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Abstract. Parity games are a much researched class of games in NP ∩ CoNP that are
not known to be in P. Consequently, researchers have considered specialised algorithms for
the case where certain graph parameters are small. In this paper, we study parity games
on graphs with bounded treewidth, and graphs with bounded DAG width. We show that
parity games with bounded DAG width can be solved in O(nk+3 · kk+2 · (d+1)3k+2) time,
where n, k, and d are the size, treewidth, and number of priorities in the parity game. This
is an improvement over the previous best algorithm, given by Berwanger et al., which runs

in nO(k2) time. We also show that, if a tree decomposition is provided, then parity games
with bounded treewidth can be solved in O(n · kk+5 · (d + 1)3k+5) time. This improves

over previous best algorithm, given by Obdržálek, which runs in O(n ·d2(k+1)2 ) time. Our
techniques can also be adapted to show that the problem of solving parity games with
bounded treewidth lies in the complexity class NC2, which is the class of problems that
can be efficiently parallelized. This is in stark contrast to the general parity game problem,
which is known to be P-hard, and thus unlikely to be contained in NC.

1. Introduction

A parity game is a two player game that is played on a finite directed graph. The problem
of solving a parity game is known to lie in NP ∩ CoNP [McN93], and a sub-exponential time
algorithm is known for the problem [JPZ08]. However, despite much effort, this problem is
not known to be in P. Due to the apparent difficulty of solving parity games, recent work
has considered special cases, where the input is restricted in some way. In particular, people
have studied parity games where the input graph is restricted by a graph parameter. For
example, parity games have been shown to admit polynomial time algorithms whenever the
input graph has bounded treewidth [Obd03], DAG width [BDHK06], clique width [Obd07],
Kelly width [HK08], or entanglement [BG04]. In this paper we study the parity game
problem for graphs of bounded treewidth and graphs of bounded DAG width.

Parity games are motivated by applications in model checking. The problem of solv-
ing a parity game is polynomial-time equivalent to the modal µ-calculus model checking
problem [EJS93, Sti95]. In model checking, we typically want to check whether a large
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system satisfies a much smaller formula. It has been shown that many practical systems
have bounded treewidth. For example, it has been shown that the control flow graphs of
goto free Pascal programs have treewidth at most 3, and that the control flow graphs of
goto free C programs have treewidth at most 6 [Tho98]. The same paper also shows that
tree decompositions, which are costly to compute in general, can be generated in linear time
with small constants for these control flow graphs. Moreover, Obdržálek has shown that, if
the input system has treewidth k, and if the µ-calculus formula has m sub-formulas, then
the modal µ-calculus model checking problem can be solved by determining the winner of a
parity game that has treewidth at most k ·m [Obd03]. Since m is usually much smaller than
the size of the system, we have a strong motivation for solving parity games with bounded
treewidth.

Parity games with bounded treewidth were first studied by Obdržálek [Obd03]. He

gave an algorithm that runs in O(n · k2 · d2(k+1)2) time, while using dO(k2) space, where d
is the number of priorities in the parity game, and k is the treewidth of the game. This
result shows that, if the treewidth of a parity game is bounded, then there is a polynomial
time algorithm for solving the game. However, since the degree of this polynomial depends
on k2, this algorithm is not at all practical. For example, if we wanted to solve the model
checking problem for the control flow graph of a C program with treewidth 6, and a µ-
calculus formula with a single sub-formula, the running time of the algorithm will already
be O(n · d98).

DAG width is a generalisation of treewidth to directed graphs. It was defined by
Berwanger et al. [BDHK06, BDH+12], and independently by Obdržálek [Obd06]. Since
parity games are played on directed graphs, it is natural to ask whether Obdržálek’s
algorithm can be generalised to parity games with bounded DAG width. Berwanger et
al. [BDHK06, BDH+12] showed that the algorithm can indeed be generalised. Their work
is a generalisation of Obdržálek’s techniques to parity games with bounded DAG width,
but since every tree decomposition can also be viewed as a DAG decomposition, their algo-
rithm can also be applied to graphs with bounded treewidth. In comparison to Obdržálek’s
original algorithm, they achieve an improved space complexity of dO(k). However, some

operations of their algorithm still take dO(k2) time, and thus their algorithm is no faster
than the original.

More recently, an algorithm has been proposed for parity games with “medium” tree
width [FL11]. This algorithm runs in time nO(k·logn), and it is therefore better than
Obdržálek’s algorithm whenever k ∈ ω(log n). On the other hand, this algorithm does
not provide an improvement for parity games with small treewidth.

1.1. Our contribution. In this paper, we take a step towards providing a practical algo-
rithm for these problems. We show how parity games with bounded treewidth and DAG
width can be solved solved in logarithmic space on an alternating Turing machine. We then
use different variants of this technique to show three different results. Our first result is for
parity games with bounded DAG width. We show that these games can be solved by an
alternating Turing machine while using (k+3) · log n+(k+2) · log(k)+ (3k+2) · log(d+1)
bits of storage. This then implies that there is a deterministic algorithm that runs in
O(nk+3 ·kk+2 · (d+1)3k+2) time. Since the exponent of n is k+3, rather than k2, this result

improves over the nO(k2) algorithm given by Berwanger et al.
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We then turn our attention to parity games with bounded treewidth. Using similar
techniques, we are able to obtain an algorithm that solves parity games with bounded
treewidth in O(n · (k+1)k+5 · (d+ 1)3k+5) time on a deterministic Turing machine. Again,
since the exponent of d does not depend on k2, this is an improvement over the original

algorithm of Obdržálek, which runs in O(n · k2 · d2(k+1)2) time.
For the treewidth result, we must pay attention to the complexity of computing a

tree decomposition. In the DAG width result, this did not concern use, because a DAG
decomposition can be computed in O(nk+2) time, and this is therefore absorbed by the
running time of the algorithm. In the treewidth case, however, things are more complicated.
From a theoretical point of view, we could apply the algorithm of Bodlaender [Bod96], which

runs in O(n · f(k)) time. However, the function f lies in 2O(k3), and this has the potential
to dwarf any improvement that our algorithm provides. As we have mentioned, in some
practical cases, a tree decomposition can be computed cheaply. Otherwise, we suggest that
the approximation algorithm of Amir [Ami01] should be used to find a 4.5-approximate
tree decomposition. Our algorithm runs in O(n · k4.5k+5 · (d + 1)13.5k+5) time when a 4.5-
approximate tree decomposition is used. Note that Obdržálek’s algorithm also requires a
tree decomposition as input. Thus, in this case, the gap between the two algorithms is even
wider, as using a 4.5-approximate tree decomposition causes Obdržálek’s algorithm to run

in O(n · d40.5k
2+18k+2) time.

Finally, we are able to adapt these techniques to show a parallelizability result for parity
games with bounded treewidth. We are able to provide an alternating Turing machine that
solves the problem in O(k2 · (log n)2) time while using O(k · log n) space. This version of
the algorithm does not require a precomputed tree decomposition. Hence, using standard
results in complexity theory [ALR10], we have that the problem lies in the complexity class
NC2 ⊆ NC, which is the class of problems that can be efficiently parallelized.

This result can be seen in stark contrast to the complexity of parity games on general
graphs: parity games are known to be P-hard by a reduction from reachability games, and
P-hardness is considered to be strong evidence that an efficient parallel algorithm does not
exist. Our result here shows that, while we may be unable to efficiently parallelize the
µ-calculus model checking problem itself, we can expect to find efficient parallel algorithms
for the model checking problems that appear in practice.

2. Preliminaries

2.1. Parity games. A parity game is a tuple (V, V0, V1, E,pri), where V is a set of vertices
and E is a set of edges, which together form a finite directed graph. The sets V0 and
V1 partition V into vertices belonging to player Even and player Odd, respectively. The
function pri : V → D assigns a priority to each vertex from the set of priorities D ⊆ N.
It is required that the game does not contain any dead ends: for each vertex v ∈ V there
must exist an edge (v, u) ∈ E.

We define the significance ordering ≺ over D. This ordering represents how attractive
each priority is to player Even. For two priorities a, b ∈ N, we have a ≺ b if one of the
following conditions holds: (1) a is odd and b is even, (2) a and b are both even and a < b,
or (3) a and b are both odd and a > b. We say that a � b if either a ≺ b or a = b.

At the beginning of the game, a token is placed on a starting vertex v0. In each step,
the owner of the vertex that holds the token must choose one outgoing edge from that
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vertex and move the token along it. In this fashion, the two players form an infinite path
π = 〈v0, v1, v2, . . . 〉, where (vi, vi+1) ∈ E for every i ∈ N. To determine the winner of the
game, we consider the set of priorities that occur infinitely often along the path. This is
defined to be: Inf(π) = {d ∈ N : For all j ∈ N there is an i > j such that pri(vi) = d}.
Player Even wins the game if the highest priority occurring infinitely often is even, and
player Odd wins the game if it is odd. In other words, player Even wins the game if and
only if max(Inf(π)) is even.

A positional strategy for Even is a function that chooses one outgoing edge for every
vertex in V0. A strategy is denoted by σ : V0 → V , with the condition that (v, σ(v)) ∈ E for
every Even vertex v. Positional strategies for player Odd are defined analogously. The sets
of positional strategies for Even and Odd are denoted by Σ0 and Σ1, respectively. Given two
positional strategies σ and τ , for Even and Odd, respectively, and a starting vertex v0, there
is a unique path 〈v0, v1, v2 . . . 〉, where vi+1 = σ(vi) if vi is owned by Even, and vi+1 = τ(vi)
if vi is owned by Odd. This path is known as the play induced by the two strategies σ
and τ , and will be denoted by Play(v0, σ, τ).

For each σ ∈ Σ0, we define G ↾ σ to be the modification of G where Even is forced to
play σ. That is, an edge (v, u) ∈ E is included in G ↾ σ if either v ∈ V1, or v ∈ V0 and
σ(v) = u. We define G ↾ τ for all τ ∈ Σ1 analogously.

An infinite path 〈v0, v1, . . . 〉 is said to be consistent with an Even strategy σ ∈ Σ0

if vi+1 = σ(vi) for every i such that vi ∈ V0. If σ ∈ Σ0 is a strategy for Even, and v0
is a starting vertex, then we define Paths(v0, σ) to give every path starting at v0 that is
consistent with σ. An Even strategy σ ∈ Σ0 is called a winning strategy for a vertex v0 ∈ V
if max(Inf(π)) is even for all π ∈ Paths0(v0, σ). The strategy σ is said to be winning for a
set of vertices W ⊆ V if it is winning for all v ∈ W . Winning strategies for player Odd are
defined analogously.

A game is said to be positionally determined if one of the two players always has a
positional winning strategy. We now give a fundamental theorem, which states that parity
games are positionally determined.

Theorem 2.1 ([EJ91, Mos91]). In every parity game, the set of vertices V can be partitioned

into winning sets (W0,W1), where Even has a positional winning strategy for W0, and Odd

has a positional winning strategy for W1.

In this paper we study the following computational problem for parity games: given a
starting vertex s, determine whether s ∈ W0 or s ∈ W1.

2.2. Treewidth. Treewidth originated from the work of Robertson and Seymour [RS84].
Treewidth is a complexity measure for undirected graphs. Thus, to define the treewidth of
a parity game, we will use the treewidth of the undirected graph that is obtained when the
orientation of the edges is ignored. We begin by defining tree decompositions.

