
Logical Methods in Computer Science

Vol. 8 (1:27) 2012, pp. 1–35

www.lmcs-online.org

Submitted Mar. 2, 2010

Published Mar. 26, 2012

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC

SECOND-ORDER LOGIC

STEPHAN KREUTZER

School for Electrical Engineering and Computer Science, Technical University Berlin, Sekr. TEL
7-1, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
e-mail address: stephan.kreutzer@tu-berlin.de

Abstract. One of Courcelle’s celebrated results states that if C is a class of graphs of
bounded tree-width, then model-checking for monadic second order logic (MSO2) is fixed-
parameter tractable (fpt) on C by linear time parameterized algorithms, where the param-
eter is the tree-width plus the size of the formula. An immediate question is whether this
is best possible or whether the result can be extended to classes of unbounded tree-width.

In this paper we show that in terms of tree-width, the theorem cannot be extended
much further. More specifically, we show that if C is a class of graphs which is closed
under colourings and satisfies certain constructibility conditions and is such that the tree-
width of C is not bounded by log84

n then MSO2-model checking is not fpt unless Sat

can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically
bounded, then MSO2-model checking is not fpt unless all problems in the polynomial-time
hierarchy can be solved in sub-exponential time.

1. Introduction

Classical logics such as first-order or fragments of second-order logic have played a crucial
role in the development and analysis of query or specification languages in database theory,
formal language theory and many other areas. In these application areas, computational
logic problems such as satisfiability and model checking occur frequently and much effort
has gone into analysing the complexity of these computational tasks.

In this paper we are mostly concerned with model checking for monadic second-order
logic (MSO2), the extension of first-order logic by quantification over sets of elements
(i.e. vertices and edges). The model-checking problem for MSO2 is the problem to de-
cide for a given structure and a formula whether the formula is true in the structure. A
reduction from the Pspace-complete quantified boolean formula-problem (QBF) immedi-
ately shows that the model-checking problem for first-order and monadic second-order logic

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Parameterized Complexity, Algorithmic Meta-Theorems, Finite Model Theory.
Research supported by DFG grant KR 2898/1-3. Part of this work was done while the author participated

at the workshop ”Graph Minors” at Banff International Research Station, October 2008.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:27) 2012

c© S. Kreutzer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. KREUTZER

is Pspace-hard. In fact the problems are Pspace-complete [32]. The problem even re-
mains Pspace-complete on a fixed structure with only two elements, showing that the high
complexity is already generated by the formula alone.

However, especially in a database context, where a formula specifies a query and the
structure is the database, it can usually be assumed that the formula is reasonably small
whereas the database is very large. Vardi [32] therefore proposed the concept of data
complexity which is the complexity of model-checking against a fixed formula. For first-
order logic, it can be shown that the data complexity is always polynomial time whereas for
monadic second-order logic the model checking problem can already be NP-hard for a fixed
formula. See e.g. Section 3 for an example defining the NP-complete 3-colourability problem.
However, even for first-order logic, where the model-checking problem has polynomial time
data complexity, the algorithms witnessing this usually run in time |A|O(|ϕ|) and hence
in time exponential in the formula. As the database A was assumed to be huge, this is
unacceptable even for relatively small formulas ϕ.

A more refined analysis of the model-checking complexity separating the complexity
with respect to the formula from the complexity in terms of the database is offered by the
framework of parameterized complexity [8, 10]. In this framework, the input to a model-
checking problem again consists of a pair (A, ϕ), where A is a finite structure and ϕ is a
formula, but now we declare |ϕ| as the parameter. We call the problem fixed parameter
tractable (fpt), if it can be solved in time f(|ϕ|) · |A|c, where f is a computable function
and c a constant. Hence, we allow arbitrary amount of time with respect to the size of the
formula but only fixed polynomial time in the size of the structure. The problem is in the
parameterized complexity class XP if it can be solved in time |A|f(|ϕ|). The class FPT of
all fixed-parameter tractable problems is the parameterized analogoue of polynomial time
in classical complexity as model of tractable computation. The class XP takes over the role
of exponential time in classical complexity.

Model-checking problems have received particular attention in the context of parame-
terized complexity. See e.g. [24] for a discussion on query complexity in databases theory
with respect to the framework of parameterized complexity.

As the example of an MSO-formula defining 3-colourability shows, on general graphs
model-checking for monadic second-order logic is not fixed-parameter tractable unlessPtime =
NP. However, fixed-parameter tractability can be retained by restricting the class of admis-
sible structures, for instance to words or trees. Studying properties and complexity results
for monadic second-order logic on restricted classes of structures has a very long tradition in
computer science, going back to by now classical results by Büchi, Rabin, Doner, Thatcher
and Wright that on words and trees any formula of monadic second-order logic is equivalent
to a word- or tree-automaton and hence, in terms of parameterized complexity, the model
checking problem on such structures becomes fixed-parameter tractable as follows: given a
tree T and a monadic second-order logic formula ϕ, we first convert ϕ into an equivalent
tree-automaton, which is costly but only depends on |ϕ|, and then let the automaton run
on the tree T to verify T |= ϕ. The latter runs in linear time in the size of T , hence the
whole model checking algorithm runs in time f(|ϕ|) · |T | and is therefore fixed-parameter
linear.

The observation that even such a powerful logic as monadic second-order logic becomes
fixed-parameter linear on trees has been used in numerous contexts and applications. In
database theory in particular, it has influenced the development of query languages for XML
databases, a database model designed for data integration on the web. XML databases are

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 3

tree-like, in the sense that their skeleton is a tree (but there may be additional references
creating edges violating the tree-property). The tree-structure and unbounded depth of
XML databases necessitates new query languages such as XPath and others which allow to
navigate in the tree, especially along paths from a node to its direct or indirect successors. In
this context, monadic second-order logic has played the role of a yardstick as MSO-queries
can be evaluated in linear time yet prove to be very expressive.

To be able to fully explore the potential of logics such as monadic second-order logic or
first-order logic for future applications in databases and elsewhere, a thorough understand-
ing of the structural properties of models that allow for tractable model-checking would
prove most useful.

Ideally, for common logics L such as FO or variants of MSO, we aim at identifying a
property P such that the parameterized model-checking problem for L becomes tractable
on a class C of databases (or logical structures) if, and only if, C has the structural property
P (under reasonable complexity theoretical assumptions).

There may not always exist such a property that precisely captures tractability for a
logic, and sometimes we may have to compromise and impose further restrictions on the
class C, such as closure under sub-structures. But any reasonably precise characterisation
would have great potential for future use of these logics in query and specification languages.

In this paper we establish a first characterisation in this sense of monadic second-order
logic (MSO2), or more generally guarded second-order logic.

In 1990, Courcelle proved a fundamental result stating that every property of graphs
definable in monadic second-order logic (MSO2) can be decided in linear time on any class
C of structures of bounded tree-width (see below for a definition of tree-width). Besides
the applications to logic outlined above, Courcelle’s theorem has had significant impact on
the theory of parameterized problems on graphs. In the design of efficient algorithms on
graphs, it can often be used as a simple way of establishing that a property can be solved
in linear time on graph classes of bounded tree-width. Furthermore, results such as Cour-
celle’s theorem, usually called algorithmic meta-theorems, lead to a better understanding
how far certain algorithmic techniques range and establish general upper bounds for the
parameterized complexity of a wide range of problems. See [14, 19, 15] for recent surveys
on algorithmic meta-theorems.

From a logical perspective, Courcelle’s theorem establishes a sufficient condition for
tractability of MSO2 formula evaluation on classes C of structures: whatever the class C
may look like, if it has bounded tree-width, then MSO2-model checking is tractable on C.
An obvious question is how tight Courcelle’s theorem is, i.e. whether it can be extended
to classes of unbounded tree-width and if so, how “unbounded” the tree-width of graphs
in the class can be in general. This question is the main motivation for the work reported
here.

In this paper we establish an intractability result by showing that in its full gen-
erality, Courcelle’s theorem can not be extended much further to classes of unbounded
tree-width. Throughout the paper we consider structures over a binary signature σ :=
{R1, . . . , Rk, P1, . . . , Pl, c1, . . . , ck}, where the Ri are binary relation symbols, the Pi are
unary and the ci are constants. We require that σ contains at least two binary and two
unary relation symbols. See Section 3 for details. To give an example, an XML database
over a fixed schema can naturally be modelled by a structure over a binary signature where
each axis label yields a binary relation in the obvious way. Another intuitive way of looking

4 S. KREUTZER

at binary structures is to view them as coloured graphs, where the binary relations corre-
spond to edge colours and the unary relations to vertex colours. As it helps simplifying the
presentation, we will adapt this way of looking at binary structures.

To state our main result, we first need some notation.

Definition 1.1. Fix a binary signature σ as before. The Gaifman-graph G(A) of a σ-
structure A is the graph with the same universe as A and an edge {a, b} if there is a binary
Ri ∈ σ such that (a, b) ∈ RA

i or (b, a) ∈ RA
i . A class C of σ-structures is said to be closed

under colourings, if whenever A ∈ C and G(A) ∼= G(B) then B ∈ C.
Informally, whenever two σ-structures only differ in the colours of edges and vertices,

then they both belong to C or both do not.

Definition 1.2. Let σ be a binary signature. Let f : N → N be a function and p(n) be a
polynomial.

The tree-width of a class C of σ-structures is (f, p)-unbounded, if for all n ≥ 0

(1) there is a graph Gn ∈ C of tree-width tw(Gn) between n and p(n) such that tw(Gn) >
f(|G|) and

(2) given n, Gn can be constructed in time 2n
ε

, for some ε < 1.

The tree-width of C is poly-logarithmically unbounded if there are polynomials pi(n), i ≥ 0,
so that C is (logi, pi)-unbounded for all i.

See Section 2 for a definition of tree-width and related concepts. Essentially, the first
condition ensures that there are not too big gaps between the tree-width of graphs witnessing
that the tree-width of C is not bounded by f(n). The second condition ensures that we can
compute such witnesses efficiently, i.e. in time polynomial in their size. We will see below
why these conditions are needed. The following is the main result of the paper.

Theorem 1.3. Let σ be a binary signature with at least two binary and two unary relation
symbols. Let C be a class of σ-structures closed under colourings.

(1) If the tree-width of C is poly-logarithmically unbounded then MC(MSO2, C) is not in XP
and hence not fixed-parameter tractable unless all problems in NP (in fact, all problems
in the polynomial-time hierarchy) can be solved in sub-exponential time.

(2) If the tree-width of C is (logc, p)-unbounded, for some c > d · 84 and polynomial p of
degree d, then MC(MSO2, C) is not in XP and hence not fixed-parameter tractable unless
Sat can be solved in sub-exponential time.

See Section 3 for a precise definition of MSO2 over structures and Section 4 for a
definition of FPT and XP.

Essentially, as far as classes closed under colourings are concerned, if the tree-width
of a class of graphs is not logarithmically bounded, then it has intractable MSO2 model-
checking. In this sense the theorem shows that tractability results as general as Courcelle’s
are not possible for classes of more than logarithmic tree-width. The restriction to classes
closed under colourings is obviously a real restriction and it is possible that there are very
special classes of σ-structures of tree-width not bounded by log84 n but with tractable
model-checking. However, the usefulness of monadic second-order logic and tractability
results such as Courcelle’s theorem lie in their general applicability as specification and
query languages. After all, we want a query language to be tractable on all databases of a
certain structure, and not just if they have the right labels on their axes. And our result
shows that beyond logarithmic tree-width, MSO no longer fulfills this promise.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 5

Compared to Courcelle’s theorem, there is a gap between constant tree-width to which
Courcelle’s theorem applies and tree-width not bounded by log84 n to which our theorem
applies. The bound c > d · 84 can be improved to c > d · 48, see Section 9, and conceivably
can be improved further. However, Makowsky and Mariño [23] exhibit a class of graphs
whose tree-width is only bounded by log n, i.e. it is (logc n, n)-unbounded for all c < 1,
but where MSO2 model-checking is tractable. It is easily seen that the closure of this class
under colourings still admits tractable MSO2 model-checking. Hence, there is no hope to
extend our result to classes of tree-width less than logarithmic.

Let us give some applications of the theorem. For c > 0 let Cc be the class of all
graphs G of tree-width at most logc |G|. Then the closure under colourings has intractable
MSO2 model-checking, if c > 84. Similarly, intractability follows for the class of planar
graphs of tree-width at most logc n, as colours in this class can easily be encoded. All these
examples show that Courcelle’s theorem can not be extended to classes of graphs with only
poly-logarithmic or a logc n bound on the tree-width, for c > 84.

Following Courcelle’s theorem, a series of algorithmic meta-theorems for first-order
logic on planar graphs [12], (locally) H-minor-free graphs [11, 6] and various other classes
have been obtained. Again, no deep lower bounds, i.e. intractability conditions, are known
(see [19] for some bounds and [14, 19, 15] for recent surveys of the topic). The aim of this
paper is to initiate a thorough study of sufficient conditions for intractability in terms of
structural properties of input instances.
Related work. Lower bounds for the complexity of monadic second-order logic for
specific classes of graphs have been considered in the literature before. In [23], Makowsky
and Mariño show that if a class of graphs has unbounded tree-width and is closed under
topological minors then model-checking for MSO2 is not fixed-parameter tractable unless
P = NP.

In [4], Courcelle et al. show that unless Exptime = NExptime, model-checking for
MSO2 is not fixed-parameter tractable on the class of complete graphs.

More closely related to the result reported here, Grohe [14, Conjecture 8.3] conjectures
that MSO-model checking is not fixed-parameter tractable on any class C of graphs which
is closed under taking subgraphs and whose tree-width is not poly-logarithmically bounded,
i.e. there are no constants c, d such that tw(G) ≤ d · logc |G| for all G ∈ C.

Grohe’s conjecture was affirmed in [21, 20] with respect to certain technical conditions
similar to the notion of (f, p)-unboundedness defined above. It was proved that if C is closed
under sub-graphs and its tree-width is (logc, p)-unbounded for some small constant c, then
MSO2 model-checking is not fpt on C unless SAT can be solved in sub-exponential time.
The proof of this result is considerably more complex and much more technical than the
proof reported here, especially in its combinatorial core.

