exhaustive
implementation of the global type, for it specifies some combination of incompatible
behaviors, such as performing an input or an output in mutual exclusion. This typically
is the case of the absence of a decision-maker in the alternatives such as in

p
a

−→ q ∨ q
b

−→ p

where each participant is required to choose between sending or receiving. There seems
to be no obvious way to patch these global types without reconsidering also the intended
semantics.

We conclude this introduction by stressing that in this work we focus on single sessions. The
participants of a system can concurrently implement and bring forward different sessions but
we suppose the management of different sessions (e.g., the exchange of sessions channels) to
belong to the meta-level. The internalization of such a level (i.e., the use of delegation) is
left for future work (see Section 7.3.1).

Outline and contributions. We introduce a streamlined language of global specifications—
that we dub global types (Section 2)—and relate it with session environments (Section 3),
that is, with sets of independent, sequential, asynchronous session types to be type-checked
against implementations. Global types are just regular expressions augmented with a shuf-
fling operator and their semantics is defined in terms of finite sequences of interactions. The
semantics chosen for global types ensures that every implementation of a global type pre-
serves the possibility to reach a state where every participant has successfully terminated.
This implies that no participant of a multi-party session starves waiting for messages that
are never sent or sends messages that no other participant will ever receive. This property
is stronger than the progress enforced by other theories of multi-party sessions, where it is
enough that two participants synchronize to be able to say that the session has progress.
Technically, we make a strong fairness assumption on sessions by considering only fair com-
putations, those where infinitely often enabled transitions occur infinitely often.

In Section 4 we study the relationship between global types and sessions. We do so by
defining a projection operation that extracts from a global type all the (sets of) possible
session types of its participants. This projection is useful not only to check the imple-
mentability of a global description (and, incidentally, to formally define the notions of errors
informally described so far) but, above all, to relate in a compositional and modular way a
global type with the sets of distributed processes that implement it. We also identify a class
of well-formed global types whose projections need no covert channels. Interestingly, we are
able to effectively characterize well-formed global types solely in terms of their semantics.

In Section 5 we present a projection algorithm for global types. The effective generation
of all possible projections is impossible. The reason is that the projectability of a global type
may rely on some global knowledge that is no longer available when working at the level of
single session types: while in a global approach we can, say, add to some participant new
synchronization offers that, thanks to our global knowledge, we know will never be used, this
cannot be done when working at the level of single participant. Therefore in order to work
at the projected level we will use stronger assumptions that ensure a sound implementation
in all possible contexts.

In Section 6 we show some limitations deriving from the use of the Kleene star operator
in our language of global types, and we present one possible way to circumvent them.
Section 7 contains an extended survey of related work, with samples of the literature of

6 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

session types and session choreography expressed in our syntax and an in-depth comparison
with our work. Few final considerations conclude the work in Section 8. The Appendix
contains proofs and some technical discussions.

We summarize the contributions of our work below:

• With respect to (multi-party) session type theories [HYC08], we adopt a more abstract
and —we claim— natural language of global types (Section 2) that is closely related to the
language of Web service choreographies in [BZ07]. We define a notion of session correctness
that depends on a strong fairness assumption. On the one hand, this is more demanding
than in other multi-party session theories because we insist on the property that a correct
session must preserve the ability to reach a terminated state; on the other hand, we claim
that eventual termination is indeed a desirable property of sessions, and we provide a
number of examples showing that, if the hypothesis of an eventual termination of every
session is assumed, our formalism allows for a range of projectable global specifications
that is strictly larger than that other formalisms, under the same assumption, have.

• With respect to Web service choreography languages [BZ07, LGMZ08, BZ08, BLZ08],
where projection is defined by an homomorphism between the global and the local spec-
ifications, we define a significantly more sophisticated projection procedure (Sections 4
and 5) with two main upshots. First, we handle the projection of unconstrained composi-
tion of global specifications in a more flexible way, by permitting (partial) serialization of
independent activities whenever this is either convenient or necessary. Second, we widen
the range of projectable choreographies by imposing fewer constraints on the way alterna-
tive specifications can be composed together. We also point out some shortcomings of the
Kleene star operator and propose a solution based on k-exit iterations that circumvents
them (Section 6).

• In order to account for the possible serializations of independent activities, we identify
an original notion of completeness (Definition 4.1) of projections with respect to global
specifications that is weaker (and consequently more flexible) than the corresponding
notions in other theories.

• Section 7 provides a rather detailed survey of a wide range of related formalisms and
techniques.

2. Global Types

In this section we define the syntax and semantics of global types. We assume a set A of
message types, ranged over by a, b, . . . , and a set Π of roles, ranged over by p, q, . . . , which
we use to uniquely identify the participants of a session; we let π, . . . range over non-empty,
finite sets of roles.

Global types, ranged over by G , are the terms generated by the grammar in Table 1.
Their syntax was already explained in Section 1 except for two novelties. First, we include
a skip atom which denotes the unit of sequential composition (it plays the same role as
the empty word in regular expressions). This is useful, for instance, to express optional
interactions. Thus, if in our example we want the buyer to do at most one counteroffer
instead of several ones, we just replace the starred line in (1.2) by

(buyer
offer
−→ seller; seller

price
−→ buyer) ∨ skip

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 7

Table 1: Syntax of global types.

G ::= Global Type

skip (skip)

| π
a

−→ p (interaction)
| G ;G (sequence)
| G ∧ G (both)
| G ∨ G (either)
| G ∗ (star)

which, using syntactic sugar of regular expressions, might be rendered as

(buyer
offer
−→ seller; seller

price
−→ buyer)?

Second, we generalize interactions by allowing a finite set of roles on the l.h.s. of

interactions. Therefore, π
a

−→ p denotes the fact that (the participant identified by) p waits

for an a message from all of the participants whose tags are in π. We will write p
a

−→ q

as a shorthand for {p}
a

−→ q. An example showing the usefulness of multiple roles on the
left-hand side of actions is the following one

(seller
price
−→ buyer1 ∧ bank

mortgage
−→ buyer2);

({buyer1,buyer2}
accept
−→ seller ∧ {buyer1,buyer2}

accept
−→ bank)

which represents two buyers waiting for both the price from a seller and the mortgage from a
bank before deciding the purchase. Notice that without this generalization the communica-
tion of accept to, say, the seller would be performed by two distinct communications from
buyer1 and buyer2. But in that case, how could buyer1 be sure that buyer2 had received
mortgage before sending accept to seller? And symmetrically, how could buyer2 be sure
that buyer1 had received price before sending accept to seller? Actions with multiple-
senders allow us to express the join of independent activities (in this case, the receival of
price and mortgage).

To be as general as possible, one could also consider interactions of the form π
a

−→ π′,
which could be used to specify broadcast communications between participants. We avoided
this generalization since it cannot be implemented without covert channels. In fact in a sound
execution of

seller
price
−→ {buyer1,buyer2},

the reception of price by buyer1 should wait also for the reception of price by buyer2 and
vice versa, and this requires a synchronization between buyer1 and buyer2.

In general we will assume p 6∈ π for every interaction π
a

−→ p occurring in a global type,
that is, we forbid participants to send messages to themselves.

For the sake of readability we adopt the following precedence of global type operators
−→ ∗ ; ∧ ∨.

Global types denote languages of legal interactions that can occur in a multi-party
session. These languages are defined over the alphabet of interactions

Σ = {π
a

−→ p | π ⊂fin Π, p ∈ Π, p 6∈ π, a ∈ A }

8 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

and we use α as short for π
a

−→ p when possible; we use ϕ, ψ, . . . to range over strings in
Σ∗ and ε to denote the empty string, as usual. To improve readability we will occasionally
use « ;» to denote string concatenation.

In order to express the language of a global type having the shape G1 ∧ G2 we need a
standard shuffling operator over languages, which can be defined as follows:

Definition 2.1 (shuffling). The shuffle of L1 and L2, denoted by L1
∃

L2, is the language

defined by: L1

∃

L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1 ∧ ψ1 · · ·ψn ∈ L2}.

Observe that, in L1

∃

L2, the order of interactions coming from one language is preserved,
but these interactions can be interspersed with other interactions coming from the other
language.

Definition 2.2 (traces of global types). The set of traces of a global type is inductively
defined by the following equations:

tr(skip) = {ε}

tr(π
a

−→ p) = {π
a

−→ p}
tr(G1;G2) = tr(G1)tr(G2)

tr(G ∗) = (tr(G))⋆
tr(G1 ∨ G2) = tr(G1) ∪ tr(G2)
tr(G1 ∧ G2) = tr(G1)

∃

tr(G2)

where juxtaposition denotes concatenation and (·)⋆ is the usual Kleene closure of regular
languages.

Before we move on, it is worth noting that tr(G) is a regular language (recall that
regular languages are closed under shuffling). Since a regular language is made of finite
strings, we are implicitly making the assumption that a global type specifies interactions of
finite length. This means that we are considering interactions of arbitrary length, but such
that the termination of all the involved participants is always within reach. This is a subtle,
yet radical change from other multi-party session theories, where infinite interactions are
considered legal.

By way of example, consider the global type

G = (p
a

−→ q ∧ p
b

−→ q); (q
c

−→ p; p
b

−→ q)∗; (q
d

−→ p ∨ q
e

−→ p)

which represents the bargain protocol described in the introduction. Every long enough
string in tr(G) has either the form

ψ; q
c

−→ p; p
b

−→ q; · · · ; q
d

−→ p or ψ; q
c

−→ p; p
b

−→ q; · · · ; q
e

−→ p

for some appropriate ψ, meaning that the phase in which the buyer makes new offers can
be arbitrarily long, although it must eventually terminate with the decision to either quit
or accept.

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 9

Table 2: Syntax of pre-session types.

T ::= Pre-Session Type

end (termination)
| X (variable)
| p!a.T (output)
| π?a.T (input)
| T ⊕ T (internal choice)
| T + T (external choice)
| rec X.T (recursion)

3. Multi-Party Sessions

We devote this section to the formal definition of the behavior of the participants of a
multi-party session.

3.1. Session Types. We need an infinite set of recursion variables ranged over by X,
Pre-session types, ranged over by T , S, . . . , are the terms generated by the grammar in
Table 2 such that all recursion variables are guarded by at least one input or output prefix.
We consider pre-session types modulo associativity, commutativity, and idempotence of
internal and external choices, fold/unfold of recursions and the equalities

p!a.T ⊕ p!a.S = p!a.(T ⊕ S) π?a.T + π?a.S = π?a.(T + S)

Pre-session types are behavioral descriptions of the participants of a multi-party session.
Informally, end describes a successfully terminated party that no longer participates to a
session. The pre-session type p!a.T describes a participant that sends an a message to
participant p and afterwards behaves according to T ; the pre-session type π?a.T describes a
participant that waits for an a message from all the participants in π and, upon arrival of the
message, behaves according to T ; we will usually abbreviate {p}?a.T with p?a.T . Behaviors
can be combined by means of behavioral choices ⊕ and +: T ⊕ S describes a participant
that internally decides whether to behave according to T or S; T +S describes a participant
that offers to the other participants two possible behaviors, T and S. The choice as to which
behavior is taken depends on the messages sent by the other participants. In the following,
we sometimes use n-ary versions of internal and external choices and write, for example,
⊕n

i=1 pi!ai.Ti for p1!a1.T1 ⊕ · · · ⊕ pn!an.Tn and
∑n

i=1 πi?ai.Ti for π1?a1.T1 + · · ·+ πn?an.Tn.
As usual, terms X and rec X.T are used for describing recursive behaviors. For example,
recX.(p!a.X⊕p!b.end) describes a participant that sends an arbitrary number of amessages
to p and terminates by sending a b message; dually, rec X.(p?a.X + p?b.end) describes a
participant that is capable of receiving an arbitrary number of a messages from p and
terminates as soon a b message is received.

Session types are the pre-session types where internal choices are used to combine out-
puts, external choices are used to combine inputs, and the continuation after every prefix is
uniquely determined by the prefix. Formally:

Definition 3.1 (session types). A pre-session type T is a session type if either:

• T = end, or

10 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

• T =
⊕

i∈I pi!ai.Ti and ∀i, j ∈ I we have that pi!ai = pj !aj implies i = j and each Ti is a
session type, or

• T =
∑

i∈I πi?ai.Ti and ∀i, j ∈ I we have that πi ⊆ πj and ai = aj imply i = j and each
Ti is a session type.

3.2. Session Environments. A session environment is defined as the set of the session
types of its participants, where each participant is uniquely identified by a role. Formally:

Definition 3.2 (session environment). A session environment (briefly, session) is a finite
map {pi : Ti}i∈I .

In what follows we use ∆ to range over sessions and we write ∆⊎∆
′ to denote the union

of sessions, when their domains are disjoint.
To describe the operational semantics of a session we model an asynchronous form of

communication where the messages sent by the participants of the session are stored within

a buffer associated with the session. Each message has the form p
a

−→ q describing the
sender p, the receiver q, and the type a of message. Buffers, ranged over by B, . . . , are finite

sequences p1
a1−→ q1 :: · · · :: pn

an−→ qn of messages considered modulo the least congruence
≃ over buffers such that

p
a

−→ q :: p′
b

−→ q′ ≃ p′
b

−→ q′ :: p
a

−→ q

when p 6= p′ or q 6= q′, that is, we care about the order of messages in the buffer only when
these have both the same sender and the same receiver. In practice, this corresponds to a
form of communication where each pair of participants of a multi-party session is connected
by a distinct FIFO buffer.

There are two possible reductions of a session:

B # {p :
⊕

i∈I pi!ai.Ti} ⊎ ∆ −→ (p
ak−→ pk)::B # {p : Tk} ⊎ ∆ (k∈I)

B::(pi
a

−→p)i∈I # {p :
∑

j∈J πj?aj .Tj} ⊎ ∆
πk

a
−→p

−−−−→ B # {p : Tk} ⊎ ∆

(

k∈J ak=a

πk={pi|i∈I}

)

The first rule describes the effect of an output operation performed by participant p, which

stores the message p
ak−→ pk in the buffer and leaves participant p with a residual session type

Tk corresponding to the message that has been sent. The second rule describes the effect of
an input operation performed by participant p. If the buffer contains enough messages of
type a coming from all the participants in πk, those messages are removed from the buffer and
the receiver continues as described in Tk. In this rule we decorate the reduction relation with
πk

a
−→ p that describes the occurred interaction (as we have already remarked, we take the

point of view that an interaction is completed when messages are received). This decoration
will allow us to relate the behavior of an implemented session with the traces of a global type
(see Definition 2.2). According to this semantics, the input prefixes {p1, . . . , pn}?a resemble
join patterns p1?a & · · · & pn?a in the join calculus [FG96], except that we impose that all
the messages coming from p1, . . . , pn have the same type.

We adopt some conventional notation: we write =⇒ for the reflexive, transitive closure

of −→; we write
α

=⇒ for the composition =⇒
α

−→=⇒ and
α1···αn====⇒ for the composition

α1=⇒
· · ·

αn=⇒.

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 11

We can now formally characterize the “correct sessions” as those in which, no matter
how they reduce, it is always possible to reach a state where all of the participants are
successfully terminated and the buffer has been emptied.

Definition 3.3 (live session). We say that ∆ is a live session if ε # ∆
ϕ

=⇒ B # ∆′ implies

B # ∆′ ψ
=⇒ ε # {pi : end}i∈I for some ψ.