Definition 2.2 (Tree Decomposition). For each game G = (V, V0, V1, E,pri), the pair
(T,X), where T = (I, J) is an undirected tree and X = {Xi : i ∈ I} is a family of subsets
of V , is a tree decomposition of G if all of the following hold:

(1)
⋃

i∈I Xi = V .
(2) For every (v, u) ∈ E there is an i ∈ I such that v ∈ Xi and u ∈ Xi.
(3) For every i, j ∈ I, if k ∈ I is on the unique path from i to j in T , then Xi ∩Xj ⊆ Xk.
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The width of a tree decomposition (T,X) is max{|Xi| : i ∈ I}. The treewidth of a game G
is the smallest width of a tree decomposition of G. Note that this is a slightly unusual
definition, because the width of a tree decomposition is usually defined to be max{|Xi|−1 :
i ∈ I}. However, we use our definition in order to keep the definitions the same between
treewidth and DAG width.

Let (T = (I, J),X) be a tree decomposition for a parity game G = (V, V0, V1, E,pri).
Let i ∈ I be a node in the tree decomposition, and let v ∈ V be a vertex in the parity game
with v /∈ Xi. Let k ∈ I be the closest node to i in T such that x ∈ Xk. Since T is a tree
decomposition, the node k is well defined. Let (i, j) ∈ J be the first edge on the path from
i to k. We define Direction(Xi, v) to be the function that outputs the node j.

There are multiple approaches for computing tree decompositions. From a theoretical
point of view, the best known algorithm is the algorithm of Bodlaender [Bod96]. If the
treewidth is bounded, then this is a linear time algorithm: it runs in O(n · f(k)) time.

However, the constant factor hidden by the function f(k) is in the order of 2O(k3), which
makes the algorithm impractical. For a more practical approach, we can apply the algorithm
of Amir [Ami01] to approximate the treewidth of the graph. This algorithm takes a graph G

and an integer k, and in O(23k ·n2 · k3/2) time either finds a tree decomposition of width at
most 4.5k for G, or reports that the tree-width of G is larger than k.

In this paper, we will assume that the size of the tree decomposition is linear in the size
of the parity game. More precisely, we assume that, if (T = (I, J),X) is a tree decomposition
of a parity game (V, V0, V1, E,pri), then we have |I| ≤ |V |. It has been shown that every
tree decomposition can be modified, in polynomial time, to satisfy this property [Bod96,
Lemma 2.2]1. Therefore we can make this assumption without loss of generality.

2.3. DAG width. As opposed to treewidth, which is a measure for undirected graphs,
DAG width [BDH+12] is a measure for directed graphs. A directed graph G = (V,E) is a
DAG if it contains no directed cycles. If G is a DAG, then we define ⊑D to be the reflexive
transitive closure of the edge relation of G. A source in the DAG is a vertex v ∈ V that is
minimal in the ⊑D ordering, and a sink in the DAG is a vertex that is maximal in the ⊑D

ordering. Furthermore, given two sets U,W ⊆ V , we say that W guards U if, for every edge
(v, u) ∈ E, where v ∈ U , we have u ∈ W ∪ U . In other words, W guards U if the only way
to leave U is to pass through a vertex in W . We can now define a DAG decomposition.

Definition 2.3 (DAG Decomposition). Let G = (V, V0, V1, E,pri) be a parity game. A
DAG decomposition ofG is a pair (D = (I, J),X), whereD is a DAG, andX = {Xi : i ∈ I}
is a family of subsets of V , which satisfies the following conditions:

(1)
⋃

i∈I Xi = V .
(2) For every edge (i, j) ∈ J , the set Xi ∩Xj guards (

⋃

j⊑Dk Xk) \Xi.

(3) For every i, j, k ∈ I, if i ⊑D k ⊑D j, then Xi ∩Xj ⊆ Xk.

The width of a DAG decomposition (D,X) is max{|Xi| : i ∈ I}. The DAG width of a
game G is the smallest width of a DAG decomposition of G. In accordance with the second
condition in Definition 2.3, for each Xi ∈ X we define:

Guarded(Xi) = (
⋃

(i,j)∈J

(
⋃

j⊑Dk

Xk)) \Xi.

1Specifically, we refer to Lemma 2.2 in the SIAM Journal on Computing version of this paper.



6 J. FEARNLEY AND S. SCHEWE

We can also define Direction for DAG decompositions. Suppose that (D = (I, J),X) is
a DAG decomposition of a parity game G = (V, V0, V1, E,pri). Let i ∈ I be a node in the
DAG decomposition, and let v ∈ V be a vertex in the parity game with v ∈ Guarded(Xi).
From the properties of a DAG decomposition, there must be at least one j ∈ I such that
(i, j) ∈ J and either v ∈ Xj or v ∈ Guarded(Xj). We define Direction(Xi, v) to arbitrarily
select a node j ∈ I that satisfies this property.

The only algorithm for computing DAG decompositions was given by Berwanger et.
al. [BDH+12]. They showed that, if a graph has DAG width k, then a DAG decomposition
can be computed in O(nk+2) time. In the case of DAG width, we cannot assume that the
size of the DAG decomposition is linear in the size of the graph. In fact, the best known
upper bound on the number of nodes in a DAG decomposition is nk+1, and the number of
edges is nk+2, where n is the number of vertices in the graph, and k is the width of the
DAG decomposition [BDH+12, Proof of Theorem 16].

3. Strategy Profiles

In this section we define strategy profiles, which are data structures that allow a player to
give a compact representation of the relevant properties of their strategy. Our algorithms in
Sections 6, 7, and 8 will use strategy profiles to allow the players to declare their strategies
in a small amount of space. Throughout this section we will assume that there is a starting

vertex s ∈ V and a set of final vertices F ⊆ V . Let σ ∈ Σ0 be a strategy for Even.
The strategy profile of σ describes the outcome of a modified parity game that starts at s,
terminates whenever a vertex u ∈ F is encountered, and in which Even is restricted to only
play σ.

For each u ∈ F , we define Paths(σ, s, F, u) to be the set of paths from s to u that
are consistent with σ and that do not visit a vertex in F . More formally, Paths(σ, s, F, u)
contains every path of the form 〈v0, v1, v2, . . . vk〉 in G ↾ σ, for which both of the following
conditions hold:

• the vertex v0 = s and the vertex vk = u, and
• for all i in the range 0 ≤ i ≤ k − 1 we have vi /∈ F .

For each strategy τ ∈ Σ1, we define the functions Paths(τ, s, F, u) analogously.
Recall that � is the significance ordering over priorities. For each u ∈ F , the function

Exit(σ, s, F, u), gives the best possible priority, according to�, that Odd can visit when Even
plays σ and Odd chooses to move to u. This function either gives a priority p ∈ D, or, if Odd
can never move to u when Even plays σ, the function gives a special symbol −, which stands
for “unreachable”. We will also define this function for Odd strategies τ ∈ Σ1. Formally,
for every finite path π = 〈v1, v2, . . . , vk〉, we define MaxPri(π) = max{pri(vi) : 1 ≤ i ≤ k}.
Furthermore, we define, for σ ∈ Σ0 and τ ∈ Σ1:

MinPath(σ, s, F, u) = min
�

{MaxPri(π) : π ∈ Paths(σ, s, F, u)},

MaxPath(τ, s, F, u) = max
�

{MaxPri(π) : π ∈ Paths(τ, s, F, u)}.

For every strategy χ ∈ Σ0 ∪ Σ1 and every u ∈ F we define:

Exit(χ, s, F, u) =











− if Paths(χ, s, F, u) = ∅,

MinPath(χ, s, F, u) if Paths(χ, s, F, u) 6= ∅ and χ ∈ Σ0,

MaxPath(χ, s, F, u) if Paths(χ, s, F, u) 6= ∅ and χ ∈ Σ1.
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(b) The second simulation game.

Figure 1. Example runs of the simulation game.

We can now define the strategy profile for each strategy χ ∈ Σ0 ∪ Σ1. We define
Profile(χ, s, F ) to be a function F → D∪{−} such that Profile(χ, s, F )(u) = Exit(χ, s, F, u)
for each u ∈ F .

4. Outline

In this section we give an outline of the rest of the paper. We start by describing simulated
parity games, which are the foundation upon which all our results are based. Then we
describe how this simulation game can be used to prove our three results.

4.1. Simulated Parity Games. Suppose that we have a DAG or tree decomposition of
width k for our parity game. Suppose further that we want to determine the winner of some
vertex s ∈ V in the parity game. Our approach is to find some set of vertices S ⊆ V , where
S = Xi for some node i in our decomposition, such that s ∈ S. We then play a simulation

game on S, which simulates the whole parity game using only the vertices in S.
The general idea behind the simulation game is shown in Figure 1a. The large circle

depicts the decomposition node S, the boxes represent Even vertices, and the triangles
represent Odd vertices. Since no two vertices share the same priority in this example, we
will use the priorities to identify the vertices. As long as both players choose to remain in S,
the parity game is played as normal. However, whenever one of the two players chooses
to move to a vertex v with v /∈ S we simulate the parity game using a strategy profile:
Even is required to declare a strategy in the form of a strategy profile P for v and S. Odd
then picks some vertex u ∈ S, and moves there with priority P (u)2. In the diagram, the
dashed edges represent these simulated decisions. For example, when the play moved to
the vertex 6, Even gave a strategy profile P with P (3) = 14, and Odd decided to move to
the vertex 3. Together, the simulated and real edges will eventually form a cycle, and the
winner of the game is the winner of this cycle. In our example, Even wins the game because
the largest priority on the cycle is 10.

If Even always gives strategy profiles that correspond to some strategy σ ∈ Σ0, then the
outcome of our simulated game will match the outcome that would occur in the real parity
game. On the other hand, it is possible that Even could lie by giving a strategy profile P

2The assignment of players here is arbitrary: none of our results would change if we had Odd propose a
strategy profile, and Even pick a vertex in response.
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S1

S2

S3 S4 S5

Figure 2. An example run of the simulation game for the time complexity result.

for which he has no strategy. To deal with this, Odd is allowed to reject P , which causes
the two players to move to a second simulation game, where Even is required to prove that
he does have a strategy for P .

Suppose that Odd rejected Even’s first strategy profile in the game shown in Figure 1a.
Hence, Even must show that his strategy profile P , that contains P (3) = 14, is correct. To
do this, we select a second node S′ ⊆ V from the decomposition, and play a simulation
game on S′. An example run of this game is shown in Figure 1b. The left circle represents
S, and the right circle represents S′. The game proceeds as before, by simulating a parity
game on S′. However, we add the additional constraint that, if a vertex u ∈ S is visited,
then the game ends: Even wins the game if the largest priority p seen on the path to u
has p � P (u), and Odd wins otherwise. In this example, Even loses the game because the
largest priority seen during the path is 8, and Even’s strategy profile in Figure 1a claimed
that the largest priority p should satisfy p � 14. We also use rejections to deal with the
case where Even’s strategy profile never returns to S. If Even gives a strategy profile P
with P (u) = − for every u ∈ S, then Odd will reject P , and the game will continue on S′

as before.
The simulation game will be formally defined in Section 5. We will then go on to prove

three different results using three distinct versions of the simulation game. These versions
differ in the way that the set S′ is selected whenever Odd rejects Even’s strategy profile.

4.2. The Time Complexity Results. In our first result, to be shown in Section 6, we will
show that parity games with DAG width k can be solved in O(|V |k+3 · kk+2 · (|D|+1)3k+2)
time. Figure 2 gives an example run of the simulation game that will be used in this result.
The figure shows the DAG decomposition of the parity game, and each circle depicts one
of the nodes in the decomposition. At the start of the game, we find a source node i of the
DAG decomposition, and we play a simulation game on the set of vertices Xi. This node is
shown as S1 in the figure.