It is worth noting that the two results are somewhat incomparable. In particular, closure
under sub-structures in this context is a stronger requirement than it might seem at first
sight: while tree-width is preserved by taking sub-graphs, logarithmic or poly-logarithmic
tree-width is not. I.e., a sub-graph of a graph of tree-width at most k also has tree-width
at most k, but if G has tree-width at most logarithmic in its order, this may not be the
case for sub-graphs. Hence, the results in [20] are much more restrictive in this sense than
our result here. On the other hand, they do not require closure under colourings and are
therefore much more general in this aspect.

Organisation. We fix our notation and review the graph theoretical notions we need in
Section 2. Monadic second-order logic is defined in Section 3 and its complexity is reviewed

6 S. KREUTZER

in Section 4. We give an informal and intuitive presentation of the main proof idea in
Section 5. The proof is presented in full detail in Sections 6 to 8. We conclude in Section 9.

Acknowledgements. I would like to thank Mark Weyer for pointing out that the result
proved here readily extends to problems in the polynomial time hierarchy. Many thanks
also to the referees for many helpful comments improving the presentation of the paper.

2. Preliminaries

In this section we fix our notation and review concepts from graph theory needed below.

2.1. General Notation. If M is a set we write P(M) for the set of all subsets of M . If
M,N are two sets, we define M ∪̇N as the disjoint union of M and N , obtained by taking
the union of M and a copy N ′ of N disjoint from M . We also apply this notation to graphs
and other structures for which a union operation is defined.

We write Z for the set of integers and N for the set of non-negative integers.

2.2. Graphs and Colourings. We will use standard notation from graph theory and refer
to [7] for background on graphs and details on the graph theoretical concepts introduced in
this section.

All graphs in this paper are finite, undirected and simple, i.e. without multiple edges
or loops. We write V (G) for the set of vertices and E(G) for the set of edges in a graph G.
We will always assume that V (G) ∩ E(G) = ∅.

The order |G| of a graph is defined as |V (G)| and its size ||G|| as the number of edges.
For l ≥ 1 we denote the l-clique, the complete graph on l vertices, by Kl.
A graph H is a sub-division of G (a 1-subdivision) if H is obtained from G by replacing

edges in G by paths of arbitrary length (of length 2, resp.). H is a topological minor of G
if a subgraph G′ ⊆ G is isomorphic to a sub-division of H.

A graph H is a minor of G if it can be obtained from a sub-graph G′ ⊆ G by contracting
edges. An equivalent, sometimes more intuitive, characterisation of the minor relation can
be obtained using the concept of images. H is a minor of G if there is a map µ mapping each
v ∈ V (H) to a tree µ(v) ⊆ G and each edge e ∈ E(H) to an edge µ(e) ∈ E(G) such that if
u 6= v ∈ V (H) then µ(v)∩µ(u) = ∅ and if {u, v} ∈ E(H) then µ({u, v}) = {u′, v′} for some
u′ ∈ V (Tu) and v

′ ∈ V (Tv). µ is called the image map and
⋃

v∈V (H) µ(v)∪
⋃

e∈E(H) µ(e) ⊆ G

is called the image of H in G. It is not difficult to see that H � G if, and only if, there is
an image of H in G.

Let G be a graph and A,B ⊆ V (G). A set S ⊆ V (G) is an A-B-separator if there is
no path in G \ S from a vertex in A to a vertex in B. An A-B-path P ⊆ G is a path in G
with one endpoint in A and the other in B.

Theorem 2.1 (Menger). Let G be a graph and A,B ⊆ V (G). The minimal cardinality |S|
of an A-B-separator S ⊆ V (G) is equal to he maximum number of vertex disjoint A-B-paths
in G.

Finally, we will be using the concept of intersection graphs.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 7

Definition 2.2. Let G be a graph and P,Q be two sets of pairwise disjoint paths in G.
The intersection graph I(P,Q) is defined as the graph with vertex set P∪̇Q where P,Q are
adjacent if, and only if, P ∩Q 6= ∅.

2.3. Tree-Width and Obstructions. Tree-width is a measure of similarity of graphs to
being a tree that was introduced by Robertson and Seymour in their graph minor project
([28]), even though equivalent concepts have been studied under different names before
[17, 29].

Definition 2.3. A tree-decomposition of a graph G is a pair (T, (Bt)t∈V (T)) where T is a
tree and Bt ⊆ V (G) such that

(1) for all v ∈ V (G), the set {t ∈ V (T) : v ∈ Bt} is non-empty and connected in T and
(2) for every edge e := {u, v} ∈ E(G) there is a t ∈ V (T) such that u, v ∈ Bt.

The width of a tree-decomposition is maxt∈V (T) |Bt|−1 and the tree-width tw(G) of a graph
G is the minimal width of any of its tree-decompositions.

A class C of graphs has bounded tree-width if there is a constant c ∈ N such that
tw(G) ≤ c for all G ∈ C.

Many natural classes of graphs are found to have bounded tree-width, for instance
series-parallel graphs or control-flow graphs of goto-free C programs [31], and many generally
NP-hard problems can be solved efficiently on graph classes of small tree-width. This is
witnessed in particular by Courcelle’s Theorem 4.2 below.

In this paper, we will mostly be concerned with graphs of large tree-width and structural
information we can gain about a graph once we know that its tree-width is large. This leads
to the concept of obstructions, i.e. structures we can find in any graph of large enough tree-
width. In this paper, we will use two such obstructions, brambles and grids.

Definition 2.4. Let G be a graph. Two subgraphs X,Y ⊆ G touch if X ∩ Y 6= ∅ or there
is an edge in G linking X and Y , i.e. with one endpoint in X and the other in Y . A bramble
in G is a set B of pairwise touching connected subgraphs of G. A set S ⊆ V (G) is a cover
for B if S ∩ V (B) 6= ∅ for all B ∈ B. The order of B is the minimum cardinality of a cover
of B. The size of B is the number |B| of sets in B.

Brambles provide a dual characterisation of tree-width as shown in the following theo-
rem.

Theorem 2.5 ([30]). A graph G has treewidth at least k if, and only if, G contains a
bramble of order at least k + 1.

Brambles will form the basis of our algorithmic part below. However, often it is much
easier to work with another obstruction, known as grids. A (k × l)-grid Gk×l is a graph as
in Figure 1. Formally, Gk×l is defined as the graph with

V (Gk×l) := {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ l} and

E(Gk×l) := {{(i, j), (i′ , j′)} : |i− i′|+ |j − j′| = 1}.

Grids play a very special role in connection with tree-width as every graph of large
tree-width contains a large grid as minor.

8 S. KREUTZER

Figure 1: A (4× 5)-grid.

Theorem 2.6 (Excluded Grid Theorem [27, 26]). There is a function f : N → N such that
any graph of tree-width at least f(k) contains a (k × k)-grid as a minor.

Unfortunately, the best upper bound on this function f known to date is exponential in
k. The results reported in this paper would have much simpler proofs if one could establish
a polynomial upper bound for the function f in the previous theorem.

3. Monadic Second-Order Logic

In this section we will introduce monadic second-order logic. Intuitively, monadic second-
order logic is the extension of first-order logic by quantification over sets of elements. That is,
we can use formulas of the form ∃Xϕ(X) which says that there exists a set X which satisfies
the formula ϕ. However, in the context of graphs there are two natural options for what
constitutes an element: we can allow quantification over sets of vertices or quantification
over sets of edges. This leads to two different logics which are sometimes referred to as
MSO1 and MSO2, respectively, where MSO2 allows quantification over sets of edges and
vertices whereas MSO1 only allows quantification over sets of vertices. MSO2 is much
more expressive than MSO1 as we can easily say that a graph contains a simple path which
contains every vertex, a property that is not definable in MSO1. See below for an example of
a formula defining this property. For the purpose of this paper it is convenient to introduce
MSO2 as a logic on the incidence representation of graphs, which we will formally define
below.

3.1. Signatures and Structures. We assume familiarity with basic notions of mathemat-
ical logic (see e.g. [9]). A signature σ is a finite set of constant symbols c ∈ σ and relation
symbols R ∈ σ where each relation symbol is equipped with its arity ar(R) ∈ N.

A σ-structure A consists of a finite set A, the universe of A, an r-ary relation RA ⊆ Ar

for each relation symbol R ∈ σ of arity r := ar(R) and a constant cA ∈ A for each constant
symbol c ∈ σ. We will denote structures by German letters A,B,D and their universes by
corresponding Roman letters A,B,D.

In this paper we will only consider binary signatures, where the maximal arity of relation
symbols is 2. An example of classes of structures over binary signatures are the skeletons of
XML databases, i.e. XML databases where the actual data values are ignored. For instance,
the database

<libraryholdings>

<book>

<author>YM</author>

<title>EIAS</title>

</book>

<book>

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 9

<author>RD</author>

<title>GT</title>

</book>

</libraryholdings>

can naturally be modelled as a structure D over the signature σ := {book, author, title},
where the elements of the universeD corresponds to the individual tags <libraryholdings>
etc. and edges represent the child relation.

Another natural interpretation of binary signatures is that structures over these signa-
tures are coloured graphs, i.e. the binary relations represent edges coloured by the relation
name and the unary relations represent vertex colours.

To work with logics on graphs we have to specify how we want to represent graphs as
logical structures. Let σinc := {V,E,∈} be a signature, where V,E are unary and ∈ is a
binary relation symbol. We can view a graph G as a σinc-structure G := G(G) with universe
V (G)∪̇E(G) and V G := V (G), EG := E(G) and x ∈G e if x ∈ V (G), e ∈ E(G) and x and
e are incident in G. This is known as the incidence representation of graphs as opposed to
the natural representation of graphs G as structures G over the signature {E}, where the
universe is V (G) and EG := E(G).

We now extend the definition of tree-width from graphs to arbitrary relational struc-
tures.

Definition 3.1. Let σ be an at most binary signature. The tree-width tw(A) of a σ-structure
A is defined as the tree-width tw(G(A)) of its Gaifman-graph (see Definition 1.1).

In the context of graphs and tree-width it might be worth noting that the tree-width
of a graph is the same as the tree-width of its standard or incidence representation.

Definition 3.2. For the rest of this paper we fix a signature σcol := {V,E,∈, B,R,C0, C1},
where ∈ is a binary relation symbol and V,E,B,R,C0, C1 are unary.

We define the signature σG := {V,E,∈, C0, C1} and σord := σG ∪ {≤}.

3.2. Definition of Monadic Second-Order Logic. The class of formulas of monadic
second-order logic over a signature σ, denoted MSO[σ], is defined as the extension of first-
order logic by quantification over sets of elements. That is, in addition to first-order vari-
ables, which we will denote by small letters x, y, ..., there are unary, or monadic, second-order
variables X,Y, ... ranging over sets of elements. Formulas of MSO[σ] are then built up induc-
tively by the rules for first-order logic with the following additional rules: if X is a monadic
second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ]
with the obvious semantics where, e.g., a formula ∃Xϕ is true in a σ-structure A with uni-
verse A if there is a subset U ′ ⊆ A such that ϕ is true in A if the variable X is interpreted by
U ′. We denote this by (A, U ′) |= ϕ(X). If ϕ(x) is a formula with a free first-order variable
x, A is a structure and a ∈ A, we write A |= ϕ[v], or (A, v) |= ϕ, to say that ϕ is true in A

if x is interpreted by a. We write ϕ(A) for the set {v ∈ A : A |= ϕ[v]}.
As explained above, when viewed as a logic on graphs, the expressive power of monadic

second-order logic depends on whether a graph is represented by its standard representation
or by its incidence representation. It has become common terminology to refer to MSO on
graphs represented by their standard representation as MSO1 and to use MSO2 to indicate
that graphs are represented by their incidence structures.

10 S. KREUTZER

We will follow this terminology. Therefore, if σ is an at most binary signature, we
define MSO2[σ] to be monadic second-order logic over the signature σ∪̇{V,E,∈} where σ-
structures are represented as incidence structures in the obvious way. The main theorem
stated in the introduction can therefore equivalently be stated as a theorem on structures
over a signature τ := {V,E,∈, R1, . . . , Rk, U1, . . . , Ul, c1, . . . , cs} containing at least two
binary relation symbols Ri and two unary relation symbols Ui.

In this paper we will almost exclusively use the incidence representation and therefore
agree that MSO always refers to MSO2 unless explicitly stated otherwise. Also, we will
always make the signatures we work with precise to avoid confusion.

We will not distinguish notationally between a graph G and its incidence representation
G and will simply write G. To simplify the presentation of formulas, we agree on the
following notation.

Notation. We will write ∃X ⊆ V ϕ and ∃F ⊆ Eϕ as abbreviation for ∃X
(

(∀xx ∈ X →
x ∈ V) ∧ ϕ

)

and ∃F
(

(∀xx ∈ F → x ∈ E) ∧ ϕ
)

to indicate that X is a set of vertices and F
is a set of edges. ∀X ⊆ V and ∀F ⊆ E are defined analogously.

We write e ∩X 6= ∅ for ∃u ∈ V (u ∈ e ∧ u ∈ X) and similarly e ⊆ X for ∀u(u ∈ e →
u ∈ X) to say that X contains an endpoint (both endpoints, resp.) of e. Also, we will use
notation such as X ∩ Y 6= ∅, X ⊆ Y , ... with the obvious meaning.

We will often use set variables P which are intended to contain the edges of a path in
a graph. The following notation helps to simplify formulas speaking about paths. If P is a
variable denoting a set of edges then we write x ∈ V (P) for the formula ∃e(e ∈ P ∧ x ∈ e)
expressing that x occurs as an endpoint of an edge e in P . Furthermore, we write {x, y} ∈ P

for the formula x 6= y ∧ ∃e ∈ P (x ∈ e ∧ y ∈ e) saying that {x, y} is an edge in P .
Finally, we write ∃≤2xϕ for the formula ∃x∃y

(

ϕ(x)∧ ϕ(y) ∧¬∃z(z 6= x∧ z 6= y ∧ ϕ(z)
)

expressing that there are at most two vertices satisfying ϕ. We will also use ∃=1,∃≤1 with
the obvious meaning.