We adopt the term “live session” to emphasize the fact that Definition 3.3 states a

liveness property : every finite computation ε # ∆
ϕ

=⇒ B # ∆′ can always be extended to

a successful computation ε # ∆
ϕ

=⇒ B # ∆′ ψ
=⇒ ε # {pi : end}i∈I . This is stronger than

the progress property enforced by other multi-party session type theories, where it is only
required that a session must never get stuck (but it is possible that some participants starve
for messages that are never sent). As an example, the session

∆1 = {p : rec X.(q!a.X ⊕ q!b.end) , q : rec Y.(p?a.Y + p?b.end)}

is alive because, no matter how many a messages p sends, q can receive all of them and, if p
chooses to send a b message, the interaction terminates successfully for both p and q. This
example also shows that, despite the fact that session types describe finite-state processes,
the session ∆1 is not finite-state, in the sense that the set of configurations {(B # ∆′) |

∃ϕ,B,∆′ : ε # ∆1
ϕ

=⇒ B # ∆′} is infinite. This happens because there is no bound on the size
of the buffer and an arbitrary number of a messages sent by p can accumulate in B before
q receives them. As a consequence, the fact that a session is alive cannot be established in
general by means of a brute force algorithm that checks every reachable configuration. By
contrast, the session

∆2 = {p : rec X.q!a.X , q : rec Y.p?a.Y }

which is normally regarded correct in other session type theories, is not alive because there
is no way for p and q to reach a successfully terminated state. The point is that hitherto
correctness of session was associated to progress (i.e., the system is never stuck). This is a
weak notion of correctness since, for instance the session ∆2⊎{r : p?c.end} satisfies progress
even though role r starves waiting for its input. While in this example starvation is clear
since no c message is ever sent, determining starvation is in general less obvious, as for

∆3 = {p : rec X.q!a.q!b.X , q : rec Y.(p?a.p?b.Y + p?b.r!c.end) , r : q?c.end}

which satisfies progress, where every input corresponds to a compatible output, and vicev-
ersa, but which is not alive.

We remark once again that our work focuses on a single session. In particular, our
definition of live session does not preclude the existence of a perpetual server that opens an
unbounded number of sessions, each of them having a finite but unbounded length.

We can now define the traces of a session as the set of sequences of interactions that
can occur in every possible reduction. It is convenient to define the traces of an incorrect
(i.e., non-live) session as the empty set (observe that tr(G) 6= ∅ for every G).

Definition 3.4 (session traces).

tr(∆)
def
=

{

{ϕ | ε # ∆
ϕ

=⇒ ε # {pi : end}i∈I} if ∆ is a live session

∅ otherwise

12 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

It is easy to verify that tr(∆1) = tr((p
a

−→ q)∗; p
b

−→ q) while tr(∆2) = tr(∆3) = ∅ since
neither ∆2 nor ∆3 is a live session.

4. Semantic projection

In this section we show how to project a global type to the session types of its participants —
i.e., to a session— in such a way that the projection is correct with respect to the global type.
Before we move on, we must be more precise about what we mean by correctness of a session
∆ with respect to a global type G . In our setting, correctness refers to some relationship
between the traces of ∆ and those of G . In general, however, we cannot require that G and ∆

have exactly the same traces: when projecting G1∧G2 we might need to impose a particular
order in which the interactions specified by G1 and G2 must occur (shuffling condition). At
the same time, asking only tr(∆) ⊆ tr(G) would lead us to immediately lose the exhaustivity

property, since for instance {p : q!a.end , q : p?a.end} would implement p
a

−→ q ∨ p
b

−→ q

even though the implementation systematically exhibits only one (p
a

−→ q) of the specified
alternative behaviors. In the end, we say that ∆ is a correct implementation of G if: first,
every trace of ∆ is a trace of G (soundness); second, every trace of G is the permutation of
a trace of ∆ (completeness). Formally:

tr(∆) ⊆ tr(G) ⊆ tr(∆)◦

where L◦ is the closure of L under arbitrary permutations of the strings in L:

L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}

Since these relations between languages (of traces) play a crucial role, it is convenient
to define a suitable pre-order relation:

Definition 4.1 (implementation pre-order). We let L1 6 L2 if L1 ⊆ L2 ⊆ L◦
1 and extend

it to global types and sessions in the natural way, by considering the corresponding sets of
traces. Therefore, we write ∆ 6 G if tr(∆) 6 tr(G) and similarly for G 6 G ′ and ∆ 6 ∆

′.

It is easy to see that soundness and completeness respectively formalize the notions of
fitness and exhaustivity that we have outlined in the introduction. As for the remaining
three properties listed in the introduction (i.e., sequentiality, alternativeness, and shuffling),
they are entailed by the formalization of the semantics of a global type in terms of its
traces (Definition 2.2). In particular, we have that soundness implies sequentiality and
alternativeness, while completeness implies shuffling. Therefore, in the formal treatment that
follows we will focus on soundness and completeness as the only characterizing properties
connecting sessions and global types. The relation ∆ 6 G summarizes the fact that ∆ is
both sound and complete with respect to G , namely that ∆ is a correct implementation of
the specification G .

Table 3 presents our rules for building the projections of global types. Projecting a global
type basically means compiling it to an “equivalent” set of session types. Since the source
language (global types) is equipped with sequential composition while the target language
(session types) is not, it is convenient to parameterize projection on a continuation, i.e., we
consider judgments of the shape:

∆ ⊢ G ⊲ ∆
′

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 13

Table 3: Rules for semantic projection.

(SP-Skip)

∆ ⊢ skip ⊲ ∆

(SP-Action)

{pi : Ti}i∈I ⊎ {p : T} ⊎ ∆ ⊢ {pi}i∈I
a

−→ p ⊲ {pi : p!a.Ti}i∈I ⊎ {p : {pi}i∈I?a.T} ⊎ ∆

(SP-Sequence)

∆ ⊢ G2 ⊲ ∆
′

∆
′ ⊢ G1 ⊲ ∆

′′

∆ ⊢ G1;G2 ⊲ ∆
′′

(SP-Alternative)

∆ ⊢ G1 ⊲ {p : T1} ⊎ ∆
′

∆ ⊢ G2 ⊲ {p : T2} ⊎ ∆
′

∆ ⊢ G1 ∨ G2 ⊲ {p : T1 ⊕ T2} ⊎ ∆
′

(SP-Iteration)

{p : T1 ⊕ T2} ⊎ ∆ ⊢ G ⊲ {p : T1} ⊎ ∆

{p : T2} ⊎ ∆ ⊢ G
∗ ⊲ {p : T1 ⊕ T2} ⊎ ∆

(SP-Subsumption)

∆ ⊢ G
′ ⊲ ∆

′
G

′
6 G ∆

′′
6 ∆

′

∆ ⊢ G ⊲ ∆
′′

meaning that if ∆ is the projection of some G ′, then ∆
′ is the projection of G ;G ′. We say

that ∆′ is a projection of G with continuation ∆. This shape of judgments immediately gives
us the rule (SP-Sequence).

The projection of an interaction π
a

−→ p adds p!a in front of the session type of all the
roles in π, and π?a in front of the session type of p (rule (SP-Action)). For example we
have:

{p : end, q : end} ⊢ p
a

−→ q ⊲ {p : q!a.end, q : p?a.end}

An alternative G1 ∨ G2 (rule (SP-Alternative)) can be projected only if there is a
participant p that actively chooses among different behaviors by sending different messages,
while all the other participants must exhibit the same behavior in both branches. The
subsumption rule (SP-Subsumption) can be used to fulfill this requirement in many cases.

For example we have ∆0 ⊢ p
a

−→ q ⊲ {p : q!a.end, q : p?a.end} and ∆0 ⊢ p
b

−→ q ⊲ {p :

q!b.end, q : p?b.end}, where ∆0 = {p : end, q : end}. In order to project p
a

−→ q ∨ p
b

−→ q

with continuation ∆0 we derive first by subsumption ∆0 ⊢ p
a

−→ q ⊲ {p : q!a.end , q : T}

and ∆0 ⊢ p
b

−→ q ⊲ {p : q!b.end , q : T} where T = p?a.end+ p?b.end. Then we obtain

∆0 ⊢ p
a

−→ q ∨ p
b

−→ q ⊲ {p : q!a.end⊕ q!b.end , q : T}

Notice that rule (SP-Alternative) imposes that in alternative branches there must be
one and only one participant that takes the decision. For instance, the global type

{p, q}
a

−→ r ∨ {p, q}
b

−→ r

cannot be projected since we would need a covert channel for p to agree with q about whether
to send to r the message a or b.

Rule (SP-Subsumption) can be easily understood by recalling that we require a pro-
jection ∆ of a global type G to satisfy ∆ 6 G . Therefore if ∆′ is a projection of G ′ with
continuation ∆ and G ′ 6 G , then ∆

′ is also a projection of G with continuation ∆. Similarly
if ∆′ is a projection of G ′ with continuation ∆ and ∆

′′ 6 ∆
′, then also ∆

′′ is a projection of
G ′ with continuation ∆.

To project a starred global type we also require that one participant p chooses be-
tween repeating the loop or exiting by sending messages, while the session types of all

14 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

other participants are unchanged. If T1 and T2 are the session types describing the be-
havior of p when it has respectively decided to perform one more iteration or to terminate
the iteration, then T1 ⊕ T2 describes the behavior of p before it takes the decision. The
projection rule requires that one execution of G followed by the choice between T1 and
T2 projects in a session with type T1 for p. This judgment is possible only if T1 is a re-
cursive type, as expected, and it is the premise of rule (SP-Iteration). For example if
T1 = q!a.rec X.(q!a.X ⊕ q!b.end), T2 = q!b.end, and S = rec Y.(p?a.Y + p?b.end) we can

derive {p : T1 ⊕ T2, q : S} ⊢ p
a

−→ q ⊲ {p : T1, q : S} and then

{p : T2, q : S} ⊢ (p
a

−→ q)∗ ⊲ {p : T1 ⊕ T2, q : S}

Notably there is no rule for «∧ », the both constructor. We deal with this constructor
by observing that all interleavings of the actions in G1 and G2 give global types G such that
G 6 G1∧G2, and therefore we can use the subsumption rule to eliminate every occurrence of

«∧ ». For example, to project the global type p
a

−→ q∧r
b

−→ s we can use p
a

−→ q; r
b

−→ s:
since the two actions that compose both global types have disjoint participants, then the

projections of these global types (as well as that of r
b

−→ s; p
a

−→ q) will have exactly the
same set of traces.

Other interesting examples of subsumptions useful for projecting are

r
b

−→ p; p
a

−→ q 6 (p
a

−→ q; r
b

−→ p) ∨ (r
b

−→ p; p
a

−→ q) (4.1)

r
b

−→ p; (p
a

−→ q ∨ p
b

−→ q) 6 (r
b

−→ p; p
a

−→ q) ∨ (r
b

−→ p; p
b

−→ q) (4.2)

In (4.1) the 6-larger global type describes the shuffling of two interactions, therefore we
can project one particular ordering still preserving completeness. In (4.2) we exploit the
left-distributivity law of regular expressions to push the «∨ » construct where the choice
is actually being made (this is possible thanks to the trace semantics we adopt for global
types).

We are interested in projections without continuations, that is, in judgments of the
shape {p : end | p ∈ G } ⊢ G ⊲ ∆ (where p ∈ G means that p occurs in G) which we shortly
write as

⊢ G ⊲ ∆

The mere existence of a projection does not mean that the projection behaves as specified
in the global type. For example, we have

⊢ p
a

−→ q; r
a

−→ s ⊲ {p : q!a.end, q : p?a.end, r : s!a.end, s : r?a.end}

but the projection admits the trace r
a

−→ s; p
a

−→ q which is not allowed by the global type.
Clearly the problem resides in the global type, which tries to impose a temporal ordering
between interactions involving disjoint participants. What we want, in accordance with the
traces of a global type G1;G2, is that no interaction in G2 can be completed before all the
interactions in G1 are completed. In more detail:

• an action π
a

−→ p is completed when the participant p has received the message a from
all the participants in π;

• if ϕ;π
a

−→ p;π′
b

−→ p′;ψ is a trace of a global type, then either the action π′
b

−→ p′

cannot be completed before the action π
a

−→ p is completed, or they can be executed in
any order. The first case requires p to be either p′ or a member of π′, in the second case

the set of traces must also contain the trace ϕ;π′
b

−→ p′;π
a

−→ p;ψ.

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 15

This leads us to the following definition of well-formed global type.

Definition 4.2 (well-formed global type). We say that a set of traces L is well formed if

ϕ;π
a

−→ p;π′
b

−→ p′;ψ ∈ L implies either p ∈ π′ ∪ {p′} or ϕ;π′
b

−→ p′;π
a

−→ p;ψ ∈ L. We
say that a global type G is well formed if so is tr(G).

It is easy to decide well-formedness of an arbitrary global type G by looking at the
automaton that recognizes the language of traces generated by G .

Projectability and well-formedness must be kept separate because it is sometimes nec-

essary to project ill-formed global types. For example, the ill-formed global type p
a

−→

q; r
a

−→ s above is useful to project p
a

−→ q ∧ r
a

−→ s which is well formed.
Clearly, if a global type is projectable (i.e., ⊢ G ⊲ ∆ is derivable) then well-formedness

of G is a necessary condition for the soundness and completeness of its projection (i.e., for
∆ 6 G). It turns out that well-formedness is also a sufficient condition for having soundness
and completeness of projections, as stated in the following theorem, whose proof is the
content of Appendix A.

Theorem 4.1. If G is well formed and ⊢ G ⊲ ∆, then ∆ 6 G .

In summary, if a well-formed global type G is projectable, then its projection ∆ is a
live session (it cannot generate the empty set of traces since tr(G) ⊆ tr(∆)◦) which is sound
and complete wrt G and, therefore, satisfies the sequentiality, alternativeness, and shuffling
properties outlined in the introduction.

Remark 4.1. We now have all the ingredients for showing that actions involving multiple
senders are not redundant, in the sense that they cannot be encoded in terms of more
primitive actions with single senders. In particular, we show that the global type

G1 = {q1, q2}
b

−→ q

is not always equivalent to the expansion

G2 = q1
b

−→ q ∧ q2
b

−→ q

despite the fact that, in G1 and G2, the same number of messages is exchanged between the
very same participants.

If we consider the global types G ′
1 and G ′

2 defined by:

G
′
i = (p

a
−→ q1 ∧ p

a
−→ q2);Gi

we see that G ′
1 is well formed while G ′

2 is not. The reason is because of the trace p
a

−→

q1; p
a

−→ q2; q1
b

−→ q; q2
b

−→ q ∈ tr(G ′
2) where q2 6∈ {q, q1} and p

a
−→ q1; q1

b
−→ q; p

a
−→

q2; q2
b

−→ q 6∈ tr(G ′
2). Basically, both G ′

1 and G ′
2 specify the constraint that no b message

is received by q before both a messages have been received by q1 and q2. However, in G2

the b messages are received by means of independent actions, and therefore it can happen
that the b message from q1 is received by q before the a message from p is received by q2,
which is exactly the scenario described by the trace above that is not in tr(G ′

2). The global
type G1, on the other hand, specifies that the receive operation performed by q is considered
completed only when both b messages from q1 and q2 are available. The interested reader
may compare the projections of G ′

1 and G ′
2 and verify that the one for G ′

2 does indeed exhibit
an undesired trace.

16 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

We conclude this section by formally characterizing the three kinds of problematic global
types we have described earlier. We start from the least severe problem and move towards
the more serious ones. Let L# denote the smallest well-formed set such that L ⊆ L#.

