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Abstract. We introduce tree-width for first order formulae ϕ, fotw(ϕ). We show that
computing fotw is fixed-parameter tractable with parameter fotw. Moreover, we show
that on classes of formulae of bounded fotw, model checking is fixed parameter tractable,
with parameter the length of the formula. This is done by translating a formula ϕ with
fotw(ϕ) < k into a formula of the k-variable fragment Lk of first order logic. For fixed k, the

question whether a given first order formula is equivalent to an L
k formula is undecidable.

In contrast, the classes of first order formulae with bounded fotw are fragments of first
order logic for which the equivalence is decidable.

Our notion of tree-width generalises tree-width of conjunctive queries to arbitrary for-
mulae of first order logic by taking into account the quantifier interaction in a formula.
Moreover, it is more powerful than the notion of elimination-width of quantified constraint
formulae, defined by Chen and Dalmau (CSL 2005): for quantified constraint formulae,
both bounded elimination-width and bounded fotw allow for model checking in polyno-
mial time. We prove that fotw of a quantified constraint formula ϕ is bounded by the
elimination-width of ϕ, and we exhibit a class of quantified constraint formulae with
bounded fotw, that has unbounded elimination-width. A similar comparison holds for
strict tree-width of non-recursive stratified datalog as defined by Flum, Frick, and Grohe
(JACM 49, 2002).

Finally, we show that fotw has a characterization in terms of a cops and robbers game
without monotonicity cost.

1. Introduction

Model checking is an important problem in complexity theory. It asks for a given formula
ϕ of some class C of formulae and a structure A, whether A satisfies ϕ.

MC(C)

Input: A structure A and a formula ϕ ∈ C.
Question: A |= ϕ?
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Let L denote first order logic. It is well-known, that MC(L) is pspace-complete.
Motivated by this, much research has been done on finding fragments of L having a tractable
model checking problem. For instance, for fixed k, the problem MC(Lk) can be solved in
polynomial time, where Lk denotes the fragment of first order formulae with at most k
variables (see e.g. [17]).

The class of conjunctive queries, CQ, is an important fragment of first order logic. Many
queries that occur in practice are conjunctive queries, and model checking of conjunctive
queries on relational databases (i.e. relational structures) is an important and well-studied
problem in database theory [29, 8, 18, 10, 20, 23]. It is equivalent to conjunctive query
containment, to the constraint satisfaction problem studied in artificial intelligence and to
the homomorphism problem for structures [7, 15]. A conjunctive query is a first order
formula starting with a quantifier prefix using only existential quantifiers, followed by a
conjunction of relational atoms. While MC(CQ) is NP-hard in general, several researchers
proved independently that conjunctive queries of bounded tree-width can be evaluated in
polynomial time [8, 18]. One way to prove this is the following. Suppose ϕ is a conjunctive
query having tree-width k. Then we can compute a tree decomposition of width k in
linear time using Bodlaender’s algorithm [6]. From the decomposition we can actually
read off the syntax of an equivalent formula ϕ′ ∈ Lk+1. Finally, we use the fact that
MC(Lk+1) is solvable in polynomial time. Essentially, bounded tree-width is even necessary
for polynomial time solvability of MC(CQ) [24, 22].

In this paper, we introduce a notion of tree-width for first order formulae ϕ, fotw(ϕ).
Our notion generalises the notion of tree-width of conjunctive queries, and we show that
the class Ck of all first order formulae ϕ with fotw(ϕ) ≤ k satisfies the following properties.

(1) Ck has a polynomial time membership test (Corollary 4.8).
(2) Ck has the same expressive power as Lk+1, the fragment of first order formulae with at

most k + 1 variables (Theorem 5.5).
(3) There is an algorithm that computes for given ϕ ∈ Ck an equivalent formula ϕ′ ≡ ϕ

with ϕ′ ∈ Lk+1 (Theorem 5.5).
(4) MC(Ck) is fixed parameter tractable with parameter the length of ϕ, i.e. for input

ϕ ∈ Ck and A, the running time is p(‖A‖)f(|ϕ|) for a polynomial p and a computable
function f (Corollary 5.6).

Obviously, properties 1 and 3 imply property 4. While MC(Lk) is solvable in polynomial
time, we do not obtain a polynomial algorithm for MC(Ck). Nevertheless, in typical ap-
plications one can expect the length of the formula to be small compared to the size of the
structure (database). For a fixed formula the running time is polynomial, and moreover,
the problem is fixed-parameter tractable (in fpt), meaning that changing ϕ does not alter
the exponent of the polynomial (see [13, 17]).

Note that for fixed k > 0 it is undecidable, whether a first order formula ϕ is equivalent
to an Lk formula. Hence it is not surprising that our notion of k-bounded first order tree-
width does not capture semantic equivalence to Lk (we will give more details in Section 5).

Quantified constraint formulae generalise conjunctive queries by allowing arbitrary
quantifiers in the quantifier prefix. In [9], Chen and Dalmau introduce elimination or-
derings for quantified constraint formulae. These elimination orderings must respect the
quantifier prefix. In this way, Chen and Dalmau obtain a notion of elimination-width1, which

1Actually, the notion is called tree-width for quantified constraint formulae in [9], But since the notion is
defined via elimination orderings, we prefer the term elimination-width.
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allows for model checking of quantified constraint formulae of bounded elimination-width
in polynomial time, using a consistency algorithm. Hereby, they answer a question posed in
[19] positively, whether bounded tree-width methods work for formulae more general than
conjunctive queries. Introducing a notion of tree-width for arbitrary first order formulae, we
even go further. We show that for quantified constraint formulae ϕ, elimination-width of ϕ
is at least as large as fotw(ϕ), and we exhibit a class of quantified constraint formulae with
bounded first order tree-width and unbounded elimination-width. We show that quantified
constraint formulae of bounded fotw allow for model checking in polynomial time. Hence
fotw is more powerful than elimination-width.

In [16], Flum, Frick and Grohe introduce strict tree-width2 for non-recursive stratified
datalog (nrsd) programs. They show that model checking for nrsd programs of bounded
strict tree-width can be done in polynomial time. Since nrsd programs have a canonical
translation into first order formulae, our notion of tree-width can be transfered from first
order formulae to nrsd programs. We show that if an nrsd program Π has strict tree-width
at most k, then the formula ϕΠ obtained from Π has elimination-width at most k and hence
it satisfies fotw(ϕΠ) ≤ k. Again there are classes of nrsd programs with unbounded strict
tree-width, whose corresponding first order formulae have bounded first order tree-width.
Hence our notion of first order tree-width yields larger subclasses of L, that still allow for
tractable model checking.

Actually, we introduce first order tree-width as a special case of a more abstract notion
which we term stratified tree-width. We expect that stratified tree-width will find further,
quite different, applications.

The rest of this paper is organised as follows. Section 2 fixes some terminology. Section 3
introduces the notion of stratified tree-width, the special case of first order tree-width, and
the notion of xenerp normal form of a formula ϕ – a kind of opposite of prenex normal
form. We show that fotw is invariant under transformation into xenerp normal form. In
Section 3.4 we relate fotw to the natural notion of tree-width stratified by the alternation
depth of a formula. In Section 4 we show how to compute stratified tree decompositions
and, in particular, how to compute first order tree-width. In Section 5 we prove that
bounded first order tree-width is expressively equivalent to bounded variable fragments of
first order logic and that model checking for formulae of bounded first order tree-width is
fixed-parameter tractable. In Section 6 we relate our notion to existing notions and give
a game characterisation of stratified tree-width. We conclude with some open problems in
Section 7.

We wish to thank the anonymous referees for many useful suggestions.

2. Well-known definitions

A vocabulary σ = {R1, . . . , Rn, c1, . . . , cm} is a finite set of relation symbols Ri, 1 ≤ i ≤ n,
and constant symbols cj , 1 ≤ j ≤ m. Every Ri has an associated arity, an integer ar(Ri) > 0.
A σ-structure is a tupleA = (A,RA

1 , . . . , R
A
n , c

A
1 , . . . , c

A
m) where A is a finite set, the universe

of A, RA
i ⊆ A

ar(Ri) for 1 ≤ i ≤ n, and cAj ∈ A for 1 ≤ j ≤ m.

Given a σ-structure A we distinguish between the cardinality |A| of the universe A of
A and the size ‖A‖ of A, given by ‖A‖ = |σ|+ |A|+

∑n
i=1

∣

∣RA
i

∣

∣ · ar(Ri).

2In [16], the authors also introduce a notion of tree-width for first order formulae. But their notion
disregards the quantifier interaction, and they only use it for conjunctive queries with negation.
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We use L to denote relational first order logic with constants, and for simplicity, we
refer to L as first order logic. We assume that the reader is familiar with the basic notions of
first order logic (see for instance [14]). For a formula ϕ we let free(ϕ) denote the set of free
variables of ϕ. A formula ϕ is a sentence, if free(ϕ) = ∅. We sometimes write ϕ(x1, . . . , xn)
to indicate that free(ϕ) ⊆ {x1, . . . , xn}.

For a structure A, a formula ϕ(x1, . . . , xn), and elements a1, . . . an ∈ A we write
A |= ϕ(a1, . . . an) to denote that A satisfies ϕ if the variables x1, . . . , xn are interpreted
by a1, . . . , an, respectively. We let

ϕ(A) := {(a1, . . . , an) | A |= ϕ(a1, . . . , an)}.

For sentences we have ϕ(A) = true, if A satisfies ϕ, and false otherwise. If the vocabu-
laries of ϕ and A are different, we let ϕ(A) = ∅.

The Query Evaluation Problem for a class C of formulae is the following problem:

Eval(C)

Input: A structure A and a formula ϕ ∈ C.
Problem: Compute ϕ(A).

Note that if ϕ is a sentence, then Eval(C) and MC(C) coincide. We say that a formula
ϕ ∈ L is straight, if no variable in ϕ is quantified over twice, if no free variable is also
a quantified variable, and if each quantified variable actually occurs in some atom. All
formulae are straight, unless stated otherwise. Moreover, we assume that all formulae are
in negation normal form, i.e. the negation symbols only appear in front of atoms.

We denote a graph G as a pair G = (V (G), E(G)), where the set V (G) of vertices is
finite, and every edge e ∈ E(G) is a two-element subset of V (G). A tree decomposition of a
graph G = (V,E) is a pair (T,B), consisting of a rooted tree T and a family B = (Bt)t∈T
of subsets of V , the pieces of T , satisfying:

(TD1): For each v ∈ V there exists t ∈ T , such that v ∈ Bt. We say the node t
covers v.

(TD2): For each edge e ∈ E there exists t ∈ T , such that e ⊆ Bt. We say the node t
covers e.

(TD3): For each v ∈ V the set {t ∈ T | v ∈ Bt} is connected in T .

The width of (T,B) is defined as w(T,B) := max
{

|Bt|
∣

∣ t ∈ T
}

− 1.
The tree-width of G is defined as

tw(G) := min
{

w(T,B)
∣

∣ (T,B) is a tree decomposition of G
}

.

Fact 2.1. Every graph G of tree-width at most k has at most k · |V (G)| edges.

Fact 2.1 can be shown by induction on the number of vertices (see e.g. [17]). We will
make frequent use of the following well-known fact about tree decompositions (see [11]):

Fact 2.2. Let (T,B) be a tree decomposition of some graph G, and let C ⊆ V (G). If for
all v,w ∈ C, some piece of (T,B) covers both v and w, then there is some piece Bt covering
C entirely, i.e. C ⊆ Bt.

In particular, every clique in G is covered by some piece.
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3. First order tree-width

3.1. Stratified tree-width. We start with defining stratified tree-width. Then, first order
tree-width is defined as a special case. Although it is our only application of stratified
tree-width, stating results in greater generality allows us to focus on their essence. It is also
quite possible, that further applications will arise in the future.

Any rooted tree T induces a natural partial order <T on its nodes, where the smallest
element is the root. For a tree decomposition (T,B) of a graph G and a vertex v ∈ V (G),
let tv ∈ T denote the <T -minimal tree node that covers v. By (TD3), the node tv is well-
defined. Now, let d : V (G) → N be a function. We say that a tree decomposition (T,B)
of G is d-stratified, if all u, v ∈ V (G) with tu <T tv satisfy d(u) ≤ d(v). The tree-width of
(G, d) is defined as

tw(G, d) := min
{

w(T,B)
∣

∣ (T,B) is a d-stratified tree decomposition of G
}

.

It will sometimes be convenient to work with an alternative characterization of stratified
tree width: let G = (V,E) be a graph and d : V → N. An elimination ordering of (G, d) is
a linear ordering (v1, . . . , vn) of V which respects d, i.e. i < j implies d(vi) ≤ d(vj). With
an elimination ordering we associate a sequence of graphs as follows:

• Gn := G

• V (Gi−1) := V (Gi) \ {vi}, and
• E(Gi−1) :=

{

e ∈ E(Gi)
∣

∣ vi 6∈ e
}

∪
{

{u,w}
∣

∣ u 6= w, {u, vi}, {vi, w} ∈ E(Gi)
}

for
1 < i ≤ n.

The width of the elimination ordering is maxi∈[n]{deg(vi) in Gi}. The elimination-width of
(G, d), ew(G, d), is the minimum width of an elimination ordering of (G, d). It is well-known
that the tree-width of a graph G equals the elimination-width of G (see [5]), and this fact
can be generalised to our setting.

Theorem 3.1. Let G be a graph and d : V (G)→ N. Then tw(G, d) = ew(G, d).

Proof. Towards a proof of tw(G, d) ≥ ew(G, d), let (T,B) be a d-stratified tree decomposi-
tion for G of width k. We may assume that (T,B) is small, i.e. all nodes s, t ∈ V (T ) with
s 6= t satisfy Bs 6⊆ Bt. Recall that for a vertex v ∈ V (G), tv denotes the <T -minimal node of
T with v ∈ Bt. We now define an ordering v1, . . . , vn of V (G) such that for all 1 ≤ i, j ≤ n
we have

• i < j implies d(vi) ≤ d(vj),
• there is a piece Bi of (T,B) containing vi and all the neighbours of vi in Gi.

In particular, v1, . . . , vn is an elimination ordering of (G, d) of width at most k.

Claim 1. There exists a vertex v ∈ V (G) with d(v) maximum, such that v appears in
exactly one piece Bℓ of (T,B), and ℓ is a leaf.

