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Abstract. Simulation and bisimulation metrics for stochastic systems provide a quanti-
tative generalization of the classical simulation and bisimulation relations. These metrics
capture the similarity of states with respect to quantitative specifications written in the
quantitative µ-calculus and related probabilistic logics. We first show that the metrics
provide a bound for the difference in long-run average and discounted average behavior
across states, indicating that the metrics can be used both in system verification, and in
performance evaluation. For turn-based games and MDPs, we provide a polynomial-time
algorithm for the computation of the one-step metric distance between states. The algo-
rithm is based on linear programming; it improves on the previous known exponential-time
algorithm based on a reduction to the theory of reals. We then present PSPACE algo-
rithms for both the decision problem and the problem of approximating the metric distance
between two states, matching the best known algorithms for Markov chains. For the bisim-
ulation kernel of the metric our algorithm works in time O(n4) for both turn-based games
and MDPs; improving the previously best known O(n9 · log(n)) time algorithm for MDPs.

For a concurrent game G, we show that computing the exact distance between states is
at least as hard as computing the value of concurrent reachability games and the square-
root-sum problem in computational geometry. We show that checking whether the metric
distance is bounded by a rational r, can be done via a reduction to the theory of real closed

fields, involving a formula with three quantifier alternations, yielding O(|G|O(|G|5)) time

complexity, improving the previously known reduction, which yielded O(|G|O(|G|7)) time
complexity. These algorithms can be iterated to approximate the metrics using binary
search.
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1. Introduction

System metrics constitute a quantitative generalization of system relations. The bisim-
ulation relation captures state equivalence: two states s and t are bisimilar if and only if
they cannot be distinguished by any formula of the µ-calculus [5]. The bisimulation metric
captures the degree of difference between two states: the bisimulation distance between s
and t is a real number that provides a tight bound for the difference in value of formu-
las of the quantitative µ-calculus at s and t [12]. A similar connection holds between the
simulation relation and the simulation metric.

The classical system relations are a basic tool in the study of boolean properties of
systems, that is, the properties that yield a truth value. As an example, if a state s of a
transition system can reach a set of target states R, written s |= ✸R in temporal logic,
and t can simulate s, then we can conclude t |= ✸R. System metrics play a similarly
fundamental role in the study of the quantitative behavior of systems. As an example,
if a state s of a Markov chain can reach a set of target states R with probability 0.8,
written s |= P≥0.8✸R, and if the metric simulation distance from t to s is 0.3, then we can
conclude t |= P≥0.5✸R. The simulation relation is at the basis of the notions of system
refinement and implementation, where qualitative properties are concerned. In analogous
fashion, simulation metrics provide a notion of approximate refinement and implementation
for quantitative properties.

We consider three classes of systems:

• Markov decision processes. In these systems there is one player. At each state, the
player can choose a move; the current state and the move determine a probability
distribution over the successor states.

• Turn-based games. In these systems there are two players. At each state, only one
of the two players can choose a move; the current state and the move determine a
probability distribution over the successor states.

• Concurrent games. In these systems there are two players. At each state, both
players choose moves simultaneously and independently; the current state and the
chosen moves determine a probability distribution over the successor states.

System metrics were first studied for Markov chains and Markov decision processes (MDPs)
[12, 32, 33, 13, 14], and they have recently been extended to two-player turn-based and
concurrent games [11]. The fundamental property of the metrics is that they provide a
tight bound for the difference in value that formulas belonging to quantitative specification
languages assume at the states of a system. More precisely, let qµ indicate the quantitative
µ-calculus, a specification language in which many of the classical specification properties,
including reachability and safety properties, can be written [10]. The metric bisimulation
distance between two states s and t, denoted [s ≃g t], has the property that [s ≃g t] =
supϕ∈qµ |ϕ(s) − ϕ(t)|, where ϕ(s) and ϕ(t) are the values ϕ assumes at s and t. To each
metric is associated a kernel: the kernel of a metric d is the relation that relates the pairs of
states that have distance 0; to each metric corresponds a metric kernel relation. The kernel
of the simulation metric is probabilistic simulation; the kernel of the bisimulation metric is
probabilistic bisimulation [27].

Metric as bound for discounted and long-run average payoff. Our first result is
that the metrics developed in [11] provide a bound for the difference in long-run average
and discounted average properties across states of a system. These average rewards play a
central role in the theory of stochastic games, and in its applications to optimal control and
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economics [4, 17]. Thus, the metrics of [11] are useful both for system verification, and for
performance evaluation, supporting our belief that they constitute the canonical metrics for
the study of the similarity of states in a game. We point out that it is possible to define
a discounted version [≃g]

α of the game bisimulation metric; however, we show that this
discounted metric does not provide a bound for the difference in discounted values.

Algorithmic results. Next, we investigate algorithms for the computation of the metrics.
The metrics can be computed in iterative fashion, following the inductive way in which they
are defined. A metric d can be computed as the limit of a monotonically increasing sequence
of approximations d0, d1, d2, . . . , where d0(s, t) is the difference in value that variables can
have at states s and t. For k ≥ 0, dk+1 is obtained from dk via dk+1 = H(dk), where the
operator H depends on the metric (bisimulation, or simulation), and on the type of system.
Our main results are as follows:

(1) Metrics for turn-based games and MDPs. We show that for turn-based games, and
MDPs, the one-step metric operator H for both bisimulation and simulation can
be computed in polynomial time, via a reduction to linear programming (LP). The
only previously known algorithm, which can be inferred from [11], had EXPTIME
complexity and relied on a reduction to the theory of real closed fields; the algo-
rithm thus had more a complexity-theoretic, than a practical, value. The key step
in obtaining our polynomial-time algorithm consists in transforming the original
sup-inf non-linear optimization problem (which required the theory of reals) into a
quadratic-size inf linear optimization problem that can be solved via LP. We then
present PSPACE algorithms for both the decision problem of the metric distance
between two states and for the problem of computing the approximate metric dis-
tance between two states for turn-based games and MDPs. Our algorithms match
the complexity of the best known algorithms for the sub-class of Markov chains [31].

(2) Metrics for concurrent games. For concurrent games, our algorithms for the H
operator still rely on decision procedures for the theory of real closed fields, leading
to an EXPTIME procedure. However, the algorithms that could be inferred from

[11] had time-complexity O(|G|O(|G|7)), where |G| is the size of a game; we improve

this result by presenting algorithms with O(|G|O(|G|5)) time-complexity.
(3) Hardness of metric computation in concurrent games. We show that computing the

exact distance of states of concurrent games is at least as hard as computing the
value of concurrent reachability games [15, 8], which is known to be at least as hard
as solving the square-root-sum problem in computational geometry [18]. These two
problems are known to lie in PSPACE, and have resisted many attempts to show
that they are in NP.

(4) Kernel of the metrics. We present polynomial time algorithms to compute the sim-
ulation and bisimulation kernel of the metrics for turn-based games and MDPs. Our
algorithm for the bisimulation kernel of the metric runs in time O(n4) (assuming a
constant number of moves) as compared to the previous known O(n9 · log(n)) algo-
rithm of [35] for MDPs, where n is the size of the state space. For concurrent games

the simulation and the bisimulation kernel can be computed in time O(|G|O(|G|3)),
where |G| is the size of a game.

Our formulation of probabilistic simulation and bisimulation differs from the one pre-
viously considered for MDPs in [2]: there, the names of moves (called “labels”) must be
preserved by simulation and bisimulation, so that a move from a state has at most one
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candidate simulator move at another state. Our problem for MDPs is closer to the one
considered in [35], where labels must be preserved, but where a label can be associated with
multiple probability distributions (moves).

For turn-based games and MDPs, the algorithms for probabilistic simulation and bisim-
ulation can be obtained from the LP algorithms that yield the metrics. For probabilistic
simulation, the algorithm we obtain coincides with the algorithm previously published in
[35]. The algorithm requires the solution of feasibility-LP problems with a number of
variables and inequalities that is quadratic in the size of the system. For probabilistic
bisimulation, we are able to improve on this result by providing an algorithm that requires
the solution of feasibility-LP problems that have linearly many variables and constraints.
Precisely, as for ordinary bisimulation, the kernel is computed via iterative refinement of
a partition of the state space [24]. Given two states that belong to the same partition, to
decide whether the states need to be split in the next partition-refinement step, we present
an algorithm that requires the solution of a feasibility-LP problem with a number of vari-
ables equal to the number of moves available at the states, and number of constraints linear
in the number of equivalence classes. Overall, our algorithm for bisimulation runs in time
O(n4) (assuming a constant number of moves), considerably improving the O(n9 · log(n))
algorithm of [35] for MDPs, and providing for the first time a polynomial algorithm for
turn-based games.

2. Definitions

Valuations. Let [θ1, θ2] ⊆ IR be a fixed, non-singleton real interval. Given a set of states
S, a valuation over S is a function f : S 7→ [θ1, θ2] associating with every state s ∈ S a
value θ1 ≤ f(s) ≤ θ2; we let F be the set of all valuations. For c ∈ [θ1, θ2], we denote by c
the constant valuation such that c(s) = c at all s ∈ S. We order valuations pointwise: for
f, g ∈ F , we write f ≤ g iff f(s) ≤ g(s) at all s ∈ S; we remark that F , under ≤, forms
a lattice. Given a, b ∈ IR, we write a ⊔ b = max{a, b}, and a ⊓ b = min{a, b}; we also let
a⊕b = min{1,max{0, a+b}} and a⊖b = max{0,min{1, a−b}}. We extend ⊓,⊔,+,−,⊕,⊖
to valuations by interpreting them in pointwise fashion.

Game structures. For a finite set A, let Dist(A) denote the set of probability distributions
over A. We say that p ∈ Dist(A) is deterministic if there is a ∈ A such that p(a) = 1. We
assume a fixed finite set V of observation variables.