No sequentiality. Assuming that there is no ∆ that is both sound and complete for G , it
might be the case that we can find a session whose traces are complete for G and sound for
the global type G ′ obtained from G by turning some « ;»’s into «∧ »’s. This means that the
original global type G is ill formed, namely that it specifies some sequentiality constraints
that are impossible to implement. For instance, {p : q!a.end, q : p?a.end, r : s!b.end, s :

r?b.end} is a complete but not sound session for the ill-formed global type p
a

−→ q; r
b

−→ s

(while it is a sound and complete session for p
a

−→ q ∧ r
b

−→ s). We characterize the global
types G that present this error as:

∄∆ : ∆ 6 G and ∃∆ : tr(G) ⊆ tr(∆) ⊆ tr(G)# .

No knowledge for choice. In this case every session ∆ that is complete for G invariably
exhibits some interactions that are not allowed by G despite the fact that G is well formed.
This happens when the global type specifies alternative behaviors, but some participants do
not have enough information to behave consistently. For example, the global type

(p
a

−→ q; q
a

−→ r; r
a

−→ p) ∨ (p
b

−→ q; q
a

−→ r; r
b

−→ p)

mandates that r should send either a or b in accordance with the message that p sends to q.
Unfortunately, r has no information as to which message q has received, because q notifies
r with an a message in both branches. A complete implementation of this global type is

{p : q!a.(r?a.end+ r?b.end)⊕ q!b.(r?a.end+ r?b.end),
q : p?a.r!a.end+ p?b.r!a.end, r : q?a.(q!a.end⊕ q!b.end)}

which also produces the traces p
a

−→ q; q
a

−→ r; r
b

−→ p and p
b

−→ q; q
a

−→ r; r
a

−→ p. We
characterize this error as:

∄∆ : tr(G) ⊆ tr(∆) ⊆ tr(G)# and ∃∆ : tr(G) ⊆ tr(∆) .

No knowledge, no choice. In this case we cannot find a complete session ∆ for G . This
typically means that G specifies some combination of incompatible behaviors. For example,

the global type p
a

−→ q ∨ q
a

−→ p implies an agreement between p and q for establishing
who is entitled to send the a message. In a distributed environment, however, there can
be no agreement without a previous message exchange. Therefore, we can either have a
sound but not complete session that implements just one of the two branches (for example,
{p : q!a.end, q : p?a.end}) or a session like {p : q!a.q?a.end, q : p?a.p!a.end} where both p

and q send their message but which is neither sound nor complete. We characterize this
error as:

∄∆ : tr(G) ⊆ tr(∆) .

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 17

5. Algorithmic projection

We now attack the problem of computing the projection of a global type. We are looking for
an algorithm that “implements” the projection rules of Section 4, that is, that given a session
continuation ∆ and a global type G , produces a projection ∆

′ such that ∆ ⊢ G : ∆′. In other
terms this algorithm must be sound with respect to the semantic projection (completeness,
that is, returning a projection for every global type that is semantically projectable, seems
out of reach, yet).

The deduction system in Table 3 is not algorithmic because of two rules: the rule
(SP-Iteration) that does not satisfy the subformula property since the context ∆ used in
the premises is the result of the conclusion; the rule (SP-Subsumption) since it is neither
syntax-directed (it is defined for a generic G) nor does it satisfy the subformula property (the
G ′ and ∆

′′ in the premises are not uniquely determined).1 The latter rule can be expressed
as the composition of the two rules

(SP-SubsumptionG)

∆ ⊢ G
′ ⊲ ∆

′
G

′
6 G

∆ ⊢ G ⊲ ∆
′

(SP-SubsumptionS)

∆ ⊢ G ⊲ ∆
′

∆
′′
6 ∆

′

∆ ⊢ G ⊲ ∆
′′

Splitting (SP-Subsumption) into (SP-SubsumptionG) and (SP-SubsumptionS) is use-
ful to explain the following problems we have to tackle to define an algorithm:

(1) How to eliminate (SP-SubsumptionS), the subsumption rule for sessions.
(2) How to define an algorithmic version of (SP-Iteration), the rule for Kleene star.
(3) How to eliminate (SP-SubsumptionG), the subsumption rule for global types.

We address each problem in order and discuss the related rules in the next sections.

5.1. Session subsumption. Rule (SP-SubsumptionS) is needed to project alternative
branches and iterations (a loop is an unbound repetition of alternatives, each one starting
with the choice of whether to enter the loop or to skip it): each participant different from the
one that actively chooses must behave according to the same session type in both branches.
More precisely, to project G1∨G2 the rule (SP-Alternative) requires to deduce for G1 and
G2 the same projection: if different projections are deduced, then they must be previously
subsumed to a common lower bound. The algorithmic projection of an alternative (see the
corresponding rule in Table 4) allows premises with two different sessions, but then merges
them. Of course not every pair of projections is mergeable. Intuitively, two projections
are mergeable if so are the behaviors of each participant. This requires participants to
respect a precise behavior: as long as a participant cannot determine in which branch
(i.e., projection) it is, then it must do the same actions in all branches (i.e., projections).

For example, to project G = (p
a

−→ q; r
c

−→ q; . . .) ∨ (p
b

−→ q; r
c

−→ q; . . .) we project
each branch separately obtaining ∆1 = {p : q!a . . . , q : p?a.r?c . . . , r : q!c . . . } and ∆2 =
{p : q!b . . . , q : p?b.r?c . . . , r : q!c . . . }. Since p performs the choice, in the projection of
G we obtain p : q!a . . . ⊕ q!b . . . and we must merge {q : p?a.r?c . . . , r : q!c . . . } with
{q : p?b.r?c . . . , r : q!c . . . }. Regarding q, observe that it is the receiver of the message from
p, therefore it becomes aware of the choice and can behave differently right after the first
input operation. Merging its behaviors yields q : p?a.r?c . . . + p?b.r?c Regarding r, it

1The rule (SP-Alternative) is algorithmic: in fact there is a finite number of participants in the two
sessions of the premises and at most one of them can have different session types starting with outputs.

18 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

has no information as to which choice has been made by p, therefore it must have the same
behavior in both branches, as is the case. Since merging is idempotent, we obtain r : q!c
In summary, mergeability of two branches of an «∨ » corresponds to the “awareness” of the
choice made when branching (see the discussion in Section 4 about the “No knowledge for
choice” error), and it is possible when, roughly, each participant performs the same internal
choices and disjoint external choices in the two sessions.

Special care must be taken when merging external choices to avoid unexpected inter-
actions that may invalidate the correctness of the projection. To illustrate the problem
consider the session types T = p?a.q?b.end and S = q?b.end describing the behavior of a
participant r. If we let r behave according to the merge of T and S, which intuitively
is the external choice p?a.q?b.end + q?b.end, it may be possible that the message b from
q is read before the message a from p arrives. Therefore, r may mistakenly think that it
should no longer participate to the session, while there is still a message targeted to r that
will never be read. Therefore, T and S are incompatible and it is not possible to merge
them safely. On the contrary, p?a.p?b.end and p?b.end are compatible and can be merged
to p?a.p?b.end + p?b.end. In this case, since the order of messages coming from the same
sender is preserved, it is not possible for r to read the b message coming from p before the
a message, assuming that p sent both. More formally:

Definition 5.1 (compatibility). We say that an input p?a is compatible with a session type
T if either

(i) p?a does not occur in T , or
(ii) T =

⊕

i∈I pi!ai.Ti and p?a is compatible with Ti for all i ∈ I, or
(iii) T =

∑

i∈I πi?ai.Ti and for all i ∈ I either p ∈ πi and a 6= ai or p 6∈ πi and p?a is
compatible with Ti.

We say that an input π?a is compatible with a session type T if p?a is compatible with
T for some p ∈ π.

Finally, T =
∑

i∈I πi?ai.Ti +
∑

j∈J πj?aj.Tj and S =
∑

i∈I πi?ai.Si +
∑

h∈H πh?ah.Sh
are compatible if πj?aj is compatible with S for all j ∈ J and πh?ah is compatible with T

for all h ∈ H.

The merge operator just connects sessions with the same output guards by internal
choices and with compatible input guards by external choices:

Definition 5.2 (merge). The merge of T and S, written T ! S, is defined coinductively
and by cases on the structure of T and S thus:

• if T = S = end, then T ! S = end;
• if T =

⊕

i∈I pi!ai.Ti and S =
⊕

i∈I pi!ai.Si, then T ! S =
⊕

i∈I pi!ai.(Ti ! Si);
• if T =

∑

i∈I πi?ai.Ti +
∑

j∈J πj?aj.Tj and S =
∑

i∈I πi?ai.Si +
∑

h∈H πh?ah.Sh are com-

patible, then T ! S =
∑

i∈I πi?ai.(Ti ! Si) +
∑

j∈J πj?aj .Tj +
∑

h∈H πh?ah.Sh.

We extend merging to sessions so that ∆ ! ∆
′ = {p : T ! S | p : T ∈ ∆ & p : S ∈ ∆

′}.

Rules (AP-Alternative) and (AP-Iteration) of Table 4 are the algorithmic versions
of (SP-Alternative) and (SP-Iteration), but instead of relying on subsumption they
use the merge operator to compute common behaviors.

The merge operation is a sound but incomplete approximation of session subsumption
insofar as the merge of two sessions can be undefined even though the two sessions completed
with the participant that makes the decision have a common lower bound according to 6.

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 19

Table 4: Rules for algorithmic projection.

(AP-Skip)

∆ ⊢a skip ⊲ ∆

(AP-Action)

{pi : Ti}i∈I ⊎ {p : T} ⊎ ∆ ⊢a {pi}i∈I
a

−→ p ⊲ {pi : p!a.Ti}i∈I ⊎ {p : {pi}i∈I?a.T} ⊎ ∆

(AP-Sequence)

∆ ⊢a G2 ⊲ ∆
′

∆
′ ⊢a G1 ⊲ ∆

′′

∆ ⊢a G1;G2 ⊲ ∆
′′

(AP-Alternative)

∆ ⊢a G1 ⊲ {p : T1} ⊎ ∆1 ∆ ⊢a G2 ⊲ {p : T2} ⊎ ∆2

∆ ⊢a G1 ∨ G2 ⊲ {p : T1 ⊕ T2} ⊎ (∆1 ! ∆2)

(AP-Iteration)

{p : X} ⊎ {pi : Xi}i∈I ⊎ ∆ ⊢a G ⊲ {p : S} ⊎ {pi : Si}i∈I ⊎ ∆

{p : T} ⊎ {pi : Ti}i∈I ⊎ ∆ ⊢a G
∗ ⊲ {p : rec X.(T ⊕ S)} ⊎ {pi : rec Xi.(Ti ! Si)}i∈I ⊎ ∆

This implies that there are global types which can be semantically but not algorithmically
projected.

Take for example G1 ∨ G2 where G1 = p
a

−→ r; r
a

−→ p; p
a

−→ q; q
b

−→ r and G2 =

p
b

−→ q; q
b

−→ r. The behavior of r in G1 and G2 respectively is T = p?a.p!a.q?b.end
and S = q?b.end. Then we see that G1 ∨ G2 is semantically projectable, for instance by
inferring the behavior T + S for r. However, T and S are incompatible and G1 ∨ G2 is
not algorithmically projectable. The point is that the 6 relation on projections has a
comprehensive perspective of the whole session and “realizes” that, if p initially chooses to
send a, then r will not receive a b message coming from q until r has sent a to p. The merge
operator, on the other hand, is defined locally on pairs of session types and ignores that the
a message that r sends to p is used to enforce the arrival of the b message from q to r only
afterwards. For this reason it conservatively declares T and S incompatible, making G1 ∨G2

impossible to project algorithmically. Appendix B discusses further examples illustrating
merge and compatibility.

5.2. Projection of Kleene star. Since an iteration G ∗ is intuitively equivalent to skip ∨
G ;G ∗ it comes as no surprise that the algorithmic rule (AP-Iteration) uses the merge
operator. The use of recursion variables for continuations is also natural: in the premise
we project G taking recursion variables as session types in the continuation; the conclusion
projects G ∗ as the choice between exiting and entering the loop. There is, however, a subtle
point in this rule that may go unnoticed: the projection of G ∗ may require a continuation
that includes actions and roles that precede G ∗. The point can be illustrated by the global
type

(p
a

−→ q; (p
b

−→ q)∗)∗; p
c

−→ q

where p initially decides whether to enter the outermost iteration (by sending a) or not (by
sending c). If it enters the iteration, then it eventually decides whether to also enter the
innermost iteration (by sending b), whether to repeat the outermost one (by sending a),

or to exit both (by sending c). Therefore, when we project (p
b

−→ q)∗, we must do it in

a context in which both p
c

−→ q and p
a

−→ q are possible, that is a continuation of the

20 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

form {p : q!a . . . ⊕ q!c.end} even though no a is sent by an action (syntactically) following

(p
b

−→ q)∗. For the same reason, the projection of (p
b

−→ q)∗ in (p
a

−→ q; p
a

−→ r; (p
b

−→

q)∗)∗; p
c

−→ q; q
c

−→ r will need a recursive session type for r in the continuation.

5.3. Global type subsumption. Elimination of global type subsumption is the most dif-
ficult problem when defining the projection algorithm. While in the case of sessions the
definition of the merge operator gives us a sound —though not complete— tool that re-
places session subsumption in very specific places, we do not have such a tool for global
type containment. This is unfortunate since global type subsumption is necessary to project
several usage patterns (see for example the inequations (4.1) and (4.2)), but most impor-
tantly it is the only way to eliminate ∧-types (neither the semantic nor the algorithmic
deduction systems have projection rules for «∧ »). The minimal facility that a projection
algorithm should provide is to feed the algorithmic rules with all the variants of a global
type obtained by replacing occurrences of G1 ∧ G2 by either G1;G2 or G2;G1. Unfortunately,
this is not enough to cover all the occurrences in which rule (SP-SubsumptionG) is nec-
essary. Indeed, while G1;G2 and G2;G1 are in many cases projectable (for instance, when
G1 and G2 have distinct roles and are both projectable), there exist G1 and G2 such that
G1 ∧ G2 is projectable only by considering a clever interleaving of the actions occurring in

them. Consider for instance G1 = (p
a

−→ q; q
c

−→ s; s
e

−→ q) ∨ (p
b

−→ r; r
d

−→ s; s
f

−→ r)

and G2 = r
g

−→ s; s
h

−→ r; s
i

−→ q. The projection of G1 ∧ G2 from the environment
{q : p!a.end, r : p!b.end} can be obtained only from the interleaving

r
g

−→ s;G1; s
h

−→ r; s
i

−→ q.

The reason is that q and r receive messages only in one of the two branches of the «∨ »,
so we need to compute the merge of their types in these branches with their types in the
continuations. The example shows that to project G1 ∧G2 it may be necessary to arbitrarily
decompose one or both of G1 and G2 to find the particular interleaving of actions that can
be projected. As long as G1 and G2 are finite (no non-trivial iteration occurs in them), we
can use a brute force approach and try to project all the elements in their shuffle, since
there are only finitely many of them. In general —i.e., in presence of iteration— this is
not an effective solution. However, we conjecture that even in the presence of infinitely
many traces one may always resort to the finite case by considering only zero, one, and two
unfoldings of starred global types. To give a rough idea of the intuition supporting this
conjecture consider the global type G ∗ ∧ G ′: its projectability requires the projectability of
G ′ (since G can be iterated zero times), of G ∧ G ′ (since G can occur only once) and of
G ;G (since the number of occurrences of G is unbounded). It is enough to require also that
either G ; (G ∧ G ′) or (G ∧ G ′);G can be projected, since then the projectability of either
G n; (G ∧ G ′) or (G ∧ G ′);G n for an arbitrary n follows (see Appendix C).