3.3. Examples.

Example 3.3. To give an example consider the following MSO-formula ϕ over the signature
σinc.

∃C1, C2, C3 ⊆ V
(

∀x ∈ V

3
∨

i=1

x ∈ Ci ∧ ∀e ∈ E
∧

1≤i≤3

¬e ⊆ Ci

)

,

where x, y are first-order variables and C1, C2, C3 are second-order variables. The formula
expresses in a σinc-structure G that there are three sets of vertices so that every vertex
occurs in at least one of the sets but no edge has both endpoints in the same set. Hence,
G |= ϕ if, and only if, G is 3-colourable. ⊣
Example 3.4. As a second example we define a formula ϕHam true in a graph G if, and
only if, the graph contains a Hamiltonian path, i.e. a simple path containing every vertex.

The formula conn(P) defined as

conn(P) := ∀X ⊆ V
[(V (P) ∩X 6= ∅ ∧

∀e ∈ P (e ∩X 6= ∅ → e ⊆ X)

)

→ V (P) ⊆ X
]

says that if X is any set of vertices containing a vertex x ∈ V (P) which is closed under
edges e ∈ P , i.e. if one endpoint of e is in X then both are, then X must contain all vertices

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 11

of V (P). Clearly, this formula can only be true of a set P of edges if P induces a connected
sub-graph. The next formula expresses that P induces an acyclic graph.

ac(P) := ¬∃s, t ∈ V ∃P,P ′ ⊆ E
(

s 6= t ∧ conn(P) ∧ conn(P ′) ∧ V (P) ∩ V (P ′) = {s, t}
)

The formula states that there are no two distinct vertices s and t and two connected sub-
graphs P and P ′ such that s and t are contained both in P and P ′ but otherwise P and P ′

are vertex disjoint. Clearly, any cyclic graph contains such s, t, P, P ′ but no acyclic graph
does.

Hence, conn(P) ∧ ac(P) says that P induces a tree. Now the formula

path(P) := ac(P) ∧ conn(P) ∧ ∀x ∈ V ∃≤2e(e ∈ P ∧ x ∈ e)
says that P is a tree and every vertex has degree at most 2 in the graph induced by P .
Hence, P is a path. Finally,

ϕHam := ∃Ppath(P) ∧ V ⊆ V (P)

expresses that the graph contains a Hamiltonian path. Here we crucially need quantification
over sets of edges (which is implicit in the incidence encoding of graphs) as the Hamiltonian-
path property is not expressible in MSO without edge set quantification. ⊣
Example 3.5. We now give a much more substantial example which will be used in the
proof of the main results of this paper. In particular, we will show that grids can be defined
in monadic second-order logic.

We first establish the following characterisation of grids which can then easily be turned
into an MSO-formulation.

Let G be a graph and H,V be two sets of pairwise vertex disjoint paths, which we think
of the horizontal and vertical paths in the grid. Then H ∪ V is a grid if, and only if, the
following conditions are true.

(1) Any two P ∈ V, Q ∈ H intersect in exactly one vertex and every vertex of the graph is
contained in the intersection of two such paths P ∈ V, Q ∈ H.

(2) There are distinct L,R ⊆ V, the left-most and right-most path of the grid, such that
every Q ∈ H intersects L and R in one endpoint. Analogously, there are distinct
T,B ⊆ V, the upper-most and lower-most path of the grid, such that every P ∈ H
intersects T and B in one endpoint.

(3) Let us define an order ≤P on the vertex set of a path P ∈ V such that x ≤P y, for
x, y ∈ V (P) if x is closer to the endpoint of P in T than y, i.e. if the unique path from
y to the endpoint of P in T also contains x. We write x <P y for the corresponding
strict order. Analogously, we define x ≤Q y, for Q ∈ H and x, y ∈ V (Q), if x is closer
to endpoint of Q in L, i.e. the unique path from y to the endpoint of Q in L contains
x. Again x <Q y denotes the strict variant.

Let P,P ′ ∈ V and Q,Q′ ∈ H and let x ∈ V (P ∩Q), x′ ∈ V (P ′∩Q) and y ∈ V (P ∩Q′)
and y′ ∈ V (P ′ ∩Q′). Then,
• x <P y if, and only if, x′ <P ′ y′ and
• x <Q x

′ if, and only if, y <Q′ y′.
That is, we require that all “horizontal” paths Q,Q′ ∈ H cross all vertical paths

P,P ′ ∈ V in the same order, seen from the top, and that all “vertical” paths P,P ′ ∈ V
cross all horizontal paths Q,Q′ ∈ H in the same order seen from the “left”.

12 S. KREUTZER

It is easily seen that if H is the set of horizontal paths and V the set of vertical paths in a
grid, then V,H satisfy these conditions. Conversely, let V,H be two sets of pairwise disjoint
paths satisfying conditions 1 to 3 then the graph induced by V,H is a grid.

We show next how these conditions can be formalised by a formula ϕgrid(H,V). To
simplify the presentation, we will use second-order variables P,Q,V,H which we will always
ensure to be interpreted by sets of pairwise disjoint paths.

We first define some basic formulas which will be used frequently later on.
The formula

set-o-dis-path(P) := P ⊆ E ∧ ac(P) ∧ ∀x∃≤2e ∈ P(x ∈ e)

expresses that P is a set of edges inducing an acyclic sub-graph in which every vertex has
degree at most 2. Hence P must be a set of pairwise vertex disjoint paths.

The next formula

maxpath(P,P) := P ⊆ E ∧ P ⊆ P ∧ path(P) ∧ ∀P ′
(

P ⊆ P ′ ∧ P ′ ⊆ P → ¬path(P ′)
)

states that P is a maximal path in P, hence it one of the paths in the set P of pairwise
disjoint paths. We will write ∃P ∈ P as abbreviation for ∃Pmaxpath(P,P) and likewise for
∀P ∈ P.

Finally,
ep(x, P) := path(P) ∧ ∃=1e ∈ P (x ∈ e)

defines that x is an endpoint of the path P .
Now the conditions above can easily be defined in MSO as follows. The formula ϕ0 :=

set-o-dis-path(V)∧set-o-dis-path(H) ensures that V andH are interpreted by sets of pairwise
vertex disjoint paths.

The formula

ϕ1(V,H) :=
∀P ∈ V∀Q ∈ H∃=1x ∈ V (x ∈ V (P) ∩ V (Q)) ∧
∀x ∈ V ∃=1P∃=1Q

(

x ∈ V (P) ∧ x ∈ V (Q)
)

expresses the first condition above.
The formula ϕ2(V,H, L,R, T,B)

ϕ2 :=
L ∈ V ∧R ∈ V ∧ T ∈ H ∧B ∈ H ∧
∀P ∈ V∃x1, x2 ∈ V (P)

(

ep(x1, P) ∧ ep(x2, P) ∧ x1 ∈ V (T) ∧ x2 ∈ V (B)
)

∧
∀Q ∈ H∃x1, x2 ∈ V (Q)

(

ep(x1, Q) ∧ ep(x2, Q) ∧ x1 ∈ V (L) ∧ x2 ∈ V (R)

expresses L,R, T,B satisfy the requirements outlined in Condition 2.
Finally, we define a formula expressing Condition 3. The formula

ϕP (x, y, P) :=
∃p ∈ V (P) ∩ V (T) ∧
∀P ′

(

P ′ ⊆ P ∧ path(P ′) ∧ p ∈ V (P ′) ∧ y ∈ V (P ′) → x ∈ V (P ′)
)

defines the ordering ≤P on a path P ∈ V. It states that x ≤P y if every sub-path of P
containing the endpoint in T and y also contains x. Analogously, the formula

ϕQ(x, y,Q) :=
∃p ∈ V (Q) ∩ V (L) ∧
∀Q′

(

Q′ ⊆ Q ∧ path(Q′) ∧ p ∈ V (Q′) ∧ y ∈ V (Q′) → x ∈ V (Q′)
)

defines the ordering ≤Q on a path P ∈ H.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 13

Hence, the formula

ϕ3 := ∀P,P ′ ⊆ V ∀Q,Q′ ⊆ H

∃x ∈ V (P ∩Q)∃x′ ∈ V (P ′ ∩Q)
∃y ∈ V (P ∩Q′)∃y′ ∈ V (P ′ ∩Q′)
(

ϕP (x, y, P) ↔ ϕP (x
′, y′, P ′)

)

∧
(

ϕQ(x, x
′, Q) ↔ ϕQ(y, y

′, Q′)
)

defines Condition 3.
Taken together, the formula

ϕgrid−border(L,R, T,B,V,H) :=

3
∧

i=0

ϕi

expresses that V,H form a grid with borders L, T,R,B, clock-wise from left. The formula
ϕgrid can therefore be defined as ∃L, T,R,B ⊆ E ϕgrid-border(L,R, T,B,V,H). ⊣

As the examples show, once we have established a few basic formulas such as path
and ac, many properties of graphs can very easily be expressed in MSO. We are therefore
particularly interested in the problem of deciding whether a given MSO-formula is true in
a graph G.

3.4. MSO-Transductions. A useful tool in the proof of our main results in this paper
is the concept of logical transduction, which for our purposes play a similar role to many-
one reductions in complexity theory. Essentially, a transduction is a way of defining one
logical structure inside another. This concept is usually referred to as interpretations in
model theory, see e.g. [18] for details. However, we will use interpretations in the “wrong”
direction and therefore follow Courcelle’s notation and call them transductions (see e.g. [5]).

Definition 3.6. Let σ and τ be signatures and let X be a tuple of monadic second-order
variables. An MSO-transduction of σ to τ with parameters X is a tuple Θ :=

(

ϕvalid,

ϕuniv(x), ϕ∼(x, y), (ϕR(x))R∈τ
)

of MSO[σ∪̇X]-formulas, where the arity of x in ϕR(x) is

ar(R), such that for all σ-structures A and interpretations Y ⊆ A of X with (A, Y) |=
ϕvalid, ϕ∼ defines an equivalence relation on ϕuniv(A) and if R ∈ τ or arity r and a :=
a1, . . . , ar, b := b1, . . . , br ∈ Ar are tuples such that A |= ϕ∼(ai, bi) for all i then A |= ϕR(a)
if, and only if, A |= ϕR(b).

With any transduction Θ we associate a map taking a σ-structure A and Y ⊆ A such
that (A, Y) |= ϕvalid to a τ -structure B with universe B := ϕuniv(A, Y)/ϕ∼(A,Y) := {[v]∼ :

(A, Y) |= ϕuniv(v)} where [v]∼ denotes the equivalence class of v under the equivalence re-
lation defined by ϕ∼(A,Y). For R ∈ τ of arity r := ar(R) we define RB := {([a1], . . . , [ar]) :
(A, Y) |= ϕR(a1, . . . , ar)}.

For any σ-structure A we define

Θ(A) := {Θ(A, Y) : Y ⊆ A, (A, Y) |= ϕvalid}.
If C is a class of σ-structures then

Θ(C) :=
⋃

{Θ(A) : A ∈ C}.
Furthermore, any interpretation Θ also defines a translation of MSO[τ]-formulas ϕ to

MSO[σ]-formulas ϕ′ by replacing occurrences of relations R ∈ τ by their defining formulas

14 S. KREUTZER

ϕR ∈ Θ in the usual way (see [18] for details). For notational convenience we define
Θ(ϕ) := ϕvalid ∧ ϕ′. The following lemma is then easily proved.

Lemma 3.7. Let Θ be an MSO-transduction of σ in τ with parameters X. For any σ-
structure A and assignment Y ⊆ A to X such that (A, Y) |= ϕvalid and any MSO[τ]-formula
ϕ we have Θ(A, Y) |= ϕ if, and only if, (A, Y) |= Θ(ϕ).

We will be using the previous lemma as summarised in the next corollary.

Corollary 3.8. Let Θ := (ϕvalid, ...) be an MSO-transduction of σ in τ with parameters X.
For any σ-structure A and MSO[τ]-formula ϕ we have

A |= ∃X(ϕvalid ∧Θ(ϕ)) if, and only if, there exists B ∈ Θ(A) s.t. B |= ϕ.

Example 3.9. We will define a transduction Θ := (ϕvalid, ϕuniv, ϕ∼, ϕV , ϕE , ϕ∈) with pa-
rameters P,Q from σinc to σinc so that for any σinc-structure A and two sets P,Q of disjoint
paths in A, Θ(A,P,Q) is the incidence representation of the intersection graph I(P,Q) (see
Definition 2.2).

The formula ϕvalid is simply defined as

ϕvalid(P,Q) := set-o-dis-path(P) ∧ set-o-dis-path(Q)

stating that P and Q are sets of pairwise disjoint paths (see Example 3.5 for the formula
set-o-dis-path).

To define the ϕV , ϕE , recall that the vertices of I := I(P,Q) are the paths in P∪̇Q
and that two vertices P,Q are adjacent if the paths intersect. We will represent a path
P ∈ P∪̇Q, and hence the corresponding vertex in I, by the set of edges of A occurring only
in P and in no other path in P∪̇Q. Note that as P and Q are sets of pairwise disjoint
paths, such edges must always exist, whereas it could happen that every vertex of P also
occurs as a vertex of another path.

Towards this goal, the formula

uni-edge(x, P) := x ∈ P ∧ ∀Q
(

P 6= Q ∧ (maxpath(Q,P) ∨maxpath(Q,Q)) → ¬x ∈ Q
)

,

where P 6= Q is an abbreviation for ∃x ∈ V (P) \ V (Q) saying that P and Q are not the
same path, states that x is an edge unique to P .