A (two-player, concurrent) game structure G = 〈S, [·],Moves ,Γ1,Γ2, δ〉 consists of the
following components [1, 8]:

• A finite set S of states.
• A variable interpretation [·] : V 7→ [θ1, θ2]

S , which associates with each variable
v ∈ V a valuation [v].

• A finite set Moves of moves.
• Two move assignments Γ1,Γ2: S 7→ 2Moves \ {∅}. For i ∈ {1, 2}, the assignment Γi

associates with each state s ∈ S the nonempty set Γi(s) ⊆ Moves of moves available
to player i at state s.

• A probabilistic transition function δ: S×Moves ×Moves 7→ Dist(S), that gives the
probability δ(s, a1, a2)(t) of a transition from s to t when player 1 plays move a1
and player 2 plays move a2.
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At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and indepen-
dently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor state
t ∈ S with probability δ(s, a1, a2)(t). We let Dest(s, a1, a2) = {t ∈ S | δ(s, a1, a2)(t) > 0}.
The propositional distance p(s, t) between two states s, t ∈ S is the maximum difference in
the valuation of any variable:

p(s, t) = max
v∈V

|[v](s)− [v](t)| .

The kernel of the propositional distance induces an equivalence on states: for states s, t, we
let s ≡ t if p(s, t) = 0. In the following, unless otherwise noted, the definitions refer to a
game structure with components G = 〈S, [·],Moves ,Γ1,Γ2, δ〉. We indicate the opponent of
a player i ∈ {1, 2} by ∼i = 3− i. We consider the following subclasses of game structures.

Turn-based game structures. A game structure G is turn-based if we can write S =
S1 ∪ S2 with S1 ∩ S2 = ∅ where s ∈ S1 implies |Γ2(s)| = 1, and s ∈ S2 implies |Γ1(s)| = 1,
and further, there exists a special variable turn ∈ V, such that [turn ]s = θ1 iff s ∈ S1, and
[turn ]s = θ2 iff s ∈ S2.

Markov decision processes. For i ∈ {1, 2}, we say that a structure is an i-MDP if
∀s ∈ S, |Γ∼i(s)| = 1. For MDPs, we omit the (single) move of the player without a choice
of moves, and write δ(s, a) for the transition function.

Moves and strategies. Amixed move is a probability distribution over the moves available
to a player at a state. We denote by Di(s) ⊆ Dist(Moves) the set of mixed moves available
to player i ∈ {1, 2} at s ∈ S, where:

Di(s) = {D ∈ Dist(Moves) | D(a) > 0 implies a ∈ Γi(s)} .

The moves in Moves are called pure moves. We extend the transition function to mixed
moves by defining, for s ∈ S and x1 ∈ D1(s), x2 ∈ D2(s),

δ(s, x1, x2)(t) =
∑

a1∈Γ1(s)

∑

a2∈Γ2(s)

δ(s, a1, a2)(t) · x1(a1) · x2(a2) .

A path σ of G is an infinite sequence s0, s1, s2, ... of states in s ∈ S, such that for all k ≥ 0,
there exist moves ak1 ∈ Γ1(sk) and ak2 ∈ Γ2(sk) with δ(sk, a

k
1 , a

k
2)(sk+1) > 0. We write Σ for

the set of all paths, and Σs for the set of all paths starting from state s.
A strategy for player i ∈ {1, 2} is a function πi : S

+ 7→ Dist(Moves) that associates with
every non-empty finite sequence σ ∈ S+ of states, representing the history of the game, a
probability distribution πi(σ), which is used to select the next move of player i; we require
that for all σ ∈ S∗ and states s ∈ S, if πi(σs)(a) > 0, then a ∈ Γi(s). We write Πi for
the set of strategies for player i. Once the starting state s and the strategies π1 and π2 for
the two players have been chosen, the game is reduced to an ordinary stochastic process,
denoted Gπ1,π2

s , which defines a probability distribution on the set Σ of paths. We denote by
Prπ1,π2

s (·) the probability of a measurable event (sets of paths) with respect to this process,
and denote by E

π1,π2
s (·) the associated expectation operator. For k ≥ 0, we let Xk : Σ → S

be the random variable denoting the k-th state along a path.

One-step expectations and predecessor operators. Given a valuation f ∈ F , a state
s ∈ S, and two mixed moves x1 ∈ D1(s) and x2 ∈ D2(s), we define the expectation of f
from s under x1, x2 by,

E
x1,x2
s (f) =

∑

t∈S

δ(s, x1, x2)(t) f(t) .
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For a game structure G, for i ∈ {1, 2} we define the valuation transformer Prei : F 7→ F
by, for all f ∈ F and s ∈ S as,

Prei(f)(s) = sup
xi∈Di(s)

inf
x∼i∈D∼i(s)

E
xi,x∼i
s (f) .

Intuitively, Prei(f)(s) is the maximal expectation player i can achieve of f after one step
from s: this is the standard “one-day” or “next-stage” operator of the theory of repeated
games [17].

2.1. Quantitative µ-calculus. We consider the set of properties expressed by the quanti-
tative µ-calculus (qµ). As discussed in [20, 10, 22], a large set of properties can be encoded
in qµ, spanning from basic properties such as maximal reachability and safety probability,
to the maximal probability of satisfying a general ω-regular specification.

Syntax. The syntax of quantitative µ-calculus is defined with respect to the set of obser-
vation variables V as well as a set MVars of calculus variables, which are distinct from the
observation variables in V. The syntax is given as follows:

ϕ ::= c | v | V | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ⊕ c | ϕ⊖ c | pre1(ϕ) | pre2(ϕ) | µV.ϕ | νV. ϕ

for constants c ∈ [θ1, θ2], observation variables v ∈ V, and calculus variables V ∈ MVars.
In the formulas µV.ϕ and νV. ϕ, we furthermore require that all occurrences of the bound
variable V in ϕ occur in the scope of an even number of occurrences of the complement
operator ¬. A formula ϕ is closed if every calculus variable V in ϕ occurs in the scope of
a quantifier µV or νV . From now on, with abuse of notation, we denote by qµ the set of
closed formulas of qµ. A formula is a player i formula, for i ∈ {1, 2}, if ϕ does not contain
the pre∼i operator; we denote with qµi the syntactic subset of qµ consisting only of closed
player i formulas. A formula is in positive form if the negation appears only in front of
constants and observation variables, i.e., in the context ¬c and ¬v; we denote with qµ+ and
qµ+

i the subsets of qµ and qµi consisting only of positive formulas.
We remark that the fixpoint operators µ and ν will not be needed to achieve our

results on the logical characterization of game relations. They have been included in the
calculus because they allow the expression of many interesting properties, such as safety,
reachability, and in general, ω-regular properties. The operators ⊕ and ⊖, on the other
hand, are necessary for our results.

Semantics. A variable valuation ξ: MVars 7→ F is a function that maps every variable
V ∈ MVars to a valuation in F . We write ξ[V 7→ f ] for the valuation that agrees with ξ
on all variables, except that V is mapped to f . Given a game structure G and a variable
valuation ξ, every formula ϕ of the quantitative µ-calculus defines a valuation [[ϕ]]Gξ ∈ F

(the superscript G is omitted if the game structure is clear from the context):

[[c]]ξ = c [[v]]ξ = [v]

[[V ]]ξ = ξ(V ) [[¬ϕ]]ξ = 1− [[ϕ]]ξ

[[ϕ
{⊕
⊖

}

c]]ξ = [[ϕ]]ξ
{⊕
⊖

}

c [[ϕ1

{∨
∧

}

ϕ2]]ξ = [[ϕ1]]ξ
{⊔
⊓

}

[[ϕ2]]ξ

[[prei(ϕ)]]ξ = Prei([[ϕ]]ξ) [[
{

µ
ν

}

V. ϕ]]ξ =
{ inf
sup

}

{f ∈ F | f = [[ϕ]]ξ[V 7→f ]}

where i ∈ {1, 2}. The existence of the fixpoints is guaranteed by the monotonicity and
continuity of all operators and can be computed by Picard iteration [10]. If ϕ is closed, [[ϕ]]ξ
is independent of ξ, and we write simply [[ϕ]].
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Discounted quantitative µ-calculus. A discounted version of the µ-calculus was intro-
duced in [9]; we call this dµ. Let Λ be a finite set of discount parameters that take values
in the interval [0, 1). The discounted µ-calculus extends qµ by introducing discounted ver-
sions of the player pre modalities. The syntax replaces prei(ϕ) for player i ∈ {1, 2} with
its discounted variant, λ · prei(ϕ), where λ ∈ Λ is a discount factor that discounts one-step
valuations. Negation in the calculus is defined as ¬(λ · pre1(ϕ)) = (1 − λ) + λ · pre2(¬ϕ).
This leads to two additional pre-modalities for the players, (1− λ) + λ · prei(ϕ).

2.2. Game bisimulation and simulation metrics. A directed metric is a function d :
S2 7→ IR≥0 which satisfies d(s, s) = 0 and the triangle inequality d(s, t) ≤ d(s, u) + d(u, t)
for all s, t, u ∈ S. We denote by M ⊆ S2 7→ IR the space of all directed metrics; this
space, ordered pointwise, forms a lattice which we indicate with (M,≤). Since d(s, t) may
be zero for s 6= t, these functions are pseudo-metrics as per prevailing terminology [32]. In
the following, we omit “directed” and simply say metric when the context is clear. For a
metric d, we indicate with C(d) the set of valuations k ∈ F where k(s)− k(t) ≤ d(s, t) for
every s, t ∈ S. A metric transformer H�1 : M 7→ M is defined as follows, for all d ∈ M
and s, t ∈ S:

H�1(d)(s, t) = p(s, t) ⊔ sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

. (2.1)

The player 1 game simulation metric [�1] is the least fixpoint of H�1 ; the game bisimulation
metric [≃1] is the least symmetrical fixpoint of H�1 and is defined as follows, for all d ∈ M
and s, t ∈ S:

H≃1(d)(s, t) = H�1(d)(s, t) ⊔H�1(d)(t, s) . (2.2)

The operator H�1 is monotonic, non-decreasing and continuous in the lattice (M,≤). We
can therefore computeH�1 using Picard iteration; we denote by [�n

1 ] = H�n
1
(0) the n-iterate

of this. From the determinacy of concurrent games with respect to ω-regular goals [21], we
have that the game bisimulation metric is reciprocal , in that [≃1] = [≃2]; we will thus simply
write [≃g]. Similarly, for all s, t ∈ S we have [s �1 t] = [t �2 s].