Proof. Choose any vertex w with d(w) maximum. If w is contained in a piece Bt of (B,T )
where t is not a leaf (otherwise we are done), then choose a leaf ℓ ≥T t of T . Let s be the
parent of ℓ. Choose v ∈ Bℓ \ Bs (such a v exists since the decomposition is small). Since
(T,B) is d-stratified and tw <T ℓ = tv, we have d(w) ≤ d(v), and hence by maximality
d(w) = d(v), proving the claim. �

Let vn := v. Then we replace G by Gn−1, we restrict d and (T,B) to Gn−1 and we
proceed by induction.
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Towards tw(G, d) ≤ ew(G, d), let v1, . . . , vn be an ordering of V (G) of width at most
k and let G1, . . . , Gn = G be the associated sequence of graphs. For i = 1, . . . , n we define
tree decompositions for the Gi that respect d and have width at most k. For i = 1 we take
the trivial decomposition. Given a tree decomposition of Gi−1, we choose a piece containing
all the neighbours of vi in Gi (such a piece exists, because the neighbours induce a clique
in Gi−1), and we attach to it a new piece containing vi and all neighbours of vi in Gi. Let
(T,B) be the tree decomposition obtained for G = Gn. Obviously, (T,B) has width at most
k. Moreover, (T,B) is d-stratified: let vi, vj ∈ V (G). If tvi <T tvj , then, by construction, we
have i < j. Since v1, . . . , vn is an elimination ordering of (G, d), this implies d(vi) ≤ d(vj).

3.2. First order tree-width. For a formula ϕ, the formula graph is the undirected graph
Gϕ, with vertices var(ϕ), and edges {x, y} whenever x and y are free variables, or when x
and y occur together in some atom of ϕ. (If ϕ is not straight, then we obtain the formula
graph of ϕ by first making it straight.) Note that the formula graph depends on the syntax
of the formula. Logically equivalent formulae may have different formula graphs.

We now introduce a partial order �ϕ on the variables of a formula ϕ, from which we
then obtain the essential alternation depth, eadϕ(x), of a variable x ∈ var(ϕ). Given a
tree decomposition of Gϕ of width k − 1 that respects eadϕ, we show in Section 5, how to

transform the formula ϕ bottom up along the decomposition into an equivalent Lk-formula.
In this transformation, we want to ‘reuse’ as many variables as possible, so, intuitively, the
‘worst case’ is that ϕ is in prenex normal form. Hence we want to ‘undo’ prenex normal
form, pushing quantifiers as far as possible away from the root in the syntax tree. Of course,
we have to make sure that we obtain an equivalent formula. Intuitively, �ϕ gives us a partial
order of quantifications that we have to respect while undoing prenex normal form.

For a bound variable x, let Qx ∈ {∃,∀} be the type of quantifier used to quantify x in
ϕ. Then the scope of x is the unique subformula ψ of ϕ such that Qxxψ is a subformula of
ϕ. For bound variables x, y of ϕ, we write x ≤ϕ y to denote that x = y or y is quantified in
the scope of x. For a set X of variables, we use ϕ[X] to denote the minimal (with respect
to subformulaship) subformula of ϕ which contains all atoms using variables from X.

Definition 3.2. Let E be a binary relation on the variables of some formula ϕ. Then two
variables x and y are entangled with respect to E and ϕ, if x occurs in ϕ[yE] and y occurs

in ϕ[xE] (as usual, we use x E to denote {x′ | x E x′}).

Definition 3.3. Let ϕ be a straight formula. Then �ϕ is the minimal (with respect to ⊆)
binary relation on var(ϕ), such that the following hold.

(1) �ϕ is reflexive.
(2) �ϕ is transitive.
(3) If x ≤ϕ y, Qx 6= Qy and there is a sequence x = z0, . . . , zn = y of bound variables such

that for all 0 ≤ i < n we have that zi, zi+1 are entangled with respect to �ϕ and ϕ and
that x �ϕ zi or y �ϕ zi, then x �ϕ y (Alternation).

In order to see that �ϕ is well-defined, observe that Definition 3.3 is in fact an inductive
definition: all three conditions can be restated as closure of �ϕ under some operator on
binary relations, and all three operators are monotone with respect to ⊆. The least obvious
case is the one of the operator underlying Alternation. To establish monotonicity in this
case, assume that E and E′ are binary relations on var(ϕ) and that (E) ⊆ (E′). We have to
show that whenever two variables x, y satisfy Alternation with respect to E, then they also
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do with respect to E′. For any variable z we have (z E) ⊆ (z E′), so ϕ[zE] is a subformula of
ϕ[zE′]. Thus, entanglement of some variables with respect to E and ϕ implies entanglement

with respect to E′ and ϕ. Hence any witness for Alternation with respect to E is also one
with respect to E′.

At many places, we will use proof by induction on the inductive definition of �ϕ.
Therefore, we explicate how the inductive principle works in this case.

Lemma 3.4. Let ϕ be a formula and P a property of pairs of variables from ϕ. If

(1) P (x, x) holds for all x ∈ var(ϕ),
(2) x �ϕ y, y �ϕ z, P (x, y) and P (y, z) imply P (x, z), and
(3) if x ≤ϕ y, Qx 6= Qy, (E) ⊆ (�ϕ) such that P (x′, y′) holds for all x′ E y′, and for

some sequence x = z0, . . . , zn = y and all 0 ≤ i < n we have zi ∈ (x E) ∪ (y E) and
entanglement of zi and zi+1 with respect to E and ϕ, then P (x, y),

then P (x, y) holds for all x, y such that x �ϕ y.

Remark 3.5.

(1) The relation �ϕ is a subrelation of ≤ϕ: (�ϕ) ⊆ (≤ϕ),
(2) the relation �ϕ is a partial order, and
(3) x �ϕ y holds whenever x and y are entangled, Qx 6= Qy, and x ≤ϕ y.

Proof. 1 follows since ≤ϕ satisfies all closure conditions.
2: x �ϕ y is reflexive and transitive by definition, and it inherits anti-symmetry from (≤ϕ)
by 1.
3: this follows by letting n = 1 in Alternation.

Example 3.6. Let ϕ := ∃x∀y∃z
(

Pxy ∧ ∀u(Ryu ∨ Pzu)
)

. Then x �ϕ y and z �ϕ u by
Remark 3.5, 3, y �ϕ z by Alternation (witnessed by the sequence y, u, z), and x �ϕ z,
y �ϕ u, and x �ϕ u by Transitivity. In this example, all entanglements are due to the two
variables in question occuring in the same atom.

We use ϕx as a shorthand for ϕ[x�ϕ], and we say that x and y are entangled in ϕ, if
they are entangled with respect to �ϕ and ϕ. Note that this is the case if and only if x
occurs in ϕy and y occurs in ϕx. Observe further that ϕx is a subformula of the scope of x.
The idea behind entanglement is to capture interaction between variables.

Example 3.7. Let ϕ := ∀x∀x′∃y(((Py ∧ Px) ∨ Px) ∧ ((Py ∧ Px′) ∨ Px′)). Then ϕ[{y}]

already is the whole quantifier free part of ϕ, hence so is ϕy. Further, ϕx contains ϕ[{x}] =
(Py ∧ Px) ∨ Px. Thus x occurs in ϕy and y occurs in ϕx, so x and y are entangled. It
follows that x �ϕ y, so ϕx contains ϕy. As this is the whole quantifier free part, we have
ϕx = ϕy. In a similar way we obtain ϕx′ = ϕy. Consequently, x and x′ are entangled as
well. Intuitively, x and x′ interact through y.

Example 3.8. Let ϕ := ∀x∃y∀z(Rzy ∨ (Px ∧ Py)). Then y and z are entangled, be-
cause they occur in the same atom. x, however, is not entangled with any other vari-
able, because ϕ[{x}] = Px does not contain any variable besides x. The same holds for
ψ := ∃y(∀zRzy ∨ (∀xPx ∧ Py)), which illustrates that x does not interact at all. Thus,
(�ϕ) = {(y, z), (x, x), (y, y), (z, z)}.
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Example 3.9. For n > 0 let

ϕn := ∃x1 . . . ∃xn∀y∃z





∧

1≤i≤n

Rxiz ∧ Py





and

ψn := ∃x1 . . . ∃xn∀y∃z





∧

1≤i≤n

(Rxiz ∧ Py)



 .

In ϕn, the only entanglements are between the xi and z. Consequently, �ϕn is the equality
relation on var(ϕn). On the other hand, both (ψn)y and (ψn)z coincide with the quantifier
free part of ψn, so y and z are entangled in ψn. It follows that y �ψn

z. Nevertheless, as y
does not occur in (ψn)xi = Rxiz, y is not entangled with xi in ψn.

Definition 3.10. Let ϕ be a first order formula and x ∈ var(ϕ). The essential alternation
depth of x in ϕ, denoted by eadϕ(x), is the maximum over all �ϕ-paths P ending in x of the
number of quantifier changes in P , adding +1 in case the first variable on P is existentially
quantified and +2 if it is universally quantified. If x is a free variable, we let eadϕ(x) = 0.

The +1 respectively +2 in the definition makes sure that eadϕ(x) is odd if and only if
Qx = ∃.

Example 3.11. The formula from Example 3.6 satisfies eadϕ(x) = 1, eadϕ(y) = 2,
eadϕ(z) = 3, and eadϕ(u) = 4.

The formula from Example 3.7 satisfies eadϕ(x) = eadϕ(x
′) = 2 and eadϕ(y) = 3.

The formulae from Example 3.8 satisfy eadϕ(x) = eadϕ(z) = 2, eadϕ(y) = 1, and
eadψ = eadϕ.

For the formulae from Example 3.9 we have eadϕn(xi) = eadψn
(xi) = eadϕn(z) = 1,

eadϕn(y) = eadψn
(y) = 2, and eadψn

(z) = 3.

Definition 3.12. If we replace �ϕ by ≤ϕ in Definition 3.10, we obtain the (usual) altern-
ation depth of x in ϕ, which we denote by adϕ.

Remark 3.13. Every formula ϕ satisfies eadϕ ≤ adϕ.

Example 3.14. For the formuale from Examples 3.6 and 3.7 we have adϕ = eadϕ.
The formulae from Example 3.8 satisfy adϕ(x) = 2, adϕ(y) = 3, adϕ(z) = 4, and

adψ = eadψ.
For the formulae from Example 3.9 we have adϕn = adψn

= eadψn
.

Definition 3.15 (First order tree-width). For a formula ϕ we define the first order tree-
width of ϕ by fotw(ϕ) := tw(Gϕ, eadϕ).
Accordingly, we say that (T,B) is a tree decomposition for ϕ, if (T,B) is an eadϕ-stratified
tree decomposition for Gϕ.

Note that for a formula ϕ, the variables free(ϕ), as well as the variables of any atom or
literal in ϕ induce cliques in Gϕ. In particular, since eadϕ(x) = 0 for any free variable x,
by Fact 2.2 it is no restriction to require that the free variables be covered in the root of a
tree decomposition.

In general, the difference between fotw(ϕ) and tw(Gϕ) can be unbounded:

Proposition 3.16. For every n > 0 there is a formula ϕn with fotw(ϕn) = n and
tw(Gϕn) = 1.
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Proof. Let

ϕn = ∃x1 . . . ∃xn∀y
∧

1≤i≤n

Exiy .

Then Gϕn is the n-star with center y, and we have eadϕn(xi) = 1 for all 1 ≤ i ≤ n, and
eadϕn(y) = 2. It is easy to see that any eadϕn-stratified tree decomposition (T,B) of Gϕn

has a piece {x1, x2, . . . , xn, y}, namely Bty . On the other hand, such a tree decomposition
needs no other pieces. Hence fotw(ϕn) = n. Since Gϕn is a tree we have tw(Gϕn) = 1.

Lemma 3.17. Given a formula ϕ, we can compute �ϕ and eadϕ in polynomial time.

Proof. In order to compute �ϕ, consider the three closure operators implicit in its definition.
As �ϕ is a binary relation on var(ϕ), a quadratic number of applications of the closure
operators suffices to produce �ϕ. Hence it remains to show that each closure operator is
computable in polynomial time. This is immediate for Reflexivity and Transitivity. For
Alternation, let (E) ⊆ var(ϕ)2 be the current approximation of �ϕ. First, we compute the
formulae ϕ[zE] for all variables z, and from these the entanglement relation. Then, checking
whether some pair (x, y) needs to be added to R because of Alternation basically amounts
to reachability in the entanglement graph restricted to (x E) ∪ (y E).

It is clear that eadϕ can be computed from ϕ and �ϕ in polynomial time.

3.3. Xenerp normal form. Prenex normal form aims to make the scopes of quantifiers
as large as possible. Working in the opposite direction, we obtain what we term xenerp
normal form.

Definition 3.18. A subformula χ of a formula ϕ is in xenerp normal form with respect to
ϕ, if for all variables x quantified in χ the following holds: ϕx is immediately preceeded by
a quantifier sequence which contains Qxx.

A formula ϕ is in xenerp normal form, if it is in xenerp normal form with respect to
itself.

Example 3.19. Recall the formulae ϕ and ψ from Example 3.8. We have already seen
that eadϕ = eadψ. Furthermore, ϕ and ψ are equivalent and ψ is in xenerp normal form,
whereas ϕ is not in xenerp normal form.

The following lemma presents equivalent transformations of formulae, such that neither
the formula graph, nor the essential alternation depth, nor the corresponding tree decom-
positions change.

Lemma 3.20. Let ϕ and ψ be formulae satisfying either 1, 2 or 3.

(1) There are formulae χ1, . . . , χn, a positive Boolean combination θ of n arguments, and
a variable x which does not occur in χ2, . . . , χn, such that ψ is obtained from ϕ by
replacing a subformula θ(Qxxχ1, χ2, . . . , χn) by Qxxθ(χ1, χ2, . . . , χn).

(2) There are a formula χ, and variables x, y with Qx = Qy such that ψ is obtained from ϕ

by replacing a subformula QxxQyyχ by QyyQxxχ.
(3) There are a formula χ, and variables x, y with ϕx a proper subformula of ϕy, such that

ψ is obtained from ϕ by replacing a subformula QxxQyyχ by QyyQxxχ, where Qyyχ is
xenerp with respect to ϕ.
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Then ϕ ≡ ψ, eadϕ = eadψ, and Gϕ = Gψ. Consequently, tree decompositions for ϕ coincide
with tree decompositions for ψ and in particular fotw(ϕ) = fotw(ψ).