Recall, from Figure 1, that if the game on S1 ends with Odd rejecting Even’s strategy
profile, then we must pick a new set of vertices, and play a second simulation game. The
rule for picking this new set of vertices will make use of the DAG decomposition. Suppose
that the game on S1 ends when Odd rejects Even’s strategy profile for v and S1. The next
set of vertices is chosen to be Xi, where i = Direction(S1, v). This set is shown as S2 in the
diagram.

Thus, as we can see in the diagram, as Odd keeps rejecting Even’s strategy profiles, we
walk along a path in the DAG decomposition. This means that the game must eventually
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end. To see this, note that when we play a simulation game on S5, the properties of a DAG
decomposition ensure that we either form a cycle in S5, or that we visit some vertex in S4,
because S4 is a guard of S5. Recall that the simulation game ends whenever we move back
to a set that we have already seen. Thus, when we play a simulation game on a sink in the
DAG decomposition, there cannot be any simulated moves, and the game will either end in
a cycle on the vertices in S5, or when one of the two players moves to a vertex in S4.

Our plan is to implement the simulation game on an alternating Turing machine. We
will use the non-deterministic and universal states in the machine to implement the moves
of the two players. Our goal is to show that this implementation uses at most O(k · log |V |)
space, which would then immediately imply our desired result.

There is one observation about DAG decompositions that is important for obtaining
the O(k · log |V |) alternating space bound. Recall from Figure 1b that if Odd rejects a
strategy profile of Even, then we must remember the strategy profile so that we can decide
the winner in subsequent simulation games. Our observation is that, if we are playing a
simulation game using a DAG decomposition, then we only ever have to remember one
previous strategy profile. For example, suppose that we are playing the simulation game
on S3 in Figure 2. Since S3 ⊆ Guarded(S2), we know that we cannot reach a vertex in
S1 without passing through a vertex in S2. However, the simulation game on S3 ends
immediately when a in S2 is visited. Hence, we can forget the strategy profile on S1. This
observation is crucial for showing the O(k · log |V |) alternating space bound.

Our second result, which will be shown in Section 7, uses the same techniques, but
applies them to parity games with bounded treewidth. We will show how the amount of
space used by the alternating Turing machine can be significantly reduced for the treewidth
case, and from this we derive a O(|V | · (k + 1)k+5 · (|D|+ 1)3k+5) time algorithm for parity
games with bounded treewidth.

4.3. The Parallelizability Result. In our third result, which will be proved in Section 8,
we show that the problem of solving parity games with bounded tree-width lies in the com-
plexity class NC2. To do this, we will construct a rather different version of the simulation
game, which can be solved by an alternating Turing machine in O(k2 · (log |V |)2) time
and O(k · log |V |) space. This then immediately implies that our problem lies in the class
NC2 [ALR10, Theorem 22.15].

In the first and second results, we were able to compute a DAG decomposition or tree
decomposition, and then chose the sets S to be nodes in this decomposition. However,
we do not take this approach here, because we do not know of a way to compute a tree
decomposition in O(k · log |V |) space on an alternating Turing machine. Instead, we will
allow player Odd to chose these sets.

However, giving Odd this freedom comes at a price. In the first result, we only ever
had to remember the last strategy profile that was rejected by Odd, and this was critical for
showing the required space bounds for the alternating Turing machine. In this result, since
Odd could potentially select any set, we may have to remember all of the previous strategy
profiles to ensure that the simulation game eventually terminates. But, if we remember too
many strategy profiles, then we will be unable to show the required space bound for the
alternating Turing machine.

We resolve this by showing the following property: if the parity game has treewidth k,
then Odd has a strategy for selecting the sets S such that:
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F1

F2 S′

(a) The strategy Slice.

S′

F1

F2 F3

(b) The strategy Reduce.

Figure 3. Odd’s strategies for choosing S in the simulation game.

• The simulation game always terminates after k · log |V | many rounds.
• We never have to remember more than 3 previous strategy profiles at the same time.

These two properties are sufficient to show that our alternating Turing machine meets the
required time and space bounds.

We now outline the strategy for Odd that achieves these two properties. In fact, this
strategy consists of two different strategies. The first strategy is called Slice, and is shown
in Figure 3a. The figure shows the nodes in the tree decomposition, which means that
each circle represents a set of vertices in the parity game. The nodes F1 and F2 represent
two previous strategy profiles that we have remembered. The strategy Slice is required to
select one of the nodes between F1 and F2. We do so using the following well known lemma
about trees.

Lemma 4.1. For every tree T = (I, J) with |I| ≥ 3, there is an i ∈ I such that removing i
from T splits T into parts, where each part has at most 2

3 |I| vertices.

We define the strategy Slice to select a separator that satisfies Lemma 4.1. For exam-
ple, in Figure 3a the separator S′ splits the tree into 3 parts, having 6, 1, and 1 vertices,
respectively. Since there were originally 9 nodes between F1 and F2, we have that S

′ satisfies
Lemma 4.1.

The second strategy is called Reduce, and it is shown in Figure 3b. It is used whenever
we have remembered three strategy profiles. It selects the unique vertex that lies on the
paths between them. It can be seen in Figure 3b that the set S′ lies on the unique vertex
that connects F1, F2, and F3. The purpose of this strategy is to reduce the number of
strategy profiles that we must remember. It can be seen that, no matter how the game on
S′ ends, we will be able to forget at least two of the three strategy profiles, while adding
only one new strategy profile for S′.

Odd’s overall strategy combines these two sub-strategies: we use Slice until three
strategy profiles have been remembered, and then we switch between Reduce and Slice.
Applying this strategy ensures that we use Slice at least half of the time, and so the game
must end after at most O(log |V |) simulation games have been played. The use of Reduce
ensures that we never have to remember more than three strategy profiles.

Once these properties have been established, it is then fairly straightforward to show
that the game can be implemented by an alternating Turing machine in O(k2 · (log |V |)2)
time and O(k · log |V |) space, which then immediately gives containment in NC2.
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5. Simulated Parity Games

In this section we describe the simulation game, which will be used in all of our subse-
quent results. We begin by formally defining the simulation game. Since each of our results
requires a slightly different version of the simulation game, our definitions will be param-
eterized by two functions: Next and Hist, and each of our results will provide their own
versions of these functions. In the second part of this section, we will show that, no matter
which functions are chosen, if the simulation game terminates, then it determines the cor-
rect winner. Then, for each of our results, we provide a proof of termination for the relevant
Next and Hist functions.

We begin by defining records, which allow us to remember the outcome of previous
games. A record is a triple (F, p, P ), where F ⊆ V is a set of vertices, P is a strat-
egy profile for F , and p ∈ D is the largest priority that has been seen since P was
rejected. When a record is created, we will use (F,−, P ) to indicate that no priority
has been seen since P was rejected. Given a record (F, p, P ), and a priority p′, we de-
fine Update((F, p, P ), p′) = (F,max(p, p′), P ), where we have max(−, p′) = p′. A his-

tory is an ordered sequence of records. Given a history F and a priority p′, we define:
Update(F , p′) = {Update((F, p, P ), p′) : (F, p, P ) ∈ F}.

We can now define the format for the two functions Next and Hist. The function
Next(S, v,F) takes a set of vertices S ⊆ V , a vertex v ∈ V , and a history F . It is required
to return a set of vertices S′ ⊆ V . The history function Hist(F) allows us to delete certain
records from the history F . More formally, the function is required to return a history F ′

with F ′ ⊆ F .
We can now formally define the simulation game. Let G be a parity game. Given

S ⊆ V , s ∈ V , a history F , and two functions Next and Hist, we define the game
SimulateG(S,F , s,Next,Hist) as follows. The game maintains a variable c to store the cur-
rent vertex. It also maintains a sequence of triples Π, where each entry is of the form
(v, p, u) with v, u ∈ V and p ∈ D. The sequence Π represents the simulated path that the
two players form during the game.

To define our game, we will require notation to handle the simulated path Π. We extend
MaxPri for paths of the form Π = 〈(v1, p1, v2), (v2, p2, v3), . . . , (vj−1, pj−1, vj)〉 by defining
MaxPri(Π) = max{pi : 1 ≤ i ≤ j− 1}. Furthermore, if a path Π consists of an initial path
〈(v1, p1, v2), . . . , (vj−1, pj−1, vj)〉 followed by a cycle 〈(vj , pj , vj+1), . . . , (vc−1, pc−1, vj), then
we define Winner(Π) to be Even if max({pi : j ≤ i ≤ c− 1}) is even, and Odd otherwise.

We are now able to define SimulateG(S,F , s,Next,Hist). The game is played in rounds.
The first round of the game is slightly different, because it requires a special initialization
procedure that will be introduced later. Every other round proceeds as follows.

(1) An edge (c, v) is selected by Even if c ∈ V0 or by Odd if c ∈ V1.
(2) If v ∈ S or if v ∈ F for some (F, p, P ) ∈ F , then the tuple (c,pri(v), v) is added to Π,

the vertex c is set to v, and the game moves to Step 5.
(3) Even gives a strategy profile P ′ for the vertex v and the set S.
(4) Odd can either play accept for some vertex u ∈ S with P ′(u) 6= −, or play reject.

• If Odd plays accept, then (c,max(pri(v), P ′(u)), u) is appended to Π, and c is set
to u.

• If Odd plays reject, then:
− The history F ′ is obtained by computing Update(F ,MaxPri(Π)).
− The history F ′′ is obtained by adding (S,−, P ′) to the end of F ′.
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− The history F ′′′ is obtained by computing Hist(F ′′).
− The set S′ is obtained by computing Next(S, v,F ′′′).
− The winner of the game is the winner of SimulateG(S

′,F ′′′, v,Next,Hist).
(5) If c ∈ F for some (F, p, P ) ∈ F , then the game stops. Let (F, p, P ) be the final

record in F such that c ∈ F . If P (c) = − then Odd wins the game. Otherwise, let
p′ = max(MaxPri(Π), p). Even wins the game if p′ � P (c) and Odd wins if p′ ≺ P (c).

(6) If Π ends in a cycle, then the winner of the game is Winner(Π).

Note that, whenever we move to a new simulation game in Step 4, the variables c and
Π are reset to their initial values. We will omit the subscripted parity game G from
SimulateG(S,F , s,Next,Hist) when it is clear from the context.

As we have mentioned, the first round is slightly different. This is because we allow
the starting vertex s to be any vertex in V . Thus, we need a procedure to initialize the
variable c. If we happen to have s ∈ S, then we can set c = s, and start the game in Step 1
as normal. If s /∈ S, then we start the game in Step 3 with v = s. In other words, the game
begins by allowing Even to give a strategy profile for v and S. It can be seen that, if this
profile is accepted by Odd, then c is set to some vertex u ∈ S. Thus, after this initialization
procedure, the game can continue on as normal.

5.1. Strategies for the simulation game. Let σ ∈ Σ0 be an Even strategy for the
original parity game. We define a strategy for Even in Simulate called follow0(σ), which
follows the moves made by σ. More formally, follow0(σ) does the following:

• If Even is required to select an edge in Step 1, then the edge (c, σ(c)) is selected.
• In Step 3, the strategy selects P ′ = Profile(σ, v, S).