So we can —or, conjecture we can— get rid of all occurrences of «∧ » operators auto-
matically, without losing in projectability. However, examples (4.1) and (4.2) in Section 4
show that rule (SP-SubsumptionG) is useful to project also global types in which the
∧-constructor does not occur. A fully automated approach may consider (4.1) and (4.2)
as right-to-left rewriting rules that, in conjunction with some other rules, form a rewriting
system generating a set of global types to be fed to the algorithm of Table 4. The choice
of such rewriting rules must rely on a more thorough study to formally characterize the
sensible classes of approximations to be used in the algorithms. An alternative approach

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 21

is to consider a global type G as somewhat underspecified, in that it may allow for a large
number of different implementations (exhibiting different sets of traces) that are sound and
complete. Therefore, rule (SP-SubsumptionG) may be interpreted as a human-assisted
refinement process where the designer of a system proposes one particular implementation
G 6 G ′ of a system described by G ′. In this respect it is interesting to observe that checking
whether L1 6 L2 when L1 and L2 are regular is decidable, since this is a direct consequence
of the decidability of the Parikh equivalence on regular languages [Par66].2

5.4. Properties of the algorithmic rules. Every deduction of the algorithmic system
given in Table 4, possibly preceded by the elimination of «∧ » and other potential sources
of failures by applying the rewritings/heuristics outlined in the previous subsection, induces
a similar deduction using the rules for semantic projection (Table 3). For the proof see
Appendix D.

Theorem 5.1. If ⊢a G ⊲ ∆, then ⊢ G ⊲ ∆.

As a corollary of Theorems 4.1 and 5.1, we immediately obtain that the projection ∆ of
a well-formed G returned by the algorithm is sound and complete with respect to G .

Remark 5.1. Although every projection of a global type G produced by the algorithm is
sound and complete with respect to G , let us stress once more that the algorithm itself is
sound but not complete with respect to the semantic projection system defined in Figure 3:
while every algorithmic projection is a semantic projection as well, there exist global types
which are projectable semantically but not algorithmically.

6. k-Exit iterations

The syntax of global types (Table 1) includes that of regular expressions and therefore is
expressive enough for describing any protocol that follows a regular pattern. Nonetheless,
the simple Kleene star prevents us from projecting some useful protocols. To illustrate the
point, suppose we want to describe an interaction where two participants p and q alternate
in a negotiation in which each of them may decide to bail out. On p’s turn, p sends either
a bailout message or a handover message to q; if a bailout message is sent, the negotiation
ends, otherwise it continues with q that behaves in a symmetric way. The global type

(p
handover
−→ q; q

handover
−→ p)∗; (p

bailout
−→ q ∨ p

handover
−→ q; q

bailout
−→ p)

describes this protocol as an arbitrarily long negotiation that may end in two possible ways,
according to the participant that chooses to bail out. This global type cannot be projected

because of the two occurrences of the interaction p
handover
−→ q, which make it ambiguous

whether p actually chooses to bail out or to continue the negotiation. In general, our pro-
jection rules (SP-Iteration) and (AP-Iteration) make the assumption that an iteration
can be exited in one way only, while in this case there are two possibilities according to
which participant bails out. This lack of expressiveness of the simple Kleene star used in a
nondeterministic setting [Mil84] led researchers to seek for alternative iterative constructs.

2Whether two regular languages have the same Parikh image is decidable. The Parikh image of a word w

maps each letter of the alphabet to the number of times it appears in w, the Parikh image of a language is
the set of Parikh images of all words in the language. By checking Parikh images one can check equivalence
of languages modulo permutations.

22 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

Table 5: Semantic projection of k-exit iteration.

(SP-k-Exit Iteration)

∆ ⊢ G
′
i ⊲ {pi : Si} ⊎ {pj : Rj}j=1,...,i−1,i+1,...,k ⊎ ∆

′ (i∈{1,...,k})

{p2 : T2 ⊕ S2} ⊎ {pi : Ri}i=1,3,...,k ⊎ ∆
′ ⊢ G1 ⊲ {p1 : T1} ⊎ {pi : Ri}i=2,...,k ⊎ ∆

′

{p3 : T3 ⊕ S3} ⊎ {pi : Ri}i=1,2,4,...,k ⊎ ∆
′ ⊢ G2 ⊲ {p2 : T2} ⊎ {pi : Ri}i=1,3,...,k ⊎ ∆

′

...
{p1 : T1 ⊕ S1} ⊎ {pi : Ri}i=2,...,k ⊎ ∆

′ ⊢ Gk ⊲ {pk : Tk} ⊎ {pi : Ri}i=1,...,k−1 ⊎ ∆
′

∆ ⊢ (G1, . . . ,Gk)
k∗ (G ′

1, . . . ,G
′
k) ⊲ {p1 : T1 ⊕ S1} ⊎ {pi : Ri}i=2,...,k ⊎ ∆

′

One proposal is the k-exit iteration [BBP93], which is a generalization of the binary Kleene
star and has the form

(G1, . . . ,Gk)
k∗ (G ′

1, . . . ,G
′
k)

indicating a loop consisting of k subsequent phases G1, . . . ,Gk. The loop can be exited just
before each phase through the corresponding G ′

i . Formally, the traces of the k-exit iteration
can be expressed thus:

tr((G1, . . . ,Gk)
k∗ (G ′

1, . . . ,G
′
k))

def
= tr((G1; . . . ;Gk)

∗; (G ′
1 ∨ G1;G

′
2 ∨ · · · ∨ G1; . . . ;Gk−1;G

′
k))

and, for example, the negotiation above can be represented as the global type

(p
handover
−→ q, q

handover
−→ p) 2∗ (p

bailout
−→ q, q

bailout
−→ p) (6.1)

while the unary Kleene star G ∗ can be encoded as (G) 1∗ (skip).
In our setting, the advantage of the k-exit iteration over the Kleene star is that it

syntactically identifies the k points in which a decision is made by a participant of a multi-
party session and, in this way, it enables more sophisticated projection rules such as those
in Table 5. Albeit intimidating, rule (SP-k-Exit Iteration) is just a generalization of
rule (SP-Iteration). For each phase i a (distinct) participant pi is identified: the partici-
pant may decide to exit the loop behaving as Si or to continue the iteration behaving as Ti.
While projecting each phase Gi, the participant p(i mod k)+1 that will decide at the next turn
is given the continuation T(i mod k)+1 ⊕ S(i mod k)+1, while the others must behave according
to some Ri that is the same for every phase in which they play no active role. Once again,
rule (SP-Subsumption) is required in order to synthesize these behaviors. For example,
the global type (6.1) is projected to

{p : rec X.(q!handover.(q?handover.X + q?bailout.end)⊕ q!bailout.end),
q : rec Y.(p?handover.(p!handover.Y ⊕ p!bailout.end) + p?bailout.end)}

as one expects.

7. Related work

The formalization and analysis of the relation between a global description of a distributed
system and a more machine-oriented description of a set of components that implements it
is a problem that has been studied in several contexts and by different communities. In this
setting, important properties that are considered are the verification that an implementation
satisfies the specification, the implementability of the specification, and the study of different
properties of the specification that can then be transposed to each (possibly automatically

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 23

sellerbuyer

descr
price

sellerbuyer

offer

price
sellerbuyer

accept

sellerbuyer

quit

Figure 1: MSG of the seller-buyer protocol

produced) implementation satisfying it. In this work we focused on the implementability
problem, and we tackled it from the “Web service coordination” perspective developed by
the community that works on behavioral types and process algebrae. We are just the
latest ones to attack this problem. So many other communities have been considering it
before us that even a sketchy survey has no chance to be exhaustive. In what follows
we describe two alternative approaches studied by important communities with a large
amount of different and important contributions, namely the “automata” and “cryptographic
protocols” approaches, and then focus on surveying our “behavioral types/process algebra”
approach stressing the relations with the two other approaches and its peculiarities.

7.1. Automata approach. Probably the most extensive research on this problem is pur-
sued by the “automata/model-checking” (particularly, finite state automata) community
where special care is paid to software engineering specification problems. In particular, a
lot of research effort has focused on two specification languages standardized in telecommu-
nications, the Message Sequence Charts (MSCs, ITU Z.120 standard) and the Specification
and Description Language (SDL, ITU Z.100 standard). These respectively play the roles
of our global types and session types. MSCs have become popular in software development
thanks to their graphical representation that depicts every process by a vertical line and
each message as an arrow from the sender to the receiver process fired according to their
top-down ordering. This standard, included in UML, can also represent other features, such
as timers, atomic events, local/global conditions, but it can represent neither iterations nor
branching. This is why it has been extended to Message Sequence Graphs (MSGs, a spe-
cial case of the High-Level Message Sequence Charts included in the Z.120 standard, with
equivalent expressivity [MR97]) which consist of finite transition systems whose states en-
capsulate a single MSC: reaching a given state starts the execution of the embedded MSC
whose termination makes the control move to another state. MSGs play the same role as
our global types.

In particular the global type (1.2) of the introduction corresponds to the MSG in Fig-
ure 1. The MSG is formed by four states that embed a MSC each. The middle state can
loop on itself or branch in one of the two possible final states.

While a MSG specifies the behavior of a distributed system in terms of interactions,
Communicating Finite-State Machines (CFSMs) —the core theoretical model of SDL—

24 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

q0start q1 q2

q3

q4

buyer!descr

buyer!price

buyer?offer

buyer?accept

buyer?quit

buyer −→ seller seller −→ buyer

q0start q1 q2

q3

q4

seller?descr

seller?price

seller!offer

seller!accept

seller!quit

Figure 2: CFSMs implementing the seller-buyer protocol.

describe it in terms of its single components. They are systems of finite state automata that
communicate via asynchronous unbounded FIFO channels. The automata transitions are
labeled by communication primitives which specify the message and the sender or receiver
of it and their execution triggers a read or write action on the corresponding buffer. A run
is successful if each automaton ends its execution in a final state and all buffers are empty.
An example is depicted in Figure 2 which implements the protocol described by the MSG of
Figure 1. The automaton on the top implements the seller while the one on the bottom the
buyer. They communicate by two directional buffers depicted in the middle of the figure. It
is clear that every run of these machines places at most 2 messages in the buffers and that
buffers of length 1 would suffice to implement this protocol without causing deadlocks.

CFSMs essentially are our pre-session types: nothing prevents two transitions respec-
tively labeled by an input and an output operation to spring from the same state. As in our
case the interest is in relating MSGs with CFSMs so that the latter are implementations of
the former. It comes as no surprise that the two formalisms are in general incomparable. As
pointed out in [GMP03, GM05] this depends on two fundamental parameters: control and
state. In MSGs (as well as in our global types) the control of branching is essentially global
since it affects all the roles that occur in future executions, whereas in CFSMs (as well as
in session types) it is inherently local, since it corresponds to the local transition function.
Consequently, there are MSGs that are not implementable by CFSMs, insofar as the latter
cannot implement global choices (in this work we further distinguished three degrees of “non
implementability”: no sequentiality, no knowledge for choice and no knowledge no choice).
Viceversa, the unbounded buffers of CFSMs provide them with infinite states and this gives
them a Turing equivalent expressivity [BZ83]. MSGs, instead, are finitely generated, in the
sense that for every MSG G there exists a finite set S of finite MSCs such that any execu-
tion of G can be written as the juxtaposition of the execution of elements in S . It is then
clear that MSGs cannot specify all CFSMs systems (an example of this is the alternating bit
protocol in which a sender resends a message to a receiver since the acknowledgment arrived
too late: to be specified, this protocol needs MSCs of arbitrary length, see [GMP03]). The
relative expressive powers of the two formalisms (finitely generated vs. Turing complete)

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 25

makes it apparent that the static verification of properties should be much “easier” on MSGs
than on CFSMs. Indeed, the expressivity of CFSMs is used to justify the use of MSGs
as an early specification tool to then be implemented (i.e., projected) into CFSMs: since
CFSMs are Turing complete, all nontrivial behavioral properties – termination, reachabil-
ity (i.e., is a given control state reachable?), deadlock-freedom, boundedness (i.e., is there
some bound n such that every reachable configuration has buffers of size at most n?) – are
undecidable. Even if some of these properties can be made decidable by some restrictions
(e.g., reachability and safety properties become decidable with lossy channels, even though
liveness properties and boundedness remain undecidable, see [Sch04]) it is believed that
a satisfactory set of decidable properties can be obtained only with trivial CFSMs (e.g.,
with only two processes or with bounded buffers). Half-duplex systems [CF05] made of two
CFSMs, where each reachable configuration has at most one buffer non-empty, are closely
related to dyadic sessions and exhibit a number of decidable results which, unfortunately,
do not scale to systems made of an arbitrary number of machines, even if the half-duplex
restriction is maintained. MSGs have potentially much better properties, since they are
finitely generated. For instance, it is possible to determine the maximum size of the buffers
that each MSC that composes an MSG has to use in order to execute it. Such properties
combined with the fact that the global semantics of CFSMs/SDL specifications is much
more difficult to understand than that of MSGs, explain why it is very sensible to start with
a MSG, model-check its properties and then implement it as a set of CFSMs. However,
MSGs do not have robust closure properties as, say, regular languages (the choice we made
for our global types). As a consequence, many variants of MSGs have been proposed in the
literature to make verification and projection effectively and efficiently implementable (an
extensive list of references can be found in [GM05] and a more detailed comparison is given
in [GMP03]). In particular if one considers the restrictions we imposed on our global types,
namely that branching is controlled by one process (they are called local-choice MSGs),
then properties can be model-checked in polynomial or tractable time (while in the general
setting of MSGs many variants of model-checking are undecidable [AY99, MPS98]). MSGs
can also be restricted to the class of regular MSGs that have robust properties and for which
the implementability by deadlock-free CFSMs is decidable. In this context however imple-
mentability means generating the same set of traces [AEY00, AEY01]. So we are in the
presence of quite a strict definition of implementability. Other notions of implementability
have been studied yielding different decidability results (e.g., see [AEY00, AEY01]): among
these we can cite implementations allowed to produce messages not described by the MSG
(i.e., unfit implementations, in the terminology used in our introduction), or the use of in-
ternal communications with messages on a distinct alphabet to synchronize the system (we
avoided this approach which corresponds to using covert channels), or implementations al-
lowed to admit deadlocks. The reader can refer to [GMP03] for an extensive survey. However
we are not aware of weaker implementability definitions such as the notions of soundness
and completeness we introduced here. These, besides being an original contribution of our
work, are also the main point that makes algorithmic projection difficult. There are some
works, such as [BB11], characterizing classes of CFSMs for which it is possible to decide the
conformance with respect to a global specification (choreography).