The main result in [11] about these metrics is that they are logically characterized by the
quantitative µ-calculus of [10]. We omit the formal definition of the syntax and semantics of
the quantitative µ-calculus; we refer the reader to [10] for details. Given a game structure
G, every closed formula ϕ of the quantitative µ-calculus defines a valuation [[ϕ]] ∈ F .
Let qµ (respectively, qµ+

1 ) consist of all quantitative µ-calculus formulas (respectively, all
quantitative µ-calculus formulas with only the Pre1 operator and all negations before atomic
propositions). The result of [11] shows that for all states s, t ∈ S,

[s �1 t] = sup
ϕ∈qµ+

1

([[ϕ]](s) − [[ϕ]](t)) [s ≃g t] = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)| . (2.3)

Metrics for the discounted quantitative µ-calculus. We call dµα the discounted
µ-calculus with all discount parameters ≤ α. We define the discounted metrics via an
α-discounted metric transformer Hα

� : M 7→ M, defined for all d ∈ M and all s, t ∈ S by:

Hα
�1

(d)(s, t) = p(s, t) ⊔ α · sup
k∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

. (2.4)

Again, Hα
�1

is continuous and monotonic in the lattice (M,≤). The α-discounted simulation

metric [�1]
α is the least fixpoint of Hα

�1
, and the α-discounted bisimulation metric [≃1]

α is
the least symmetrical fixpoint of Hα

�1
. The following result follows easily by induction on
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the Picard iterations used to compute the distances [9]; for all states s, t ∈ S and a discount
factor α ∈ [0, 1),

[s �1 t]
α ≤ [s �1 t] [s ≃1 t]

α ≤ [s ≃1 t] . (2.5)

Using techniques similar to the undiscounted case, we can prove that for every game struc-
ture G and discount factor α ∈ [0, 1), the fixpoint [�i]

α is a directed metric and [≃i]
α

is a metric, and that they are reciprocal, i.e., [�1]
α = [�2]

α and [≃1]
α = [≃2]

α. Given
the discounted bisimulation metric coincides for the two players, we write [≃g]

α instead of
[≃1]

α and [≃2]
α. We now state without proof that the discounted µ-calculus provides a

logical characterization of the discounted metric. The proof is based on induction on the
structure of formulas, and closely follows the result for the undiscounted case [11]. Let

dµα (respectively, dµα,+
1 ) consist of all discounted µ-calculus formulas (respectively, all dis-

counted µ-calculus formulas with only the Pre1 operator and all negations before atomic
propositions). It follows that for all game structures G and states s, t ∈ S,

[s �1 t]
α = sup

ϕ∈dµα,+
1

([[ϕ]](s) − [[ϕ]](t)) [s ≃g t]
α = sup

ϕ∈dµα
|[[ϕ]](s)− [[ϕ]](t)| . (2.6)

Metric kernels. The kernel of the metric [≃g] ([≃g]
α) defines an equivalence relation ≃g

(≃α
g ) on the states of a game structure: s ≃g t (s ≃g t)α iff [s ≃g t] = 0 ([s ≃g t]

α = 0); the
relation ≃g is called the game bisimulation relation [11] and the relation ≃α

g is called the
discounted game bisimulation relation. Similarly, we define the game simulation preorder
s �1 t as the kernel of the directed metric [�1], that is, s �1 t iff [s �1 t] = 0. The
discounted game simulation preorder is defined analogously.

3. Bounds for Average and Discounted Payoff Games

From (2.3) it follows that the game bisimulation metric provides a tight bound for the
difference in valuations of quantitative µ-calculus formulas. In this section, we show that the
game bisimulation metric also provides a bound for the difference in average and discounted
value of games. This lends further support for the game bisimulation metric, and its kernel,
the game bisimulation relation, being the canonical game metrics and relations.

3.1. Discounted payoff games. Let π1 and π2 be strategies of player 1 and player 2
respectively. Let α ∈ [0, 1) be a discount factor. The α-discounted payoff vα1 (s, π1, π2) for
player 1 at a state s for a variable r ∈ V and the strategies π1 and π2 is defined as:

vα1 (s, π1, π2) = (1− α) ·
∞
∑

n=0

αn · Eπ1,π2
s

(

[r](Xn)
)

, (3.1)

where Xn is a random variable representing the state of the game in step n. The discounted
payoff for player 2 is defined as vα2 (s, π1, π2) = −vα1 (s, π1, π2). Thus, player 1 wins (and
player 2 loses) the “discounted sum” of the valuations of r along the path, where the
discount factor weighs future rewards with the discount α. Given a state s ∈ S, we are
interested in finding the maximal payoff vαi (s) that player i can ensure against all opponent
strategies, when the game starts from state s ∈ S. This maximal payoff is given by:

wα
i (s) = sup

πi∈Πi

inf
π∼i∈Π∼i

vi(s, πi, π∼i) .
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These values can be computed as the limit of the sequence of α-discounted, n-step rewards,
for n → ∞. For i ∈ {1, 2}, we define a sequence of valuations wα

i (0)(s), w
α
i (1)(s), w

α
i (2)(s),

. . . as follows: for all s ∈ S and n ≥ 0:

wα
i (n+ 1)(s) = (1− α) · [r](s) + α · Prei(w

α
i (n))(s) . (3.2)

where the initial valuation wα
i (0) is arbitrary. Shapley proved that wα

i = limn→∞wα
i (n)

[28].

3.2. Average payoff games. Let π1 and π2 be strategies of player 1 and player 2 respec-
tively. The average payoff v1(s, π1, π2) for player 1 at a state s for a variable r ∈ V and the
strategies π1 and π2 is defined as

v1(s, π1, π2) = lim inf
n→∞

1

n

n−1
∑

k=0

E
π1,π2
s

(

[r](Xk)
)

, (3.3)

where Xk is a random variable representing the k-th state of the game. The reward for
player 2 is v2(s, π1, π2) = −v1(s, π1, π2). A game structure G with average payoff is called
an average reward game. The average value of the game G at s for player i ∈ {1, 2} is
defined as

wi(s) = sup
πi∈Πi

inf
π∼i∈Π∼i

vi(s, πi, π∼i) .

Mertens and Neyman established the determinacy of average reward games, and showed that
the limit of the discounted value of a game as all the discount factors tend to 1 is the same
as the average value of the game: for all s ∈ S and i ∈ {1, 2}, we have limα→1 w

α
i (s) = wi(s)

[23]. It is easy to show that the average value of a game is a valuation.

3.3. Metrics for discounted and average payoffs. We show that the game simulation
metric [�1] provides a bound for discounted and long-run rewards. The discounted metric
[�1]

α on the other hand does not provide such a bound as the following example shows.

s t s′ t′

2 5 2.1 8

Figure 1: Example that shows that the discounted metric may not be an upper bound for
the difference in the discounted value across states.

Example 1. Consider a game consisting of four states s, t, s′, t′, and a variable r, with
[r](s) = 2, [r](s′) = 2.1, [r](t) = 5, and [r](t′) = 8 as shown in Figure 1. All players
have only one move at each state, and the transition relation is deterministic. Consider
a discount factor α = 0.9. The 0.9-discounted metric distance between states s′ and s, is
[s′ ≃g s]

0.9 = 0.9·(8−5) = 2.7. For the difference in discounted values between the states we
proceed as follows. Using formulation 3.2, taking wα(0)(t) = 5, since state t is absorbing, we
get wα(1)(t) = (1− 0.9) · 5+ 0.9 · 5 = 5 which leads to wα(n)(t) = 5 for all n ≥ 0. Similarly
wα(n)(t′) = 8 for all n ≥ 0. Therefore, the difference in discounted values between s and s′,
again using 3.2, is given by: wα(s′)− wα(s) = (1− 0.9) · (2.1− 2) + 0.9 · (8− 5) = 2.71. �
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In the following we consider player 1 rewards (the case for player 2 is identical).

Theorem 1. The following assertions hold.

(1) For all game structures G, α-discounted rewards wα
1 , for all states s, t ∈ S, we have,

(a) wα
1 (s)− wα

1 (t) ≤ [s �1 t] and (b) |wα
1 (s)− wα

1 (t)| ≤ [s ≃g t].
(2) There exists a game structure G, states s, t ∈ S, such that for all α-discounted

rewards wα
1 , w

α
1 (t)− wα

1 (s) > [t ≃g s]
α.

Proof. We first prove assertion (1)(a). As the metric can be computed via Picard iteration,
we have for all n ≥ 0:

[s �n
1 t] = p(s, t) ⊔ sup

k∈C([�n−1
1 ])

(Pre1(k)(s) − Pre1(k)(t)) . (3.4)

We prove by induction on n ≥ 0 that wα
1 (n)(s)−wα

1 (n)(t) ≤ [s �n
1 t]. For all s ∈ S, taking

wα
1 (0)(s) = [r](s), the base case follows. Assume the result holds for n− 1 ≥ 0. We have:

wα
1 (n)(s)− wα

1 (n)(t) = (1− α) · [r](s) + α · Pre1(w
α(n− 1))(s)−

(1− α) · [r](t) − α · Pre1(w
α(n− 1))(t)

= (1− α) ·
(

[r](s)− [r](t)
)

+

α ·
(

Pre1(w
α(n− 1))(s) − Pre1(w

α(n− 1))(t)
)

≤ (1− α) · p(s, t) + α · [s �n
1 t] ≤ [s �n

1 t],

where the last step follows by (3.4), since by the induction hypothesis we have wα
1 (n− 1) ∈

C([�n−1
1 ]). This proves assertion (1)(a). Given (1)(a), from the definition of [s ≃g t] =

[s �1 t] ⊔ [t �1 s], (1)(b) follows.
The example shown in Figure 1 proves the second assertion. �

Using the fact that the limit of the discounted reward, for a discount factor that ap-
proaches 1, is equal to the average reward, we obtain that the metrics provide a bound for
the difference in average values as well.