Implicitly, we assume in these cases that Qx and Qy are the same with respect to the
formula ϕ and with respect to the formula ψ.

Proof. In all three cases the formulae differ only in the position of quantifiers, so Gϕ = Gψ
is immediate. Also, for all X ⊆ var(ϕ) = var(ψ), the formulae ϕ[X] and ψ[X] are essentially
equal: the only potential difference between them is the same shift of quantifiers which
led from ϕ to ψ. In particular, the same variables occur in ϕ[X] as in ψ[X]. Hence, all
differences between �ϕ and �ψ (and thus between eadϕ and eadψ) must ultimately stem
from differences between ≤ϕ and ≤ψ.

For the first replacement, the equivalence ϕ ≡ ψ is well-known. For the other parts of
the statement, the only change between ≤ϕ and ≤ψ is, that for all variables y quantified in
χi for some 2 ≤ i ≤ n, we have x 6≤ϕ y but x ≤ψ y. We show that this change has no impact
on �. Clearly (�ϕ) ⊆ (�ψ) because of (≤ϕ) ⊆ (≤ψ). For the converse we use induction on
derivations. More precisely, we show by induction on the inductive definition of �ψ that for
all x′ �ψ y

′ we have x′ �ϕ y
′. That is the inductive property P (x′, y′) as in Lemma 3.4 is

x′ �ϕ y
′. The first two inductive rules are trivial, because we know that �ϕ is reflexive and

transitive. Hence we can concentrate on Alternation. So let x′ ≤ψ y
′, (E) ⊆ (�ψ) ∩ (�ϕ),

and x′ = z0, . . . , zn = y′ be given such that Qx 6= Qy, and for all 0 ≤ i < n we have
zi ∈ (x′ E) ∩ (y′ E) and entanglement of zi, zi+1 with respect to E and ψ. By our above
observation on the similarity of ϕ[X] and ψ[X] for any set X of bound variables, it follows
that zi and zi+1 are also entangled with respect to E and ϕ, and thus with respect to �ϕ
and ϕ. Consequently, either x′ �ϕ y

′ holds (and we are done), or x′ 6≤ϕ y
′. Then, together

with x′ ≤ψ y
′ it follows that x′ = x and y′ is quantified in χj for some 2 ≤ j ≤ n. As x ≤ϕ zi

or y′ ≤ϕ zi for all 0 ≤ i ≤ n, all zi are quantified either in Qxxχ1 or in χj. As the former is
true for z0 = x and the latter for zn = y′, there is some 0 ≤ i < n such that zi is quantified
in Qxxχ1 and zi+1 in χj . Then ϕ[ziE] is a subformula of ϕzi , which in turn is a subformula
of the scope of zi and thus of Qxxχ1. Similarly, the scope of zi+1 is a subformula of χj . As
all occurences of zi+1 are in its scope and χj is disjoint from Qxxχ1, this contradicts the
fact that zi+1 occurs in ϕ[ziE].

In the second replacement, the equivalence ϕ ≡ ψ also is well-known. So let us show
(�ϕ) = (�ψ). As the replacement is symmetric, it suffices to show (�ψ) ⊆ (�ϕ), which we
do by induction. Again, the cases of Reflexivity and Transitivity are clear. For Alternation,
let E and x′ = z0, . . . , zn = y′ be given as above. Again, we obtain that Alternation also
yields x′ �ϕ y

′ unless x′ 6≤ϕ y
′. But then x′ = x and y′ = y contradicting Qx = Qy.

In the third replacement, if Qx = Qy then this case is subsumed by the second re-
placement so we may assume Qx 6= Qy. Let us start by showing ϕ ≡ ψ. We will even
show QxxQyyχ ≡ QyyQxxχ. As Qyyχ is in xenerp normal form we have, for variables v,w
quantified in Qyyχ, that ϕw is a subformula of ϕv whenever v ≤ϕ w. In this case w occurs
in ϕv (as the formula is straight, w does occur somewhere, and it can only occur in ϕw
which is a subformula of ϕv). So for entanglement of v and w it suffices to show that v
occurs in ϕw. Let V := {v ∈ var(ϕ) | y ≤ϕ v and ϕx is a subformula of ϕv}. Observe, that
V is linearly ordered by ≤ϕ.

Claim 1. There is a subformula θ of χ which is a superformula of ϕx such that no variable
from V occurs free in θ.
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Proof. For contradiction, assume the opposite. Then we inductively define a sequence
v0, v1, . . . of variables. Take v0 to be x. For all i ≥ 1 we will have vi ∈ V . For defin-
ing vi+1 from vi, let θi be ϕvi , together with the sequence of quantifications of variables
from V which immediately preceeds ϕvi . Hence θi is a subformula of Qyyχ. If θi = Qyyχ,
then we terminate the sequence. Otherwise, by our assumption, some variable from V

occurs free in θi. Then let vi+1 be such a variable. As Qyyχ is xenerp, θi is a proper
subformula of ϕvi+1 . This implies that vi occurs in ϕvi+1 and the converse holds by choice
of vi+1, because θi essentially coincides with ϕvi . Hence vi and vi+1 are entangled whenever
both are defined. If furthermore i 6= 0, then we also have vi+1 ≤ϕ vi and vi+1 6= vi, because
Qyyχ is xenerp and ϕvi is a proper subformula of ϕvi+1 . Hence, as V is finite, the sequence
v0, . . . must terminate, say with vn. As ϕx is a proper subformula of ϕy, we have θ0 6= Qyyχ,
so n > 0. Now let 0 ≤ m ≤ n be minimal such that Qvm = Qy. The case that there are
no such m will be handled later. As Qv0 = Qx 6= Qy, we have m > 0 so ϕx is a proper
subformula of ϕvm . We obtain vm �ϕ vi for all 1 ≤ i ≤ m using a backwards induction as
follows. The base case is Reflexivity. For the inductive step we have a chain vm, . . . , vi of
entanglements and by the inductive hypothesis we have vm �ϕ vj for all intermediate j > i.
Further vm ≤ vi and Qvm = Qy 6= Qvi , so we obtain vm �ϕ vi using Alternation. Then, in
total we have a chain x = v0, v1, . . . , vm of entanglements such that x �ϕ v0 by Reflexivity,
vm �ϕ vi for all 1 ≤ i < m and Qx 6= Qy = Qvm , so Alternation implies x �ϕ vm. But
then (vm �ϕ) ⊆ (x �ϕ), contradicting that ϕx is a proper subformula of ϕvm . Now for the
case that Qvi = Qx for all i such that vi is defined. Then θn = Qyyχ, so ϕvn = ϕy and
thus vn and y are entangled. This time we have a chain y, vn, . . . , v1, x of entanglements
with the same properties as the sequence vm, . . . , v1, x above: it is descending with respect
to ≤ϕ except for the last step, the first variable has the same quantifier as y and all other
variables have the same quantifier as x. Thus similar to the above we obtain x �ϕ y, this
time in contradiction to ϕx being a proper subformula of ϕy. This proves the claim. �

So let θ be a subformula of χ and a superformula of ϕx such that no variable from V

occurs free in θ. Hence all free variables of θ except x are also free variables of QxxQyyχ.
Without loss of generality we may assume that Qx = ∃ and Qy = ∀. It is well-known that
∃x∀yχ implies ∀y∃xχ. For the converse, let I be an interpretation for ∃x∀yχ such that
I |= ∀y∃xχ. We need to show that I |= ∃x∀yχ. For a value a from the universe of the
interpretation I, we have that I a

x
is an interpretation for ∀yχ. As all free variables of θ

are also free in ∀yχ, we have that I a
x
also is an interpretation for θ. Now let a0 be some

value such that I a0
x
|= θ. If no such a0 exists, let instead a0 be arbitrary. Now for all a we

have that I a
x
|= θ implies I a0

x
|= θ. Now let b be an arbitrary value. As I |= ∀y∃xχ, we

have that I1 := I b
y
a′

x
|= χ for some value a′. Let us examine the impact that replacing I1

by I2 := I b
y
a0
x

has on the formula χ. Recall that ϕx is a subformula of θ, so in particular

x does not occur free in χ except in θ. Hence the only possible change comes from θ. If
I1 |= θ, then also I2 |= θ and nothing changes, that is I2 |= χ. The same argument holds
if I1,I2 6|= θ. Otherwise I1 6|= θ and I2 |= θ. In this case recall, that all formulae are
in negation normal form, so χ is positive in θ. Thus I1 |= χ again implies I2 |= χ. So
I a0
x
b
y
= I b

y
a0
x
|= χ for all values b, which implies I a0

x
|= ∀yχ and then I |= ∃x∀yχ.

Next, let us compare �ϕ with �ψ. The only difference between ≤ϕ and ≤ψ is, that
x ≤ϕ y 6≤ϕ x while x 6≤ψ y ≤ψ x. To show (�ϕ) = (�ψ), we show inclusion in both
directions by induction. Let us start with (�ϕ) ⊆ (�ψ). As in the proofs for the other
replacements, the only interesting case is where x′ �ϕ y

′ but x′ 6≤ψ y
′. This implies x′ = x
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and y′ = y. Then x �ϕ y in contradiction to ϕx being a proper subformula of ϕy. For the
other inclusion we need to recall a little more from the above cases: we obtain a sequence
of entanglements (which are such both in ψ and in ϕ) x′ = z0, . . . , zn = y′ such that for all
0 ≤ i < n we have x′ �ψ zi and x

′ �ϕ zi or y
′ �ψ zi and y

′ �ϕ zi. Also we have x′ ≤ψ y
′

and we are done unless x′ 6≤ϕ y
′, hence x′ = y and y′ = x. But then we have x ≤ϕ y and

a chain x = vn, . . . , v0 = y of entanglements. As further x �ϕ vn by Reflexivity, we obtain
x �ϕ y which again gives a contradiction. This concludes the proof of Lemma 3.20

Observe, that the first class of replacements in the previous lemma are exactly what is
used in turning a formula into prenex normal form. For xenerp normal form, we need the
first and third class.

Corollary 3.21. Let ϕ be a formula and let ψ be a prenex normal form (obtained in the
usual way) of ϕ. Then fotw(ϕ) = fotw(ψ).

Lemma 3.22. From a formula ϕ we can compute in polynomial time a formula ψ in
xenerp normal form, such that ϕ ≡ ψ, Gϕ = Gψ, eadϕ = eadψ, and consequently, tree
decompositions for ϕ coincide with those for ψ.

Proof. We work by applying replacements from Lemma 3.20 in one direction or the other.
More precisely, we apply replacements of the first kind backwards whenever possible. When-
ever no such replacement is applicable, then each quantifier sequence ends with some quanti-
fier Qxx such that the scope of x is an atom, a negated atom, or a conjunction or disjunction
of two subformulae, both of which contain x. In all three cases, ϕx contains the scope of x.
As the reversed inclusion always holds, we have that Qxx immediately precedes ϕx.

If the formula ϕ′ at hand is xenerp, we are done. Otherwise let x be ≤ϕ′-maximal
such that the quantifier sequence containing Qxx does not precede ϕx. By the above, this
sequence does not end with Qxx, so the scope of x has the form Qyyχ. By maximality of x,
Qyyχ is xenerp with respect to ϕ′. In particular, the quantifier sequence containing Qxx is
followed by ϕy. By the choice of x we conclude that ϕx 6= ϕy, so ϕx is a proper subformula
of ϕy. Hence a replacement of the third kind is applicable (in the forward direction).

It remains to show, that repeatedly applying these replacements terminates. As a first
semi-invariant, consider the sum, taken over all variables x, of the distance that Qxx has
from the root in the syntax tree of the formula. (Backwards) replacements of the first kind
increase this semi-invariant while replacements of the third kind do not change it at all.
On the other hand, replacements of the third kind decrease the number of variable pairs
(x, y), such that x ≤ϕ′ y and ϕx is a proper subformula of ϕy. As both semi-invariants
are polynomially bounded in |ϕ|, and each replacement (including the test for applicability)
requires only polynomial time (recall Lemma 3.17), the procedure runs in polynomial time.

3.4. Comparing ead with ad. Let ϕ be a first order formula. As �ϕ is coarser than ≤ϕ,
it is immediate that eadϕ ≤ adϕ. However, this does not directly imply that fotw(ϕ) ≤
tw(Gϕ, adϕ) also holds. Variables which are incomparable by ≤ϕ (and thus by �ϕ) are
given an order by eadϕ and by adϕ, but not neccessarily the same one. Consequently,
not every adϕ-stratified tree decomposition is also eadϕ-stratified. Nevertheless fotw(ϕ) ≤
tw(Gϕ, adϕ) does hold, and it is the purpose of this subsection to show this fact.

At the core of our proof there is a double induction which we cast into two auxiliary
lemmata. An entanglement chain (in some formula ϕ) is, of course, a sequence v0, . . . , vn
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of variables such that for all 0 ≤ i < n the variables vi and vi+1 are entangled in ϕ. The
entanglement chain is hanging, if v0, vn ≤ϕ vi for all 0 < i < n. It is crossing, if Qv0 6= Qvn .
It is nice, if min≤ϕ(v0, vn) �ϕ vi for all 0 ≤ i ≤ n. (We will only talk about nice chains in
contexts where the existence of min≤ϕ(v0, vn) is guaranteed a priori. As a side note it is
not hard to see that this minimum exists for all hanging chains.)

Lemma 3.23. Let ϕ be a formula such that ≤ϕ is a total order (for example ϕ is in prenex
normal form). Let x = v−m, . . . , v−1, y = v0, v1, . . . , vn = z be an entanglement chain
without repetitions such that the following hold:

(1) Qx 6= Qy = Qz.
(2) x ≤ϕ vi for all −m ≤ i < n.
(3) The subchain y = v0, v1, . . . , vn = z is hanging.
(4) x �ϕ vi for all −m ≤ i ≤ 0, i.e. the subchain x = v−m, . . . , v−1, v0 = y is nice.
(5) For all 0 ≤ k < ℓ ≤ n, if the subchain vk, . . . , vℓ is hanging and crossing, then it is also

nice.

Then the chain is nice.

Proof. Otherwise assume a counterexample with n minimal. Obviously, n > 0. If n = 1,
then we can use the chain to derive either x �ϕ z or z �ϕ x by Alternation. In the first
case we are done, in the second case we use Transitivity with x to derive z �ϕ vi for all
−m ≤ i ≤ 0.