7.2. Cryptographic protocols. Another domain in which much research on this topic has
been done is the verification of cryptographic protocols. In this context, protocol narrations,
which describe protocols in terms of conversations between “roles”, must be matched against

26 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

or implemented into a set of specifications for the single roles. However the goals pursued
in this area are quite different from the one we outlined in the previous section, which
yields global specification languages with characteristics different from the one considered
by the automata approach. A first important difference is the content of messages. While
in the automata based research the content of communications is of lesser importance since
it is usually drawn from a finite set of messages, in the domain of cryptographic protocols
messages are defined by expressive languages that at least include cryptographic primitives.
Whereas message content is richer, the communication pattern is somewhat simpler since
security protocols are always of finite length, which is why MSCs rather than MSGs are
used. However one has to be very precise about the way an agent processes its messages
(which parts of a message should be extracted and checked by an agent and how an answer
should be computed). This is why MSCs are annotated or enriched with mechanisms that
express the internal actions to be performed by the agents. This gives raise to different
flavors of formalisms (Figure 3 gives three samples of such languages: for more examples
and a list of references see [CR10]). These global specifications are then used to verify
security properties and, in some cases, to generate specifications for the roles composing
them. Local specifications are much finer-grained and lower-level than those used in the
automata approach. The details of internal executions of each agent are exposed and pre-
cisely defined since the overlook of small details may lead to dramatic flaws. This explains
why the palette of languages used to describe the local behavior appears to be more var-
iegated than in the previous area: the pioneering work on compilation by Carlsen [Car94]
compiles protocol narrations into a modal logic of communication; the system Casper pro-
duces CSP descriptions of protocols that are suitable to be model-checked [Low98] while
CAPSL [MD02] and CASRUL [JRV00] translate global specifications of protocols, such as
those given in Figure 3 (HLPSL is the protocol specification language used by CASRUL),
into rewriting systems; in [CVB06] MSCs are interpreted into systems of pattern matching
spi-calculus processes [AG99, HJ06]. Recent work has shown that most of the annotation
and extensions of MSCs aimed at describing internal computations, can be computed au-
tomatically from the protocol narration, and thus compile lightly annotated MSCs into an
operational semantics that describes the necessary internal actions [CR10].

The degree of detail about local behavior present both in global and local specification
languages is not the only difference with the previous automata based approach. The other
fundamental difference is the dynamism of the scenarios that both compilation and analysis
must account for. Each role is not necessarily implemented by a single agent or process
but the concurrent presence of several agents that interpret the same role must be allowed
in the system. The system may include intruder agents that are not described by the
global specification and that may interfere with it; in particular, they may intercept, read,
destroy and forge messages and, more generally, change the topology of the communications.
Furthermore different executions of the protocol may be not independent as attackers can
store and detour information in one execution to use it in a later one.

In this context the works closest to our approach are [MK08] and [BCD+09]. McCarthy
and Krishnamurthi [MK08] describe WPPL, a global description language which besides the
basic communication action of MSCs provides actions for role definition and trust manage-
ment. WPPL specifications are then projected in local behaviors defined in CPPL, a domain
specific language that describes cryptographic protocol roles with trust annotations. In their
work they give a nice comparison of their approach with the one used in Web services that
we describe next. In particular, cryptography introduces information asymmetries (e.g.,

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 27

1 (spec ([c (a b s kas) (kab)]

2 [b (b s kbs) (kab)] [s (a b s kas kbs) ()])

3 [a -> s : a, b, na:nonce]

4 [s -> b : |a, b, na, kab| kas, |a, b, na, kab| kbs]

5 [b -> a : |a, b, na, kab| kas, |na| kab, nb:nonce]

6 [a -> b : |nb| kab] .)

PROTOCOL KaoChow;

VARIABLES

S : Server;

A, B : Client;

Na, Nb: Nonce;

Kab: Skey, CRYPTO, FRESH;

F : Field;

Kas,Kbs : Skey;

DENOTES

Kas = csk(A): A;

Kas = ssk(S,A): S;

Kbs = csk(B): B;

Kbs = ssk(S,B): S;

ASSUMPTIONS

HOLDS A: B,S;

MESSAGES

1. A -> S: A, B, Na;

2. S -> B: S, A, B, Na, KabKas%F, A, B, Na, KabKbs;

3. B -> A: B, F%A, B, Na, KabKas, NaKab, Nb;

4. A -> B: NbKab;

GOALS

SECRET Kab;

PRECEDES A: B | Na;

PRECEDES B: A | Nb, Kab;

END;

Protocol KaoChow ;

Identifiers

A,B,S : user ;

Na,Nb : number;

Kas,Kbs,Kab : symmetric_key;

knowledge

A : S,B,Kas ;

B : A, S, Kbs ;

S : A, B, Kas, Kbs;

Messages

1. A -> S : A,B,Na

2. S -> B : A,B,Na,KabKas,A,B,Na,KabKbs

3. B -> A : A,B,Na,KabKas,NaKab,Nb

4. A -> B : NbKab

Session_instances

[A:a ; B:b ; S:se ; Kas:kas ; Kbs:kbs];

Intruder divert , impersonate;

Intruder_knowledge a,b,se;

Goal Short_Term_secret Kab;

Goal B authenticate A on Nb;

Figure 3: Kao Chow protocol in WPPL, HLPSL and CAPSL (clockwise from top).

because of the presence of an intruder the message received by a role may be different from
the one that was sent to it, or a encrypted message can be received only if the partner has
the corresponding key) that are not handled by existing end-point projection systems. In a
nutshell, in Web services global description formalisms as well as in the automata approach
the focus is on communication patterns and the communication content is neglected, while
in the realm of cryptographic protocols it is the combination of the two that really matters.

Bhargavan et al. describe in [BCD+09] a compiler from high-level multi-party session
descriptions to custom cryptographic protocols coded as ML modules. In the generated
code each participant has strong security guarantees for all her/his messages against any
adversary that may control both the network and some participants to the session.

7.3. Web services. Our work springs from the research done to formally describe and
verify compositions of Web services. This research has mainly centered on using process
algebras to describe and verify visible local behavior of services and just recently (all the
references date of the last five years) has started to consider global choreographic descriptions
of multiple services and the problem of their projection. This yielded the three layered
structure depicted in Figure 4 (courtesy of P.-M. Deniélou) where a global type describing
the choreography is projected into a set of session types that are then used to type-check the
processes that implement it (as well as guide their implementation). The study thus focuses
on defining the relation between the different layers. Implementability is the relation between

28 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

G Global Type G = alice
nat
−→ bob;

bob
nat
−→ carol

Talice Tbob Tcarol Session Types Tbob = alice?nat.
carol!nat.
end

Palice Pbob Pcarol Processes Pbob = receive x from alice;

send x+42 to carol;
end

Projection

Type checking

Figure 4: Global types and multi-party sessions in a nutshell.

the first and second layer. Here the important properties are that projection produces
systems that are sound and complete with respect to the global description (in the sense

stated by Theorem 4.1) and deadlock free (e.g., we rule out specifications such as p
a

−→

q ∨ p
a

−→ r when it has no continuation, since whatever the choice either q or r will be
stuck). Typeability is the relation between the second and third layer. Here the important
properties are subject reduction (well-typed processes reduce only to well-typed processes)
and progress (which in this context implies deadlock freedom).

Although in this work we disregarded the lower layer of processes, it is nevertheless an
essential component of this research. In particular, it explains the nature of the messages
that characterize this approach, which are types. One of the principal aims of this research,
thus, is to find the right level of abstraction that must be expressed by types and session
types. Consider again Figure 4. The process layer clearly shows the relation between the
message received by bob and the one it sends to carol, but this relation (actually, any
relation) is abstracted away both in the session and the global type layers. The level of
abstraction is greater than that of cryptographic protocols since values are not tracked by
global descriptions. Although tracking of values could be partially recovered by resorting
to singleton types, there is a particular class of values that deserves special care and whose
handling is one of the main future challenges of this research, that is, channels. The goal
is to include higher order types in global specifications thus enabling the transmission of
session channels and therefore the reification of dynamic reconfiguration of session topol-
ogy. We thus aim at defining reconfiguration in the specification itself, as opposed to the
case of cryptographic protocols where the reconfiguration of the communication topology
is considered at meta-level for verification purposes. As a matter of fact, this feature has
already been studied in the literature. For instance, the extension of ws-cdl [WSC05]
with channel passing is studied in [CZ08] (as the automata approach has the MSC as their
reference standard, so the Web service community refers to the ws-cdl standard whose
implementability has been studied in [QZCY07]); the paper that first introduced a global
calculus for session types [CHY07] explicitly mentions channels in messages that can be sent
to other participants to open new sessions on them. In our opinion the existing works on
session types are deeply syntactic in nature, in the sense that the operators in global types

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 29

have been conceived as syntactic adaptations of the corresponding ones in session types. As
a consequence, these operators do not always have a clear semantic justification. Here we
preferred to take a step back and to start by defining global descriptions whose restrictions
are semantically justified. So we favored a less rich language with few semantically justified
features and leave the addition of more advanced features for a later time.

Coming back to the comparison of the three approaches, the Web service-oriented ap-
proach shares several features in common with the other two. As for the automata approach
we (in the sense of the Web service community) focus on the expressiveness of the control, the
possibility of branching and iteration, and the effective implementability into deadlock-free
local descriptions. However the tendency for Web services is to impose syntactic restrictions
from the beginning rather than study the general case and then devise appropriate restric-
tions with the sought properties (in this respect our work and those of Bravetti, Zavattaro
and Lanese [BZ07, BZ08, BLZ08] are few exceptions in the panorama of the Web service
approach). Commonalities with the cryptographic protocol approach are more technical. In
particular we share the dynamism of the communication topology (with the caveat about
whether this dynamism is performed at the linguistic or meta-linguistic level) and the ro-
bustness with respect to reconfiguration (the projected session types should ensure that well-
typed process will be deadlock free even in the presence of multiple interleaved sessions and
session delegation, though few works actually enforce this property [BCD+08, DCdLY08]).
As for cryptographic protocols, this dynamism is also accounted at level of participants since
recent work in session types studies global descriptions of roles that can then be implemented
by several different agents [DY11]. Finally, we take into account the internal behavior of
processes (similarly to what happens for cryptographic protocols) without giving a precise
specification of it but using precise enough (session) types to prevent any possible internal
behavior to disrupt the properties of systems. There are also some characteristics that are
specific to our approach such as the exploration of new linguistic features (for instance in
this work we introduced actions with multi-senders) and a pervasive use of compositional
deduction systems that we inherit from type theory. We conclude this section with a more
in-depth description of the main references in this specific area so as to give a more detailed
comparison with our work.

7.3.1. Multi-party global types. Global types were introduced in [HYC08] for multi-party
sessions, while [CHY07] describes a global calculus for dyadic sessions. Channels are present
in both [CHY07] and [HYC08]. However the language of [CHY07] includes control structures
and messages of complex form, since it was intended to be an executable language to describe
Web-service interactions and, as such, it is directly projected into a language of processes.
Thus it lacks the intermediate layer of Figure 4 which is bypassed by providing a more
concrete upper layer. The three-layered structure of Figure 4 faithfully describes the work
in [HYC08] which, nevertheless, presents several differences with the work presented here.
In the syntax of our work, the global types of [HYC08] can essentially be described by the

30 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

following grammar:
G ::= end (end)

| p
k〈a〉
−→ q.G (interaction)

| G ∨ G (branching)
| G ∧ G (parallel)
| X (variable)
| µX.G (recursion)

In a nutshell, sequencing is replaced by prefix actions (terminated by “end”), labels are
decorated by channels (ranged over by k), and general µ-recursive definitions replace the
(less expressive) Kleene star. Session types (called “local types” in [HYC08]) are even more
similar to those presented here, the only difference being that input/output actions, which
have the form k?a.T and k!a.T , specify channel names rather than participant names.

While the syntactic differences are minimal, it is not so for semantic ones. A first
important difference is that the global types of [HYC08] must satisfy several restrictions:

(1) The set of participants of two global types composed in parallel must be disjoint. While
this restriction clearly simplifies the algorithmic projection (the projection of of G1 ∧G2

reduces to the projection of G1;G2, cf. Section 5.3), it rules out simple protocols such
as (1.1), the very first we presented in this work.

(2) The first actions of global types composed by branching must specify the same channel,
the same sender, the same receiver, and distinct messages (actually, labels). Furthermore
every participant that is neither the first sender nor the first receiver must behave
the same in all branches. The use of the same channel and, to a lesser extent, of
the same senders and receivers for branching is a consequence of having adopted the
original syntax of labeled branching used in the session types of [HVK98]. This first
restriction forces the adoption of the second one: since session type communication
specifies channels rather than participants, and since the channel is the same in all
branches, then the only way for the (unique) receiver to distinguish the branches is to
receive distinct messages on each of them. These restrictions, of syntactic origin, are
more constraining than ours which just require the presence of a single “decision maker”.
The restriction for “passive” participants to have the same behavior in all branches is a
quite coarse condition to enforce what in our system is called “mergeability” (a similar
notion of merge was already introduced in [YDBH10, DY11]).

The syntax of global types in [HYC08] is more constraining than ours and the semantics

of sequential composition is weaker. For example, two interactions like p
k〈a〉
−→ q.r

k′〈b〉
−→ s.end

are required to happen in the same order as they occur in the global types only if k and k′ are
the same channel. Thus if k 6= k′ the participants p, q, r, and s can be unrelated. The reason
of such a choice is, once more, due to the fact that global types are designed in function of
the session types as defined by [HVK98] where different channels are typed independently
and, thus, sequentiality constraints can be enforced only between communications on a same
channel. It is interesting to notice that the situation is somehow dual to the one presented
here. While we demand the sequentiality of « ;» be strictly enforced, we accept any order
on actions composed in parallel by a «∧ ». In [HYC08] instead, while actions composed in
parallel are forced to be independent (by demanding disjoint participants), any order of the
“sequential” composition is accepted as long as it happens on distinct channels.

In order to appreciate the usage of global types of [HYC08] and their projection let us
revisit the paradigmatic example given in [HYC08], according to which two buyers, buyer1

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 31

and buyer2, wish to collaborate to buy an item from a seller seller: buyer1 asks the
item to seller, which sends a price to both buyers; buyer1 communicates to buyer2 its
participation and buyer2 decides either to quit (by sending quit to seller) or to accept the
price by communicating ok and the delivery address to the seller, and expecting a delivery
date. This compound protocol is expressed as the following global type:

buyer1
h〈string〉
−−−−→ seller.

seller
k〈int〉
−−−−→ buyer1.

seller
k′〈int〉
−−−−→ buyer2.

buyer1
l〈int〉
−−−−→ buyer2.

∨(buyer2
h〈quit〉
−−−−→ seller.end)

∨(buyer2
h〈ok〉
−−−−→ seller.buyer2

h〈string〉
−−−−→ seller.seller

k′〈date〉
−−−−→ buyer2.end)

(7.1)

Notice that in the final branching of the protocol each action starting a branch is a commu-
nication from buyer2 to seller on the same channel h of two different labels ok and quit
(strictly speaking, two singleton types whose only value is, respectively, ok and quit). As
expected the above global type is projected into

seller 7→ h?string.k!int.k′!int.(h?quit.end+ h?ok.h?string.k′!date.end)
buyer1 7→ h!string.k?int.l!int.end
buyer2 7→ k′?int.l?int.(h!quit.end+ h!ok.h!string.k′?date.end)

Notice how participants are replaced by channels. In particular this implies that buyer2

can distinguish the receptions from seller and buyer1 because they happen on distinct
channels. Thus, in a sense, explicit channels play the same role of explicit participants in
session types, except that the presence of channels makes global type analysis more difficult.
This explains why such a feature has been abandoned in [DY11] (the latest follow up of the
multi-party sessions work) where global types no longer specify channels and session types
use participants instead of channels (see later on).

We said that [HYC08] enforces sequentiality only on a per channel basis. Concretely,
this means that for every projection the interactions on h in the first and fifth or sixth
lines of the protocol in (7.1) must happen in the same relative order as they appear in the
global types, and the same must hold for interactions on k′ in the third and sixth lines. A
rough way to ensure this property would be to prune all actions that are not on a given
channel and then impose a well-formedness condition akin to the one we introduced in
Definition 4.2. In [HYC08] much a finer-grained technique is used: it performs a global
analysis of the dependency relation of a global type and ensures sequentiality on a given
channel by exploiting synchronization information on interactions occurring also on different
channels. In [CHY07] a stricter condition (dubbed “well-threadedness”) is described for
dyadic sessions, and it enforces a sequentiality condition similar to our well-formedness.