The formula

ϕVuniv(x;P,Q) :=
∃P

(

maxpath(P,P) ∧ uni-edge(x, P)
)

∨
∃Q

(

maxpath(Q,Q) ∧ uni-edge(x,Q)
)

defines the set of edges unique to a path in P ∪̇Q. Correspondingly, the formula

ϕV∼(x, y;P,Q) :=
∃P

(

maxpath(P,P) ∧ uni-edge(x, P) ∧ uni-edge(y, P)
)

∨
∃Q

(

maxpath(Q,Q) ∧ uni-edge(x,Q) ∧ uni-edge(y,Q)
)

defines two vertices of I to be equivalent if the are unique edges of the same path in P∪̇Q.
To define the edges of I, we will represent an edge {P,Q} in I by the set of vertices in

V (P ∩Q). The formula

ϕEuniv(x;P,Q) := x ∈ V ∧ ∃P∃Q
(

maxpath(P,P) ∧maxpath(Q,Q) ∧ x ∈ V (Q ∩ P)
)

defines the set of all vertices which occur in the intersection of two paths. Correspondingly,
the formula ϕE∼(x, y;P,Q) defined as

∃P∃Q
(

maxpath(P,P) ∧maxpath(Q,Q) ∧ x ∈ V (Q ∩ P) ∧ y ∈ V (Q ∩ P)
)

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 15

defines two vertices to be equivalent if they occur together in the intersection of the same
two paths.

Hence, the vertex set of the incidence representation of I is defined by ϕuniv(x;P,Q) :=
ϕVuniv ∨ ϕEuniv and ϕ∼(x, y;P,Q) := ϕV∼ ∨ ϕV∼ and the relations E and V are defined by
ϕE(x;P,Q) := ϕEuniv and ϕV (x;P,Q) := ϕVuniv.

All that remains is to define the formula ϕ∈(x, y,P,Q). But this can easily be done as
a vertex x in I, say corresponding to a path P ∈ P and therefore represented by the set of
unique edges of P , is incident to an edge e of I, corresponding to the intersection of two paths
P ′ ∈ P and Q ∈ Q and thus represented by the set V (P ′)∩V (Q), if V (P ′)∩V (Q′) ⊆ V (P),
i.e. if e ∈ V (P). This is expressed by the following formula

ϕ∈(x, e,P,Q) :=
ϕV (x) ∧ ϕE(e) ∧
∃P

(

(maxpath(P,P) ∨maxpath(P,Q)) ∧ uni-edge(x, P) ∧ e ∈ P
)

.

This completes the transduction Θ. ⊣

4. The Complexity of Monadic Second-Order Logic

Themodel checking problem MC(MSO) for MSO is defined as the problem, given a structure
G and a formula ϕ ∈ MSO, to decide if G |= ϕ. By a reduction from the Pspace-complete
Quantified Boolean Formula Problem (QBF) – the problem to decide whether a quantified
Boolean formula is true – we easily get that MC(MSO) is Pspace-hard (see [32]). In fact,
the problem is Pspace-complete as membership in Pspace is easily seen.

However, the hardness result crucially uses the fact that the formula is part of the input
(and in fact holds on a fixed two-element structure), whereas we are primarily interested
in the complexity of checking a fixed formula expressing a graph property in a given input
graph. We therefore study model-checking problems in the framework of parameterized
complexity (see [10] for background on parameterized complexity).

Definition 4.1. Let C be a class of σ-structures. The parameterized model-checking problem
p-MC(MSO, C) for MSO on C is defined as the problem to decide, given G ∈ C and ϕ ∈
MSO[σ], if G |= ϕ. The parameter is |ϕ|.

p-MC(MSO, C) is fixed-parameter tractable (fpt), if there exists a computable function
f : N → N and a c ∈ N such that for all G ∈ C and ϕ ∈ MSO[σ], G |= ϕ can be decided in

time f(|ϕ|) · |G|c. The problem is in the class XP, if it can be decided in time |G|f(|ϕ|).
In Example 3.3 we have seen that the NP-complete 3-Colourability problem is definable

in MSO. Hence, MC(MSO,Graphs), the model-checking problem for MSO on the class of
all graphs, is not fixed-parameter tractable unless P = NP. However, Courcelle [3] proved
that if we restrict the class of admissible input graphs, then we can obtain much better
results. Recall the definition of tree-width of structures from Definition 3.1.

Theorem 4.2 ([3]). There is an algorithm which, given a graph G in its incidence repre-
sentation and an MSO-formula ϕ, decides “G |= ϕ?” in time f(|ϕ|+ tw(G)) · |G|.

Hence, MC(MSO, C) is fixed-parameter tractable on any class C of structures of tree-
width bounded by a constant.

Courcelle’s theorem gives a sufficient condition for MC(MSO, C) to be tractable. The
obvious counterpart are sufficient conditions for intractability, i.e. what makes MSO-model
checking hard? Garey, Johnson and Stockmeyer [13] proved that 3-Colourability remains

16 S. KREUTZER

NP-hard on the class of planar graphs of degree at most 4. It follows that unless P = NP,
MC(MSO,Planar) is not fixed-parameter tractable, where Planar denotes the class of
planar graphs. However, this result only indirectly relates tractability of MSO model-
checking on a class C to its tree-width. It would therefore be interesting to investigate
whether Courcelle’s theorem can be extended to class of unbounded tree-width or conversely,
which bounds on the tree-width of a class C prohibit tractable MSO-model-checking. As we
have seen above, large tree-width of graphs implies the existence of large grid-minors and
it is well-known that MSO-model checking is hard on the class of grids. We will make use
of this fact below and therefore repeat the statement here.

Definition 4.3. Recall from Definition 3.2 the signature σG := {V,E,∈, C0, C1} of coloured
grids, where V,E,C0, C1 are unary relation symbols and ∈ is a binary relation symbol. A
σG-structure G is a coloured l × l-grid if its σinc-reduct W|{V,E,∈} is an l × l-grid.

G encodes a word w := w1 . . . wn ∈ Σn with power d if l ≥ nd, and C0 ∩ C1 = ∅ and if
{v1,i : 1 ≤ i ≤ l} are the vertices on the bottom row then v1,i ∈ C0 if wi = 0 and v1,i ∈ C1

if wi = 1, for all 1 ≤ i ≤ n.

The following theorem is a well-known fact about the complexity of MSO.

Theorem 4.4. For d ≥ 2 let Gd be the class of coloured grids encoding words with power
d. Then MC(MSO,Gd) is not in XP unless P = NP.

The theorem follows immediately from the following lemma, whose proof is standard.

Lemma 4.5. Let M be a non-deterministic nd-time bounded Turing-machine. There is a
formula ϕM ∈ MSO such that for all words w ∈ Σ⋆, if G is a coloured grid encoding w with
power d, then W |= ϕM if, and only if, M accepts w. Furthermore, the formula ϕM can be
constructed effectively from M . The same holds if M is an alternating Turing-machine with
a bounded number of alternations, as they are used to define the polynomial-time hierarchy.

Proof sketch. The main idea of the proof is to use existential set quantification and the grid
to guess the time-space diagram of a successful run R of the Turing-machine M on input
w. Figure 2 illustrates this idea.

The grid on the left hand side encodes the word 010 through the three vertices in C0 and
C1. We can then use existentially quantified monadic second-order variables Q0, Q1, Q2, Qf ,
S0, S1, S� so that Qs contains a vertex (i, j) if the Turing machine M would be in state
qs after i steps in the run R with the read/write head scanning position j. A vertex (i, j)
appears in S0 if after i steps the tape cell j contains symbol 0, and likewise for S1, S�
denoting cells containing 1 and the blank symbol �.

That these existentially quantified variables indeed encode a valid and accepting run of
M on input w can easily be formalised in first-order logic, as the content of position (i, j)
only depends on the content of (i − 1, j − 1), (i − 1, j), (i − 1, j + 1) and hence is a local
property.

The reason we use a grid encoding a word with power d is that we need the grid to be
large enough so that we can guess the complete run of the machine M on input w, and if
M is nd time bounded, then it can use up to nd steps and nd tape cells.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 17

Coloured grid encoding 010 Quantifiers guessing a run of M

Figure 2: Guessing a run of a Turing-machine in MSO.

5. A High Level Description of the Main Proof

In this section we give a high level description of the proof of the main theorem 1.3. We
want to show that if C is a class of σ-structures whose tree-width is (logc n, p)-unbounded,
for some large enough c and polynomial p, and which satisfies the conditions of the theorem,
then model-checking for MSO is not in XP on the class C. At the core of the proof is a
reduction from MSO model-checking on C to model-checking of MSO on the class of coloured
grids which we have already seen to be intractable. We now present a first idea of how to do
this. The idea will not work but it helps to illustrate how the theorem is actually proved.

We show intractability of p-MC(MSO, C) by reducing an NP-complete problem P to
p-MC(MSO, C) as follows. Given a word w of length n, we choose a graph G ∈ C of large
enough tree-width. By the excluded grid theorem 2.6, G contains a large grid minor. Such
a grid-minor can be defined in monadic second-order logic: we have already seen how to
say that a graph is a grid, all we need to do is to extend this to say that a graph contains a
grid-minor. This requires some work, but can be done. As C is closed under colourings, we
can use vertex colours to encode the word w in this grid-minor as indicated in the previous
section. Hence, given w we have constructed a graph G ∈ C of large enough tree-width
and from this get a graph Gw with a large grid-minor encoding the word w. Furthermore,
this grid-minor encoding w can be defined by MSO-formulas, more precisely there is an
MSO-transduction taking the graph Gw and mapping it to the coloured grid H encoding w.
Hence, if M is a Turing-machine deciding P , we can now use the formula ϕM constructed
in Lemma 4.5 such that H |= ϕM if, and only, if M accepts the word w if, and only if,
w ∈ P . By definition of transductions, this gives us a formula ψM which is true in Gw if,
and only if, ϕM is true in H if, and only if, w ∈ P .

Now, using the conditions 1 and 2 of (f, p)-unboundedness, we get that we can always
find such graphs G and Gw efficiently. Furthermore, as C is closed under colourings, Gw
is also in C. Hence, if p-MC(MSO, C) was in XP, i.e. Gw |= ψM could be decided in time

|Gw|f(|ψM |), then P could be decided in polynomial time as ϕM does not depend on the
input w and the exponent is therefore fixed.

The problem with this approach is that the tree-width of G is only logarithmic in |G|
and hence G, and thus Gw, can be of size exponential in its tree-width. Furthermore,
the best known bound for the size of grids we are guaranteed to find by the excluded grid
theorem is only logarithmic in the tree-width of the graph. Hence, in order to guarantee that
G contains a grid of size |w| we would need to construct a graph of tree-width exponential

18 S. KREUTZER

in the length |w| of w which could therefore be of double exponential size in |w|. This
completely destroys the argument above, as deciding Gw |= ψM in time |Gw|f(|ψM |) only
yields that we can decide w ∈ P in time doubly exponential in w and this certainly can be
done for NP-problems.

To get the result we want, we need to find grids of size polynomial in the tree-width of
G. For, suppose for every graph G we could find a grid of size polynomial in its tree-width.
Then, given w we could use the conditions of (f, p)-unboundedness to construct a graph
G of tree-width polynomial in w, and hence containing a grid of size |w| × |w|, whose size

is bounded by 2o(|w|) (this will be explained in detail in Section 8). We could then colour
this grid to encode w as before to obtain Gw. Now, if Gw |= ψM could be decided in time

|Gw|f(|ψM |), then this would imply that w ∈ P could be decided in time
(

2o(w)
)f(|ψM |)

which

is the same as
(

2f(|ψM |)·o(w)
)

and hence in time sub-exponential in w. And sub-exponential
solvability of NP-complete problems in case p-MC(MSO, C) ∈ XP is exactly what we claim
in Theorem 1.3.

Obtaining sub-exponential time algorithms for problems such as TSP or Sat is an
important open problem in complexity theory and the common assumption is that no such
algorithms exist. This has led to the exponential-time hypothesis (ETH) which says that
there is no such sub-exponential time algorithm for Sat, a hypothesis widely believed in
the community.

Hence, to prove our main result we need to find grids of size polynomial in the tree-
width of graphs. The existence of such grids is a major open problem in structural graph
theory and remains open to date. Instead of grids we will therefore use a replacement
structure for grids, called grid-like minors, recently introduced by Reed and Wood [25]. A
grid-like minor of order l in a graph G is a pair P,Q of sets of pairwise disjoint paths such
that their intersection graph I(P,Q) contains an l× l-grid as a minor. It was shown in [25]
that every graph G contains a grid-like minor of order polynomial in its tree-width (see the
next section for details).

Our method for proving Theorem 1.3 is therefore exactly as outlined above, only that
instead of defining grid-minors and colouring them appropriately, we will define grid-like
minors and colour those appropriately. This, however, is significantly more complicated
than the case of grid-minors.

One of the problems is that the grid-like minor is actually a grid-minor of the intersection
graph of two sets of pairwise disjoint paths. Hence, to define it in MSO we will have to
define these sets of disjoint paths, then define their intersection graph and then define a
grid-minor in it. This already is somewhat more complicated than defining pure grids.

The second, and major, challenge is to colour this grid-like minor so that it encodes
a word w. For this, we need to colour the vertices and edges of the graph G so that this
induces an appropriate colouring of the grid-minor of the intersection graph of two sets of
disjoint paths. All this needs to be done in a way that once we have coloured the vertices
and edges of G, there are no two different grid-like minors in G for which the colouring
induces different words.

For this, we will define a combinatorial structure, called pseudo-walls, and show that
every graph G contains a pseudo-wall of order polynomial in the tree-width of G, that we
can colour the graph G in a way that it induces a unique colouring of this pseudo-wall,
that we can define the pseudo-wall in MSO and, finally, that we can define an appropriately
coloured grid in this pseudo-wall. Pseudo-walls and their colourings are defined in Section 6.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 19

Figure 3: Simple pseudo-wall

Definability of these structures in MSO is proved in Section 7. Finally, we complete the
proof in Section 8.