Hence in the following we may assume n > 1. Let 0 < k < n be such, that vk ≤ϕ vi for
all 0 < i < n, that is the subchains v0, . . . , vk and vk, . . . , vn are hanging. If Qvk = Qx, then
the last premise gives y �ϕ vi for all 0 ≤ i ≤ k and z �ϕ vi for all k ≤ i ≤ n. The former,
together with x �ϕ v0 = y, gives x �ϕ vi for all 0 ≤ i ≤ k. Hence, for all −m ≤ i ≤ n we
have x �ϕ vi or z �ϕ vi. Thus the chain again witnesses x �ϕ z or z �ϕ x, so transitivity
also gives x �ϕ vi for all k ≤ i ≤ n or z �ϕ vi for all −m ≤ i ≤ k.

So we are left with the case Qvk = Qy = Qz. Then the subchain x = v−m, . . . , vk
satisfies all conditions of this lemma. Minimality of n implies that x �ϕ vi for all −m ≤
i ≤ k. Now we set m′ = m + k, n′ = n − k, and v′i = vi+k for all −m′ ≤ i ≤ n′.
The thus shifted entanglement chain again satisfies all conditions, so minimality of the
counterexample implies that the shifted chain is nice. Then so is the original chain.

Lemma 3.24. Let ϕ be a formula such that ≤ϕ is a total order. Then every hanging and
crossing entanglement chain is nice.

Proof. Otherwise assume a counterexample v0, . . . , vn with minimal n. The fact that the
chain is crossing prohibits n = 0. If n = 1, the claim follows from Alternation. Hence we
assume n > 1. Let 0 < k < n be such, that vk ≤ϕ vi for all 0 < i < n. We have Qvk = Qx or
Qvk = Qy, without loss of generality the latter. Then by minimality of the counterexample
the shifted entanglement chain with vk in the middle satisfies all conditions of Lemma 3.23.
Hence the claim follows from that lemma.

Theorem 3.25. For all ϕ ∈ L we have fotw(ϕ) ≤ tw(Gϕ, adϕ).

Proof. Without loss of generality, we may assume that ϕ is in prenex normal form: otherwise
let ϕ′ be a prenex normal form of ϕ such that adϕ = adϕ′ . Such a ϕ′ can be obtained by
moving quantifiers to the left in ϕ (which is the normal procedure for making a formula
prenex) while always chosing a variable with minimal adϕ. Among the prenex normal
forms of ϕ, this ϕ′ is a sensible prenex normal form anyway, in that it does not introduce
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unneccessary alternation. Observe that Gϕ = Gϕ′ . Now by Lemma 3.20 we have fotw(ϕ) =
fotw(ϕ′) while the choice of ϕ′ implies tw(Gϕ, adϕ) = tw(Gϕ′ , adϕ′).

By virtue of Theorem 3.1 it suffices to prove ew(Gϕ, eadϕ) ≤ ew(Gϕ, adϕ). We show that
for all formulae ϕ in prenex normal form, all k, and all elimination orderings of (Gϕ, adϕ) of
width k, there is an elimination ordering of (Gϕ, eadϕ) of width k. Let ϕ = Qx1x1 . . . Qxnxnθ

where θ is quantifier free.
For any ordering y1, . . . , yn of {x1, . . . , xn}, a ϕ-fault is a pair 1 ≤ i < i′ ≤ n such that

eadϕ(yi) > eadϕ(yi′). Let us assume that ϕ and y1, . . . , yn form a counterexample with
a minimal number of ϕ-faults, that is y1, . . . , yn is an elimination ordering of (Gϕ, adϕ),
(Gϕ, eadϕ) has no elimination ordering of equal width, and the number of ϕ-faults is minimal
for all choices of ϕ and y1, . . . , yn. If this number of ϕ-faults is 0, then y1, . . . , yn also is
an elimination ordering of (Gϕ, eadϕ), contradicting the counterexample property. Hence
there is some ϕ-fault.

Let k be the width of y1, . . . , yn with respect to Gϕ. Let ψ := Qy1y1 . . . Qynynθ. As
y1, . . . , yn is obtained from x1, . . . , xn only by rearranging variables within quantifier blocks,
we can obtain ψ from ϕ by a sequence of replacements as in Part 2 of Lemma 3.20. Hence
that Lemma implies Gϕ = Gψ and eadϕ = eadψ. Also, adϕ = adψ, so in particular y1, . . . , yn
is an elimination ordering of (ψ, adψ) of width k. By Definition of ψ, we have yi ≤ψ yi′ if
and only if i ≤ i′. Furthermore, ϕ-faults and ψ-faults of y1, . . . , yn coincide.

As there is a ψ-fault, there also is one which concerns two subsequent variables, that
is for some i we have eadψ(yi) > eadψ(yi+1). Let z1, . . . , zn be the sequence y1, . . . , yi−1,

yi+1, yi, yi+2, . . . , yn, i.e. yi and yi+1 change places. Further, let χ := Qz1z1 . . . Qznznθ.
Obviously, z1, . . . , zn is an elimination ordering of (Gχ, adχ). We claim that yi 6�ψ yi+1 and
that {yi, yi+1} is no edge of Gψ,i+1, where this graph is as in the definition of elimination
width with respect to the sequence y1, . . . , yn. These claims are proved later, let us first
show how to make use of them. The fact Gχ = Gψ and the non-edge between yi and yi+1 in
Gψ,i+1 imply that the width of z1, . . . , zn with respect to χ and ψ is also k. From yi 6�ψ yi+1

it is easy to see (and somewhat implicit in the proof of Lemma 3.20) that eadχ = eadψ. In
particular, ψ-faults and χ-faults coincide. By construction, z1, . . . , zn has one such fault less
than y1, . . . , yn, so by minimality of the counterexample there is some elimination ordering
of (Gχ, eadχ) of width k. As Gχ = Gψ = Gϕ and eadχ = eadψ = eadϕ, it is also one of ϕ
of equal width, in contradiction to ϕ, k being a counterexample.

Now for the claims. First, assume for contradiction that yi �ψ yi+1. As yi 6= yi+1, this
is not due to Reflexivity. As yi+1 is the ≤ψ-successor of yi and (�ψ) ⊆ (≤ψ), there can be
no intermediate variable, hence yi �ψ yi+1 is due to Alternation. But then Qyi 6= Qyi+1 , so
eadψ(yi+1) ≥ eadψ(y) + 1 in contradiction to i, i+ 1 being a ψ-fault.

For the second claim assume, again for contradiction, that yi forms an edge with yi+1

in Gψ,i+1, i.e. in Gψ there is a path from yi to yi+1 such that all internal vertices of that
path are of the form yj with j > i + 1. We view the path as an entanglement chain
yi = v0, . . . , vn = yi+1. As the elimination ordering is ≤ψ, we have yi, yi+1 ≤ψ vj for
all 0 < j < n, that is the chain is hanging. If Qyi 6= Qyi+1 , then the chain is nice by
Lemma 3.24. In particular, yi �ψ yi+1, contradicting the previous claim. Now for the case
Qyi = Qyi+1 . Then eadψ(yi+1) < eadψ(yi) implies that there is some w ∈ var(ψ) such that
eadψ(w) = eadψ(yi) − 1 and w �ψ yi. It follows that Qw 6= Qyi . The fact w �ψ yi is
not due to Reflexivity because Qw 6= Qyi . It is also not due to Transitivity: otherwise let
u be the intermediate variable. Then Qu = Qyi or Qu = Qw, without loss of generality
the latter. Then w �ψ u is due to Transitivity and further unfolding Transitivity until
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Figure 1: Example 3.26: the formula graph of ϕn and an eadϕn-stratified tree decomposition
of width 1 of ϕn.

Alternation is applicable eventually yields some u′ such that w �ψ u′ �ψ u �ψ yi and
Qw 6= Qu′ 6= Qu 6= Qyi . Then eadψ(w) + 1 = eadψ(yi) ≥ eadψ(w) + 3, a contradiction.
Hence w �ψ yi is due to Alternation, so there is some corresponding entanglement chain.
Prepending it to the one we have yields a chain w = v−m, . . . , v−1, v0 = yi, v1, . . . , vn = yi+1.
Furthermore this chain satisfies the first three conditions of Lemma 3.23 (with respect to ψ).
By virtue of Lemma 3.24, the other two conditions are implied. Hence Lemma 3.23 yields
w �ψ yi+1, so eadψ(yi+1) ≥ eadψ(w)+1 = eadψ(yi), contradicting eadψ(yi+1) < eadψ(yi).

The following example shows that the difference in the opposite direction can be un-
bounded.

Example 3.26. For n > 0, recall the formula ϕn from Example 3.9. We have seen that
eadϕn(xi) = adϕn(xi) = 1 = eadϕn(z) for i ≤ n, and eadϕn(y) = adϕn(y) = 2, whereas
adϕn(z) = 3. Figure 1 shows the formula graph of ϕn together with an eadϕn-stratified tree
decomposition of width 1 of ϕn. We actually have fotw(ϕn) = 1. On the other hand, it
is easy to see that every adϕn-stratified tree decomposition of ϕn has a piece var(ϕn) or
var(ϕn) \ {y}, and hence tw(Gϕn , adϕn) = n.

4. Computing stratified tree decompositions

In this section, we show that computing stratified tree decompositions of optimal width
is fixed-parameter tractable, where the parameter is the stratified tree-width. In fact, the
running time is essentially linear for bounded stratified tree-width. In the next section, we
will use the algorithm developed here as a first step for formula evaluation.

Definition 4.1. Let G = (V,E) be a graph and d : V → N. We say that (G, d) is
normalized, if for n := |V | we have V = {1, . . . , n} and d(v) ≤ n for all v ∈ V .

We obtain a linear time algorithm only for normalized inputs. In the following, let
(G, d) with G = (V,E) be normalized. We set dmax := maxv∈V d(v) and for any integer i
we let Xi := {v ∈ V | d(v) = i}. Let NG(C) denote the set of neighbours of C in V \ C.

Definition 4.2. For 0 ≤ i ≤ dmax, let G
(i) be the graph with vertex set V , such that two

vertices x, y form an edge in G(i), if in G there is a path from x to y with all internal vertices
in

⋃

j>max(i,d(x),d(y))Xj .
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In particular, every edge of G is present in all G(i) by virtue of a path without any
internal vertices. For G(dmax), we can use only such paths, so G(dmax) = G. Observe the
similarity of the graphs G(i) to the graphs Gj in the definition of elimination orderings: in
both cases the connectivity through some vertices is redirected to hold immediately between
those vertices thus connected. The main differences are granularity (the number of graphs

is dmax + 1, respectively |V |+ 1) and the fact that in the definition of G(i), no vertices are

deleted. Indeed, we have G(i)[
⋃

j≤i
Xj ] = G|

⋃

j≤i

Xj |. This also explains our interest in the

G(i). We are (implicitly) looking for elimination orderings for G which respect d. Such

elimination orderings keep the Xi intact, so the G(i) will (up to vertex deletion) occur as
the Gj at the boundaries between the different Xi.

Definition 4.3. The component tree of (G, d) is a rooted tree with nodes t labelled by two
subsets of V , denoted by Ct and Dt. For the root r, we let Cr := V . For a node t at level
i (where the root has level 0), we let Dt := Ct ∩

⋃

j≤iXj. For each (nonempty) connected

component C of G[Ct \Dt], node t has a child tC and we let CtC := C ∪NG(C). Further,
we let D1

t := Dt ∩Xi and D
2
t := Dt \D

1
t .

Lemma 4.4. Let G be a graph and d : V (G)→ N. Let t, u be nodes of the component tree
of (G, d), where u is a child of t. Then

(1) Dt ∩Du = Dt ∩ Cu.
(2) Let (T,B) be a d-stratified tree decomposition of G. Then some piece of (T,B) covers

Dt ∩Du.

Proof. Let i be the depth of t in the component tree and let C be the connected component
of G[Ct \Dt] such that Cu = C ∪NG(C).

1) It suffices to prove Dt ∩Du ⊇ Dt ∩ Cu. If x ∈ Dt ∩ Cu, then x ∈ Dt ⊆
⋃

0≤j≤iXj

and hence x ∈ Cu ∩
⋃

0≤j≤i+1Xj = Du.

2) By Fact 2.2 it suffices to show that any pair of distinct vertices x, y ∈ Dt∩Du occurs
together in some piece of (T,B). As x, y ∈ Dt, we have x, y 6∈ C, so x, y ∈ NG(C). Since
C is a connected component, there is a path P from x to y with all internal vertices in C.
Hence d(z) > d(x) and d(z) > d(y) for all internal vertices z of P .

Let x = x0, x1, . . . , xn = y be the path P . If n = 1, then G already contains the edge
{x, y}, which hence is covered by (T,B). Otherwise, the set of tree nodes covering vertices
from P \ {x, y} induces a nonempty connected subtree T ′ in T . Let s be the ≤T -minimal
node of T ′ and let 1 < i < n be such that s = txi . As {x, x1} is an edge of G, the vertex x
is covered by some node t′ of T ′. By definition of s and tx, we have s ≤T t

′ and tx ≤T t
′.

Hence, both tx and s lie on the unique path from the root of T to t′ and thus they are
comparable by ≤T . As txi = s <T tx would contradict d-stratifiedness, tx ≤T s ≤T t′

follows. Using (TD3), we conclude that s covers x. Analogously, s covers y, so x and y

occur together in Bs.

While the component tree is useful for mentally addressing the task of computing a
stratified tree decomposition, we cannot afford to actually compute it: its size is superlinear
and we want to achieve a linear running time. The algorithm instead works with a modified
variant. First, we can do without the Cts, so the algorithm only computes the tree itself
and the Dts. This projection is necessary to obtain a linear size, as is the following second
modification: in case for some node t at level i > 0 we have Dt ∩Xi = ∅, then we omit the
node t, making its only child instead a child of the parent of t. We term t a dropped node.
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Whenever we talk about the level of a node in the modified component tree, we always refer
to the level the node had prior to dropping any nodes. As a third modification, for each
node t, say at level i, we store G(i−1)[Dt] alongside Dt. For technical reasons which will

become clear in the proof of Lemma 4.5, we allow the encodings of these G(i−1)[Dt] to have
multiedges. To keep the notation simple, let us fix the convention that |E| for some edge
set E with multiedges denotes the sum of multiplicities of edges from E.

Lemma 4.5. We can compute a modified component tree of a normalized (G, d) in time
O(|V | · tw(G, d)2).