Corollary 1. For all game structures G and states s and t, we have (a) w(s) − w(t) ≤
[s �1 t] and (b) |w(s) − w(t)| ≤ [s ≃g t].

3.4. Metrics for total rewards. The total reward vT1 (s, π1, π2) for player 1 at a state s
for a variable r ∈ V and the strategies π1 ∈ Π1 and π2 ∈ Π2 is defined as [17]:

vT1 (s, π1, π2) = lim inf
n→∞

1

n

n−1
∑

k=0

k
∑

j=0

E
π1,π2
s

(

[r](Xj)
)

, (3.5)

whereXj is a random variable representing the j-th state of the game. The payoff vT2 (s, π1, π2)
for player 2 is defined by replacing [r] with −[r] in (3.5). The total-reward value of the game
G at s for player i ∈ {1, 2} is defined analogously to the average value, via,

wT
i (s) = sup

πi∈Πi

inf
π∼i∈Π∼i

vTi (s, π1, π2) .

While the game simulation metric [≃g] provides an upper bound for the difference in dis-
counted reward across states, as well as for the difference in average reward across states,
it does not provide a bound for the difference in total reward. We now introduce a new
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metric, the total reward metric, [⊲⊳g], which provides such a bound. For a discount factor
α ∈ [0, 1), we define a metric transformer Hα

✂1
: M 7→ M as follows. For all d ∈ M and

s, t ∈ S, we let:

Hα
✂1

(d)(s, t) = p(s, t) + α · sup
k∈C(d)

(

Pre1(k)(s)− Pre1(k)(t)
)

. (3.6)

The metric [✂1]
α (resp. [⊲⊳1]

α) is obtained as the least (resp. least symmetrical) fixpoint
of (3.6). We write [✂1] for [✂1]

1, and [⊲⊳1] for [⊲⊳1]
1. These metrics are reciprocal, i.e.,

[✂1]
α = [☎2]

α and [⊲⊳1]
α = [⊲⊳2]

α. If α < 1 we get the discounted total reward metric and
if α = 1 we get the undiscounted total reward metric. While the discounted total reward
metric is bounded, the undiscounted total reward metric may not be bounded. The total
metrics provide bounds for the difference in discounted, average, and total reward between
states.

Theorem 2. The following assertions hold.

(1) For all game structures G, for all discount factors α ∈ [0, 1), for all states s, t ∈ S,

(a) [s✂1 t]
α ≤ (θ2 − θ1)/(1 − α), (b) [s ✂1 t]

α ≤ [s✂1 t],

(c) wα
1 (s)− wα

1 (t) ≤ [s✂1 t]
α, (d) w1(s)− w1(t) ≤ [s✂1 t],

(e) wT
1 (s)− wT

1 (t) ≤ [s✂1 t].

(2) There exists a game structure G and states s, t ∈ S such that, [s✂1 t] = ∞.

Proof. For assertion (1)(a), notice that p(s, t) ≤ (θ2−θ1). Consider the n-step Picard iterate
towards the metric distance. We have,

[s✂n
1 t]α ≤

n
∑

i=0

αi · (θ2 − θ1) .

In the limit this yields [s✂1 t]
α ≤ (θ2 − θ1)/(1 − α). Assertion (1)(b) follows by induction

on the Picard iterations that realize the metric distance. For all n ≥ 0, [s✂n
1 t]

α ≤ [s✂n
1 t].

Assertion (1)(c) follows by the definition of the discounted total reward metric where we
have replaced the ⊔ with a +. By induction, for all n ≥ 0, from the proof of Theorem 1 we
have,

wα
1 (n)(s)−wα

1 (n)(t) ≤ (1−α)·p(s, t)+α·(Pre1(w
α
1 (n−1))(s)−Pre1(w

α
1 (n−1))(t)) ≤ [s✂n

1 t]
α .

For assertion (1)(d), towards an inductive argument on the Picard iterates that realize the
metric, for all n ≥ 0, we have [s �n

1 t] ≤ [s✂n
1 t], which in the limit gives [s �1 t] ≤ [s✂1 t].

This leads to w1(s)− w1(t) ≤ [s✂1 t], using Corollary 1. This proves assertion (1)(d). We
now prove assertion (1)(e) by induction and show that for all n ≥ 0, wT

1 (n)(s)−wT
1 (n)(t) ≤

[s✂n
1 t]. As the metric can be computed via Picard iteration, we have for all n ≥ 0:

[s✂n
1 t] = p(s, t) + sup

k∈C([✂n−1
1 ])

(Pre1(k)(s) − Pre1(k)(t)) . (3.7)

We define a valuation transformer u : F 7→ F as u(0) = [r] and for all n > 0 and state
s ∈ S as,

u(n)(s) = [r](s) + Pre1(u(n− 1))(s)
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We take wT
1 (0) = u(0) = [r] and for n > 0, from the definition of total rewards (3.5), we

get the n-step total reward value at a state s ∈ S in terms of u as,

wT
1 (n)(s) =

1

n
·

n
∑

i=1

u(i)(s) .

Notice that wT
1 (n)(s) ≤ u(n) for all n ≥ 0. When n = 0, the result is immediate by the

definition of wT
1 (0), noticing that [s ✂0

1 t] = p(s, t). Assume the result holds for n− 1 ≥ 0.
We have:

wT
1 (n)(s)− wT

1 (n)(t) =
1

n
·

n
∑

i=1

u(i)(s)−
1

n
·

n
∑

i=1

u(i)(t)

=
1

n
·

n
∑

i=1

(u(i)(s) − u(i)(t))

=
1

n
·

n
∑

i=1

(([r](s)− [r](t))+

(Pre1(u(i− 1))(s) − Pre1(u(i− 1))(t))) (3.8)

≤
1

n
·

n
∑

i=1

[s✂i
1 t] (3.9)

≤ [s✂n
1 t], (3.10)

where (3.9) follows from (3.8) by (3.7), since by our induction hypothesis we have wT
1 (i) ≤

u(i) ∈ C([✂i
1]) for all 0 ≤ i < n and (3.10) follows from (3.9) from the monotonicity of the

undiscounted total reward metric. To prove assertion (2), consider the game structure on the
left hand side in Figure 1. The total reward at state s is unbounded; wT

1 (s) = 2+5+. . . = ∞
Now consider a modified version of the game, with identical structure and with states s′

and t′ corresponding to s and t of the original game. Let [r](t′) = 0. In the modified game,
wT
1 (s

′) = 2. From result (1)(e), since wT
1 (s) = ∞ and wT

1 (s
′) = 2, we have [s✂1 s

′] = ∞. �

It is a very simple observation that the quantitative µ-calculus does not provide a logical
characterization for [✂α

1 ] or [✂1]. In fact, all formulas of the quantitative µ-calculus have
valuations in the interval [θ1, θ2], while as stated in Theorem 2, the total reward can be
unbounded. The difference is essentially due to the fact that our version of the quantitative
µ-calculus lacks a “+” operator. It is not clear how to introduce such a + operator in
a context sufficiently restricted to provide a logical characterization for [✂α

1 ]; above all,
it is not clear whether a canonical calculus, with interesting formal properties, would be
obtained.

3.5. Metric kernels. We now show that the kernels of all the metrics defined in the paper
coincide: an algorithm developed for the game kernels �1 and ≃g, compute the kernels of
the corresponding discounted and total reward metrics as well.

Theorem 3. For all game structures G, states s and t, all discount factors α ∈ [0, 1), the
following statements are equivalent:

(a) [s �1 t] = 0 (b) [s �1 t]
α = 0 (c) [s✂1 t]

α = 0 .
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Proof. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a). We assume 0 < α < 1. Assertion (a) implies that
p(s, t) = 0 and supk∈C([�1])(Pre1(k)(s) − Pre1(k)(t)) ≤ 0; Since C([�1]

α) ⊆ C([�1]) from

(2.5), (b) follows. We prove (b) ⇒ (c) by induction on the Picard iterations that compute
[s �1 t]α and [s ✂1 t]

α. The base case is immediate. Assume that for all states s and t,
[s �n−1

1 t]α = 0 implies [s✂n−1
1 t]α = 0. Towards a contradiction, assume [s �n

1 t]α = 0 but

[s ✂n
1 t]α > 0. Then there must be k ∈ C([✂n−1

1 ]α) such that Pre1(k)(s) − Pre1(k)(t) > 0.

By our induction hypothesis, there exists a δ > 0 such that k′ = δ · k ∈ C([�n−1
1 ]α). Since

Pre is multi-linear, the player optimal responses in Pre1(k)(s) remain optimal for k′. But
this means (Pre1(k

′)(s) − Pre1(k
′)(t)) > 0 for k′ ∈ C([�n−1

1 ]α), leading to [s �n t]α > 0; a
contradiction. Therefore, (b) ⇒ (c). In a similar fashion we can show that (c) ⇒ (a). �

4. Algorithms for Turn-Based Games and MDPs

In this section, we present algorithms for computing the metric and its kernel for turn-
based games and MDPs. We first present a polynomial time algorithm to compute the
operator H�i

(d) that gives the exact one-step distance between two states, for i ∈ {1, 2}.
We then present a PSPACE algorithm to decide whether the limit distance between two
states s and t (i.e., [s �1 t]) is at most a rational value r. Our algorithm matches the
best known bound known for the special class of Markov chains [31]. Finally, we present
improved algorithms for the important case of the kernel of the metrics. Since by Theorem 3
the kernels of the metrics introduced in this paper coincide, we present our algorithms for the
kernel of the undiscounted metric. For the bisimulation kernel our algorithm is significantly
more efficient compared to previous algorithms.