6. Pseudo-Walls in Graphs

This section contains the graph theoretical and algorithmic aspects of the proof outlined
in the previous section. We first define the notions of simple and complex pseudo-walls
and show that any graph of large enough tree-width can be expanded to a σcol-structure
containing either a simple or complex pseudo-wall of large order.

A simple pseudo-wall is a structure as illustrated in Figure 3. Essentially, it consists of
a long path L whose edges are coloured either red (solid horizontal lines in the figure) or
blue (dashed lines) together with a set Q of pairwise vertex-disjoint paths (represented by
the curved lines in the figure). The first edge of L is blue but the last is red so that this
gives the path a direction. Furthermore, the blue edges partition the path into segments
formed by the red edges and for any pair of such segments there is a path in Q linking
them. All vertices in a segment have the same colour with respect to C0, C1, i.e. they are
either all in C1 or all in C0 or all uncoloured. Finally, the vertices coloured by C0∪C1 occur
to the left of the long path L. This will allow us to define a coloured clique from a simple
pseudo-wall where the vertices of the clique are formed by the red segments of L and the
edges are defined by the paths in Q. Formally, a simple pseudo-wall is defined as follows.

Definition 6.1 (Simple Pseudo-Wall). A simple pseudo-wall of order k is a σcol-structure

A := (A,V A, EA,∈A, BA, RA, CA
0 , C

A
1) defined as follows. Let h := (k2).

• A := {v1, . . . , vs+1, e1, . . . , es, } ∪ {uij , eil : 1 ≤ i ≤ h, 1 ≤ j ≤ si + 1, 1 ≤ l ≤ si} for some
s, s1, . . . , sh > 0.

• V A := {v1, . . . , vs+1, u
i
j : 1 ≤ i ≤ h, 1 ≤ j ≤ si + 1}.

• EA := {e1, . . . , es, eij : 1 ≤ i ≤ h, 1 ≤ j ≤ si}.
• ∈A:= {(a, b) : a ∈ V, b ∈ E, a ∈ b}.
• L := (v1, e1, v2, . . . , es, vs+1) forms a path of length s.
• There is a tuple I := (i1, . . . , ik) of indices 1 ≤ ij ≤ s, for 1 ≤ j ≤ k, such that
i1 := 1, ij < ij+1 < ij + h, for all 1 ≤ j < h, and ih < s. For all 1 ≤ j ≤ k, we call
{vij+1, . . . , vij+1

} ⊆ V (P) the j-th interval Ij of P , where we set ih+1 := s + 1. Then

RA := {el : l 6∈ I} and BA := {eij : ij ∈ I}.
• CA

0 , C
A
1 ⊆ {v1, . . . , vs+1} are pairwise disjoint sets such that for all 1 ≤ j ≤ k and

C ∈ {C0, C1}, either Ij ⊆ CA or Ij ∩ CA = ∅. Furthermore, for all j, if Ij ⊆ C0 ∪ C1

and i < j then Ii ⊆ C0 ∪ C1.

20 S. KREUTZER

• Q := {(ui1, ei1, . . . , eisi , visi) : 1 ≤ i ≤ h} forms a set of pairwise disjoint paths Pi,j ,

1 ≤ i < j ≤ k, such that Pi,j links Ii and Ij, i.e. ui1 ∈ Ii, uisi+1 ∈ Ij and uij ∈A eij and

uij ∈A eij−1 for all suitable j.

Let l ≤ k be maximal with Il ⊆ C0 ∪ C1. The word w encoded by A is the sequence
w := w1, . . . , wl ∈ {0, 1}∗ with wi := 1 if Ii ⊆ CA

1 and wi := 0 if Ii ⊆ CA
0 .

Note that the intersection graph of the set Q and the set of paths comprising the
intervals forms a complete graph on k vertices. The colouring of intervals by C1 and C0,
respectively, yields a colouring of this clique in an obvious way. We will show in the next
section that if a σcol-structure B contains such a simple pseudo-wall A encoding a word
w as sub-structure, we can use this in a similar way to Section 3 to simulate the run of a
Turing machine on input w.

However, we may not always be able to find sufficiently large simple pseudo-walls in
a σcol-structure. Instead we may have to settle for a more complicated structure, called
complex pseudo-walls.

Definition 6.2 (Complex Pseudo-Wall). A complex pseudo-wall of order k is a σcol-structure
A := (A,V A, EA,∈A, BA, RA, CA

0 , C
A
1) defined as follows.

• A := {v1, . . . , vs+1, e1, . . . , es, } ∪ {uij , eil : 1 ≤ i ≤ r1 + r2, 1 ≤ j ≤ si + 1, 1 ≤ l ≤ si} for
some r1, r2, s, s1, . . . , sr > 0.

• V A := {v1, . . . , vs+1} ∪ {uij : 1 ≤ i ≤ r1 + r2, 1 ≤ j ≤ si + 1}.
• EA := {e1, . . . , es} ∪ {eij : 1 ≤ i ≤ r1 + r2, 1 ≤ j ≤ si}.
• L := (v1, e1, v2, . . . , es, vs+1) forms a path of length s.
• BA := {e1}.
• RA := {e2, . . . , es}.
• CA

0 , C
A
1 ⊆ {v1, . . . , vs+1} and CA

0 ∩ CA
1 = ∅.

• P := {(ui1, ei1, . . . , eisi , visi) : 1 ≤ i ≤ r1} and Q := {(ui1, ei1, . . . , eisi , visi) : r1 < i ≤ r2} form

sets of pairwise disjoint paths Pi := (vi1, e
i
1, . . . , u

i
si+1) and Qi := (ui1, e

i
1, . . . , e

i
si , v

i
si) so

that every path P ∈ P intersects L in one endpoint of P but has no other vertex with L
in common.

Furthermore, I(P,Q) contains an image µ of a complete graph Kk2 as topological
minor such that if U := {v1, . . . , vs+1} ∩ (CA

0 ∪CA
1) then for each u ∈ U there is a branch

set µu containing a path P ∈ P with one endpoint being u and if u 6= u′ ∈ U then
µu ∩ µu′ = ∅.

Let i1, . . . , in be the indices of the vertices vi ∈ CA
0 ∪ CA

1 . The word w encoded by A is
w := w1, . . . , wn where wj := 1 if vij ∈ CA

1 and wj := 0 if vij ∈ CA
0 .

Figure 4 illustrates a complex pseudo-wall encoding the word 1010. Here, the horizontal
lines and bullets form the path P . The dashed line at the top-left indicates the “blue” edge
e1 and the horizontal solid lines the other edges e2, . . . , es. The vertical lines indicate the
paths in P and the curved lines the paths in Q. The grey areas represent the branch sets of
the clique minor. Note that the figure is only an illustration as the paths in Q as displayed
in the figure do not generate an intersection graph with a large clique-minor as required by
complex pseudo-walls.

The motivation behind complex pseuo-walls is that the path P is used to encode a word
w. The “blue” edge e1 only serves the purpose of giving the path P an orientation, with
e1 marking the left end of P so that the word encoded in the wall is always read in the

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 21

Figure 4: Complex pseudo-wall

correct order. The sets P and Q form an intersection graph containing a topological clique
minor. The requirement that every coloured vertex occurs in exactly one branch set of this
minor ensures that we can assign colours to the branch sets and therefore, given a complex
pseudo-wall, we can define from it a vertex coloured clique. Furthermore, we can define an
order on the vertices of this clique induced by the order defined by the path L. This will be
enough to define a coloured grid in this clique which encodes the same word as the original
complex pseudo-wall. Details of this construction will be given in the next section.

Definition 6.3 (pseudo-walls). A σcol-structure A is a pseudo-wall of order k encoding a
word w if it a simple or complex pseudo-wall of order k encoding w.

We will see later that pseudo-walls in σcol-structures can be defined in MSO. The main
result of this section is the following theorem showing that any graph G can be expanded,
or coloured, to a σcol-structure A containing a pseudo-wall of order polynomial in the tree-
width of G.

Theorem 6.4. There is a polynomial-time algorithm and a constant c such that given a
graph G such that

(tw(G)
√

log tw(G)

)
1

3 ≥ c ·m7 + 1

and a word w ∈ {0, 1}∗ of length at most m computes a σcol-expansion of G containing a
pseudo-wall of order m encoding w.

In [25] Reed and Wood consider an alternative to grid-minors as obstructions to small
tree-width which they call grid-like minors. A grid-like minor of order l in a graph G is a
set P of paths in G such that the intersection graph I(P) contains a Kl-minor. Reed and
Wood’s proof is existential, in that it does not directly give a way of computing grid-like
minors. In [21], Kreutzer and Tazari show that the individual parts of this proof can be
made algorithmic and a polynomial-time algorithm for computing grid-like minors is given.

Grid-like minors are the key to finding pseudo-walls. However, we cannot use Reed and
Wood’s result directly but have to adapt their proof slightly to get the structures we need.
The following is essentially the proof from [25] and the algorithmic components from [21]
needed to make it algorithmic, suitably adapted to yield pseudo-walls instead of grid-like
minors.

The starting point of the proof are brambles. By Theorem 2.5, every graph G contains
a bramble of order tw(G) + 1. However, these can be of size exponential in |G| and, as
proved by Grohe and Marx [16], there is an infinite family of graphs where brambles of

22 S. KREUTZER

optimal order necessarily are of exponential size. However, if we settle for brambles whose
order is only polynomial in the tree-width, polynomial size can always be guaranteed. The
existence of such brambles was proved in [16], a polynomial-time algorithm for computing
them was given in [21].

Theorem 6.5 ([16, 21]). There exists a polynomial time algorithm which, given a graph G,

constructs a bramble in G of size O(tw(G)) and order Ω((tw(G)√
log tw(G)

)1/3).

We first need the following lemma, whose simple proof is included for the reader’s
convenience.

Lemma 6.6 (Birmelé, Bondy, Reed [1]). Let B be a bramble in a graph G. Then G contains
a path intersecting every element in B.
Proof. Choose a bramble element B ∈ B and a vertex v ∈ V (B). We initialise a path
P := (v) and maintain the invariant that for one endpoint u of P there is a bramble
element B ∈ B such that V (B) ∩ V (P) = {u}. The invariant trivially holds for P = (v).
So suppose such a path P has been constructed and let u be the endpoint of P as stated
in the invariant. While there still is a bramble element B′ ∈ B not containing a vertex of
P choose a path P ′ from u to B′ in B ∪ B′ as short as possible. Such as path exists as B
and B′ touch. As P ′ is chosen as short as possible, one endpoint of P ′ is the only element
of P ′ in B′. Further, as u is the only element of P in B, P · P ′, i.e. the path obtained from
adding P ′ to P at the vertex u is still a path satisfying the invariant. We proceed until
there are no bramble elements left which have an empty intersection with P .

Clearly, if P is a path in G intersecting every element of a bramble B then the length
of P must be at least the order of B.
Lemma 6.7 (Reed and Wood [25]). Let G be a graph containing a bramble B of order
at least kl, for some k, l ≥ 1. Then G contains l pairwise vertex disjoint disjoint paths
P1, . . . , Pl s.t. for all 1 ≤ i < j ≤ l, G contains k parwise vertex disjoint paths between Pi
and Pj.

Proof. By Lemma 6.6, there is a path P := (v1 . . . vn) in G intersecting every element of B
and hence of length at least kl. For 1 ≤ i ≤ j ≤ n let Pi,j be the sub-path of P induced
by {vi, . . . , vj}. Let t1 be the minimal integer such that the sub-bramble B1 := {B ∈ B :
B ∩ P1,t1 6= ∅} has order k. Given ti,Bi with i < l, let ti+1 be the minimal integer such
that the sub-bramble Bi+1 := {B ∈ B : B∩Pti+1,ti+1

6= ∅, B∩P1,ti = ∅} has order k. Since
B has order kl, in this way we obtain integers t1 < t2 < · · · < tl ≤ n. Let Pi := Pti−1+1,ti ,
where t0 := 0. By construction, the Pi are pairwise disjoint.

Suppose there is a set S ⊆ V (G) of cardinality |S| < k separating some Pi and Pj .
Hence, S is neither a hitting set of Bi nor of Bj and hence there is Bi ∈ Bi and Bj ∈ Bj
such that S ∩ (Bi ∪ Bj) = ∅. As Bi and Bj touch it follows that S does not separate Bi
and Bj and therefore does not separate Pi and Pj . Hence, any set separating Pi and Pj
must be of cardinality at least k.

By Menger’s theorem 2.1, the minimal cardinality of a set separating Pi and Pj is equal
to the maximum number of pairwise vertex disjoint paths between Pi and Pj , and hence
there are at least k pairwise vertex disjoint paths between Pi and Pj as required.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 23

A graph G is d-degenerated if every subgraph of G contains a vertex of degree at most
d. Mader [22] proved that every graph with no Kl-minor is 2l−2-degenerated. Let d(l) be
the minimal integer such that every graph with no Kl-minor is d(l)-degenerated. Kostocha
and, independently, Thomason showed that d(l) ∈ θ(l

√
log l). Bollobás and Thomason [2]

proved that there is a constant c so that if a graph has average degree at least cp2 it contains
a Kp as a topological minor. Here we need an algorithmic version of this result, proved in
[21].

Theorem 6.8 ([2, 21]). There is a constant d such that if a graph G has average degree
at least dp2, then G contains Kp as a topological minor. Furthermore, a model of Kp in G
can be found in polynomial time.

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. Set c := d where d is the constant from Theorem 6.8. Let k :=

(m2) ·
(

(m2)− 1
)

· d ·m2 + 1. Let w :=
(tw(G)√

log tw(G)

)
1

3 . Then w ≥ k ·m+ 1.

By Theorem 6.5, we can compute in polynomial time a bramble B in G of order at
least k ·m+ 1. Therefore, by Lemma 6.7, G contains a path A of length k ·m+1. Fix one
endpoint p of A and let e0 be the unique edge of A incident to p. Then, A\{p} has length at
least k ·m and can be decomposed into m disjoint paths P1, . . . , Pm and, for 1 ≤ i < j ≤ m,
G contains a set Qi,j of k disjoint paths between Pi and Pj. The edge e0 needs to be set
aside for the case of simple pseudo-walls below.