Finally, we already saw that messages in the global types of [HYC08] can be either types
(to describe value of the communication) or labels (to perform branching), but they can also
be channels such as in

· · · .buyer1
l〈k〉
−→ buyer2. · · · ,

which allows global types to describe delegation. Delegation was introduced in [HYC08]
for multi-party sessions and is directly inherited from the homonym feature of dyadic ses-
sions [HVK98]. A participant can delegate another agent to play his role in a session in a

32 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

way that is transparent for all the remaining participants of the session. In the example
above buyer1 delegates to buyer2 the task to continue the conversation with seller on k.
By allowing higher-order channels, the concrete topology of communications may dynami-
cally evolve. To ensure projectability in the presence of such a feature, further restrictions
are required [HYC08].

If we focus on semantically justified restrictions, the presence of channels requires types
to be “well-threaded” (to avoid that the use of different channels disrupts the sequentiality
constraints of the specification) and message structures to be used “coherently” in different
threads (to assure that a fixed server offers the same services to different clients), as discussed
in [CHY07]. We did not include such features in our treatment since we wanted to study the
problems of sequentiality (which yielded Definition 4.2 of well-formed global type) and of
coherence (which is embodied by the subsession relation whose algorithmic counterpart is the
merge operator) in the simplest possible setting (a single multi-party session) without further
complexity induced by extra features. As a consequence of this choice, our merge between
session types is a generalization of the merge in [YDBH10, DY11] since we allow inputs
from different senders (this is the reason why our compatibility is more demanding than
the corresponding notion in [YDBH10]). Since our framework does not include channels, we
naturally disregarded any issue arising from delegation.

Our crusade for simplification did not restrict itself to exclude features that seemed
inessential or too syntax dependent, but it also used simpler forms of existing constructs.
In particular an important design choice was to use Kleene star instead of more expressive
recursive global types used in [HYC08, DY11]. As an example, the global type describing an
arbitrary long interaction between participants p and q that p may terminate at any time
can be described as

(p
a

−→ q)∗; p
b

−→ q

in our calculus and as

µX.(p
k〈a〉
−→ q.X ∨ p

k〈b〉
−→ q.end)

in [HYC08]. The main advantage of the star over recursion is that it gives us a fair imple-
mentation of the projected specification almost for free. Fairness seems to us an important
—though mostly neglected by current literature— requirement for (multi-party) sessions.
In particular, it allows us to develop a theory where multi-party sessions preserve a stronger
liveness property, namely the potential to successfully terminate (termination under fairness
assumption). A direct consequence of our choice is that we are capable of projecting global
types where the progress of some participants crucially relies on the eventual termination of
arbitrarily long interactions involving other participants. For example, the global type

(p
a

−→ q)∗; p
b

−→ q; q
c

−→ r

is projectable in our theory but its correspondent

µX.(p
a

−→ q.X ∨ p
b

−→ q.q
c

−→ r.end)

is not in [HYC08]. The point is that participant r is waiting for a c message that will be sent
only if p stops sending a messages to q. This is guaranteed in our theory but not in [HYC08]
where, in principle, p may send a messages to q forever.

In general recursion is more expressive than iteration. For example, we cannot express

non-terminating interactions such as µX.p
a

−→ q.X. In the present work we regard this
global type as wrong and take the point of view that a session eventually terminates, although

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 33

there can be no upper bound to its duration. Recursion is more flexible when it comes to
specifying iterations with multiple exit paths. For example, the global type

µX.(p
handover
−→ q.(q

handover
−→ p.X ∨ q

bailout
−→ p.end) ∨ p

bailout
−→ q.end)

is a straightforward modeling of the global type that requires 2-exit iteration to be projected
in our framework (Section 6).

The exploration of a whole palette of different paradigms for global and local types and
of variations thereof is another element that distinguishes the research done in the Web ser-
vice communities from that in other communities. In particular, the Web service community
does not hesitate to borrow features from other communities and, in this respect, a remark-
able work is the one on dynamic multirole session types by Deniélou and Yoshida [DY11].
Consider again the very first example (1.1) of the introduction. It consists of just a single
seller and a single buyer. While it seems reasonable to describe the protocol for a particular
seller, it is restrictive to think that it will handle just one buyer at the time. The idea is
that the seller will interact with a variable number of buyers, all implementing the same
protocol, that will dynamically join and leave the session. Mutatis mutandis, Deniélou and
Yoshida propose to describe the protocol as follows:

∀x : buyer. (seller
descr
−→ x ∧ seller

price
−→ x);

(x
accept
−→ seller ∨ x

quit
−→ seller)

(7.2)

Here buyer no longer denotes a single participant but rather a role that can be played by
different participants (or processes) ranged over by x. The notion of role is extensively used
in the research on the verification of cryptographic protocols, especially at a meta-linguistic
level. Remarkably, Deniélou and Yoshida have internalized it, making it possible to precisely
express the multi-role aspects of an interaction protocol both in global and in local types.
Indeed, the possible projections of the global type above are:

seller 7→ ∀x : buyer.x!descr.x!price.(x?accept + x?quit)
buyer 7→ seller?descr.seller?price.(seller!accept ⊕ seller!quit)

and
seller 7→ ∀x : buyer.x!price.x!descr.(x?accept + x?quit)
buyer 7→ seller?price.seller?descr.(seller!accept ⊕ seller!quit)

Note that session types use participants instead of channels (global types such as (7.2) no
longer specify channels). This yields projections that, apart from the quantifications in
seller, are the same as those we gave in the introduction for example (1.1). Deniélou and
Yoshida develop a theory that ensures communication safety (received messages are of the
expected type) and progress (communications do not get stuck) of sessions in the presence
of dynamically joining and leaving participants.

Finally, although we aimed at simplifying as much as possible, we still imposed a few
restrictions that seemed unavoidable. Foremost, the sequentiality condition of Section 4:
any two actions that are bound by a semicolon must always appear in the same order in
all traces of (sound and complete) implementations. Surprisingly, in all current literature of
multi-party session types we are aware of, just one work [CHY07] enforces the sequential se-
mantics of « ;». In [CHY07] the sequentiality condition, called connectedness, is introduced
(albeit in a simplified setting since—as in [HVK98, HYC08]— instead of sequential compo-
sition the authors consider the simpler case of prefixed actions) and identified as one of three
basic principles for global descriptions under which a sound and complete implementation

34 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

can be defined. All other (even later) works admit to project, say, q
a

−→ p; r
a

−→ p in im-
plementations in which p receives from r before having received from q. While the technical
interest of relaxing the sequentiality constraint in the interpretation of the « ;» operator is
clear —it greatly simplifies projectability— we really cannot see any semantically plausible
reason to do it.

Our simpler setting allows us to give a semantic justification of the formalism and of
the restrictions and the operators we introduced in it. For these reasons many restrictions
that are present in other formalisms are pointless in our framework. For instance, two global
types whose actions can be interleaved in an arbitrary way (i.e., composed by «∧ » in our
calculus) can share common participants in our global types, while in [HYC08] (which use
the parallel operator for «∧ ») this is forbidden. So these works fail to project (actually,
they reject) protocols as simple as the first line of the example given in the specification
(1.1) in the introduction. Likewise we can have different receiver participants in a choice
like, for example, the case in which two cooperating buyers wait for a price from a given
seller:

seller
price
−→ buyer1; buyer1

price
−→ buyer2 ∨ seller

price
−→ buyer2; buyer2

price
−→ buyer1

while such a situation is forbidden in [HYC08].
Another situation possible in our setting but forbidden in [HYC08, DY11] is to have

different sets of participants for alternatives, such as in the following case where a buyer
is notified about a price by the broker or directly by the seller, but in both cases gives an
answer to the broker:

(seller
agency
−→ broker; broker

price
−→buyer ∨ seller

price
−→buyer);

buyer
answer
−→ broker

(7.3)

A similar situation may arise when choosing between repeating or exiting a loop:

seller
agency
−→ broker; (broker

offer
−→ buyer; buyer

counteroffer
−→ broker)∗;

(broker
result
−→ seller ∧ broker

result
−→ buyer)

(7.4)

which is again forbidden in [HYC08, DY11]. Note that the interaction following « ;» in (7.3)
can be distributed on the two branches, yielding the global type

seller
agency
−→ broker; broker

price
−→ buyer; buyer

answer
−→ broker

∨ seller
price
−→ buyer; buyer

answer
−→ broker

where the two branches involve exactly the same set of participants. This form is com-
patible with respect to the notion of projection in [HYC08, DY11]. However, the same
transformation is not possible for (7.4) because in this case projectability relies on the fair-
ness assumption. Indeed while we can consider a Kleene star as an infinite union of finite
branches and thus, semantically, add the continuation to each of these branches, the finite-
ness of each branch is guaranteed in our framework but not in [HYC08, DY11].

7.3.2. Choreographies. Global types can be seen as choreographies [WSC05] describing the
interaction of some distributed processes connected through a private multi-party session.
Therefore, there is a close relationship between our work and those by Zavattaro and his
colleagues [BZ07, LGMZ08, BZ08, BLZ08], which concern the projection of choreographies
into the contracts of their participants. The choreography language in these works coincides

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 35

with our language of global types (including the use of iteration instead of recursion). Basi-
cally, the only difference at syntactic level is that interactions have the form ap→q instead of

p
a

−→ q. Just like in our case, a choreography is correct if it preserves the possibility to reach
a state where all of the involved Web services have successfully terminated. There are some
relevant differences though, starting from choreographic interactions that invariably involve
exactly one sender and one receiver, while in the present work we allow for multiple senders.
Other differences concern the communication model and the projection procedure. In partic-
ular, the communication model is synchronous in [BZ07], based on FIFO buffers associated
with each participant of a choreography in [BZ08], and partially asynchronous in [BLZ08]
(output actions can fire, and thus drive the choice of an internal choice, also in the ab-
sence of a dual active receiving action, but their continuation is blocked until the message is
consumed by the receiver). Our model (Section 3) closely follows the ones adopted for multi-
party sessions, where there is a single buffer and we consider the possibility for a receiver to
specify the participant from which a message is expected. In [BZ07, LGMZ08, BZ08, BLZ08]
the projection procedure is basically an homomorphism from choreographies to the behavior
of their participants, which is described by a contract language equipped with parallel com-
position, while our session types are purely sequential. [BZ07, BZ08] give no conditions to
establish which choreographies produce correct projections. In contrast, [BLZ08, LGMZ08]
define three connectedness conditions that guarantee correctness of the projection for various
(synchronous and asynchronous) semantics. The interesting aspect is that these conditions
are solely stated on the syntax of the choreography, while we need the combination of pro-
jectability (Table 3) and well-formedness (Definition 4.2). Depending on the communication
semantics, which can be synchronous or asynchronous in [BLZ08, LGMZ08], the connect-
edness conditions may impose different constraints if compared to our well-formedness. For
example, the choreography

p
a

−→ q; r
b

−→ p

is connected for sequence according to [BLZ08] but is not well formed according to Defini-
tion 4.2. This is a consequence of the different communication models adopted in [BLZ08]
and in the present work. In [BLZ08] it is not possible for p to receive the b message from
r before q has received the a message from p because p will block on the output of a until
q receives the message. In our model, output messages are inserted within the buffer as-
sociated with the session, so the sender can immediately proceed. This corresponds to the
receiver semantics in [LGMZ08].

The connectedness conditions for alternative choreographies in [BLZ08, LGMZ08] im-
pose stricter constraints since they require that the roles in both branches be the same.
Therefore, the two global types involving the broker participant described by examples (7.3)
and (7.4) are not connected. Additionally, the fact that these conditions are stated by look-
ing at the syntax of choreographies may discriminate between equivalent choreographies.
For example, the choreographies

(p
a

−→ q ∧ r
a

−→ s) ∨ (p
a

−→ q ∧ r
b

−→ s) and p
a

−→ q ∧ (r
a

−→ s ∨ r
b

−→ s)

are equivalent (they generate the same set of traces), but only the second one is connected.
In the first one, the fact that both branches emit actions where the sender can be either p

or r seems to suggest the absence of a decision maker, while in fact there is one (r). Our
definition of well-formedness, being based on the set of traces generated by a global type
rather than its syntax, does not distinguish between the two choreographies. As we have

36 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

shown, a careful projection procedure does not need these requirements for the projection
to respect the choreography.

In [BZ07] the projection of choreographies with iteration is taken into account and
in [LGMZ08] it is argued that the connected conditions scale without problems to this
more general scenario. The authors do not address the limited expressiveness of single-
exit iterations. For example, the first global type at the beginning of Section 6 yields a
deadlocking projection also for [BZ07]. Given the similarities between choreographies and
global types it is reasonable to expect that the adoption of k-exit iterations might resolve
the issue in their setting as well.

While discussing MSGs we argued that requiring the specification and its projection
produce the same set of traces (called standard implementation in [GMP03]) seemed overly
constraining and advocated a more flexible solution such as the definitions of soundness and
completeness introduced in the present work. Interestingly, Bravetti, Lanese and Zavat-
taro [BLZ08] take the opposite viewpoint, and make this relation even stricter by requiring
the relation between a choreography and its projection to be a strong bisimulation.

The problem of analyzing choreographies and characterizing their properties has been
addressed also by the community studying multiagent systems. In particular, Baldoni et
al. [BBC+09] propose a notion of interoperable choreography which basically coincides with
our notion of liveness: the interaction between the parties must preserve the ability to reach
a state in which every party has successfully completed its task. Interoperability induces
a notion of conformance between parties that is similar to our implementation pre-order
and to other refinement relations. The main difference with respect to our work and those
cited above is that in [BBC+09] a choreography is directly represented as the composition
of its participants and their behavior is described by means of finite-state automata rather
than terms of a process algebra. It appears that the techniques of choreography projection
described in the present paper can be easily adapted to the context of [BBC+09] and that
multiagent systems might provide an additional playground to further explore and validate
the whole approach.

7.3.3. Other calculi. In this brief overview we focused on works that study the relation be-
tween global specifications and local machine-oriented implementations. However in the
literature there is an important effort to devise new description paradigms for either global
descriptions or local descriptions. In the latter category we wish to cite [HVK98, BBDNL08],
while [CP09] seems a natural candidate in which to project an eventual higher order exten-
sion of our global types. For what concerns global descriptions, the Conversation Calculus
[CV09] stands out for the originality of its approach.

8. Conclusion

We think that the design-by-contract approach advocated in [CHY07, HYC08] and expanded
in later works is a very reasonable way to implement distributed systems that are correct by
construction. In this work we have presented a theory of global types in an attempt of better
understanding their properties and their relationship with multi-party session types. We
summarize the results of our investigations in the remaining few lines. First of all, we have
defined a proper algebra of global types whose operators have a clear meaning. In particular,
we distinguish between sequential composition, which models a strictly sequential execution
of interactions, and unconstrained composition, which allows the designer to underspecify

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 37

the order of possibly dependent interactions. The semantics of global types is expressed in
terms of regular languages. Aside from providing an accessible intuition on the behavior of
the system being specified, the most significant consequence is to induce a fair theory of
multi-party session types where correct sessions preserve the ability to reach a state in which
all the participants have successfully terminated. This property is stronger than the usual
progress property within the same session that is guaranteed in other works. We claim that
eventual termination is both desirable in practice and also technically convenient, because it
allows us to easily express the fact that every participant of a session makes progress (this is
non-trivial, especially in an asynchronous setting). We have defined two projection methods
from global to session types, a semantic and an algorithmic one. The former allows us to
reason about which are the global types that can be projected, the latter about how these
types are projected. This allowed us to define three classes of flawed global types and to
suggest if and how they can be amended. Most notably, we have characterized the absence
of sequentiality solely in terms of the traces of global types, while we have not been able to
provide similar trace-based characterizations for the other flaws. Finally, we have defined a
notion of completeness relating a global type and its implementation which is original to the
best of our knowledge. In other theories we are aware of, this property is either completely
neglected or it is stricter, by requiring the equivalence between the traces of the global type
and those of the corresponding implementation.