On the other hand, let τ ∈ Σ1 be a strategy for Odd in the original parity game. We
define a strategy for Odd in Simulate called follow1(τ), which is analogous to the strategy
follow0(σ) that we have just defined. Odd’s strategy is more complex, because it must
decide whether the strategy profile proposed by Even in Step 3 should be accepted. To
aid in this, we use the following definition. Let Pτ = Profile(τ, s, S) for some s ∈ V and
S ⊆ V . If P is a strategy profile for S given by Even in Step 3, then τ refutes P if one of
the following conditions holds.

• For all u ∈ S, we have P (u) = −.
• For all u ∈ S, we have either Pτ (u) 6= − and P (u) = −, or Pτ (u) ≺ P (u).

The first condition is necessary to deal with cases where Even gives a strategy profile P
with P (u) = − for all u ∈ S. In this case, Odd can not play accept and therefore has
no choice but to reject P in Step 4. The second condition detects whether Even gives a
false strategy profile: the condition ensures that if Odd rejects P , and if in a subsequent
simulation game we arrive back at a vertex u ∈ S, then Odd will win in Step 5.

The strategy follow1(τ) follows τ for the vertices in S, and whenever Even gives a
strategy profile P , Odd plays reject only when τ refutes P . If τ does not refute P , then
there must be at least one u ∈ S such that Pτ (u) � P (u). Odd selects one such u and plays
accept for it. Formally, we define follow1(τ) as follows:

• If Odd selects an edge in Step 1, then Odd selects (c, τ(c)).
• In Step 4, Odd’s decision is based on the strategy profile P ′. If τ refutes P ′, then odd
plays reject. Otherwise, Odd selects a vertex u ∈ F such that Profile(τ, v, S)(u) � P ′(u)
and plays accept for u.
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5.2. Plays in the simulation game. We now describe the outcome when the simu-
lation game Simulate(S,F , s,Next,Hist) is played. The players begin by playing G1 =
Simulate(S,F , s,Next,Hist). This game either ends in Step 5, Step 6, or when Odd plays
reject in Step 4 and causes the players to move to a new game G2. The outcome can be
described as a (potentially infinite) sequence of games:

〈S1 = Simulate(S1,F1, s1,Next,Hist),S2 = Simulate(S2,F2, s2,Next,Hist), . . . 〉.

We will call this a play of the simulation game.
We define some notation for working with simulation game plays. Each of the games

Si maintained a variable Π. At the start of the game Si, the variable Π was empty, and
at the end of the game, Π contained a sequence of tuples, which represented a sequence of
real and simulated moves in Si. For each i, we define Πi to be the state of the variable Π
at the end of the game Si. Furthermore, for each i, we will represent Πi as:

〈(vi,1, pi,1, ui,1), (vi,2, pi,2, ui,2), . . . , (vi,|Πi|, pi,|Πi|, ui,|Πi|)〉.

We are interested in plays of the simulation game that arise when either Even plays
follow0(σ) for some strategy σ ∈ Σ0, or Odd plays follow1(τ) for some strategy τ ∈ Σ1.
For the sake of exposition, we focus on player Even, but we will prove our results for both
players. We want to show that, if Even uses follow0(σ), then we can translate the paths
Πi in the simulation game to paths in the original parity game. More precisely, for each
tuple (vi,j, pi,j, ui,j) in Πi, we want to construct a path πi,j in G ↾ σ. For the portions of
Πi that correspond to real edges in the parity game, this is easy. Formally, if (vi,j , pi,j, ui,j)
was not added to Πi by a simulated move, then we can define πi,j = 〈vi,j , ui,j〉. This path
is obviously a path in G ↾ σ. The following lemma shows that paths πi,j can be defined for
the simulated moves in Πi.

Lemma 5.1. We have two properties:

• If there is a strategy σ ∈ Σ0 such that:

Profile(σ, vi,j , Si)(ui,j) = pi,j 6= −,

for some i and j, then there exists a path πi,j ∈ Paths(σ, vi,j , Si, ui,j) such that

MaxPri(πi,j) = pi,j.

• If there is a strategy τ ∈ Σ1 such that:

Profile(τ, vi,j , Si)(ui,j) � pi,j 6= −,

for some i and j, then there exists a path πi,j ∈ Paths(τ, vi,j , Si, ui,j) such that

MaxPri(πi,j) � pi,j.

Proof. The first part of this lemma follows directly from the definition of a strategy profile.
Since we know that Profile(σ, vi,j , Si)(ui,j) 6= −, we have that Paths(σ, vi,j , Si, ui,j) 6= ∅.
Furthermore, since Profile(σ, vi,j , Si)(ui,j) considers the minimum path according to the �-
ordering, there must exist a path πi,j in Paths(σ, vi,j , Si, ui,j) such that MaxPri(πi,j) = pi,j.

The second part is very similar to the first. Since we know that Profile(τ, vi,j, Si)(ui,j) 6=
−, we have that Paths(τ, vi,j , Si, ui,j) 6= ∅. Furthermore, since Profile(τ, vi,j , Si)(ui,j) con-
siders the maximum path according to the �-ordering, there must exist a path πi,j in
Paths(τ, vi,j, Si, ui,j) such that MaxPri(πi,j) = Profile(τ, vi,j, Si)(ui,j) � pi,j.
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For the rest of this section, we will assume that either Even always plays follow0(σ)
for some strategy σ ∈ Σ0, or that Odd always plays follow1(τ) for some strategy τ ∈ Σ1.
We will prove properties about the paths pi,j that are obtained from Lemma 5.1.

Firstly, we note that if πi,j is concatenated with πi,j+1, then the result is still a path
in either G ↾ σ or G ↾ τ . This is because Steps 2 and 4 of the simulation game ensure that
the final vertex in πi,j is the first vertex in πi,j+1. Similarly, the concatenation of πi,|πi| and
πi+1,1 always produces a path in either G ↾ σ, or G ↾ τ , because Step 4 of the simulation
game ensures that the final vertex in πi,|Πi| must have an edge to the first vertex in πi+1,1.

With these properties in mind, we define π(i,j)→(i′,j′), for two pairs of integers where,
either i′ > i, or both i = i′ and j′ > j, to be the concatenation of πi,j through πi′,j′ . More
formally, let ◦ be the operator that concatenates two paths. We define:

πi = πi,1 ◦ πi,2 ◦ · · · ◦ πi,|πi|,

to be the path from the first vertex in πi,1 to the final vertex in πi,|πi|. We then define

π(i,j)→(i′,j′) = πi,j ◦ · · · ◦ πi,|πi| ◦ πi+1 ◦ · · · ◦ πi′−1 ◦ πi′,1 ◦ · · · ◦ πi′,j′,

to be the concatenation of the paths between πi,j and πi′,j′.
The following lemma regarding MaxPri(π(i,j)→(i′,j′)) follows easily from Lemma 5.1.

Lemma 5.2. If σ ∈ Σ0 is an Even strategy, and 〈G1 . . . Gk〉 is obtained when Even plays

follow0(σ), then we have:

MaxPri(π(i,j)→(i′,j′)) = max{px,y : i ≤ x ≤ i′ and

(x = i) ⇒ j ≤ y and (x = i′) ⇒ y ≤ j′}.

On the other hand, if τ ∈ Σ1 is an Odd strategy, and 〈G1 . . . Gk〉 is obtained when Odd

plays follow1(τ), then we have:

MaxPri(π(i,j)→(i′,j′)) � max{px,y : i ≤ x ≤ i′ and

(x = i) ⇒ j ≤ y and (x = i′) ⇒ y ≤ j′}.

5.3. Winning strategies and the simulation game. In this section, we show that if
one of the two players follows a winning strategy for the original parity game, then that
player cannot lose the simulation game. More formally, we show that, if σ ∈ Σ0 is a winning
strategy for Even for some vertex s ∈ V , and if Even plays follow0(σ), then Even cannot
lose Simulate(S,F , s,Next,Hist), for all S, F , Next, and Hist. We also show the analogous
result for Odd.

We begin by showing that, if Even never lies about his strategy profile in Step 3, then
Even can never lose the game in Step 5.

Lemma 5.3. If Even plays follow0(σ) for some σ ∈ Σ0, then Even can never lose the

simulation game in Step 5.

Proof. Assume, for the sake of contradiction, that Even loses the simulation game in Step 5
while playing follow0(σ). Let

〈S1 = Simulate(S1,F1, s1,Next,Hist), . . . ,Sk = Simulate(Sk,Fk, sk,Next,Hist)〉

be the play of the simulation game, where Even loses Sk in Step 5.
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Let (F, p, P ) be the record used to decide the winner in Step 5. The fact that Odd
wins in Step 5 implies that Πk ends at some vertex u ∈ F , and that either P (u) = −
or max(MaxPri(Π), p) ≺ P (u). Let i be the index of the game Si in which (F,−, P ) is
contained in Fi+1 \ Fi.

We begin with the case where P (u) = −. In this case, the fact that follow0(σ)
only ever gives Profile(σ, s, S) for P ′ in Step 3 allows us to invoke Lemma 5.1 to conclude
that the path π(i+1,1)→(k,|Πk|) is a path in G ↾ σ. Note that the path starts at si+1, and
that u is the first vertex in F that is visited by π(i+1,1)→(k,|Πk|). Hence we must have
π(i+1,1)→(k,|Πk|) ∈ Paths(σ, si+1, F, u). Therefore, the fact that the set Paths(σ, si+1, F, u) is
non-empty contradicts the fact that P (u) = Profile(σ, si+1, F )(u) = −.

We now consider the case where Odd wins in Step 5 because Πk ends at some vertex
u ∈ F and max(MaxPri(Π), p) ≺ P (u). In this case we can again invoke Lemma 5.1 to
argue that there is a path π(i+1,1)→(k,|Πk|) in G ↾ σ, and we can use the same arguments as
in the previous case to argue that this path is contained in Paths(σ, si+1, Fi, u). Moreover,
Lemma 5.2 implies that

p′ = max(p,MaxPri(Π)) = MaxPri(π(i+1,1)→(k,|πk|)).

Since p′ ≺ P (u), and P (u) = Profile(σ, si+1, F ), we have the following inequality:

MaxPri(π(i+1,1)→(k,|Πk|)) ≺ min
�

{MaxPri(π) : π ∈ Paths(σ, si+1, F, u)}.

Since π(i+1,1)→(k,|Πk|) is contained in Paths(σ, si+1, F, u) this inequality is impossible, which
yields the required contradiction.

We now show a corresponding property for Odd.

Lemma 5.4. If Odd plays follow1(τ) for some strategy τ ∈ Σ1, then Odd can never lose

the simulation game in Step 5.

Proof. Assume, for the sake of contradiction, that Odd loses the simulation game in Step 5
while playing follow1(τ). Let

〈S1 = Simulate(S1,F1, s1,Next,Hist), . . . ,Sk = Simulate(Sk,Fk, sk,Next,Hist)〉

be the play of the simulation game, where Odd loses Sk in Step 5.
Let (F, p, P ) be the record that is used to determine the winner in Step 5. The

fact that Even wins in Step 5 implies that Πk ends at some vertex u ∈ F , and that
max(MaxPri(Π), p) � P (u). Let i be the index of the game Si in which (F,−, P ) is con-
tained in Fi+1 \Fi. Since follow1(τ) only ever plays reject in the case where τ refutes P ′,
we can apply Lemma 5.1 to obtain a path π(i+1,1)→(k,|Πk|) in G ↾ τ . Note that the path starts
at the vertex si+1, and that u is the first vertex in F that is visited by π(i+1,1)→(k,|Πk|). Hence
we must have π(i+1,1)→(k,|Πk|) ∈ Paths(τ, si+1, F, u). Furthermore, we can use Lemma 5.2
to conclude:

MaxPri(π(i+1,1)→(k,|Πk|)) � max(MaxPri(Π), p) � P (u).