For 1 ≤ i < j ≤ m and 1 ≤ a < b ≤ m such that {i, j} 6= {a, b}, let Hi,j,a,b :=
I(Qi,j,Qa,b) be the intersection graph of Qi,j ∪ Qa,b.

Complex Pseduo-Walls. Suppose there are i, j, a, b as above such that Hi,j,a,b has a sub-
graph of average degree at least d ·m2. We define a σcol-expansion A of G which contains
a complex pseudo-wall of order m encoding w as follows.

By Theorem 6.8, H := Hi,j,a,b contains a Km as topological minor and we can compute
an image of it in polynomial time. Set L := Pi. Fix one endpoint of L and let e1 be the
edge incident to it in L. We define BA := {e1} and RA := E(L) \ {e1}. This defines a
direction on L where the endpoint incident to e1 is the left-most, or smallest.

This direction induces an ordering ⊏ on the paths in Qi,j where for P,P ′ ∈ Qi,j we
define P ⊏ P ′ if V (P) ∩ V (L) is smaller than V (P ′) ∩ V (L). (Note that any P ∈ Qi,j has
exactly one vertex in common with L, which is its endpoint in L.)

Let X1, . . . ,Xm be the connected subgraphs in H constituting the image of Km in
H. W.l.o.g. we assume that each Xi contains a path from Qi,j . (There can only be at
most one Xi consisting of a single path from Qa,b.) For each 1 ≤ i ≤ m let pi be the
smallest vertex in V (L) with respect to ⊏ contained in a path in Xi. We order the sets
Xi by letting Xi < Xj if pi ⊏ pj. W.l.o.g. we assume that X1 < X2 < · · · < Xm.

Then, CA
0 := {pi : 1 ≤ i ≤ |w|, wi = 0} and CA

0 := {pi : 1 ≤ i ≤ |w|, wi = 1}, where
w := w1, . . . , w|w|

It is now immediately clear from the construction, that A contains a complex pseudo-
wall of order m encoding w: the wall is constituted by L, P := Qi,j and Q := Qa,b and the

colours RA, BA, CA
0 , C

B
1 .

Simple Pseduo-Walls. Now suppose that the average degree of all sub-graphs of Hi,j,a,b,
where {i, j} 6= {a, b}, is less than d ·m2, i.e. all Hi,j,a,b are d ·m2-degenerated.

24 S. KREUTZER

Let H be the intersection graph of
⋃

{Qi,j : 1 ≤ i < j ≤ m}. Obviously, H is
(m
2

)

-
colourable with each Qi,j being a colour class. Each colour class has k vertices and each
pair of colour classes induce a d ·m2-degenerated graph. The following lemma is from [25].

Lemma 6.9 ([25]). Let r ≥ 2 and let V1, . . . , Vr be the colour classes in an r-colouring of
a graph H. Suppose that |Vi| ≥ n := r(r − 1)c + 1, for all 1 ≤ i ≤ r, and H[Vi ∪ Vj] is
c-degenerated for distinct 1 ≤ i < j ≤ r. Then there exists an independent set {x1, . . . , xr}
of H such that each xi ∈ Vi.

Furthermore, a simple minimum-degree greedy algorithm will find such an independent
set in polynomial time.

Applying the lemma to our setting, with n = k and r =
(m
2

)

and c = d ·m2, we obtain
an independent set I in H with one vertex in each colour class and such a set can be found
in polynomial time by a simple greedy algorithm. That is, in each set Qi,j there is one path
Qi,j such that Qi,j ∩Qa,b = ∅ whenever {i, j} 6= {a, b}.

We will now define a σcol-expansion A of G containing a simple pseudo-wall of order
m encoding w. Consider the long path A constructed above. Recall that there is one edge
e0 of A incident to an endpoint p and that L \ {p} is partitioned into P1, . . . , Pm. As
P1, . . . , Pm are pairwise disjoint, between any Pi and Pi+1 there is one edge ei of L not
contained in Pi ∪ Pi+1. Let B

A := {e0, e1, . . . em−1} and RA := E(A) \BA. Furthermore, if
w := w1, . . . , wl, with l ≤ m, then C0 :=

⋃{V (Pi) : wi = 0} and C1 :=
⋃{V (Pi) : wi = 1}.

By construction, A contains a simple pseudo-wall of order m encoding w, which is
generated by the long path A, the colours BA, RA, CA

0 , C
A
1 and the paths in I.

This concludes the proof of Theorem 6.4.

7. Intractability of MSO on Pseudo-Walls

The main purpose of this section is to show that MSO is intractable on the class of pseudo-
walls. For this purpose, we will lift Lemma 4.5 from grids to pseudo-walls.

To get the result we will exhibit a sequence of MSO-transductions that define coloured
grids in pseudo-walls. To simplify the presentation, we will do so in several steps. Obviously,
the transductions will be different for simple and complex pseudo-walls. The sequence of
transductions works as follows. We will first exhibit a transduction defining coloured grids in
coloured ordered cliques. We will then show that there are transductions defining coloured
ordered cliques in simple and complex pseudo-walls, where in the latter we will need one
further intermediate step.

7.1. Coloured ordered cliques. Recall from Definition 3.2 the signatures σord and σG.

Definition 7.1. A coloured ordered clique is a σord-structure A := (U, V,E,∈, C0, C1,≤) so
that

• (U, V,E,∈) is the incidence representation of a complete graph
• ≤ is a linear order on V and
• C0, C1 ⊆ V , C0∩C1 = ∅ and C0∪C1 forms an initial subset of ≤, i.e. there is a v ∈ C0∪C1

such that C0 ∪C1 = {u ∈ V : u ≤ v}.
The order of A is |V |. Let v1, . . . , vn be the vertices in C0 ∪C1 ordered by ≤. The word w
encoded by A is w := w1, . . . , wn where wi := 1 if vi ∈ C1 and wi := 0 if wi ∈ C0.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 25

Lemma 7.2. There is an MSO-transduction Θ from σord to σG with parameters P,Q such
that if A is a coloured ordered clique of order k encoding a word w then Θ(A) contains a

coloured (
√
k ×

√
k)-grid encoding w. Furthermore, every B ∈ Θ(A) is a grid encoding w.

Proof. We define the transduction Θ := (ϕvalid, ϕuniv, ϕ∼, ϕV , ϕE , ϕ∈, ϕC0
, ϕC1

) as follows.
The transduction is quite simple as the grid we seek to define is actually a sub-structure

of the given coloured clique. The idea is that the parameters P,Q will be enforced to be
interpreted by two sets of pairwise vertex disjoint paths, the vertical and horizontal paths
in a grid. All we need to say is that they indeed form a grid, that the bottom row of the
grid contains all coloured vertices from left to right in the order given by ≤.

So let ϕV (x) := x ∈ V , ϕE(x) := x ∈ E and ϕuniv(x) := ϕV ∨ ϕE . We set ϕ∼(x, y) :=
x = y. Furthermore, we define ϕC0

(x) := x ∈ C0 and ϕC1
(x) := x ∈ C1. What is

left to define is ϕvalid. Recall the formula ϕgrid-border(L,R, T,B,P,Q) from Example 3.5
defining that P,Q are two sets of pairwise vertex disjoint paths inducing a grid such that
bottom, left, top, and right rows are B,L, T,R, respectively. We will also use the formulas
maxpath, ep and set-o-dis-path defined in this example.

ϕvalid will enforce P,Q to be interpreted by sets of pairwise disjoint paths inducing a
grid whose bottom row contains the coloured vertices in the correct order. As before we
will therefore use the notation Q ∈ Q as shorthand for Q ⊆ Q ∧maxpath(Q,Q).

ϕvalid(P,Q) := set-o-dis-path(P) ∧ set-o-dis-path(Q) ∧
∃B,T ∈ Q ∃L,R ∈ P

[

ϕgrid-border(P,Q, B, T,R,L) ∧
∃x ∈ V (B)x ∈ C0 ∪ C1 ∧ ∀y(y ∈ C0 ∪ C1 ↔ y ∈ V (B) ∧ y ≤ x) ∧
∀x, y ∈ V (B)

(

ϕ≤B
(x, y) ↔ x ≤ y

)]

where

ϕ≤B
(x, y,B) := ∃u ∈ V (B) ∧ ep(u,B) ∧ ∀yu ≤ y ∧

∀P ⊆ B(path(P,B) ∧ u ∈ V (P) ∧ y ∈ V (P) → x ∈ V (P)).

The formula ϕ≤B
states that one endpoint u of B is the ≤-smallest element in the

structure and then defines a linear order on B where x is smaller than y if the distance from
x to u in B is smaller than the distance from y to u. This is formalised by stating that any
sub-path of B which contains u and y must also contain x.

ϕvalid then states that P,Q are sets of pairwise disjoint paths defining a grid with
bottom row B ∈ Q and that the vertices in C0 and C1 all occur as an initial subpath on B
in the order given by ≤. Hence, this grid encodes the same word as the initial structure.

This shows that every structure in Θ(A) is a grid encoding w. Furthermore, if P,Q are

chosen as the vertical and horizontal paths in a
√
k×

√
k-grid which exists as a sub-structure

of the clique A, then Θ((A,P,Q)) has order
√
k ×

√
k. This concludes the proof.

Corollary 7.3. Let M be a non-deterministic nd-time bounded Turing-machine. There is
a formula ϕM ∈ MSO such that for all words w ∈ Σ⋆, if G is a coloured ordered clique
of order |w|d encoding w, then G |= ϕM if, and only if, M accepts w. Furthermore, the
formula ϕM can be constructed effectively from M .

The same holds if M is an alternating Turing-machine with a bounded number of al-
ternations, as they are used to define the polynomial-time hierarchy.

26 S. KREUTZER

Proof. The corollary follows immediately from Lemma 4.5, Corollary 3.8 and the previous
Lemma 7.2.

7.2. Simple Pseudo-Walls.

Lemma 7.4. There is an MSO-transduction Θ from σcol to σord with parameters P,Q, L
such that if A is a σcol-structure containing a simple pseudo-wall of order k encoding a word
w then Θ(A) contains a coloured ordered clique of order k encoding w and all B ∈ Θ(A)
are coloured cliques encoding w.

Proof. We define a transduction Θ := (ϕvalid, ϕuniv, ϕ∼, ϕV , ϕE , ϕ∈, ϕC0
, ϕC1

, ϕ≤) as follows.
Recall that a simple pseudo-wall consists of a long path L containing k “blue” edges which
partition the path into k sub-paths P1, . . . , Pk and a set Q of pairwise vertex disjoint paths
such that for every pair 1 ≤ i < j ≤ k there is a path in Q linking Pi and Pj.

The parameters P,Q will be enforced to be interpreted by sets of pairwise vertex
disjoint paths and L will be enforced to be a simple path. The intended interpretation is
that L is the long path, P are the segments of L without the blue edges and Q are the paths
connecting the segments in P. All this will be defined in ϕvalid. But first we define the other
formulas, where as usual we use the notation P ∈ P as shortcut for P ⊆ P∧maxpath(P,P).

Note, that the paths in Q may intersect various segments P ∈ P. Hence, in principle
every vertex of a segment P ∈ P can also be contained in some Q ∈ Q. This means that we
cannot take the vertices of P ∈ P to represent P in the transduction, as this would make
it difficult to guarantee that ϕ∼ defines an equivalence relation. However, as every segment
P ∈ P has a non-empty intersection with more than one path in Q and the paths in Q are
pairwise disjoint, every P ∈ P must contain at least one edge not contained in any Q ∈ Q.
Similarly, every Q ∈ Q contains an edge not contained in any other path. We will therefore
take these unique edges to represent P and Q, resp.

We define formulas uni-edgeP(e, P,P,Q) := e ∈ P ∧ ¬∃Q ∈ Q e ∈ E(Q) which defines
an edge e to be an edge of P not contained in any path in Q. Analogously we define
uni-edgeQ(e,Q,P,Q) := e ∈ Q ∧ ¬∃P ∈ P e ∈ P and set

uni-edge(e, P) :=
(

P ∈ P ∧ uni-edgeP(e, P)
)

∨
(

P ∈ Q ∧ uni-edgeQ(e, P)
)

.

Let ϕV (x) := ∃P ∈ P uni-edgeP(x, P) and

ϕV∼(x, y) := ∃P ∈ P uni-edgeP(x, P) ∧ uni-edgeP(y, P).

We define ϕE(e) := ∃Q ∈ Q ∧ uni-edgeQ(e,Q) and

ϕE∼(x, y) := ∃Q ∈ Q uni-edgeQ(x,Q) ∧ uni-edgeQ(y,Q).

Finally, ϕ∼(x, y) := ϕV∼ ∨ ϕE∼ and ϕuniv := ϕV ∨ ϕE . Note that ϕV and ϕE define disjoint
sets and therefore ϕ∼ defines an equivalence relation on ϕuniv.

To define the colours, we set

ϕCi
(x) := ∃P ∈ P ∧ uni-edgeP(x, P) ∧ ∃u ∈ V (P) ∧ u ∈ Ci,

for i ∈ {0, 1}.
The ordering is defined by

ϕ≤(x, y) := ∃p ∈ V (L)∃e ∈ L
(

ep(p, L) ∧ p ∈ e ∧ e ∈ B ∧

∀P ⊆ L
(

path(P) ∧ p ∈ V (P) ∧ y ∈ E(P) → x ∈ E(P)
)

)

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 27

The formula ϕ≤(x, y) first defines the endpoint p of the long path L which is incident
to a blue edge in L (there is only one blue edge incident to an endpoint) and then defines
x to be smaller than y if every sub-path P of L containing p and y also contains x. This
defines the natural ordering on L where the blue edge marks the left, i.e. smaller, end.

Finally, we have to define the main formula ϕvalid which will need to say that the
parameters P,Q, L indeed define a simple pseudo-wall as required. For this, we need to
enforce the following requirements ϕ1 to ϕ5.