Proof. Let k := tw(G, d). The modified component tree is computed in a bottom-up fashion.
For this observe, that the various C used in the definition of the component tree at level
i are the connected components of G[

⋃

j≥i
Xj ]. Hence each Ct for t at level i is C ∪ NG(C)

for such a C. In order to determine the corresponding Dt, we do not need the full graph:
it is irrelevant which edges between vertices of

⋃

j>i

Xj are present; it suffices to know what

connectivity these induce on
⋃

j≤i
Xj . This information is present in G(i). More precisely, we

can transform the defining equality Dt = (C ∪NG(C))∩
⋃

j≤i
Xj , where C is some connected

component of G[
⋃

j≥i
Xj ], into the equality Dt = D ∪ (NG(i)(D) ∩

⋃

j<i

Xj), where D is the

corresponding connected component of G(i)[Xi].
Recall that, as (G, d) is normalized, the vertices of G are 1, . . . , n, and dmax ≤ n, where

n = |V |. More precisely, we assume that G is given as an array of adjacency lists and that
d is given as an array of d’s values, where both arrays are indexed with vertices. Using
bucket sort, we compute the sets X0, . . . ,Xdmax in time O(n+ dmax), which is O(n) thanks
to dmax ≤ n.

For the bottom-up run, the algorithm uses a loop i = dmax, . . . , 1. As an invariant, at
the beginning of run i it has the following data:

• The graph G(i) (possibly with multiedges).
• An array of lists of subtrees of the modified component tree. Overall, the lists contain
all subtrees rooted at level i + 1. For all 0 ≤ j ≤ dmax, the list at entry j contains the
subtrees which, after dropping nodes, end up at level j.

For j > 0, we also store an element from Dt ∩Xj−1 alongside each subtree, where t is
the root of the subtree.

The graph is initialized to G(dmax) = G. This can be done in zero time, because G is not
needed any more. The array is initialized with empty lists, using time O(dmax) and thus

O(n). For a single run of the loop, we first do a depth-first search through G(i)[Xi]. More

precisely, the search is in G(i), it uses all elements from Xi as entry points, and it terminates
recursion in elements from other Xj. In this way, the connected components D of G(i)[Xi]
are found, and we also directly obtain the correspondingD∪(NG(i)(D)∩

⋃

j<i

Xj), that is some

new Dt. During the search, we do some more things, which only increase the running time
by a constant factor: for each such Dt, we generate the tree node t and we label each vertex
ofDt with t. The label persists only until the next i. Also, for each such t, while constructing
Dt, we also compute the sets D1

t and D2
t , and we start constructing G(i−1)[Dt] by building

a graph with vertex set Dt and all edges from G(i)[Dt] incident to (at least one vertex of)
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D1
t . Furthermore, we determine the maximal j, such that D2

t ∩Xj 6= ∅ and we remember

some x ∈ D2
t ∩Xj . The running time of the search is O(|Xi|+ |{e ∈ E(G(i))|e ∩Xi 6= ∅}|).

The second part, the number (respecting multiplicities) of edges of G(i) incident with Xi,

is bounded by the number of edges of G(0) incident with Xi. Summing over all i, the total
running time of all searches is then O(n+ |E(G(0))|).

Next, we update G(i) to G(i−1) by introducing, for each new t, edges between each
two vertices from D2

t . We also do this in the graph stored at node t, which thus becomes

G(i−1)[Dt] as needed. We do not check whether the edges were already present (because we
do not have enough time to do so), hence multiedges may be introduced. The running time
is O(|Dt|+ ℓ), where ℓ is the number of edges introduced. Summing over all iterations, the
first part |Dt| is bounded in the same way as the running time of the depth-first searches.

The second part ℓ is bounded by
(

k
2

)

, where k := tw(G, d) + 1: as Dt ∩
⋃

j<i

Xj = Dt ∩Du

for the parent u of t, we can conclude |D2
t | = |Dt ∩

⋃

j<i

Xj | ≤ k from Lemma 4.4, 2. Hence

in total, the second part induces a running time of O(m · k2), where m is the size of the

tree. As this is the only place, where we add edges to G(i), we can also bound |E(G(0))| by

|E(G)| +m ·
(

k
2

)

.
We already have all the nodes for level i. We only need to connect them to the nodes

of level i+ 1 (in case i < dmax). For this, for each tree in the list at the array entry i+ 1,
say with root u, we look at its element from Du ∩ Xi, say y, then look at the label of y
generated above (as y ∈ Xi, we did consider y in the depth-first search), say t, and make
u a child of t. As this is done at most once for each tree node, the total running time of
doing this throughout the loop is linear in the size of the tree. Last, for all new t, we recall
j and x determined above, and we add the tree rooted at t together with x to the list at
array entry j + 1.

This concludes the description of the loop. After it has finished, we generate the root
node r, set Dr := X0 and make all trees in the list at array entry 0 children of r. The total
running time of computing the modified component tree is thus O(n + |E(G)| + m · k2),
where, again, m is the number of nodes of the modified component tree. For the second
term we have |E(G)| ≤ n ·tw(G) ≤ n ·k by Fact 2.1. Now, let us estimate m. Each non-root
node t of the modified component tree is a non-root node of the original component tree,
say at level i > 0, satisfying Dt ∩ Xi 6= ∅. Hence, there is an element xt ∈ Dt ∩ Xi. Let
u be the parent of t in the original component tree. Then xt belongs to the connected
component C of Cu \Du, such that Ct = C ∪NG(C). For different t at level i, the xt come
from different connected components, so there can be at most |Xi| such t. In total, m ≤ n,
so the running time is O(n · k2).

Remark 4.6. As a corollary to the previous proof, let us observe that G(0) is obtained
from G by turning all D2

t into cliques.

Theorem 4.7. There is an algorithm that, given a normalized (G, d), computes a d-

stratified tree decomposition of G of minimum width in time O(|V (G)| · 2poly(tw(G,d))).

Proof. Observe that, if u is a child of t in the component tree, then Dt ∩Du = D2
u. Then

Lemma 4.4, 2 and Remark 4.6 imply that d-stratified tree decompositions of G coincide
with those of G(0). Hence it suffices to compute a d-stratified tree decomposition for G(0)

of minimum width. This is achieved in four phases. First, a modified component tree is
computed as in Lemma 4.5.
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In the second phase, for each node t of the component tree, an optimal tree decompos-
ition of G(0)[Dt] is computed. Observe, that, if i is the level of t, then G(0)[Dt] coincides

with G(i−1)[Dt], which we have stored at node t. Hence, for a single t, using Bodlaender’s
algorithm [6] (which works well even in the presence of multiedges), the tree decomposition

can be obtained in time ‖G(i−1)[Dt]‖ · 2
poly(k). Observe, that the sum of all ‖G(i−1)[Dt]‖

is bounded by the encoding size of the modified component tree, which is bounded by the
time it took to compute it. Hence, overall this phase takes time n · 2poly(k).

In the third phase, for each node t of the component tree and each parent or child u of
t, we determine a node xt,u of the tree decomposition of G(0)[Dt], whose piece fully contains
Dt ∩Du. Observe, that Dt ∩Du coincides with D2

t or with D2
u, depending on whether u is

a parent or a child of t. Hence, Dt ∩Du is a clique in G(0), and then also in G(0)[Dt], so
there must be some xt,u as above. We find xt,u by first reading D2

t respectively D2
u from

the modified component tree, and then checking each element from each piece of the tree
decomposition against this set Dt ∩ Du, until some adequate xt,u is found. Even without
sophisticated search structures, O(ℓ · |Dt ∩Du| ≤ ℓ · k) time suffices, where ℓ is the size of
the tree decomposition. Overall, this phase takes time O(n · k3).

In the fourth phase, we use a bottom-up recursion to construct, for all nodes t, an op-
timal tree decompositions of G(0)[Ct]. It will happen to extend the above tree decomposition

of G(0)[Dt]. The recursion works as follows: we cycle through the children of t. By virtue
of bottom-up-ness, for each such child u, we already know an optimal tree decomposition of
G(0)[Cu]. As it contains the known decomposition of G(0)[Du], it also contains the node xu,t.

Hence we connect it to the known decomposition of G(0)[Dt] by adding an edge between xu,t
and xt,u. The result still is a tree decomposition, because the intersection Dt∩Du separates
Dt from Cu (Lemma 4.4, 1). It is an optimal tree decomposition, because its width is the
maximum of the widths of the participating tree decompositions, which were optimal for
their respective subgraphs. In the end, the recursion yields an optimal tree decomposition
(T,B) of G(0)[Cr] = G(0). It takes time O(m).

Last, pick some node s from the tree decomposition of G(0)[Dr]. As Bs ⊆ Dr ⊆
X0, choosing s as the root of (T,B) makes it d-stratified. This concludes the proof of
Theorem 4.7.

As each (G, d) can be normalized in time O(n log n), a similar statement holds for
arbitrary (G, d), albeit not with linear running time. Theorem 4.7 implies that we can
efficiently decide whether a formula ϕ satisfies fotw(ϕ) ≤ k:

Corollary 4.8. There is an algorithm that, given a formula ϕ ∈ L, computes a tree de-
composition of ϕ of minimum width in time poly(‖ϕ‖) + |var(ϕ)| · 2poly(fotw(ϕ)).

Proof. Given ϕ, it is first turned into a straight formula. Then, Gϕ and eadϕ are com-
puted and normalized in polynomial time. The last step is a call to the algorithm from
Theorem 4.7.

5. Query evaluation on bounded first order tree-width

This section contains the second main result: evaluating formulae of bounded tree-width
is fixed parameter tractable with parameter the length of the formula. Moreover, we show
that evaluating quantified constraint formulae of bounded first order tree-width can be
done in polynomial time. This is stronger than Chen and Dalmau’s result [9] for quantified
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constraint formulae of bounded elimination-width: as we will see in Section 6, bounded
elimination-width (i.e. bounded tree-width in [9]) implies bounded first order tree-width,
but there are classes of quantified constraint formulae with unbounded elimination-width,
that have bounded first order tree-width.

Definition 5.1. Let k ≥ 0 be an integer. The fragment Lk of L consists of those (not

necessarily straight) formulae ϕ such that |var(ϕ)| ≤ k. In contrast, let L̃k be the fragment
of formulae ϕ of L such that all subformulae of ϕ have at most k free variables.

Remark 5.2. Obviously, Lk ⊆ L̃k. On the other hand, formulae from L̃k can be turned
into equivalent formulae from Lk by renaming bound variables. The algorithm runs in
polynomial time, and in linear time for fixed k.

By Remark 5.2, we can use Lk and L̃k interchangeably. It will be more convenient to
work with the latter.

Remark 5.3. For all k, the question whether a given formula is equivalent to an Lk formula
is undecidable.

The statement is folklore, but we provide a proof for completeness’ sake.

Proof. We reduce from satisfiability of L. By introducing a new unary predicate U and re-
lativizing all quantifiers to U , satisfiability reduces to the question, whether a given formula
from L is satisfiable by an infinite structure. By the theorem of Löwenheim and Skolem,
this in turn is equivalent to satisfiability by a countable infinite structure. Now let ϕ be
some fixed formula such that ϕ does not have finite models, and such that ϕ is not equi-
valent to any Lk-formula. Then a given formula ψ is unsatisfiable by infinite structures, if
and only if ϕ∧ψ′ is equivalent to an Lk formula, where ψ′ is obtained from ψ by renaming
all symbols (constant symbols, relation symbols, and free variables) to be disjoint from all
symbols of ϕ. For the ‘only if’ part, unsatisfiability by infinite structures of ψ implies the
same for ψ′. Then, ϕ ∧ ψ′ is unsatisfiable and hence equivalent to Pc ∧ ¬Pc from L0. For
the ‘if’ part, assume that ψ is satisfiable and that ϕ∧ψ′ is equivalent to χ ∈ Lk. We obtain
χ′ from χ by renaming all symbols which do not occur in ϕ to be disjoint from all symbols
of ψ′. By choice of χ we have χ |= ϕ and then χ′ |= ϕ. The converse would contradict
that ϕ is not equivalent to any Lk-formula, so there is some interpretation I1 such that
I1 |= ϕ ∧ ¬χ′. As ϕ does not have any finite models, the domain of I1 is infinite, and by
Löwenheim-Skolem we can assume without loss of generality that it is countable. On the
other hand, satisfiability of ψ implies that of ψ′, say by an interpretation I2 with countable
infinite domain. By virtue of all the renaming done above, I1 and I2 do not have any
symbols in common. Furthermore, their domains are of the same cardinality. Hence there
is an interpretation I which extends both (up to isomorphisms), that is we have I |= ϕ∧ψ′

but I 6|= χ, a contradiction to the assumed equivalence.

As a consequence, there is no computable width parameter such that width-k captures
all formulae logically equivalent to a formula of Lk. For any width parameter, only for-
mulae which are ‘syntactically close’ to a formula of Lk are captured, for varying values of
‘syntactically close’.

The following example shows that first order tree-width indeed does not capture equi-
valence to L2.

Example 5.4. Let n > 2. ϕn = ψn ∨ χ, where χ ∈ L
2 and fotw(ψn) = n, but ψn is

unsatisfiable. Then ϕn ≡ χ ∈ L
2, but fotw(ϕn) = n.
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First order sentences of tree-width at most k− 1 have the same expressive power as L̃k

(and by Remark 5.2 hence as Lk). More generally we have the following.

Theorem 5.5. Let k ≥ 0.

(1) For any formula ϕ with fotw(ϕ) ≤ k − 1 there is a formula ψ ∈ L̃k with ϕ ≡ ψ which
is computable from ϕ.

(2) Any formula ψ ∈ L̃k satisfies fotw(ψ) ≤ k − 1.

Proof. 2. By Theorem 3.25 it suffices to show that tw(Gψ, adψ) ≤ k − 1. Without loss
of generality, ψ is already straight. Let T be the syntax tree of ψ. For a node t, say t

corresponds to the subformula χ of ψ, let Bt consist of the free variables of χ. As ψ ∈ L̃k,
the width of (T,B) is at most k − 1. (TD2) holds for (T,B), because edges arise from
atoms and atoms are among the subformulae χ considered in the definition of (T,B). Then
(TD1) follows, because ψ is straight. (TD3) holds, because for all variables x, the set
{t ∈ T | x ∈ Bt} union of all paths from (nodes corresponding to) atoms in which x occurs
to (the node corresponding to) the scope of x. It is easy to see that (T,B) is adψ-stratified.