Since τ refutes P , we must have P (u) ≻ Profile(τ, si+1, F )(u). Combining all of these facts
yields:

MaxPri(π(i+1,1)→(k,|Πk|)) � P (u)

≻ Profile(τ, si+1, F )(u)

= max
�

{MaxPri(π) : π ∈ Paths(τ, si+1, F, u)}.
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However, since π(i+1,1)→(k,|Πk|) ∈ Paths(τ, si+1, Fi, u), this inequality is impossible.

We now turn our attention to Step 6 of the simulation game. The following pair of
lemmas will be used to show that, if one of the two players follows a winning strategy, then
that player cannot lose the simulation game in Step 6.

Lemma 5.5. Let σ ∈ Σ0 be an Even winning strategy for s ∈ V . If Even plays follow0(σ),
then Even cannot lose Simulate(S,F , s,Next,Hist) is Step 6, for all choices of S, F , Next,

and Hist.

Proof. Assume, for the sake of contradiction, that Even loses the simulation game in Step 6
while playing follow0(σ). Let

〈S1 = Simulate(S1,F1, s1,Next,Hist), . . . ,Sk = Simulate(Sk,Fk, sk,Next,Hist)〉

be the play of the simulation game, where Even loses Sk in Step 6.
Since Even loses in Step 6, there must be some index i such that 〈Πk,i, . . . ,Πk,|Πk|〉

forms a cycle in Sk, and that the highest priority on this cycle is odd. Since Even plays
follow0(σ), we can use Lemma 5.1 to conclude that π(k,i)→(k,|Πk|) is a cycle in G ↾ σ, and
we can apply Lemma 5.2 to conclude that MaxPri(π(k,i)→(k,|Πk|)) is odd. Furthermore, we
have that π(1,1)→k,(i−1) is a path from s to the cycle π(k,i)→(k,|Πk|) in G ↾ σ. This implies
that σ is not a winning strategy for s, which provides the required contradiction.

Lemma 5.6. Let τ ∈ Σ1 be an Odd winning strategy for s ∈ V . If Odd plays follow1(τ),
then Odd cannot lose Simulate(S,F , s,Next,Hist) is Step 6, for all choices of S, F , Next,

and Hist.

Proof. Assume, for the sake of contradiction, that Odd loses the simulation game in Step 6
while playing follow1(τ). Let

〈S1 = Simulate(S1,F1, s1,Next,Hist), . . . ,Sk = Simulate(Sk,Fk, sk,Next,Hist)〉

be the play of the simulation game, where Odd loses Sk in Step 6.
Since Odd loses in Step 6, there must be some index i such that 〈Πk,i, . . . ,Πk,|Πk|〉

forms a cycle in Sk, and that that the highest priority on this cycle is even. Since Odd
plays follow1(τ), we can use Lemma 5.1 to conclude that π(k,i)→(k,|Πk|) is a cycle in G ↾ τ ,
and we can apply Lemma 5.2 to conclude that MaxPri(π(k,i)→(k,|Πk|)) � MaxPri(Πk). Since
MaxPri(Πk) is even, every priority p with p � MaxPri(Πk) must also be even. Hence, we
can conclude that MaxPri(π(k,i)→(k,|Πk|)) is even. Furthermore, we have that π(1,1)→(k,i−1)

is a path from s1 to the cycle π(k,i)→k,(|Πk|) in G ↾ τ . This implies that τ is not a winning
strategy for s, which provides the required contradiction.

When combined, Lemmas 5.3 through 5.6 imply the following property, which is the
main result of this section.

Lemma 5.7. If SimulateG(S,F , s,Next,Hist) terminates, then it correctly determines the

winner of s.
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6. Time Complexity Results for Parity Games

Let G be a parity game with a DAG decomposition (D = (I, J),X) of width k. In this
section we give a version of the simulation game that can be solved in (k + 3) · log |V | +
(k + 2) · log(k) + (3k + 2) · log(|D|+ 1) space on an alternating Turing machine, and hence
O(|V |k+3 · kk+2 · (|D|+ 1)3k+2) time on a deterministic Turing machine.

6.1. The functions Next and Hist. Recall that the simulation game can be customized
by specifying the Next and Hist functions. We begin by defining the versions of these
functions that will be used for this result. We start by defining the Next function. Recall,
from Section 4.2, that we begin by playing a simulation game on a source in the DAG
decomposition. To define this formally, we must be more specific: if we want to determine
the winner of some vertex v ∈ V , then we must pick a source i from the DAG decomposition
such that v ∈ Guarded(Xi) ∪Xi, and play a simulation game on Xi.

The definition of Next follows the intuition that was outlined in Section 4.2. Suppose
that we are required to compute Next(S, v,F), for some set S = Xi with i ∈ I, some v ∈ V ,
and some history F . We find the DAG decomposition node j ∈ I such that (i, j) ∈ J ,
and v ∈ Guarded(Xj) ∪Xj , and set Next(S, v,F) = Xj. After defining Hist, we will prove
Lemma 6.1, which shows that such a j always exists.

To define the Hist function, we use the observation that we made in Section 4.2: we
only need to remember at most one record. More precisely, we only need to remember the
record corresponding to the last simulation game that was played. Formally, we can define
the Hist function as follows.

• The first time that Hist(F) is called, F will contain only one record. We do not delete
this record, so we set Hist(F) = F .

• Every other time that Hist(F) is called, F will contain exactly two records. Due to the
definition of Next, we know that the two records in F have the form (Xi, v1, P1) and
(Xj , v2, P2) for some i, j ∈ I, some v1, v2 ∈ V , and some strategy profiles P1 and P2.
Furthermore, we know that (i, j) ∈ J is a directed edge in the DAG decomposition. We
set Hist(F) = {(Xj , v2, P2)}.

We now show the correctness of the Next function.

Lemma 6.1. Let S = Xi for some i ∈ I, and s ∈ Guarded(Xi) ∪ Xi. Suppose that

Simulate(S, ∅, s,Next,Hist) ends when Odd rejects a strategy profile for some vertex v ∈ V .

There exists a j ∈ I with (i, j) ∈ J and v ∈ Guarded(Xj) ∪Xj .

Proof. The definitions of Next and Hist imply that there are two cases to consider:

• The case where Xi is a sink, and F is empty.
• The case where Xi is not a sink, and F = {(Xk, v

′, P ′)}, with (k, i) ∈ J .

In the first case, the property follows from the definition of a guarded set: no matter which
edges (c, v) are chosen in Step 1, we can never move to a vertex v /∈ Guarded(Xi). In the
second case, we can either choose an edge (c, v) with v ∈ Guarded(Xi), or an edge (c, v) with
v ∈ Xk. However, Step 2 ensures that, if v ∈ Xk, then the game skips directly to Step 5.
Thus, in both cases, if Odd rejects a strategy profile for some vertex v, with (c, v) ∈ E, then
we have v ∈ Guarded(Xi).

To prove our claim, we can apply the properties given in Definition 2.3. They imply
that, if there is an edge (c, v) ∈ E with c ∈ Xi and v ∈ Guarded(Xi) \Xi, then there must
exist an edge (i, j) ∈ J with v ∈ Guarded(Xj) ∪Xj.
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6.2. Termination and correctness. We now show that this version of the simulation
game terminates, and that it can be used to correctly determine the winner of the parity
game. Recall that, in Section 5.3, we showed that if the simulation game terminates, then it
correctly determines the winner of the parity game. Thus, we must show that the simulation
game terminates when it is equipped with Next and Hist.

Lemma 6.2. If S = Xi for some source i ∈ I, and s ∈ Guarded(Xi) ∪ Xi is a starting

vertex, then Simulate(S, ∅, s,Next,Hist) terminates.

Proof. We begin by showing that Odd cannot play reject in Step 4 infinitely many times.
This follows from the definition of Next. This functions ensures two properties:

• Each simulation game is played on a set of vertices S = Xj for some j ∈ I.
• If odd plays reject in a game on S = Xj , then the next game will be played on S′ = Xk,
with (j, k) ∈ J .

These two properties ensure that, every time that Odd plays reject, we take one step
along a directed path in the DAG decomposition. Since the DAG decomposition contains
no cycles, we know that Odd can play reject at most |I| times before we reach a sink in
the DAG decomposition.

The Hist function ensures that, once we reach a sink in the DAG decomposition, the
game must end. Suppose that we have reached a simulation game on S = Xj where j ∈ I
is a sink. The history function ensures that F contains a record (F, p, P ) with F = Xk,
where (k, j) ∈ J . Therefore, since Xj guards Xi, every edge (v,w) with v ∈ S and w /∈ S
has w ∈ Xj . Thus, Step 2 of the simulation game ensures that Odd cannot play reject.

We now show that if Odd only plays accept in a simulation game on S, then the game
must terminate after |S| + 1 steps. This is because each time Odd plays accept for some
vertex u ∈ S, the vertex u is appended to Π. Therefore, if the game continues for |S| + 1
steps, then Odd will be forced to play accept for some vertex u that has been visited by Π,
and the game will terminate in Step 6.

Then, we can apply Lemma 6.2 along with Lemma 5.7 to imply the correctness of this
version of the simulation game.

Lemma 6.3. Let v ∈ V be a vertex, and let Xi ∈ X be a set of vertices, where i is a source,

and v ∈ Guarded(Xi) ∪Xi. Even wins Simulate(Xi, ∅, v,Next,Hist) if and only if v ∈ W0.

6.3. Implementation on an alternating Turing machine. In this section, we show how
this version of the simulation game can be implemented on an alternating Turing machine.
We use the existential states of the machine to simulate the moves of Even and the universal
states of the machine to simulate the moves of Odd. In this way, we ensure that the machine
will have an accepting run if and only if Even has a strategy for SimulateG(S, ∅, s,Next,Hist)
that forces a win no matter how Odd plays.

Theorem 6.4. There is an algorithm that, when given a parity game G, a DAG decom-

position (D = (I, J),X) of width k for G, and a vertex s, terminates in O(|V |k+3 · kk+2 ·
(|D|+ 1)3k+2) time and outputs the winner of s.

Proof. We show that SimulateG(S, ∅, s,Next,Hist), where S is a source in the DAG decom-
position, and s ∈ Guarded(S) ∪ S, can be implemented on an alternating Turing machine
in logarithmic space. We split our analysis into two cases: the data that must be stored
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throughout the game, and the data that must be stored to implement each iteration of the
game.

We begin by considering the data that must be stored throughout. The simulation
game maintains the variables S, F , Π and c. Note that, from the definitions of Hist and
Next, we have that S = Xi for some i ∈ I. Moreover, we know that F contains exactly one
record (F, p, P ), where F = Xj for some j with (j, i) ∈ J . These variables can be stored
using the following amount of space.

• We claim that S and F can be remembered using (k+2) log |V | bits. This is because we
always have S = Xi and F = Xj for some edge (j, i) ∈ J , and since since |J | ≤ |V |k+2, we
need at most (k+2) log |V | bits to store (i, j). Remembering (i, j) is sufficient to identify
both S and F .

• Note that c is always a vertex in S. Since we know that S = Xi, we can represent c as a
number between 1 and k. Thus, c can be stored in at most log k bits.

• The priority p can be stored in logD bits.
• The strategy profile P contains |F | mappings from the vertices of F to either a priority d,
or −. Thus, we can represent a strategy profile as a list of length k, where each element
of the list is a number between 1 and |D| + 1: the numbers 1 through |D| encode their
respective priorities, and the number |D| + 1 encodes −. Thus, P can be stored using
k · log(|D|+ 1) bits.