4.1. Algorithms for the metrics. For turn-based games and MDPs, only one player has
a choice of moves at a given state. We consider two player 1 states. A similar analysis
applies to player 2 states. We remark that the distance between states in Si and S∼i is
always θ2 − θ1 due to the existence of the variable turn. For a metric d ∈ M, and states
s, t ∈ S1, computing H�1(d)(s, t), given that p(s, t) is trivially computed by its definition,
entails evaluating the expression, supk∈C(d)

(

Pre1(k)(s)−Pre1(k)(t)
)

, which is the same as,

supk∈C(d) supx∈D1(s) infy∈D1(t)(E
x
s (k) − E

y
t (k)), since Pre1(k)(s) = supx∈D1(s)(E

x
s (k)) and

Pre1(k)(t) = supy∈D1(t)(E
y
t (k)) as player 1 is the only player with a choice of moves at state

s. By expanding the expectations, we get the following form,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(

∑

u∈S

∑

a∈Γ1(s)

δ(s, a)(u) ·x(a) ·k(u)−
∑

v∈S

∑

b∈Γ1(t)

δ(t, b)(v) ·y(b) ·k(v)

)

.

(4.1)

We observe that the one-step distance as defined in (4.1) is a sup-inf non-linear (quadratic)
optimization problem. We now present two lemmas by which we transform (4.1) to an inf
linear optimization problem, which we solve by linear programming (LP). The first lemma
reduces (4.1) to an equivalent formulation that considers only pure moves at state s. The
second lemma further reduces (4.1), using duality, to a formulation that can be solved using
LP.
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Lemma 1. For all turn-based game structures G, for all player i states s and t, given a
metric d ∈ M, the following equality holds,

sup
k∈C(d)

sup
x∈Di(s)

inf
y∈Di(t)

(Ex
s(k)− E

y
t (k)) = sup

a∈Γi(s)
inf

y∈Di(t)
sup

k∈C(d)
(Ea

s(k)− E
y
t (k)) .

Proof. We prove the result for player 1 states s and t, with the proof being identical for
player 2. Given a metric d ∈ M, we have,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(Ex
s (k)− E

y
t (k)) = sup

k∈C(d)
( sup
x∈D1(s)

E
x
s (k)− sup

y∈D1(t)
E
y
t (k))

= sup
k∈C(d)

( sup
a∈Γ1(s)

E
a
s(k)− sup

y∈D1(t)
E
y
t (k)) (4.2)

= sup
k∈C(d)

sup
a∈Γ1(s)

inf
y∈D1(t)

(Ea
s(k)− E

y
t (k))

= sup
a∈Γ1(s)

sup
k∈C(d)

inf
y∈D1(t)

(Ea
s(k)− E

y
t (k)) (4.3)

= sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(Ea
s(k)− E

y
t (k)) (4.4)

For a fixed k ∈ C(d), since pure optimal strategies exist at each state for turn-based games
and MDPs, we replace the supx∈D1(s) with supa∈Γ1(s) yielding (4.2). Since the difference in

expectations is multi-linear, y ∈ D1(t) is a probability distribution and C(d) is a compact
convex set, we can use the generalized minimax theorem [29], and interchange the innermost
sup inf to get (4.4) from (4.3). �

The proof of Lemma 1 is illustrated using the following example.

s

u v

bc
e

(a) MDP 1

t

u v

bc

(b) MDP 2

Figure 2: An example illustrating the proof of Lemma 1.

Example 4.1. Consider the example in Figure 2. In the MDPs shown in the figure, every
move leads to a unique successor state, with the exception of move e ∈ Γ1(s), which leads
to states u and v with equal probability. Assume the variable valuations are such that
all states are at a propositional distance of 1. Without loss of generality, assume that the
valuation k ∈ C(d) is such that k(u) > k(v). By the linearity of expectations, for move
c ∈ Γ1(s), E

c
s(k) ≥ E

x
s(k) for all x ∈ D1(s). Similar arguments can be made for k(u) < k(v).

This gives an informal justification for step (4.2) in the proof; given a k ∈ C(d), there exist
pure optimal strategies for the single player with a choice of moves at each state. While we
can use pure moves at states s and t if k ∈ C(d) is known, the principle difficulty in directly
computing the left hand side of the equality arises from the uncountably many values for
k; the distance is the supremum over all possible values of k. In the final equality, step
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(4.4), and hence by this theorem, we have avoided this difficulty, by showing an equivalent
expression that picks a k ∈ C(d) to show the difference in distributions induced over states.
As we shall see, this enables computing the one-step metric distance using a trans-shipping
formulation. We remark that while we can use pure moves at state s, we cannot do so at
state t in the right hand side of step (4.4) of the proof. Firstly, the proof of the theorem
depends on y ∈ D1(t) being convex. Secondly, if we could restrict our attention to pure
moves at state t, then we can replace infy∈D1(t) with inff∈Γ1(t) on the right hand side. But
this yields too fine a one-step distance. Consider move e at state s. We see that neither c
nor b at state t yield distributions over states that match the distribution induced by e. We

can then always pick k ∈ C(d) such that Ee
s(k)−E

f
t (k) > 0. If we choose y ∈ D1(t) such that

y(b) = y(c) = 1
2 , we match the distribution induced by move e from state s, which implies

that for any choice of k ∈ C(d), Ee
s(k)−E

y(b)=y(c)= 1
2

t (k) = 0. Intuitively, the right hand side
of the equality can be interpreted as a game between a protagonist and an antagonist, with
the protagonist picking y ∈ D1(t), for every pure move a ∈ Γ1(s), to match the induced
distributions over states. The antagonist then picks a k ∈ C(d) to maximize the difference
in induced distributions. If the distributions match, then no choice of k ∈ C(d) yields a
difference in expectations bounded away from 0.

From Lemma 1, given d ∈ M, we can write the player 1 one-step distance between
states s and t as follows,

OneStep(s, t, d) = sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(Ea
s(k)− E

y
t (k)) . (4.5)

Hence we compute for all a ∈ Γ1(s), the expression,

OneStep(s, t, d, a) = inf
y∈D1(t)

sup
k∈C(d)

(Ea
s(k)− E

y
t (k)),

and then choose the maximum, i.e., maxa∈Γ1(s)OneStep(s, t, d, a). We now present a lemma
that helps reduce the above inf − sup optimization problem to a linear program. We first
introduce some notation. We denote by λ the set of variables λu,v, for u, v ∈ S. Given
a ∈ Γ1(s), and a distribution y ∈ D1(t), we write λ ∈ Φ(s, t, a, y) if the following linear
constraints are satisfied:

(1) for all v ∈ S :
∑

u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S :
∑

v∈S

λu,v =
∑

b∈Γ1(t)

y(b) · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0 .

Lemma 2. For all turn-based game structures and MDPs G, for all d ∈ M, and for all
s, t ∈ S, the following assertion holds:

sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(Ea
s(k)− E

y
t (k)) = sup

a∈Γ1(s)
inf

y∈D1(t)
inf

λ∈Φ(s,t,a,y)

(

∑

u,v∈S

d(u, v) · λu,v

)

.

Proof. Since duality always holds in LP, from the LP duality based results of [32], for all
a ∈ Γ1(s) and y ∈ D1(t), the maximization over all k ∈ C(d) can be re-written as a
minimization problem as follows:

sup
k∈C(d)

(Ea
s(k)− E

y
t (k)) = inf

λ∈Φ(s,t,a,y)

(

∑

u,v∈S

d(u, v) · λu,v

)

.
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The formula on the right hand side of the above equality is the trans-shipping formulation,
which solves for the minimum cost of shipping the distribution δ(s, a) into δ(t, y), with edge
costs d. The result of the lemma follows. �

Using the above result we obtain the following LP for OneStep(s, t, d, a) over the vari-
ables: (a) {λu,v}u,v∈S , and (b) yb for b ∈ Γ1(t):

Minimize
∑

u,v∈S

d(u, v) · λu,v subject to (4.6)

(1) for all v ∈ S :
∑

u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S :
∑

v∈S

λu,v =
∑

b∈Γ1(t)

yb · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0; (4) for all b ∈ Γ1(t) : yb ≥ 0; (5)
∑

b∈Γ1(t)

yb = 1 .

Example 4.2. We now use the MDPs in Figure 3(a) and 3(b) to compute the simulation
distance between states using the results in Lemma 1 and Lemma 2. In the figure, states
of the same color have a propositional distance of 0 and states of different colors have a
propositional distance of 1; p(s, s′) = p(t, t′) = p(u, u′) = p(v, v′) = p(t′, w′) = 0. In MDP 1,
shown in Figure 3(a), δ(s, a)(t) = δ(t, b)(v) = δ(t, c)(u) = 1 and δ(t, f)(u) = δ(t, f)(v) =
1
2 . In MDP 2, shown in Figure 3(b), δ(s′, a)(w′) = δ(s′, b)(t′) = 1, δ(t′, c)(u′) = 1

2 − ǫ,

δ(t′, c)(v′) = 1
2 + ǫ, δ(w′, e)(u′) = δ(w′, f)(v′) = 1− ǫ and δ(w′, e)(v′) = δ(w′, f)(u′) = ǫ.

s

t

u v

a

bc
f

(a) MDP 1

a b

c
e

s′

w′ t′

u′ v′

f

(b) MDP 2

Figure 3: An example used to compute the simulation metric between states. States of the
same color have a propositional distance of 0.

In Table 2, we show the simulation metric distance between states of the MDPs in
Figure 3(a) and Figure 3(b). Consider states t and t′. c is the only move available to
player 1 from state t′ and it induces a transition probability of 1

2 + ǫ to state v′ and 1
2 − ǫ

to state u′. For the pure move c at state t, the induced transition probabilities and edge
costs in the trans-shipping formulation are shown in Figure 4(a). It is easy to see that the
trans-shipping cost in this case is 1

2 + ǫ; shown in Table 1 along the row corresponding to
move c from state t and column corresponding to state t′. Similarly, the trans-shipping
cost for the moves b and f from state t are 1

2 − ǫ and ǫ respectively. The metric distance
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t w′ t′

Γ1(t) x ∈ D1(w
′) Cost x ∈ D1(t

′) Cost

b x(f) = 1 ǫ x(c) = 1 1
2 − ǫ

c x(e) = 1 ǫ x(c) = 1 1
2 + ǫ

f x(f) = x(e) = 1
2 0 x(c) = 1 ǫ

Table 1: The moves from states w′ and t′ that minimize the trans-shipping cost for each
a ∈ Γ1(t) and the corresponding costs.