1. Given ϕ, we use the algorithm of Corollary 4.8 to compute an eadϕ-stratified tree
decomposition (T,B) of width fotw(ϕ) ≤ k − 1 for Gϕ.

Intuitively, we will iteratively replace subformulae of ϕ by equivalent L̃k-formulae, until
we obtain an L̃k formula ψ equivalent to ϕ. The replacement is done along a tree decom-
position (T,B) of ϕ of width at most k− 1. For our purposes it is more convenient only to
work in leaves of the decomposition, so in every iteration we restrict the decomposition to
the part of the formula that still has to be transformed into an L̃k formula. In doing so, we
treat the subformulae ϕ′ of ϕ already in L̃k as new atoms, defined on the variables free(ϕ′).
For this we make sure that these new atoms are covered in some piece of the remaining part
of the tree decomposition.

More precisely, we describe an iterative algorithm. In every iteration, we are given a
formula ϕ′ in xenerp normal form, a tree decomposition (T ′, B′) of ϕ′ of width at most

k−1, and a second order substitution S, substituting relation symbols of ϕ′ by L̃k formulae
with the appropriate number of free variables, such that we have ϕ′S ≡ ϕ. We will need to
extend the syntax of formulae: we allow any monotone Boolean function as a single Boolean
connective. Of course, this extended syntax still allows for negation normal form, and we
still assume that all formulae are in this normal form. This syntax extension carries over
to the definition of ϕ[X] and hence of eadϕ.

We start by letting ϕ′ be some xenerp normal form of ϕ, (T ′, B′) = (T,B), and S = ∅.
Now in every step we do the following.

1. If ϕ′ is quantifier free, then var(ϕ′) = free(ϕ). As |free(ϕ)| ≤ fotw(ϕ)+1 ≤ k (recall,

that free(ϕ) forms a clique in Gϕ), we have ϕ′ ∈ L̃k, so the algorithm stops with output
ϕ′S. More precisely, ϕ′S may still use our additional Boolean connectives, but it is trivial
to eliminate these without leaving L̃k (but in general making the formula non-straight).

2. Otherwise, if (T ′, B′) has a leaf ℓ with parent t satisfying Bℓ ⊆ Bt, then we remove
ℓ and Bℓ from (T ′, B′), keeping ϕ′ and S.

3. If neither 1 nor 2 apply, then we choose a variable x ∈ var(ϕ′) as in the following
claim.

Claim 1. There exists a bound variable x ∈ var(ϕ′) with eadϕ′(x) maximum, such that x
appears in exactly one piece B′

ℓ of (T
′, B′), and ℓ is a leaf.
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Proof. This claim is a variant of Claim 1 in the proof of Theorem 3.1, and in can be shown
in the same way. Instead of smallness of the decomposition, we use the fact that Case 2
does not apply. Thus we obtain a variable x with eadϕ′(x) maximum and a leaf ℓ such that
x appears only in Bℓ. As Case 1 does not apply, there are bound variables. As eadϕ′(x) is
maximum, x is a bound variable. �

Without loss of generality, suppose that Qx = ∃. Let ψ be the scope of x in ϕ′ and let
V be the set of variables quantified in ψ. We partition V into the subsets V1 and V2, where
V1 contains the variables with which x is entangled in ϕ′. As ϕ′ is xenerp, ψ is ϕ′

x preceded
by some quantifications of variables from V1. By maximality of eadϕ′(x), we have Qy = ∃
for all y ∈ V1.

Claim 2. No variable y ∈ V1 is quantified in the scope of some variable z ∈ V2.

Proof. Otherwise, x occurs in ϕ′
y (because x and y are entangled), ϕ′

y is a subformula of ϕ′
z

(because ϕ′ is xenerp and z ≤ϕ′ y), and z occurs in ϕ′
z which is a subformula of ϕ′

x. Hence
x and z are entangled, contradicting z ∈ V2. Thus the claim holds. �

Claim 3. x is �ϕ′-maximal.

Proof. Otherwise there is some y 6= x such that x �ϕ′ y. In the inductive definition of �ϕ′ ,
the pair (x, y) is not introduced by Reflexivity. If it is introduced by Transitivity, say with
intermediate variable z, we can replace y by z, so we can eventually assume that x �ϕ′ y

is due to Alternation. In particular Qx 6= Qy. Thus eadϕ′(y) > eadϕ′(x), contradicting
eadϕ′-maximality of x. �

In the same way we can show that there are no �ϕ′-relationships among V1.
Let ψ′ be obtained from ψ by removing all quantifications for variables from V1. Letting

∃V1 denote the sequence of all these quantifications in arbitrary order, ∃V1ψ
′ is obtained

from ψ by a sequence of replacements as in Lemma 3.20 parts 1 and 2. In particular, ∃xψ
is equivalent to ∃x∃V1ψ

′.
As all variables quantified in ψ′ are from V2 and their scopes in ψ′ are the same as

in ψ, we have that x does not occur in any quantified subformula of ψ′. Hence ψ′ is a
positive Boolean combination of atoms, of negated atoms, and of subformulae in which x
does not occur. By choosing the subformulae in which x does not occur maximal, ψ′ is a
positive Boolean combination of atoms using x, of negated atoms using x, and of maximal
subformulae of ψ′ in which x does not occur. We transform this Boolean combination into
disjunctive normal form

∨

i∈I

∧

j∈Ji
Lj with literals Lj. Here each Lj is an atom using x, a

negated atom using x, or a maximal subformula of ψ′ in which x does not occur. Then

∃xψ ≡ ∃x∃V1ψ
′ ≡ ∃x∃V1

∨

i∈I

∧

j∈Ji

Lj ≡ ∃V1
∨

i∈I

∃x
∧

j∈Ji

Lj.

For i ∈ I let J−
i ⊆ Ji be the subset of indices j such that x does not occur in Lj and let

J+
i = Ji \ J

−
i . For convenience we let J+ :=

⋃

i∈I
J+
i and J− :=

⋃

i∈I
J−
i . Now

∃xψ ≡ ∃V1
∨

i∈I

∃x
∧

j∈Ji

Lj ≡ ∃V1
∨

i∈I

(

∧

j∈J−
i

Lj ∧ ∃x
∧

j∈J+
i

Lj
)

.

Let j ∈ J+. As (T ′, B′) is a tree decomposition of ϕ′, (the atom underlying) Lj is covered by
some piece of (T ′, B′). Since x is a variable of Lj and x occurs in B′

ℓ only, Lj is covered in B′
ℓ.

Hence for i ∈ I and ψxi := ∃x
∧

j∈J+
i
Lj we have var(ψxi ) ⊆ B′

ℓ. Let xȳ be an enumeration
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of B′
ℓ, and for all i ∈ I let Axi be a new relation symbol of arity |B′

ℓ| − 1 ≤ k − 1. Replace
∃xψ in ϕ′ by ∃V1ψ

′′, where

ψ′′ :=
∨

i∈I

(

∧

j∈J−
i

Lj ∧A
x
i ȳ

)

and let ϕ′′ be the formula thus obtained from ϕ′. Let Sx be the substitution which replaces
every Axi ȳ by ψxi , respectively. Clearly, ϕ′ ≡ ϕ′′Sx, so by setting S′ := SxS we have
ϕ ≡ ϕ′S ≡ ϕ′′S′. More precisely, in the definition of ψ′′, we use a single positive Boolean
connective (as allowed by the above syntax extension) for the entire disjunctive normal
form. This Boolean connective has only one input for each Lj used. In particular, we retain
a single quantifier per variable quantified in ψ, that is we retain straightness.

We obtain a tree decomposition (T ′′, B′′) for ϕ′′ by letting T ′′ := T ′ and removing x
from B′

ℓ. This tree decomposition still covers all (edges of Gϕ′′ created by) atoms of ϕ′′

which also occur in ϕ′, because these do not use x. The new atoms Axi ȳ are covered by
B′′
ℓ = B′

ℓ \ {x}. This shows (TD2). (TD1) and (TD3) are inherited from (T ′, B′).
In the rest of the proof we show that (T ′′, B′′) is eadϕ′′-stratified.

Claim 4. Let y be a bound variable and Z a set of bound variables such that x 6= y and
x 6∈ Z. Then y occurs in ϕ′′

[Z] if and only if y occurs in ϕ′
[Z] or ϕ

′
[Z] is a subformula of ϕ′

x

but not of any Lj with j ∈ J
− and y occurs in ϕ′

x.

Proof. Observe that ϕ′
[Z] is generated already by at most two occurrences of variables from

Z. If one of these occurences is outside of ψ, then ϕ′
[Z] is disjoint from ψ and ϕ′

x, or ψ and

ϕ′
x are proper subformulae of ϕ′

[Z]. In either case we have to show that the same variables

y 6= x occur in ϕ′
[Z] as in ϕ

′′
[Z]. This follows, because in the first case ϕ′

[Z] = ϕ′′
[Z] whereas in

the second case ϕ′′
[Z] is obtained from ϕ′

[Z] by replacing the subformula ∃xψ with ∃V1ψ
′′. It

remains to consider the case where all (generating) occurrences of variables from Z in ϕ′ are
in ψ. Let j1, j2 be such that the generating occurrences are in Lj1 and Lj2 . If j1 = j2 ∈ J

−,
then ϕ′

[Z] is a subformula of Lj1 . Furthermore ϕ′′
[Z] = ϕ′

[Z], so the same variables y occur in

these formulae. If any generating variable is from B′
ℓ, then it occurs in all atoms Axi ȳ, so

ϕ′′
[Y ] = ψ′′. In the last case, j1, j2 ∈ J

− and j1 6= j2. Again, ϕ
′′
[Y ] = ψ′′. In both cases there

is no single j ∈ J− such that ϕ′
[Z] is a subformula of Lj , so we need to show that the same

variables y occur in ϕ′′
[Z] as in ϕ

′
x (including the special case of occurrence in the subformula

ϕ′
[Z] of ϕ

′
x). This follows because ϕ′′

[Z] = ψ′′ and ψ′′ uses the same variables as ϕ′
x. This

shows the claim. �

For arbitrary variables y, z different from x, the two following claims show that y �ϕ′ z

if and only if y �ϕ′′ z.

Claim 5. Let y, z be variables different from x. Then y �ϕ′ z implies y �ϕ′′ z.

Proof. First, consider the following modification of �ϕ′ . Relax, in the definition of entan-
glement with respect to E and ϕ′, the conditions of the form ‘v occurs in ϕ′

[wE]’ by ‘v occurs

in ϕ′
[wE] or in ϕ

′′
[(wE)\{x}]’, with the convention that no variable occurs in ϕ′′

[∅]. Let � denote

the modified relation. It is clear that y �ϕ′ z implies y � z. By induction on the definition
of � it is easy to see that x also is �-maximal.

In order to transform derivations for � into derivations for �ϕ′′ , we start by normal-
izing them. First, we may assume that no entanglement chain used in any application of
Alternation repeats elements. Also, we may assume that Reflexivity and Transitivity are
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always applied as early as possible. In particular, at each application of Alternation, the
current approximation for � is reflexive and transitive. The third normalization concerns
applications of Alternation, say with chain v0, . . . , vn and with E as the current approx-
imation of �. Such an application is normalized, if for entanglement, instead of the sets
vi E, already the sets (vi E) \ {x} suffice (unless vi = x, in which case (vi E) = {x} due to
maximality of x). Now we claim that this normalization is always possible. We prove the
claim by induction on derivations for � which are already in the first two normal forms.
Only the Alternation step is nontrivial, so consider an application of Alternation with chain
v0, . . . , vn and approximation E for �. By the inductive hypothesis, all pairs from E can
be derived in a normalized way. If our application of Alternation is not already normalized,
then there is some 0 ≤ i ≤ n such that x 6= vi E x. After unfolding Transitivity, we obtain
some w such that vi E w and such that w E x holds due to Alternation (possibly w = vi).
Let (E′) ⊆ (E) be the approximation of � pertaining to this application of Alternation.
Then there is another chain of entanglements ending with u, x, such that w E′ u or x E′ u.
Due to the normalizations from the inductive hypothesis, x already occurs in ϕ′

[(uE′)\{x}] or

in ϕ′′
[(uE′)\{x}]. As x does not occur in ϕ′′ at all, the former must be the case. As x E′ u

would contradict �-maximality of x, we have w E′ u. Transitivity gives vi E u. Now
consider one of the up to two neighbours of vi in the entanglement chain, without loss of
generality we pick vi+1. We distinguish the cases vi+1 = x and vi+1 6= x. In the first case,
we already know that x occurs in ϕ′

[(uE′)\{x}]. From vi E u and transitivity we conclude

(u E′) \ {x} ⊆ (vi E) \ {x}, so x occurs in ϕ′
[(viE)\{x}] as needed. Now for the case that

vi+1 6= x. As vi+1 occurs in ϕ′
[viE] or in ϕ′′

[(viE)\{x}], it is easy to see that vi+1 also occurs

in ϕ′′
[(viE)\{x}∪{u}]. But as vi E u, this is ϕ′′

[(viE)\{x}]. In a last normalization step, we also

eliminate x from occurrences in entanglement chains in derivations. Hence assume that
v, x,w is part of such a chain, again with E as approximation of �. As x is �-maximal, we
have (x E) = {x}, hence v occurs in ϕ′

[{x}] and then also in ψ′′. As x occurs in ϕ′
[(wE)\{x}]

(recall the previous normalization), we conclude that ψ′′ is a subformula of ϕ′′
[(wE)\{x}]. Thus

v occurs in ϕ′′
[(wE)\{x}] and similarly w occurs in ϕ′′

[(vE)\{x}], so x can be omitted from the

chain. After this normalization, we can assume that x occurs in applications of Alternation
only as an endpoint of the chain.

Now assume some counterexample y, z to the claim. Then y � z. Let y, z be derivation-
minimal with respect to normalized derivations for �. Then y 6= z because �ϕ′′ is reflexive.
Next assume that y � z is due to transitivity, say with intermediate variable v. If v = x

then x � z 6= x contradicting �-maximality of x. Thus v 6= x, so y �ϕ′′ v �ϕ′′ z by
minimality of the counterexample. y �ϕ′′ z follows. Finally for Alternation, let us assume
some chain y = v0, . . . , vn = z of entanglements in the sense of �, such that y � vi or z � vi
for all 0 ≤ i < n. As always, denote the approximation of � by E. By normalization of
derivations, no vi equals x and x is not needed for entanglement. From derivation-minimality
we conclude y �ϕ′′ vi or z �ϕ′′ vi, and that (vi E) \ {x} ⊆ (vi �ϕ′′) for all 0 ≤ i ≤ n. By
Claim 4, the occurrence of vi+1 in ϕ′

[(viE)\{x}] or ϕ
′′
[(viE)\{x}] implies occurrence of vi+1 in

ϕ′′
[vi�ϕ′′ ]

. Similarly, vi occurs in ϕ
′′
[vi+1�ϕ′′ ]

. Thus, the entanglement chain is also such a one

in ϕ′′. Also y ≤ϕ′ z implies y ≤ϕ′′ z so we conclude y �ϕ′′ z. �

Now for the converse.