• Recall that the sequence Π is reset to ∅ at the start of each simulation game. This implies
that Π contains at most |S| + 1 tuples of the form (v, p, u). Due to the initialization
procedure of the simulation game we can have v /∈ S and u ∈ S in the first element of Π.
However, for every subsequent element, we always have v ∈ S and u ∈ S. Suppose that
the first element of Π does have v /∈ S. We claim that we do not need to remember the
vertex v. Note that the simulation game only cares about the largest priority along Π,
and whether Π forms a cycle. Since v /∈ S, Step 2 prevents Π from forming a cycle that
includes v. Thus, we do not need to store v.

Note also that, if (v, p, u) appears in Π, then, the next element in the sequence must
be of the form (u, p′, u′). Thus, for every tuple in Π other than the first element in the
sequence, we only need to store the priority p′ and the vertex u′. In total, therefore, we
can represent Π by storing at most |S| + 1 priorities, and at most |S| + 1 vertices in S.
These can be stored in (k + 1) · log |D|+ (k + 1) · log k bits.

Next, we account for the space used during the execution of the game.

• The vertex v that is selected in Step 1 requires log |V | bits to store.
• As with the strategy profile P , the strategy profile P ′ given by Even in Step 3 can be
stored in k · log(|D|+ 1) bits.

• We claim that no additional space is needed if Odd rejects the strategy profile P ′ in step
4. To see why, note that Update will always delete the current record in F . Thus, we can
implement Step 4 by first deleting the existing record in F , and then reusing the space
for the new record.

• No extra space is needed by Steps 2, 5, and 6.

Thus, in total, we require

(k + 3) · log |V |+ (k + 2) · log(k) + (3k + 2) · log(|D|+ 1)
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bits of storage for to implement the game on an alternating Turing machine. Using the
standard determinization techniques for alternating Turing machines, we can obtain a de-
terministic algorithm that runs in O(|V |k+3 · kk+2 · (|D|+ 1)3k+2) time.

7. A Faster Algorithm For Parity Games With Bounded Treewidth

In Section 6 we gave an O(|V |k+3 · kk+2 · (|D| + 1)3k+2) time algorithm for parity games
with bounded DAG width. In this section, we show that, if the parity game has bounded
treewidth, then we can produce a version of the simulation game that can be solved in
O(|V | · (k + 1)k+5 · (|D|+ 1)3k+5) time.

7.1. Outline. The version of the simulation game used in this section is very similar to the
version used in Section 6, but this time we will be using a tree decomposition. In fact, we
will convert the tree decomposition to a rooted tree decomposition. Suppose that we want
to determine the winner of some vertex s in the parity game. We find a tree decomposition
node i such that s ∈ Xi, and we declare i to be the root of T . Then, we turn T into a
directed tree, by orienting all edges away from the root i. This step is necessary to obtain
our desired complexity.

Recall that the factor of |V |k+3 in Theorem 6.4 arose from the fact that we needed to
use (k + 3) · log |V | bits of storage in the alternating Turing machine:

• We needed (k + 2) · log |V | bits to store an edge from the DAG decomposition.
• We needed log |V | bits to store the vertex v.

The first observation that we make is that, when we consider parity games with bounded
treewidth, we can easily reduce the amount of space that is required. Whereas a DAG
decomposition can have up to |V |k+2 edges, a tree decomposition can have at most |V | − 1
edges. Thus, we can reduce the amount of space needed by the alternating Turing machine
to 2 · log |V |+ (k + 2) · log(k) + (3k + 2) · log(|D|+ 1), and thereby obtain a O(|V |2 · kk+2 ·
(|D|+ 1)3k+2) time algorithm for solving parity games with bounded treewidth.

We can, however, do better than this. For the rest of this section, our goal is to show
that the 2 · log |V | term in our space bounds can be reduced to log |V |. This will lower
the |V |2 term in the complexity of the algorithm to |V |. To do this, we concentrate on
the amount of space used by the variable v. The reason why we require log |V | bits to
store v is that the edge chosen in Step 1 can potentially set v to be any vertex in the parity
game. Figure 4 illustrates this. It shows a subtree of a tree decomposition: specifically, it
shows the tree decomposition nodes i with u ∈ Xi. Each node in the tree decomposition
is represented as a circle. For each set Xi, the diagram displays the outgoing edges from u
that are contained in that node. That is, for each set Xi, it displays the edges of the form
(u,w) with both u ∈ Xi and w ∈ Xi.

Suppose that we are playing a simulation game on the set Xj , and that the current
vertex c = u. In Step 1, Even could select the edge (u, h). Since Xm is far from Xj in the
tree decomposition, the best we can do is to use log |V | bits to store the vertex h.

We will fix this problem by modifying the parity game. The modification procedure
is illustrated in Figure 5. Each vertex in the graph will have its outgoing edges modified.
Figure 5a shows an example vertex u, and Figure 4 gives an example tree decomposition,
where only the nodes that contain u are shown. Figures 5a shows the outgoing edges from u



TIME AND PARALLELIZABILITY RESULTS FOR PARITY GAMES WITH BOUNDED WIDTH 21

Xj Xk Xl

Xm

Xn

u u u

u

u
ed e gf

h

i

Figure 4. The outgoing edges from the vertex u shown in a tree decomposition.
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Figure 5. The modification procedure.

in the original parity game, and Figure 5b shows the changes that we make to the outgoing
edges from u.

Suppose that we are playing a simulation game on Xj, and that we have arrived at u.
Now suppose that Even wants to move to some vertex not in Xj , for example, the vertex g.
The modification forces Even to a path in the tree decomposition to a node that contains
h, before moving to h.

Without this modification, we would be forced to use log v bits to hold the variable c,
because in Step 1 of the simulation game, Even could potentially pick any vertex in the
graph. On the other hand, suppose that we have made the modification, and that are
playing a simulation game on Xj and that c = u. Let (u, v) be the edge picked by Even in
Step 1.

• If v ∈ Xj , then we can represent v using log k bits.
• If v /∈ Xj , then we must have that v = ui for some tree decomposition edge (j, i). In this
case, we can store v by remembering u and (j, i).

In the second case, the vertex u can be stored using log k bits. We claim that the edge (j, i)
can be stored without using any additional memory. Recall that we are already required to
remember a tree decomposition edge of the form (l, j), in order to represent the current set
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S and the set F from the history. Thus, to implement the simulation game on an alternating
Turing machine, we need to store two tree decomposition edges, and these edges form a
path of length two in the tree decomposition. Our overall space complexity depends on the
following simple lemma.

Lemma 7.1. Let T = (I, J) be a rooted directed tree, with all edges oriented away from the

root. There are at most |I| directed two-edge paths in T .

Proof. Let i ∈ I be a node. If i is the root, or a successor of the root, then there are no
two-edge paths ending at i. Otherwise, i is the is the end of exactly one two-edge path.
Therefore, there are at most |I| two-edge paths in T .

Lemma 7.1 shows that a directed two-edge path in the tree decomposition can be stored
in log |V | bits. This fact then implies the required space bounds for the alternating Turing
machine.

The rest of this section proceeds as follows. We begin by formalising the modified parity
game. We then show how the simulation game can be used to solve the modified parity
game. To do this, we introduce two functions NextTW and HistTW, and show that, if the
simulation game is equipped with NextTW and HistTW, then it always terminates on the
modified parity game. Finally, we show that this version of the simulation game can be
solved on an alternating Turing machine, and from this we obtain the main result of this
section.

7.2. A modified parity game. For the rest of this section, we will fix a parity game
G = (V, V0, V1, E,pri), and a rooted tree decomposition (T = (I, J),X). In this subsection,
we describe a modified parity game G′, which will be critical in obtaining our result. For
every vertex v ∈ V , we define First(v, T ) to give the node i ∈ I such that v ∈ Xi, and i is
closest to the root in T .

We can now define our modified parity game. This definition follows the idea laid out
in Figure 5. The first step is, for each vertex v ∈ V , to add extra vertices vi for every
tree decomposition node i ∈ I other than First(v, T ). Then, we add edges according to the
schema laid out by Figure 5.

Definition 7.2. We define G′ = (V ′, V ′
0 , V

′
1 , E

′,pri′) as follows:

• V ′ = V ∪ {vi : v ∈ Xi for some i ∈ I and i 6= First(v, T )}.
• V ′

0 = V0 ∪ {vi : v ∈ V0 and vi ∈ V ′ for some i ∈ I}
• V ′

1 = V1 ∪ {vi : v ∈ V1 and vi ∈ V ′ for some i ∈ I}.
• The set E′ is constructed by the following procedures:
− For every pair of vertices vi, vj ∈ V ′, if there is an edge (i, j) ∈ J , then we add the

edge (vi, vj).
− For every vi ∈ V ′, if there is a vertex u ∈ Xi and an edge (v, u) ∈ E, then we add

(vi, u) to E′.
− For every vertex v ∈ V , if there is a vertex u ∈ XFirst(v,T ), and an edge (v, u) ∈ E,

then we add (v, u) to E′.
− For every vertex v ∈ V , if there exists a vertex vi ∈ V ′ with (First(v, T ), i) ∈ J , then

we add (v, vi) to E′.
• We set pri′(v) = pri(v) for every v ∈ V , and for every vi ∈ V ′ we set pri′(vi) = pri(v).
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It is not difficult to see that this construction cannot change the winner of the parity game.
This is because, if there is an edge (v, u) ∈ E, then there is a path 〈v1, v2, . . . , vk〉 in G′

with v1 = v, vk = u, and where v2 through vk−1 belong to the owner of v1. Thus, if Even
has a winning strategy in G that uses the edge (v, u), then we can construct a strategy for
Even in G′ that follows the corresponding path from v to u. The same property also holds
for Odd’s winning strategies. Thus, we have the following lemma.

Lemma 7.3. Let s ∈ V be a vertex. Even wins from s in G if, and only if, Even wins from

s in G′.

For the rest of this section, we will develop a version of the simulation game that can be
used to solve G′. Although we have modified the parity game, we will not compute a new
tree decomposition. We will develop an algorithm that uses the original tree decomposition
and the modified parity game.

7.3. The functions NextTW and HistTW. We now define two functions, NextTW and
HistTW. The idea is to use the same approach as we did in Section 6. That is, if we
want to determine the winner for some vertex s in the parity game, then we find an i ∈ I
with s ∈ Xi, and we play SimulateG′(S, ∅, s,NextTW,HistTW).

We start by defining the function NextTW. This function will always choose sets of the
form Xi ∪ {vi}, where i ∈ I is a tree decomposition node, and vi ∈ V ′ is a vertex. Suppose
that we are required to compute NextTW(S, v,F), for some set S, some vertex v ∈ V ′, and
some history F . Since S was either chosen by NextTW, or was the set chosen at the start
of the game, we know that S ⊆ Xi ∪ {vi} for some i ∈ I and some vi ∈ V ′. Let (u,w) be
an edge with u ∈ S and w /∈ S. The definition of G′ implies that w is one of the extra
vertices added that were added while constructing G′. That is, we have w = uj for some
tree decomposition edge (i, j) ∈ J . Thus, we know that, if we are required to compute
NextTW(S, v,F), then we must have v = uj for some u ∈ S, and some tree decomposition
edge (i, j). We define NextTW(S, uj ,F) = Xj ∪ {uj}.

Next, we define the HistTW function. It is very similar to the Hist function defined in
Section 6, and it is defined as follows:

• The first time that HistTW(F) is called, F will contain only one record. We do not delete
this record, so we set Hist(F) = F .