ϕ1 := path(L) ∧ L = B ∪R ∧
¬∃u ∈ V (L)∃e, e′ ∈ L

(

e 6= e′ ∧ e ∈ B ∧ e′ ∈ B ∧ u ∈ e ∧ u ∈ e′
)

∧
∃=1p

(

ep(p, L) ∧ ∃e ∈ L ∧ p ∈ e ∧ e ∈ B
)

The formula ϕ1 says that L is a path which consists exactly of the red and blue edges in
the structure. Furthermore, in L no two blue edges e, e′ ∈ B are adjacent, i.e. between any
two blue edges there is a red edge, and L has exactly one endpoint which is incident to a
blue edge, i.e. the first edge on one end is blue but the last edge is red.

The formula

ϕ2 := set-o-dis-path(P) ∧ ∀P ⊆ E
(

(

P ⊆ L \B ∧maxpath(P,L \B)
)

↔ P ∈ P
)

says that P contains exactly the connected components of L \ B, i.e. the segments of L
defined by removing the blue edges.

The formula

ϕ3 := set-o-dis-path(Q) ∧ ∀P 6= P ′ ∈ P∃Q ∈ Q∃u, u′ ∈ V (Q)
(

ep(u,Q) ∧ ep(u′, Q) ∧ u ∈ V (P) ∧ u′ ∈ V (P ′)
)

says that Q is a set of pairwise vertex disjoint paths and that for any distinct pair P,P ′ ∈ P
there is a path in Q linking P and P ′, i.e. having one endpoint in P and the other in P ′.

Finally, we have to define that the colours are defined properly, i.e. that either all
vertices of a path P have a colour, in this case it is the same colour for all, or none has a
colour. Furthermore, we need to say that the coloured paths occur to the left of L, i.e. if a
path P ⊆ L contains a coloured vertex then so do all P ′ ⊆ L which are closer to the end of
L marked by a blue edge. This is formalised by the following formula

ϕ4 := ∀P ∈ P
(

(V (P) ⊆ C0 ∨ V (P) ∩ C0 = ∅) ∧ (V (P) ⊆ C1 ∨ V (P) ∩ C1 = ∅)
)

∧
∃x ∈ C0 ∪C1∀y ∈ V (L)

(

y ∈ C0 ∪ C1 ↔ ϕ≤(x, y)
)

.

The last bit we have to specify is that B,R are colours of edges whereas C0, C1 are
colours of vertices and that all colours are distinct. This is expressed by

ϕ5 :=
(

C0 ⊆ V ∧ C1 ⊆ V ∧ C0 ∩ C1 = ∅
)

∧
(

R ⊆ E ∧B ⊆ E ∧R ∩B = ∅
)

.

Putting everything together we get

ϕvalid :=

5
∧

i=1

ϕi.

Now, ϕvalid forces the parameters P,Q, L together to define a simple pseudo-wall in the
structure and in this case, the various formulas define a coloured ordered clique encoding
the same word as the pseudo-wall. Furthermore, the number of vertices in this clique is the
same as the number of segments of L. Hence, there is a choice of parameters in A where
this number is the order k of the pseudo-wall. This concludes the proof.

28 S. KREUTZER

As before, we get the following corollary.

Corollary 7.5. Let M be a non-deterministic nd-time bounded Turing-machine. There is
a formula ϕM ∈ MSO such that for all words w ∈ Σ⋆, if A is a σcol-structure containind a
simple pseudo-wall of order |w|d encoding w, then A |= ϕM if, and only if, M accepts w.
Furthermore, the formula ϕM can be constructed effectively from M .

The same holds if M is an alternating Turing-machine with a bounded number of al-
ternations, as they are used to define the polynomial-time hierarchy.

7.3. Complex Pseudo-Walls. We will now define a transduction from complex pseudo-
walls to ordered coloured cliques. As complex pseudo-walls are more complex than simple
ones, we will do so in two steps. We first exhibit a transduction with parameters P,Q, L
that will enforce P,Q, L to satisfy the requirements of a complex pseudo-wall and will then
generate the intersection graph of P andQ where vertices are suitably coloured as prescribed
by the definition of a complex pseudo-wall. By definition of a complex pseudo-wall, this
intersection graph contains a topological clique-minor. The second transduction, therefore,
will generate a coloured ordered clique from this clique minor.

For the first step, we define a transduction

Θ1 := (ϕvalid, ϕuniv, ϕ∼, ϕV , ϕE , ϕ∈, ϕC0
, ϕC1

, ϕ≤)

from σcol to σord with parameters P,Q, L as follows.
Again, ϕvalid will ensure that P,Q are interpreted by sets of pairwise vertex disjoint

paths, so we will use previous notation such as Q ∈ Q.
Recall that in the intersection graph I(P,Q) the vertices are the paths in P and Q and

an edge exists between P ∈ P and Q ∈ Q if they intersect. Hence, in Θ1 we will represent
a path P ∈ P by its unique edges (see the previous subsection) and an edge {P,Q} by the
vertices in the intersection of P and Q.

Thus, we define ϕV (x) := x ∈ E ∧
(

∃P ∈ Puni-edgeP(x, P) ∨ ∃Q ∈ Quni-edgeQ(x,Q)
)

and

ϕV∼(x, y) :=
∃P ∈ P(uni-edgeP(x, P) ∧ uni-edgeP(y, P)) ∨
∃Q ∈ Q(uni-edgeQ(x,Q) ∧ uni-edgeQ(y,Q)).

Furthermore, we define ϕE(x) := ∃P ∈ Q∃Q ∈ Q(x ∈ V (P) ∩ V (Q)) and

ϕE∼(x, y) := ∃P ∈ P∃Q ∈ Qx ∈ V (P) ∩ V (Q) ∧ y ∈ V (P) ∩ V (Q).

Finally, we define ϕuniv(x) := ϕV (x) ∨ ϕE(x) and ϕ∼(x, y) := ϕV∼(x, y) ∨ ϕE∼(x, y).
It is easily seen that ϕV∼ and ϕE∼ define equivalence relations on the sets defined by

ϕV (x) and ϕE(x), resp., and as these sets are disjoint also on the set defined by ϕuniv.
Let ϕ∈(x, e) :=

∃P ∈ P∃Q ∈ Q
(

e ∈ V (P) ∧ e ∈ V (Q) ∧
(

uni-edgeP(x, P) ∨ uni-edgeQ(x,Q)
)

)

The formula states that e is a vertex in the intersection of a path P ∈ P and a path Q ∈ Q,
and therefore representing an edge between P and Q, and x is a unique edge of one of the
two paths and hence represents a vertex for P or Q.

We define the colours C0 and C1 next. Here, we give a vertex P ∈ P the colour Ci if
the (uniquely defined) endpoint of the path P in the long path L is in Ci. Recall that in a

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 29

complex pseudo-wall, every path P intersect L in exactly one of its endpoints. The colours
are therefore defined by the formulas

ϕCi
(x) := ∃P ∈ P

(

uni-edgeP(x, P) ∧ ∃y ∈ V (P) ∩ V (L) ∧ y ∈ Ci
)

,

where i ∈ {0, 1}. Note that we do not need to state that y is an endpoint of P as P can
intersect L only once.

Finally, we define an ordering on the vertices constituted by paths in P. The ordering
we aim at is the natural ordering given by L, where a path P is smaller than a path P ′ if
the endpoint of P in L is closer to the blue edge in L than the endpoint of P ′ in L.

ϕ≤(x, y) := ϕV (x) ∧ ϕV (y) ∧ ∃P,P ′ ∈ Puni-edgeP(x, P) ∧ uni-edgeP(y, P
′) ∧

∃u, u′
(

u ∈ V (P) ∩ V (L) ∧ u′ ∈ V (P ′) ∩ V (L) ∧ ϕ≤L
(u, u′)

)

,

where

ϕ≤L
(u, u′) := ∃e ∈ L

(

e ∈ B ∧ ∃y ∈ V (L)
(

ep(y, L) ∧ y ∈ e ∧

∀P ⊆ L
(

path(P) ∧ y ∈ V (P) ∧ u′ ∈ V (P) → u ∈ V (P)
))

)

.

The last part of Θ1 to be defined is ϕvalid. Again we will do this in various steps.

ϕ1 := path(L) ∧ (L = B ∪R) ∧ ∃=1e ∈ B ∧ ∃=1e ∈ B
(

∃u(ep(u,L) ∧ u ∈ e)
)

The formula says that L is a path comprising all red and blue edges and that there is
exactly one blue edge and this is the first on the path.

The next formula ϕ2 says that only vertices on L are coloured and that no vertex has
two colours.

ϕ2 := C0 ∪ C1 ⊆ V (L) ∧ C0 ∩ C1 = ∅

Finally, we need to say that P and Q are sets of pairwise disjoint paths and that each
path in P has exactly one endpoint on L and is otherwise vertex disjoint from L. This is
expressed in the next formula.

ϕ3 := set-o-dis-path(P) ∧ set-o-dis-path(Q) ∧ ∀P ∈ P
(

∃xep(x, P) ∧ V (P) ∩ V (L) = {x}
)

Now, we set ϕvalid := ϕ1 ∧ ϕ2 ∧ ϕ3.
Let A be a complex pseudo-wall and let P,Q, L be sets of edges such that (A,P,Q, L) |=

ϕvalid. Hence, P and Q are sets of vertex dispoint paths.
Let

U := {[x]/ϕ∼(A) : x ∈ ϕuniv(A)},
V := {[x]/ϕ∼(A) : x ∈ ϕV (A)},
E := {[x]/ϕ∼(A) : x ∈ ϕE(A)} and

∈U := {([x]/ϕ∼(A), [y]/ϕ∼(A)) : (x, y) ∈ ϕ∈(A)}.
By construction, (U, V,E,∈U) is isomorphic to the intersection graph I(P,Q) of P and Q.
Furthermore, Ci := {{[x]/ϕ∼(A) : x ∈ ϕCi

(A)}, for i ∈ {0, 1}, define colours of vertices in
V and ≤V := {[(x, y)]/ϕ∼(A) : (x, y) ∈ ϕ≤(A)} defines a linear order on the subset of the
vertices of I(P,Q) corresponding to paths in P.

By definition, if A is a complex pseudo-wall, then we can choose P and Q so that
I(P,Q) contains a topological clique-minor such that every branch set contains at most
one coloured vertex and all coloured vertices occur in a branch set. This is clearly not the

30 S. KREUTZER

case for all choices of P,Q, L satisfying ϕvalid, but for our purposes it will be enough to
know that there is one such choice.

We will now exhibit a second transduction

Θ2 := (ϕvalid, ϕuniv, ϕ∼, ϕV , ϕE , ϕ∈, ϕC0
, ϕC1

, ϕ≤)

with parameters X,F, T which defines a coloured ordered clique encoding the same word as
A in some structures in Θ1(A). Here we benefit from the fact that we only need to define
topological minors, which makes the next transduction easy to define. The parameters
X,F, T have the following intuitive meaning. By definition of topological minors, if Kn is
a topological minor of a graph G ∈ Θ1(A) then there are n vertices u1, . . . , un in G and for
all 1 ≤ i < j ≤ n a path Pi,j between ui and uj such that if {a, b} 6= {i, j} then Pa,b and Pi,j
are internally vertex disjoint (they have an endpoint in common if {a, b}∩ {i, j} 6= ∅). The
parameter X will denote the set {u1, . . . , un} and F will be the union

⋃

i<j E(Pi,j). Hence,
the graph defined by Θ2 will have X as vertex set and the individual Pi,j as edges. To
define the colours of the vertices in X we need the last parameter T . T will contain exactly
one edge of each path Pi,j. This will act as a separator: with every x ∈ X we associate the
set of all vertices on the paths Pi,j emerging from x up to the edge in T . We will then say
that for each x this set contains exactly on coloured vertex and we will take the colour of
this vertex as colour of x.

Θ2 is now formally defined as follows. To define the vertices let ϕV (x) := x ∈ X and
ϕV∼(x, y) := x = y. To define edges we first need some preparation.

Let

F-path(P, x, x′) :=
P ⊆ F ∧ path(P) ∧ ep(x, P) ∧ ep(x′, P) ∧
¬∃y ∈ X(y ∈ V (P) ∧ y 6= x ∧ y 6= x′).

The formula says that P is a path whose edges are all from F , whose end points are x and
x′ and which contains no other vertex from X. Let

mp(P,F,X) := P ⊆ F ∧ ∃x, x′ ∈ XF-path(P, x, x′).

The formula says that P is a path with edge set in F connecting two vertices x, x′ ∈ X.
Let ϕE(e) := ∃P ⊆ F

(

mp(P,F,X)∧e ∈ P
)

and ϕE∼(x, y) := ∃P ⊆ F
(

mp(P,F,X)∧x ∈
P ∧y ∈ P

)

. As mentioned above, we will represent edges by paths Pi,j in F between vertices

in X. ϕE(e) says that e is an edge of such a path and ϕE∼(e, e
′) defines e and e′ to be

equivalent if they occur on the same path in F . As usual, ϕuniv(x) := ϕV (x) ∨ ϕE(x).
We now define the colours C0, C1. First, let

branch-set(x, y) := x ∈ X ∧ ∃Q ⊆ F
(

maxpath(Q,F \ T) ∧ x, y ∈ V (Q)
)

.

The formula defines for given x ∈ X the set of all vertices that can be reached from x by
a path with edges of F not containing any edge from T . We can now define ϕCi

(x) :=
∃y

(

branch-set(x, y) ∧ y ∈ Ci
)

, for i ∈ {0, 1}.
Finally, we define ϕ≤(x, y) := x ≤ y.
The last part of Θ2 left to be defined is ϕvalid. Here we must say that X and F indeed

induce a topological clique-minor as indicated above and that T is a separator containing
one edge from each path linking two vertices from X.