[�] s′ t′ w′ u′ v′

s ǫ 1 1 1 1

t 1 1
2 + ǫ ǫ 1 1

u 1 1 1 0 1

v 1 1 1 1 0

Table 2: The simulation metric distance between states in MDP 1 and states in MDP 2.

u

v

u′

v′0

0

1

1

0

1

1
2 + ǫ

1
2 − ǫ

(a) [t � t′] = 1
2
+ ǫ

t

w′

t′
1

1
2 + ǫ

ǫ

0

1

(b) [s � s′] = ǫ

Figure 4: The trans-shipping formulation that gives the metric distances between states.

[t � t′], which is the maximum over these trans-shipping costs is then 1
2 + ǫ. Now consider

the states t and w′. In Table 1, we show for each pure move a ∈ Γ1(t), the move x ∈ D1(w
′)

that minimizes the trans-shipping cost together with the minimum cost. In this case it is
easy to see that [t � w′] = ǫ. Given [t � t′] = 1

2 + ǫ and [t � w′] = ǫ, we can calculate the
distance [s � s′] from the trans-shipping formulation shown in Figure 4(b); the minimum
cost is ǫ that entails choosing move a from state s′, giving us [s � s′] = ǫ.

Theorem 4.3. For all turn-based game structures and MDPs G, given d ∈ M, for all states
s, t ∈ S, we can compute H�1(d)(s, t) in polynomial time by the Linear Program (4.6).

For all states s, t ∈ S, iteration of OneStep(s, t, d) converges to the exact distance.
However, in general, there are no known bounds for the rate of convergence. We now present
a decision procedure to check whether the exact distance between two states is at most a
rational value r. We first show how to express the predicate d(s, t) = OneStep(s, t, d). We
observe that since H�1 is non-decreasing, we have OneStep(s, t, d) ≥ d(s, t). It follows that
the equality d(s, t) = OneStep(s, t, d) holds iff for every a ∈ Γ1(s), of which there are finitely
many, all the linear inequalities of LP (4.6) are satisfied, and d(s, t) =

∑

u,v∈S d(u, v) · λu,v

holds. It then follows that d(s, t) = OneStep(s, t, d) can be written as a predicate in the
theory of real closed fields. Given a rational r, two states s and t, we present an existential
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theory of reals formula to decide whether [s �1 t] ≤ r. Since [s �1 t] is the least fixed point
of H�1 , we define a formula Φ(r) that is true iff, in the fixpoint, [s �1 t] ≤ r, as follows:

∃d ∈ M.[(
∧

u,v∈S

OneStep(u, v, d) = d(u, v)) ∧ (d(s, t) ≤ r)] .

If the formula Φ(r) is true, then there exists a fixpoint d, such that d(s, t) is bounded by
r, which implies that in the least fixpoint d(s, t) is bounded by r. Conversely, if in the
least fixpoint d(s, t) is bounded by r, then the least fixpoint is a witness d for Φ(r) being
true. Since the existential theory of reals is decidable in PSPACE [6], we have the following
result.

Theorem 4.4. (Decision complexity for exact distance). For all turn-based game structures
and MDPs G, given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided
in PSPACE.

Approximation. Given a rational ǫ > 0, using binary search and O(log(θ2−θ1
ǫ

)) calls to
check the formula Φ(r), we can obtain an interval [l, u] with u− l ≤ ǫ such that [s �1 t] lies
in the interval [l, u].

Corollary 2. (Approximation for exact distance). For all turn-based game structures
and MDPs G, given a rational ǫ, and two states s and t, an interval [l, u] with u − l ≤ ǫ
such that [s �1 t] ∈ [l, u] can be computed in PSPACE.

4.2. Algorithms for the kernel. The kernel of the simulation metric �1 can be computed
as the limit of the series �0

1, �
1
1, �

2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1

iff s ≡ t. For all n ≥ 0, we have (s, t) ∈�n+1
1 iff OneStep(s, t, 1�n

1
) = 0. Checking the

condition OneStep(s, t, 1�n
1
) = 0, corresponds to solving an LP feasibility problem for every

a ∈ Γ1(s), as it suffices to replace the minimization goal γ =
∑

u,v∈S 1�n
1
(u, v) ·λu,v with the

constraint γ = 0 in the LP (4.6). We note that this is the same LP feasibility problem that
was introduced in [35] as part of an algorithm to decide simulation of probabilistic systems
in which each label may lead to one or more distributions over states.

For the bisimulation kernel, we present a more efficient algorithm, which also improves
on the algorithms presented in [35]. The idea is to proceed by partition refinement, as usual
for bisimulation computations. The refinement step is as follows: given a partition, two
states s and t belong to the same refined partition iff every pure move from s induces a
probability distribution on equivalence classes that can be matched by mixed moves from t,
and vice versa. Precisely, we compute a sequence Q0, Q1, Q2, . . . , of partitions. Two states
s, t belong to the same class of Q0 iff they have the same variable valuation (i.e., iff s ≡ t).
For n ≥ 0, since by the definition of the bisimulation metric given in (2.2), [s ≃g t] = 0 iff
[s �1 t] = 0 and [t �1 s] = 0, two states s, t in a given class of Qn remain in the same class in
Qn+1 iff both (s, t) and (t, s) satisfy the set of feasibility LP problems OneStepBis(s, t,Qn)
as given below:

OneStepBis(s, t,Q) consists of one feasibility LP problem for each a ∈ Γ(s).
The problem for a ∈ Γ(s) has set of variables {xb | b ∈ Γ(t)}, and set of
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constraints:

(1) for all b ∈ Γ(t) : xb ≥ 0, (2)
∑

b∈Γ(t)

xb = 1,

(3) for all V ∈ Q :
∑

b∈Γ(t)

∑

u∈V

xb · δ(t, b)(u) ≥
∑

u∈V

δ(s, a)(u) .

In the following theorem we show that two states s, t ∈ S are n + 1 step bisimilar iff
OneStepBis(s, t,Qn) and OneStepBis(t, s,Qn) are feasible.

Theorem 4.5. For all turn-based game structures and MDPs G, for all n ≥ 0, given
two states s, t ∈ S and an n-step bisimulation partition of states Qn such that ∀V ∈ Qn,
∀u, v ∈ V , [u ≃g v]

n = 0, the following holds,

[s ≃g t]
n+1 = 0 iff OneStepBis(s, t,Qn) and OneStepBis(t, s,Qn) are both feasible.

Proof. We proceed by induction on n. Assume the result holds for all iteration steps up to
n and consider the case for n + 1. In one direction, if [s ≃g t]n+1 = 0, then [s �1 t]n+1 =
[t �1 s]n+1 = 0 by the definition of the bisimulation metric. We need to show that given
[s �1 t]n+1 = 0, OneStepBis(s, t,Qn) is feasible. The proof is identical for [t �1 s]n+1 = 0.
From the definition of the n+1 step simulation distance, given p(s, t) = 0 by our induction
hypothesis, we have,

∀b ∈ Γ1(s) inf
x∈D1(t)

sup
k∈C(dn)

(Eb
s(k)− E

x
t (k)) ≤ 0 . (4.7)

Consider a player 1 move a ∈ Γ1(s). Since we can interchange the order of the inf and sup
by the generalized minimax theorem in infx∈D1(t) supk∈C(dn)(E

a
s(k) − E

x
t (k)), the optimal

values of x ∈ D1(t) and k ∈ C(dn) exist and only depend on a. Let xa and ka be the optimal
values of x and k that realize the inf and sup in infx∈D1(t) supk∈C(dn)(E

a
s(k)−E

x
t (k)). Using

xa and ka in (4.7) we have:

E
xa

t (ka) ≥ E
a
s(ka)

∑

u∈S

δ(t, xa)(u) · ka(u) ≥
∑

v∈S

δ(s, a)(v) · ka(v)

∑

V ∈Qn

∑

u∈V

δ(t, xa)(u) · ka(u) ≥
∑

V ∈Qn

∑

v∈V

δ(s, a)(v) · ka(v) (4.8)

∑

V ∈Qn

∑

u∈V

δ(t, xa)(u) ≥
∑

V ∈Qn

∑

v∈V

δ(s, a)(v) (4.9)

∀V ∈ Qn.

(

∑

u∈V

δ(t, xa)(u) ≥
∑

u∈V

δ(s, a)(u)

)

, (4.10)

where (4.9) follows from (4.8) by noting that for all V ∈ Qn, for all states u, v ∈ V ,
dn(u, v) = dn(v, u) = 0, by our hypothesis, leading to k(u) − k(v) ≤ dn(u, v) = 0 and
k(v) − k(u) ≤ dn(v, u) = 0, which implies k(u) = k(v) for all k ∈ C(dn). To show
(4.10) follows from (4.9), assume towards a contradiction that there exists a V ′ ∈ Qn

such that
∑

u∈V ′ δ(t, xa)(u) <
∑

u∈V ′ δ(s, a)(u). Then there must be a V ′′ ∈ Qn such that
∑

u∈V ′′ δ(t, xa)(u) >
∑

u∈V ′′ δ(s, a)(u) since δ(t, xa) is a probability distribution and the
sum of the probability mass allocated to each equivalence class should be 1. Further, for
all V ∈ Qn, for all u, v ∈ V , we have dn(u, v) = dn(v, u) = 0 and for all u ∈ V and for all
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w ∈ S \ V , we have dn(u,w) = dn(w, u) = 1. Therefore, we can pick a feasible k′ ∈ C(dn)
such that k′(v) > 0 for all v ∈ V ′′ and k′(v) = 0 for all other states. Using k′ we get
E
a
s(k

′)− E
xa
t (k′) > 0 which means ka is not optimal, contradicting (4.7).