• Every other time that Hist(F) is called, F will contain exactly two records. Due to the
definition of NextTW, we know that the two records in F have the form (S1, v1, P1) and
(S2, v2, P2), where Xi ⊆ S1 and Xj ⊆ S2, for some i, j ∈ I. Furthermore, we know that
(i, j) ∈ J is a directed edge in the tree decomposition. We set Hist(F) = {(S2, v2, P2)}.

The next lemma shows that, if we equip the simulation game with the functions NextTW and
HistTW, then the simulation game always terminates. Since we are following the approach
used in Section 6, this proof is similar in structure to the proof of Lemma 6.2.

Lemma 7.4. If i is the root of the tree decomposition, and s ∈ Xi is a vertex, then

SimulateG′(Xi, ∅, s,NextTW,HistTW) terminates.

Proof. We begin by arguing that Odd cannot play reject an infinite number of times. This
follows from the definition of NextTW: we know that if Odd plays reject in a simulation
game where Xi ⊆ S for some i ∈ I, then the next game will be played on a set S′ with
Xj ⊆ S′ for some directed edge (i, j) ∈ J . Thus, after Odd has played reject at most |I|
times, we will have arrived at a leaf in the tree decomposition.
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The HistTW function ensures that, once we reach a leaf in the tree decomposition, the
game must end. Suppose that we have reached a simulation game on S, where S = Xj∪{wj}
where j ∈ I is a leaf, and w ∈ Xj is a vertex. The history function ensures that F contains
a record (F, p, P ) with Xk ⊆ F , where (k, j) ∈ J . We now have two properties:

• For every edge (v, u) with v ∈ Xj \Xk and u /∈ Xj, we have u ∈ Xk. This follows from
the definition of a tree decomposition given in Definition 2.2.

• For every edge (v, u) with v = wj , we have u ∈ Xj . This follows from the definition of E′

given in Definition 7.2.

Thus, we have shown that, for every edge (v, u) with v ∈ Xj \ Xk and u /∈ Xj , we have
u ∈ Xk. Therefore, since Xk ⊆ F , Step 2 of the simulation game ensures that Odd cannot
play reject.

Since S contains at most k+1 vertices, we know that, if Odd can no longer play reject,
then Odd can play accept at most k + 2 times before the game is forced to end in either
Step 5 or Step 6.

Now that we have established termination, we can apply Lemma 5.7 to imply the
correctness of this version of the simulation game.

7.4. Implementation on an alternating Turing machine. Finally, we show how this
version of the simulation game can be implemented on an alternating Turing machine. As
usual, the existential and universal states of the alternating Turing machine will be used to
simulate the moves of Even and Odd. We have the following theorem.

Theorem 7.5. Given a parity game G, a tree decomposition (T = (I, J),X) of width k for

G, and a vertex s, we can determine the winner of s in O(|V | · (k + 1)k+5 · (|D| + 1)3k+5)
time.

Proof. For the most part, the proof of this theorem is the same as the proof of Theorem 6.4.
Recall, from the proof of Theorem 6.4, that we must remember the following variables: S,
F = {F, p, P}, Π, P ′, c, and v.

Our central claim is that S, F , and v can be stored in log |V |+2 · log(k+1) bits. Note
that, NextTW and HistTW ensure that S ⊆ Xi ∪{si} and F ⊆ Xj ∪{fj}, for some (j, i) ∈ J ,
and some vertices s, f ∈ V . By Definition 7.2, there cannot be an edge (v, u) with v ∈ S \F ,
and u = fj. Thus, our alternating Turing machine can represent F as the set Xj , while
forgetting the vertex fj, and this cannot affect the correctness of the algorithm.

Now we argue that S, F , and v can be stored in log |V | + 2 log(k + 1) bits. There are
two cases to consider:

• If v ∈ S, then Xi and Xj can be represented by pointing to an edge in J . Since T is a
tree, we know that |J | ≤ |I| ≤ |V |. Then, to store si we can simply store the vertex s in
log k bits, because we already know Xi. Since v ∈ S, and since |S| ≤ k + 1, we can store
v using log(k + 1) bits.

• If v /∈ S, then we know that v = ul for some u ∈ S, and some l ∈ I. Note that j, i, and
l form a directed two-edge path in T . Thus, by Lemma 7.1, we can represent j, i, and l,
in log |I| ≤ log |V | bits. As with the previous case, we can represent the extra vertex si
using log k bits. Moreover, since u ∈ S, we can represent v using at most log(k + 1) bits.

Therefore, in both cases we can store S, F , and v using log |V |+ log(k + 1) + log k bits.
The amount of space for the variables p, P , Π, P ′, and c follow from the arguments

made in the proof of Theorem 6.4. However, there is one small difference: in this proof, we
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have |S| = k + 1 rather than |S| = k. Thus, while P could be stored in k · log(D + 1) bits
in Theorem 6.4, we must use (k + 1) · log(D + 1) bits in this proof. Similar modifications
are required for the other variables.

In total, therefore, we require at most log |V |+(k+5) · log(k+1)+(3k+5) · log(|D|+1)
bits of storage in our alternating Turing machine. This alternating Turing machine can be
implemented on a deterministic Turing machine in O(|V | · (k+1)k+5 · (|D|+1)3k+5) time.

8. Parity Games With Bounded Treewidth Are In NC2

We begin by defining the Next and Hist functions that will be used in by simulation game
in this result. Recall, from Section 4.3, that this version of the simulation game gives extra
strategic choices to player Odd. We use this idea to define NextNC and HistNC as follows:

• When Step 4 requires a value for NextNC(S, v,F
′′′), we allow player Odd to select the set

of vertices that will be used. More precisely, we allow Odd to select S′ ⊆ V such that
|S′| ≤ k and v ∈ S′.

• When Step 4 requires a value for HistNC(F
′′), we allow Odd to to select the set F ′′′ by

deleting records from F ′′. We insist that, if |F ′′| > 3, then Odd must delete enough
records so that |F| ≤ 3.

Thus, we will use Simulate(S,F , s,NextNC,HistNC) as the simulation game in this section.
Note that this simulation game could go on forever, since Odd could, for example,

always play reject, and remove all records from F . For this reason, we define a limited-
round version of the game, which will be denoted by Simulater(S,F , s,NextNC,HistNC),
where r ∈ N. This game is identical to Simulater(S,F , s,NextNC,HistNC) for the first r
rounds. However, if the game has not ended before the start of round r + 1, then Even is
declared to be the winner.

Let r ∈ N be an arbitrarily chosen bound. The following lemma states that, no matter
what sets Odd chooses, if the simulation game stops before round r+1, then the winner of
the parity game is correctly determined.

Lemma 8.1. No matter which sets are chosen by Odd for NextNC and HistNC in Step 4:

• if s ∈ W0, then Even has a strategy to win Simulater({s}, ∅, s,NextNC,HistNC).
• If s ∈ W1, and if the game ends before round r + 1, then Odd has a strategy to win

Simulater({s}, ∅, s,NextNC,HistNC).

The correctness of this lemma follows from Lemma 5.7. Note that this lemma does not
guarantee anything if the simulation game terminates in round r + 1. Our goal in this
section is to show that there is an r such that Odd can always force the game to end before
round r + 1, which will then allow us to apply Lemma 8.1 to prove correctness of our
algorithm.

We will assume that our parity game has a tree decomposition (T = (I, J),X) of width
k. Our main goal is to show that Odd has a strategy for choosing NextNC and HistNC that
forces the game to terminate within the first r rounds, for some r ∈ N. In particular, to
show that parity games with bounded treewidth lie in NC2, our strategy must have the
following properties:

• The game must end in O(k · log |V |) rounds. That is, we have r = c · k · log |V | for some
constant c.

• The history may never contain more than three records.
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In the following subsections, we will provide such a strategy.

8.1. Odd’s strategy for NextNC and HistNC. Recall, from Section 4.3, that the strategy for
Odd consists of two sub-strategies: Slice and Reduce. The strategy Slice will be applied
whenever F contains fewer than 3 records, and Reduce will be applied whenever F contains
exactly 3 records. Both of these strategies maintain a set of eligible tree decomposition
nodes L ⊆ I. The set of eligible tree decomposition nodes represents the portion of the
parity game that can still be reached by the simulation game. An intuitive idea of this is
given in Figures 3a and 3b. In both cases, the set of eligible nodes is the subtree between
the nodes F1, F2, and F3.

We give a formal definition for how L will be updated. Suppose that Odd rejects the
profile P for the vertex v and set Xi. We define Subtree(Xi, v) to be the set of nodes in the
subtree of i rooted at Direction(Xi, v). We update L as follows.

• The first time that reject is played, Odd sets L = I.
• In each subsequent iteration, the set L is updated so that L := L ∩ Subtree(Xi, v).

Odd uses L to decide which records should be deleted. Formally, Odd will select HistNC(F)
according to the following rules:

− The first time that reject is played, Odd removes all records from F .
− In each subsequent iteration, Odd uses the following rule. Let (F, p, P ) ∈ F , and suppose

that Xi ⊆ F for some i ∈ I. If there is no edge (i, j) ∈ J with j ∈ L, then Odd removes
(F, p, P ) from F ′.

We now define the strategy Slice. Recall that Lemma 4.1 shows that every tree with
more than three nodes can be split into pieces, where each piece has at least two-thirds of
the nodes in the tree. We define Split(I, J) to be a function that returns a vertex i ∈ I that
satisfies the properties given in Lemma 4.1. The strategy Slice will use the function Split
to remove at least one third of the eligible nodes. Formally, we define Slice(S, v, L,F).
The strategy is defined as follows:

• If |L| ≥ 3 then Slice(S, v, L,F) = Xi where i = Split(L, J).
• If |L| < 3 then Slice(S, v, L,F) = Xi for some arbitrarily chosen i ∈ L.

The second clause is necessary, because Lemma 4.1 requires that the tree should have at
least three vertices.

We now introduce our second strategy for choosing S′, which is called Reduce. This
strategy will be applied whenever |F| = 3. Recall that the purpose of Reduce is to reduce
the number of records in F to at most 2, so that we can continue to apply Slice. Suppose
that F = {(F1, p1, P1), (F2, p2, P2), (F3, p3, P3)}. By assumption we have that F1 = Xi,
F2 = Xj , and F3 = Xk, for some i, j, k ∈ I. Note that i, j and k cannot all lie on the
same path, because otherwise one of the records in F would have been deleted by HistNC.
It is a basic property of trees that, if i, j, and k are not on the same path, then there
exists a unique vertex l ∈ I such that, if l is removed, then i, j, and k, will be pairwise
disconnected. For each history F with |F| = 3, we define Point(F) to be the function that
gives the vertex l. We define the strategy Reduce(S, v, L,F) = Xi, where i = Point(F).

Finally, we can give the full strategy for Odd. Odd selects NextNC(S, v,F) according to
the following rules:

• If |F| < 3, then Odd selects S′ = Slice(S, v, L,F).
• If |F| = 3, then Odd selects S′ = Reduce(S, v, L,F).
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8.2. Correctness of SR. In this subsection, we show that SR has both of the properties
that we desire. Suppose that Odd uses SR, and that the outcome is a play of the simulation
game:

〈S1 = Simulate(S1,F1, s1,NextNC,HistNC),S2 = Simulate(S2,F2, s2,NextNC,HistNC), . . . 〉.