Claim 6. Let y, z be variables different from x. Then y �ϕ′′ z implies y �ϕ′ z.
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Proof. We work by induction on �ϕ′′ . The cases Reflexivity and Transitivity are immediate.
For Alternation let E be some approximation of �ϕ′′ , assume y ≤ϕ′′ z and Qy 6= Qz and
let y = w0, . . . , wn = z be given such that for all 0 ≤ i < n we have y �ϕ′′ wi or z �ϕ′′ wi,
occurrence of wi in ϕ′′

[wi+1E], and occurrence of wi+1 in ϕ′′
[wiE]. The inductive hypotheses

are y �ϕ′ wi or z �ϕ′ wi, and (E) ⊆ (�ϕ′). As ≤ϕ′ and ≤ϕ′′ differ only among V1 and we
have Qy 6= Qz, we conclude y ≤ϕ′ z. If furthermore all occurrences also hold in ϕ′, then
we are done. So assume that there is some i such that wi is not entangled with wi+1 in ϕ′,
that is wi does not occur in ϕ

′
wi+1

or wi+1 does not occur in ϕ′
wi
. Without loss of generality

let us assume the former. Claim 4 then implies that wi occurs in ϕ′
x and that ϕ′

wi+1
is a

subformula of ϕ′
x but not of any Lj with j ∈ J−. By maximality of these Lj among the

subformulae not containing x, this implies that x occurs in ϕ′
wi+1

. Of course wi+1 occurs

in ϕ′
wi+1

and thus in ϕ′
x. Hence x and wi+1 are entangled in ϕ′. Next let us show that also

wi and x are entangled. If wi+1 does not occur in ϕ′
wi
, then we can proceed as above, so

we may assume that wi+1 does occur in ϕ′
wi
. Then wi and wi+1 are comparable by ≤ϕ′ . If

wi+1 ≤ϕ′ wi, then xenerp normal form of ϕ′ implies that wi occurs in ϕ
′
wi+1

in contradiction

to our assumption. Hence wi ≤ϕ′ wi+1 and by xenerp we have that ϕ′
wi+1

is a subformula of

ϕ′
wi
. In particular x occurs in ϕ′

wi
and we already know the converse. In this way, whenever

a link of the ϕ′′-chain does not hold in ϕ′, we can insert x to obtain a longer valid chain.
So far, validity only means that each link is an entanglement in ϕ′.

It remains to show that y �ϕ′ x or z �ϕ′ x, if x needed to be inserted. Let v and
v′ be the neighbours of (one occurence of) x in the chain. If v and v′ both are in {y, z},
then, because x is only inserted between non-entangled variables, one of them is y and the
other one is z. As Qy 6= Qz, we have Qv 6= Qx or Qv′ 6= Qx, without loss of generality the
former. As x and v are entangled in ϕ′ by the above, they are comparable by ≤ϕ′ . Thus
by Alternation we either have x �ϕ′ v, contradicting �ϕ′-maximality of x, or v �ϕ′ x, in
which case we are done because v ∈ {y, z}. Now for the case that one of v and v′ is not
from {y, z}, without loss of generality y 6= v 6= z. Still, v is entangled with x. Furthermore,
v is an original element of the chain, so y �ϕ′ v or z �ϕ′ v. Without loss of generality let
us assume the latter and recall that z 6= v. After unfolding, in the derivation of z �ϕ′ v,
some applications of Transitivity, we obtain some u such that z �ϕ′ u �ϕ′ v and u �ϕ′ v is
due to Alternation. Accordingly, let u = t0, . . . , tk = v be a witnessing entanglement chain.
If v ≤ϕ′ x, then we can extend this chain by x to obtain (together with the fact u �ϕ′ v) a
witnessing chain for u �ϕ′ x which implies z �ϕ′ x using Transitivity. It remains to consider
the case v 6≤ϕ′ x. But as v, x are entangled, they are comparable by ≤ϕ′ , so x ≤ϕ′ v and
thus v ∈ V1 implying Qv = Qx and then Qu 6= Qx. As u �ϕ′ v we have u ≤ϕ′ v, so x
and u are comparable by ≤ϕ′ . x ≤ϕ′ u would imply u ∈ V2 (since Qu 6= Qx), contradicting
Claim 2. Hence u ≤ϕ′ x so the chain t0, . . . , tk can be extended by x to show u �ϕ′ x and
then z �ϕ′ x. �

Hence �ϕ′ and �ϕ′′ coincide outside of x. As x is �ϕ′-maximal, this implies that
eadϕ′ and eadϕ′′ coincide outside of x. Hence eadϕ′-stratification of (T ′, B′) implies eadϕ′′-
stratification of (T ′′, B′′). Finally, we turn ϕ′′ into xenerp normal form.

It is easy to see that the algorithm terminates: the second case decreases the size of
the tree decomposition while it leaves the set of variables intact. The third case leaves the
tree intact and eliminates one variable. As both the tree and the set of variables are finite,
eventually the first case must trigger and the algorithm stops. This concludes the proof of
Theorem 5.5
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It is well-known that first order query evaluation for Lk can be done in time nk+O(1),
see [28].

Corollary 5.6. Evaluating queries of bounded first order tree-width is fixed parameter tract-
able with parameter the length of the formula.

More precisely, given a finite structure A and a formula ϕ ∈ L, there is an algorithm
that computes ϕ(A) in time ‖A‖fotw(ϕ)+O(1)f(|ϕ|) for some computable function f .

Here the function f is basically the running time we need for translating the formula ϕ
with fotw(ϕ) ≤ k−1 into an Lk formula. It is q-times exponential, where q is the alternation
depth of ϕ. The exponentiations arise from converting some subformulae into disjunctive or
conjunctive normal form. In special cases where this step is not needed, the running time
is much lower.

Corollary 5.7. Evaluating formulae without disjunctions and of bounded first order tree-
width can be done in polynomial time.

Proof. Let ϕ be a formula without disjunctions such that fotw(ϕ) < k. Let us recall the
algorithm underlying the proof of Theorem 5.5, 1. The argument for termination (at the
very end of the proof) actually shows that the main loop is iterated only a quadratic number
of times. Case 1 of the main loop is only executed once, and it is polynomial in the data then
present. Case 2 basically requires a search through the current tree, which is a subtree of
the original one. It remains to show that Case 3 runs in polynomial time and to bound the
way it increases the size of the data. In fact, all individual steps of Case 3 run in polynomial
time even for general ϕ, with the exception of turning ψ′ into disjunctive normal form. But
as our ϕ does not contain any disjunctions, the same holds for ϕ′ and ψ′, so ψ′ already
is in disjunctive normal form and there is nothing to do. Formally, the index set I only
contains one element and (up to reordering) we have ψ′ = ψ− ∧ ψ+, where ψ− :=

∧

j∈J−

Lj

and ψ+ :=
∧

j∈J+

Lj.

Let us now bound the data increase. The data consist of the tree decomposition (which
only becomes smaller), the formula ϕ′, and the substitution S. It is easier to consider,
instead of ϕ′ and S, the formula ϕ′S. The size difference between the two stems only from
a collection of pairs (x, i), where x is a variable and i is an index from the respective I.
As each such I is a singleton, there are at most |var(ϕ)| such pairs. With respect to ϕ′S,
all that happens in Case 3 is shifting quantifiers and then replacing ∃x∃V1(ψ− ∧ ψ+) by
∃V1(ψ− ∧ ∃xψ+). The size does not change.

Hence the algorithm from Theorem 5.5, 1 runs in polynomial time. So does turning the
formula from L̃k into one from Lk. We conclude with the time nk+O(1) for evaluating the
latter.

Of course, the same applies to formulae without conjunctions. One example of formulae
without disjunctions are quantified constraint formulae, which we define and discuss in detail
in Section 6.

The fixed parameter tractability from Corollary 5.6 does not remain when we make the
first order tree-width part of the parameter. This is even true for model checking instead
of evaluation. Instead, the problem becomes AW[∗]-hard: fotw is bounded by the length
of the formula, and the model checking problem for first order logic, parameterized by the
formula length, is AW[∗]-complete [12].



TREE-WIDTH FOR FIRST ORDER FORMULAE 27

6. Relation to similar notions

In this section we show that fotw and tree-width coincide on conjunctive queries, while fotw
is more powerful than both elimination-width of quantified constraint formulae and strict
tree-width of non-recursive stratified datalog programs. Finally, we extend the cops and
robber game characterizing tree-width to stratified tree-width and we prove that requiring
monotonicity does not limit the cops.

A (Boolean) conjunctive query is a sentence ϕ = ∃x1 . . . ∃xnψ, where ψ is a conjunction
of relational atoms such that var(ψ) = {x1, . . . , xn}. The tree-width of a conjunctive query
ϕ, tw(ϕ), is defined as the tree-width of Gϕ (see [25]). Any conjunctive query ϕ satisfies
eadϕ = 1. Hence the notion of fotw generalises the notion of tree width of conjunctive
queries.

Remark 6.1. Any conjunctive query ϕ satisfies fotw(ϕ) = tw(ϕ).

6.1. Quantified constraint formulae. A quantified constraint formula [9] is a sentence

ϕ = Q1x1Q2x2 . . . Qnxnψ,

where Qi ∈ {∀,∃} for i = 1 . . . n and ψ is a conjunction of relational atoms. In [9], Chen
and Dalmau introduce the notion of tree-width of a quantified constraint formula and they
show that model checking for quantified constraint formulae of bounded tree-width can
be done in polynomial time using the k-consistency algorithm. Since their notion of tree-
width is defined via an elimination ordering rather than via a decomposition, we call it
elimination-width instead of tree-width. We show that fotw is less than or equal to Chen
and Dalmau’s elimination-width, and we give an example of a class of quantified constraint
formulae having bounded fotw and unbounded elimination-width. By Corollary 5.7, model
checking of quantified constraint formulae of bounded fotw can also be done in polynomial
time.

Recall that by Theorem 3.1, any graph G and d : V (G) → N satisfies tw(G, d) =
ew(G, d). Let ϕ be a quantified constraint formula with formula graph Gϕ. Let ad

′
ϕ be the

mapping that assigns to a variable v ∈ var(ϕ) the number of quantifier changes occurring
before v in the quantifier prefix of ϕ, adding +1 (note that here we always add +1, regardless
of the first quantifier of ϕ). Then Chen and Dalmau’s notion of elimination-width can be
equivalently reformulated in our setting as ew(Gϕ, ad

′
ϕ).

Lemma 6.2. Let ϕ be a first order formula. Then fotw(ϕ) ≤ ew(Gϕ, ad
′
ϕ).

Proof. By Theorem 3.1, we may use tw and ew interchangeably. Then, by Theorem 3.25, it
suffices to show tw(Gϕ, adϕ) = tw(Gϕ, ad

′
ϕ). First, assume that ϕ starts with a quantifier.

If this quantifier is existential, then adϕ = ad′ϕ. If it is universal, then adϕ(x) = ad′ϕ(x) = 0

for all free variables x, and adϕ(x)−1 = ad′ϕ(x) > 0 for all bound variables x. In both cases,

an elimination ordering respects adϕ if, and only if, it respects ad′ϕ. Hence ew(Gϕ, adϕ) =

ew(Gϕ, ad
′
ϕ) and thus tw(Gϕ, adϕ) = tw(Gϕ, ad

′
ϕ).

The same holds trivially, when ϕ is quantifier free.
Now for the general case: ϕ is a positive boolean combination of formulae ϕ1, . . . , ϕn

which are quantifier free or start with quantifiers. Let F be the set of free variables of ϕ.
We already know that tw(Gϕi

, adϕi
) = tw(Gϕi

, ad′ϕi
) for all 1 ≤ i ≤ n. As the various ϕi
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have pairwise distinct bound variables, Gϕ − F is the disjoint union of the Gϕi
− F . Then

it is easy to see that

tw(Gϕ, adϕ) = max(|F | − 1, max
1≤i≤n

tw(Gϕi
, adϕi

))

and
tw(Gϕ, ad

′
ϕ) = max(|F | − 1, max

1≤i≤n
tw(Gϕi

, ad′ϕi
)),

from which it follows that tw(Gϕ, adϕ) = tw(Gϕ, ad
′
ϕ).

Remark 6.3. There exists a class of quantified constraint formulae having first order tree-
width 1, where Chen and Dalmau’s elimination-width is unbounded: let the class consist of
the ϕn as in Example 3.26. Then ad′ϕn

= adϕn , and hence tw(Gϕn , ad
′
ϕn

) = ew(Gϕn , ad
′
ϕn

) =
n, while fotw(ϕn) = 1.

6.2. Non-recursive stratified datalog. In [16], Flum, Frick and Grohe define strict tree-
width of non-recursive stratified datalog (nrsd) programs and they show that the evaluation
problem for nrsd programs can be solved in polynomial time on programs of bounded strict
tree-width [16, Corollary 5.26]. nrsd programs have the same expressive power as L and
there are simple translations in both directions. This allows us to compare their notion with
fotw. We show that if the nrsd program has tree-width at most k, then the corresponding
first order formula has fotw at most k, and we exhibit a class of formulae with bounded
fotw, whose corresponding nrsd programs have unbounded tree-width.

We assume that the reader is familiar with datalog and we only fix our notation, and
we refer the reader to [16] otherwise. A datalog rule ρ with negation is an expression
Qx1 . . . xl ←

∧n
i=1 λi, where Q is a relation symbol and x1, . . . , xn ∈ var(

∧n
i=1 λl) are pair-

wise distinct variables, and the λi are literals (i = 1, . . . , n). Qx1 . . . xl is called the head of
ρ, and

∧n
i=1 λi is called the body of ρ. To define the semantics, let A be a structure whose

vocabulary contains all the relation symbols occurring in the body of ρ. Let ȳ be a tuple that
consists of all variables of var(

∧n
i=1 λi) \ {x1, . . . , xl}, and let ϕρ(x1 . . . xl) = ∃ȳ

∧

1≤i≤n λi.