We first use the formula

ϕ0 := X ⊆ V ∧ F ⊆ E ∧ T ⊆ F ∧ C0 ∩ C1 = ∅

to say that the parameters are of the right type.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 31

The formula

ϕ1 := ∀x, x′ ∈ X
(

x 6= x′ → ∃PF-path(P, x, x′) ∧ ∀Q
(

F-path(Q,x, x′) → P = Q
)

)

says that any two distinct vertices in X can be connected by a path in F and that this is
unique.

The formula

ϕ2 := ∀e(e ∈ F → ∃x, x′ ∈ X∃P ⊆ F (F-path(P, x, x′) ∧ e ∈ P))

says that every edge of F occurs on a path in F between two vertices of X.
The formula

ϕ3 := ∀x, y, x′, y′ ∈ X x 6= x′ →

∃P,P ′ ⊆ F
(

F-path(P, x, y) ∧ F-path(P ′, x′, y′)
)

∧
(y 6= y′ → V (P ′) ∩ V (P) = ∅) ∧
(y = y′ → V (P ′) ∩ V (P) = {y})

says that if x, x′, y, y′ are distinct vertices in X then the paths P,P ′ linking x to y and x′

to y′, resp., are pairwise vertex disjoint and if x, x′, y, y′ are such that y = y′ but x 6= x′

then the two paths only have y in common.
The formulas ϕ0, ϕ1, ϕ2, ϕ3 together imply that (X,F) induce a topological clique minor

as required. We next define a formula saying that T is as required, i.e. T contains one edge
from each path connecting two vertices in X and that every edge of T is contained in such
a path.

ϕ4 :=
∀x, x′ ∈ X∃P ⊆ F

(

F-path(P, x, x′) ∧ ∃=1e ∈ P (e ∈ T)
)

∧
∀e ∈ T∃x, x′ ∈ X∃P ⊆ F (F-path(P, x, x′) ∧ e ∈ P)

What is left to define are the colours and that all vertices in X can be linearly ordered
by ≤. The latter is easily defined by ϕ5 := ∀x(x ∈ X → x ≤ x).

The formula

ϕ6 := ∀x∃≤1y
(

branch-set(x, y) ∧ y ∈ C0 ∪ C1) ∧ ∀c ∈ C0 ∪C1∃x ∈ Xbranch-set(x, c)

says that every branch set contains at most one coloured vertex and every coloured vertex
is contained in a branch set.

Finally, we need to say that the vertices x whose branch sets contain a coloured vertex
are the smallest with respect to ≤. This is stated by the formula

ϕ7 := ∃x ∈ X
(

ϕC0
(x) ∨ ϕC1

(x) ∧ ∀y ∈ X(ϕC0
(y) ∨ ϕC1

(y) → y ≤ x
)

.

Let ϕvalid :=
∧7
i=0 ϕi.

Now, if A is a σord-structure and X ⊆ V A and F, T ⊆ EA then (A,X, F, T) |= ϕvalid

if, and only if, (X,F) determines a topological clique-minor where the branchsets are the
components of F \T . Furthermore, Θ(A,X, F, T) is a coloured ordered clique encoding the
same word as A and all B ∈ Θ2(A,X, F, T) are coloured cliques encoding the same word as
A.

The interpretations Θ1 and Θ2 together yield the desired transformation of complex
pseudo-walls to coloured ordered grids as stated in the following lemma.

Lemma 7.6. If A is a σcol-structure containing a complex pseudo-wall of order k encod-
ing a word w then Θ2(Θ1(A)) contains a coloured ordered clique of order k encoding w.
Furthermore, every B ∈ Θ2(Θ1(A)) is a coloured ordered clique encoding w.

Again, using Corollary 7.3 and the formula translation provided by the transductions,
we get the following corollary.

32 S. KREUTZER

Corollary 7.7. Let M be a non-deterministic nd-time bounded Turing-machine. There is
a formula ϕM ∈ MSO such that for all words w ∈ Σ⋆, if A is a σcol-structure containing a
complex pseudo-wall of order |w|d encoding w, then A |= ϕM if, and only if, M accepts w.
Furthermore, the formula ϕM can be constructed effectively from M .

The same holds if M is an alternating Turing-machine with a bounded number of al-
ternations, as they are used to define the polynomial-time hierarchy.

The following result combines everything we need from this section later on.

Corollary 7.8. Let M be a non-deterministic nd-time bounded Turing-machine. There is
a formula ϕM ∈ MSO such that for all words w ∈ Σ⋆, if A is a σcol-structure containing
either a simple or complex pseudo-wall of order |w|d encoding w, then A |= ϕM if, and only
if, M accepts w. Furthermore, the formula ϕM can be constructed effectively from M .

The same holds if M is an alternating Turing-machine with a bounded number of al-
ternations, as they are used to define the polynomial-time hierarchy.

Proof. Note that in a complex pseudo-wall there is at most one blue edge e ∈ B whereas a
simple pseudo-wall always contains more than one. So we can easily distinguish in first-order
logic between simple and complex pseudo-walls.

Now let
ϕM :=

(

∃=1e ∈ B ∧ ϕcM
)

∨
(

∃≥2e ∈ B ∧ ϕsM
)

,

where ϕcM , ϕ
s
M are the formulas from Corollary 7.7 and 7.5 respectively.

Then Corollary 7.5 and 7.7 imply that ϕM is indeed true in A if, and only if, M accepts
w.

8. Putting it all together

In this section we conclude the proof of Theorem 1.3 by combining the results obtained in
Section 6 and 7. More precisely, we will first show the following lemma, which implies Part
2 of the theorem.

Lemma 8.1. Let C be a class of σcol-structures closed under colourings.
If the tree-width of C is (logc, p)-unbounded, for some c > d · 84 and polynomial p of

degree d, then MC(MSO2, C) is not in XP and hence not fixed-parameter tractable unless
Sat can be solved in sub-exponential time.

Proof. We show that if p-MC(MSO, C) is in XP then the propositional satisfiability problem
SAT, i.e. the problem to decide for a formula of propositional logic if it has a satisfying
assignment, can be solved in sub-exponential time.

Let w be a propositional logic formula. We can decide whether w is satisfiable as follows.
We first construct a σcol-structure A ∈ C of tree-width between c′ ·m84 and c ·md·84,

where c is the constant from Theorem 6.4 and c′ := d
√
c. Furthermore, tw(A) > logd·84+δ |A|,

for some δ > 0. Let G be the σinc-reduct of A, i.e. the underlying uncoloured graph of A.
It follows that

c ·md·84 > logd·84+δ |G|
⇐⇒ c′′ ·m

1

y > log |G|
⇐⇒ |G| < 2c

′′·m
1
y

for some c′′ and y > 1.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 33

By Theorem 6.4, as
(tw(G)√

log tw(G)

)
1

3 ≥ c · m14, we can compute in polynomial time a

σcol-expansion B ∈ C of G containing a pseudo-wall encoding w with power 2.
Clearly, SAT can be decided by a non-deterministic Turing-machineM running in time

quadratic in the size of the input. Hence, by Corollary 7.8, there is a formula ϕM , depending
only on M , such that B |= ϕM if, and only if, M accepts w if, and only if, w is satisfiable.

By Definition 1.2, we can construct A, and hence G, in time at most 2(c·m
84)ε for some

ε < 1. By Theorem 6.4, B can be constructed in time polynomial in the size of G and thus

in time 2d
′·(c·m84)ε , for some constant d′.

Suppose now that p-MC(MSO, C) is in XP, i.e. given G ∈ C and ϕ ∈ MSO, we can decide
G |= ϕ in time |G|f(|ϕ|), for some computable function f : N → N. Hence, we can decideB |=
ϕM in time |B|f(|ϕM |) and thus in time |G|f(|ϕM |). But |G|f(|ϕM |) < 2f(|ϕM |)·c′′·m

1
y ∈ 2o(|w|).

Hence, we can decide whether w is satisfiable in sub-exponential time. This concludes the
proof of the lemma.

The lemma clearly implies Part 2 of Theorem 1.3. Unsing any other language in the
polynomial-time hierarchy instead of SAT we get the first part by exactly the same argu-
ment. This concludes the proof of Theorem 1.3.

9. Conclusion and Further Work

In the previous section we have seen that if C is closed under colourings and its tree-width
is not bounded logarithmically, then MC(MSO, C) is not in XP unless SAT can be solved
in sub-exponential time. What this shows is that Courcelle’s theorem cannot be extended
beyond logarithmic tree-width in its full generality.

The proof given in this paper shows that in order to apply our theorem to a class C, its
tree-width must be (logc, p)-unbounded for c > 84 + d, where d is the degree of p. Using
slightly more complex algorithmic results from [21] this bound can be improved slightly to
c > 48 + d. Furthermore, it is possible to reduce the numbers of colours needed to two
binary and one unary relation symbols.

Our result refers to MSO2, i.e. monadic second-order logic with quantification over sets
of edges. If we restrict ourselves to MSO1 then this logic becomes tractable on the much
larger class of graphs of small clique-width.

Theorem 9.1 ([4]). Let C be a class of graphs of bounded clique-width. Then MC(MSO1, C)
is fixed-parameter tractable.

It would be interesting to study classes of graphs closed under taking induced sub-graphs
which have unbounded clique-width. We therefore put forward the following conjecture.

Conjecture 9.2. If C is a class of graphs whose clique-width is poly-logarithmically un-
bounded and which is closed under induced sub-graphs, then MC(MSO1, C) is not fixed-
parameter tractable.

However, so far no analogue of grid-like minors for clique-width exists and therefore
more research on obstructions for clique-width is needed to prove this conjecture.

34 S. KREUTZER

References

[1] E. Birmelé, J. A. Bondy, and B. Reed. Brambles, prisms and grids. In Graph theory in Paris, Trends
Math., pages 37–44. Birkhäuser, 2007.

[2] B. Bollobás and A. Thomason. Proof of a conjecture of Mader, Erdös and Hajnal on topological complete
subgraphs. Eur. J. Comb., 19(8):883–887, 1998.

[3] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume 2, pages 194 – 242. Elsevier, 1990.

[4] B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of
bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.

[5] B. Courcelle and S.-I. Oum. Vertex-minors, monadic second-order logic, and a conjecture by Seese.
Journal of Combinatorial Theory, Series B, 97(1):91–126, 2007.

[6] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In Logic in Computer Science (LICS),
pages 270–279, 2007.

[7] R. Diestel. Graph Theory. Springer-Verlag, 3rd edition, 2005.
[8] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1998.
[9] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 2nd edition, 1994.

[10] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. ISBN 3-54-029952-1.
[11] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model checking. SIAM Journal

on Computing, 31:113 – 145, 2001.
[12] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures. Journal

of the ACM, 48:1148 – 1206, 2001.
[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete problems. In STOC ’74:

Proceedings of the sixth annual ACM symposium on Theory of computing, pages 47–63, New York, NY,
USA, 1974. ACM.

[14] M. Grohe. Logic, graphs, and algorithms. In E.Grädel T.Wilke J.Flum, editor, Logic and Automata –
History and Perspectives. Amsterdam University Press, 2007.

[15] M. Grohe, and S. Kreutzer. Methods for Algorithmic Meta-Theorems. In Model Theoretic Methods in
Finite Combinatorics, Contemporary Mathematics vol. 588, American Mathematical Society, 2011.

[16] M. Grohe and D. Marx. On tree width, bramble size, and expansion. J. Comb. Theory, Ser. B, 99(1):218–
228, 2009.

[17] R. Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.
[18] W. Hodges. A shorter model theory. Cambridge University Press, 1997.
[19] S. Kreutzer. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory, London Mathemat-

ical Society Lecture Notes, No. 379, Cambridge University Press, 2011. See also Electronic Colloquium
on Computational Complexity (ECCC) 16: 147 (2009)

[20] S. Kreutzer and S. Tazari. Lower bounds for the complexity of monadic second-order logic. In Logic in
Computer Science (LICS), 2010.

[21] S. Kreutzer and S. Tazari. On brambles, grid-like minors, and parameterized intractability of monadic
second-order logic. In Symposium on Discrete Algorithms (SODA), 2010.

[22] W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann., 174:265–
268, 1967.

[23] J. A. Makowsky and J. Mariño. Tree-width and the monadic quantifier hierarchy. Theor. Comput. Sci.,
1(303):157–170, 2003.

[24] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries. J. Comput. Syst. Sci.,
58(3):407–427, 1999.

[25] B. Reed and D. Wood. Polynomial treewidth forces a large grid-like minor. unpublished. Available at
arXiv:0809.0724v3 [math.CO], 2008.

[26] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal of Combinatorial
Theory, Series B, 62:323 – 348, 1994.

[27] N. Robertson and P. D. Seymour. Graph minors V. Excluding a planar graph. Journal of Combinatorial
Theory, Series B, 41(1):92–114, 1986.

[28] N. Robertson and P.D. Seymour. Graph minors I – XXIII, 1982 –. Appearing in Journal of Combinatorial
Theory, Series B since 1982.

[29] D. J. Rose. Triangulated graphs and the elimination process. Journal of Mathematical Analysis and
Applications, 32:597–606, 1970.

ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC 35

[30] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width. Journal of
Combinatorial Theory, Series B, 58(1):22–33, 1993.

[31] M. Thorup. All structured programs have small tree width and good register allocation. Information
and Computation, 142:159–181, 1998.

[32] M. Vardi. On the complexity of relational query languages. In Proc. of the 14th Symposium on Theory
of Computing (STOC), pages 137–146, 1982.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. General Notation.
	2.2. Graphs and Colourings
	2.3. Tree-Width and Obstructions

	3. Monadic Second-Order Logic
	3.1. Signatures and Structures.
	3.2. Definition of Monadic Second-Order Logic
	3.3. Examples
	3.4. MSO-Transductions

	4. The Complexity of Monadic Second-Order Logic
	5. A High Level Description of the Main Proof
	6. Pseudo-Walls in Graphs
	7. Intractability of MSO on Pseudo-Walls
	7.1. Coloured ordered cliques.
	7.2. Simple Pseudo-Walls
	7.3. Complex Pseudo-Walls

	8. Putting it all together
	9. Conclusion and Further Work
	Bibliography
	References