Furthermore, let Li be the contents of L at the start of the game Si, and let vi = si+1 be
the final vertex visited in Si. The first property that we will prove is that, as long as Odd
plays SR, the set L is guarded by the records in F . Informally, this means that, in order to
move from a tree decomposition node i ∈ L, to a tree decomposition node j /∈ L, we must
pass through some record in F . Formally, this can be expressed as the following lemma.

Lemma 8.2. Suppose that Odd plays SR. If z ≥ 2, then for every edge (i, j) ∈ J with

i ∈ Lz, and j /∈ Lz, there exists a record (F, p, P ) ∈ Fz with Xz = F .

Proof. We will prove this claim by induction on z. The base case is vacuously true, since
SR sets L2 = I, which implies that there cannot exist an edge (i, j) with j /∈ L2.

For the inductive step, assume that this lemma holds for some z > 2. Since Lz+1 =
Lz ∩ Subtree(Sz, vz), the only possible edge that could be not covered by a set in Fz is the
edge (i, j), where Xi = Sz+1, and j ∈ Subtree(Sz+1, vz+1). However, this edge is covered
by two properties:

• In Step 4, the simulation game always adds the record (F,−, P ′) to F ′ to create F ′′.
• When choosing F ′′′, the strategy SR never removes a record (F, p, P ) from F ′′ with F ⊆
Xj , where (i, j) ∈ J and i ∈ Lz+1 and j /∈ Lz+1.

Thus, a record (F, p, P ) with F = Xi must be contained in Fz+1, which completes the proof
of the inductive step.

Next we will show the correctness of Reduce. In particular, we show how if it is used
when |Fx| = 3, it enforces that |Fx+1| ≤ 2.

Lemma 8.3. Suppose that Odd plays SR, and for some x ≥ 2 we have |Fx| = 3, and

Sx = Reduce(Sx−1, vx−1, Lx−1,Fx). We have |Fx+1| ≤ 2.

Proof. Since x ≥ 2, and since Odd is following SR, we know that there must exist three
tree decomposition nodes i, j, k ∈ I, such that, if (F1, p1, P1), (F2, p2, P2), and (F3, p3, P3)
are the three records in Fx, then we have F1 = X1, F2 = Xj , and F3 = Xk. By definition,
Reduce(Sx−1, vx−1, Lx−1) selects a vertex l such that, if l is removed from T = (I, J), then i,
j, and k become disconnected. Thus, at most one of i, j, and k can lie in Subtree(Sx−1, vx−1),
and hence at least two records will be removed by SR. Therefore, since at most one new
record is added to Fx+1, we must have |Fx+1| ≤ |Fx| + 1 − 2 = 2. Thus, we have shown
that |Fx+1| ≤ 2.

Finally, we are able to prove that SR has the property that we require.

Lemma 8.4. Suppose that the parity game has a tree decomposition of width k. If Odd

plays SR, then the game ends in O(k · log |V |) rounds.

Proof. Lemma 4.1 implies that, if Slice is invoked at the end of Si, then we will have
|Li+1| ≤

2
3 |Li|. Each time Slice is used, we add at most one new record to F . Therefore,

for each use of Slice, we must use Reduce at most 1 time, in order to keep |F| ≤ 3. Thus,
after Odd has played reject at most 2 · log 3

2
(|I|) times, we will arrive at a game Sc with

|Lc| < 3.
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We claim that once we have |Lc| < 3, Odd can play reject at most two more times.
This follows from the fact that for every edge (i, j) ∈ J with i ∈ L and j /∈ L, we must have
Xj ⊆ Fa for some Fa in Fc. Therefore, after Odd plays reject two more times, we will
arrive at a game Sc+2 = SimulateG(S,F , s,NextNC,HistNC) such that, if Xi ⊆ S, then for
all edges (i, j) ∈ J we have Xj = Fa for some set Fa in F . This is because the vertex i ∈ I
such that S = Xi is always removed from L, and so it does not matter whether Odd uses
Slice or Reduce at this point. In Sc+2, we know that Step 2 prevents Odd from playing
reject, and therefore the game will end.

So far, we have that Odd can play reject at most 2 · log 3
2
(|I|) + 2 times. Note that

between each instance of reject, Odd can play accept at most k + 1 times without trig-
gering Step 5 or Step 6. Since |I| ≤ |V | we can therefore conclude that the game can last
at most (k + 1) · (2 · log 3

2
(|V |) + 2) times, and this is contained in O(k · log |V |).

8.3. Implementation on an alternating Turing machine. Let G be a parity game,
and let G′ = (V, V ′

0 , V
′
1 , E,pri′) be a parity game that swaps the roles of the two players

in G. More formally we have:

• V ′
0 = V1, and V ′

1 = V0.
• For each v ∈ V we set pri′(v) = pri(v) + 1.

It should be clear that Even can win from a vertex s ∈ V in G if and only if Odd can win
from s in G′.

Suppose that we want to find the winner of a vertex s. We choose c = O(k · log |V |),
where the constant hidden by the O(·) notation is given in the proof of Lemma 8.4. We
then solve SimulatecG({s}, ∅, s,NextNC,HistNC) and SimulatecG′({s}, ∅, s,NextNC,HistNC). If
both games declare that Even wins s, then we declare that the game has treewidth larger
than k. Otherwise, we declare that the winner of SimulatecG({s}, ∅, s,NextNC,HistNC) is the
winner of s. Lemmas 5.3, 5.4, and 8.4 imply that this procedure is correct.

Thus, to prove our main result, we must show that SimulatecG({s}, ∅, s,NextNC,HistNC)
can be solved in O(k2 · (log |V |)2) time and O(k · log |V |) space by an alternating Turing
machine. To implement the game on an alternating Turing machine, we use the existential
states to simulate Even’s moves and the universal states to simulate Odd’s moves. We begin
by proving the time bound.

Lemma 8.5. A simulation of SimulatecG({s}, ∅, s,NextNC,HistNC) by an alternating Turing

machine uses at most O(k2 · (log |V |)2) time.

Proof. By definition we have that SimulatecG({s}, ∅, s,NextNC,HistNC) allows the game to
continue for at most O(k · log |V |) rounds. Each step of the game takes the following time:

• Since we are only required to guess a vertex in Step 1, this step can be implemented in
log |V | time.

• In Step 2 checking whether v ∈ S can be done in k · log |V | time. Note that we can have
at most 3 records in F . Therefore, the check for whether v ∈ F for some (F, p, P ) ∈ F
can also be performed in 3 · k · log |V | time.

• Generating a strategy profile in Step 3 can take at most k · log(|D|+ 1) time.
• If Odd plays accept in Step 4, then, if we always maintain a pointer to the end of Π,
appending (v, P (u), u) to Π will take 2 · log |V |+ log |D| time.

• If Odd plays reject in Step 4 then:
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− Since computing MaxPri(Π) can take at most k · log |D| time, and since |F| ≤ 3, we
have that F ′ can computed in k · log |D| time.

− Appending (F,−, P ′) to F ′ when creating F ′′ will take k · log |V | + log(|D| + 1) + k ·
log(|D|+ 1) time.

− Implementing Odd’s strategy for HistNC can be done in 4 · k · log |V |+ log(|D| + 1) +
k · log(|D|+ 1) time. This is because Odd is only allowed to remove records from F ′′,
and because |F ′′| ≤ 4.

− Implementing Odd’s strategy for NextNC involves picking a subset of vertices with size
at most k. This can be done in k · log |V | time.

• In Step 5, since |Fi| ≤ 3, we can check whether c ∈ F , for some (F, p, P ) ∈ Fi, in
3 · k · log |V | time. If the game stops here, then computing p′, which requires us to find
MaxPri(Π), must take at most k · log |D| time.

• In Step 6, determining if Π forms a cycle can be done by checking for each tuple (v, p, u) ∈
Π if c = v. Since there can be at most k tuples in Π, this can be done in k · log |V | time.
Finding the highest priority on the cycle then takes at most k · log |D| time.

Since |D| ≤ |V |, we have that each round takes at most O(k · log |V |) time. Since there are
at most O(k · log |V |) rounds, the machine must terminate in O(k2 · (log |V |)2) time.

Next, we prove the space bounds for the alternating Turing machine.

Lemma 8.6. A simulation of SimulatecG({s}, ∅, s,NextNC,HistNC) by an alternating Turing

machine uses at most O(k · log |V |) space.

Proof. In order to simulate the game, we must remember the set S, the vertex c and the
vertex v, the strategy profile P ′, the path Π, and the history F . It is important to note
that we do not need to remember the set L used by SR. In Lemma 8.4 we showed that there
exists an Odd strategy that forces the game to terminate in O(k · log |V |). The existence
of such a strategy is sufficient to ensure that the alternating Turing machine computes the
correct answer, and we do not need to actually implement the strategy on the alternating
Turing machine.

Therefore, the amount of space used by the alternating Turing machine is as follows.

• Since we always have |S| ≤ k, we know that S requires at most k · log |V | bits to store.
• The vertices c and v each require log |V | bits to store.
• The strategy profile P ′ contains |S| mappings u → p, where u ∈ S and p ∈ D ∪ {−}.
Therefore, P ′ can be stored using k(log |V |+ log(|D|+ 1)) bits.

• Since |S| ≤ k, the path Π contains at most k tuples of the form (v, p, u), where v, u ∈ V
and p ∈ D∪{−}. Therefore, storing the path Π requires at most 3·k·(log |V |+log(|D|+1))
bits.

• For each record (F, p, P ) ∈ F , the set F requires k · log |V | bits to store, the priority p
requires log(|D|+1) bits to store, and we have already argued that the strategy profile P
requires at most k · (log |V |+ log(|D| + 1)) bits to store. Since |F| ≤ 3, we have that F
requires at most 3 · (2 · k · log |V |+ (k + 1) · log(|D|+ 1)) bits to store.

Since |D| ≤ |V |, we have shown that the alternating Turing machine requires at most
O(k · log |V |) space.

Having shown these two properties, we now have the main result of this section.

Theorem 8.7. Let G be a parity game and k be a parameter. There is an alternating

Turing machine that takes O(k2 · (log |V |)2) time, and uses O(k · log |V |) space, to either
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determine the winner of a vertex s ∈ V , or correctly report that G has treewidth larger

than k.

A simple corollary of the time and space results for our alternating Turing machine is
that our problem lies in the class NC2 [ALR10, Theorem 22.15].

Corollary 8.8. The problem of solving a parity game with bounded treewidth lies in NC2.

9. Conclusion

We have seen three results: a O(|V |k+3 ·kk+2 ·(|D|+1)3k+2) time algorithm for parity games
with bounded DAG width, a O(|V | · (k + 1)k+5 · (|D| + 1)3k+5) time algorithm for parity
games with bounded treewidth, and a proof that parity games with bounded treewidth lies
in NC2.

It is worth noting that the running time of our algorithm for parity games with bounded
DAG width includes a factor of |V |k+2, because that is the best known upper bound for
the number of edges that can appear in a DAG decomposition. If, in the future, better
upper bounds are derived, then the running time of our algorithm will see a corresponding
improvement.

An interesting open problem is: are there fixed parameter tractable algorithms for solv-
ing parity games with bounded treewidth? An algorithm is fixed parameter tractable if its
running time can be expressed as O(poly(V ) · f(k)), where the degree of the polynomial is
independent of the treewidth. Neither of the algorithms that we have presented satisfy this
property, because they include the terms |V |k+3 and (|D|+1)3k+5, respectively. In the case
of DAG width, if the upper bounds on the size of the DAG decomposition are tight, then it
seems unlikely that there exist fixed parameter tractable algorithms. However, for the case
of treewidth, it is entirely possible that such algorithms could exist.
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