We let ρ(A) := ϕρ(A). A non-recursive stratified datalog (nrsd) program is a sequence
Π = (Π1, . . . ,Πn) of non-recursive datalog programs Πi (called the strata of Π) as defined
in [16]. We denote the intentional vocabulary of Π by int(Π) and the extensional vocabulary
of Π by ext(Π).

The strict tree-width of a datalog rule ρ is defined as stw(ρ) := tw(Gϕρ), and for an nrsd

program Π = (Π1, . . . ,Πn) the strict tree-width of Π is defined as stw(Π) := max{stw(ρ) |
ρ ∈

⋃n
i=1Π

i}.3 The following is proved in [16], Corollary 5.26 (2).

Theorem 6.4 (Flum, Frick, Grohe). For fixed integer k > 0, the evaluation problem for
nrsd programs of strict tree-width at most k can be solved in polynomial time.

3In [16], the term strict tree-width refers to the fact that tree decompositions are required to cover all
variables in the head of a datalog rule together in some piece.
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It is well known that a query is definable in first order logic if and only if it is nrsd

definable. Actually, an nrsd program ΠQ (i.e. an nrsd program with goal predicate Q)
defines an equivalent first order formula ϕΠQ

in a natural way, and vice versa. For proving
our theorem, we make one direction explicit, associating a first order formula to an nrsd

program as follows.
Let Π = (Π1, . . . ,Πn) be an nrsd program and let Q ∈ int(Πi) for some i ≤ n. Suppose

for all Q′ ∈ int(Π) occuring in (Π1, . . . ,Πi−1), the formula ϕΠQ′ is already defined. Let

ϕ̄ΠQ
:=

∨

ρ∈Πi, Q occurs in the head of ρ

ϕρ,

and let
ϕΠQ

:=
∨

ρ∈Πi, Q occurs in the head of ρ

ϕ∗
ρ,

where ϕ∗
ρ is obtained from ϕρ by recursively replacing relation symbols Q′ ∈ int(Π) occuring

in ϕρ by the corresponding formula ϕ̄ΠQ′ (i.e. ϕΠQ
is an ext(Π)-formula). Let A be an

ext(Π)-structure. It is easy to see that we have ΠQ(A) = ϕΠQ
(A).

Recall that ad′ϕ is the mapping that assigns to a variable v ∈ var(ϕ) the alternation
depth of v in ϕ.

Theorem 6.5. Any nrsd program Π with Q ∈ int(Π) satisfies
fotw(ϕΠQ

) ≤ tw(GϕΠ
, ad′ϕΠQ

) ≤ stw(Π).

Proof. The first inequality follows from Theorem 3.1 and Lemma 6.2.
Towards the second inequality, let Π = (Π1, . . . ,Πn) and let k := stw(Π) = max{stw(ϕρ) |

ρ ∈
⋃n
i=1Πi}. We prove by induction on the number n of strata of Π that all Q ∈ int(Π)

satisfy tw(GϕΠQ
, ad′ϕΠQ

) ≤ k. Let Qx̄ be the head corresponding to Q and let i be such

that Q ∈ int(Πi). Then ϕΠQ
has exactly the free variables x̄ and we have

ϕΠQ
=

∨

ρ∈Πi, Q occurs in the head of ρ

ϕ∗
ρ.

Suppose all Q′ ∈ int(Π) occuring in (Π1, . . . ,Πi−1) satisfy tw(ad′ϕΠ
Q′
, GϕΠ

Q′
) ≤ k.

We may assume that ϕ̄ΠQ
and ϕΠQ

are straight.

First we construct a tree decomposition for ϕ̄ΠQ
as follows. For every ρ ∈ Πi with head

Qx̄, we take a tree decomposition of width at most k of Gϕρ . Each of these decompositions
has a piece containing the variables x̄. We glue them together at one new root covering
the variables x̄. Then we orient the edges of the decomposition tree away from the root,
and we obtain a tree decomposition (T̄ , B̄) for ϕ̄ΠQ

of width at most k. By the inductive

hypothesis, for every Q′ ∈ int(Π) such that Q′ȳ occurs in ϕ̄ΠQ
, we have an ad′ϕΠ

Q′
-stratified

tree decomposition (TQ
′
, BQ′

) of ϕΠQ′ (ȳ). By definition, the variables in ȳ are contained in

the piece at the root r of TQ
′
. Moreover, ȳ is covered in some piece of (T̄ , B̄). We choose

such a piece B̄t and we attach (TQ
′
, BQ′

) to this piece such that r becomes a new successor
of t. Having done this for all atoms Q′ȳ (with Q 6= Q′), that occur in ϕ̄ΠQ

, we obtain a tree
decomposition (T,B) for GϕΠQ

of width at most k. We may assume that ϕΠQ
is in negation

normal form. (If not, we transform ϕΠQ
into negation normal form. Note that this does

not change the formula graph.) Then, by construction, (T,B) is ad′ϕΠQ
-stratified.
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The following remark shows that the difference can be unbounded in the opposite
direction. Moreover, it shows that the difference between Chen and Dalmau’s elimination-
width and tree-width of nrsd programs can be unbounded.

Remark 6.6. There is a class C of nrsd programs with unbounded strict tree-width, such
that fotw(ϕΠ) = tw(GϕΠ

, ad′ϕΠ
) = 0 for all Π ∈ C.

Proof. For an integer n > 0 let ψn := ∃x1 . . . ∃xn−1∀xn
(
∧n
i=1 Pxi

)

. Take C to consist of the
natural nrsd programs which are equivalent to the formulae ψn, for n > 0.

6.3. Cops, Robbers and stratified tree-width. We now introduce the cops and robbers
game as defined in [27]. Let G be a graph and let k ≥ 0 be an integer. The cops and robbers
game on G (with game parameter k) is played by two players, the cop player and the robber
player, on the graph G. The cop player controls k cops and the robber player controls the
robber. Both the cops and the robber move on the vertices of G. Some of the cops move
to at most k vertices and the robber stands on a vertex r not occupied by the cops. In
each move, some of the cops fly in helicopters to at most k new vertices. During the flight,
the robber sees which position the cops are approaching and before they land she quickly
tries to escape by running arbitrarily fast along paths of G to a vertex r′, not being allowed
to run through a standing cop. Hence, if X ⊆ V (G) is the cops’ first position, the robber
stands on r ∈ V (G) \X, and after the flight, the cops occupy the set Y ⊆ V (G), then the
robber can run to any vertex r′ within the connected component of G \ (X ∩ Y ) containing
r. The cops win if they land a cop via helicopter on the vertex occupied by the robber. The
robber wins if she can always elude capture. Winning strategies are defined in the usual
way. The cop-width of G, cw(G), is the minimum number of cops having a winning strategy
on G.

A winning strategy for the cops is monotone, if for all plays played according to the
strategy, if X1,X2, . . . is the sequence of cop positions, then the connected components Ri
of G \ Xi containing the robber form a decreasing (with respect to ⊆) sequence. The Ri
are called the robber spaces. The monotone cop-width of G, mon-cw(G), is the minimum
number of cops having a monotone winning strategy on G.

Theorem 6.7 (Seymour, Thomas [27]). Any graph G satisfies tw(G) + 1 = cw(G) =
mon-cw(G).

Now let G be a graph and let d be a function d : V (G) → N. The d-stratified cops
and robbers game on G is played as the cops and robbers game on G, but in every move
the cops have to satisfy the following additional condition. Intuitively, they can only clear
vertices v with d(v) = i after they have cleared all vertices w with d(w) < i. More precisely:
for every move (X,R), where X ⊆ V (G) is the cop position and R is the robber space, the
cops have to make sure that max{d(x) | x ∈ X} ≤ min{d(r) | r ∈ R}. Then cw(G, d) and
mon-cw(G, d) are defined analogously, and for a formula ϕ we let cw(ϕ) := cw(Gϕ, eadϕ)
and mon-cw(ϕ) := mon-cw(Gϕ, eadϕ).

Although proving the following theorem is not very hard, it seems interesting to know
that cw(G, d) and mon-cw(G, d) coincide. In many generalisations of the cops and robbers
game to other settings, the analogous statements become false [1, 2, 26], and it might be
helpful to explore the borderline.
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Theorem 6.8. Let G be a graph and d : V (G)→ N. The following statements are equival-
ent:

(1) tw(G, d) ≤ k − 1,
(2) mon-cw(G, d) ≤ k, and
(3) cw(G, d) ≤ k.

In particular, any first order formula ϕ satisfies fotw(ϕ) + 1 = mon-cw(ϕ) = cw(ϕ).

Proof. 1 ⇒ 2: suppose tw(G, d) ≤ k − 1. Let (T,B) be a d-stratified tree decomposition
of width at most k − 1 for G. From (T,B), the k cops can read off a monotone winning
strategy in the usual way, first moving to Br and then following the robber down the tree
decomposition into the unique direction where the robber space is covered (see e.g. [3]).
Since (T,B) is d-stratified, the winning strategy is also d-stratified.

2 ⇒ 3: any monotone winning strategy is a winning strategy.
3 ⇒ 1: suppose k cops have a winning strategy for the d-stratified game on G.

Claim 1. Let t, u be nodes of (G, d)’s component tree, where u is a child of t. Let x, y ∈
Dt ∩ Du. If, while playing against the k cops, the robber can move to x and no cop will
land on y, then the robber can also move to y.

Let i be the depth of t in (G, d)’s component tree and let C be the connected component
of G[Ct \Dt] with Cu = C ∪N(C). As x, y ∈ Dt we have x, y 6∈ C, and hence x, y ∈ NG(C)
and there is a path from x to y with all internal vertices in C. Hence d(z) > i ≥ d(x) and
d(z) > i ≥ d(y) for all internal vertices of the path. Therefore, as long as the cops play on
vertices with d at most i, the path is free and the robber can use it. But the cops can never
move to a vertex with d > i before they have cleared Dt ∩Du completely, so the path from
x to y is free whenever the robber can move to x. �

Recall, from Section 4, that the graph G(0) is obtained from G by adding all edges
between any pair of distinct vertices x, y ∈ Dt ∩ Du for all directed edges (t, u) of the
component tree. By the claim, any d-stratified winning strategy for k cops on G is also a d-
stratified winning strategy on G(0). Forgetting d, obviously, k cops have a winning strategy
on G(0) and hence in particular on G(0)[Dt] for all nodes t of (G, d)’s component tree. Thus

cw(G(0)[Dt]) ≤ k and by Theorem 6.7 this implies tw(G(0)[Dt]) ≤ k − 1. From the tree

decompositions of the G(0)[Dt] of width ≤ k we can now construct tree decompositions for
the G(0)[Ct] of width ≤ k − 1 in a bottom-up manner as in the proof of Theorem 4.7. For

the root r of (G, d)’s component tree, we have G(0) = G(0)[Cr] and it is easy to see that the

tree decomposition for G(0)[Cr] of width ≤ k obtained in this way is d-stratified.

7. Conclusion

We introduced a notion of tree-width for first order formulae ϕ, fotw(ϕ), generalising tree-
width of conjunctive queries and elimination-width of quantified constraint formulae [9].
Our notion can also be seen as an adjustment of the notion of tree-width of first order
formulae as defined in [16] (which only works for conjunctive queries with negation).

We proved that computing fotw is fixed-parameter tractable with parameter fotw (The-
orem 4.7). Moreover, we showed that evaluating formulae of k-bounded first order tree-
width is fixed-parameter tractable, with parameter the length of the formula (Theorem
5.5). This is done by first computing a tree decomposition of width at most k for the
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formula, and then translating the formula equivalently into a formula of the k-variable frag-
ment Lk of first order logic. It is well-known that evaluating Lk formulae can be done in
polynomial time. When translating the formula ϕ into an equivalent Lk formula, we get a
non-elementary explosion in the running time.

Conjecture 7.1. When translating a formula ϕ satisfying fotw(ϕ) ≤ k into an equivalent
Lk formula, a non-elementary explosion cannot be avoided.

Moreover, it is still unknown whether the explosion can be avoided in parameterized
algorithms for evaluating queries of bounded first order tree-width.

We show that first order tree-width can be characterised by other notions such as
elimination-width (Theorem 3.1), and the minimum number of cops necessary to catch the
robber in the stratified cops and robbers game, as well as the minimum number of cops
necessary in the monotone version of the game (Theorem 6.8). Hence our notion is very
natural and robust.

Moreover, we showed that fotw is more powerful than the notion of elimination-width
of quantified constraint formulae as defined in [9]: for quantified constraint formulae, both
bounded elimination-width and bounded fotw allow for model checking in polynomial time.
We proved that if ϕ is a quantified constraint formula, then fotw(ϕ) is bounded by the
elimination-width of ϕ, and there are classes of quantified constraint formulae with bounded
fotw and unbounded elimination-width.

Finally, we showed that fotw is more powerful than tree-width of non-recursive stratified
datalog (nrsd) programs [16]. nrsd programs have the same expressive power as first order
logic, in the sense that nrsd programs correspond to first order formulae and vice versa.
We showed that first-order tree-width of (formula versions of) nrsd programs is bounded
by the strict tree-width of the programs and that there are classes of first order formulae
with bounded fotw, whose corresponding nrsd programs have unbounded strict tree-width.

For conjunctive query evaluation, methods more powerful than bounded tree-width are
known. Conjunctive queries of bounded hypertree-width [20], bounded fractional hypertree-
width [23] and bounded (hyper)closure tree-width [4] yield even larger tractable classes of
instances. For example, conjunctive queries of bounded hypertree-width correspond to the
k-guarded fragment of first order logic [21], and similar correspondences can be found for the
other invariants. Why not generalise these notions to first order formulae? By generalising
these notions to first order formulae ϕ in the obvious way, a decomposition of bounded
width would not give us an instruction how to translate ϕ into the corresponding guarded
fragment of first order logic (transforming subformulae of ϕ into conjunctive normal form
as in the proof of Theorem 5.5, 1 does not necessarily yield guarded subformulae).

Nevertheless, generalising these notions to quantified constraint formulae should indeed
yield classes with an efficient query evaluation, that are strictly larger than classes of quan-
tified constraint formulae of bounded first order tree-width. It would be interesting to find
the largest fragment of first order formulae for which such a generalization is possible.
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