In the other direction, assume that OneStepBis(s, t,Qn) is feasible. We need to show
that [s �1 t]n+1 = 0. Since OneStepBis(s, t,Qn) is feasible, there exists a distribution
xa ∈ D1(t) for all a ∈ Γ1(s) such that, ∀V ∈ Qn.(

∑

u∈V δ(t, xa)(u) ≥
∑

v∈V δ(s, a)(v)). By
our induction hypothesis, this implies that for all k ∈ C(dn), we have (Ea

s(k)−E
xa
t (k)) ≤ 0

and in particular supk∈C(dn)(E
a
s(k) − E

xa

t (k)) ≤ 0. Since p(s, t) = 0 by our hypothesis and
we have shown,

∀a ∈ Γ1(s) inf
x∈D1(t)

sup
k∈C(dn)

(Ea
s(k)− E

x
t (k)) ≤ 0,

we have, from Lemma 1,

[s �1 t]
n+1 = p(s, t) ⊔ sup

a∈Γ1(s)
inf

x∈D1(t)
sup

k∈C(dn)
(Ea

s(k)− E
x
t (k)) = 0 .

In a similar fashion, if OneStepBis(t, s,Qn) is feasible then [t �1 s]n+1 = 0, which leads to
[s ≃g t]

n+1 = 0 by the definition of the bisimulation metric, as required. �

Complexity. The number of partition refinement steps required for the computation of
both the simulation and the bisimulation kernel is bounded by O(|S|2) for turn-based games
and MDPs, where S is the set of states. At every refinement step, at most O(|S|2) state
pairs are considered, and for each state pair (s, t) at most |Γ(s)| LP feasibility problems
needs to be solved. Let us denote by LPF(n,m) the complexity of solving the feasibility of
m linear inequalities over n variables. We obtain the following result.

Theorem 4.6. For all turn-based game structures and MDPs G, the following assertions
hold:

(1) the simulation kernel can be computed in O
(

n4 ·m ·LPF(n2+m,n2+2n+m+2)
)

time;

(2) the bisimulation kernel can be computed in O
(

n4 ·m · LPF(m,n+m+ 1)
)

time;

where n = |S| is the size of the state space, and m = maxs∈S |Γ(s)|.

Remark 1. The best known algorithm for LPF(n,m) works in time O(n2.5 · log(n)) [34]
(assuming each arithmetic operation takes unit time). The previous algorithm for the
bisimulation kernel checked two way simulation and hence has the complexity O(n4 · m ·
(n2+m)2.5 · log(n2+m)), whereas our algorithm works in time O(n4 ·m ·m2.5 · log(m)). For
most practical purposes, the number of moves at a state is constant (i.e., m is constant).
For the case when m is constant, the previous best known algorithm worked in O(n9 ·log(n))
time, whereas our algorithm works in time O(n4).

5. Algorithms for Concurrent Games

In this section we first show that the computation of the metric distance is at least
as hard as the computation of optimal values in concurrent reachability games. The exact
complexity of the latter is open, but it is known to be at least as hard as the square-root
sum problem, which is in PSPACE but whose inclusion in NP is a long-standing open
problem [16, 18]. Next, we present algorithms based on a decision procedure for the theory
of real closed fields, for both checking the bounds of the exact distance and the kernel of the
metrics. Our reduction to the theory of real closed fields removes one quantifier alternation
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when compared to the previous known formula (inferred from [11]). This improves the
complexity of the algorithm.

5.1. Reduction of reachability games to metrics. We will use the following terms in
the result. A proposition is a boolean observation variable, and we say a state is labeled by
a proposition q iff q is true at s. A state t is absorbing in a concurrent game, if both players
have only one action available at t, and the next state of t is always t (it is a state with a
self-loop). For a proposition q, let ✸q denote the set of paths that visit a state labeled by
q at least once. In concurrent reachability games, the objective is ✸q, for a proposition q,
and without loss of generality all states labeled by q are absorbing states.

Theorem 4. Consider a concurrent game structure G, with a single proposition q, such
that all states labeled by q are absorbing states. We can construct in linear-time a concurrent
game structure G′, with one additional state t′, such that for all s ∈ S, we have

[s �1 t
′] = sup

π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (✸q) .

Proof. The concurrent game structure G′ is obtained from G by adding an absorbing
state t′. The states that are not labeled by q, and the additional state t′, are labeled
by its complement ¬q. Observe there is only one proposition sequence from t′, and it
is (¬q)ω. To prove the desired claim we show that for all s ∈ S we have [s �1 t′] =
supπ1∈Π1

infπ2∈Π2
Prπ1,π2

s (✸q). From a state s in G the possible proposition sequences can
be expressed as the following ω-regular expression: (¬q)ω ∪ (¬q)∗ · qω. Since the proposition
sequence from t′ is (¬q)ω, the supremum of the difference in values over qµ formulas at s
and t′ is obtained by satisfying the set of paths formalized as (¬q)∗ · qω at s. The set of
paths defined as (¬q)∗ · qω is the same as reaching q in any number of steps, since all states
labeled by q are absorbing. Hence,

sup
ϕ∈qµ+

([[ϕ]](s) − [[ϕ]](t′)) = [[µX.(q ∨ Pre1(X))]](s) .

It follows from the results of [10] that for all s ∈ S we have,

[[µX.(q ∨ Pre1(X))]](s) = sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (✸q) .

From the above equalities and the logical characterization result (2.3) we obtain the desired
result. �

5.2. Algorithms for the metrics. We first prove a lemma that helps to obtain reduced-
complexity algorithms for concurrent games. The lemma states that the distance [s �1 t]
is attained by restricting player 2 to pure moves at state t, for all states s, t ∈ S.

Lemma 3. For all concurrent game structures G and all metrics d ∈ M, we have,

sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(Ex1,x2
s (k)) − E

y1,y2
t (k))

= sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(Ex1,x2
s (k)− E

y1,b
t (k)) . (5.1)
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Proof. To prove our claim we fix k ∈ C(d), and player 1 mixed moves x ∈ D1(s), and
y ∈ D1(t). We then have,

sup
y2∈D2(t)

inf
x2∈D2(s)

(Ex,x2
s (k))− E

y,y2
t (k)) = inf

x2∈D2(s)
E
x,x2
s (k)− inf

y2∈D2(t)
E
y,y2
t (k) (5.2)

= inf
x2∈D2(s)

E
x,x2
s (k)− inf

b∈Γ2(t)
E
y,b
t (k) (5.3)

= sup
b∈Γ2(t)

inf
x2∈D2(s)

(Ex,x2
s (k)− E

y,b
t (k)),

where (5.3) follows from (5.2) since the decomposition on the rhs of (5.2) yields two inde-
pendent linear optimization problems; the optimal values are attained at a vertex of the
convex hulls of the distributions induced by pure player 2 moves at the two states. This
easily leads to the result. �

We now present algorithms for metrics in concurrent games. Due to the reduction
from concurrent reachability games, shown in Theorem 4, it is unlikely that we have an
algorithm in NP for the metric distance between states. We therefore construct statements
in the theory of real closed fields, firstly to decide whether [s �1 t] ≤ r, for a rational r, so
that we can approximate the metric distance between states s and t, and secondly to decide
if [s �1 t] = 0 in order to compute the kernel of the game simulation and bisimulation
metrics.

The statements improve on the complexity that can be achieved by a direct translation
of the statements of [11] to the theory of real closed fields. The complexity reduction is
based on the observation that using Lemma 3, we can replace a sup operator with finite
conjunction, and therefore reduce the quantifier complexity of the resulting formula. Fix
a game structure G and states s and t of G. We proceed to construct a statement in the
theory of reals that can be used to decide if [s �1 t] ≤ r, for a given rational r.

In the following, we use variables x1, y1 and x2 to denote a set of variables {x1(a) | a ∈
Γ1(s)}, {y1(a) | a ∈ Γ1(t)} and {x2(b) | b ∈ Γ2(s)} respectively. We use k to denote the set
of variables {k(u) | u ∈ S}, and d for the set of variables {d(u, v) | u, v ∈ S}. The variables
α,α′, β, β′ range over reals. For convenience, we assume Γ2(t) = {b1, . . . , bl}.

First, notice that we can write formulas that state that a variable x is a mixed move
for a player at state s, and k is a constructible predicate (i.e., k ∈ C(d)):

IsDist(x,Γ1(s)) ≡
∧

a∈Γ1(s)

x(a) ≥ 0 ∧
∧

a∈Γ1(s)

x(a) ≤ 1 ∧
∑

a∈Γ1(s)

x(a) = 1 ,

kBounded(k, d) ≡
∧

u∈S

[

k(u) ≥ θ1 ∧ k(u) ≤ θ2

]

∧
∧

u,v∈S

(k(u) − k(v) ≤ d(u, v)) .

In the following, we write bounded quantifiers of the form “∃x1 ∈ D1(s)” or “∀k ∈ C(d)”
which mean respectively ∃x1.IsDist(x1,Γ1(s)) ∧ · · · and ∀k.kBounded(k, d) → · · · .

Let η(k, x1, x2, y1, b) be the polynomial Ex1,x2
s (k)− E

y1,b
t (k). Notice that η is a polyno-

mial of degree 3. We write a = max{a1, . . . , al} for variables a, a1, . . . , al for the formula

(a = a1 ∧
l
∧

i=1

a1 ≥ ai) ∨ . . . ∨ (a = al ∧
l
∧

i=1

al ≥ ai) .
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We construct the formula for game simulation in stages. First, we construct a formula
Φ1(d, s, t, k, x, α) with free variables d, k, x, α such that Φ1(d, s, t, k, x1, α) holds for a valu-
ation to the variables iff

α = inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(Ex1,x2
s (k)− E

y1,b
t (k)) .