Acknowledgments.

We are indebted to several members of the LIAFA laboratory: Ahmed Bouajjani introduced
us to Parikh’s equivalence, Olivier Carton explained us subtle aspects of the shuffle operator,
Mihaela Sighireanu pointed us several references to global specification formalisms, while
Wiesław Zielonka helped us with references on trace semantics. Anca Muscholl helped us
on surveying MSCs and Martín Abadi and Roberto Amadio with the literature on security
protocols. Finally, Nobuko Yoshida, Roberto Bruni, Ivan Lanese and the anonymous referees
gave us several useful suggestions to improve the final version of this work. This work was
partially supported by the ANR TYPEX project n. ANR-11-BS02-007, by the MIUR Project
IPODS, by a visiting researcher grant of the “Fondation Sciences Mathématiques de Paris”,
and by a visiting professor position of the Université Paris Diderot.

References

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence charts.
In Proceedings of ICSE’00, pages 304–313. ACM Press, 2000.

[AEY01] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verification of MSC
graphs. In Proceedings of ICALP’01, LNCS 2076, pages 797–808. Springer, 2001.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148:36–47, 1999.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence charts. In Proceedings

of CONCUR’99, LNCS 1664, pages 114–129. Springer, 1999.
[BB11] Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Proceedings

of WWW’11, pages 795–804. ACM Press, 2011.
[BBC+09] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti, and Munin-

dar P. Singh. Choice, interoperability, and conformance in interaction protocols and service
choreographies. In Proceedings of AAMAS’09, pages 843–850. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2009.

38 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

[BBDNL08] Michele Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. Sessions and pipelines
for structured service programming. In Proceedings of FMOODS’08, LNCS 5051, pages 19–38.
Springer, 2008.

[BBP93] Jan A. Bergstra, Inge Bethke, and Alban Ponse. Process algebra with iteration. Technical
Report Report CS-R9314, Programming Research Group, University of Amsterdam, 1993.

[BCD+08] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty ses-
sions. In Proceedings of CONCUR’08, LNCS 5201, pages 418–433. Springer, 2008.

[BCD+09] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James J.
Leifer. Cryptographic Protocol Synthesis and Verification for Multiparty Sessions. In Proceed-

ings of CSF’09, pages 124–140. IEEE Computer Society, 2009.
[BLZ08] Mario Bravetti, Ivan Lanese, and Gianluigi Zavattaro. Contract-driven implementation of chore-

ographies. In Proceedings of TGC’08, LNCS 5474, pages 1–18. Springer, 2008.
[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the

ACM, 30:323–342, 1983.
[BZ07] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography confor-

mance and contract compliance. In Proceedings of SC’07, LNCS 4829, pages 34–50. Springer,
2007.

[BZ08] Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreography conformance
in the presence of message queues. In Proceedings of WS-FM’08, LNCS 5387, pages 37–54.
Springer, 2008.

[Car94] Ulf Carlsen. Generating formal cryptographic protocol specifications. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 137–146. IEEE Computer Society, 1994.
[CF05] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication. In-

formation and Computation, 202:166–190, 2005.
[CHY07] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred pro-

gramming for web services. In Proceedings of ESOP’07, LNCS 4421, pages 2–17. Springer,
2007.

[CP09] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In Proceedings of CON-

CUR’09, LNCS 5710, pages 211–228. Springer, 2009.
[CR10] Yannick Chevalier and Michaël Rusinowitch. Compiling and securing cryptographic protocols.

Information Processing Letters, 110:116–122, 2010.
[CV09] Luís Caires and Hugo Torres Vieira. Conversation types. In Proceedings of ESOP’09, LNCS

5502, pages 285–300. Springer, 2009.
[CVB06] Carlos Caleiro, Luca Viganò, and David Basin. On the semantics of Alice&Bob specifications

of security protocols. Theoretical Computer Science, 367:88–122, 2006.
[CZ08] Cai Chao and Qiu Zongyan. An approach to check choreography with channel passing in WS-

CDL. In Proceedings of ICWS’08, pages 700–707. IEEE Computer Society, 2008.
[DCdLY08] Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida. On progress for struc-

tured communications. In Proceedings of TGC’07, LNCS 4912, pages 257–275. Springer, 2008.
[DY11] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In Proceedings of

POPL’11, pages 435–446. ACM Press, 2011.
[FG96] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Proceedings

of POPL’96, pages 372–385. ACM Press, 1996.
[GM05] Blaise Genest and Anca Muscholl. Message sequence charts: A survey. In Proceedings of

ACSD’05, pages 2–4. IEEE Computer Society, 2005.
[GMP03] Blaise Genest, Anca Muscholl, and Doron Peled. Message sequence charts. In Lectures on Con-

currency and Petri Nets, LNCS 3098, pages 537–558. Springer, 2003.
[HJ06] Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Information and Computa-

tion, 204:1195–1263, 2006.
[HVK98] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type disciplines

for structured communication-based programming. In Proceedings of ESOP’98, LNCS 1381,
pages 22–138. Springer, 1998.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of POPL’08, pages 273–284. ACM Press, 2008.

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 39

[JRV00] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Compiling and verifying
security protocols. In Proceedings of LPAR’00, LNCS 1955, pages 131–160. Springer, 2000.

[LGMZ08] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the gap be-
tween interaction- and process-oriented choreographies. In Proceedings of SEFM’08, pages 323–
332. IEEE Computer Society, 2008.

[Low98] Gavin Lowe. Casper: A compiler for the analysis of security protocols. Journal of Computer

Security, 6:53–84, 1998.
[MD02] Jonathan K. Millen and Grit Denker. CAPSL and MuCAPSL. Journal of Telecommunications

and Information Technology, 4:16–27, 2002.
[Mil84] Robin Milner. A complete inference system for a class of regular behaviours. Journal of Com-

puter and System Sciences, 28(3):439–466, 1984.
[MK08] Jay A. McCarthy and Shriram Krishnamurthi. Cryptographic protocol explication and end-

point projection. In Proceedings of ESORICS’08, LNCS 5283, pages 533–547. Springer, 2008.
[MPS98] Anca Muscholl, Doron Peled, and Zhendong Su. Deciding properties for message sequence

charts. In Proceedings of FOSSACS’98, LNCS 1378, pages 226–242. Springer, 1998.
[MR97] Sjouke Mauw and Michel A. Reniers. High-level message sequence charts. In Proceedings of

SDL’97, pages 291–306. Elsevier, 1997.
[Par66] Rohit J. Parikh. On context-free languages. Journal of the Association for Computing Machin-

ery, 13(4):570–581, 1966.
[QZCY07] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical foundation

of choreography. In Proceedings of WWW’07, pages 973–982. ACM Press, 2007.
[Sch04] Philippe Schnoebelen. The verification of probabilistic lossy channel systems. In Validation of

Stochastic Systems, LNCS 2925, pages 445–465. Springer, 2004.
[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its typing

system. In Proceedings of PARLE’94, LNCS 817, pages 398–413. Springer, 1994.
[WSC05] Web services choreography description language version 1.0. W3C Candidate Recommendation,

available at http://www.w3.org/TR/ws-cdl-10/, 2005.
[YDBH10] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised mul-

tiparty session types. In Proceedings of FOSSACS’10, LNCS 6014, pages 128–145. Springer,
2010.

http://www.w3.org/TR/ws-cdl-10/

40 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

Appendix A. Proof of Theorem 4.1

For the sake of readability we recall some definitions which will be largely used.

Definition A.1.

(1) L◦ def
= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}.

(2) L# is the smallest well-formed set such that L ⊆ L#.

The properties stated in the following lemma are easily shown from Definitions A.1, 4.1
and 3.4.

Lemma A.1. The following properties hold:

(1) (L1 ∪ L2)
= L

#
1 ∪ L#

2 .

(2) (L1L
#
2)

= (L1L2)
#.

(3) (L1L
◦
2)

⊆ (L1L2)
◦.

(4) L#
1 ⊆ L◦

2 implies L◦
1 ⊆ L◦

2.
(5) If L1 6 L2 then

(a) L2 6 L3 implies L1 6 L3;
(b) L3 6 (L4L1)

implies L3 6 (L4L2)
#;

(c) L3 6 (L1L4)
implies L3 6 (L2L4)

#;
(d) L3 6 L4 implies L1 ∪ L3 6 L2 ∪ L4.

(6) tr({p : T1 ⊕ T2} ⊎ ∆) = tr({p : T1} ⊎ ∆) ∪ tr({p : T2} ⊎ ∆).

Proof of Theorem 4.1. We show:

If ∆ ⊢ G ⊲ ∆
′, then tr(∆′) 6 (tr(G)tr(∆))#.

The theorem follows immediately, since by definition if G is well formed, then tr(G) =
tr(G)#.

The proof is by induction on the deduction of ∆ ⊢ G ⊲ ∆
′ and by cases on the last

applied rule.

Rule (SP-Skip): ∆ ⊢ skip ⊲ ∆ Immediate.

Rule (SP-Action):

{pi : Ti}i∈I ⊎ {p : T} ⊎ ∆ ⊢ π
a

−→ p ⊲ {pi : p!a.Ti}i∈I ⊎ {p : π?a.T} ⊎ ∆

where π = {pi | i ∈ I}. We get tr(π
a

−→ p) = {π
a

−→ p} by definition, and

tr({pi : p!a.Ti}i∈I ⊎ {p : π?a.T} ⊎ ∆) ⊆ ({π
a

−→ p}tr({pi : Ti}i∈I ⊎ {p : T} ⊎ ∆))#

since all actions not involving p commute with π
a

−→ p, and

({π
a

−→ p}tr({pi : Ti}i∈I ⊎ {p : T} ⊎ ∆))# ⊆ tr({pi : p!a.Ti}i∈I ⊎ {p : π?a.T} ⊎ ∆)◦

by Definition A.1.

Rule (SP-Sequence):
∆ ⊢ G2 ⊲ ∆

′
∆
′ ⊢ G1 ⊲ ∆

′′

∆ ⊢ G1;G2 ⊲ ∆
′′

By induction tr(∆′′) 6 (tr(G1)tr(∆
′))# and tr(∆′) 6 (tr(G2)tr(∆))

#, which imply

• tr(∆′′) 6 (tr(G1)(tr(G2)tr(∆))
#)# by Lemma A.1(5b);

• tr(∆′′) 6 (tr(G1)tr(G2)tr(∆))
by Lemma A.1(2);

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 41

• tr(∆′′) 6 (tr(G1;G2)tr(∆))
by Definition 2.2.

Rule (SP-Alternative):
∆ ⊢ G1 ⊲ {p : T1} ⊎ ∆

′
∆ ⊢ G2 ⊲ {p : T2} ⊎ ∆

′

∆ ⊢ G1 ∨ G2 ⊲ {p : T1 ⊕ T2} ⊎ ∆
′

By induction tr({p : T1} ⊎ ∆
′) 6 (tr(G1)tr(∆))

and tr({p : T2} ⊎ ∆
′) 6 (tr(G2)tr(∆))

#,
which imply

• tr({p : T1}⊎∆
′)∪ tr({p : T2}⊎∆

′) 6 (tr(G1)tr(∆))
∪ (tr(G2)tr(∆))

by Lemma A.1(5d);
• tr({p : T1} ⊎ ∆

′) ∪ tr({p : T2} ⊎ ∆
′) 6 (tr(G1)tr(∆) ∪ tr(G2)tr(∆))

by Lemma A.1(1);
• tr({p : T1 ⊕ T2} ⊎ ∆

′) 6 (tr(G1)tr(∆) ∪ tr(G2)tr(∆))
by Lemma A.1(6);

• tr({p : T1 ⊕ T2} ⊎ ∆
′) 6 (tr(G1 ∨ G2)tr(∆))

by Definition 2.2.

Rule (SP-Iteration):
{p : T1 ⊕ T2} ⊎ ∆ ⊢ G ⊲ {p : T1} ⊎ ∆

{p : T2} ⊎ ∆ ⊢ G
∗ ⊲ {p : T1 ⊕ T2} ⊎ ∆

By induction tr({p : T1} ⊎ ∆) 6 (tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))#, i.e.:

1. tr({p : T1} ⊎ ∆) ⊆ (tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))#

2. (tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))# ⊆ tr({p : T1} ⊎ ∆)◦.

Notice that by Definition 2.2 and Lemma A.1(1):

(tr(G ∗)tr({p : T2} ⊎ ∆))# =
⋃

m≥0

(tr(Gm)tr({p : T2} ⊎ ∆))#

We get:

tr({p : T1 ⊕ T2} ⊎ ∆)
= tr({p : T1} ⊎ ∆) ∪ tr({p : T2} ⊎ ∆) by Lemma A.1(6)
⊆ (tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆) by 1.
= (tr(G)(tr({p : T1} ⊎ ∆) ∪ tr({p : T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆) by Lemma A.1(6)
= (tr(G)tr({p : T1} ⊎ ∆))# ∪ (tr(G)tr({p : T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆)

by Lemma A.1(1)
⊆ (tr(G)(tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))#)# ∪ (tr(G)tr({p : T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆)

by 1.
= (tr(G)tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))# ∪ (tr(G)tr({p : T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆)

by Lemma A.1(2)
= (tr(G 2)tr({p : T1 ⊕ T2} ⊎ ∆))# ∪ (tr(G)tr({p : T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆)

by Definition 2.2

and then by iterating:

tr({p : T1 ⊕ T2} ⊎ ∆)
⊆ (tr(Gm+1)tr({p : T1 ⊕ T2} ⊎ ∆))# ∪ (tr(Gm)tr({p : T2} ⊎ ∆))#∪
. . . ∪ (tr(G)tr({p : T2} ⊎ ∆))# ∪ tr({p : T2} ⊎ ∆)
⊆ (tr(G ∗)tr({p : T2} ⊎ ∆))#.

We show by induction on m that (tr(Gm+1)tr({p : T2}⊎∆))# ⊆ (tr({p : T1⊕T2}⊎∆))◦.
For m = 0:

(tr({p : T2} ⊎ ∆))# ⊆ (tr({p : T1 ⊕ T2} ⊎ ∆))# by Lemma A.1(6) and Definition A.1(2)
⊆ (tr({p : T1 ⊕ T2} ⊎ ∆))◦ by Definition A.1.

42 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

For m+ 1:

(tr(Gm+1)tr({p : T2} ⊎ ∆))# = (tr(G)tr(Gm)tr({p : T2} ⊎ ∆))# by Definition 2.2
⊆ (tr(G)(tr({p : T1 ⊕ T2} ⊎ ∆))◦)# by induction
⊆ (tr(G)tr({p : T1 ⊕ T2} ⊎ ∆))◦ by Lemma A.1(3)
⊆ (tr({p : T1} ⊎ ∆))◦ by 2. and Lemma A.1(4)
⊆ (tr({p : T1 ⊕ T2} ⊎ ∆))◦ by Lemma A.1(6).

Rule (SP-Subsumption):
∆ ⊢ G

′ ⊲ ∆
′

G
′
6 G ∆

′′
6 ∆

′

∆ ⊢ G ⊲ ∆
′′

By induction tr(∆′) 6 (tr(G ′)tr(∆))#, so by Lemma A.1(5a) tr(∆′′) 6 (tr(G ′)tr(∆))#. From
G ′ 6 G we conclude tr(∆′′) 6 (tr(G)tr(∆))# by Lemma A.1(5c) and (5a).