We use the following observation to move the innermost inf ahead of the sup over the finite
set Γ2(t) (for a function f):

sup
b∈Γ2(t)

inf
x2∈D2(s)

f(b, x2, x) = inf
x
b1
2 ∈D2(s)

. . . inf
x
bl
2 ∈D2(s)

max(f(b1, x
b1
2 , x), . . . , f(bl, x

bl
2 , x)) .

The formula Φ1(d, s, t, k, x1, α) is given by:

∀y1 ∈ D1(t).∀x
b1
2 ∈ D2(s) . . . x

bl
2 ∈ D2(s).∀w1 . . . wl.∀a.∀α

′.

∃ŷ1 ∈ D1(t).∃x̂
b1
2 ∈ D2(s) . . . x̂

bl
2 ∈ D2(s).∃ŵ1 . . . ŵl.∃â.



































(

w1 = η(k, x1, x
b1
2 , y1, b1)

)

∧ · · · ∧
(

wl = η(k, x1, x
bl
2 , y1, bl)

)

∧
(

a = max{w1, . . . , wl}
)























→ (a ≥ α)













∧



































(

ŵ1 = η(k, x1, x̂
b1
2 , ŷ1, b1)

)

∧ · · · ∧
(

ŵl = η(k, x1, x̂
bl
2 , ŷ1, bl)

)

∧
(

â = max{ŵ1, . . . , ŵl} ∧ â ≥ α′(s, t)
)























→ (α ≥ α′)













.

Using Φ1, we construct a formula Φ(d, s, t, α) with free variables d ∈ M and α ∈ M such
that Φ(d, s, t, α) is true iff:

α = sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(Ex1,x2
s (k)− E

y1,b
t (k)) .

The formula Φ is defined as follows:

∀k ∈ C(d).∀x1 ∈ D1(s).∀β.∀α
′.

[

Φ1(d, s, t, k, x1, β) → (β(s, t) ≤ α)∧
(∀k′ ∈ C(d).∀x′1 ∈ D1(s).∀β

′.Φ1(d, s, t, k
′, x′1, β

′) ∧ β′(s, t) ≤ α′) → α ≤ α′

]

. (5.4)

Finally, given a rational r, we can check if [s �1 t] ≤ r by checking if the following sentence
is true:

∃d ∈ M.∃a ∈ M.[(
∧

u,v∈S

Φ(d, u, v, a(u, v)) ∧ (d(u, v) = a(u, v))) ∧ (d(s, t) ≤ r)] . (5.5)

The above sentence is true iff in the least fixpoint, d(s, t) is bounded by r. Like in the case of

turn-based games and MDPs, given a rational ǫ > 0, using binary search and O(log(θ2−θ1
ǫ

))
calls to a decision procedure to check the sentence (5.5), we can compute an interval [l, u]
with u− l ≤ ǫ, such that [s �1 t] ∈ [l, u].

Complexity. Note that Φ is of the form ∀∃∀, because Φ1 is of the form ∀∃, and appears in
negative position in Φ. The formula Φ has (|S|+ |Γ1(s)|+3) universally quantified variables,
followed by (|S|+ |Γ1(s)|+3+2(|Γ1(t)|+ |Γ2(s)| · |Γ2(t)|+ |Γ2(t)|+2)) existentially quantified
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variables, followed by 2(|Γ1(t)|+|Γ2(s)|·|Γ2(t)|+|Γ2(t)|+1) universal variables. The sentence
(5.5) introduces |S|2 + |S|2 existentially quantified variables ahead of Φ. The matrix of the
formula is of length at most quadratic in the size of the game, and the maximum degree
of any polynomial in the formula is 3. We define the size of a game G as: |G| = |S| + T ,
where T =

∑

s,t∈S

∑

a,b∈Moves
|δ(s, a, b)(t)|. Using the complexity of deciding a formula in

the theory of real closed fields [3], which states that a formula with i quantifier blocks, where
each block has li variables, of p polynomials, has a time complexity bound of O(pO(Π(li+1))),
we get the following result.

Theorem 5.1. (Decision complexity for exact distance). For all concurrent game structures
G, given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in time

O(|G|O(|G|5)).

Approximation. Given a rational ǫ > 0, using binary search and O(log(θ2−θ1
ǫ

)) calls to
check the formula 5.5, we can obtain an interval [l, u] with u− l ≤ ǫ such that [s �1 t] lies
in the interval [l, u].

Corollary 3. (Approximation for exact distance). For all concurrent game structures
G, given a rational ǫ, and two states s and t, an interval [l, u] with u − l ≤ ǫ such that

[s �1 t] ∈ [l, u] can be computed in time O(log(θ2−θ1
ǫ

) · |G|O(|G|5)).

In contrast, the formula to check whether [s �1 t] ≤ r, for a rational r, as implied by
the definition of H�1(d)(s, t), that does not use Lemma 3, has five quantifier alternations
due to the inner sup, which when combined with the 2· |S|2 existentially quantified variables

in the sentence (5.5), yields a decision complexity of O(|G|O(|G|7)).

5.3. Computing the kernels. Similar to the case of turn-based games and MDPs, the
kernel of the simulation metric �1 for concurrent games can be computed as the limit of
the series �0

1, �
1
1, �

2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1 iff s ≡ t. For all

n ≥ 0, we have (s, t) ∈�n+1
1 iff the following sentence Φs is true:

∀a.Φ(dn, s, t, a) → a = 0,

where Φ is defined as in (5.4) and at step n in the iteration, the distance between any pair
of states u, v ∈ S is defined as follows,

∀u, v ∈ S. dn(u, v) =

{

0 if (s, t) ∈ �n
1

1 if (s, t) 6∈ �n
1

.

To compute the bisimulation kernel, we again proceed by partition refinement. For a set of
partitions Q0,Q1, . . ., where (s, t) ∈ V for V ∈ Qn implies (s, t) ∈≃n

1 , (s, t) ∈≃
n+1 iff the

following sentence Φb is true for the state pairs (s, t) and (t, s):

∀a.Φ(dn, s, t, a) → a = 0,

where Φ is again as defined in (5.4) and at step n in the iteration, the distance between any
pair of states u, v ∈ S is defined as follows,

∀u, v ∈ S. dn(u, v) =

{

0 if (s, t) ∈ ≃n
1

1 if (s, t) 6∈ ≃n
1

.
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Complexity. In the worst case we need O(|S|2) partition refinement steps for computing
both the simulation and the bisimulation relation. At each partition refinement step the
number of state pairs we consider is bounded by O(|S|2). We can check if Φs and Φb are true
using a decision procedure for the theory of real closed fields. Therefore, we need O(|S|4)
decisions to compute the kernels. The partitioning of states based on the decisions can be
done by any of the partition refinement algorithms, such as [25].

Theorem 5.2. For all concurrent game structures G, states s and t, whether s �1 t can

be decided in O(|G|O(|G|3)) time, and whether s ≃g t can be decided in O(|G|O(|G|3)) time.

6. Conclusion: Possible Applications and Open Problems

We have shown theoretical applications of game metrics with respect to discounted and
long-run average values of games. An interesting question regarding game metrics is related
to their usefulness in real-world applications. We now discuss possible applications of game
metrics.

• State space reduction. The kernels of the metrics are the simulation and bisimula-
tion relations. These relations have been well studied in the context of transition
systems with applications in program analysis and verification. For example, in
[19] the authors show that bisimulation based state space reduction is practical and
may result in an enormous reduction in model size, speeding up model checking of
probabilistic systems.

• Security. Bisimulation plays a critical role in the formal analysis of security proto-
cols. If two instances of a protocol, parameterized by a message m, are bisimilar
for messages m and m′, then the messages remain secret [7]. The authors use
bisimulation in probabilistic transition systems to analyze probabilistic anonymity
in security protocols.

• Computational Biology. In the emerging area of computational systems biology,
the authors of [30] use the metrics defined in the context of probabilistic systems
[12, 32, 33] to compare reduced models of Stochastic Reaction Networks. These re-
action networks are used to study intra-cellular behavior in computational systems
biology. The reduced models are Continuous Time Markov Chains (CTMCs), and
the comparison of different reduced models is via the metric distance between their
initial states. A central question in the study of intra-cellular behavior is estimating
the sizes of populations of various species that cohabitate cells. The inter-cellular
dynamics in this context is modeled as a stochastic process, representing the tem-
poral evolution of the species’ populations, represented by a family (X(t))t≥0 of
random vectors. For 0 ≤ i < N , N being the number of different species, Xi(t) is
the population of species Si at time t. In [26], the authors show how CTMCs that
model system dynamics can be reduced to Discrete Time Markov Chains (DTMCs)
using a technique called uniformization or discrete-time conversion. The DTMCs
are stochastically identical to the CTMCs and enable more efficient estimation of
species’ populations. An assumption that is made in these studies is that systems are
spatially homogeneous and thermally equilibrated; the molecules are well stirred in
a fixed volume at a constant temperature. These assumptions enable the reduction
of these systems to CTMCs and to DTMCs in some cases.



26 K. CHATTERJEE, L. DE ALFARO, R. MAJUMDAR, AND V. RAMAN

In the applications we have discussed, non-determinism is modeled probabilistically. In
applications where non-determinism needs to be interpreted demonically, rather than prob-
abilistically, MDPs or turn-based games would be the appropriate framework for analysis.
If the interaction between various sources of non-determinism needs to be modeled simulta-
neously, then concurrent games would be the appropriate framework for analysis. For the
analysis of these general models, our results and algorithms will be useful.

Open Problems. While we have shown polynomial time algorithms for the kernel of the
simulation and bisimulation metrics for MDPs and turn-based games, the existence of a
polynomial time algorithm for the kernel of both the simulation and bisimulation metrics
for concurrent games is an open problem. The existence of a polynomial time algorithm
to approximate the exact metric distance in the case of turn-based games and MDPs is an
open problem. The existence of a PSPACE algorithm for the decision problem of the exact
metric distance in concurrent games is an open problem.
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