Corollary A.1. If ∆ is live and ∆ ⊢ G ⊲ ∆
′, then ∆

′ is live.

Appendix B. More on merge and compatibility

We start with an example showing the utility of the compatibility condition. Let ∆1 =
{q : p?a.r!b.end, r : q?b.end} and ∆2 = {q : p?c.p!d.r!b.end, r : p?e.q?b.end}. The merge of
∆1 and ∆2 is undefined, since the session types of r in ∆1 and ∆2 are not compatible: the
problem is that the input q?b is not compatible with the session type p?e.q?b.end. Let ∆

be the session obtained by adding role p with the expected session type to the merge of ∆1

and ∆2 (ignoring the compatibility condition), that is, ∆ = {p : q!a.end⊕ q!c.q?d.r!e.end, q :
p?a.r!b.end+ p?c.p!d.r!b.end, r : q?b.end+ p?e.q?b.end}. Starting from the empty buffer and

∆ we can reach the stuck configuration in which the buffer contains the action p
e

−→ r and

all roles in the session are typed by end. More precisely if ϕ = p
c

−→ q; q
d

−→ p:

ε # ∆
ϕ

=⇒ q
b

−→ r :: p
e

−→ r # {p : end, q : end, r : q?b.end+ p?e.q?b.end}

q
b

−→r
=⇒ p

e
−→ r # {p : end, q : end, r : end}

i.e., participant r chooses the wrong session type, since he is not aware in which branch
he is. Notice that ∆1 ⊎ {p : q!a.end} and ∆2 ⊎ {p : q!c.q?d.r!e.end} can be obtained as

algorithmic projections of the well-formed global types G1 = p
a

−→ q; q
b

−→ r and G2 =

p
c

−→ q; (q
d

−→ p; p
e

−→ r ∧ q
b

−→ r), when to project G2 we use the ill-formed global

type p
c

−→ q; q
d

−→ p; p
e

−→ r; q
b

−→ r (see Subsection 5.3). Using p
c

−→ q; q
b

−→ r; q
d

−→

p; p
e

−→ r to project G2 and reasoning as before we get ∆′ = {p : q!a.end⊕q!c.q?d.r!e.end, q :
p?a.r!b.end + p?c.r!b.p!d.end, r : q?b.end + p?e.q?b.end}. Also ∆

′ is not a live session, and
since we eliminated ∧ from G2 in all possible ways we see no way to semantically project
G1 ∨ G2.

We can semantically but not algorithmically project a slight variation of the previous
example. Let ∆3 = {q : p?c.p!d.r?f.r!b.end, r : p?e.q!f.q?b.end}. Notice that the session
types of r in ∆1 and ∆3 are not compatible. It is easy to verify that choosing ∆

′′ = {q :
p?a.r!b.end+ p?c.p!d.r?f.r!b.end, r : q?b.end+ p?e.q!f.q?b.end} we get

{p : q!a.end} ⊎ ∆
′′ 6 {p : q!a.end} ⊎ ∆1 and

{p : q!c.q?d.r!e.end} ⊎ ∆
′′ 6 {p : q!c.q?d.r!e.end} ⊎ ∆3

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 43

Notice that ∆3 ⊎ {p : q!c.q?d.r!e.end} can be obtained as the algorithmic projection of the

well-formed global type G3 = p
c

−→ q; q
d

−→ p; p
e

−→ r; r
f

−→ q; q
b

−→ r. Then the global
type G1 ∨ G3 can be semantically but not algorithmically projected. It is interesting to
observe that in one branch participant r receives the message b from q, in the other branch
participant r receives first the messages e from p and then the message b from q. This
assures that r always chooses the right session type. Comparing G2 and G3 of previous

examples one can see how the addition of the action r
f

−→ q introduces a sequentialization
which is the key of projectability.

Appendix C. More on the elimination of ∧

We conjecture that the following rewriting rules (together with the symmetric ones) are
necessary and sufficient in order to eliminate «∧ » from global types:

G ∧ G ′ 7→ G ;G ′ (G1 ∨ G2) ∧ G 7→ (G1 ∧ G) ∨ (G2 ∧ G)
(G1;G2) ∧ G 7→ (G1 ∧ G);G2 G ∗ ∧ G ′ 7→ (G ∧ G ′);G ∗ ∨ G ′

(G1;G2) ∧ G 7→ G1; (G2 ∧ G) G ∗ ∧ G ′ 7→ G ∗; (G ∧ G ′) ∨ G ′

Sometimes «∧ » with stars can be dealt with using the first rule in the right way. The

global type (p
a

−→ q)∗ ∧ p
b

−→ q sequentialized as (p
a

−→ q)∗; p
b

−→ q is algorithmically

projected from {p : end, q : end}, while p
b

−→ q; (p
a

−→ q)∗ is not algorithmically projected

from {p : end, q : end}. Vice versa the global type (p
a

−→ q)∗ ∧ r
b

−→ s sequentialized as

(p
a

−→ q)∗; r
b

−→ s is not algorithmically projected from {p : q!c.end, q : p?c.end}, while

r
b

−→ s; (p
a

−→ q)∗ is algorithmically projected from {p : q!c.end, q : p?c.end}.
The following example shows the utility of the last two rewriting rules to project stars.

Let ∆ = {s : q1!d.r1!d.q2!d.r2!d.end, q1 : s?d, r1 : s?d, q2 : s?d, r2 : s?d}, Ai = pi
a

−→

qi ∨ pi
b

−→ ri for i = 1, 2 and G1 = {q1, r1}
c

−→ s;A1, G2 = A2; s
e

−→ q1; s
e

−→ r1,

G = {q2, r2}
f

−→ s;A1;A2. The only way to eliminate «∧ » from (G1;G2)
∗ ∧ G and obtain

a global type projectable with the continuation ∆ is [(G1;G ;G2); (G1;G2)
∗] ∨ G .

Appendix D. Proof of Theorem 5.1

Lemma D.1. The following properties hold:

(1) If {p : T} ⊎ ∆ is live, then tr({p : T} ⊎ ∆) = tr({p : T} ⊎ (∆ ! ∆
′)) for all ∆′ such that

∆ ! ∆
′ is defined.

(2) If {p : T1} ⊎ ∆1 and {p : T2} ⊎ ∆2 are live, then {p : T1 ⊕ T2} ⊎ (∆1 ! ∆2) is live if
defined.

Proof. (1) If {p : T} ⊎∆ is live, then each output in a session type of {p : T} ⊎∆ has a dual
input and therefore the addition of compatible inputs cannot change the set of traces.

(2) If ∆1 !∆2 is defined, then the types in ∆1 and ∆2 for the same participant can only
differ on inputs, so no new trace can arise in {p : T} ⊎ (∆1 ! ∆2) which was not already in
{p : T1} ⊎ ∆1.

44 G. CASTAGNA, M. DEZANI-CIANCAGLINI, AND L. PADOVANI

We use ρ to range over substitutions of session type variables with closed session types.
We extend ρ to session types and environments in the expected way.

Lemma D.2. If ρ(∆) is live and ∆ ⊢a G ⊲ ∆
′, then ρ(∆′) is live.

Proof. By induction on the derivation of ∆ ⊢a G ⊲ ∆
′. We only consider interesting cases.

For rule (AP-Alternative):
∆ ⊢a G1 ⊲ {p : T1} ⊎ ∆1 ∆ ⊢a G2 ⊲ {p : T2} ⊎ ∆2

∆ ⊢a G1 ∨ G2 ⊲ {p : T1 ⊕ T2} ⊎ (∆1 ! ∆2)
we use

Lemma D.1(2).

For rule (AP-Iteration):
{p : X} ⊎ {pi : Xi}i∈I ⊎ ∆ ⊢a G ⊲ {p : S} ⊎ {pi : Si}i∈I ⊎ ∆

{p : T} ⊎ {pi : Ti}i∈I ⊎ ∆ ⊢a G
∗ ⊲ {p : rec X.(T ⊕ S)} ⊎ {pi : rec Xi.(Ti ! Si)}i∈I ⊎ ∆

we define

ρ0(X) = ρ(T) ρℓ+1(X) = ρℓ(S)
ρ0(Xi) = ρ(Ti) ρℓ+1(Xi) = ρℓ(Si)
ρ0(Y) = ρ(Y) for Y 6∈ {X,Xi | i ∈ I} ρℓ+1(Y) = ρ(Y) for Y 6∈ {X,Xi | i ∈ I}

for i ∈ I and ℓ ≥ 0. Since ρ({p : T} ⊎ {pi : Ti}i∈I ⊎ ∆) = ρ0({p : X} ⊎ {pi : Xi}i∈I ⊎ ∆) is
live by hypothesis and {p : X} ⊎ {pi : Xi}i∈I ⊢a G ⊲ {p : S} ⊎ {pi : Si}i∈I , by induction we
get that ρ0({p : S} ⊎ {pi : Si}i∈I ⊎ ∆) = ρ1({p : X} ⊎ {pi : Xi}i∈I ⊎ ∆) is live. By iterating
this argument we get the liveness of ρℓ+1({p : X} ⊎ {pi : Xi}i∈I ⊎ ∆) from the liveness of
ρℓ({p : X}⊎{pi : Xi}i∈I⊎∆) for all ℓ ≥ 0. By Lemma D.1(2) {p : ρ0(X)⊕· · ·⊕ρℓ(X)}⊎{pi :
ρ0(Xi)! · · ·! ρℓ(Xi)}i∈I ⊎ ρ(∆) is live for all ℓ ≥ 0. By construction every finite subtree of
rec X.(ρ(T ⊕S)) is a subtree of ρ0(X)⊕· · ·⊕ ρℓ(X) for some ℓ ≥ 0 and every finite subtree
of rec X.(ρ(rec Xi.(Ti !Si))) is a subtree of ρ0(Xi)! · · ·! ρℓ(Xi) for some ℓ ≥ 0. We can
conclude that ρ({p : rec X.(T ⊕ S)} ⊎ {pi : rec Xi.(Ti ! Si)}i∈I ⊎ ∆) is live.

Lemma D.3. If ∆ ⊢ G ⊲ ∆
′ and tr(∆′′) = tr(∆), then ∆

′′ ⊢ G ⊲ ∆
′.

Proof. We can derive ∆
′′ ⊢ skip ⊲ ∆

′′, which implies ∆′′ ⊢ skip ⊲ ∆. Then ∆
′′ ⊢ skip;G ⊲ ∆

′,
so we conclude ∆

′′ ⊢ G ⊲ ∆
′.

Proof of Theorem 5.1. We show

If ρ(∆) is live and ∆ ⊢a G ⊲ ∆
′, then ρ(∆) ⊢ G ⊲ ρ(∆′)

by induction on the derivation of ∆ ⊢a G ⊲ ∆
′.

If the last applied rule is (AP-Alternative):

∆ ⊢a G1 ⊲ {p : T1} ⊎ ∆1 ∆ ⊢a G2 ⊲ {p : T2} ⊎ ∆2

∆ ⊢a G1 ∨ G2 ⊲ {p : T1 ⊕ T2} ⊎ (∆1 ! ∆2)

by induction ρ(∆) ⊢ G1 ⊲ ρ({p : T1} ⊎ ∆1) and ρ(∆) ⊢ G2 ⊲ ρ({p : T2} ⊎ ∆2). By
Lemma D.2 ρ({p : T1} ⊎ ∆1) and ρ({p : T2} ⊎ ∆2) are live. By Lemma D.1(1) we get
ρ({p : T1} ⊎ (∆1 ! ∆2)) 6 ρ({p : T1} ⊎ ∆1) and ρ({p : T2} ⊎ (∆1 ! ∆2)) 6 ρ({p : T2} ⊎ ∆2).
We can then derive ρ(∆) ⊢ G1 ⊲ ρ({p : T1}⊎(∆1!∆2)) and ρ(∆) ⊢ G2 ⊲ ρ({p : T2}⊎(∆1!∆2))
by rule (SP-Subsumption), so we conclude ρ(∆) ⊢ G1 ∨ G2 ⊲ ρ({p : T1 ⊕ T2} ⊎ (∆1 !∆2))
by rule (SP-Alternative).

ON GLOBAL TYPES AND MULTI-PARTY SESSIONS 45

Let the last applied rule be (AP-Iteration):

{p : X} ⊎ {pi : Xi}i∈I ⊎ ∆ ⊢a G ⊲ {p : S} ⊎ {pi : Si}i∈I ⊎ ∆

{p : T} ⊎ {pi : Ti}i∈I ⊎ ∆ ⊢a G
∗ ⊲ ∆

′ ⊎ ∆

where ∆
′ = {p : rec X.(T ⊕ S)} ⊎ {pi : rec Xi.(Ti ! Si)}i∈I . If ρ({p : T} ⊎ {pi : Ti}i∈I ⊎∆)

is live, then ρ(∆′ ⊎ ∆) is live by Lemma D.2. We define

ρ0(X) = ρ(rec X.(T ⊕ S))
ρ0(Xi) = ρ(rec Xi.(Ti ! Si))
ρ0(Y) = ρ(Y) for Y 6∈ {X,Xi | i ∈ I}

Since ρ0({p : X}⊎{pi : Xi}i∈I ⊎∆) = ρ(∆′⊎∆) we get by induction ρ(∆′⊎∆) ⊢ G ⊲ ρ0({p :
S} ⊎ {pi : Si}i∈I ⊎ ∆). This implies that ρ0({p : S} ⊎ {pi : Si}i∈I ⊎ ∆) is live by Corollary
A.1. We define:

T ′ = ρ(T) T ′
i = ρ(Ti)

S′ = ρ0(S) S′
i = ρ0(Si)

∆0 = {pi : T
′
i ! S′

i}i∈I ⊎ ρ(∆)

Since ρ(∆′ ⊎ ∆) = {p : T ′ ⊕ S′} ⊎ ∆0 and by Lemma D.1(1) {p : S′} ⊎ ∆0 6 {p : S′} ⊎ {pi :
S′
i}i∈I ⊎ ρ(∆) we derive {p : T ′ ⊕S′}⊎∆0 ⊢ G ⊲ {p : S′}⊎∆0 by rule (SP-Subsumption),

which implies {p : T ′}⊎∆0 ⊢ G ∗ ⊲ {p : T ′ ⊕S′} ⊎∆0 by rule (SP-Iteration). By Lemma
D.1(1) tr({p : T ′} ⊎ ∆0) = tr({p : T ′} ⊎ {pi : T

′
i}i∈I ⊎ ρ(∆)), so we conclude by Lemma D.3

{p : T ′} ⊎ {pi : T
′
i}i∈I ⊎ ρ(∆) ⊢ G ∗ ⊲ ρ(∆′ ⊎ ∆).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Global Types
	3. Multi-Party Sessions
	3.1. Session Types
	3.2. Session Environments

	4. Semantic projection
	No sequentiality.
	No knowledge for choice.
	No knowledge, no choice.

	5. Algorithmic projection
	5.1. Session subsumption
	5.2. Projection of Kleene star
	5.3. Global type subsumption
	5.4. Properties of the algorithmic rules

	6. k-Exit iterations
	7. Related work
	7.1. Automata approach
	7.2. Cryptographic protocols
	7.3. Web services

	8. Conclusion
	Acknowledgments.
	References
	Appendix A. Proof of Theorem 4.1
	Appendix B. More on merge and compatibility
	Appendix C. More on the elimination of
	Appendix D. Proof of Theorem 5.1

